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Abstract

There are real world data sets where a linear approximation like the principal
components might not capture the intrinsic characteristics of the data. Nonlinear
dimensionality reduction or manifold learning uses a graph-based approach to
model the local structure of the data. Manifold learning algorithms assume
that the data resides on a low-dimensional manifold that is embedded in a
higher-dimensional space. For real world data sets this assumption might not be
evident. However, using manifold learning for a classification task can reveal a
better performance than using a corresponding procedure that uses the principal
components of the data. We show that this is the case for our hyperspectral data
set using the two manifold learning algorithms Laplacian eigenmaps and locally
linear embedding.

1 Introduction

Nonlinear dimensionality reduction or manifold learning is a useful tool for
high-dimensional data analysis. In contrast to linear dimensionality reduction
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as it is performed by a standard principal component analysis (PCA), with
manifold learning the possibly low-dimensional manifold that is embedded in a
high-dimensional space can be uncovered. This so-called manifold assumption
is central to the theory of manifold learning and states that the data resides
on a low-dimensional manifold in high-dimensional space. Manifold learning
has been applied to many computer vision problem domains including face
recognition [3], image retrieval [4] and medical image analysis [1]. Due to the
high spectral resolution of many hyperspectral image data sets and the high
correlation between adjacent and overtone bands, manifold learning has received
some attention in the research community [5].
In this technical report, we will first review the basics of manifold learning,
why it is a useful framework and how it can be utilized for classification in a
semi-supervised manner. Finally, we will apply this semi-supervised procedure
to a hyperspectral data set consisting of four different kinds of wood (chips):
eucalyptus, poplar, beech and spruce. The results indicate that manifold learning
outperforms a linear approach using PCA.

2 Classification with manifold learning

Discovering the low-dimensional manifold embedded in a higher-dimensional
space can be utilized for classification. We aim to show two aspects of manifold
learning: First, it can be employed for classification, second, manifold learn-
ing outperforms a corresponding linear procedure using principal component
analysis. In general, dimensionality reduction is often used as a step prior to
classification. This is due to the fact that for many datasets, the dimensions
of individual data points might be correlated due to the physical nature of the
process that has generated the data. For instance, in (near) infrared spectroscopy
overtone bands can be observed that are a manifestation of the vibrational modes.
As the resonant frequencies can be approximated by an harmonic oscillator,
characteristic peaks in the spectrum might arise from the vibrational modes
of the same chemical substance. For a classification task correlation means
that specific dimensions might not carry valuable information, in the sense that
the additional information does not lead to a better separability of the data and
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therefore also does not contribute to the classification performance. Removing
correlated dimensions can therefore lead to a simpler classifier with less param-
eters. When applying manifold learning prior to classification, the objective
is to exploit the manifold assumption. Manifold learning is a good fit to the
data when there are non-linear dependencies between different dimensions. In
practice, it is not evident that non-linear dependencies exist in high-dimensional
data. However, if manifold learning leads to better classification results than a
linear method, this might indicate the presence of an intrinsic low-dimensional
manifold.

3 Laplacian eigenmaps

We briefly review the basics of one popular manifold learning algorithm
called Laplacian Eigenmaps (LE). Given data samples X = {xi}N

i=0 ⊆ Rn, LE
computes a Laplacian matrix according to a kernel function. The final mapping
is then defined by the eigenvectors of the graph Laplacian matrix. A detailed
description is given by Algorithm 3.1 below. Central to the algorithm is the
choice of the kernel function. We call a symmetric function k : X × X → R
a kernel, if the induced Gram matrix defined by Kij = k(xi, xj) is positive
semi-definite, i.e.

xT Kx =
N∑

i=1

N∑
j=1

xi Kij xj ≥ 0, (3.1)

for all x ∈ Rn. This is the discrete analog to Mercer’s condition [6] which states
that the function K : [a, b] × [a, b] → R fulfills the inequality

∫ ∫
f(x)K(x, y)f(y)dxdy ≥ 0 (3.2)

for every function f ∈ L2(R). A symmetric kernel function satisfying Mercer’s
condition leads to nonnegative real eigenvalues and orthogonal eigenvectors for
the corresponding kernel matrix.
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Algorithm 3.1 Laplacian Eigenmaps [2]
1: procedure Laplacian Eigenmaps
2: Input: data X = {xi}N

i=0 ⊆ Rn

3: Output: embedding Y = {yi}N
i=0 ⊆ Rm

4: 1.) Build an adjacency graph G = (V, E)
5: nodes vi ∈ V and vj ∈ V are connected if ||xi − xj ||22 < ε

6: 2.) Pick weights
7: Choose a kernel function k(xi, xj) and set

8: Wij =
{

k(xi, xj) (i, j) ∈ E

0 else
9: 3.) Compute Eigenmap

10: Ly = λDy, with Dii =
∑

j Wji and L = D − W

11: xi → (y1(i), . . . , ym(i))
12: end procedure

The embedding is found by computing the generalized eigenvalue problem
involving the graph Laplacian and the corresponding degree matrix. The
nonlinear nature of Algorithm 3.1 is due to the choice of the kernel function.

4 Semi-supervised manifold learning

Semi-supervised machine learning methods make use of unlabeled data points
for training. Transductive learning is one variant of a semi-supervised learning
setting where the correct labels of some given unlabeled data points must be
inferred. This is in contrast to inductive learning where a function is learned that
maps a data point to its label. Manifold learning algorithms are label-agnostic:
In order to build the adjacency graph no information about class labels is
necessary. The main idea behind a semi-supervised manifold learning approach
is that the kernel matrix is built using labeled and unlabeled data points. The
resulting matrix quantifies the similarity between all pairwise data points. As a
subset of these data points is labeled, the kernel matrix relates each unlabeled
data point to every labeled data point. The computation of the eigenmap and

18



Semi-Supervised Manifold Learning

the projection of the high-dimensional data leads to an embedded space with
partially labeled data points. Unlabeled points can be classified with a simple
nearest-neighbor search. In this way, the intrinsic manifold structure–given that
it exists–is put to use for a classification task.

Algorithm 4.1 Semi-Supervised Manifold Learning
1: procedure Semi-Supervised Manifold Learning
2: Input: labeled data {(x1, c1), . . . , (xp, cp)},
3: unlabeled data {xu

1 , . . . , xu
q }

4: Output: labels for {xu
1 , . . . , xu

q }
5: 1.) Compute embedding by manifold learning algorithm
6: e.g. by Ly = λDy

7: 2.) Embed all data points
8: xi −→ y1(i), . . . , ym(i)
9: 3.) Classify unlabeled data points

10: for all unlabeled data points xu do
11: get the labels of the k nearest labeled points in the embedded space
12: assign data point xu the most common label
13: end for
14: end procedure

The procedure described above can be used together with any manifold learning
algorithm. In order to compare LE, we also apply a further manifold learning
algorithm to the data set called locally linear embedding (LLE). For a given
data set X = {xi}N

i=0 ⊆ Rn, LLE tries to reconstruct every data point from a
linear combination of its k-nearest neighbors. LLE minimizes the following
cost function:

E(W ) =
N∑

i=1
||xi −

∑
xj∈Nk(xi),j 6=i

wijxj ||22

s.t.
∑
i=1

Wij = 1 ∀j ∈ {1, . . . , N}
(4.1)
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Figure 4.1: Spectra of the four different woods: eucalyptus, poplar, beech and spruce. This plot
also shows the standard deviation (0.1σ) around the mean.

Nk(x) denotes the set of k-nearest neighbors of x. In order to achieve a
neighborhood preserving map, the resulting weight matrix from the optimization
problem 4.1 above is used to find an embedding:

E(Y ) =
N∑

i=1
||yi −

∑
yj∈N (yi),j 6=i

wijyj ||22. (4.2)

In the following, we describe the methodology that was used to apply and
validate Algorithm 4.1 for hyperspectral data. The hyperspectral images were
acquired using a Specim SWIR camera with spectral range from 950 nm–2500
nm and a spectral resolution of 10 nm. Figure 4.1 shows the entirety of the
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For each cross-validation 
iteration

random subsample of 100 labeled spectra
(for every wood type)  

random subsample of 50 unlabeled spectra
(for every wood type) 

Embed spectra via manifold learning

Classify unlabaled points with k-NN in embedded space 

Figure 4.2: The proposed methodology. We acquired separate data sets for training and testing.
For each cross-validation iteration, we sampled 100 labeled and 50 unlabeled spectra from every
wood type. No further preprocessing of the spectra is applied. Based on this data, the Laplacian
(and the locally linear embedding optimization problem) is computed. The images above of the fine
wood chips are averages over all hyperspectral bands.

spectra for the four classes in terms of a mean spectrum with 0.1σ. Separate
image sets were acquired for training and testing. To evaluate Algorithm 4.1, a
target dimension of 2 was chosen for all dimensionality reduction procedures.

5 Results

The above methodology leads to the results given in Table 5.1. The results indi-
cate that the used manifold learning algorithms outperform linear dimensionality
reduction in terms of a 1-nearest neighbor classification in the embedded space.
Furthermore, we used two different kernel functions krbf and kcos. The overall
accuracy for kcos leads to better results. As the spectra were not preprocessed,
this result is not too surprising as the cos-similarity is invariant to linear shifts
of the spectrum–which is in contrast to the rbf-kernel. We furthermore observe
that LE outperforms LLE for our data set.
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Table 5.1: Classification results for PCA and the different manifold learning algorithms using the
the semi-supervised manifold learning procedure outlined in Algorithm 4.1. The overall accuracy
(OA) is given in the last column.

Method Eucalyptus Poplar Beech Spruce OA (µ + σ)

PCA 0.61 0.74 0.76 0.58 0.67 + 0.036
LLEk=30 0.68 0.81 0.76 0.60 0.71 + 0.019
LLEk=40 0.72 0.83 0.76 0.63 0.74 + 0.018
LErbf 0.75 0.86 0.76 0.61 0.74 + 0.020
LEcos 0.76 0.95 0.75 0.66 0.78 + 0.016

Especially LEcos significantly outperforms the PCA-based approach. In addition,
as indicated by the standard deviation, LEcos is the most robust method, while
throughout the cross-validation the variance of the PCA-based procedure is the
highest.

6 Conclusion & Outlook

In essence, Laplacian eigenmaps and locally linear embedding build a discrete
approximation of the underlying data manifold. By computing a weight matrix
that captures the local structure of the data, the intrinsic characteristics are
utilized for dimensionality reduction. The induced neighborhood preserving map
is a suitable tool for high-dimensional data analysis. We have applied manifold
learning for a semi-supervised classification task and showed that it outperforms
classification in the space that is defined by the principal components. Our
results indicate that choosing a kernel function is a critical step for LE. Manifold
learning has the potential to uncover the low-dimensional manifold of the data.
Future work should continue to examine this potential.
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