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Abstract: Artificial intelligence (AI) has emerged as a powerful set of tools for engineering innovative
materials. However, the AI-aided design of materials textures has not yet been researched in depth.
In order to explore the potentials of AI for discovering innovative biointerfaces and engineering
materials surfaces, especially for biomedical applications, this study focuses on the control of
wettability through design-controlled hierarchical surfaces, whose design is supported and its
performance predicted thanks to adequately structured and trained artificial neural networks (ANN).
The authors explain the creation of a comprehensive library of microtextured surfaces with well-known
wettability properties. Such a library is processed and employed for the generation and training
of artificial neural networks, which can predict the actual wetting performance of new design
biointerfaces. The present research demonstrates that AI can importantly support the engineering of
innovative hierarchical or multiscale surfaces when complex-to-model properties and phenomena,
such as wettability and wetting, are involved.

Keywords: microtextured surfaces; biointerfaces; artificial intelligence; surface wettability; tribology;
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1. Introduction

Materials science and engineering are living through tumultuous and extremely exciting
decades, through which the materials discovery and industrial application process have been
accelerated, in parallel to relevant improvements in human well-being and to the steady growth of
varied scientific-technological fields, like tissue engineering and biofabrication, metamaterials and
metasurfaces engineering, design of smart devices and structures, to cite a few. Among recent initiatives
to further progress in materials discovery supported by computational methods, the Materials Genome
Initiative [1–3] stands out for proposing the integration of theory, computation and experimentation
and the use of accessible and interchangeable data and formats to support researchers and technicians
in developing new materials for industrial applications [4,5]. In Europe, the European Materials
Modeling Council presents a “Vision Beyond 2020”, in which data integration and machine learning,
together with the establishment of online multi-stakeholder innovation hubs, play a fundamental role
in new materials development [6]. In any case, it is clear that materials discovery and design supported
by computational tools and AI constitutes a new revolution in materials science and engineering

Nanomaterials 2020, 10, 2287; doi:10.3390/nano10112287 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0002-7894-7478
https://orcid.org/0000-0001-9806-443X
http://dx.doi.org/10.3390/nano10112287
http://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/10/11/2287?type=check_update&version=2


Nanomaterials 2020, 10, 2287 2 of 19

with already highly interesting results, especially as regards the prediction of final properties and
performance from the chemical composition [7–9].

Considering the state-of-the-art, is it important to note that, in spite of the giant potential of the
materials genome initiative and of artificial intelligence applied to materials design and discovery,
some fundamental issues linked to materials development have not yet been considered or researched
in depth. Questions linked to the AI-aided engineering of materials surfaces and to the optimization
of related contact properties and tribological performance, in connection to several mechanical and
biomedical engineering challenges, remain unexplored. In fact, materials surface features have a
direct influence on properties including friction coefficient [10], wear resistance [11], self-cleaning
ability [12,13], biocompatible response [14–16], ergonomic performance and esthetic aspect [17],
among other fundamental characteristics linked to advanced product development in mechanical and
biomedical engineering fields. Therefore, they also play determinant roles in materials selection when
pursuing innovative functionalities, which can be based on bioinspired design strategies for promoting
biological and biomedical applications.

The authors hypothesize that the previously introduced holistic approaches to accelerated materials
development, relying on the intensive use of AI if adequately researched and developed focusing
on materials surfaces, can prove highly transformative towards high performing devices in several
industries. The biomedical industry can greatly benefit from innovative hierarchical surfaces and
biointerfaces capable of controlling cell-material interactions, improving biodevices compatibility
and incorporating innovative sensing and mechanotransduction functionalities through AI-aided
bioinspired design strategies.

In order to explore and better understand the potentials of AI applied to the discovery of
innovative biointerfaces and to the engineering of materials surfaces, especially for biomedical
applications, this study focuses on the control of wettability through design-controlled hierarchical
surfaces (or microtextured biointerfaces), whose design is supported and its performance predicted
thanks to adequately structured and trained artificial neural networks (ANN). Wettability is chosen
due to its relevance for functional biomedical (micro-)devices, as further explained.

Surface wettability is an interesting property related to surface free energy and to surface
topography or geometric micro-/nanostructure [18,19]. Usually, surface wettability is measured
through the water contact angle (CA), which helps to classify surfaces as hydrophobic (CA > 90◦)
or hydrophilic (CA < 90◦). Values of CA close to 0◦ are representative of superhydrophilic surfaces,
while values close to 180◦ are characteristic of superhydrophobic surfaces. There are two main routes
for adjusting the wettability of surfaces: the first focuses on chemical functionalization anchoring
appropriate molecules upon flat substrates, the second aims at modifying the shapes or topographies
of surfaces. These routes may also be synergically combined. Regarding chemical approaches,
the wettability of flat surfaces can be fine-tuned by the formation of a monolayer with appropriate
hydrophilic or lipophilic functional groups. For instance, gold surfaces can be modified using
thiol [20] or carbene [21] anchors, while hydroxylated surfaces such as silicon oxide, glass, mica,
etc. can be modified by conventional siloxane chemistry [22]. Both hydrophilic and hydrophobic
biointerfaces are interesting: the former for being usually very adequate for interacting with cells and
tissues, hence leading more easily to biocompatible medical devices [23]; the latter for their singular
self-cleaning properties and ability to stay dry, which can be applied to the development of easy to
clean and sterilize surgical instruments [24], to cite some examples.

Recent research has put forward the potentials of creating hydrophobic and hydrophilic
transitions upon the surfaces of biomedical microfluidic systems, capable of controlling fluids
upon biointerfaces and hence achieving highly multiplexed systems for a wide set of screening
and diagnostic purposes [25,26]. While significant advances in the monolayer stabilization have been
achieved, topology modification results in more robust and highly applicable surfaces. The possibility
of controlling cell behavior and fate through modifications of surface topography, in connection with
wettability properties, has also been studied in detail [27]. These advances would not have been
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possible without parallel progress in micro- and nanomanufacturing technologies and combinations
thereof, which enable the straightforward, rapid prototyping and even mass-production of biomedical
(micro-) devices with three-dimensional design-controlled surface topographies, as previous studies
from our team have shown [28–30].

Although the Cassie–Baxter and Wenzel models can model contact angle under different wetting
regimes, it is complex to model the actual performance of a surface a priori. The authors hypothesize
that AI can help with predicting the actual behavior of fluids upon biointerfaces. In this study,
the authors explain the creation of a comprehensive library of microtextured surfaces with well-known
wettability properties. Such a library is processed and employed for the generation and training of
artificial neural networks, which can predict the wetting performance of new design biointerfaces.
The authors demonstrate that AI can importantly support the engineering of innovative hierarchical
or multiscale surfaces when complex-to-model properties and phenomena, such as wettability and
wetting, are involved.

2. Materials and Methods

2.1. Creating a Library of Microtextured Surfaces with Known Wettability Properties

Several studies have dealt with the design and manufacture of microtextured surfaces for controlling
the wettability and contact angle of materials surfaces. Both subtractive processes (computer numerical
control machining, laser ablation, micro-drilling, etc.) and additive methods (laser stereolithography, digital
light processing, powder-based laser fusion, lithography-based ceramic manufacture, etc.) have been
applied to the creation of such surface topographies in a wide set of materials. Consequently, there is a
plethora of scientific publications, including experiences from our team, describing the wettability properties
of different synthetic surfaces. In addition, the epidermis of many living organisms from the animal and
vegetal realms have shown very interesting wetting performances, which have also been widely reported.
For the research purpose, in order to create a comprehensive library of microtextured surfaces with
well-known wettability properties, which will subsequently serve as input for generating and training the
artificial neural networks capable of predicting surface contact angle, a selection of publications is gathered.
The selection includes relevant research works, in which microtextures are designed and manufactured or
directly obtained from nature, with enough information about the surface topographies studied so that they
can be replicated and with details about water contact angle obtained through systematic testing [30–35].
After selecting the publications, NX 10® (Siemens PLM Software Solutions, Plano, TX, USA) is employed as
computer-aided design (CAD) software for modeling the selected microtextured surfaces and completing
the CAD library with well-known wettability properties. The CAD models are designed following the
descriptions and measurement details included in the consulted references [30–35]. In most cases, starting
from a planar surface of 1 × 1 mm2, the combined use of simple solid-based design tools, like extrusions
and revolutions of 2D profiles, and Boolean or pattern-based operations leads to the desired CAD models,
as shown in Figure 1 (left). Only for 1 specific case of the collection, which mimics the feature of the lotus
plant leaves, Brownian-like microtextures are added to the CAD model in order to achieve truly multiscale
or hierarchical surfaces, following previous processes published by our team [30]. In addition, in 4 cases of
the collection, due to the extremely fine multiscale details of the CAD model, the starting planar surface
measures 0.5 × 0.5 mm2 to avoid final CAD files with extremely large sizes (i.e., more than 1 Gb). This does
not affect the study, as training of the ANNs is performed with adimensional parameters (see Section 2.3).
The CAD files are stored in .stl (standard tessellation language) files for processing.

2.2. From 3D CAD Files to Surface Matrices for Further Mathematical Processing

The extraction of relevant parameters from the microtextured surfaces is performed with
the support of matrix-based operations using MATLAB R2020a (The Mathworks, Inc., Natick,
MA, USA). The process for straightforwardly transforming the CAD files into MATLAB surface
matrices, which store the information of the surfaces, is schematically presented in Figures 1 and 2.
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An intermediate software is employed for the transformation: Blender, an open-source tool capable of
processing and rendering .stl files. Using Blender, each CAD file is viewed using a zenith perspective
and stored as grayscale.png images or heightmaps, as shown in Figure 1 (right). Lighter regions
correspond to higher values of z, and darker regions correspond to lower values of z.
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The .png files are then directly imported with MATLAB, and linear scaling is applied for each
of the height matrices obtained so that the absolute height of the microfeatures correspond to the
actual dimensions described in the original references. By means of example, Figure 2 presents some
of the MATLAB surfaces generated by processing different grayscale height maps, which replicate
the features of the original CAD files designed according to references [30–35]. Having the surfaces
stored in the form of height matrices proves more versatile and direct to process than when employing
other CAD import features available in MATLAB, which typically work with .stl files and with their
inefficient information storage structures.

2.3. Structuring and Training Artificial Neural Networks for Predicting the Wettability of Surfaces

Counting with the surfaces stored in the form of MATLAB surfaces, MATLAB’s neural network
Toolbox is employed, as an interesting resource for the direct generation of artificial neural networks,
in order to develop a computational model capable of predicting contact angle upon microtextured surfaces.

Two fundamental ratios are used as inputs for training, validating and testing the artificial
neural networks. Both are established based on the literature and share some interesting singularities:
first, the ratios enable the use of different surfaces without considering the global size, as they are
nondimensional; second, both ratios are calculated in a very direct manner, as they only depend on
surfaces geometries; and, finally, in a way, they capture the complete essence of the surfaces.

The first ratio employed as input is the “roughness ratio” (R.R), which is used in the Wenzel and
Cassie–Baxter models, and it is expressed by the following equation:

R.R =
real sur f ace′s area

apparent or projected sur f ace′s area
=

S0

S

The second input ratio is the “filled volume ratio” (V.R), which determines the volume filled by
the rough surface in a hypothetical prism, which contains the real surface. The prism is defined by the
length, height and width of the surface:

V.R =
volume f illed under the sur f ace

volume o f the hipothetical circumscribed prism
=

V0

V

The filled volume ratio is somehow related to the solid’s area fraction of the Cassie–Baxter’s
model, although it is easier to obtain, as it does not depend on the liquid and is only influenced by the
topography of the surface. It is linked to the importance of air trapped, within the microtextures, in a
heterogeneous wetting state.

The only output used for training, validating, and testing the artificial neural networks is the
contact angle. Considering that the library of microtextured surfaces with known wettability properties
is developed using the information from a wide set of available studies, which focused on different
materials, it is important to minimize the effect of the different materials on wettability and to focus
mainly on the microtexture impact on contact angle. Consequently, an incremental contact angle,
“∆CA” (◦), is used. It can be defined as: “the contact angle measured upon a microtextured surface
minus the contact angle measured upon a planar reference surface of the same material”.

Table 1 presents a summary of the surfaces from the generated library in the form of heightmaps
(see Sections 2.1 and 2.2) and includes, for each surface, the parameters used for training, validating,
and testing the ANNs. Enlarged views of the images from Table 1 are included in the “Supplementary
Materials 1” section (Table S1), for providing and additional level of detail. Considering that the same
topographies applied to planar CAD files of different thicknesses provide the same contact angle
values, the library is expanded in a direct way, just by applying the collection of topographies upon
planar CAD surfaces with thicknesses of 10 and 20 microns. Therefore, instead of the 23 samples of
Table 1, we use a duplicated set of 46 samples for the training, validation, and testing.
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Typical ranges of percentages used for data allocation to the training, validation and testing phases
are 70–90%, 20–25% and 10–15%, respectively. As no golden rule helps to establish the correct number
of neurons and percentages for training, testing and validation, an iterative control process is applied,
using the aforementioned ranges and testing combinations of structures between 2 and 20 neurons for
the hidden layer.

The structure of the employed ANNs is based on the two described inputs (surface and volume
ratios), the hidden layer with 2 to 20 neurons, an output layer, and the final output value (incremental
contact angle). The toolbox automatically splits the values, and the Levenberg–Marquardt method
is employed for the training, with the mean square error (MSE) as a loss function. In short,
the Levenberg–Marquardt algorithm uses an alternative form of the square descend gradient (SGD)
process to optimize the time consumption, as it is possible to perform it without computing the
Hessian matrix. Additional details can be found in the MATLAB neuronal networks user guide [36]
and a selection of implemented ANNs is to be found in the “Supplementary Materials 2” section for
repeatability purposes.

The interest of using AI methods for supporting the engineering of innovative surfaces with desired
wettability can be better understood and discussed after a detailed inspection of the data from Table 1.
Figure 3 presents graphical representations of the roughness ratios and filled volume ratios of the surfaces
from the obtained library. These representations show highly nonlinear relationships between these ratios
and the contact angles, both in absolute and incremental forms. In consequence, finding a trend for
estimating the wettability of new design surfaces is challenging and can benefit from the use of well-trained
artificial neural networks. It is also important to note that existing analytical models do not provide a
perfect description for predicting the wettability of innovative biointerfaces directly from design inspection.

Among the many parameters that could have been chosen for describing the surfaces, authors
opt for the mentioned roughness and filled volume ratios for different reasons: Firstly, both ratios
are deeply connected to Wenzel and Caxie–Baxter seminal works in the field of surface wetting and
tribology. Secondly, they are easily computable and are univocally defined, as compared with other
possible interesting surface descriptors, like roughness or fractal dimension, which can be defined
in different ways and may be affected by the computational process employed to calculate them
(i.e., measurement or calculation directions, dimensional range considered).

Being true that supplementary inputs could have been selected and used for training the
artificial neural networks, authors decide to start with a simple artificial neural network structure,
also considering the limited number of data available, which in the end proves an adequate decision
for this initial study, according to the obtained results (please see Section 3).

Future updates to the library of materials surfaces will help to increase the number of data and
to include additional inputs or outputs, to reach a sort of “super surface classifier”. Even the whole
geometry of the surfaces (i.e., the actual.png images) could be used as inputs if other more complex
structures like convolutional neural networks were employed, although, in computational terms,
this would be much more demanding.



Nanomaterials 2020, 10, 2287 7 of 19

Table 1. Summary of surfaces from the generated library and parameters used for training ANNs.

Surface View Surface CA (◦) ∆CA (◦) V0/V S0/S Ref.
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tribology. Secondly, they are easily computable and are univocally defined, as compared with other 
possible interesting surface descriptors, like roughness or fractal dimension, which can be defined in 
different ways and may be affected by the computational process employed to calculate them (i.e., 
measurement or calculation directions, dimensional range considered).  

Being true that supplementary inputs could have been selected and used for training the 
artificial neural networks, authors decide to start with a simple artificial neural network structure, 
also considering the limited number of data available, which in the end proves an adequate decision 
for this initial study, according to the obtained results (please see Section 3).  

Future updates to the library of materials surfaces will help to increase the number of data and 
to include additional inputs or outputs, to reach a sort of “super surface classifier”. Even the whole 
geometry of the surfaces (i.e., the actual.png images) could be used as inputs if other more complex 
structures like convolutional neural networks were employed, although, in computational terms, this 
would be much more demanding. 

Table 1. Summary of surfaces from the generated library and parameters used for training ANNs. 

Surface View Surface CA (°) ΔCA (°) V0/V S0/S Ref. 

 
1 ≈60 0 0.996004 (1.0) 0.996004 (1.0) 

Present 
study 

 
2 ≈70 0 0.996004 (1.0) 0.996004 (1.0) [27] 

 
3 96 32 0.681005 1.385686 [28] 

 
4 97 33 0.581493 1.332758 [28] 4 97 33 0.581493 1.332758 [28]
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Figure 3. Graphical representations of the roughness ratios (S0/S) and filled volume ratios (V0/V) of the
surfaces from the obtained library, summarized in Table 1, showing highly nonlinear relationships with
contact angle (upper image) and incremental contact angle (lower image).

2.4. Applying Artificial Intelligence to the Design of Surfaces with Controlled Wettability

2.4.1. Design of Innovative Microtextured Surfaces for Validating the Global Strategy

To evaluate the actual performance and potential real-life applications of the artificial neural
networks, as a computational resource for supporting the artificial intelligence-aided design of
microtextured surfaces with desired wettability properties, it is necessary to (1) design novel
topographies different from those already available in the training library; (2) obtain their characteristic
parameters and use them as input for the artificial neural networks, so as to predict a contact angle
linked to their wettability; (3) manufacture such novel topographies and assess their actual contact
angle values and (4) compare the virtual predictions with the physical measurements.

In consequence, 5 different innovative microtextured surfaces, with potential applications as
biointerfaces for several medical devices and bio-MEMS (as detailed in Section 4), are designed
following the processes described in Sections 2.1 and 2.2 with some modifications. In short, we opt for
hybridizations and linear combinations among surfaces from the CAD library, towards truly multiscale
hierarchical surfaces, whose designs are presented in the results section.
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2.4.2. Manufacturing Prototypes of Innovative Microtextured Surfaces for Physical Testing

The manufacturing of the innovative microtextured surfaces prototypes for wettability testing is
done using 3D direct laser writing (3D-DLW), also called 3D laser lithography, a high precision AMT
based on two-photon polymerization with ultrashort laser pulses, employing the Photonic Professional
System from Nanoscribe GmbH (Karlsruhe, Germany).

MATLAB (MathWorks, Inc., Natick, MA, USA) is again employed to generate both the layout
data and the data input files (in.stl format) that could be read directly by the Nanoscribe conversion
software Describe from Nanoscribe. The Nanoscribe system uses a laser from Toptica (Femto Fiber pro
NIR, Munich, Germany) with a wavelength of 780 nm. The setup includes a laser combined with an
inverted microscope, which was synchronized and controlled by a PC. The beam is guided through
an oil-immersion microscope objective (Zeiss, 63X, NA 1.4, Carl Zeiss AG, Oberkochen, Germany)
and focuses on a resist (acrylate-based Ip-DIP, Nanoscribe), previously placed upon a glass substrate
rinsed with 2-propanol. For better adhesion of the written geometries, the substrate is usually heated
to 120 ◦C for 10 min. The mounted glass substrate is moved by motor stages (Physics Instruments
M511.HD1, Physik Instrumente GmbH and Co. KG, Karlsruhe Germany), and a piezoelectric driver
(Physics Instruments P-562.3CD, Physik Instrumente GmbH and Co. KG, Karlsruhe Germany) is used
for z-travel.

The technology had been used in previous research by our team [28–30]. Here, we applied it
to write larger fields with high precision and create prototypes of innovative “AI-aided” designs,
which enabled performing the wettability tests needed for analyzing the prediction potential of the
generated and trained artificial neural networks.

For this study, the structures are created by writing tiles (300 µm × 300 µm) with feature sizes of
1 µm. To resolve the feature sizes, the structures are converted for writing with a resolution of 0.35 µm
in the z-direction (slicing) and 0.25 µm in the x–y direction (hatching). To archive this resolution,
the small configuration set (SF-set) from Nanoscribe is employed. This setting contains the usage of a
63x objective (Zeiss, 63X, NA 1.4, Carl Zeiss AG, Oberkochen, Germany), IP-Dip as photoresist (IP-Di,
Nanoscribe GmbH) and fused silica (25 mm × 25 mm × 0.7 mm) as substrate. Since the specified
writing field of this configuration is 140 µm × 140 µm, the design is split into tiles of that size. To archive
larger areas, the tiles are stitched together. In this case, stitching is applied to a size of 1.8 mm × 1.8 mm.
Before the DLW process, the fused silica substrate is rinsed with 2-propanol and acetone, followed by a
dehydration step for better adhesion. This is done on a hotplate at 120 ◦C for 10 min. For drying the
DL-written samples, a critical point dryer (Automegasamdri®-915b, Tousimis, Rockville, MD, USA)
is employed.

Once the prototypes of the microtextures surfaces are manufactured, scanning electron microscopy
(SEM) imaging is also used for visualization purposes. An SEM system by Carl Zeiss AG (Oberkochen,
Germany) is employed.

2.4.3. Wettability Testing and Imaging Procedures and Resources

Wettability testing of the microtextured surface prototypes is necessary to understand and verify
the predictive potential of the generated and trained artificial neural networks when applied to
forecasting the contact angle upon innovative textures. For such purpose, an experimental setup with
a micro-droplet generator, a precision measuring stage, and a high-resolution optical camera with
extra lighting is used. Initial tests are performed upon a planar surface manufactured using IP-Dip for
obtaining a reference value for a contact angle of 60 ± 1º. Subsequently, two measurements are carried
out upon each of the 1.8 × 1.8 mm2 manufactured microtextured surfaces. Water droplets of 2 µL are
employed. A laboratory with a monitored environment is used: a temperature of 21.5 ± 0.5 ◦C and
relative humidity of 37 ± 2% are monitored as working conditions during measurements.
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3. Results and Discussion

3.1. CAD Models, Prototypes and Wetting Response of the Innovative Microtextured Surfaces

The gathered collection of microtextured surfaces is a starting point aimed at creating a most
comprehensive library of surface topographies with information about their wetting response, which can
be continuously updated. Such updates can be used for further training the ANNs, once additional
testing results upon physical surfaces are available. The library already includes several CAD files in
.prt and .stl formats, as well as their equivalent topographic maps stored in the form of matrices and is
available for researchers in the field wishing to collaborate or test alternative approaches linked to the
AI-aided design of textured biointerfaces.

Regarding the five newly designed microtextured surfaces or biointerfaces, envisioned for being
manufactured and tested, in order to analyze the prediction quality of the ANNs developed, Figure 4
presents the design results (designs, a, b, c, d, e) and Figure 5 show their prototyping by direct laser
writing. The different designs include hybridizations or combinations among existing surfaces from
the collection, after performing scaling in the different x, y, z directions and focusing on the creation of
truly hierarchical or multiscale topographies.

To this end, four designs (Figure 4a–d) are achieved by adding biomimetic microtextured bumps
to periodic arrays of different types of pyramids, prisms and cylinders, following a design process
developed by our team and previously explained [30]. While the periodic pyramids, prisms and
cylinders are features in the 30–100 µm height range, the microtextured bumps include wavy features
with an amplitude of nearly 5 µm and additional random features with an amplitude of around 1 µm,
all of which leads to very representative multiscale hierarchical topographies.

Such hierarchical surfaces are well-known for their potential hydrophobicity and are characteristic
of the epidermis of several plants. An additional design is achieved by combining two biomimetic
surfaces from the library (Figure 4e), one with the topography of the lotus plant leaves, one with the
topography of the viola flower leaves, both hydrophobic. The rationale behind is trying to combine
two already hydrophobic biointerfaces from the natural realm and analyzing if the final multiscale
combination leads to an improved result in terms of self-cleaning properties., Authors expected a
very hydrophobic response from such a nature-inspired design, as also happened with the prediction
performed by the ANNs, as discussed in Section 3.2.

To our knowledge, the presented designs provide new examples of hierarchical biointerfaces,
counting with simple periodic features combined with wavy and random functions, at least one
order of magnitude smaller than the simple periodic features and almost reaching the nanometric
range. In a way, they enter the realm of metasurfaces and, apart from the proposed application,
linked to controlled wettability, similar hierarchical surfaces may have varied applications, both as
biointerfaces for interacting at cellular level, but also in connection to basic research studies in acoustics
and electromagnetism, among other fields.

Again, it is important to point out the interest of counting with a collection of microtextured
interfaces, stored in the form of matrices: the near direct application of linear transformations
and combinations among the surfaces from the collection can help to rapidly increase the number
of samples in the library, even in an automated way and bridging the gap across different scales
(nano-micro-meso-macro). Counting with AI tools capable of analyzing the new designs may prove a
powerful tool for the AI-assisted discovery of biointerfaces with interesting features and responses for
many different fields of study and potential industrial application, even beyond those linked to the
biomedical field.
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Figure 4. (a–e): Different microtextured, multiscale or hierarchical biointerfaces designed for being
manufactured and tested to analyze the prediction quality of the ANNs developed and validate the
global strategy. Dimensions shown in axes in µm.

Taking manufacturing results into account, which are shown in Figure 5, it is relevant to highlight
the outstanding accuracy of the additive manufacturing technology employed and the almost perfect
replication of the designed microtextured biointerfaces. The stitching between periodic regions,
performed for achieving larger structured regions, as required for wettability testing, works adequately.

Although in a first attempt, some detachments between the processed resins and the glass substrates
appear, these are importantly minimized in a second attempt by applying gentler postprocessing and
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drying conditions. Still, some minor detachments between resin and glass are present in the outer
borders, but authors consider the structured geometries adequate for wettability testing. Figure 5(a2)
provides an enlarged view of the microtextured surface of Figure 5(a1) and helps to put forward
the precision and quality of the direct laser writing procedure and shows perfectly closed and solid
microtextured biointerfaces.

Once the prototypes are obtained by DLW, wettability testing is performed using the setup
described in Section 2.4.3 and shown in Figure 6a. By means of example, two results of the different
tests are presented in Figure 6b,c, which respectively provide information about the contact angle for
designs presented in Figure 4c,d. These experimental results are fundamental for validation purposes
and for analyzing the potentials of AI for supporting the optimization of surface textures when complex
phenomena like wettability are involved, as discussed in the following subsection.Nanomaterials 2020, 10, x FOR PEER REVIEW 12 of 19 
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Figure 5. (a–e): Scanning electron microscopy images from the different direct laser written
microtextured biointerfaces, obtained in photopolymerizable resin after the multiscale or hierarchical
designs presented in Figure 4. Images a–e from Figure 5 correspond to the designs a–e from Figure 4.
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Figure 6. (a) Experimental setup for wettability testing. (b) Wettability testing result example: droplet
upon the design shown in Figure 4b. (c) Wettability testing result example: droplet upon the design
shown in Figure 4c.

3.2. Performance of the Structured and Trained Artificial Neural Networks: Predictions vs. Real Performance

In general, the training method uses the back-propagation algorithm, and the loss function is the
mean square error. Considering the essentials of the back-propagation algorithm and the network’s
code, it is possible for the network to prioritize one of the features, in this case, one of the ratios.
In addition, these types of algorithms may be affected by the scale of the input. Summarizing, if the
two ratios are not on the same scale or are not standardized, the training process may perform worse
because they may prioritize the input with larger values. Therefore, it is important to further explain
and discuss MATLAB’s neuronal network code: The toolbox includes an algorithm to rescale the
dataset between −1 and 1 by applying the “mapminmax” function to the inputs and outputs by default,
which helps to improve the training process in a preprocessing stage. This option is applied in the
study as well, both for inputs and outputs or targets.

Once preprocessing is performed, the real neuronal network starts to train, seeking the
minimization of the loss function. The type of net function in the hidden layer is the hyperbolic tangent
sigmoid function (“tansig”), which proves adequate for this type of problem and for the selected
algorithm. Finally, the ANN code includes an output layer with one neuron and a postprocessing step
to bring back the targets to the real scale by using the gain and offset to do an inverse rescaled process.
The above explanation helps to understand how the artificial neuronal networks work, why they can
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predict the contact angles in this study and the reason for differences between varied artificial neural
networks generated and studied, which differ in the number of neurons and in the splitting between
the training, testing and validation datasets.

After the generation process of 267 artificial neuronal networks, with neurons between 2 and 20
and many combinations of sample percentages, for the training, testing and validating phases, the team
checks the predictions for the newly designed surfaces and their real wetting performance. Table 2
presents the absolute errors (AE measured in ◦) between the contact angle predictions provided by
three selected neural networks and the real measurements performed for the five designed, prototyped,
and tested surfaces. These absolute errors, shown in Table 2, follow the same sorted list of the samples
from Figures 4–6, as also detailed in Table 3, which summarizes the wettability testing results. In other
words, AE1, AE2, AE3 . . . are sorted according to the design, manufacturing and wettability testing
sequences shown in Figures 4–6. The three selected artificial neural networks’ source codes are
presented, as MATLAB .m files, in the “Supplementary Materials 2” section, for replicability purposes.

About the quality of the predictions, it is important to remark that in four out of five surfaces,
the absolute errors are below 5◦, which is remarkable in the opinion of the authors. It is necessary to
note that for the 4th surface (shown in Figures 4d and 5d), the wettability test provided an unexpected
result, with an incremental contact angle close to 0, possibly due to a design or manufacturing
defect, like a problem with the stitching between periodic regions or a detachment between printed
material and substrate. Nevertheless, it is important to present a complete overview of the whole
experiment. According to the results, neural network 2 from Table 2 provides the most interesting
results. The obtained absolute errors are also included in Table 3, together with the images from the
designed and manufactured surfaces, with the results from wettability testing and with the surface
and volume ratios that characterize such surfaces.

Table 2. Absolute errors, measured in degrees (◦), between the contact angle predictions provided by 3
selected artificial neural networks and the real measurements performed for the 5 surfaces designed,
prototyped, and tested.

Neuronal Network Neurons AE1 (◦) AE2 (◦) AE3 (◦) AE4 (◦) AE5 (◦)

1 8 3.713 3.074 1.288 36.671 0.268
2 7 0.235 2.295 3.9059 31.927 0.763
3 13 3.207 0.061 1.138 39.448 0.183

Table 3. Manufactured surfaces, measurement results (CAm and ∆CAm), predictions (CAp and ∆CAp),
sample ratios and absolute prediction errors for the best performing artificial neural network (ANN2
from Table 2).

Surface View
(CAD and Prototype) CAm (◦) ∆CAm (◦) CAp (◦) ∆CAp (◦) V0/V S0/S AE (◦)
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Taking apart the case of design 3d, whose performance is highly hydrophilic, in contrast with the
expectable behavior considering related microtextures from the CAD library and available references,
the ANNs are able to predict the performance of the innovative biointerfaces quite remarkably. The case
of design 3d should be further analyzed, as probably a flaw in the design, manufacturing or testing
method, perhaps a lack of polymerization of the whole surface or an inner detachment from the glass
substrate, lead to the improbable result. Moreover, apart from the artificial neural networks shown in
Table 2, 21 additional ANNs from the collection can estimate the contact angle of the new designs with
an absolute error of less than 10◦ for 4 out of 5 samples.

This performance is even better than that of experienced researchers devoted to the engineering of
surfaces for controlling wettability. In fact, the ANNs are able to predict the contact angle values in a
much more precise way than the team of authors, after having studied several references and classified
the biointerfaces that constitute the CAD and matrices collections used for training. The generalization
potential of the ANNs, based on just two input parameters for each sample, is quite noteworthy,
considering that the information used as input for the ANNs is extremely synthetic when compared to
the whole information of each sample stored as .stl CAD file or as.jpg or.png microtopographic map.

An extremely interesting example that helps to understand the generalization degree achievable
by the ANNs is the case of design 3e, which hybridizes the macrobumps of the viola flower petals
with the hierarchical microstructures of the lotus plant leaves. The initially expected behavior for this
bioinspired example is that of a highly hydrophobic surface. Probably an underlaying human bias
leads to the argument that, if two superhydrophobic surfaces are hybridized or combined, the result
should be even more hydrophobic or at least highly hydrophobic. However, the generated ANNs,
working just with surface and volume ratios, can predict that the combination leading to design 3e is
not as hydrophobic as the designers expected. The ANNs generalize that intricate and hierarchical
surfaces, characterized by large surface ratios, and that microtextures with large aspect ratios, leading
to low volume ratios, combinedly provide the highest contact angles.

In a way, this helps to clearly illustrate the interest of counting with AI supporting tools for
the design and in silico evaluation of innovative biointerfaces designs, especially when complex
phenomena, such as wetting and tribological issues, are involved. Well trained ANNs may help to
evaluate, in a very automated way, thousands of microtextured surfaces for screening purposes before
performing a reduced selection of potentially adequate solutions for further manufacturing and testing,
hence helping to work more efficiently, sustainably and cost-effectively.

4. Challenges and Future Proposals

4.1. Potentials, Limitations and Challenges of the Study

AI has intrinsic limits, including the need for large data for achieving desired results, the “black
box” problem, issues with overfitting, which may lead to the failure of some of the planned learning
strategies. The use of progressive neural networks for multitasking, of multitask learning using
uncertainty, of evolution and learning and of generative models, as main alternatives to classical neural
networks, towards the generation of surfaces with desired properties, may be strategies to explore in
the near future, so as to minimize failure. Some options are proposed below, when dealing with future
research directions, to overcome common limitations and challenges usual in the artificial intelligence
field. Ideally, the developed AI tools will lead, not just to predicting and classifying, but also a better
understanding of the behavior of natural and synthetic surfaces and to more adequate AI-aided
processes for the engineering of innovative surfaces. This study has dealt with the prediction of contact
angle upon microtextured biointerfaces, which allows classifying into hydrophobic and hydrophilic
surfaces, and demonstrated the remarkable interest of ANNs for reaching reliable predictions, at least
more reliable than those based on human experience when applied to envisaging the performance of
new textures. Potentially, these processes can be applied to the automated discovery of surfaces with



Nanomaterials 2020, 10, 2287 16 of 19

desired contact phenomena, especially if some current limitations are solved and if the future research
proposals discussed below are considered.

Although a huge number of research studies deal with micro/nanomanufacturing strategies for
the production of highly hydrophobic materials, surfaces and biointerfaces, due to their interesting
self-cleaning antifouling properties, the number of publications that detail methods based just on
surface topography modifications, without the application of chemical functionalizations or thin films,
is not so large. In many cases, the information available about the topographies is not enough for
performing a CAD model or for obtaining a heightmap. In consequence, a limitation of the presented
study is linked to the reduced number of samples within the collection of designs (the 23 interfaces of
Table 1), which is developed based on a handful of highly selected references with the information
presented in a very clear and systematic way [30–35]. Even though the materials and methods from
such references are varied, the fact that these studies presented wettability tests upon the materials
of interest, both before and after microtexturing, enables working with incremental values of contact
angle for constructing the collection, which proves adequate for minimizing the variability of inputs
and focusing mainly on the topographical effects. Counting with a larger set of samples for training
and increasing the library of microtextured surfaces, with information from additional wetting tests,
all of them performed using the same materials and methods, is important for future studies. However,
it is important to understand the relevance of the results obtained and the promising generalization
power and prediction ability of the ANNs, which have provided accurate predictions about the wetting
performance of innovative microtextured interfaces, even outperforming human estimates based
on experience.

4.2. Future Research Proposals

Considering future research directions and proposals, it is important to put forward the interest
of further exploring the applicability of artificial intelligence to predicting the properties of engineered
surfaces and to supporting the discovery and design of innovative materials. Interesting alternatives
to the use of ANNs with surface and volume ratios as inputs include the employment of convolutional
neural networks, using the topographic maps or even microscopic images of the microtextured
surfaces as inputs, as well as the utilization of strategies for expanding the available dataset based
on teacher-student algorithms. Comparing the overall precision attainable with different approaches,
and pondering the computational resources needed, is essential to achieve an optimal method. Better
prediction accuracy will also require from the design, manufacture, and evaluation of tens or even
hundreds of additional innovative topographies, with which the artificial neural networks will further
learn for increased versatility.

Once an extremely comprehensive collection of surfaces and properties is used for the creation of
an AI-based “super-predictor or classifier” of microtexture performance, the automated discovery of
innovative surfaces with desired properties will be enabled: surface topographies will be generated in
a loop by using mathematical functions, and such topographies will be screened by the predictor or
classifier. All this applies to the wetting performance of polymeric biointerfaces attainable by direct
laser writing but can be expanded to other materials and properties just by enlarging the set of samples,
modifying the inputs and rearranging the training, validation and testing processes.

Apart from the intrinsic interest of the described processes and proposed trends, in connection with
the application of AI to materials science and engineering, a wide set of industrial applications based on
the AI-assisted design of microtextured interfaces can already be discussed here. Among plans for future
research, an outstanding direction is linked to applying these AI-assisted design and manufacturing
processes for defining biomimetic transitions of topography and wettability upon biointerfaces in order
to control cell behaviors and fate within microfluidic systems for diagnostic and labs-/organs-on-chips
for modeling diseases. Studying the effect of AI-designed microtextures on the biocompatibility and
long-term integration of implants constitutes another remarkable field of application, especially if the
library is further completed with several additional microtextures from biomaterials and biological
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tissues and if the networks learn from such information. The potential manufacture of AI-based
biointerfaces using smart materials, like shape-memory polymer foils, can open new horizons in the
area of smart materials and structures; for devices in which the wetting performance may be selectively
modified along the life cycle.

5. Conclusions

Curiously, the ancient Greek term for “surface”, “επιϕάνεια” or “epifáneia”, is polysemic and
refers to the visible surface of an object, to arising from something unexpected and to a manifestation,
typically a “eureka” moment, corresponding to a new beginning, among other possibilities [37]. In a
parallel way, authors consider that the application of artificial intelligence to the design of innovative
hierarchical surfaces and micro-/nano-textured biointerfaces may also constitute a sort of daybreak in
surface engineering, which can help to rethink several scientific and technological fields, including
tribology, ergonomics, esthetics, optics and design, to cite some examples. Further studies linked to the
progressive implementation and tuning of computational methods presented and discussed in this study
may promote the straightforward, geometrically trustworthy, structurally reliable, resource-efficient
design and automated “intelligent” development of synthetic materials surfaces and, hence, accelerate
their impact as smart biointerfaces for advanced product design in the biomedical engineering field.
Considering the presented results and the analyzed potentials, the AI-aided discovery of biointerfaces
can undoubtedly constitute an excellent complement to ongoing research directions and available
methods in the area of AI applied to materials sciences and engineering, especially as regards the
development of functional engineering materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/11/2287/s1,
Supplementary Materials 1: Table S1. Enlarged views, in the form of topographic maps, of the microtextured
surfaces from the collection (after Table 1); Supplementary Materials 2: Source code (MATLAB’s .m files) for
artificial neural networks 1, 2 and 3, whose results of contact angle prediction are shown in Tables 2 and 3.
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