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The alternate wetting and drying (AWD) water management technique has been identified

as one of the most promising options for mitigating methane (CH4) emissions from

rice cultivation. By its nature, however, this option is limited only to paddy fields where

farmers have sustained access to irrigation water. In addition, large amounts of rainfall

often make it difficult to drain water from paddy fields. Therefore, it is necessary to

understand the specific conditions and suitability of an area in which AWD is foreseen to

be applied before its CH4 mitigation potential can be assessed in view of planning regional

and national mitigation actions. In this study, we applied a methodology developed for

assessing the climatic suitability of AWD to paddy fields in the central plain of Thailand

in order to determine the potential spatial and temporal boundaries given by climatic

and soil parameters that could impact on the applicability of AWD. Related to this, we

also assessed the CH4 mitigation potential in the target provinces. Results showed that

the entire area of the six target provinces was climatically suitable for AWD in both

the major (wet) and second (dry) rice seasons. A sensitivity analysis accounting for

uncertainties in soil percolation and suitability classification indicated that these settings

did not affect the results of the suitability assessment, although they changed to some

extent the distribution of moderate and high climatic suitability areas in the major rice

season. Following the methodologies of the Intergovernmental Panel on Climate Change

Guidelines, we estimated that the AWD scenario could reduce annual CH4 emissions

by 32% compared with the emissions in the baseline (continuously flooded) scenario.

The potential of AWD for annual CH4 emission reduction was estimated to be 57,600 t

CH4 year−1, equivalent to 1.61 Mt CO2-eq year−1, in the target provinces. However,
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we recognize the possibility that other parameters not included in our current approach

may significantly influence the suitability of AWD and thus propose areas for further

improvement derived from these limitations. All in all, our results will be instrumental in

guiding practitioners at all levels involved in water management for rice cultivation.

Keywords: rice, methane emissions, GIS, alternate wetting and drying, mitigationmeasures, low-emission farming

INTRODUCTION

Rice cultivation is one of the major sources of agricultural
emissions of methane (CH4) at a global scale. The contribution

of CH4 emissions from rice cultivation to the national budgets
of greenhouse gas (GHG) emissions is significant in Southeast
Asian countries, where rice cultivation is the dominant use of

land. For example, in Thailand, rice cultivation occupies about
46% of the total agricultural land [OAE (Office of Agricultural
Economics), 2018] and accounts for about 55% of the total GHG

emissions in the agriculture sector, or 6.5% of the total national
GHG emissions [ONREPP (Office of Natural Resources and
Environmental Policy and Planning), 2017]. This highlights the
fact that actions to reduce GHG emissions from rice cultivation
in Southeast Asian countries could have a great potential
in mitigating the impacts of climate change, both regionally
and globally.

Considering agronomic management in practice, there exist
a number of suggested technical options for mitigating CH4

emissions from paddy fields. These include specific management
techniques for the water regime, rice planting methods, selection
of rice cultivar, and application of organic matter, fertilizer, and
other amendments (Wassmann et al., 2000; Smith et al., 2014;
Romasanta et al., 2017; Yagi et al., 2020). At present, however,
only a few of these options have a proven track record as
promising mitigation tools. In particular, water management
options have been identified as an effective approach to
consistently reducing CH4 emissions (Itoh et al., 2011; Sander
et al., 2015; Jiang et al., 2019). This was shown by a meta-
analysis of experimental data from Southeast Asia (Yagi et al.,
2020): Various water management options, including a single and
multiple round(s) of draining of paddy fields (e.g., mid-season
drainage and alternate wetting and drying [AWD]), significantly
reduced CH4 emissions by 35% on average (95% confidence
interval: 41–29%).

AWD is a water management practice that was developed
and is currently promoted by the International Rice Research
Institute (IRRI) and its partners in many rice-producing
countries, primarily in order to reduce the consumption of
irrigation water (Lampayan et al., 2015). The principle of AWD
is to switch from a continuously flooded rice field to a field
that encompasses several dry phases during the growing season.
Starting at about 2–3 weeks after transplanting (3–4 weeks after
sowing) the field is left to dry out until the water table reaches a
level of about 10–15 cm below the soil surface. Once the threshold
is reached, irrigation water should be applied until 3–5 cm of
standing water in the field is reached. A level of “−15 cm”
has been identified as “safe” so that plants do not face drought

stress and thus yields are not reduced (Bouman et al., 2007).
Importantly, no significant effect of AWD on rice yield was
reported by a meta-analysis of field data from Southeast Asia
(Yagi et al., 2020).

Policy makers and rice value-chain operators all over
the world are increasingly recognizing that alternative water
management practices in rice cultivation could become a visible
option for CH4 reduction. Besides, the impact of climate change
in the form of increased frequency of droughts already forces
farmers to re-adjust their approach to water management. In
view of this, all stakeholders involved may consider making low-
emission rice farming as an important component of national
and organizational commitments to tackle climate change and
enhance the resilience and sustainability of the agriculture
sector. In some of the major rice-producing countries, large-
scale changes in water management are already part of the
proposed actions for reducing GHG emissions in compliance
with the national commitments to the Paris Agreement. For
example, AWD is listed as one of the low carbon technologies
with regards to the nationally determined contributions of
Vietnam. The mitigation potential of using water drainage
in rice fields was estimated to reduce GHG emissions by
4.1 Mt CO2 from the South Central Coast and 21.9 Mt
CO2 from the Red River Delta. In addition, the Vietnamese
government plans to promote the “System of Rice Intensification
(SRI)” program, an innovative rice cultivation technique in
which AWD is the central management option (Thakur et al.,
2016), within a 500,000 ha of rice cultivation area (Ministry
of Natural Resources and Environment, 2017). Similarly, the
Indonesian government has included SRI in the list of national
mitigation actions and reported that the program has already
been applied to up to 435,999 ha of paddy fields by 2014
(Republic of Indonesia, 2017).

However, the application of alternative water drainage regimes
may be limited to paddy fields in which the irrigation/drainage
system has been well-developed. In particular, control of water
is generally difficult or impossible in rainfed paddy fields. This
poses a problem in the implementation of water management
options for GHG mitigation. In addition, large amounts of
rainfall often make it difficult to drain water from paddy fields.
In the paddy fields of Southeast Asia, the extension of irrigated
paddy fields is limited to <30% among the continental countries,
while this value ranges between 60 and 70% in island countries
(Dobermann and Fairhurst, 2000; Redfern et al., 2012). Even
paddy fields classified as irrigated are not always capable of
controlling water, in particular during the rainy wet season.
Farmers need guidance regarding the appropriate timing of
irrigating their fields within the rice-growing period. Hence,
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it would be helpful to understand in which locations water
management options are best applicable or suitable in order to
achieve the best GHG mitigation results.

Responding to this need, Nelson et al. (2015) presented the
first attempt of a spatial and temporal assessment of the climatic
suitability for AWD at the province level in the Philippines.
This study was based on a simple water balance model reflecting
the possibility to drain or dry a rice field for a substantial
duration during the rice-growing season. Later, Sander et al.
(2017) extended this methodology to the entire rice area of
the Philippines and developed country-scale climatic suitability
maps for AWD for the wet and dry seasons. In addition, both
studies illustrated how the assessment can be used to estimate
the potential GHG emission mitigation. They estimated that a
maximum of 60% of the rice area of the Philippines is climatically
suited for AWD, reaching more than 90% in the dry and 34% in
the wet season. The potential maximum annual reduction of CH4

emissions from lowland rice in the Philippines was estimated to
be about 265,000 t CH4 year−1 or around 15% of the country’s
annual emissions from the agriculture sector (Sander et al., 2017).

Here we apply the same methodology as described previously
to the paddy fields in the central plain of Thailand. The six
provinces selected for this study are located mostly in the
irrigated area, which has a higher capacity of controlled irrigation
compared to other areas in Thailand. Our work aimed at
assessing the spatial and temporal boundaries of climatically
suitable areas for application of AWD in the target provinces.
At the same time, we estimated the potential for reducing CH4

emissions from rice cultivation. We hope that our results will
be helpful to agricultural practitioners and can contribute to the
development of national policies for climate change actions.

MATERIALS AND METHODS

Study Area
This study focused on six provinces: Ang Thong, Ayuthaya, Chai
Nat, Pathum Thani, Sing Buri, and Suphan Buri which are all
located in the central plain of Thailand (Figure 1). The total
area of all six provinces covers 13,736 km2, between 13.92 and
15.42◦N and between 99.28 and 100.95◦E. All six provinces share
boundaries, which provides for similar weather conditions in that
area. The rainy season usually starts in May and lasts until the
end of October. The period fromNovember to January represents
the cool and dry season, while the months from February to
April represent the hot and dry period (Thai Meteorological
Department, 2020). All six provinces are located in a plain,
which includes major rivers, such as the Chao Phraya, Tha
Chin, Pa Sak, and Lopburi. Most of the land use for agriculture
in these six provinces is under irrigation, which is under the
authority of the Regional Irrigation Offices. Therefore, water for
rice cultivation is usually available in sufficient quantities, even
during the dry season.

The average annual rainfall is around 1,150mm, with most
rain (960mm) occurring during the rainy season from May
to October. The average minimum and maximum temperature
throughout the year is 23 and 34◦C, respectively. In both major
(wet) and second (dry) rice seasons, rice is cultivated under

FIGURE 1 | Location of target provinces as the study area.

rainfed (5.9 and 1.6% of the rice area, respectively) and irrigated
(94.1 and 98.4%, respectively) conditions according to data from
the crop year 2018 published by the Office of Agricultural
Economics (OAE) (OAE (Office of Agricultural Economics),
2018). In the event of a prolonged drought, however, even
irrigated land may be in short supply of water.

Outline of Suitability Assessment
We conducted the AWD suitability assessment by following the
methodology described by Nelson et al. (2015). The outline of
the methodology is summarized in a flow chart as shown in
Figure 2. This approach for assessing climatic suitability of AWD
was applied to paddy fields in the central plain of Thailand
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FIGURE 2 | Flow chart of the AWD suitability assessment.

for determining the potential spatial and temporal boundaries
given by climatic and soil parameters that could influence the
applicability of AWD. Related to that, the potential of CH4

emission mitigation in the target provinces was estimated.
As shown in Figure 2, this study used the water balance

model for climatic suitability assessment (Nelson et al., 2015).
For running the model, six data sets were used as “input data,”
namely data set A: rice statistics, data set B: rice calendar, data set
C: rice extent, data set D: temperature, data set E: rainfall, and
data set F: soil texture. The water balance model is the central
idea of the assessment: it takes into account the volumes of water
entering and leaving the rice fields. The total amount of water

flux is related tometeorological factors (temperature and rainfall)
and characteristics of the soil. The products of derived input
data are termed “derived data,” including data set G: potential
evapotranspiration and data set H: potential percolation. Data
sets A–H were used to assess climatic suitability for AWD by
following the four steps of “spatial analysis” described below.

The climatic suitability of the rice area for implementing
AWD was calculated for a period of 1 year, which was
divided into intervals of 10 days, called “dekad.” A total of
37 maps were scored by counting the deficit (DEF) water
dekads according to the rice calendar. We accounted for
potential uncertainties related to the input data or criteria of

Frontiers in Sustainable Food Systems | www.frontiersin.org 4 November 2020 | Volume 4 | Article 575823

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Prangbang et al. Suitability Assessment for AWD in Thailand

parameters by conducting sensitivity analyses for soil percolation
rate data and breakpoint setting for ranking suitability were
conducted. Finally, we estimated the potential of CH4 mitigation
by implementing AWD in the target provinces using the
methodologies recommended in the Intergovernmental Panel on
Climate Change (IPCC) Guidelines [IPCC (Intergovernmental
Panel on Climate Change), 2019].

Input Data
Data Set A: Rice Statistics

Rice statistics included area, production, and yield of rice, in each
province of Thailand as reported annually in the Agricultural
Statistics of Thailand published by OAE. The reports for the
years 2010–2017 (November 2010–October 2017) were available
to us. According to the latest report for 2017, the average
annual area of total rice harvested in the six target provinces
was 1,047,000 ha, of which 584,000 ha are planted in the major
rice season and 464,000 ha in the second rice season (OAE
(Office of Agricultural Economics), 2018; Table 1). According
to the monthly rice harvested area reports, the major rice
season started in May and ended in October; the second rice
season started in November and ended in April in all the
target provinces.

Data Set B: Rice Calendar

The data used for feeding the “Rice calendar” were obtained
from “RiceAtlas,” a spatial database of global rice calendars
and production (Laborte et al., 2017). The data in “RiceAtlas”
are based on various published sources, such as global and
regional datasets, international and national publications, online
sources, and unpublished data sources like expert knowledge.
The calendar summarizes the cultivation periods and provides
the peak date of cultivation, which refers to the date when the
majority of the crop is being planted or harvested.

According to “RiceAtlas,” Thailand has five different rice
calendars accounting for the double cropping of rice. Here, we
have chosen the calendars of Supan Buri (type 1) and those of
the five other provinces that share the same type (type 2). Rice
calendars of both types and differentiated by season are listed
in Table 2.

Data Set C: Rice Extent

Rice extent, or the spatial distribution of rice, was based on the
product from MOD09A1 8-day composite remote sensing data
in 2000–2012, which was derived from rice extent maps of a 13-
years time series of “Moderate Resolution Imaging Spectrometer
(MODIS)” at a 500m resolution (Xiao et al., 2006; Nelson and
Gumma, 2015). The maximum rice extent data during these
years were used as input data for representing rice extent in the
target provinces.

Data Set D: Temperature

Temperature data in degrees Celsius (◦C) were obtained from
daily minimum and maximum temperature records including
the “Global Surface Summary of the Day (GSOD)” database
[NOAA (National Oceanic and Atmospheric Administration),
2019]. These daily minimum and maximum temperatures in
raster were averaged as mean daily temperature per dekad
in 2007–2017. Consecutively, dekadal temperature data were
again averaged as an 11-year mean temperature per dekad.
Additionally, the dekadal temperature data of each year were
used to analyze inter-annual variations of the suitability
for AWD.

Data Set E: Rainfall

Rainfall data in mm day−1 were taken from the rainfall estimates
from rain gauge and satellite observations included in the
quasi-global rainfall database termed “Climate Hazards Group
InfraRed Precipitation with Station (CHIRPS)” that provides
daily rainfall data in raster grid format with a 0.05-degree
(∼5.6 km) resolution (Funk et al., 2015). They were summed
up to daily rainfall per dekad in 2007–2017 and calculated as
the average of all 11 years per dekad. Figure 3 shows the spatial
distribution of the 11-years mean rainfall per dekad. In addition,
the dekadal rainfall data of each year were used to analyze
inter-annual variations of the suitability for AWD.

Data Set F: Soil Texture

We followed the definition of soil texture for each soil series in the
soil database developed by the Land Development Department

TABLE 1 | Average size of the area of annually harvested rice in the target provinces for 7 years (2010–2017, except 2005) according to the Agricultural Statistics of

Thailand [OAE (Office of Agricultural Economics), 2018].

Province Province total area

(km2)

Annual rice harvested area (1,000 ha)

Major season Second season Total

Average Std. Average Std.

Ang Thong 951 51 5 38 18 89

Ayutthaya 2,547 125 19 112 27 237

Chai Nat 2,466 119 8 81 34 200

Pathum Thani 1,515 49 5 47 13 96

Sing Buri 839 46 5 37 20 83

Suphan Buri 5,418 193 14 149 46 342

Total 13,736 584 56 464 158 1,047
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TABLE 2 | Rice calendars in the target provinces according to RiceAtlas (Laborte et al., 2017).

Calendar Province Major season Second season

Planting Harvesting Duration

(day)

Planting Harvesting Duration

(day)

Type 1 Ang Thong

Ayutthaya

Chai Nat

Pathum Thani

Sing Buri

DOY 135

(dekad 14)

DOY 306

(dekad 31)

172 DOY 15

(dekad 2)

DOY 135

(dekad 14)

121

Type 2 Suphan Buri DOY 218

(dekad 22)

DOY 356

(dekad 36)

139 DOY 356

(dekad 36)

DOY 99

(dekad 10)

109

DOY, day of year.

(LDD), Thailand (LDD, 2019). This database is also available as
a geographic information system (GIS) shapefile that presents
spatial and attribute records. The information in the database
compiled various soil characteristics and properties, including
soil texture, for about 300 soil series over the entire area of
Thailand. With regard to our target area, soil texture data for 67
relevant soil series were used as input data.

Derived Data
For the calculation of water balance, potential evapotranspiration
(Pot_ET) and potential percolation (Pot_Pc) are required as
inputs. Data sets G (Pot_ET) and H (Pot_Pc) were derived from
data sets D (temperature) and F (soil texture), respectively, which
are termed here “derived data.”

Data Set G: Potential Evapotranspiration (Pot_ET)

One pathway of water loss from paddy fields is
evapotranspiration. Here, Pot_ET was obtained by using the
Hargreaves method (Hargreaves and Samani, 1985) which uses
temperature and extra-terrestrial radiation for the calculation
(Equation 1).

Pot_ET = 0.0023Ra(Tmean+ 17.8)TD0.5 (1)

where 0.0023 is the Hargreaves coefficient, Ra is the extra-
terrestrial radiation (MJ m−2 day−1), Tmean is the average
temperature (◦C), and TD is the daily temperature range (Tmax–
Tmin in ◦C). Ra is computed using the approach of Allen
et al. (1998) for each day of the year and for different latitudes
(Equation 2).

Ra = 0.408
24(60)

π
Gscdr[ωs sin(φ)sin(δ)+ cos(φ)cos(δ)sin(ωs)

(2)

where 0.408 is the inverse latent heat flux, Gsc is the solar
constant, dr is the inverse relative distance between the sun and
the earth, ωS is the sunset hour angle, φ is the latitude, and δ is
the solar declination.

Pot_ET was measured for the period 2007–2017 and then
displayed as data for spatial distribution for the 11-years mean
Pot_ET per dekad as shown in Figure 4. In addition, the dekadal
Pot_ET data of each year were used to analyze inter-annual
variations of the suitability for AWD.

Data Set H: Potential Percolation (Pot_Pc)

Percolation rates are influenced by the range of characteristics
pertaining to the physical and hydraulic properties of the soil.
Nevertheless, the impact of texture is still observable by the
higher percolation rate in sandy soils than that in clay soils. The
basic setting of the value of Pot_Pc rate for the individual soil
series was assigned from the soil texture data (data set F) by
following the method of Sander et al. (2017). In addition, for
evaluating uncertainties resulting from the setting of the Pot_Pc
rates, two additional rates—lower (50% smaller than the basic
setting) and upper (50% larger than the basic setting) settings—
were applied across all soil textures in the database, as shown
in Table 3.

The spatial data of the soil series were rasterized and
interpreted with the Pot_Pc rate for each pixel in the target
provinces. The Pot_Pc rate of each pixel is the weighted average
of the Pot_Pc rates of its soil class composition. A total of 67
soil series were classified to 25 layers of Pot_Pc. Figure 5 shows
the distribution of Pot_Pc rates at the basic setting for the six
target provinces.

Spatial Analysis
The four-step spatial analysis was carried out according to Nelson
et al. (2015) to get the suitability maps for AWD. Since this
was a spatial work, the following items were checked before
evaluating procedures:

1. All layers should be in the same projection. This study used
the World Geodetic System 1984 (WGS84).

2. All layers should be resampled to a uniform resolution.
Resolution of the results was 0.002 degrees (224 meters).

Step 1. The provincial rice area per dekad (data sets A and B)
was distributed to the physical rice extent pixels (data set C) on
an equal area basis, resulting in 37 dekadal maps at 0.02 degrees
(224 meters) resolution showing where rice is grown during
which dekads.

Step 2. Data sets D–H were used to get the “water balance
maps per dekad.” As mentioned, data sets G and H were derived
from temperature and soil texture values, respectively. Pot_ET,
Pot_Pc, and rainfall were displayed for analyzing in the same
resolution at 0.02 degrees (224m). This step compared the
aggregate of Pot_ET and Pot_Pc with rainfall.
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FIGURE 3 | Eleven-years mean rainfall in the target area per dekad.
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FIGURE 4 | Eleven-years mean potential evapotranspiration (Pot_ET) in the target area per dekad.
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TABLE 3 | Potential percolation rate (Pot_Pc) for rice soil related to soil texture.

Soil texture Pot_Pc (mm day−1)

Lower setting Basic setting Upper setting

Clay 1.5 3.0 4.5

Silty clay 1.5 3.0 4.5

Sandy clay 2.5 5.0 7.5

Clay loam 1.75 3.5 5.25

Silty clay loam 1.5 3.0 4.5

Sandy clay loam 3.5 7.0 10.5

Sand 6.0 12.0 18.0

Loamy sand 5.0 10.0 15.0

Sandy loam 4.5 9.0 13.5

Loam 2.0 4.0 6.0

Silty loam 2.0 4.0 6.0

Step 3. Scoring maps per dekad were provided according to
the results from step 2. If the pixel had more Pot_ET plus Pot_Pc
than the amount of rainfall (Rf), it was recognized as the pixel of
deficit (DEF) water balance.Whereas, if the pixel had less Pot_ET
plus Pot_Pc than Rf, it was recognized as the pixel of excess (EXC)
water balance:

Rf < (Pot_ET+ Pot_Pc) = Water balance deficit (DEF)

Rf ≥ (Pot_ET+ Pot_Pc) = Water balance excess (EXC)

Step 4. After step 3, the 37 dekadal maps were obtained. The
suitability map was determined from the proportion of the
DEF scored per rice season. The index for scoring from such
proportions was set at 0–1, where 0means no dekad was DEF and
1 means that it was DEF for all dekads. Classification of areas that
showed low suitability, moderate suitability, and high suitability
were ranked by scoring according to the index shown in Table 4.
A sensitivity analysis was carried out to evaluate the uncertainty
related to the setting of different “breakpoints.”

CH4 Emission Calculation
We estimated the potential of mitigating CH4 emissions by
following the IPCC guidelines, using Tier 1 and Tier 2 approaches
[IPCC (Intergovernmental Panel on Climate Change), 2019]. For
calculating the adjusted daily emission factor for the baseline
water management with continuous flooding (EFi−CF), the
default baseline emission factor for Southeast Asia (EFc: 1.22 kg
CH4 ha

−1 day−1) was applied. For the scaling factors for organic
amendment (SFo), the value of 1 was applied in the calculation of
EFi-CF, according to the methodology used in the Third National
Communication (TNC) of Thailand [ONREPP (Office of Natural
Resources and Environmental Policy and Planning), 2018] with
reference to the expert who calculated GHG emission inventories
for rice cultivation in the TNC (personal communication: Prof.
Patthra Pengthamkeerati, Kasetsart University). For the scaling
factors for water regime before the cultivation period (SFp),
the aggregated default value (SFp =1.22) was applied. For
calculating the adjusted daily emission factor for AWD water

management (EFi−AWD), the scaling factors formultiple drainage
water management in the wet season (SFw =0.76) and the dry
season (0.59) were applied to the major and second rice seasons,
respectively, based on the result of the meta-analysis by Yagi et al.
(2020), while the value of 1 was applied for the baseline water
management with continuous flooding. For the cultivated period
of rice, 120 and 122 days were applied for the major and second
rice seasons, respectively, according to the information contained
in the OAE report for the average growth period of major rice
varieties planted [OAE (Office of Agricultural Economics), 2018].

RESULTS AND DISCUSSION

Dekadal Scoring Maps for Water Balance
Using data sets A–H and processing steps 1–3, we developed
dekadal scoring maps, which showed spatial and temporal
patterns of water balance in the target provinces throughout
the year by averaging the data of each year between 2007 and
2017 as shown in Figure 6. A total of 37 maps for each dekad
depicted the pixels of water balance either as DEF or EXC criteria
throughout 1 year. The results showed that most of the pixels in
the target provinces had a water balance of DEF throughout the
year due to a lower amount of rainfall than the sum of Pot_ET
and Pot_Pc, except for periods with a higher level of rainfall. The
pixels under the EXC criterium appeared at dekads 16, 21, and
23 (at the end of August to the middle of September) in Pathum
Thani province where higher rainfall (more than 5mm day−1,
Figure 3) was recorded in the soil with relatively smaller Pot_Pc
(<3mm day−1, Figure 5). After that, EXC pixels extended to
other provinces, in response to the increased rainfall until dekad
29 (mid of October). Then, water balance switched to DEF again
in all six target provinces after dekad 30 (at the end of October).
As a result, most of the pixels in the target provinces had the score
of DEF formore than 30 dekads (300 days) per 1 year due to lower
rainfall than the sum of Pot_ET and Pot_Pc.

Climatic Suitability Maps
The climatic suitability maps for AWD in the major and second
rice seasons with basic settings for the suitability breakpoint
are shown in Figure 7. In the major rice season (wet season,
Figure 7A), a large extent of the target provinces was assessed
to be highly suitable for AWD, while the rest was moderately
suitable. The area of high suitability was extended to the whole
of Ang Thong, Ayuthaya, Chai Nat, and Sing Buri provinces,
most of Pathum Thani, and about half of Suphan Buri. In all
target provinces, the areas assessed to have high and moderate
suitability accounted for 470,000 ha and 113,000 ha, respectively,
corresponding to 80.5 and 19.5% of the total area of rice
harvested, respectively. There was no pixel assessed to have low
suitability in the target provinces. The difference between the
rice calendars of Suphan Buri and the other provinces increased
the proportion of EXC scored dekads per rice season, resulting
in the appearance of pixels assessed to have moderate suitability
in Suphan Buri. In addition, the spatial distribution of soil with
relatively smaller Pot_Pc (Figure 5) overlapped with pixels of
moderate suitability pixels.
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FIGURE 5 | Spatial distribution of potential percolation rates (Pot_Pc) at basic setting in the target area.

TABLE 4 | Breakpoints for the DEF score index as used in the sensitivity analysis

on low, moderate, and high suitability for AWD.

Breakpoints Seasonal suitability for AWD based on DEF score

Low Moderate High

1 (33–33–33, basic setting) 0.0–0.33 0.34–0.66 0.67–1.00

2 (20–60–20) 0.0–0.20 0.21–0.80 0.81–1.00

3 (25–50–25) 0.0–0.25 0.26–0.75 0.76–1.00

4 (30–40–30) 0.0–0.30 0.31–0.70 0.71–1.00

5 (50–30–20) 0.0–0.50 0.51–0.80 0.81–1.00

In contrast to the wet major rice season, the entire area of
the target provinces was assessed to have high suitability for
AWD in the second rice season (dry season, Figure 7B). This
result was predominantly attributable to the relatively small
amount of rainfall in the target areas during the season by the
northeast monsoons.

According to the previous study for the Philippines (Sander
et al., 2017), AWD suitability was mostly ranked as low for
the wet season throughout the country; however some areas of
moderate or high suitability were found on Mindanao island,
the central Visayas, and in Bicol and Cagayan provinces in
Luzon island. The authors explained those regional differences in

suitability, particularly in the wet season, with differences in the
amount of rainfall during the season. Here, in the target provinces
of this study, most of the pixels had 11-years averaged dekadal
rainfall of<15mm day−1, even during the wet major rice season,
except for only one dekad (dekad 26, Figure 3). This resulted in
the dominance of DEF scores throughout the year and highAWD
suitability for the whole target area.

Sensitivity Analysis
The results of the sensitivity analysis on soil percolation rates
are shown in Figure 8, where we applied the basic setting of
breakpoint for scoring AWD suitability (Table 4). Differences
in the suitability appeared during the major rice season. The
area assessed to have high suitability increased as Pot_Pc values
increased. The sizes of areas of high suitability were 284,000,
470,000, and 582,000 ha for the lower, basic, and upper settings
of Pot_Pc values, corresponding to 48.6, 80.5, and 99.7% of the
total area, respectively. All or most of the areas were classified
as suitable for AWD (moderate and high suitability) and only a
small area (<2.4% of the total area) was classified to have low
suitability in the case of the lower Pot_Pc rate setting. Hence,
we conclude that a change in Pot_Pc rate settings for each soil
texture (±50% from the basic setting) did not affect the results
of this suitability assessment in the target provinces. However, it
changed the distribution of moderate and high suitability areas
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FIGURE 6 | Dekadal scoring maps for water balance.
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FIGURE 7 | Suitability maps (basic setting on the suitability breakpoint) for the major (A) and second (B) rice seasons.

FIGURE 8 | Sensitivity analyses on the settings of potential soil percolation rates (Pot_Pc) in the major and second rice seasons (the case for breakpoint 1).

to some extent. On the other hand, a change in Pot_Pc rate
settings did not affect the suitability area during the second rice
season since the entire area was classified as highly suitable for
implementing AWD.

The results of our sensitivity analysis on breakpoint settings
for scoring AWD suitability are shown in Table 5. In the
major rice season, the entire target area appeared to be suitable
for AWD (moderate and high suitability). The area of high
suitability decreased and that of moderate suitability increased
once the breakpoint range of high suitability decreased and
that of moderate suitability increased (breakpoints 1 4 3 2).
The area of low suitability did not appear even with increasing
the breakpoint range for low suitability up to 50% (breakpoint
setting 5). The difference in the area of high suitability between
breakpoints 1 and 2 was 306,000 ha, corresponding to 52.4%
of the total rice area. Changing the breakpoint settings did not
affect the suitability of the area during the second rice season

since the entire area was classified to be highly suitable for
implementing AWD.

Inter-annual Variation of Suitability
The results of the AWD suitability assessment in the major
rice season for each year between 2007 and 2017 are shown in
Figure 9. Table 6 summarizes the statistics of the inter-annual
variation, showing the average, standard deviation, maximum,
and minimum values. The results indicated that the areas of
different suitability classes varied in response to inter-annual
climatic variability in the major rice season, but not in the
second rice season. In the major rice season, some pixels with
low suitability appeared in 2010 and 2011. Those exceptional
years were characterized by high rainfall during the season, while
moderate suitability areas appeared to be linked to relatively low
Pot_Pc values. Larger extents of low and moderate suitability
areas appeared in the years 2010 and 2017, while almost the entire
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TABLE 5 | Sensitivity analyses on the settings of breakpoints for the major and second seasons.

Break point settings Major rice season Second rice season

Low Moderate High Low Moderate High

1,000 ha (%) 1,000 ha (%) 1,000 ha (%) 1,000 ha (%) 1,000 ha (%) 1,000 ha (%)

1 (33–33–33, basic setting) 0 (0) 114 (19) 470 (81) 0 (0) 0 (0) 464 (100)

2 (20–60–20) 0 (0) 438 (75) 146 (25) 0 (0) 0 (0) 464 (100)

3 (25–50–25) 0 (0) 212 (36) 372 (64) 0 (0) 0 (0) 464 (100)

4 (30–40–30) 0 (0) 132 (23) 452 (77) 0 (0) 0 (0) 464 (100)

5 (50–30–20) 0 (0) 438 (75) 146 (25) 0 (0) 0 (0) 464 (100)

The basic setting for potential soil percolation rates (Pot_Pc: Table 3) was used for the analysis.

target area was classified as high suitability in 2007 and 2015. The
coefficients of variation (CVs) for the inter-annual variation were
calculated to be 82.4% and 36.5% for the areas of moderate and
high suitability, respectively.

CH4 Emission Mitigation
We calculate the potential for CH4 emission mitigation by
assuming that all irrigated rice areas were continuously flooded
(baseline scenario) and AWD was applied to areas of high
and moderate suitability (AWD adoption scenario). Estimates
for emissions of CH4 are given for the basic settings of soil
percolation rates and breakpoint ranges in Table 7. The results
showed that higher CH4 emissions during the major rice season
were due to a larger rice area and higher seasonal EF.

Under the AWD adoption scenario, CH4 emissions were
reduced by 24 and 41% in the major and second rice seasons,
respectively, compared with those in the baseline scenario.
Totally, annual emissions were reduced by 32%. As a result,
the potential of seasonal CH4 emission reduction was estimated
to be 34,000 and 23,600 t CH4 for the major and second rice
seasons, respectively. Hence, we estimated that the six target
provinces in the central plain of Thailand have the potential
for reducing annual CH4 emissions by 57,600 t CH4 year−1 if
they implemented AWD water management in paddy fields.
This emission reduction is equivalent to 1.61 Mt CO2-eq year

−1,
assuming the global warming potential (GWP) of CH4 to be 28.

As a party to the Paris Agreement for mitigating climate
change, Thailand has submitted its nationally appropriate
mitigation actions (NAMA) in 2014 and the nationally
determined contribution (NDC) in 2015, aiming ambitiously
to reduce its GHG emissions by 20–25% from the projected
business as usual level by 2030 [ONREPP (Office of Natural
Resources and Environmental Policy and Planning), 2018]. To
ensure the continuity in the mitigation actions from NAMA
to NDC, Thailand approved the NDC roadmap on mitigation
(2021–2030) in May 2017. One of the on-going activities in the
roadmap is the Thai Rice NAMA project that aims at supporting
farmers to switch to low-emission farming systems (including
the implementation of AWD in the six target provinces included
in this study) and estimates the potential emission reduction of
1.664 Mt CO2-eq cumulative over the 5-years lifespan of the
project (NAMA Facility, 2020). The potential of CH4 emission

reduction estimated in this study supports the feasibility of the
Thai Rice NAMA project.

Limitations and Outlook
In line with the objectives described above, our study applies the
methodology used for the Philippines to assess the climate-based
suitability for AWD in paddy fields of Thailand. Therefore, the
study may have inherent limitations and possible biases in its
assessment results as discussed previously (Nelson et al., 2015;
Sander et al., 2017).

One critical factor is the uncertainty in the water balance
model resulting from the presence of a compacted “hard-pan”
in the sub-surface layer of paddy soils caused by the long-
term cultivation of crops. As the sensitivity analysis on Pot_Pc
values indicated, ±50 percent changes in the values influenced
the distribution of moderate and high suitability areas to some
extent. It is necessary for reducing this uncertainty to compile
and validate the monitoring data for soil percolation rates in the
target area. Possible flood events are another influencing factor,
particularly to the target areas in this study. According to the
Office of Natural Calamity and Agricultural Risk Prevention of
the LDD, Thailand, most of the target areas in this study had
repeated flood events of more than three times during the year
between 2009 and 2018 [LDD (Land Development Department),
2016]. Such flood events usually occur in the wet major rice
season, but big ones such as the case in 2011 may prevent
drainage of paddy fields even in the following second rice season.

Another important related aspect appears to be the structure
of the irrigation system itself; in particular, the elevation of
rice fields relative to the main irrigation canal or within the
surrounding terrain. A previous study in Vietnam highlighted
that higher-lying paddy fields tend to dry up earlier than lower-
lying fields, influencing the suitability for AWD (Yamaguchi et al.,
2017). Recent field observations by the Thai Rice NAMA Project
in the target provinces of this study appear to confirm these
observations: flooding of paddy fields during the wet season
of 2019 could have been well-managed and AWD could have
been applied if the rice field was located well above the level
of the irrigation canal (Atthawit Watcharapongchai, personal
observation). Preliminary analysis of CH4 emissions of demo
and control plots in all target provinces suggested that AWD
shows good potential for emission reduction in the wet season
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FIGURE 9 | Inter-annual variation of AWD suitability in the major rice season. Colors for each suitability score are same as Figures 7, 8.

TABLE 6 | Statistical summary of the inter-annual variation of AWD suitability assessment.

Year Major rice season Second rice season

Low Moderate High Low Moderate High

1,000 ha (%) 1,000 ha (%) 1,000 ha (%) 1,000 ha (%) 1,000 ha (%) 1,000 ha (%)

Average 2 (0) 177 (30) 406 (69) 0 (0) 0 (0) 464 (100)

Standard deviation 5 (1) 146 (25) 148 (25) 0 (0) 0 (0) 464 (100)

Maximum 16 (3) 431 (74) 581 (99) 0 (0) 0 (0) 464 (100)

Minimum 0 (0) 3 (1) 137 (23) 0 (0) 0 (0) 464 (100)

Basic settings for soil percolation rates and breakpoint were used for the analysis.

TABLE 7 | Estimated CH4 emissions in the baseline and AWD adoption scenarios.

Estimated CH4 emissions (1000t CH4)

Suitability Major rice season Second rice season Total

Baseline AWD Reduction (%) Baseline AWD Reduction (%) Baseline AWD Reduction (%)

High 79.2 60.2 19.0 (24) 82.9 48.9 37.9 (41) 162.1 109.1 53.0 (33)

Moderate 19.2 14.6 4.6 (24) 0.0 0.0 0.0 (0) 19.2 14.6 4.6 (24)

Low 0.0 0.0 0.0 (0) 0.0 0.0 0.0 (0) 0.0 0.0 0.0 (0)

Total 98.3 74.7 23.6 (24) 82.9 48.9 34.0 (41) 181.2 123.6 57.6 (32)

Basic settings for potential soil percolation rates (Pot_Pc) and breakpoint were used for the analysis.
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(T.J., unpublished results). In view of these observations, the
information obtained by the climatic suitability assessment could
be especially useful for water management practitioners and
irrigation authorities and for the future improvement of the water
management system.

Socioeconomic factors for the adoption of water management
by farmers may influence the suitability for AWD significantly,
as shown by this study which made the assessment based on
natural factors that influence the water balance of paddy fields.
Water management options by farmers within a wider irrigation
system are characterized by the physical separation of adopter
and benefiter as pointed out by Sander et al. (2015). Also, the
option for AWD is not attractive for farmers who pay a fixed
irrigation fee for each season. On the other hand, the result of
the suitability assessment in this study can be used for changing
rice cultivation management systems to promote effective AWD.
As indicated, the number of dekads in the DEF and EXC criteria
in a rice cultivation season affected the climatic suitability for
AWD. Therefore, if farmers choose the period of rice planting to
avoid the DEF periods, for example, earlier major rice planting
in Suphan Buri province, they would have more chances to
implement AWD in their rice fields. The water balance maps
can help farmers to decide whether or not to implement AWD
with the support of extension services and when and where to
disseminate water-saving technologies.

Regarding the potential of GHG emission reduction, this
study focused only on CH4, because it is the dominant GHG
that contributes to the net global warming potential (GWP)
emitted from paddy fields. However, it is pointed out that the
drainage of paddy fields may promote nitrous oxide (N2O)
emissions. This increase, however, only offsets a small amount
of the reduction in CH4 (Akiyama et al., 2005; Sander et al., 2015,
2020). Nevertheless, the change of N2O emissions by applying
AWD should be additionally considered for an overall assessment
of GHG emission reduction, although its contribution to net
GWP is much smaller and more variable than that of CH4 (Yagi
et al., 2020).

It is also noted that AWD and other water management
options can be combined with other GHG mitigation options
for enhancing GHG emission reduction. As indicated by Yagi
et al. (2020), some other options like the application of biochar
and sulfate-containing fertilizer can reduce GHG emissions while
increasing yield in some rice-growing areas in Southeast Asia.
These options can be applied to rice cultivation in the target
provinces together with AWD. Another effective option is soil
drying in the fallow season (Sander et al., 2014) which would be
promising by using the dekadal scoring maps for water balance
(Figure 6) for the decision of the timing of soil drying before
starting rice cultivation.

Because this study focused on six adjacent provinces in the
central plain, spatial differences in the climatic suitability for
AWD among the provinces were not much significant. However,
the climatic suitability and resulting estimates for the potential
of CH4 reduction may have a larger effect in other regions of
Thailand due to the differences in climate and soil properties

among the regions. Therefore, it is encouraged to extend the
assessment made by this study over the country to help in
formulating national policies for climate change actions.

CONCLUSIONS

This is the first GIS-based study on the mitigation potential of
a technology that has been assessed and quantified with regards
to GHG emissions in rice cultivation in Thailand. The results
of this suitability assessment may guide future research into
other aspects of AWD suitability or provide useful technical
information for practitioners of water management. We hope to
inform the dissemination process of AWD and other forms of
water-saving techniques in the region in pursuit of switching to
low-emission rice farming. Finally, the methodologies presented
here could be applied to other regions of Thailand to help in
formulating national policies for reducing CH4 emissions and
other climate change actions.
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