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Abstract

The application of video surveillance systems in public areas to ensure public
security is becoming increasingly important. A major task when evaluating the
arising amount of video data is to find the occurrences of a person-of-interest
on the basis of a testimony. For the comparison of a person’s description with
persons in the video data, the attributes of all persons must be recognized
automatically. However, typical approaches to pedestrian attribute recognition
simply predict all attributes for a person, regardless the visibility of relevant
attributes. To address this problem, the concept of realistic predictors is used
in this work to determine and improve the reliability of pedestrian attribute
recognition.

1 Introduction

Nowadays, more and more video surveillance systems are used to ensure public
security. Due to the large amount of image and video footage that is recorded by
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(a) Detections (b) Viewpoints (c) Appearance (d) Occlusions

Figure 1.1: Different challenges in recognizing pedestrian attributes. Poor detections and occlusions
can lead to only partially visible persons in images. Moreover, some attributes like backpack may
not be visible from all point of views and attributes such as handbags may appear as many different
types.

such systems, manual evaluation is hardly possible, which is why intelligent and
automatic analysis systems are required. One of the most important evaluation
tasks that can be automatically solved by applying convolutional neural networks
(CNN) is person re-identification which aims to find all occurrences of a person-
of-interest in the data. Typically, such a search is performed based on a cropped
image of the person the system operators are interested in. But since it is
not possible to cover all areas with CCTV cameras, one cannot be sure that
a query image of the person-of-interest is always available. Thus, in such
cases, descriptions of the semantic attributes are the only clues on which the
person search can be based. The query attributes can be easily and directly
extracted from witness descriptions. In order to find all persons corresponding
to the obtained attributes, the semantic attributes of the persons present in the
surveillance material must be recognized.

This pedestrian attribute recognition in an uncooperative, real-world scenario
suffers from a lot of different challenges. Some of the most severe issues to
overcome are visualized in Figure 1.1. Stable recognition of a person’s semantic
attributes is only possible if clean cutouts are available. But sometimes person
detectors provide bad detections which show a lot of background clutter or
only parts of a human body. Moreover, the view angle is an factor that greatly
influences the appearance of a person. Attributes as for instance backpack may
not be visible from every point of view. Similar issues arise from occlusions
which make it difficult or impossible to determine certain attributes. Lastly,
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attributes, such as handbag in Figure 1.1(c), can differ greatly regarding their
appearance. Handbags come in different sizes and colors making the recognition
task harder.

All those challenges indicate that meaningful attribute predictions can not be
given in all cases. If, for instance, the lower-body of a person is occluded by a
vehicle, no well-founded statement about the length of the lower-body clothing
can be made. Although this is a very important topic, it is not present in existing
literature regarding to pedestrian attribute recognition. However, with regard to
typical one-hot classification, Wang et al. [17] present an approach which takes
into account the hardness of the input images and only provides classification
results if a reliable estimation is possible. Since attribute recognition, albeit
multi-class, is a classification problem as well, the core idea of this work is to
transfer and adapt the concept of realistic predictors to this task.

2 Related work

Generally, pedestrian attribute recognition approaches from related literature
can be roughly divided into three different categories: global, part-based and
attention-based methods.

Global Models Especially early deep learning-based works on pedestrian
attribute recognition predict semantic attributes on solely a whole body image of
a person. In [16] for instance, a multi-branch architecture is applied that contains
a separate classification layer and loss for each attribute. In contrast, some
works showed that it is advantageous not to learn all the attributes separately
but instead learn them all together [7] or partitioned in groups of corresponding
attributes [1]. In addition to that, the authors in [7] propose to weight the
attributes during loss calculation according to their frequency of occurrence
in the dataset to handle the large imbalances of attribute values. The results
of newer works [15], however, indicate that with the development of larger
CNN models the joint learning of attributes is not always beneficial and higher
accuracies can be achieved if separate networks are used for different attributes.
In general, global models are simple and therefore very efficient compared to
more complex architectures. These results in faster training and testing, though
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only using coarse information. Differences between global attributes, as gender,
and small-scale attributes such as shoes or glasses are not taken into account
and aggravate the recognition task.

Attention-based Models Attention-based methods aim to guide the network to
focus on the most important regions of activation maps or features. [12, 13]
propose networks that are capable of implicitly learning visual attention maps.
A special feature of [12] is the use of a multi-directional attention mechanism
which means that attention is shared between different semantic layers of the
network. Moreover, Sarfraz et al. [14] introduce an approach to learn view-
sensitive embeddings since the viewpoint of a person is really important with
respect to the appearance of attributes. To improve attention maps explicitly,
in [5] attention maps are refined using a exponential loss function. Although
some attention-based methods are proposed in literature, the gain in accuracy
is still limited compared to other research fields such as for instance person
re-identification.

Part-based Models Part-based algorithms jointly leverage local and global
information to improve recognition accuracy. This is done by either localizing
body parts of persons using an extern [4, 9] or intern [3, 11, 18] module. In [4]
patches obtained from a part detector are fed into a fine-grained classification
model. Similar to that, [10] proposes to use the detector features of the whole
person and detected parts as input patches for attribute classification layers. A
slightly different way is followed in [9]. Instead of bounding boxes estimated by
a body part detector, pose key points are exploited to localize meaningful body
part regions. In contrast to these approaches, [18] introduces a method by which
part localization and attribute classification is jointly learned in an end-to-end
manner. In [3], the authors use mid-level image patches as representations
of human body parts. Moreover, LGNet is presented in [11]. Consisting of
a global and a local network branch, part detection is performed by creating
so-called EdgeBoxes that are applied in a Region-of-Interest pooling module.
Such part-based models are less efficient compared to simple global models but
instead are able to focus on fine-grained information which is very important for
recognition of very local attribute, as for instance glasses or shoes. However, it
is important that body parts can be accurately detected because otherwise the
approaches suffer from focusing on irrelevant regions of the input image.
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Although part-based models implicitly handle the visibility of body parts or
attributes, none of the approaches in literature deal with the fact that in a
uncooperative real-world scenario attributes cannot be predicted for imperfect
person image crops or occluded body parts. Therefore this work aims to close
this research gap by investigating the concept of realistic predictors which is
detailed in the following.

3 Methods

In this chapter, the baseline classification model is presented followed by a
detailed description of the realistic predictor approach.

3.1 Baseline model

The baseline model is based on the typical classification pipeline for global
pedestrian attribute recognition. Images are pre-processed and data augmen-
tation is performed. Afterwards, images are fed into a backbone network
with appended fully-connected classification layer and output probabilities are
computed using the sigmoid function. In this case, the task is considered a
multi-class classification task which means that all attributes are simultaneously
predicted using a single classification layer. Sigmoid cross-entropy loss function
(SCEL) is applied to train the CNN model. To handle the imbalanced distribution
of positive attribute labels in the dataset, a weighting factor is added to the loss
computation as proposed in [7]. Let yc

i ∈ [0, 1] be the target label of the cth
attribute of the ith sample and pc the positive ratio of this attribute in the dataset.
Then the weighting factor wc

i can be computed independently for each attribute
and input image as follows:

wc
i =

{
exp( (1−pc)

σ2 ) , if yc
i = 1

exp( pc

σ2 ) , if yc
i = 0

(3.1)
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Figure 3.1: The general idea of realistic predictors. On the left, the architecture is shown consisting
of two branches: a classification and a hardness prediction one respectively. The figure on the right
depicts the testing stage. Samples with a hardness score above a threshold T are discarded and not
fed into the classifier. [17]

σ stands for a hyperparameter which is set to 1 in all experiments. This weighting
factor ensures that the network focuses on rare attributes by increasing the weight
of such samples.

3.2 Realistic predictors

The concept of realistic predictors is adapted from [17]. The general approach
is visualized in Figure 3.1. A network with two branches was designed to
simultaneously train a classifier and a so-called hardness predictor. The classifier
outputs probabilities pi for each class whereas the hardness prediction network
computes hardness scores. Hardness scores si are understood as predictions
of the difficulty of the classification task for a specific input image. So, for
instance, the hardness score should be higher if an object is only partially visible
in comparison with a clean cut of the object of interest. The testing protocol
is visualized in Figure 3.1 on the right. First, the hardness for all samples
is predicted. To find those images for which no reliable classification can be
provided, hard samples are discarded based on a threshold T . The remaining
samples are then forwarded through the classifier and a class prediction is
produced. In practice, only attributes for which the classifier is certain would be
output and then used for person retrieval.
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Two different losses are used to train the two network branches. For training the
classifier, the use of a weighted softmax cross-entropy loss function is proposed.
This loss function Lm is shown in the following equation where N stands for
the number of samples in the batch and pc̄

i depicts the predicted probability for
target class c̄ and sample i.

Lm = −
N∑

i=1
si log pc̄

i (3.2)

As mentioned earlier, the original paper deals with a one-hot classification
problem in contrast to the pedestrian attribute task. Persons have several
attributes at the same time, like a woman wearing a red shirt and blue jeans, and
thus multiple classes can be true. Therefore the loss function for the multi-class
task is adapted as follows:

Lm = −
N∑

i=1

C∑
c=1

[yc
i log pc

i + (1 − yc
i ) log(1 − pc

i )] (3.3)

In addition to the sum over all samples, the sum of cross-entropy losses for all
attributes is computed. C denotes the number of different semantic attributes in
this case and yc

i ∈ [0, 1] is the target label of the cth attribute.

Another alteration that was made is that the feedback of the predicted hardness
score si is omitted in contrast to the original paper. Whereas the authors propose
this term to focus on those samples that are particularly hard during training, this
is not necessarily beneficial for attribute recognition. In the object classification
approach one can be certain that the object is actually present and visible in the
input image. In contrast, especially small-scale attributes are often occluded
and therefore not visible which could lead to a decrease in recognition accuracy
if such samples are preferred during the training process. The network would
not be able to base its decision on meaningful clues and to learn important
information.

For training the hardness predictor, another loss function is proposed in [17].

La = −
N∑

i=1

[
pc̄

i log (1 − si) +
(
1 − pc̄

i

)
log si

]
(3.4)
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The goal of this function is to produce large hardness scores if and only if the
cross-entropy loss of the classification branch is high and vice versa. Therefore,
a kind of inverse cross-entropy loss is used. The loss function gets minimal if
si = 1 − pc̄

i applies. In words, the hardness score is forced to be equal to the
classification error measured by the prediction probability. Moreover, the more
the estimated class probability differs from the target value the higher the loss
of the hardness predictor.

Analogous to the classification loss function, the hardness predictor loss calcula-
tion has also be modified to match the requirements of the multi-class attribute
classification problem. Again, the loss function is expanded to consider each
attribute. Since in contrast to the one-class classification problem not only one
positive class is relevant but instead the presence as well as the absence of all
attributes, loss calculation is also based on the target label, as can be seen in the
equation hereafter.

La = −
N∑

i=1

C∑
c=1

[∆pc
i log (1 − sc

i ) + (1 − ∆pc
i ) log sc

i ] , (3.5)

with∆pc
i = |yi − pc

i | (3.6)

Thereby, the hardness predictor learns to estimate the difficulty of an image
regardless of an attribute being present or not in the training image. This is
ensured by applying the absolute value of the difference between the target class
label yc

i and the predicted probability of the presence of an attribute pc
i instead

of using pc
i directly.

Since the training of the hardness predictor network also suffers from data
imbalances, DeepMAR weighting can be applied here as well, thus reducing the
influence of unbalanced attributes distribution on the training.

3.3 Determination of thresholds

To improve the accuracy of pedestrian attribute recognition, meaningful thresh-
olds for hardness scores need to be determined. It is important to find a good
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trade-off between improving accuracy and rejecting as few samples as possible.
Thus, multiple strategies to seek for meaningful thresholds are proposed and
compared in the evaluation chapter. The thresholds are computed for each
attribute independently making use of the evaluation data. To avoid that too
much samples of an attribute are discarded, optimization is stopped as soon as
the threshold is below that of the quantile rejection method.

Threshold rejection As a baseline for comparison of the other rejection
approaches, one single threshold which is applied to all attributes is deter-
mined.

Quantile rejection In contrast, quantile rejection method sets the thresholds to
a value so that a predefined portion of validation samples is discarded. Since
the distribution of the hardness scores may vary between validation and testing
data, the proportion of rejected samples can differ during testing stage.

Mean accuracy / F1 rejection This rejection approach aims to optimize the
target evaluation metric, either mean accuracy or F1 score. The threshold value
is lowered until the mean accuracy no longer increases or until the stop criterion
mentioned above is reached.

4 Evaluation

The previously introduced approaches are evaluated and discussed in the
following. After some details about the datasets used and the experimental
setup, the results of the experiments are presented.

4.1 Datasets

The experiments are conducted on two different publicly available datasets.
Both datasets contain person bounding boxes that are all taken from videos of
surveillance cameras. A brief introduction to RAP-2.0 and PA-100K datasets is
given in the following. Some sample images of both dataset can be found in
Figure 4.1.
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Figure 4.1: Randomly selected images from the datasets are shown for comparison. Figures (a) -
(e) are taken from the RAP-2.0 dataset whereas Figures (f) - (j) are from the PA-100K dataset.

The RAP-2.0 [8] dataset consists of 84,928 images taken from 26 different
cameras. All cameras were mounted indoor and show scenes of a shopping mall.
72 different binary attributes ranging from gender to attachments are annotated.
Since the distributions of the attribute annotations are highly unbalanced, only
those attributes with a positive ratio greater than 1 % are used in the experiments.
After discarding very rare attributes, 54 attributes remain whose positive ratios
are shown in Figure 4.2.

Unlike the RAP-2.0 dataset, the PA-100K [12] dataset contains images recorded
in an outdoor setting. According to the dataset name, 100,000 images from 598
different cameras are included and 26 binary attributes are provided. Moreover,
distributions of attribute annotations are more balanced.

4.2 Experimental setup

Data pre-processing and augmentation During training phase, images are
resized and randomly cropped to match the input size of the CNN. In addition,
random flipping is applied to increase the diversity of training data.

Backbone model Experiments with different backbone models were carried
out. Since the observations presented in this chapter are valid regardless of the
CNN model used, only results for ResNet-50 [6] are presented and discussed.

Parameters To train the models, a multi-step scheduling scheme was applied in
all experiments. Two steps are performed with a decay factor of 0.1. RAP-2.0
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Figure 4.2: Positive ratios of RAP-2.0 attributes. Only few attributes have balanced distributions
while most attributes such as attachment-backpack occur very rarely.

models were trained for a total of 180 epochs with steps after 60 and 120
epochs. The learning rate for the Adam optimizer was initially set to 10−4 for
the classifier and 10−5 for the hardness predictor, respectively. For training the
networks with the PA-100K dataset, parameters were set to the values suggested
in [2].

4.3 Hardness prediction

Table 4.1 presents the attribute recognition results of the classifiers. Using
positive ratio-based DeepMAR weighting of the loss during training significantly
increases the recognition performance by reducing the influence of imbalanced
attribute distributions. Moreover, the results clearly indicate that using feedback
of the HP-Net for training the classifier network is not beneficial for pedestrian
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Table 4.1: Quantitative evaluation of baseline methods on RAP-2.0 dataset. DeepMAR weighting
of training samples greatly improves mA. Training the classifier with HP-Net feedback deteriorates
the results in all metrics.

Model mA Acc Prec Rec F1

SCEL 64.29 62.26 82.55 70.09 75.81
DeepMAR 73.05 63.99 77.01 77.17 77.09
SCEL + HP-Net feedback 61.93 52.00 69.33 66.81 68.05
DeepMAR + HP-Net feedback 67.32 61.18 76.74 73.49 75.08

attribute recognition. In the original approach this feedback was proposed to
force the classifier to focus on those samples which are hard to classify. But in
contrast to typical image classification, attributes are small-scale features and
thus not necessarily visible in hard-to-classify images. As a results, focusing
on such hard samples confuses the CNN and accuracy decreases regarding all
metrics as can be seen from the experimental results in the table.

Next, it is important to evaluate the quality of the given hardness predictor.
For this purpose, Figures 4.3 and 4.4 show person images assessed as easy
as well as hard are displayed. Figure 4.3 visualizes samples for the gender
attribute. The qualitative results seem reasonable. It is easy for the classifier to
classify a person as a woman if the person is wearing a skirt or has long hair
that is clearly visible. In contrast, hard samples are images showing only partial
persons such as the first image in Figure 4.3(b). Also a human cannot make a
reliable statement about the sex, because only the legs of the person are visible.
Moreover, images on which the length of the hair is not clearly visible are hard
to assess for the classifier and therefore more prone to misclassification.

These observations are valid for many of the attributes but there are attributes,
like backpack, for which different results are received. As an example, easy
and hard samples for the attribute Backpack are shown in Figure 4.4. All easy
samples show persons without a backpack whereas each of the persons from the
particularly hard samples wears a backpack. So, in this case it seems that the
decision between hard and easy images is only taken based on the presence of
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(a) Easy samples

(b) Hard samples

Figure 4.3: Hard and easy samples for the attribute Gender of the RAP-2.0 dataset based on the
estimated hardness scores. Samples that are considered easy or hard appear to be reasonable for
this attribute.

the attribute and by that equals the classifier instead of providing independent
hardness predictions. This indicates that, albeit the hardness predictor loss
is weighted by the positive ratio of attributes, the imbalance of attributes in
the training data still plays a big role and influences the recognition accuracy
negatively. Since only about 1 % of the training images show persons with
backpacks, the network can achieve good results by only predicting no backpack.
Thus, the loss gets minimal for such images and high for images with backpacks.
As a result, the hardness predictor learns to discriminate between the values of
the attribute and not to predict the hardness of the attribute recognition task.

4.4 Realistic prediction

Based on the finding that the hardness predictor can give meaningful estimates
of the degree of difficulty of samples, the realistic predictor can be formed by
combining the classifier with a hardness-based rejection. Table 4.2 presents

107



Andreas Specker

(a) Easy samples

(b) Hard samples

Figure 4.4: Hard and easy samples for the attribute Backpack of the RAP-2.0 dataset based on
the estimated hardness scores. In contrast to Gender, persons with backpacks are considered
hard-to-classify due to the high attribute imbalance.

the results for different rejection strategies and compares them to confidence
score-based rejection. Improvements in instance-based metrics can be observed,
independent of the applied rejection method. The mA-score decreases except
for the mA rejection. This is due to the side effects of unbalanced attributes,
which are always predicted as false and thus reach only a minimum mA score
of 0.5. When comparing rejection methods, threshold strategy achieves the
best F1 scores whereas, as mentioned above, mA rejection leads to highest mA
results. Although hardness prediction-based rejection of attributes increases the
performance, rejection on the basis of class probabilities achieves similar or
even better performance, especially on RAP-2.0 dataset. This finding indicates
that the major issue with the external hardness prediction network is still the
unbalanced distribution of attribute values and that DeepMAR weighted loss
function is not completely capable of compensating it.

In conclusion, it can be stated that the realistic predictor approach using an
external hardness predictor generally works. But the assumption that such an
additional CNN is superior to the use of confidence scores cannot be fully
validated for the pedestrian attribute task. Both networks learn complementary
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Table 4.2: Realistic predictor results on RAP-2.0 dataset. Rejection strategies mainly improve
instance metrics. Hardness scores provided by an explicit hardness predictor do not surpass the
baseline given by using confidence scores of the classifier.

RAP2.0 PA-100K
Rejection Strategies mA F1 Rejected mA F1 Rejected

None 72.98 77.12 0.00 75.23 83.33 0.00

Hardness scores:
Threshold 69.18 83.59 12.54 74.34 90.53 15.04
Quantile 66.07 81.80 24.58 74.20 88.08 22.54
mA 74.02 78.93 7.75 78.09 90.32 15.18
F1 66.14 79.52 16.68 74.78 87.67 13.44

Confidence scores:
Threshold 71.77 85.98 14.51 75.87 91.20 17.32
mA 74.79 82.88 12.13 77.88 91.00 17.44

tasks and so the rejection rate is much lower when the hardness predictor network
is used. However, results of the confidence score are not exceeded.

5 Conclusion and future work

This work aimed to apply the concept of realistic predictors to the field of
pedestrian attribute recognition. The core idea was to address some of the biggest
challenges in pedestrian attribute recognition while simultaneously achieving
more reliable attribute estimates. To achieve this, the approach introduced in
[17] was modified and optimized for the task of attribute recognition. This
included, for instance, adapting the loss functions and alterations regarding to the
network architecture. In addition, different strategies to determine meaningful
thresholds for exclusion of unreliable predictions were proposed and extensively
studied.

All in all the findings of this work showed that the concept of realistic predictors
can be transferred to the field of pedestrian attribute recognition and accuracy
improvements can be achieved. However, comprehensive experiments indicate
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that the predictions of hardness do not reflect the difficulty of the task equally
well for all attributes. Especially attributes with strongly unbalanced value
distributions in the training dataset cause problems and worsen the results. As a
result, better performance was achieved if confidence scores are used instead
of hardness predictions. In one point, however, the hardness predictions were
strongly superior to the confidence values, namely in the number of rejected
samples. From this it can be concluded that training a separate hardness predictor
has its advantages.

In future research the training of the hardness predictor and the loss function can
be improved in order to eliminate the imbalance problem of some attributes. The
aim is to close the performance gap with the confidence-based rejection while
maintaining the advantage in terms of number of rejected samples. Moreover,
the hardness predictor approach allows to weight attributes during attribute-
based person retrieval. By considering attributes according to their difficulty in
predicting them during distance computation, incorrect retrieval results in early
ranking positions can be avoided.
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