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Abstract

Proteins are complex biomolecules which perform critical tasks in living organisms. Knowl-

edge of a protein’s structure is essential for understanding its physiological function in detail.

Despite the incredible progress in experimental techniques, protein structure determination

is still expensive, time-consuming, and arduous. That is why computer simulations are often

used to complement or interpret experimental data. Here, we explore how in silico protein

structure determination based on replica-exchange molecular dynamics (REMD) can bene-

fit from including contact information derived from theoretical and experimental sources,

such as direct coupling analysis or NMR spectroscopy. To reflect the influence from errone-

ous and noisy data we probe how false-positive contacts influence the simulated ensemble.

Specifically, we integrate varying numbers of randomly selected native and non-native

contacts and explore how such a bias can guide simulations towards the native state. We

investigate the number of contacts needed for a significant enrichment of native-like confor-

mations and show the capabilities and limitations of this method. Adhering to a threshold of

approximately 75% true-positive contacts within a simulation, we obtain an ensemble with

native-like conformations of high quality. We find that contact-guided REMD is capable of

delivering physically reasonable models of a protein’s structure.

Introduction

Knowledge of protein structures is crucial for understanding their various functions within liv-

ing organisms and the biological processes they take part in. Structural knowledge is also criti-

cal in related fields such as pharmacology to understand pathogenesis on a molecular level as

an essential prerequisite to effective drug design. Both protein structure and function are

intrinsically encoded in the corresponding amino acid sequence [1–3]. Over the past years,

experimental sequencing techniques have become exceptionally efficient and lead to fast

growing sequence databases, e.g., GenBank [4] and UniProt [5]. In contrast, experimental

structure determination using high-resolution X-ray crystallography or NMR spectroscopy is
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comparably time-consuming and expensive. Some other experimental techniques, e.g., small-

angle X-ray scattering, Förster resonance energy transfer, and cryogenic electron microscopy,

are less involved but provide ambiguous structural information of lower spatial resolution

only. With proteins being nm-sized objects, molecular structures can only be observed indi-

rectly. Measured data have to be interpreted carefully, which is why they commonly are com-

plemented by computer simulations [6–8].

Over the past years, a broad variety of computational structure-prediction methods for

inferring a three-dimensional protein structure from its amino acid sequence evolved, ranging

from algorithms for “blind” or de novo predictions using Monte-Carlo or physics-based bio-

molecular simulations to algorithms transferring structure information from known homolo-

gous proteins. Today many web servers exist for calculation or prediction of additional

information from sequence data, which can be integrated into simulations to further improve

the model quality of proteins. They often also provide a complete automated workflow for

structure prediction. Each web server specializes in different aspects, e.g. the Robetta server [9]

mainly utilizes homology modeling and ab initio fragment assembly in Rosetta. Meanwhile,

RaptorX [10, 11] focuses on machine learning and is capable of predicting secondary and ter-

tiary structures as well as contact or distance maps, among many other things. Every other

year, a new round of the Critical Assessment of Structure Prediction (CASP [12]) is held, in

which the current state of the art for protein structure prediction solely reliant on sequence

information and structure refinement methods are evaluated. Novel purely data-driven

approaches using neural networks have recently shown to be capable of predicting high-qual-

ity structures [13, 14]. A drawback of such methods is that they typically lack insight into the

physical processes driving structure adoption and cannot be easily complemented by experi-

mental information. Depending on the method applied, local structural motifs are often less

resolved [13] and could benefit from additional refinement. Physics-driven approaches are

particularly suitable for this and based on specific energy functions called force fields. Using

molecular-dynamics simulations, Lindorff et al. demonstrated current force fields to be suffi-

ciently accurate to reversibly fold proteins starting from unfolded conformations [15, 16]. Still,

the computational cost of such de novo folding simulations is extremely high. To date, simula-

tions on the millisecond timescale can only be performed on specialized supercomputers like

Anton [17]. Alternatively, simulations can be guided towards target structures or ensembles by

including experimental information via an energetic bias based on measured data [18–21].

This bias is intended to smoothen the often frustrated energy landscape with many competing

minima separated by high barriers. At the same time, computational costs are lowered due to

the reduced sampling space. Using the example of ubiquitin, Raval et al. examined the extent

to which the use of low-resolution information in the form of residue-residue contacts can

speed up the determination of protein structure in plain all-atom MD simulations starting

from extended conformations [22]. Introducing a flat-bottom harmonic potential for different

numbers of randomly chosen native contacts, they found a significantly accelerated conver-

gence to near-native structures even for a rather small number of restraints compared to simu-

lations without contact bias. In light of these results, the questions arises whether one can

further decrease computational demands by enhanced sampling techniques [23–25].

Applying bias potentials derived from different sets of error-ridden contact information,

we here explore to what extent such information helps guiding replica-exchange molecular

dynamics (REMD) towards the native fold. Contact information about adjacent amino acids

can be obtained from different sources, e.g., sparse NMR contact maps. By themselves they

provide insufficient information for structure generation and thus have to be complemented.

By integrating NMR-derived distance restraints into ensemble MD simulations, Dedmon et al.

have shown that the native state of the intrinsically disordered protein α-synuclein, which
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plays a key role in the pathogenesis of Parkinson’s, is composed of a more compact ensemble

of conformations than would be expected for a random coil [26]. Coevolution analysis meth-

ods such as direct coupling analysis (DCA) [27] infer contact information from large multiple

sequence alignments. DCA identifies coevolving residue pairs, which can be interpreted as

spatially adjacent. This information was successfully used for structure prediction [28] even in

large-scale studies of proteins [29] or for RNA [30]. DCA-derived contacts have already been

combined with structure-based models to uncover conformational diversity for medium to

large proteins, including hidden functional configurations and intermediate states [31]. How-

ever, it often is uncertain how error-prone available contact information actually is. NMR

assignments can be wrong or DCA can contain false-positive contacts. For this purpose, we

perform an extensive study to investigate the influence of native (“correct”) and non-native

(“wrong”) contact information with regards to structure determination. To overcome kinetic

entrapment due to the multiple-minima problem during a simulation, we use REMD as an

enhanced sampling technique [15, 32–34].

Adding a contact-based bias to the energy function effectively guides the search towards the

target structure by narrowing the conformational space to be sampled. By combining both con-

tact information and REMD simulations, we drastically enrich native and native-like conforma-

tions in the simulated ensemble of a single run. To systematically study and test our method’s

performance, we conduct REMD simulations of two small proteins with known native struc-

tures, starting from an unfolded state. We test different scenarios (see Table 1) by varying the

bias quality, i.e. the true-positive rate (TPR), and the total number of randomly selected contact

pairs. As the study is performed to assess the influence of both native and non-native contacts,

we apply equal force coefficients k (see Eq (6)) to all used contact pairs. We analyze the data for

each test case with simulated times of 250 ns, especially for the lowest-temperature replica. By

comparing the test cases to a reference simulation not including any contact information, we

can estimate the total number of required restraints and the bias strength. Furthermore, we

investigate to what extent contact-guided REMD increases the chance of obtaining a native fold

compared to normal MD. The study shows that our method yields high-quality results for both

tested proteins as long as the bias has a TPR of approximately 75% or more. We find that such

an energetic bias, even if containing false-positive contacts to a certain extent, greatly enhances

the refinement process during REMD and improves the chance of finding the native state in a

single run. It is possible to further include experimental information from other sources into

such simulations and use them as a hybrid tool for joint data interpretation.

Materials and methods

Molecular dynamics

Computer simulations are often used to complement or interpret results of real experiments.

Molecular dynamics (MD) is such an in silico approach to study the movements of atoms or

Table 1. Variation of bias quality in method performance study using REMD simulations.

TPR (%) ref 100 100 100 100 100 75 75 75 75 50 50 50 50

# CP 0 6 12 24 36 48 12 24 36 48 12 24 36 48

# native 0 6 12 24 36 48 9 18 27 36 6 12 18 24

# non-native 0 0 0 0 0 0 3 6 9 12 6 12 18 24

Overview of the 14 REMD scenarios investigated in the performance study for both test proteins. Listed are the true-positive rate (TPR) of used contact pairs (CP) in

percent, number of restraining CP used, number of native contacts, and number of non-native contacts. A visualization of the used contacts can be looked up in S1 Fig

to S6 Fig in S1 Appendix.

https://doi.org/10.1371/journal.pone.0242072.t001
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biomolecules. The interactions between all atoms are calculated by applying a force field, e.g.

AMBER [35], CHARMM [36], GROMOS [37], or OPLS [38], to the system and solving New-

ton’s equations of motions. Depending on the goal and type of simulation, some force fields

are better suited than others due to different approaches to modeling atomic interactions.

Comparisons between the force fields and their performance can be found in many studies

[39]. Typical time steps of a simulation are in the order of 1 to 2 fs. Using MD, it is then possi-

ble to observe details of molecular mechanisms such as protein folding or ligand binding by

analyzing the simulated trajectory.

Replica exchange

Replica-exchange molecular dynamics (REMD), also referred to as parallel tempering, is an

enhanced sampling technique for MD [32–34]. This efficient method is commonly applied to

overcome kinetic entrapment resulting from the multiple-minima problem during MD simu-

lations. REMD simulates N non-interacting copies (“replicas”) of a system at different temper-

atures Ti. Each replica corresponds to one of N MD simulations performed simultaneously.

After a fixed time dt, the atom positions and momenta of replicas can be exchanged. The

exchange probability is given by the Metropolis criterion [32]

wXi!Xj
¼ minð1; e� DÞ; ð1Þ

D ¼ ðbj � biÞðEi � EjÞ; ð2Þ

where Xi denotes the state of replica i, b� 1

i ¼ kBT the inverse temperature, and Ei the energy of

state Xi. Since exchange rates are significantly lower for large temperature differences, which

can be seen from Δ in Eq (2), it is sufficient to only exchange adjacent replicas.

The intention of REMD is to enhance sampling of both high and low energy states, and the

temperature range has to be chosen accordingly. Replicas at the highest occurring tempera-

tures should have sufficient energy to overcome potential barriers. Meanwhile, low-tempera-

ture replicas are supposed to explore conformations close to local minima. In combination,

REMD increases the chance of finding the global energy minimum and thus the native state of

a protein. To achieve a random walk it is mandatory to aim for constant exchange rates across

all replicas and to make sure that they are shuffled sufficiently.

Replica-exchange temperature generator

In REMD simulations, every replica resembles the dynamics of a canonical ensemble, where

the probability distribution of each microstate follows the Boltzmann distribution e−βE. Since

exchange rates are proportional to the energy difference of two adjacent replicas (see Eq (2)),

an exponential temperature distribution is needed to guarantee a random walk in conforma-

tion space [23, 32, 40]. This distribution is a priori unknown as it depends on the protein size

and number of solvent molecules. However, an initial temperature distribution can be esti-

mated [41]. A simple temperature generator is given by

Ti ¼ T0 � e
k: ð3Þ

Ti is the temperature of replica i, while k refers to the growth parameter which has to be modi-

fied based on the system size. To obtain more consistent exchange rates during the simulation

across all replicas, we slightly modify the generator according to

Ti ¼ Ti� 1 þ ai � D; ð4Þ
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D ¼ T0 � ðe
ki � ekði� 1ÞÞ: ð5Þ

Eq (4) recursively describes the temperature of replica i. Δ denotes the temperature difference

of two adjacent replicas as specified in Eq (5), while ai is a step-size modifying coefficient.

With ai = 1 8i, the generator will produce the same temperature distribution as given by Eq

(3). To keep the exchange rates almost constant over the whole simulated temperature range,

we increase ai every ten replica by 4%. Used parameters and resulting temperature distribu-

tions for both Trp-Cage and VHP can be found in S2 Appendix.

Sigmoid potential

In order to guide protein folding, we implement an attractive potential to increase the bias

towards native-like conformations. Technically, we apply the force only between the Cα atoms

of selected contact pairs via tabulated bonded interactions [42] by modifying the topology file.

The potential is given by

VðrÞ ¼ ksðrÞ; ð6Þ

with the force coefficient k and the sigmoid function

sðrÞ ¼
A

1þ e� aðr� r0Þ
: ð7Þ

A corresponds to the sigmoid function’s limit, whereas r and r0 are the atom distance and equi-

librium distance, respectively. r0 determines the position of the inflection point of the sigmoid

function and thus the local maximum of the sigmoid function’s derivative. The parameter α
affects the S-shape of the function, i.e. how fast the transition from low values to high values

takes place. Fig 1 displays the used sigmoid function σ(r) in red and its derivative σ0(r) in

green. For the sake of simplicity, we set A = 1 so that the force only depends on the force coeffi-

cient k = 10 kJ mol-1 (approximately 4kB T at 300 K). k is chosen in such a way that the sigmoid

potential at the native-defining distance rnc = 0.6 nm (see Eq (8)) is in the order of a typical

hydrogen bond strength [43]. α and r0 are set to 2.5 nm−1 and 1.6 nm, respectively, yielding a

smooth transition of the potential while limiting its effective range locally. With this choice of

r0, the potential affects biased contact pairs only for inter-contact distances rij ≲ 3.2 nm. The

greatest force appears at 1.6 nm, corresponding to two to three times of rnc. The system feels a

drive towards its native state only if it already resembles that state to at least some extent. Oth-

erwise, the potential has no effect at all and derived forces vanish as a result of its S-shape.

With interactions above 3.2 nm virtually being neglected, the negative influence of improper

contact information such as false-positive contacts from DCA can be limited [27]. Applying

this potential to native contact pairs in REMD, the enhanced sampling of protein conforma-

tions can be utilized while simultaneously improving local refinement of the affected protein

segments. Technically, the sigmoid potential can be used for arbitrarily large proteins because

the contact bias only acts within the mentioned local region. The local interaction range can be

changed by modifying the parameters α and r0. However, they should be kept rather small to

prevent unphysical effects on a more global scale such as premature compaction of a structure.

This potential can also be applied to multi-chain systems, in which case the pdb2gmx
-merge all command of GROMACS is required to handle the multiple chains as one mole-

cule type in a single topology file.
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Native contact enrichment

One key aspect of this study is to measure the influence and correlation of native and non-

native contacts in REMD. For this purpose, we explicitly use randomly selected contact pairs

from the known structures of the test systems. To quantify the TPR of chosen contact pairs, we

define native contacts to fulfill the conditions

rij ¼ jri � rjj � 6A
�
� rnc; ð8Þ

Dij ¼ ji � jj � 4: ð9Þ

While Eq (8) defines a maximum cutoff distance rij of 6 Å between Cα atoms of two residues

i and j, Eq (9) excludes residue pairs very close to each other in the sequence which would

appear on the main diagonal of a contact map. Based on these definitions, we create two sepa-

rate lists with native and non-native contacts, respectively. More precisely, direct neighbors of

native contacts within the contact map are omitted from the non-native list. For example, if

residue pair (i, j) is native, then all nine combinations (i0, j0) with i0 2 {i − 1, i, i + 1} and j0 2 {j
− 1, j, j + 1} are excluded. Lastly, we randomly select contact pairs from each list to construct

different scenarios at fixed TPRs for the method performance study. Contact pairs (i, j) used

as restraints can be looked up in the corresponding contact maps (cf. S1 Fig to S6 Fig in S1

Appendix).

Fig 1. Sigmoid function of bias potential V(r). The used sigmoid function σ(r) with parameters A = 1, α = 2.5 nm−1, and r0 = 1.6 nm is

represented by the red curve. The derivative σ0(r) is shown in green.

https://doi.org/10.1371/journal.pone.0242072.g001
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Global distance test

In the trajectory analyses, backbone root-mean-square deviation (RMSD) after structure align-

ment is considered to initially evaluate the method’s performance. In the context of protein

structure determination, however, RMSD is a suboptimal measure of structural similarity as it

strongly correlates with the largest displacement between mobile and target structure. This

means if the mobile structure globally fits the target to a large extent and only one small seg-

ment is misaligned locally, the RMSD becomes disproportionately large. This problem is

solved for the so-called Global Distance Test (GDT) [44–46], which is often used in CASP [12]

to evaluate the accuracy of protein structures. Analogously to the RMSD, the mobile structure

is first aligned to the target structure. Then, the displacement distance of each residual Cα

atom is calculated and compared with various cutoff thresholds to estimate how similar the

two structures are. In a last step, percentages of residues with displacements below a consid-

ered threshold are used to calculate score values. The two most common scores are the total

score (TS),

GDTTS ¼
1

4
ðP1 þ P2 þ P4 þ P8Þ; ð10Þ

and the high-accuracy (HA) score,

GDTHA ¼
1

4
ðP0:5 þ P1 þ P2 þ P4Þ: ð11Þ

Here, variables Px denote the percentage of residues with displacements below a distance cutoff

of x Å. Note that both scores range between 0 and 100 and their interpretation is based on the

“fit resolution” set by the applied cutoff distances. A protein model is considered topologically

accurate for GDTTS scores above 50 [12].

Setup of REMD and MD simulations

All simulations were performed in GROMACS 2016.3 [42, 47]. We used the AMBER99S-
B-ILDN force field [35] and TIP3P explicit-solvent model [48]. Starting from the pdb struc-

ture, the protein was equilibrated in short NVP and NPT runs for 200 ps each and then

unfolded in a normal MD simulation at a high temperature T = 500 K. We manually selected

an unfolded state with high RMSD and minimal amount of remaining secondary structure as

initial structure for the simulations. A REMD temperature generator based on Eqs (4) and (5)

yielded the temperature distribution of N replicas (cf. S2 Appendix). After verifying sufficient

exchange rates in short REMD simulations (every 1000 steps, rate approximately 16%), the sig-

moid potential in Eq (6) was provided as a look-up table. Each REMD simulation comprised a

simulated time of 250 ns with a time step of 2 fs and 60 and 100 replicas for Trp-Cage and Vil-

lin Headpiece, respectively. Restraints were added via tabulated bonded interactions [42] to

the topology file. To compare the REMD results with MD simulations, we additionally per-

formed two normal MD simulations (500 ns simulated time, with and without restraints) at T0

for each tested protein, starting from the same unfolded state as their REMD counterparts. S3

and S4 Appendices show the used mdp settings for REMD and MD simulations, respectively.

All production runs were performed on the ForHLR II computer cluster. We used thin

nodes consisting of two Deca-Core Intel Xeon E5-2660 v3 processors (Haswell) with a base

clock rate of 2.6 GHz (max. turbo-clock rate 3.3 GHz), 64 GB main memory, and 480 GB local

SSD storage.
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Results and discussion

Test systems

We considered two well-known proteins for our systematic study of contact-guided REMD

simulations. The first candidate is the 20-residue miniprotein Trp-Cage (PDB: 1l2y [49]).

Its tertiary structure consists of an α-helix followed by a turn and a 3/10-helix. Trp-Cage was

specifically designed as a fast folder and reaches folding times of approximately 4 μs [50]. Its

folding temperature is in the range of 311 to 317 K [51]. The second test system is Villin Head-

piece (VHP, PDB: 1vii [52]). It has a sequence length of 35 residues and forms a three-helix

structure. Similar to Trp-Cage, VHP can also achieve folding times in the order of μs [53, 54]

and has a folding temperature of approximately 339 to 342 K [55]. Fig 2 illustrates initial and

target conformations of both proteins.

Trp-Cage

We performed REMD simulations of Trp-Cage for a total of 60 replicas ranging from T0 = 300

K to T59 = 625 K, each yielding a trajectory of 250 ns simulated time. The wide temperature

range was deliberately chosen to encourage large-scale conformational transitions in each

REMD turnaround before cooling down to the lowest temperatures. To better compare the

different scenarios listed in Table 1, all REMD simulations initiate from the same unfolded

conformation with a backbone RMSD of 8.8 Å with respect to the target state (cf. Fig 2A and

2B). A sigmoid potential as given in Eq (6) is assigned to each implemented restraint between

Fig 2. Initial and target conformations of considered test systems. Based on their high RMSDs with respect to the

target state and a minimal amount of remaining secondary structure, initial conformations were manually selected

from short unfolding simulations using MD at T = 500 K. Initial (A) and target (B) conformation of Trp-Cage have an

RMSD of 8.8 Å with respect to each other. For VHP, the initial conformation (C) has an RMSD of 16.2 Å with respect

to the target conformation (D).

https://doi.org/10.1371/journal.pone.0242072.g002
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a Cα-Cα pair with the same coupling strength k = 10 kJ mol−1. The resulting force is distance-

dependent and acts only locally up to a Cα-Cα threshold of approximately 3.2 nm, with the

highest force at 1.6 nm here. Generally, this sigmoid potential can be used for proteins of any

size as it will affect the selected contact pairs only in the mentioned local region. In this way,

unphysical compaction of structures on a global scale may be prevented while improving accu-

racy of structural motifs locally. The short-range limitation of the potential also minimizes the

influence of erroneously used non-native contact pairs. Intra-contact interactions above 3.2

nm distances are virtually neglected due to the asymptotic behavior of the sigmoid potential.

First, we investigated whether the coupling strength of the restraints is sufficiently strong to

guide the protein towards native-like structures during REMD. For this purpose, we deter-

mined the time-dependent backbone RMSD with respect to the native structure for all replicas

in each test case. To obtain a general overview and qualitatively compare the RMSD statistics

across the scenarios, color-coded RMSD values are displayed as heatmaps. Fig 3A and 3B

exemplarily show RMSD heatmaps of the reference simulation and the simulation with 12

native contacts, respectively. The reference case mostly features RMSDs greater than 4 Å (red),

with the majority being about 6 Å and a few occurrences of low RMSDs in lower-temperature

Fig 3. RMSD overview of Trp-Cage REMD simulations. Heatmaps display the backbone RMSD across all replicas.

(A) Reference REMD simulation without any bias. (B) REMD simulation with bias of 12 native contacts at 100% TPR.

https://doi.org/10.1371/journal.pone.0242072.g003
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replicas. As evident from Fig 3B, a bias potential with purely native contact restraints strongly

improves RMSDs of lower-temperature replicas. In contrast to the reference simulation,

RMSDs mostly decrease below 4 Å (blue) for replicas with temperatures below T9� 332 K and

T17� 366 K after only 10 and 100 ns of simulated time, respectively. Heatmaps of the other

ideal cases, i.e. with contact pairs at 100% TPR, are shown in S7 Fig to S9 Fig in S1 Appendix.

Compared to the unbiased reference simulation, the blue region grows with enhanced “cor-

rect” bias towards the native conformation. The number of implemented contact restraints

appears to be correlated with the enrichment of native-like conformations, and sufficiently

good folds may even be obtained from higher-temperature replicas. However, since native

conformations are considered the lowest-energy states, it is most important to compare the

absolute RMSDs of low-temperature replicas as well as their improvement or deterioration

between the different scenarios. The greatest incremental improvement for lower-temperature

replicas is observed for the transition from 6 to 12 native contacts (cf. S7 Fig and S8 Fig in S1

Appendix). Additional contacts only marginally improve the results as the low-temperature

region is already sufficiently saturated with low-RMSD conformations. However, with any

sort of contact information typically being error-prone, it is realistically impossible to apply a

perfect bias corresponding to a TPR of 100%. To estimate the bias quality threshold required

to easily obtain native-like structures within contact-guided REMD, mixed scenarios contain-

ing both true- and false-positive contacts were performed. Heatmaps of simulations using

restraints at 75% TPR are shown in S10 Fig and S11 Fig in S1 Appendix, whereas the simula-

tions with highly error-prone restraints at only 50% TPR are depicted in S12 Fig and S13 Fig

in S1 Appendix. A qualitative comparison of 100% and 75% scenarios shows the same overall

tendencies, i.e. the blue region corresponding to conformations with RMSDs below 4 Å
expands towards higher temperatures and saturates faster with increasing number of used con-

tact pairs. As expected, this effect is significantly stronger for scenarios implementing only

native contacts. For example, REMD simulations with 100% TPR and 12 or 24 contacts are

very similar to the cases with 75% TPR and 36 (27 native, 9 non-native) or 48 (36 native, 12

non-native) contacts, respectively. Taking the RMSDs of all replicas into account, non-native

contact restraints appear to strongly deteriorate the overall results. This becomes particularly

obvious when inspecting scenarios with only 50% TPR. Here, RMSD heatmaps contain mainly

values between 4 and 6 Å across all replicas and are on a par to or slightly worse than the unre-

strained reference REMD simulation. Next, we primarily analyzed RMSDs of the lowest-tem-

perature replica at T0 = 300 K to see which conformations effectively become enriched. This

allows us to estimate the limitations of contact-guided REMD and compare the results at the

most relevant temperature more quantitatively. A so-called ΔN histogram displays the count

difference of observed backbone RMSDs of each tested scenario with respect to the reference

simulation. For Trp-Cage, such histograms are presented in Fig 4, summarizing all performed

REMD simulations. Simulations with purely native contacts (Fig 4A–4D) show a strong

enrichment of conformations with RMSDs between 1.6 and 3.0 Å as indicated by the green

bins. Counts of conformations with RMSDs above 3.0 Å reduced accordingly. As evident

from Fig 4A–4D, the net gain of native-like folds does not improve when the bias exceeds 12

restraints, corresponding to approximately L/2 contact pairs with the sequence length L. Test

cases with mixed contacts at 75% TPR (Fig 4E–4H) show a similar behavior. Additionally, the

scenarios with 12 and 24 mixed contacts also enrich conformations with RMSDs around 5.0

Å, apparently biased by the first few non-native contacts. Scenarios with a TPR of only 50%

(Fig 4I–4L), where low-RMSD conformations become depleted and not enriched, show far

worse statistics compared to the reference simulation. On this account, they turn out to be

inappropriate for the intended purpose of structure determination within contact-guided

REMD. A theoretical edge case occurs for equally contributing native and non-native contacts
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Fig 4. ΔN histograms of Trp-Cage REMD simulations. Histograms show the enrichment and depletion of conformations with a particular backbone

RMSD at T0 = 300 K as compared to the reference. Histogram bins are defined by the RMSD axis, while the logarithmic ΔN axis illustrates the count

difference between the tested REMD scenarios and the REMD reference simulation with ΔN = Nscenario − Nref. Positive (negative) values corresponding to

enrichment (depletion) are shown in green (red). (A-D) Simulations with 100% TPR and 12, 24, 36, 48 contact pairs. (E-H) Simulations with 75% TPR

and 12, 24, 36, 48 contact pairs. (I-L) Simulations with 50% TPR and 12, 24, 36, 48 contact pairs.

https://doi.org/10.1371/journal.pone.0242072.g004
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at 50% TPR. While half of the contacts (true-positives) would lower the global minimum, the

other half (false-positives) would either lower existing local minima or introduce new unphysi-

cal ones. As the global minimum remains global under these circumstances, obtaining the

native state is still possible with the help of enhanced sampling in REMD. This edge case is,

however, usually not met as the used contacts are not equally contributing due to the distance

dependency. Furthermore, if the implemented restraints are clustered within the contact map,

the local bias adds up and can be strong enough to entrap the protein in unfavorable confor-

mations. To compensate such effects, the force coefficient k of the sigmoid potential (see Eq

(6)) needs to be reduced when using large numbers of highly error-prone contact restraints

with respect to the protein length.

The disadvantage of RMSD-based evaluation of structure quality is that local deviations

between mobile and target structure from, e.g., poor modeling of loop regions in an otherwise

reasonably fitting structure already result in a disproportionate increase. This is why we transi-

tion to the so-called Global Distance Test (GDT) which takes local misalignments better into

account. GDT (also GDTTS for “total score”) is a structural similarity measure for two different

conformations of the same protein. It is computed as the largest set of amino-acid Cα atoms

in the model structure lying within a defined cutoff distance of their position in the reference

structure after superposition. Thus, the higher GDT, the more a given model conforms to the

reference structure. The GDT algorithm originally calculates the fraction of Cα atoms lying

within the radius of 20 consecutive distance cutoffs (0.5 Å, 1.0 Å, 1.5 Å,. . .,10.0 Å) from their

individual positions in the target structure. This fraction generally increases with the cutoff,

where a plateau usually indicates significant divergence, meaning that no additional atoms

are included in any cutoff of a reasonable distance. The more rigorous high-accuracy version

GDTHA uses smaller cutoff distances, usually half the size of GDTTS. The distributions of the

two scores GDTTS and GDTHA provide an additional perspective to the estimation of the bias

quality necessary for effective integration of contact information into REMD. Table 2 gives an

overview of occurring percentiles of GDTTS and GDTHA scores for all performed REMD and

MD simulations of Trp-Cage at T = 300 K. All corresponding histograms are displayed in S30

Fig to S43 Fig in S1 Appendix. For each score variant, shaded table cells indicate improved per-

centiles Px compared to the REMD reference Px,ref, i.e. cells with

Px � Px;ref : ð12Þ

Additionally, a bold font is applied to values which satisfy

Px � Px;ref þ w � ðP100;ref � Px;refÞ ð13Þ

to highlight a significant improvement. In Eq (13), each Px is compared to a percentile-specific

threshold depending only on corresponding reference values. The threshold is defined as the

sum of the percentile itself and a weighted difference of this percentile to the highest observed

value. The difference indicates the practically possible improvement in relation to the refer-

ence. So as to reflect significant improvement, we set the coefficient w to 50%. In scenarios

with TPRs of at least 75%, the TS distribution is clearly shifted from 53.75 to scores above 96

already at the 80th percentile. This means that 20% of the simulated structures in the trajectory

already adopted conformations which are almost identical to the native conformation. HA

scores similarly show a significant improvement. It is particularly remarkable that the refer-

ence simulation yielded an exceptional HA score of 98.75. The comparison of 50% TPR

simulations to the reference shows that highly error-prone contact bias has a very negative

influence and is insufficient to effectively increase the frequency of native-like structures in

contact-guided REMD.
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Lastly, to justify the higher computational costs resulting from simulating multiple repli-

cas in parallel, we conducted additional MD simulations without contact integration and

with 12 native contacts as restraints. Fig 5 shows the RMSD evolution with simulated time

at 300 K and the resulting histograms as compared to the corresponding REMD scenarios.

With an initial RMSD of 8.8 Å from the native state, the reference MD simulation exhibits a

completely random behavior as expected. Note that the MD trajectories comprise 500 ns

instead of just 250 ns as for REMD. Observed conformations mainly show RMSDs between

4 and 8 Å. The best achieved values of approximately 3.0 to 3.5 Å are reached only a few

times. With the majority of RMSDs around 3.5 Å and best values at 2 Å, the MD simulation

with 12 native contact restraints yields significantly better statistics. The protein apparently

became trapped in a certain configuration favored by the implemented contact bias and

henceforth changes only marginally throughout the simulation. Switching to unrestrained

REMD, we clearly observe a much broader variety of occurring RMSDs, ranging from

approximately 1.7 Å to more than 11 Å. Although we see a high frequency of native-like

conformations, the majority still has RMSDs in the range of 4 to 8 Å. Including contact

restraints in the biased REMD simulation yields a drastic improvement compared to the

unbiased case. Native-like conformations occur more frequently and now even form the

majority of counts. In this light, we conclude that the increased computing demands can be

justified based on the observed performances. Besides, even many long MD simulations are

not guaranteed to ever reach the native fold due to kinetic entrapment while REMD does

not encounter this problem. For completeness, additional RMSD curves and histograms of

the lowest-temperature replica for Trp-cage REMD simulations can be looked up in S14 Fig

to S17 Fig in S1 Appendix.

Table 2. Total Score (TS) and High Accuracy (HA) percentiles of Trp-Cage simulations.

Method TPR (%) # CP P80
TS P85

TS P90
TS P95

TS P100
TS P80

HA P85
HA P90

HA P95
HA P100

HA

REMD ref 0 53.75 88.75 93.75 96.25 100.00 30.00 67.50 76.25 81.25 98.75

REMD 100 6 96.25 96.25 97.50 97.50 100.00 80.00 81.25 82.50 85.00 96.25

REMD 100 12 96.25 97.50 97.50 98.75 100.00 81.25 82.50 83.75 86.25 97.50

REMD 100 24 97.50 97.50 97.50 98.75 100.00 82.50 83.75 85.00 86.25 97.50

REMD 100 36 97.50 97.50 97.50 98.75 100.00 82.50 83.75 85.00 86.25 97.50

REMD 100 48 97.50 97.50 98.75 98.75 100.00 82.50 83.75 85.00 86.25 97.50

REMD 75 12 95.00 96.25 97.50 97.50 100.00 78.75 80.00 82.50 85.00 98.75

REMD 75 24 95.00 96.25 96.25 97.50 100.00 77.50 80.00 81.25 83.75 96.25

REMD 75 36 96.25 96.25 97.50 97.50 100.00 80.00 81.25 82.50 85.00 96.25

REMD 75 48 96.25 96.25 97.50 98.75 100.00 80.00 81.25 83.75 85.00 97.50

REMD 50 12 41.25 47.50 85.00 95.00 100.00 16.25 23.75 62.50 77.50 96.25

REMD 50 24 40.00 42.50 47.50 91.25 100.00 17.50 20.00 23.75 71.25 96.25

REMD 50 36 36.25 38.75 41.25 43.75 95.00 15.00 17.50 20.00 22.50 82.50

REMD 50 48 37.50 38.75 42.50 46.25 93.75 15.00 17.50 18.75 23.75 76.25

MD ref 0 33.75 36.25 40.00 43.75 56.25 11.25 13.75 16.25 20.00 32.50

MD 100 12 53.75 55.00 56.25 57.50 68.75 28.75 30.00 31.25 33.75 45.00

Overview of observed Global Distance Test (GDT) percentiles. Statistics were taken from trajectories at T = 300 K over 250 ns for REMD and 500 ns for MD,

respectively. Listed are the simulation method, the true-positive rate (TPR) in percent, used number of restraining contact pairs (CP), GDT total score percentiles (PTS),

and GDT high accuracy percentiles (PHA). Values equal to or greater than the respective reference are shaded in gray. According to Eq (13) significantly greater values

are bold.

https://doi.org/10.1371/journal.pone.0242072.t002
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Fig 5. Comparison of Trp-Cage MD and REMD simulations. Figure shows the backbone RMSD time evolution at T = 300 K and the corresponding

histogram with logarithmic count axis. Values were taken from 500 ns MD and 250 ns REMD trajectories, respectively. (A) MD reference simulation

without additional bias. (B) MD simulation with 12 native contact restraints. (C) REMD reference simulation without additional bias. (D) REMD

simulation with 12 native contact restraints.

https://doi.org/10.1371/journal.pone.0242072.g005
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Villin headpiece

VHP REMD simulations were performed under the same conditions as for Trp-Cage. The

selected initial conformation has a backbone RMSD of 16.2 Å compared to the target confor-

mation (cf. Fig 2C and 2D). Due to the increased system size, 40 additional replicas were

required to achieve nearly constant exchange rates across the considered temperature range.

RMSD heatmaps (cf. S18 Fig to S24 Fig in S1 Appendix) show a similar behavior regarding

the observed RMSD statistics when increasing the bias quality or number of used contact

restraints. Compared to Trp-Cage, however, the improvements are less prominent. The ref-

erence shows very poor RMSD statistics throughout as seen in S18A Fig in S1 Appendix. A.

The majority of the heatmap displays RMSDs well above 8 Å. The lower-temperature replicas

mainly yielded RMSDs in the range of 4 to 6 Å. Despite the enhanced sampling of REMD we

observe that the simulated time span of 250 ns is too short for VHP to be guided towards the

native structure without additional bias. When the bias potential is added, we again observe

improved RMSDs for the lower temperatures, reflected by a color transition from red to

white to blue within the heatmap plots. In case of REMD with 100% TPR and 12 contact

pairs (cf. S19A Fig in S1 Appendix), replicas with temperatures below T19� 340 K yielded

many conformations with RMSDs around 4 Å (white). Increasing the number of used con-

tacts to 24, RMSDs further reduced to values around 2.5 to 3.0 Å(blue). Besides, the greatest

incremental improvement of all 100% TPR REMD simulations was observed for the transi-

tion from 12 to 24 native contacts. Scenarios with 36 and 48 native contacts are qualitatively

as good as the case with 24 native contacts. Analogous to Trp-Cage, scenarios with 75% TPR

also lead to a general improvement of RMSDs in lower-temperature replicas, while scenarios

with only 50% TPR have the opposite effect as shown in S21 Fig to S24 Fig in S1 Appendix.

ΔN histograms visualizing the enrichment and depletion of conformations with specific

RMSD values at T0 = 300 K are summarized in Fig 6. Scenarios under perfect conditions, i.e.

at 100% TPR, are illustrated in Fig 6A–6D. Large improvements are made up to 24 restraints,

while scenarios with 36 and 48 restraints show almost identical results consistent with the

qualitative comparison of the previously discussed heatmaps. Conformation counts with

RMSDs above 4.0 Å were greatly reduced, while those with RMSDs between approximately

2.0 and 4.0 Å became enriched. Scenarios with mixed contacts at 75% TPR are displayed in

Fig 6E–6H. Here, we still observe an enrichment of low-RMSD conformations but also a

drastic increase of conformations with RMSDs around 5.0 to 8.0 Å. The enrichment of the

higher-RMSD conformations is strongly influenced by the first three non-native contacts of

the first 12 contact pairs (cf. cyan contacts in S5 Fig in S1 Appendix), which were randomly

selected for this test case. Long-range contacts (i, j), which are far off the main diagonal in

the contact map, can contribute a stronger bias compared to contacts with a small difference

in their sequence numbers Δij = |i − j| close to the main diagonal. This results from the

choices of parameters in the sigmoid potential, determining its local field of action as well as

the intra-contact distance with the greatest force. Since contacts close to the main diagonal

are spatially close, it is likely that the attractive force is always below its possible maximum.

Long-range contacts, however, can have distances even beyond the potential’s effective range

and thus may experience the maximum possible force at some point during the simulation.

This means that not all implemented contacts contribute equally and those with a certain dis-

placement to the main diagonal can yield a much stronger bias. Nonetheless, all simulations

with a TPR of 75% show a net gain of native-like conformations and therefore should be

favored over the unbiased scenario. Scenarios with a TPR of 50% are displayed in Fig 6I–6L.

Here, we observe that both low- and high-RMSD conformations appeared less frequently

compared to the reference, whereas conformations between 5.5 and 8.5 Å became enriched.
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Fig 6. ΔN histograms of VHP REMD simulations. Histograms show the enrichment and depletion of conformations with a particular backbone RMSD at

T0 = 300 K as compared to the reference. Histogram bins are defined by the RMSD axis, while the logarithmic ΔN axis illustrates the count difference

between the tested REMD scenarios and the REMD reference simulation with ΔN = Nscenario − Nref. Positive (negative) values corresponding to enrichment

(depletion) are shown in green (red). (A-D) Simulations with 100% TPR and 12, 24, 36, 48 contact pairs. (E-H) Simulations with 75% TPR and 12, 24, 36,

48 contact pairs. (I-L) Simulations with 50% TPR and 12, 24, 36, 48 contact pairs.

https://doi.org/10.1371/journal.pone.0242072.g006
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This once again shows that a low ratio of native to non-native contacts yields worse results

than the unbiased case.

Table 3 specifies the observed percentiles of GDTTS and GDTHA score distributions for

VHP REMD and MD simulations at T = 300 K. The corresponding histograms are shown

in S30 Fig to S43 Fig in S1 Appendix. We find that the REMD simulations benefited from

restraints with a TPR of 75% or higher, resulting in significantly better GDT scores according

to Eq (13). Here, ideal results in mixed scenarios with 75% TPR are observed for restraint

numbers in the order of the protein length L. Analogous to previous observations during the

RMSD-based discussion, simulations with only 50% TPR were worse compared to the refer-

ence scenario. We conclude that a bias of such poor quality is generally unsuited to achieve

useful results within contact-guided REMD simulations. Fig 7 summarizes the comparison of

REMD versus MD simulations, each with and without 24 native contact restraints. RMSD

curves at 300 K as well as corresponding histograms are depicted. Starting from an unfolded

state with an RMSD of 16.2 Å with respect to the native fold, the reference MD simulation

shows a typical folding curve. The protein quickly collapses to conformations with RMSDs

around 8 Å. During the simulation, the protein undergoes a few larger structural changes,

even achieving conformations with an RMSD of around 4 Å after 460 ns. In the MD simula-

tion with 24 restraining native contacts, the protein immediately transitions to conformations

around 4 Å and continues to be trapped within this RMSD range. Best achieved RMSDs are as

low as 3 Å. The reference REMD simulation displays a broad variety of RMSDs between 2 and

17 Å. Overall, a random behavior without clear tendencies towards certain conformations is

observed. REMD with 24 native contacts yielded a strong depletion of conformations between

9 and 17 Å as compared to the reference REMD. Accordingly, conformations with RMSDs

lower than approximately 8 Å appeared more frequently with a slight tendency towards

Table 3. Total Score (TS) and High Accuracy (HA) percentiles of VHP simulations.

Method TPR (%) # CP P80
TS P85

TS P90
TS P95

TS P100
TS P80

HA P85
HA P90

HA P95
HA P100

HA

REMD ref 0 50.00 53.47 57.64 63.89 79.17 27.08 30.56 34.72 40.98 58.34

REMD 100 6 66.67 68.75 71.53 75.00 87.50 43.06 45.14 47.92 51.39 68.06

REMD 100 12 61.11 63.19 65.97 69.44 86.11 37.50 39.58 42.36 45.84 65.28

REMD 100 24 71.53 73.61 75.00 77.08 88.89 47.92 49.30 51.39 53.47 68.75

REMD 100 36 71.53 73.61 75.00 77.08 88.89 47.92 50.00 51.39 54.16 70.83

REMD 100 48 72.22 73.61 75.00 77.08 87.50 48.61 50.00 51.39 53.47 68.06

REMD 75 12 47.92 50.70 54.17 59.02 87.50 24.30 27.08 30.56 34.72 65.97

REMD 75 24 49.30 54.86 59.02 70.14 84.72 25.00 30.56 34.72 45.83 64.58

REMD 75 36 68.06 71.53 74.31 77.08 88.89 43.75 47.22 50.00 53.47 70.83

REMD 75 48 62.50 65.97 69.44 73.61 85.42 38.89 42.36 45.83 49.30 63.89

REMD 50 12 34.03 38.89 44.44 50.70 79.17 13.20 17.36 21.53 27.08 55.56

REMD 50 24 31.25 34.03 36.80 44.45 73.61 10.42 11.81 14.58 22.22 50.00

REMD 50 36 28.47 31.94 36.11 40.28 70.83 9.03 11.11 14.58 18.06 49.30

REMD 50 48 28.47 30.56 34.03 36.81 59.72 9.03 9.72 12.50 15.28 36.11

MD ref 0 25.70 27.08 28.47 35.42 50.00 9.03 9.72 11.11 13.19 26.39

MD 100 24 41.66 42.36 43.06 44.44 57.64 17.36 18.06 18.75 20.14 32.64

Overview of observed Global Distance Test (GDT) percentiles. Statistics were taken from trajectories at T = 300 K over 250 ns for REMD and 500 ns for MD,

respectively. Listed are the simulation method, the true-positive rate (TPR) in percent, used number of restraining contact pairs (CP), GDT total score percentiles (PTS),

and GDT high accuracy percentiles (PHA). Values equal to or greater than the reference values are shaded in gray. According to Eq (13) significantly greater values are

bold.

https://doi.org/10.1371/journal.pone.0242072.t003

PLOS ONE Contact-guided REMD

PLOS ONE | https://doi.org/10.1371/journal.pone.0242072 November 16, 2020 17 / 24

https://doi.org/10.1371/journal.pone.0242072.t003
https://doi.org/10.1371/journal.pone.0242072


Fig 7. Comparison of VHP MD and REMD simulations. Figure shows the backbone RMSD time evolution at T = 300 K and the corresponding

histogram with logarithmic count axis. Values were taken from 500 ns MD and 250 ns REMD trajectories, respectively. (A) MD reference simulation

without additional bias. (B) MD simulation with 24 native contact restraints. (C) REMD reference simulation without additional bias. (D) REMD

simulation with 12 native contact restraints.

https://doi.org/10.1371/journal.pone.0242072.g007
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lower values such as 3 to 4 Å. The best achieved RMSD during this simulation was 1.9 Å. Cf.

S25 Fig to S28 Fig in S1 Appendix. for additional RMSD curves and histograms of VHP

REMD simulations.

To highlight the local accuracy and visualize how well the simulated structures fit the native

state, Fig 8A gives an overview of the best observed structures during the 75% TPR simulation

ranked by GDTHA. Each protein residue is assigned a colored rectangle representing the Cα-Cα

distance between the mobile and reference state after a least-squares fit. As evident from Fig

8A, many simulated structures greatly resemble the target structure, manifesting in Cα dis-

placements below 2 Å. The best observed structure with an HA score of 70.83 corresponding

to the first line is displayed in Fig 8B. For comparison, local accuracy figures of VHP with 36

restraints and varying TPR can be looked up in S44 Fig to S46 Fig in S1 Appendix.

Conclusion

Contact information on its own usually is insufficient to fully determine a protein’s three-

dimensional fold. Here we showed that including such information into replica-exchange

molecular dynamics (REMD) delivers proper structural models of a protein’s conformational

state by significantly enriching native-like folds. Our method combines a contact-based sig-

moidal bias potential with the advantages of enhanced sampling in replica exchange, creating a

high chance of observing (near-)native conformations within a single run. Contacts derived

from various sources can easily be included and thus interpreted in terms of structural ensem-

bles. As a physico-empirical method, contact-guided REMD is conceptually transparent in

contrast to purely data-driven methods like AlphaFold [14] and does not require elaborate

adjustment of a priori unknown model parameters.

Fig 8. Local accuracy of VHP REMD simulation (36 contacts, 75% TPR). (A) Displayed are the best structures ranked by High Accuracy

(HA) score and color-coded based on the Cα-Cα distance to visualize the local accuracy. (B) Best observed tertiary structure of VHP

corresponding to the first line of subfigure A.

https://doi.org/10.1371/journal.pone.0242072.g008
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To test the capabilities and limitations of our method, we presented a systematic study on

two well-known proteins comprising 14 scenarios with different bias quality in terms of true-

positive rate (TPR) and number of used contact restraints. In order to equally consider the

influence of both native and non-native contacts, all restraints were assigned the same cou-

pling strength. As long as the bias quality was above an apparent TPR threshold of 75%, signifi-

cant enrichment of native-like conformations could be observed. We find that highly error-

prone contact information as in 50% TPR scenarios is insufficient for effective structure deter-

mination within REMD. Typically, both experimentally and theoretically derived contact

information can contain false positives, and it is a priori unknown which of the used contacts

are actually native. In contact-guided REMD, negative effects resulting from false-positive con-

tacts should already be minimized by design due to the sigmoid potential’s strength and range

limitation. One approach to further resolve this issue is a dynamic weighting of contact bias.

During a guided REMD simulation, contacts of initially equal strength can be monitored on a

regular basis and those remaining unrealized may be weakened or deactivated accordingly.

Furthermore, we evaluated the incremental improvement with increasing number of contacts

for each set of scenarios at fixed TPR. For an error-free bias, the chance of finding native-like

structures increases with the number of implemented contacts according to our expectations.

In the more realistic cases with a 75% TPR, we observed significant performance improve-

ments compared to the unrestrained reference when including L/2 to L contacts, with L being

the protein sequence length. Taking DCA-derived contacts as an example for contact enrich-

ment in a de novo prediction, the TPR strongly depends on the alignment quality and size of

the investigated MSA. In view of the currently already rich and continuously fast growing pro-

tein sequence databases, TPRs of 75% are feasible for the first ranked L contacts [56].

To justify the comparably high computational cost of REMD resulting from simulating N
replicas in parallel, we applied this empirical rule to both MD and REMD simulations each

with and without contact bias. Within biased REMD, we obtained considerably better confor-

mations in terms of RMSD more frequently, making this method feasible for obtaining (near-)

native conformations in a single run. Even when performing multiple MD runs successively,

finding native(-like) folds cannot be guaranteed due to the high chance of kinetic entrapment

which can be overcome in REMD. Provided sufficient turnarounds and simulation time, we

showed that contact-guided REMD is able to find physically reasonable folds starting from an

unfolded state. Due to the high computational costs of REMD, it is beneficial to start from a

pre-estimated folded state and use contact-guided REMD only for local refinement. We sug-

gest this approach especially for larger proteins, as it can drastically reduce the system size.

Various existing tools can be used to obtain pre-estimated structures. For example, protein

decoys can be generated with PyRosetta [57] and subsequently be ranked according to

their suitability as a starting conformation using Rosetta’s scoring functions. This is expected

to greatly increase the computational performance of each REMD run. A further reduction of

computational costs can be achieved by narrowing down the temperature range to, e.g., 280 to

430 K. This will, however, effectively lower the chances of large-scale conformational change

as the reservoir of unfolded conformations is reduced. Lastly, it is also possible to lower the

computational demands by using an implicit-solvent model.

Although computationally rather involved, we consider contact-guided REMD to be partic-

ularly suitable for final refinement of often less resolved local structural motifs or available

low-resolution structural models. Underlying MD force fields contain rich information on the

various physical interactions determining protein dynamics. Since the bias is known, it can ret-

rospectively be balanced out. Thus, it is also possible to infer a free energy landscape with sta-

tistical techniques such as the weighted histogram analysis method [58] using the whole data

set instead of focusing on the lowest-temperature replicas exclusively.
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