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Abstract

Plant invasions can result in serious threats for biodiversity and ecosystem

functioning. Reliable maps at very-high spatial resolution are needed to assess

invasions dynamics. Field sampling approaches could be replaced by unmanned

aerial vehicles (UAVs) to derive such maps. However, pixel-based species classi-

fication at high spatial resolution is highly affected by within-canopy variation

caused by shadows. Here, we studied the effect of shadows on mapping the

occurrence of invasive species using UAV-based data. MaxEnt one-class classifi-

cations were applied to map Acacia dealbata, Ulex europaeus and Pinus radiata

in central-south Chile using combinations of UAV-based spectral (RGB and

hyperspectral), 2D textural and 3D structural variables including and excluding

shaded canopy pixels during model calibration. The model accuracies in terms

of area under the curve (AUC), Cohen’s Kappa, sensitivity (true positive rate)

and specificity (true negative rate) were examined in sunlit and shaded canopies

separately. Bootstrapping was used for validation and to assess statistical differ-

ences between models. Our results show that shadows significantly affect the

accuracies obtained with all types of variables. The predictions in shaded areas

were generally inaccurate, leading to misclassification rates between 65% and

100% even when shadows were included during model calibration. The exclu-

sion of shaded areas from model calibrations increased the predictive accuracies

(especially in terms of sensitivity), decreasing false positives. Spectral and 2D

textural information showed generally higher performances and improvements

when excluding shadows from the analysis. Shadows significantly affected the

model results obtained with any of the variables used, hence the exclusion of

shadows is recommended prior to model calibration. This relatively easy pre-

processing step enhances models for classifying species occurrences using high-

resolution spectral imagery and derived products. Finally, a shadow simulation

showed differences in the ideal acquisition window for each species, which is

important to plan revisit campaigns.

Introduction

Invasive plant species can alter ecosystem functioning and

services, causing loss of biodiversity (Binggeli 1996) and

water availability (Little et al. 2015), alterations in pri-

mary production and shifts in the N- and C-cycle (Vil�a

et al. 2011). Worldwide annual economic losses caused by

biotic invasions are estimated to be one order of

magnitude higher than those caused by all natural disas-

ters together (Ricciardi et al. 2011). Mapping the arrival

and spread of invasive species is hence crucial for risk

assessments and to enable their control and eradication

(Rocchini et al. 2015).

Remote sensing has been used to map invasive species

occurrences in space and time, usually by combining field

measurements with satellite or airborne data (e.g. see
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review of Huang and Asner 2009). Recently, Unmanned

Aerial Vehicles (UAVs) have been used to map the occur-

rence of invasive plant species. One advantage of UAVs is

that they allow for flexible acquisitions of very-high-reso-

lution imagery. This is important for early and accurate

prediction of invasive species occurrences (e.g. Baena

et al. 2017; Cao et al. 2018). Such UAV approaches are

especially suitable to: (1) understand the invasion dynam-

ics and processes at local scale through repetitive acquisi-

tions, and (2) to derive reference data for large-scale

satellite-based mapping of the invasions (Kattenborn et al.

submitted).General benefits of UAV-based sensing include

the possibility of optical data acquisition under cloudy

conditions (e.g. de S�a et al. 2018) and the generation of

orthomosaics that allows the comparison of temporal

images comprising similar view angles (contrary to satel-

lite-based high-resolution imageries were temporal data

often differ in view angles; Anderson and Gaston 2013).

Meanwhile, disadvantages of UAV-based sensing include

their relatively small area cover and the relatively low

radiometrical quality of the sensors (Hruska et al. 2012).

UAV-based invasive species mapping has yielded high

accuracies using different data types, like RGB or VNIR

information (Michez et al. 2016; Alvarez-Taboada et al.

2017; Baena et al. 2017; Mafanya et al. 2017; Cao et al.

2018; de S�a et al. 2018), hyperspectral data (Cao et al.

2018) or 2D textural (Michez et al. 2016; Cao et al. 2018)

and 3D structural (Kattenborn et al. 2014; Franklin et al.

2017) information derived from photogrammetric

algorithms.

The development of user-friendly photogrammetric

software with Structure-from-Motion (SfM) capabilities

makes the processing of UAV data attractive for natural

management practitioners with basic knowledge in geo-

matics. These SfM algorithms resolve the alignment of

camera positions, which allows to generate orthorectified

aerial imagery and 3D models without the allocation of

ground control points (Westoby et al. 2012). Most studies

that used such UAV products focused on mapping a sin-

gle species using one or a few of the above-mentioned

data types. However, a detailed comparison of data types

for more than a single species is still missing. Such a

study is relevant to assess the consistency of UAV-based

invasive mapping requirements.

The extremely high spatial resolution and acquisition

flexibility of UAV data offers new opportunities but also

challenges. One drawback of very-high spatial resolution

imagery is the increase of spectral within-class variability

caused by canopy structure and shadows, which often

hamper the separability of classes in pixel-based studies

(Lopatin et al. 2017). Shadows result from the obstruc-

tion of light, causing a decrease of reflectance. In vegeta-

tion areas, cast shadows receive diffuse radiation (mostly

Rayleigh scattering) from light scattered within the atmo-

sphere or surrounding objects (Gu and Robles-Kelly

2014). In practice, shadows can lead to either a reduction

or a total loss of the spectral signal of a canopy (Zhang

et al. 2015), affecting the success of classification tasks

(Saha et al. 2005; Liu and Yamazaki 2012). Therefore,

careful consideration regarding acquisition time of the

day is particularly important, as during some parts of the

day shadows can cover a large part of the area of interest

(Milas et al. 2017).

Many approaches have been developed to reduce the

effects of shadows and improve classification perfor-

mances. For instance, increasing pixel size has been found

to be helpful to decrease within-class variability, usually

improving classification performances when an ideal rela-

tion between pixel and crown size is obtained (Nagendra

2001). This ideal relation obviously depends upon the

crown size and the canopy closure of the investigated spe-

cies or ecosystems and can vary widely. Likewise, object-

based analysis have been used to decrease the spectral

variance at individual level (e.g. one spectral value per

individual crown), obtaining in some cases higher classifi-

cation performances than pixel-based approaches (e.g. Yu

et al. 2006). However, obtaining a meaningful delineation

of tree crowns is often challenging, especially for closed

and overlapping canopies and in the presences of shadows

(e.g. Nevalainen et al. 2017). Deep learning may also cope

with shadows using the shadows as additional species-spe-

cific structure information. Nevertheless, deep neural net-

works usually need a large amount of training data which

could hamper their use for practical applications with

limited field data (Dyrmann et al. 2016). Other alterna-

tives to address shadow effects are shadow correction

methods, which consist in the radiometric enhancement

of shaded pixels usually based on information extracted

from neighboring non-shadowed regions (empirical meth-

ods; e.g. Singh et al. 2012) or on incident light sensor

information (physical methods; e.g. Sismanidis et al.

2014). Yet, these methods may introduce noise and aber-

rations to the radiometrically corrected areas (e.g. Sis-

manidis et al. 2014) that could hamper class separability

of spectrally similar classes, such as different plant species.

This may be one reason why these methods have so far

been mostly applied in urban contexts, where the class

interfaces are often comparably clear.

In summary, averaging or smoothing the spectral infor-

mation of adjacent pixels may improve classification per-

formances, but at the risk of excluding meaningful

variance of the target species’ spectral signal due to

canopy architecture. For these reasons, the use of only

sunlit canopies for pixel-based species classification may

be a suitable alternative to decrease within-class variability

by excluding the undesirable information given by
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shadows, while keeping important variations related to

canopy architecture. While earlier UAV-based studies

have reported negative influences of shadows in invasive

species mapping (Franklin et al. 2017; M€ullerov�a et al.

2017; de S�a et al. 2018), it is still uncertain whether or

not the exclusion of shadows from the training data

improves the UAV-based mapping results.

Hence, the main aim of this investigation was to assess

the effects of shadows on the occurrence predictions of

the woody species Acacia dealbata, Ulex europaeus and

Pinus radiata using different combinations of spectral, 2D

textural and 3D structural UAV-based data in central-

south Chile. This aim is embedded in the overarching

effort to develop a UAV-based work-flow to map individ-

ual target species with a minimum amount of training

data and with possibly high accuracies for subsequent

ecological analysis. We further investigated by means of

simulations the role of the species-specific canopy struc-

ture in the production of daily shadows. This is impor-

tant to assess ideal UAV acquisition periods and revisits.

Materials and Methods

The applied workflow consisted of six steps: (1) first, remote

sensing data were acquired using unmanned aerial vehicles

(UAV) in three different areas. Each area hosted one of the

invasive species along with native woody species; (2) then,

canopies of the invasive species were manually delineated by

visual interpretation of the UAV data to create training and

validation data; (3) shadows occurring inside the canopies

were identified using an automatic approach; (4) indepen-

dent variables were created from the UAV data, to create the

datasets needed for modeling (MaxEnt); (5) MaxEnt models

were trained to estimate relative likelihoods of occurrences

of each invasive species. Results in sunlit and shaded canopy

areas were compared to assess the relative effects of shadows

in the classification performances; (6) finally, simulations

were carried out to assess the effect of day-time and species-

specific canopy shape on the quantity of shadows occurring

in the corresponding canopies.

Study sites and target species

Central-south Chile is considered a world’s biodiversity hot-

spots (Myers et al. 2000), harboring a high level of endemism

because of its geographical isolation. Furthermore, in central-

south Chile, species from the sclerophyll forest ecosystems of

the North and the deciduous Nothofagus forests in the souths

are co-occurring which leads to a particularly high biodiver-

sity. This biodiversity is threatened by diverse biotic and abi-

otic factors, including pronounced land-use changes

occurring over the last decades but also invasive species which

are global drivers of extinctions; they compete with native

species for resources, and can alter the community dynamics

(Binggeli 1996).With the arrival of the colonists, areas for-

merly cover by native forests and/or shrublands were cleared

for agriculture and silviculture purposes, causing the intro-

duction of several European and Oceanic invasive plants

(Holmgren et al. 2000). We studied the presence of three

woody invasive species, Pinus radiata, Ulex europaeus and

Acacia dealbata, in three study areas including the ‘Maule’,

the ‘Biobio’ and the ‘Los Lagos’ regions (Fig. 1). P. radiata

was introduced in the Maule region for timber production

(Clapp 1995), whereas U. europaeus was introduced as a

hedge plant to contain livestock (Norambuena et al. 2000)

Finally, A. dealbata was introduced for ornamental purposes

(Fuentes-Ram�ırez et al. 2011). These species have been found

to be very noxious worldwide, but particularly in South

American countries (Chile, Argentina and Brazil; Richardson

et al. 2014), causing serious losses in biodiversity and affecting

water supply (e.g. Little et al. 2015). Here, the three invasive

species dominantly occurred in different parts of central-south

Chile. We decided to use more than a single target species to

develop an understanding of the reliability and stability of the

proposed methods (Fig. 1). All of the targeted species are sus-

pected to endanger both native flora and fauna.

UAV data acquisition and derivation of
presence data for the target species

We performed one UAV flight for each study site using an

octocopter (Okto-XL, HiSystems GmbH, Germany).

Flights were carried out in March, November and Decem-

ber 2016 for P. radiata, U. europaeus and A. dealbata,

respectively, partly overlapping the flowering season for

A. dealbata and U. europaeus. The octocopter was

equipped with two optical sensors: an RGB standard con-

sumer-grade camera (Canon 100D, 28 mm focal length,

5196 9 3464 pixels) and a snapshot hyperspectral camera

(OXI-II, Gamaya, Switzerland) with 41 spectral bands rang-

ing from 450 to 950 nm and a 10 nm bandwidth. The flight

plans aimed for an average of 90% of forward and 70% of

sideward overlap for both sensors at 150 m above ground.

Photogrammetric point clouds, digital surface models

(DSM) and orthomosaics were obtained for both sensors

using a standard Structure-from-Motion (SfM) pipeline

(Agisoft Photoscan, Agisoft, Russia; Kattenborn et al.

2018a). The point cloud densities was at average ~1000
points/m2, whereas the selected pixel size for the final digital

surface models (DSM) and RGB and hyperspectral ortho-

mosaics were ~0.1 m. The point cloud was filtered using

TreesVis (Weinacker et al. 2004) to ensure uniform spaces

between points of ~0.03 m. The corresponding Agisoft pho-

toscan parameters can be found in Table S1. The UAV GPS

trajectory logged during the flights were used to automati-

cally georeference the tiles during the SfM workflow. Finally,
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hyperspectral reflectance data were obtained by calibrating

the raw data with a reference panel with known reflectance,

placed in the field during the flights. The final coverage of

the acquired scenes were ~7, 18 and 37 hectares for U. eu-

ropaeus, A. dealbata and P. radiata, respectively.

Costs for assessing the invasion status of a species via field

sampling are usually high and may lead to biased results

(Cacho et al. 2006; Kaplan et al. 2014). Instead of field sam-

pling, we hence used the UAV orthomosaics to manually

delineate all occurring canopies of the target invasive species

(presences) in each flight (Fig. 1). The canopy characteristics

of the examined target species differed clearly in terms of

their structural and spectral (e.g. flowering) properties to the

native vegetation which enabled reliable delineations.

Shadow detection

All shadows occurring inside the manually delineated

invasive species canopies (UAV data acquisition and

derivation of presence data for the target species) were

determined using an RGB-based histogram thresholding,

which gives relative high accuracies while being straight-

forward to implement (Adeline et al. 2013). The thresh-

olds were derived by visual interpretation (e.g. Adeline

et al. 2013); where values below 80 digital number (DN;

from a range of 0–255 DN; ~30% reflectance) of the red

band showed a reliable separation between sunlit and

shaded canopies for the three species. Shaded areas

accounted for ~20% of the invasive species canopies in all

cases. Sunlit canopies were obtained by excluding the

shaded areas from the delineated target species canopies.

Derivation of independent variables from
the UAV data

Two types of spatial textural metrics were obtained from

the RGB products: (1) a set of 2D texture layers based on

the gray-level covariance matrix (GLCM; mean, variance,

homogeneity and entropy), and (2) a set of 3D structure

layers derived from a multi-scale analysis of the

P. radiata

A. dealbata

U. europaeus

Presence
canopy

Figure 1. (A) Study areas in central-south Chile. (B–D) show the UAV-based RGB imageries. Blue polygons indicate the presence of the invasive

species.
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photogrammetric point cloud (Brodu and Lague 2012).

Each metric type was calculated in 10 different spatial

scales ranging from 0.25 to 4 m window size (using a

0.25 and 0.5 m step between 0.25–1 m and 1–4 m,

respectively). The different scales were chosen to derive

information from both branch- and canopy-level. The

GLCM indices were obtained by applying a moving win-

dow approach where each pixel was assigned with the

above-mentioned metrics of the neighboring pixels using

the original RGB images at a spatial resolution of 0.1 m.

The 3D structure algorithm processed principal compo-

nent attributes at different spatial scales (3D neighbor-

hood) for each point in the photogrammetric point

cloud, representing the local dimensionality characteristics

(shape and density) of the canopy (CANUPO algorithm;

Brodu and Lague 2012). Metrics calculated from the

point clouds were rasterized (0.1 m pixel size) to facilitate

the analysis. The R-package ‘glcm’ was used to create the

GLCM, whereas the CANUPO toolbox along with LAS-

tools and Python 3.6 were used to create the 3D structure

raster components.

In total, we created eleven datasets by combining layers of

spectral (i.e. RGB and hyperspectral), 2D textural and 3D

structural information (Table 1). RGB and hyperspectral data

were not combined as they contain redundant information.

Modeling and validation

We used the maximum-entropy (MaxEnt) classifier (Phil-

lips et al. 2006) to model the occurrence of the invasive

species for each UAV dataset. MaxEnt is a one-class

classifier that uses presence (labeled) and background

(unlabeled) data to create a relative likelihood distribu-

tion (between 0 and 1) of the invasive species. MaxEnt

has shown reliable results with remote sensing data (Mack

et al. 2016; Skowronek et al. 2017; Stenzel et al. 2017).

From an operational point of view, the application of

MaxEnt is very promising, as the delineation of training

data of unwanted classes (e.g. other tree species, bare

ground and water bodies) are not required during model-

ing, which notably decreases pre-processing or sampling

efforts. In each study area, 500 presence samples were

selected by randomly sampling pixels inside the delineated

polygons of the invasive species crowns, whereas 2,000

backgrounds pixels were randomly sampled from the

whole area. We used the R-package ‘dismo’ with default

setting for the MaxEnt modeling.

To test how the 11 UAV-based independent variables

(Table 1) were influenced by the presence of shadows,

two types of models were tested: (1) MaxEnt models

calibrated using all available presence data, including

pixels of sunlit and shaded canopies, and (2) MaxEnt

models calibrated using only presence data of sunlit

canopies.

A variable selection was applied to each model. Variable

selection minimizes the chances of overfitting (Merow

et al. 2013) and enhances model transferability (Duque-

Lazo et al. 2016). First, MaxEnt classifications using all

available variables were performed using a 10-fold cross-

validation. Then, the variables that obtained a permutation

importance <5% were dropped. Finally, from the remain-

ing variables only the variables with shared correlations

r < 0.8 were kept, whereas in case of correlation r > 0.8 the

variable with higher permutation importance was consid-

ered. The particular method applied here was selected due

to its lower CPU processing time compared to iterative

methods (e.g. Jueterbock et al. 2016).

An iterative validation based on stratified bootstrapping

(Kohavi 1995) was used to obtain the distribution of

model accuracies and rel. likelihood predictions that

enable the estimation of significant differences among

independent variables. The model performances were

evaluated for sunlit and shaded canopies separately. We

used a stratified bootstrapping procedure with 100 repeti-

tions. In each repetition, we randomly selected samples

with replacement for the presence and background data-

sets, whereas we used the samples that were not selected

in both cases (~36%) as holdout samples for validation.

We evaluated the model performances in terms of area

under the curve (AUC), Cohen0s Kappa, sensitivity (true

positive rate) and specificity (false positive rate). We

selected the thresholds for Kappa, sensitivity and speci-

ficity according to the values of maximum Kappa and

(sensitivity + specificity), respectively.

Table 1. Datasets for each invasive species.

# Model

Datasets included

(number of variables)

Model

abbreviation

1 RGB (3) rgb

2 Hyperspectral (41) hyper

3 Texture (40) text

4 Structure (10) struct

5 Structure + Texture (50) structtext

6 Structure + RGB (13) structrgb

7 Structure + Hyperspectral

(51)

structhyper

8 Texture + RGB (43) textrgb

9 Texture + Hyperspectral

(81)

texthyper

10 Structure + Texture + RGB (53) structtextrgb

11 Structure + Texture + Hyperspectral

(91)

structtexthyper

Texture corresponds to the GLCM variables, whereas Structure corre-

sponds to the CANUPO 3D variables. All datasets were tested at

~0.1 m pixel size.
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We used a one-sided bootstrap pair test to check for

significant differences (a = 0.05) in the obtained accuracy

(AUC, Kappa, sensitivity and specificity) between models.

We specifically tested if: (1) models performed signifi-

cantly better in sunlit canopies than in shaded canopies;

(2) models excluding shaded canopies in calibration per-

formed significantly better in sunlit areas than models

including shadows in calibration; (3) models including

shadows in calibration performed significantly better in

shaded areas than models excluding shadows in calibra-

tion; (4) models including spectral, 2D textural and 3D

structural information performed significantly better than

one variable type alone. This bootstrap test has been

applied in earlier studies following similar approaches

(Lopatin et al. 2016, 2017; Castillo-Riffart et al. 2017;

Araya-L�opez et al. 2018).

Species occurrence maps

Relative likelihood prediction maps of the invasive species

occurrences were obtained by estimating the median value

of the 100 bootstrap iterations per pixel. We further esti-

mated the coefficient of variation (CV) of each pixel as a

measure of model stability during bootstrapping, where

pixels with low CV denote higher predictive stability.

Finally, binary maps of the invasive species presence were

produced using the median predicted likelihood maps

and applying the median threshold value according to

Kappa.

Shadow fraction simulation analysis

Species-specific canopy architecture influences the way

species interact with light and hence their reflectance (e.g.

Kattenborn et al. 2018b). The fraction of shadows is

highly dependent on the sun-angle during the acquisition

of optical remote sensing data. Understanding the dynam-

ics of shadow fractions in the acquired images as a func-

tion of the sun-angle is hence important to assess the

potential effects on classification accuracies and to plan

optimal data acquisition windows accordingly. This is

particularly interesting for UAV applications which allow

for a comparably flexible selection of the acquisition

times.

To model how the three-dimensional canopy architec-

ture of the three examined species influence the produc-

tion of shadow fractions throughout the course of a day,

we simulated the shadows using the ~0.1 m DSMs of the

study areas. Here, we varied the solar elevation and azi-

muth of beginning, middle and end of the 2017–2018
summer season along a daily period between 09:00 and

18:00 h. We masked out all the canopies that did not cor-

respond to the studied invasive species to exclude the

effects of the neighboring canopies. We used the R-

packages ‘insol’ and ‘suncalc’ for the analysis.

Results

Model performances and independent
variable selection

The accuracies of the models based on all presence sam-

ples (sunlit + shadows) and only sunlit canopies are sum-

marized in Figure 2, whereas Table 2 shows the occasions

where each model performed significantly better in sunlit

areas than in shaded areas. Overall, model accuracies in

terms of Kappa were significantly higher in sunlit cano-

pies compared to shaded areas in almost all cases. More-

over, the accuracies in sunlit canopies improved when

excluding shaded samples from the calibration data. Inac-

curate classifications were found in shaded canopies even

when shadows were included in calibration; presenting

median Kappa values <0.3, uneven performances of sensi-

tivity and specificity, and coefficient of variation (CV)

values near 100% for Kappa and specificity (Fig. S1).

Concurrently, AUC values remained high in the shadow

areas, showing less sensitivity to the effects caused by

shadows than Kappa. Classification accuracies were higher

for A. dealbata than for P. radiata and U. europaeus.

Models including RGB information improved signifi-

cantly (a = 0.05) when excluding shadows from the cali-

bration data, whereas hyperspectral, 2D textural and 3D

structural data alone did not vary significantly among

model types (Fig. 2). Sensitivity and specificity were

found to vary more than AUC and Kappa, presenting few

stable significant differences among model types. When

using one type of independent variable, spectral informa-

tion outperformed 2D textural and 3D structural infor-

mation in most cases in terms of Kappa: RGB was found

to be the best single option for A. dealbata, whereas

hyperspectral information was the best variable for U. eu-

ropaeus and P. radiata. The worst type of independent

variable for A. dealbata and U. europaeus was the struc-

tural information, whereas for P. radiata it was RGB.

When combining multiple types of independent variables,

the best data combination for A. dealbata and P. radiata

was RGB + texture + structure. For U. europaeus the best

combination of independent variables was hyperspec-

tral + texture + structure. Only for U. europaeus the use

of a single variable type (i.e. hyperspectral) resulted in

higher performances compared to the combination of

independent variable types. Significant differences between

the use of the best single independent variables and the

best combination of variables were obtained for U. eu-

ropaeus and P. radiata in terms of Kappa. Only A. deal-

bata and U. europaeus showed significant differences
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among variable types in terms of sensitivity and speci-

ficity, respectively (Fig. S2).

When combining hyperspectral, 2D textural and 3D

structural information the variable importance (assessed

by permutations of MaxEnt) was higher for spectral and

2D textural information than for 3D structural informa-

tion (Fig. 3). Nonetheless, for P. radiata the importance

of 3D structural information was higher than for the

other species. In most cases, 2D textural information

obtained at canopy-level (1–4 m window size) were more

important than information obtained at branch-level

(0.25–1 m window size), except for U. europaeus which

also selected branch-level variables. In all cases 3D struc-

tural information was only relevant at canopy scales.

Model predictions

The predicted rel. likelihood values using different inde-

pendent variables (Fig. 4) indicate good performances of

the spectral information for identifying A. dealbata and

U. europaeus. Predicted patterns improved for P. radiata

when combining spectral, 2D textural and 3D structural

information. All models had a general tendency toward

overpredictions.

In Figure 5, examples of the predicted rel. likelihood

based on the best models according to Kappa are displayed.

Models where shadows were excluded during calibration

obtained higher contrasts between the target species (higher

median and lowed CV rel. likelihood values) and the rest of

the scene (lower median and higher CV rel. likelihood val-

ues). However, models calibrated using only sunlit canopies

resulted in occurrence maps with a higher amount of canopy

gaps (pixels with low rel. likelihood), corresponding to areas

with shadows. Hence, models excluding shadows from the

calibration data also yielded high false negative rates (lower

specificity). The exceptions were models based on 2D textu-

ral information, which due to their multi-level window sizes

were able to fill the canopy gaps (Fig. 4).

The relative likelihood, obtained in the shadowed areas

by models including shaded canopies in the calibration

data, was predominately lower than the Kappa threshold.

Hence, binary presence/absence maps also presented large

amounts of false negatives. The amount of false negatives

(i.e. presences falsely predicted as absence) inside the

invasive species crowns ranged between ~20% and ~13%,

which corresponded to ~100% and ~65% of the shadow

areas for the models excluding and including shadow dur-

ing calibration, respectively. Likewise, false positives out-

side the target crowns decreased by ~17% when excluding

shadows during calibration (e.g. Fig. 5 blue circles). This

can be seen in the increase of sensibility of almost all

models when excluding shadows from the calibration data

(Fig. 2a). Finally, the total amount of area covered by theT
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Figure 3. Variable importance based on MaxEnt permutation for the models including and excluding shaded canopies in the calibration data.

Median and standard deviation values of the iterative validation are represented by barplots and error bars, respectively.

Detailed subsample RGB

A
ca

ci
a 

de
al

ba
ta

Hyperspectral Texture

U
le

x 
eu

ro
pa

eu
s

P
in

us
 ra

di
at

a

Relative likelihood

0 0.5 1

3D structure structtexthyper

 = Target species canopies

In
cl

. 
sh

ad
ow

s
E

xc
l. 

sh
ad

ow
s

In
cl

. 
sh

ad
ow

s
E

xc
l. 

sh
ad

ow
s

In
cl

. 
sh

ad
ow

s
E

xc
l. 

sh
ad

ow
s

0 10 20 30 m

Figure 4. Relative likelihood predictions using different independent variables. Models including and excluding shadows during calibration are

presented.

310 ª 2019 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Shadow Affects Species Classification J. Lopatin et al.



invasive species canopies according to the binary maps of

the models excluding shadows were ~27%, 29% and 30%

for A. dealbata, U. europaeus and P. radiata, respectively.

Models including shadows during calibration tended to

overestimate the invasive species presence’s with ~5% in

all three species.

Shadow fraction simulation analysis

The simulations using the digital surface models (DSM;

Fig. 6) showed that the optimal acquisition window (here

defined as less than 20% shadows) varied among the con-

sidered species: U. europaeus and P. radiata obtained the

longest and the shortest optimal acquisition period,

respectively. The simulated proportion of shaded crowns

during the course of the day (Fig. 6c) confirms that P. ra-

diata’s canopies are shaded during a large portion of the

day, whereas U. europaeus canopies are mostly sunlit.

Discussion

Shadows effects in MaxEnt models

Our analyses show that MaxEnt predicted likelihood values

for shaded areas are inaccurate even when including shaded

canopies during calibration (Fig. 2b). This leads to a gen-

eral decrease contrast in rel. likelihood between the actual

target species canopies and the rest of the landscape which

increases the false positive rate (Fig. 5). Generally, between

65% and 100% of shaded parts of the target species were

wrongly classified as absences. This ~13–20% wrongly

classified canopy area could hamper the use of the pre-

dicted occurrences for subsequent ecological analyses, such

as the analysis of detailed invasion dynamics or to upscale

the mapping of the invasive species to larger scales via

satellite imagery (e.g. Kattenborn et al. submitted). These

errors were comparable to other UAV-based invasive spe-

cies mapping studies which obtained user accuracies

between 60% and 95% (Alvarez-Taboada et al. 2017; Mafa-

nya et al. 2017; M€ullerov�a et al. 2017; Cao et al. 2018).

Few UAV-based studies discussed the effects caused by

shadows on their classification results: de S�a et al. (2018)

found that shadows significantly decreased model accura-

cies in the detection of species of the genus Acacia under

sunny conditions, whereas acquisitions under diffuse light

conditions caused by clouds significantly increased classifi-

cation accuracies due to a reduction cast shadows. Never-

theless, cloudy conditions would also decrease the

separability of spectrally similar classes (Zhang et al. 2015).

In contrast, other studies showed that the inclusion of shad-

ows into the training samples improved classification per-

formances (Milas et al. 2017; Ishida et al. 2018). However,

these classifications involved the separation of classes with

less overlapping spectral signatures compared to the classes

considered here. When the separation of a species from

other species with similar spectral characteristics is pursued,

the high amount of intraspecific variance can hamper pixel-

based classification performances (Lopatin et al. 2017).

According to Milas et al. (2017), the amount of

detected shadows vary depending on the spatial resolu-

tion, which we did not consider in this investigation. We

also did not account for gradients of shadows in our
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analyses (e.g. Milas et al. 2017), but used a binary classifi-

cation. Nevertheless, from our results (i.e. between 65%

and 100% of misclassification rate inside shaded areas)

we assume that shadows in general negatively affect the

performance of pixel-based classification algorithms and

that should be avoided whenever possible. However, we

do not dismiss the possibility that shadows could at some

point enhance classifications when algorithms that

efficiently exploit complex neighborhood information are

used (e.g. convolutional neural networks). This assump-

tion could be supported by the fact that all three species

showed differences in their daily shadow fractions and

temporal distributions (Fig. 6).

The amount of cast shadows could be reduced (and

hence the false negative rate) by acquiring the UAV data

at an ideal time. In our simulation exercise, this ideal
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Figure 6. Shadow simulation using the digital surface models (DSM) and the sun elevation and zenith angles corresponding to beginning, middle

and end of the summer season (i.e. 21 December 2017, 04 February 2018 and 20 March 2018 of each study site: (A) shows the simulated

shadow fractions between 9:00 and 18:00 h; (B) shows an RGB subsample of the target species canopies; and (C) shows the number of times (in

percentage) that the pixels of the target canopies were under shadow for the daily period of the middle summer day (04 February 2018).
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time was consistently identified to be around ~13:00 h

local time. The shadow simulation performed in our study

sites showed that the width of the optimal temporal acqui-

sition window varied greatly according to the species-spe-

cific canopy characteristics (Fig. 6). At the spatial scales

considered in this study, U. europaeus usually builds more

homogeneous canopies, yielding generally less shadow

fractions in comparison to P. radiata, which depicted the

highest amount of shaded areas during the day (Fig. 6c).

These differences are explained by the canopy architecture

of the species, as the spherical crown shapes from U. eu-

ropaeus and A. dealbata results in relatively homogeneous

canopy structures when canopies are closed. This leads to

generally low shadow fractions. Contrary, the vertical con-

ical shapes and the star-shape branching pattern of P. ra-

diata lead to high shadow fractions. Even in high density

stands there are relative distinct height differences between

the higher and the lower parts of the neighboring crowns.

Because we were mostly interested in the species-specific

shape characteristics of the invasive species canopies, we

did not include the canopies of the native species in the

analysis. In highly heterogeneous interspecific stands such

as the one presented in the P. radiata flight, neighboring

species with different canopy shapes and sizes may also

influence the shadow fraction of the general canopy.

In order to minimize shadows and their effects on classi-

fication tasks in UAV-based species mapping applications,

species-specific considerations regarding data acquisition

are recommended. The approach proposed here to simulate

shadows using digital surface models can be a useful tool to

assess the shadow fractions during the course of a day and

to plan revisit acquisitions accordingly.

The canopy structure of the invasive species also differs

from the structure of the native forests and shrublands.

Chilean native forests of the area tend to growth in highly

heterogeneous stands of broadleaf species (e.g. tree species

richness between 4 and 30 species in 225 m2 plots; Lopa-

tin et al. 2016) with many understorey species. On the

contrary, woody individuals in shrublands tend to growth

in a scatter manner (Luebert and Pliscoff 2006). Both veg-

etation types contrast with the clustered growth and rela-

tively uniform canopies of A. dealbata and U. europaeus

(e.g. Fuentes-Ram�ırez et al. 2011) and the conical canopy

shape of P. radiata. These characteristics make the

selected invasive species suitable for experimentation with

remotely sensed data, as they clearly differ from the native

stands in terms of structure and growth strategy and

hence should be comparably easy to detect.

Variable importance

We found that AUC responses were not sensible to the

observed negative effects of shadows in the model

predictions, hence we will refer only to Kappa for general

tendencies. Our results show that the best combination of

independent variables depends on the target species, and

that shadows significantly affected models using all types

of independent variables. Models including RGB depicted

largest improvements when excluding shadows from cali-

bration, whereas 3D structure varied the least (Figs. 2a

and 5). The models combining RGB, 2D textural and 3D

structural information yielded high performances for

A. dealbata and P. radiata, maybe due to the eye-catching

silver and dark color of the species leaves, respectively

(see detailed subsample of Fig. 4). This could be advanta-

geous from an operational point of view as the cost and

processing efforts of RGB data are generally lower than

for hyperspectral data. This corroborates the findings of

de S�a et al. (2018), which also classified a species of the

genus Acacia (i.e. A. longifolia) with high accuracies using

RGB imagery.

Contrary, U. europaeus was mapped with highest accu-

racies when applying hyperspectral data alone, which

could be due to its rather homogeneous canopy with few

structural and hence textural differences (Fig. 6c). On the

other hand, the 3D structure was particularly relevant for

mapping P. radiata (Fig. 3). This is because P. radiata

have a conical crown shape that clearly differs from the

native broadleaved species (Ishii and Asano 2010). Con-

trarily A. dealbata and U. europaeus have relatively similar

crown shapes and structure as the native flora. The struc-

tural specifics of conifer species were found to be well

captured in UAV-based 3D structural metrics also in

other studies (Franklin et al. 2017).

Generally, the canopy-level information (1–4 m win-

dow size) outperformed the branch-level information

(0.25–1 m window size) for both 2D texture and 3D

structure variables. This indicates that branch characteris-

tics—for example, branch form, branch orientation and

leaf clumping—are less important than canopy differ-

ences. The importance of 2D textural metrics was found

also in other studies (Michez et al., 2016; Lu & He, 2017;

Cao et al., 2018). It can be assumed that, in contrast to

information of single pixels (e.g. as for RGB or hyper-

spectral predictors), the textural metrics are less affected

by small-scale variations, since these metrics are based on

larger spatial scales (0.25–4 m). Moreover, it can be

assumed that the texture metrics can even bundle this

spatial variation (e.g. small-scale variation of sunlit and

shaded crowns) in information that facilitates the classifi-

cation task.

We found significant performance differences based on

the validations in sunlit and shaded canopies in almost all

cases (Table 2). This also applied for models trained with

only structural information, indicating that shadows also

hampered the creation of the photogrammetric point

ª 2019 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 313

J. Lopatin et al. Shadow Affects Species Classification



clouds (performed in Agisoft Photoscan, Agisoft, Russia).

Nevertheless, for spectral variables (especially RGB) the

predicted rel. likelihood differed stronger between models

including and excluding shadows from the calibration

than for 2D textural and 3D structural variables (Fig. 4).

This was more pronounced in P. radiata than for the

other two species. We assume that spectral predictors

were more affected by shadows in P. radiata, because of

its more complex canopy structure and higher shadow

fraction (Fig. 6c).

For all species we observed false negatives, that were

spread in a rather scattered manner (Fig. 4). One option

to address this issue could be to apply pre- and post-pro-

cessing techniques, such as local filters (e.g. clump and

sieve operators) and object-based analysis. Object-based

analysis is known to decrease the so called salt-and-pep-

per effect caused by pixel-based classifications (Yu et al.

2006). This is one, reason why many previous UAV-based

invasive species mapping studies used it. These studies

did not considered the elimination of shadows prior to

the allocation of spectral values to the segmented clumps

(e.g. Alvarez-Taboada et al. 2017; Baena et al. 2017; Cao

et al. 2018). Integrating both sunlit and shaded canopy

reflectance into the segments could hamper the success of

classification tasks if shadows are considered as noise.

Classification approach

One-class classifiers (OCC) are promising for invasive spe-

cies mapping as only presence data of the target species

are needed, decreasing field and laboratory work (hence

being appealing for management agencies). MaxEnt is

considered to be a robust and transferable OCC (Duque-

Lazo et al. 2016) that yield high performances compared

to other OCC algorithms in remote sensing applications

(Stenzel et al. 2017). Because MaxEnt is very CPU

demanding (Mack et al. 2016), especially combined with

bootstrapping validation, we reduced CPU processing time

using a comparable small set of presence/background sam-

ples. We used 500/2,000 instead of the sometimes recom-

mended ~5000/10 000 presences/background samples (e.g.

Stenzel et al. 2017). We compared MaxEnt performances

for the structtexthyper independent variables (median

accuracies and predictions) using 500/2000 and 5000/

10 000 presence/background samples with a 10-fold cross

validation for the three species and found no marked dif-

ferences. Hence, we assume that the lower number of sam-

ples did not affect our result notably in this study.

Conclusions

Here, we investigated the effects of shadows on the pre-

dicted occurrences of three woody invasive species of

central-south Chile using spectral (RGB and hyperspectral

data), 2D textural and 3D structural variables derived

from photogrammetry.

We found that shadows significantly affect the results

of models trained with all types of variables. Areas with

shadows obtained misclassification rates between 65%

and 100%, even when shadows were included during

model calibration. Particularly spectral and 2D textural

variables were affected by shadows, leading to inaccurate

model predictions in shaded areas and resulting in an

increase of false negative predictions. Accordingly, the use

of UAVs for mapping invasive plant species benefits from

ad hoc pre-processing. The exclusion of shadows prior to

model calibrations improved model predictions in all

cases, especially in terms of false positives. Most accurate

and robust results were usually obtained when combining

spectral, 2D textural and 3D structural information. The

use of hyperspectral instead of RGB data improved accu-

racies only for one of the three species (i.e. U. europaeus).

Finally, the performed shadow simulations based on the

photogrammetric digital surface models demonstrated

that each species-specific canopy structure result in differ-

ent shadow fractions during the course of a day. P. radi-

ata showed a comparably narrow time period with a

small shadow fraction. The rather smooth canopies of

A. dealbata and U. europaeus resulted in a longer time

span during the day with smaller shadow fractions.

Hence, UAV data acquisitions need careful planning to

minimize shadows and their related problems in species

mapping applications. From the results of this investiga-

tion we hypothesize that shadows should not be used

during calibration when pixel-based classifiers are used.

Nevertheless, we do not discard the possibility that the

negative effects of shadows on classification results could

be reduced using approaches that include complex neigh-

borhood information as information (e.g. deep learning).

More investigation is needed to decrease the large

amount of false negatives produced by shadows.
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Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Table S1. Parameterization of Agisoft Photoscan. Settings

not included were set as default.

Figure S1. Model performances for sunlit (A) and shaded

(B) canopies using models that include (incl.) and

exclude (excl.) shadows in the calibration data. The coef-

ficient of variation (CV) iterative values are presented,

with dot size scaled to the values. A.d. = Acacia dealbata;

U.e. = Ulex europaeus; P.r. = Pinus radiata. * depicts sig-

nificant (a = 0.05) improvements of the models excluding

shaded canopies over the models including shaded cano-

pies (A) and of the models including shaded canopies

over the models excluding shaded canopies (B).

Figure S2. Significant differences in terms of model per-

formance among models using models excluding shadows

in the calibration data.
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