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Abstract

The optical and digital resolution, as well as the signal-to-noise ratio are important
characteristics of optical spectrometers and available in data sheets. But how
can an optical spectrometer system be selected for a specific application?
The article shall serve as an aid to characterize optical spectrometers and
hyperspectral cameras by introducing a benchmark calculation which indicates
the measurement uncertainty of absorption bands.

1 Introduction

In optical spectroscopy, the wavelength depended intensity of light is measured.
Due to the interaction between light and matter, the direction of the light
propagation can change by elastic scattering processes. Furthermore, light can
be absorbed by interaction with molecules, which changes the intensity of the
light. The wavelength dependent probability of light scattering and absorption
depends on the material properties of the sample. Therefore, it is possible
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to determine material properties of the sample by recording its reflected or
transmitted optical spectrum. Applications can be found in various fields like
smart agriculture, food industry as well as in petro chemistry [9].

Due to the continuously advancing development of microsystems technology
(MEMS), miniaturized spectrometers and hyperspectral camera systems can
be manufactured cost-effectively and in large quantities. In order to achieve a
comparability of sensors of different types, a benchmark parameter is presented
below, which links the sensor noise with the optical and digital resolution.

In the following chapter the state of the art in chemometrics is briefly explained.
Afterwards, signal generation and detection are discussed in more detail. Finally,
the findings are used to define spectral features and sensor characterization.

2 State of the art in chemometrics

For the statistical analysis of spectroscopic data, the research discipline of
chemometrics has developed within the field of chemistry. In the following,
the state of research on theoretical simulation and in addition, the established
pre-processing methods of chemometrics are referred.

Mainly core statements are given. For detailed information meaningful sources
are given in each section.

2.1 Theoretical spectroscopy and simulation of spectroscopic
results

Molecular vibrations can be excited by interaction with light, which causes
an absorption of the light due to the law of energy conservation. For better
understanding it is useful to consider light as particles, which are called photons.
The energy of a photon is given by its frequency, which can also be expressed by
a wavelength using the speed of light. And as result form quantum mechanics,
only discrete energy levels of molecular vibrations can be excited. Both,
the fundamental law of energy conservation and the discrete energy levels
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of molecular vibrations lead to the simple result, that only photons with a
wavelength, that matches these energy levels can be absorbed.

However, the anharmonic potential of atomic forces lead to an non-linearity in
the energy levels of molecular vibrations. Therefore, the energy levels change
strong in a solid-state or liquid sample caused by the presence of additional
atoms, temperature or pressure. For this reason, theoretical spectroscopy is still
a field of research. Simulation of spectroscopic results is only possible in case
of simple molecules in solutions with a sparse concentration [1].

Furthermore, the transfer of chemometric calibration models to other products
is quite impossible. This means, the calibration of sugar content of apples only
can be applied to apples and not to other types of fruit.

2.2 Chemometric methods for spectral preprocessing

In the previous sections, the focus was on absorption and its relationship to
material properties. However, the absorption can only be detected indirectly,
whereas the reflected or transmitted light can be detected directly. Therefore,
several methods have been developed to correct non-linearity of absorption,
scattering effects and transfer of chemometric calibration models.

2.2.1 Absorbance units

In chemometrics, light which is not detected by the sensor (1 − r) is referred as
absorption, often this signal is also expressed in

a := log(1 − r) (2.1)

absorbance units (AU). Where r describes the reflected signal detected and
discretized by the sensor and logarithms are used due to the exponential
relationship between absorption and substance concentration by the Beer-
Lambert-Law.
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2.2.2 Scatter correction

In chemometrics, no distinction is made between the physical processes of elastic
and inelastic light scattering. Only the terms absorption or reflection/transmis-
sion are used. Nevertheless, it is known that elastic scattering effects from
Mie or Rayleigh theory have an impact on the spectrum and a scatter correc-
tion is necessary. Therefore, a Multiplicative-Scatter-Correction (MSC) or a
Standard-Normal-Variate (SNV) is often applied as a pre-processing method
[10]. Another approach is to derive the spectrum, which is often combined with
smoothing operations [8, 4, 7].

2.2.3 Instrument transfer

An optical spectrometer records the spectrum of the light and converts it
into a digital measurement signal. Depending on the instrument used, the
spectrometers differ in their spectral range as well in their optical and digital
sampling resolution. However, devices of the same type and manufacturer often
differ in mechanical tolerances. For this reason, various methods for the transfer
of calibration models have been developed [6, 3].

3 The spectral signature of a sample

The following section will describe the signal components of the optical spectrum
in the near and short wave infrared (780 nm − 2500 nm). In the optical spectrum
the physical effects of scattering and absorption are superimposed. Nevertheless,
the spectrum can be evaluated by chemometric calibration models or machine
learning methods. The amount of training data required for this can be reduced
by making specific pre-assumptions. With the following model some physically
motivated assumptions about properties (baseline, absorption bands) of the
spectral signature (see fig.3.1) can be formulated.

This information model is used in chapter 5.1 to define characteristics. Finally, in
chapter 5.2 a characterization of spectral sensor systems based on the detection
of these features is proposed.
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Figure 3.1: The spectral signature of an object is generated from the superposition of elastic and
inelastic scattering (absorption). The absorbing molecule groups create Gaussian-shaped absorption
bands. Their size allows quantitative analysis of the ingredients. Due to the wavelength-dependent
elastic scattering processes (Mie- and Rayleight scattering), a smooth baseline is created.

3.1 A stochastic model to describe the spectral signature of
a sample

The interaction between light and the sample can be described by a model
of stochastic processes [5]. Therefore, the spectral signature of the sample is
given by the probability density functions of rθ,φ(λ) ∈ [0, 1] and transmission
tθ,φ(λ) ∈ [0, 1], depending on the wavelength λ, the angle φ ∈ [−π/2, π/2] of
the incident light from the light source and the angle θ ∈ [−π/2, π/2] of the
reflected or transmitted light. Both angles are related to the surface normal. A
graph is used to describe the light and matter interaction (see fig.3.2): The light
source radiates photons with the probability of Nφ(λ) ∈ [0, 1] within the time
period T onto the sample. Multiple elastic scattering processes si,j(λ) ∈ [0, 1]
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can occur within and between different layers i, j ∈ N of the sample. For
homogeneous materials without packaging, the number of layers can be reduced
to one. From the surface, photons can be emitted in different angels θ as
observable reflection and transmission. In addition, photons in each layer
n ∈ N can be absorbed an(λ) ∈ [0, 1] . For better readability the wavelength
dependence is not explicitly referred at every point. The angles are usually
unknown and cannot be measured. The angle-dependent scattering effects
mainly appear when using very different samples or when comparing different
measuring instruments. Therefore these quantities are given as an index.

Sample

light source reflection

...

1. layer

2. layer

absorption

n. layer

transmission

Nφ

tθ

rθ

s1,1
a1

s2,2

a2

sn,n

an

s2,1s1,2

s3,2
s2,3

sn−1,n
sn−1,n

Figure 3.2: The spectral signature of the transmitted tθ or reflected rθ light from a sample is
formed by multiple scattering si,j and absorption an processes within the sample. The scattering
or absorption can differ in the different layers such as packaging, peel, pulp. In addition, the spectral
response of the light source is also described as a probability density function Nφ. The angles of
incidence of the light source are named by φ. The angles of emission of transmission and reflection
are named by θ.
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The probability for emissions ai ∈ [0, 1] in the state of absorption is depending
on the concentrations cj ∈ [0, 1] of absorbing molecules. So the chemical
information is not directly observable. But energy conservation can be assumed,
such that ∑

n

an +
∫

rθ,φdθ +
∫

tθ,φdθ = Nφ (3.1)

is valid. A general case for multiple light sources or directions from diffuse
illumination can be created by adding a sum or integral over φ.

Using eq. 3.1, some fundamental cases can be named:

• Specular reflection
∫

rθdθ = Nφ: In case of specular reflection, all light
is reflected. There is no transmission or absorption of the light.

• Total absorption
∑

n an = Nφ: There is no measurement signal in case
of total absorption.

• Diffuse reflection
∫

tθdθ = 0: This assumption is valid for samples of
an infinite thickness. The reflected light is given by∫

rθdθ = Nφ −
∑

n

an

• Diffuse transmission
∫

rθdθ = 0: This assumption is valid for liquid
samples. The transmitted light is given by

∫
tθdθ = Nφ −

∑
n an

To minimize the angular dependency of the reflected signal, a diffuse illumination
is usually used.

3.2 Absorption

The origin of absorption bands in the near and short-wave infrared are molecule
groups with an polar hydrogen bonds like (OH, CH, NH, SH, COOH, ...) absorb
the light. An absorption process becomes possible when the wavelength (energy)
of the light matches the energy levels of the polar hydrogen bond within these
funcional molecule groups.
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The absorption

an(λ) =
N∑
j

cj√
2πρj

· e
−
(

λ−λj√
2ρj

)2

, (3.2)

is a sum over all absorbing molecule groups [2]. The energy levels λi of
the molecule groups mentioned are overlapping and also shifting non-linear
depending on the sample composition. The with of the absorption band is given
by ρj and the concentration follows the Beer-Lambert law

cj = 1 − e−αj (3.3)

with an absorption coefficient αj ∈ R depending on the dipole moment of the
molecule. As described in the model (see fig.3.2), the absorption can also
change in different layers, e.g. apple peel and fruit flesh. Therefore different
absorption functions ai(λ) must be used.

However, the analysis of spectral data results in an ill-posed inverse problem:
based on an detected absorption band, it is usually not possible to know which
molecular group is the origin of the absorption.

3.3 Diffuse reflection and transmission

The scattering parameters si,j(λ) of a sample vary depending on the microstruc-
ture (surface roughness and particle as well as molecule size). Using this
scattering parameter, the reflected (transmitted) spectral signature

rθ(λ) =
(

1 −
∑

i

ai(λ)
)

s1,θ(λ) (3.4)

results from light, which is not absorbed and scattered out of the top (bottom)
layer of the sample. The scattering parameter can be explained by the Mie and
Rayleigh theory. Because the required parameters such as illumination angle
and measuring distance are not known in many cases, the scattering parameter s
is assumed to be a continuous and smooth function. Furthermore, it is assumed
that the scattering parameter in the region of an absorption band can be assumed
to be locally constant.
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4 Model for measurement systems in optical spec-
troscopy

The individual steps of signal generation are shown step by step in fig. 4.1. After
the explanation of the spectral signature in the previous section, the spectroscopic
measurement system is now in focus. An optical system is used to project the
spectrum onto a detector. The detector converts the optical signal into a digital
measurement signal.

S

Sample

h(λ)

optical system

D

Detector
Nφ(λ) rθ(λ) r̃θ(λ) σ,µ

Figure 4.1: The Nφ(λ) photons emitted by a light source are reflected after interaction with the
sample S. The angular and wavelength dependent reflectance of the sample forms the spectral
signature rθ(λ). An optical system (e.g. poly- or monochromator) is used to project the transformed
reflectance spectrum r̃θ(λ) onto a detector D.

4.1 Optical system

The optical resolution is diffraction-limited in the case of grating spectrometers
and can be calculated with known grating, slit and distances. For this the
Rayleigh criterion is used, the resolution limit ∆λ describes the radius of the
Airy disk. However, this profile can also be well approximated by a Gaussian
curve. Therefore, a spectral band i ∈ N of the optical system can be approximated
with a point spread function (PSF) based on a Gaussian function

hi(λ) = 1√
2πρPSF

· e
−
(

λ−λi√
2ρPSF

)2

(4.1)

which is mathematically easy to handle. In the case ∆λ = 0 of an ideal optical
system the transfer function hi(λ) = δ(λ − λi) is generated. In data sheets the
resolution of the optical system is usually specified by the FWHM (Full width
(at) half maximum). Which is also related to ρPSF = FWHM

2
√

2 ln(2) .
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The reflection signal

r̃θ(λ) = h(λ) ∗ rθ(λ) =: µp(λ) (4.2)

which is projected onto the detector defines also the photon current which used
in the next chapter.

Another property of the point spread function is the smoothing of the reflection
signal. This leads to an attenuation of the absorption bands (eq. 3.2). Using eq.
4.2 and assuming Gaussian functions in eq. 4.1 and eq. 3.2 a new attenuated
parameter for the concentration

c̃j = ρj√
ρ2

PSF + ρ2
j

cj (4.3)

can be specified.

4.2 Detector model based on EMVA1288

The EMVA1288 standard contains a comprehensive description of the various
signal contributions in semiconductor detectors and the digitization that follows.
However, the EMVA1288 standard is used to characterize camera sensors
without optics and refers to illumination with monochromatic light.

The noise (variance) of the grey values of a spectral band

σ2
i = K2σ2

d + σ2
q + K (µi − µi,dark) (4.4)

results from the amplified dark noise σd, the quantization noise 1/12 DN. The
fluctuations of the photon stream are subject to a Poisson distribution and are
signal dependent.

The signal

µi =
∫ ∞

−∞
rect

(
λ − λi

∆λ

)
r̃θ(λ)η(λ)Kdλ + Kµdark (4.5)

of a spectral band results from the signal sampled over the range ∆λ.
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Figure 4.2: EMVA1288 Sensor system: The photon current µp is subject to a fluctuation σp. In
the semiconductor, the photons generate electrical charge carriers µe with the quantum coefficient
η. Thermal excitation produces an additional dark current µd. The charge carriers are amplified
analogously by the factor K and then converted into a quantized measurement signal µi by an
analog-digital-converter (ADC).

4.3 White and black balance

A white and black balance necessary is because of the spectral characteristics of
the light source Nφ(λ), the quantum efficiency η(λ), as well as the additional
dark current of the detector µy,dark. The signal

gi = µi − µi,dark

µi,ref − µi,dark
(4.6)

can be calculated based on a reference spectrum of a sample with known
reflectance and the dark signal. This wavelength dependent scaling leads to an
amplification

σg,i = σi

µi,ref − µi,dark
(4.7)

of the noise of spectral bands. In many cases, a significant increase in noise can
be observed at the borders of the spectrum.
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5 Sensor characterization

In order to characterize a spectrometer system (see fig.4.1) the already introduced
properties of light source Nφ(λ), optical system h(λ) and detector D will be
combined in the following. The aim is an estimation of the measurement
uncertainty for the detection of absorption bands.

5.1 Features in optical spectroscopy

The intensity of an absorption band can be used to quantify sample properties,
as introduced above by Beer-Lambert’s Law. Therefore, the absorption bands
will be defined as features

mj :=
∫ ∞

−∞

cj√
2πρj

· e
−
(

λ−λj√
2ρj

)2

s1,θ(λj)dλ = cj · s1,θ(λj), (5.1)

where the scattering parameter s1,θ(λj) is assumed to be locally constant. These
features are attenuated by the optical system and are recorded with noise. Using
the relation mj ∝ cj and eq. 4.3 and 4.7 lead to a standard deviation

σmj
∝

√
ρ2

PSF + ρ2
j

ρj

σg√
n

(5.2)

in the detection of spectral absorption bands. The optical attenuation of the
absorption bands in the first term has an amplifying effect. Depending on the
digital resolution, the noise influence is reduced by acquisition with n channels.

5.2 Example for a new benchmark calculation in optical spec-
troscopy

From laboratory tests it is known that for recording moisture the feature m at
λm = 1350 nm with a width of ρm = 50 nm must be used. Two spectrometer
systems with different characteristics are available. One system with low noise
(sensor A) and high resolution (sensor B).
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Table 5.1: Sensor comparison: Sensor A has a lower optical resolution, the spectral range of
900 − 1650 nm is recorded with 128 bands. Sensor B has a high optical resolution, the spectral
range of 900 − 1700 nm is recorded with 255 bands. Due to the lower light per spectral band the
noise of sensor B is increased compared to sensor A.

Sensor A Sensor B
ρPSF in nm 20 5
Bands/nm 0.18 0.32

σg@λm in nm 0.01 0.02

By multiplying the digital resolution Bands/nm by the width of the absorp-
tion band ρm the number of n spectral bands involved in the sensor can be
determined. This results in an estimated standard deviation of the feature m

with σm,A = 0.0039 for sensor A and σm,B = 0.005 for sensor B. For a general
comparison of the two sensors the trend from σm over ρm is shown in figure 5.1.

10 15 20 25 30 35 40 45 50
ρm

0.004

0.006

0.008

0.010

0.012

0.014

0.016

σ
m

Sensor A
Sensor B

Figure 5.1: With increasing width of the absorption band which is to be detected, the number
of spectral channels in the sensor increases, whereby the influence of the optical resolution also
decreases in proportion. With a defined absorption band, the measurement uncertainty of the sensors
can therefore be compared in the graph.
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6 Summary

The signal generation in optical spectroscopy was described in terms of stochastic
processes starting from the light source up to interpretable features. The focus
was on signals in the near and short wave infrared spectrum. For quantitative
statements on sample properties, the characteristics of absorption bands were
justified and their signal portion was presented in reflection and transmission
measurements.

Based on the absorption bands as quantitative features in optical spectra an
estimation of the stochastic measurement uncertainty was formulated. For
this purpose, the optical resolution was combined with the detector properties
according to EMVA1288. As a result, spectroscopic measurement systems can be
characterized by the expected stochastic measurement uncertainty. The definition
of task-specific requirements for the resolution of certain absorption bands
enables a benchmark for spectroscopic measurement systems as a whole. The
approach can be generally used for hyperspectral cameras including illumination
and optics or novel compact spectrometers from the consumer sector.
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