EPJ Web of Conferences 245, 07007 (2020) https://doi.org/10.1051/epjconf/202024507007
CHEP 2019

Setup and commissioning of a high-throughput analysis
cluster

René Caspart'*, Max Fischer!, Manuel Giffels', Ralf Florian von Cube!, Christoph
Heidecker!, Eileen Kuehn', Giinter Quast', Andreas Heiss!, and Andreas Petzold!

IKIT - Karlsruhe Institute of Technology, Germany

Abstract. Current and future end-user analyses and workflows in High Energy
Physics demand the processing of growing amounts of data. This plays a major
role when looking at the demands in the context of the High-Luminosity-LHC.
In order to keep the processing time and turn-around cycles as low as possible
analysis clusters optimized with respect to these demands can be used. Since
hyper converged servers offer a good combination of compute power and lo-
cal storage, they form the ideal basis for these clusters. In this contribution we
report on the setup and commissioning of a dedicated analysis cluster setup at
Karlsruhe Institute of Technology. This cluster was designed for use cases de-
manding high data-throughput. Based on hyper converged servers this cluster
offers 500 job slots and 1 PB of local storage. Combined with the 100 Gb net-
work connection between the servers and a 200 Gb uplink to the Tier-1 storage,
the cluster can sustain a data-throughput of 1 PB per day. In addition, the local
storage provided by the hyper converged worker nodes can be used as cache
space. This allows employing of caching approaches on the cluster, thereby en-
abling a more efficient usage of the disk space. In previous contributions this
concept has been shown to lead to an expected speedup of 2 to 4 compared to
conventional setups.

1 Introduction

With the ever-growing amount of data needed to be processed for HEP analysis workflows,
especially for future analyses at LHC Run 3 and HL-LHC, challenges for computing infras-
tructures arise [1]. One of these challenges is to enable workflows to run efficiently on the
available infrastructures. A major factor for this is the capability to provide the required input
data to the jobs. In the context of HEP workflows, this data is mainly served from storage
elements located at WLCG sites. While for jobs running in the WLCG this effect can be mit-
igated by coordinating the jobs to run at the sites providing the data, this is not possible for
end-user analysis jobs running on dedicated local facilities, for example local analysis cluster
set up and commissioned at universities.

In this paper, we present an approach to designing a cluster specifically suited for running
high-throughput analysis jobs, as they are common in end-user analyses in the high energy
physics environment. Since this cluster is set up and commissioned close to the Tier-1 WLCG
center GridKa, it is designed to profit as much as possible from this closeness, both geograph-
ically and network-topology wise, and to utilize services and infrastructure already present at

“e-mail: rene.caspart@kit.edu

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).



EPJ Web of Conferences 245, 07007 (2020) https://doi.org/10.1051/epjconf/202024507007
CHEP 2019

HTDA

nd o HIConds @
w @ ,,,,,,,, GridKa Batch Farm

Users

S

WLCE Other
\ -~y rid-Stora
—

s e Schedule job to free node
v

Coordinated Caches

[
o

Parallel Filesystem (GPFS)

Level 1 Cache Level 2 Cache Background Storage

Figure 1. Design of the TOpAS cluster. The Cluster is designed to feature a hierarchical storage
structure consisting of HDDs in a distributed file system and one NVMe disk for each worker node,
which can be used for caching job input data.

the center. Nonetheless, the design of the cluster is chosen for it to be suitable to be deployed
independently of a WLCG center at any university.

2 Design of the Cluster

The I/O performance of a cluster is one of the main bottlenecks for the efficiency of HEP
jobs running on this cluster. In the design of the TOpAS cluster presented in this paper the
I/O bottleneck is addressed in a twofold way. First, hyper converged worker nodes, which
combine computing capabilities and storage on the same node, are chosen as the basis for
the worker nodes in the cluster. These worker nodes are equipped with 16 6 TB HDD disks
serving as part of a distributed storage system and one 1 TB NVMe disk serving as fast local
storage device. Two 1TB SSDs are used for the operating system and for serving local
and scratch data. Each node is equipped with two Intel® Xeon® E5-2680 v4 CPUs with
14 physical cores each and 256 GB memory. This amount of memory by far surpasses the
average memory requirement for HEP jobs, however it is a prerequisite for additional features
considered for the cluster, such as remote direct memory access (RDMA). In addition, it
enables the cluster to also be used for high-memory end-user analyses, such as machine
learning tasks performed on the CPUs. In total, the cluster consists of 11 of these nodes
providing up to 616 CPU threads, 2.8 TB memory and 1 PB storage on HDD drives. Second,
to exclude potential bottlenecks due to network limitations, the worker nodes are connected
using 100 Gbit/s interfaces. The cluster is connected to the main network backbone at the
Tier-1 center GridKa with 2 100 Gbit/s connections. Consequently, access to the grid storage
elements hosted at GridKa is not limited by the network connection of the cluster and data
hosted at the site can be accessed with a high data-rate.

In addition to the worker nodes, a central management node is part of the cluster. This
node is used for providing the services required for the operation of the cluster as well as
parts of the edge-services. The design of the Cluster is illustrated in figure 1.



EPJ Web of Conferences 245, 07007 (2020) https://doi.org/10.1051/epjconf/202024507007
CHEP 2019

3 Storage Benchmarking and Performance

A key component of the TOpAS cluster is its local storage, which allows for a fast and
efficient processing of jobs reading data from it. A benchmark is performed to evaluate the
performance of this storage as well as identify their suitability to serve as a distributed cache
for the cluster. This benchmark is designed to imitate the ideal case of a realistic analysis
workflow as close as possible. The input files for the benchmarks are ROOT [2] files residing
on the respective storage to be benchmarked. The data in these files is read sequentially during
the benchmark. Since no further computation is performed based on the data, this benchmark
serves as an upper bound for the data-rate needed by analysis workflows. The benchmark
is performed using 10 worker nodes and for different numbers of processes reading the files
ranging from 10, i.e. 1 per worker node, to 560, i.e. the maximum number of CPU threads
for every worker node. The performance is evaluated using two metrics. For one the average
throughput of the storage is evaluated. It is given by the average speed with which each
process reads from the storage. The second metric is the CPU utilization for the individual
processes. Assuming the process is not bound by I/O but only by the available processing
power, a CPU utilization of 1.0 is expected.

The two available storage systems at the TOpAS cluster are benchmarked. For one, a
CephFS [3] spanning over the HDDs of the involved worker nodes is set up. These disks
are used for hosting both data and metadata of the CephFS. For the benchmarks, the CephFS
is set up without enabling further mechanisms to improve the expected performance of the
file system, such as Remote Direct Memory Access over Converged Ethernet (RoCE) [4].
Additionally, a benchmark is performed where the data is read from the NVMe disk of the
respective worker node the process is running on. For this benchmark, the NVMe disks are
set up as individual local disks on each worker node.

The results of the benchmarks can be found in figure 2. As expected the NVMe disks out-
perform the shared distributed file system for all number of processes due to its higher read-
speed and better suitability for random I/O. While the difference in average CPU utilization
for low number of processes up to 160, i.e. 16 processes per worker node, is moderate around
10%, it increases significantly for higher number of processes up to 35% at 560 processes.
Even with 560 processes reading from the CephFS it is able to sustain a read rate of 25 MB/s
for every process, which surpasses the average required throughput observed for most anal-
ysis workflows. In contrast to the shared distributed file system, the NVMe disks are able to
sustain an almost ideal CPU utilization for the complete range of number of processes and
the CPU utilization only drops for high number of processes by at most 10%.

4 Provisioning and Usage of the Cluster

To make the TOpAS cluster suitable for end-user analyses demanding high data-throughput
a caching setup is used. The CephFS storage for which we reported the benchmark results in
the previous section is used as cache volume, offering around 1 PB of cache space for input
data. The caching is set up using the XRootD proxy file cache functionality [5]. The central
management node of the cluster serves as XRootD proxy via which all XRootD file accesses
on the cluster are proxied. Since the input data is only cached at the time of the first access,
this setup is specifically suited for reoccurring end-user analysis workflows, where the data
for subsequent accesses is then read from the cache instead of the original storage location.
For job scheduling the TOpAS cluster is set up with a dedicated HTCondor [6, 7] job
scheduler. This scheduler is chosen since it is commonly used in the HEP environment and
has already successfully been employed both at the Tier-1 WLCG center GridKa and for the
local resources at the institute for experimental particle physics in Karlsruhe. Among others,



EPJ Web of Conferences 245, 07007 (2020) https://doi.org/10.1051/epjconf/202024507007
CHEP 2019

60 Average Throughput per Process (Measured on Multiple Nodes)

Throughput (MB/s)
N w B (%))
o o o o

S)

—#— CEPHFS w/o RoCE (160 Disks)
NVMe SSD (10 Disks)

o

0 100 200 300 400 500
Processes

Average CPU Utilization (Measured on Multiple Nodes)

0.8
<
L
T 06
N
5
=}
T 04
(8}
0.2
—8— CEPHFS w/o RoCE (160 Disks)
NVMe SSD (10 Disks)
0.0

0 100 200 300 400 500
Processes

Figure 2. Results of the reading benchmark performed on the TOpAS worker nodes. The average
throughput of the storage per process accessing it is shown at the top and the average CPU utilization
for the processes at the bottoms.

a key reason for choosing the HTCondor scheduler was the possibility to easily enable jobs
from users submitted on the local resources at the institute to run on the TOpAS cluster. This
is achieved using a mechanism provided by HTCondor for connecting multiple HTCondor
resource pools, called flocking [8]. Details of this setup have been reported in [9]. The
usage of this dedicated mechanism is necessary for two reasons. First, the local resources
and servers with enabled user login at the institute and the TOpAS cluster are hosted in an
independent network infrastructure. Second, the TOpAS cluster and local resources employ
independent user bases. While the local resources offer individual accounts for each user at
the institute the TOpAS cluster is only set up with few commonly used pool-accounts. This
and the fact that no dedicated login nodes are provided requires that interaction of the users
with the TOpAS cluster is limited to the batch system scheduler as an entry point.

As a result of performance tests for different number of threads used per worker node,
each worker node in the cluster is set up to provide 42 CPU threads in the batch system,
leading to a total of 462 CPU threads being available. End-user analysis jobs on the TOpAS
cluster are executed in a docker container [10]. This isolates them from the system, while
enabling users to choose from a wider range of operating systems, such as Scientific Linux 6
and 7, and use containers already providing parts of the required software stacks. In addition,
this setup mirrors the setup used for the local institute resources, thereby limiting the need
for users to adapt their workflows. An example of a typical workload of end-user analyses
in a week on the TOpAS cluster is shown in figure 3. It can be seen, that the submission of
jobs running on the TOpAS cluster happens in burst-like patterns and at times no end-user



EPJ Web of Conferences 245, 07007 (2020) https://doi.org/10.1051/epjconf/202024507007
CHEP 2019

Resource usage at the TOpAS cluster

500

—— cms.higgs
cms.jet
—— cms.top
400 4
0
<
S 300
=}
o
(e}
b
:
€ 200
=3
=2

Toalel S 4]

0
B o
03,0 ’0,5,0

Sl e il i i i i
Date

o X N
03,6 03,0 03,’&

4
03,0

©
o° < < K

Figure 3. Utilization of the TOpAS cluster by jobs submitted from end-users at the institute for
experimental particle physics in a seven-day period. Workloads typically occur in bursts, leading to
times, where the resources are not fully utilized for end-user analyses. The workloads are shown split
by accounting group, which corresponds to the field of research the users are involved in.

Resource usage at the TOpAS cluster

500

— tardis
400 1
%]
o
S 300
=)
o
(@]
k)
g
£ 200
=]
2
100 1
0 ,
5 o © 0\ ® o o
0,0’5‘“ o° o° o° o° o° 0,0’5'\’
e e e i i i i

Date

Figure 4. Utilization of the TOpAS cluster for WLCG workloads submitted by the CMS and Belle II
collaborations in a seven-day period. The workloads are run when the cluster is not fully utilized by
end-user analysis workflows.

jobs are running on the cluster at all. Considering only end-user analyses as a use case for
the cluster, this would lead to the cluster not always being fully utilized and resources idling.

At times at which the cluster is not fully utilized by end-user analyses otherwise idling
resources are used for back filling with WLCG workflows by the CMS and Belle II collabo-
rations. Since the job submission by the users shows no clear structures and is hard to predict
[11] this information can not be used for scheduling jobs by the collaborations on the TOpAS
cluster in times the cluster is idle. Instead, the workloads are started in preemptable slots,



EPJ Web of Conferences 245, 07007 (2020) https://doi.org/10.1051/epjconf/202024507007
CHEP 2019

enabling vacating resources in favor of end-user analyses whenever needed. For setting up
the back filling the resource manager COBalD [12] and TARDIS [13], which are developed
at Karlsruhe Institute of Technology (KIT), are used. A dedicated infrastructure hosted at
the WLCG Tier-1 center GridKa is used for accepting and scheduling jobs to opportunistic
resources, such as the resources used for back filling at the TOpAS cluster. Details on the
resource manager COBalD and TARDIS as well as their setup and deployment and the in-
frastructure at GridKa can be found in [14, 15]. Backfilling jobs are run inside singularity
container [16] to offer the same environment as expected by the collaborations for WLCG
worker nodes without the need for deploying the required software on the TOpAS worker
nodes directly. The backfilling jobs are allowed to run on the TOpAS cluster indefinitely
as long as no suitable user jobs are available. In case suitable user jobs are available, the
backfilling jobs are preempted and resources are freed with a short grace period. This setup
is chosen to ensure the high-throughput resources are available for processing user jobs with
a minimal waiting time, while still enabling the back filling jobs time to reach a state, where
the loss of computing time due to the preemption of the job is minimal. At the time of writ-
ing over 90,000 CPU core-hours at the TOpAS cluster were provided opportunistically to the
CMS collaboration.

5 Conclusion

In this paper, we presented the design and commissioning of a cluster specifically suited
for high-throughput analysis workflows. This cluster was set up at Karlsruhe Institute of
Technology close to the Tier-1 WLCG computing center GridKa. It was designed to profit
from already existing infrastructure of the WLCG site while also being flexible enough to
be suited as a prototype fit for deployment at smaller sites and universities. The cluster is
based on hyper converged worker nodes providing both compute and storage capabilities.
We presented benchmark results for the storage of the cluster, which is used as a cache for
data accessed via XRootD by jobs running on the cluster. These benchmarks illustrate the
capabilities of these storages to serve data for data-intensive workflows running on the cluster
and show their suitability for concurrent accesses by jobs running on the cluster.

While the cluster primarily is designed and used for data-intensive end-user analysis
workflows, submitted by users at KIT, we reported on the possibility and employed setup
to successfully use idling resources during times of little job pressure for back filling with
WLCG jobs by the CMS and Belle II collaborations.

In addition to the setup presented in this paper, future work will focus on improving the
gain from this setup. Firstly, the choice of the distributed file system used for caching can be
revisited. This includes considerations like enabling RoCE for the CephFS, but also consider-
ations for alternative file systems such as IBM spectrum scale [17], which is a commonly used
choice in computing centers such as GridKa. Secondly, for the caching setup two improve-
ments can be followed up on. First, the design offers the possibility for a cascaded caching
approach. In this approach, both the CephFS and NVMe disks will be used for caching, with
the more performant NVMe disks serving as local level 1 cache for each worker node and
the CephFS serving as larger distributed level 2 cache. Second, mechanisms can be studied
to improve the coordination of jobs requesting input data to the TOpAS cluster and in the
case of local caches to the worker node where a file is cached. Plans for this approach will be
based on the coordinated distributed caching approach studied at KIT in the past and reported
in [18, 19].



EPJ Web of Conferences 245, 07007 (2020) https://doi.org/10.1051/epjconf/202024507007
CHEP 2019

Acknowledgment

The authors acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) through the project "Massenspeicher und Rechenknoten fiir hohen Da-
tendurchsatz", project number 398475463.

References

[1] HEP Software Foundation, A Roadmap for HEP Software and Computing R&D for the 2020s, Computing and
Software for Big Science 3, 7 (2019), DOIL: 10.1007/s41781-018-0018-8

[2] Rene Brun and Fons Rademakers, ROOT - An Object Oriented Data Analysis Framework, Nucl. Inst. & Meth.
in Phys. Res. A 389 (1997) 81-86. See also http://root.cern.ch/

[3] Sage Weil and Scott Brandt and Ethan Miller and Darrell Long and Carlos Maltzahn, Ceph: A Scalable, High-
Performance Distributed File System, OSDI 2006-11, pp 307-320

[4] InfiniBand™ Architecture Specification Release 1.2.1 Annex A17: RoCEv2, InfiniBand Trade Association, 2
September 2014, https://cw.infinibandta.org/document/dl/7781

[5] L. A. T. Bauerdick et al., XRootd, disk-based, caching proxy for optimization of data access, data place-
ment and data replication, Journal of Physics: Conference Series513(2014) 042044, DOI: 10.1088/1742-
6596/513/4/042044

[6] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny, Condor - A Distributed Job Scheduler,
Beowulf Cluster Computing with Linux, The MIT Press, 2002. ISBN: 0-262-69274-0

[7] HTCondor Team, HTCondor[software], DOI: 10.5281/zenodo.3595387

[8] D. H.J Epema, Miron Livny, R. van Dantzig, X. Evers, and Jim Pruyne, A Worldwide Flock of Condors : Load
Sharing among Workstation Clusters, Journal on Future Generations of Computer Systems, Volume 12, 1996.
DOI: 10.1016/0167-739X(95)00035-Q

[9] Ralf Florian von Cube et al., Federation of compute resources available to the German CMS community, Journal
of Physics: Conference Series ACAT 2019 proceedings (to be published),

[10] Docker [software], https://www.docker.com/ [accessed 2020-03-01]

[11] Eileen Kuehn, et al., Predicting resource usage for enhanced job scheduling for opportunistic resources in
HEP, EPJ Web of Conferences CHEP 2019 proceedings (to be published)

[12] Max Fischer, Eileen Kuehn et al., COBalD - the Opportunistic Balancing Daemon, matterminers/cobald [soft-
ware], DOI: 10.5281/zenod0.3469929

[13] Manuel Giffels, Matthias Schnepf et al., TARDIS Resourcemanager, matterminers/tardis [software], DOI:
10.5281/zenodo.3688615

[14] Max Fischer et al., Lightweight dynamic integration of opportunistic resources, EP] Web of Conferences CHEP
2019 proceedings (to be published)

[15] Manuel Giffels et al., Effective Dynamic Integration and Utilization of Heterogenous Compute Resources, EPJ
Web of Conferences CHEP 2019 proceedings (to be published)

[16] Kurtzer GM, Sochat V, Bauer MW (2017) Singularity: Scientific containers for mobility of compute, PLoS
ONE 12(5): 0177459, DOI: 10.1371/journal.pone.0177459

[17] Dino Quintero et al., IBM Spectrum Scale (formerly GPFS), IBM Redbook SG24-8254-00, ISBN: 0738440736

[18] Max Fischer et al., Opportunistic data locality for end user dataanalysis, Journal of Physics: Conf. Series 898
(2017) 052034, DOI: 10.1088/1742-6596/898/5/052034

[19] Christoph Heidecker et al., Advancing throughput of HEP analysis work-flows using caching concepts, EPJ
Web Conf. 2019-214, DOI: 10.1051/epjconf/201921404007



