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Abstract: In this article, we present Near Ambient Pressure (NAP)-X-ray Photoelectron Spectroscopy
(XPS) results from model and commercial liquid electrolytes for lithium-ion battery production using
an automated laboratory NAP-XPS system. The electrolyte solutions were (i) LiPF6 in EC/DMC (LP30)
as a typical commercial battery electrolyte and (ii) LiTFSI in PC as a model electrolyte. We analyzed
the LP30 electrolyte solution, first in its vapor and liquid phase to compare individual core-level
spectra. In a second step, we immersed a V2O5 crystal as a model cathode material in this LiPF6

solution. Additionally, the LiTFSI electrolyte model system was studied to compare and verify our
findings with previous NAP-XPS data. Photoelectron spectra recorded at pressures of 2–10 mbar
show significant chemical differences for the different lithium-based electrolytes. We show the
enormous potential of laboratory NAP-XPS instruments for investigations of solid-liquid interfaces
in electrochemical energy storage systems at elevated pressures and illustrate the simplicity and ease
of the used experimental setup (EnviroESCA).

Keywords: NAP-XPS; Li-ion battery (LIB); electrochemistry; single crystal; vanadium pentoxide;
solid–liquid interfaces

1. Introduction

X-ray Photoelectron Spectroscopy (XPS) as a powerful and non-destructive technique for material
and surface analysis provides quantitative elemental and chemical information of the studied
samples. Near Ambient Pressure (NAP) XPS has been developed to enable the analysis of real-world
samples under working conditions [1–5]. The transformation of XPS from a UHV-based method
towards environmental conditions has revolutionized XPS dramatically and opens completely new
fields of research. NAP-XPS is used extensively for in situ measurements and operando studies
of industrial relevant (electro) chemical reactions and catalytic processes, especially at gas-liquid,
gas-solid, and liquid-solid interfaces [6–10].

Probing realistic battery environments with NAP-XPS is of special interest. During Li-ion battery (LIB)
charging and discharging, the cells are operated at voltages outside the stability window of the organic
electrolytes. As a consequence, especially during the first discharge of the battery, electrolyte reduction
and formation of a solid electrolyte interphase (SEI) on the anode are observed [11,12]. This intentional
creation of the SEI prevents the formation of Li-dendrites. During battery charging, the formation
of a cathode-electrolyte interphase (CEI) can be seen at high voltages. These interphase formations
are crucially influencing the short and long-term performances of a battery [13,14]. In this context,
NAP-XPS enables direct observation of the formation, composition, and dynamics of the SEI and CEI
providing otherwise inaccessible information. Additionally, additional sample preparation before
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conventional UHV-based measurements, i.e., battery disassembly, washing, and drying of cycled
electrodes, can be avoided. Moreover, the possible side effects of different electrode washing procedures
on the interphase composition are circumvented.

In the first part of this study, a V2O5 single crystal is used as a model cathode material. Its model
cathode character is not because of its ultimate performance or cycling stability, but because of its
chemical and structural stability in the fully charged (de-lithiated) state, giving easy access to the first
discharge by spontaneous incorporation of lithium-ions into the surface layer even without electrodes
and potentials [15]. When in contact with Li+-containing electrolytes such as the commercial LP30
electrolyte (1 mol LiPF6 in EC/DMC) V2O5 is known for spontaneous accumulation of Li+-ions in its
surface layer(s). As the cathode and the different electrolyte components have no overlap in their XPS
spectra, a distinction between the different species is easily made.

The second part of our study focused on the model electrolyte based on 1 M bis(trifluoromethane)
sulfonimide lithium salt (LiTFSI) in propylene carbonate (PC), which offers the advantage that both
salt and solvent signals can be observed and clearly distinguished from each other in NAP-XPS
within the C 1s region. Previous work using both synchrotron and in-house NAP-XPS setups probing
an electrolyte drop on a Li-metal substrate showed that the salt concentration varied within that
drop. At the surface of the liquid, an almost twofold increase in salt concentration was observed [16].
Transferring synchrotron measurements to laboratory applications could allow much easier handling
and transfer of various samples, thus enabling also a much higher throughput.

A detailed understanding of the interface reactions at the electrolyte-electrode interface(s) in its
elementary steps is still missing. This would allow materials optimization of electrodes and electrolytes
and would also help to improve performance, durability, and safety of lithium-ion batteries in general.

2. Materials and Methods

2.1. Materials

Materials were obtained from commercial suppliers and used without further purification except
for V2O5 single crystals that were kindly provided by M. Klemm and S. Horn (Universität Augsburg,
Germany). Battery grade LP30, a lithium hexafluorophosphate (LiPF6) solution in ethylene carbonate
(EC) and dimethyl carbonate (DMC) with a concentration of 1 M of LiPF6 in EC/DMC (50/50; v/v),
was obtained from Merck KGaA (Darmstadt, Germany). The LiTFSI electrolyte was prepared by
dissolving 1 M bis(trifluoromethane) sulfonimide lithium salt (LiTFSI, BASF, Ludwighshafen, Germany,
purity 99.9 wt %) in propylene carbonate (PC, BASF, Ludwighshafen, Germany, purity 99.9 wt %).
The salt was dried overnight at 120 ◦C under vacuum. The solvent PC was used as received.

2.2. Near-Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS)

Laboratory NAP-XPS measurements were done with an EnviroESCA (SPECS GmbH,
Berlin, Germany) [17–20]. The monochromatic Al Kα X-ray source is separated from the measurement
chamber by a silicon nitride window, and the hemispherical energy analyzer is under ultra-high
vacuum (<1 × 10−8 mbar) due to a three-stage differential pumping system between the analysis
section and analyzer. The entrance aperture (nozzle) has a diameter of 300 µm and the usual working
distance is 1–2 times the nozzle diameter.

Figure 1 illustrates schematically the experimental setup which is comparable to the static droplet
setup [4]. In our design, it is more like a semi-static reservoir setup because the volumes (2–50 mL)
are larger than in a single droplet and the surface is renewed constantly by a convective liquid flow
that is caused by differential pumping through the analyzer nozzle. That constant movement and
renewal of the probed liquid surface minimize the accumulation of unwanted decomposition products
in the analysis region as they are diluted in the larger volume of liquid. Solvent evaporation from the
electrolyte during the experiments can be reduced by using an extra reservoir, internally or externally,
with the complimentary solvent.
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Figure 1. Experimental setup of laboratory Near Ambient Pressure (NAP)–X-ray Photoelectron
Spectroscopy (XPS) (EnviroESCA) and an electrolyte (LP30) cathode (V2O5) interface in measurement
position directly under the analyzer aperture. Additionally shown is a typical solid sample in a liquid
using a watch glass, which is placed on a standard sample holder.

With this setup, it is possible to insert liquid samples, i.e., in a watch glass directly into the
load-lock chamber and measure at pressures up to 50 mbar. For ambient pressure measurements,
approximately 2–5 mL of electrolyte were inserted into the EnviroESCA and the pressure was slowly
reduced to 20 mbar to allow evaporation of residual dissolved gases. The V2O5 single crystal sample
was immersed directly in LP30 and was then treated in the same manner as the electrolyte samples.
Measurements were performed at 10 mbar for the LiPF6 electrolyte in EC/DMC. LiTFSI electrolyte
spectra were measured at a base pressure of 2 mbar. The chosen working pressures above the respective
solvent vapor pressures reduce solvent evaporation significantly and affect the resulting photoelectron
signal by electron scattering with gas molecules only to a low extent. {The vapor pressures of DMC and
EC at 25 ◦C are 74 mbar and 0.02 mbar [21,22], respectively, and that of PC at 20 ◦C is 0.17 mbar [23]}.

All survey spectra were acquired in fixed analyzer transmission (FAT) mode at a pass energy of
100 eV, a step size of 1.0 eV, and a dwell time of 0.1 s. High-resolution core-level spectra (F 1s, O 1s,
N 1s, C 1s, P 2p, and Li 1s) were recorded in fixed analyzer transmission (FAT) mode at pass energy of
30 eV or 50 eV, a step size of 0.2 eV, and a dwell time of 0.1 s.

The electron emission angle was 0◦ and the source-to-analyzer angle was 55◦. The binding energy
scale of the instrument was calibrated according to ISO 15472 [24]. Unless otherwise noted the binding
energy scale after environmental charge compensation by the gas was corrected for all spectra using an
electron binding energy of 539.3 eV for the O 1s peak of molecular oxygen (referencing to vacuum
level gives a binding energy of 543.7 eV) [25,26].

Curve fitting of core-level spectra was done with SpecsLab Prodigy (SPECS GmbH, Berlin,
Germany, release 4.73.3) using a Gaussian/Lorentzian product function peak shape model in
combination with a Shirley or Tougaard background. Generally, the full width at half maximum
(FWHM) was set as a free parameter but constrained to be the same for all peaks within the same
core-level spectrum. This did not apply to the core-level peaks originating from gas, which inherently
have a different peak shape and FWHM. All the spectra were fitted with a minimum set of peak
components except for the O 1s of LiTFSI. Here the O 1s peak components (O=C, O-C) from propylene
carbonate (PC) were used with identical FWHM and a constrained peak area ratio of 1 to 2 according
to the PC stoichiometry. The third component for TFSI (O=S) was then added to complete the fit of the
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O 1s core-level data. In some cases, the peak position was fixed based on the energy position of the
same peak component found in the gas phase.

2.3. Sample Preparation

2.3.1. Lithium Hexafluorophosphate (LiPF6) in EC/DMC (LP30)

The liquid electrolyte was transferred in a sealed container from a glovebox into the sample
environment (load lock) of the EnviroESCA. Then a small amount of the liquid (2–5 mL) was poured
into a watch glass under a constant flow of argon. Afterward, the pressure in the sample environment
was stabilized at 10 mbar, the sample was transferred into the analysis section of the instrument, and the
electrolyte was analyzed directly (i) as received and (ii) in contact with a V2O5 crystal (cf. Figure 1).

The corresponding O 1s spectra exhibit a significant component from molecular oxygen (O2),
which together with the H2O component, originates from residual ambient air and/or air exposure
during sample preparation and handling.

2.3.2. Lithium Bis(Trifluoromethane) Sulfonimide in PC

The LiTFSI electrolyte was prepared by dissolving 1 M bis(trifluoromethane) sulfonimide lithium
salt in propylene carbonate (PC). The salt was dried overnight at 120 ◦C under a vacuum. All chemicals
were handled under an inert argon atmosphere inside a glove box (H2O ~ 1 ppm, O2 ~ 1 ppm) and
introduced into the EnviroESCA NAP-XPS instrument via a glove bag, which was Ar-flushed for
a minimum of four times directly before any new sample preparation. For transport, all materials
and vials containing solvent or electrolyte were sealed in individual vacuum pouch cells to avoid
contact with atmospheric conditions. Still a small amount of oxygen (O2) from ambient air is detected
in the corresponding O 1s spectrum but that vanishes completely during the course of the experiments
(further details are given in the Supplementary Material).

3. Results and Discussion

In the following sections, NAP-XPS data of an LP30 electrolyte solution (LiPF6 in EC/DMC) are
presented. The commercial electrolyte was investigated in its gaseous phase, in its liquid phase with
the surrounding gas, and in contact with a V2O5 single crystal. Additionally, the immersed V2O5

single crystal was probed with NAP-XPS after cleaning and drying.
The last section presents data from a model electrolyte based on a solution of LiTFSI in PC.

This electrolyte was analyzed with synchrotron and in-house NAP-XPS earlier in a hanging drop
setup [4], which allows direct comparison with our XPS data from LiTFSI and LiPF6.

3.1. LiPF6 (Commercial) Electrolyte—Vapor Only and Vapor-Liquid Mix

First, the gaseous phase above the sample was analyzed to identify contributions from evaporating
electrolyte solution or residual gases. Figure 2a shows the corresponding C 1s and O 1s core-level
spectra of the gas phase. The C 1s consist of peaks that can be assigned to C-O (g) and CO3 (g) moieties
of ethylene carbonate (EC) and dimethyl carbonate (DMC) [16,27–29]. Both moieties are labeled with 1
and 2 in their chemical structures respectively (cf. insets in Figure 2a). This correlation to carbon atoms
from evaporated EC and/or DMC molecules later helps to assign solution based peak components.
The experimental C-O (g) to CO3 (g) peak component ratio of 2:1 is matching the theoretical one
and indicates that only EC/DMC related carbon-species are present in the gas phase surrounding the
sample. From the C 1s and O 1s spectra, these two organic carbonates are hard to differentiate but
the gas atmosphere is likely DMC-dominated due to the significantly higher vapor pressure of DMC
(74 mbar at 25 ◦C) compared to that of EC (0.01 at 25 ◦C) [22,23].
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Figure 2. C 1s (left panel) and O 1s (right panel) core-level spectra of the LiPF6 electrolyte in EC/DMC:
(a) gas phase; (b) liquid phase with surrounding gas; (c) in contact with V2O5; and (d) the same crystal
after cleaning with EtOH. Open circles represent experimental data and black lines are envelopes of
fitted curves.

O 1s spectra of the gas phase are more complex due to additional contributions from residual
molecular oxygen and water next to the oxygen atoms of EC and DMC. As shown in Figure 2a the O 1s
core-level spectrum can be fitted very well with 5 components with three components at lower biding
energy that can be assigned to H-O-H (g) from water vapor and the oxygen atoms O=C (g) and O-C (g)
from EC/DMC [16,27–29], these atoms are labeled with 1 and 2 in their chemical structures (cf. insets in
Figure 2a). The peak at 540 eV is caused by molecular oxygen O2 and it splits with ashift of 1 eV in a 2:1
ratio due to the paramagnetic nature of molecular oxygen [25,26,30]. This O 1s O2 gas peak is very
useful as an internal binding energy reference for energy alignment of different photoelectron spectra.

Binding energies and relative peak component areas of the fitted C 1s and O 1s core-level spectra
as shown in Figure 2 are summarized in Tables 1 and 2.

Table 1. Peak fit results of C 1s core-level spectra from LP30 electrolyte as shown in Figure 2.

Peak Component Binding Energy Position (eV) 1 and Relative Peak Component Areas (%) 2

Electrolyte
Gas

Electrolyte
Gas + Liquid

V2O5
in Electrolyte

V2O5
Cleaned and Dry

CO3 (g) 292.1 (32.9) 292.2 (3.6) 292.3 (0.9) -
CO3 (l) - 291.4 (19.1) 291.4 (17.6) -
COO - - - 289.4 (4.5)

C-O (g) 288.7 (67.1) 289.0 (5.4) 288.9 (3.6) -
C-O (l) - 287.7 (44.8) 287.6 (41.4) 287.6 (15.8) 3

CC/CH - 285.5 (27.2) 285.4 (36.5) 285.6 (79.7)
1 B.E. was referenced to main O 1s peak component of molecular O2 located at 539.3 eV [25,26]. 2 A relative
uncertainty of 20% has to be considered for the relative peak component areas [31,32]. 3 B.E. position is indicating
a C-O species but it might be other than those observed for the EC/DMC mixture.
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Table 2. Peak fit results of O 1s core-level spectra from LP30 electrolyte as shown in Figure 2.

Peak Component Binding Energy Position (eV) 1 and Relative Peak Component Areas (%) 2

Electrolyte
Gas

Electrolyte
Gas + Liquid

V2O5
in Electrolyte

V2O5
Cleaned and Dry

O2 (g) 540.4 (16.1) 540.4 (2.6) 540.3 (6.6) 540.3 (10.2)
539.3 (31.9) 539.3 (6.8) 539.3 (15.3) 539.3 (17.0)

H-O-H (g) 536.5 (5.2) 537.0 (0.7) - -
O-C (g) 535.6 (32.2) 535.5 (17.9) 535.3 (8.4) 535.5 (3.9) 3

O-C (l) - 534.7 (41.6) 534.7 (25.7) 534.4 (12.7) 3

O=C (g) 533.9 (14.7) 533.8 (9.0) 534.0 (4.2) 533.5 (10.1) 4

O=C (l) - 533.0 (21.4) 532.9 (21.4) 532.4 (10.6) 4

O-V - - 531.0 (18.5) 531.1 (35.5)
1 B.E. was referenced to the main O 1s peak component of molecular O2 located at 539.3 eV [25,26]. 2 A relative
uncertainty of 20% has to be considered for the relative peak component areas [31,32]. 3 B.E. positions are indicating
O-C species but might be other than observed for EC/DMC mixture. 4 B.E. positions are indicating O=C species but
might be other than the ones observed for EC/DMC mixture, e.g., Li2O, Li2O2, Li(OH).

Significantly more peaks are observed in C 1s and O 1s spectra obtained from the liquid LiPF6

electrolyte. Here further contributions from liquid EC/DMC molecules have to be considered. Figure 2b
shows those C 1s and O 1s solution spectra that were fitted with the same strategy used for the gas
phase spectra.

The C 1s spectrum of the liquid electrolyte mixture contains three new components located at
287.7 eV and 291.4 eV, assigned to the C-O (l) and CO3 (l) moieties in the liquid phase, together with
a CC/CH component from hydrocarbons located at 285.5 eV. (The binding energy difference to usual
CC/CH values of 285.0 eV is a consequence of the applied energy scale referencing to O 1s O2 peak.)

Comparable binding energy differences of about 1 eV or even more between core-level peaks of
gaseous and condensed phases with the liquid at lower binding energies have been reported earlier for
other solvents [25,26,30,33–35].

Similar to the C 1s core-level spectrum of the liquid electrolyte two additional components O=C (l)
at 533.0 eV and O-C (l) at 534.7 eV originating from liquid EC and DMC molecules are identified in the
O 1s spectrum (cf. Figure 2b, right panel). H2O and O2 peak components exhibit significantly decreased
contributions to the O 1s peak when compared to the electrolyte gas-phase spectra (cf. Figure 2a).
The probed volume appears to be dominated by the liquid LiPF6 electrolyte and only a small amount
of gas is contributing to the overall NAP-XPS signal.

High-resolution P 2p and F 1s spectra, shown in Figure S1 (Supplementary Material), exhibit only
single peaks around 137 eV and 687 eV. Corresponding to earlier reports those peaks represent
LiPF6 [27,36–38]. Other peaks indicating typical electrolyte decomposition products were not observed.
Taking this into consideration and the different carbon and oxygen components of the EC/DMC mixture
that can contribute to the gas phase as well as the condensed phase the experimental data could be
interpreted and fitted very well. This is very helpful for NAP-XPS data interpretation of more complex
samples composed of electrolytes, electrodes, and further additives.

3.2. LiPF6 (Commercial) Electrolyte-V2O5 Single Crystal in Solution

Following those initial tests, a more realistic sample was chosen. As cathode material, a single
crystal of V2O5 was placed directly in the LiPF6 electrolyte and analyzed while in the LP30 solution to
study the consequences of this addition, see Figure 1 (top right). A region on the V2O5 was selected
where the liquid electrolyte film covering the solid was thin enough (layer thickness < XPS information
depth) to probe both the electrolyte and the crystal’s surface. There was no potential applied but
a spontaneous Li-intercalation into the crystal surface can be expected [15].

Figure 2c shows the corresponding C 1s and O 1s spectra. Applying the same fitting strategy as for
the electrolyte, additional peaks originating from V2O5 are needed to reconstruct the measured spectra.
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The hydrocarbon-related CC/CH peak component area of the C 1s increases to 36% compared to
27% in the liquid electrolyte alone. These additional CC/CH contributions originate most probably
from (adventitious) hydrocarbons adsorbed on the single crystal surface.

Compared to the neat electrolyte the O 1s detail spectrum changes significantly due to vanadium
oxide species, which are considered by an additional O-V peak component located at 531.0 eV.
Similarly, V-O species are present in the V 2p core-level spectra with V 2p3/2 around 518 eV
(cf. Figure 3a) [38].
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Figure 3. V 2p3/2 core-level spectra of a V2O5 single crystal (a) immersed in LiPF6 in EC/DMC electrolyte
and (b) the same crystal after cleaning in EtOH and drying in air. Open circles represent experimental
data and the black line is the envelope of the fitted curve.

High-resolution P 2p and F 1s spectra (cf. Figure S1, Supplementary Material) have only single
peaks at 687 eV and 137 eV corresponding to LixPFy species as reported previously for LiPF6 [16,27,36,37].
The absence of other F 1s and P 2p peaks at lower binding energies, typically related to decomposition
products like LiF, LixPOyFz, or other phosphates, indicate mostly intact LiPF6-anions in solution.
Moreover, a very small and broad feature is potentially present in the Li 1s region at around 56 eV
indicating the presence of lithium in the analyzed solid-liquid interface region (cf. Figure 4d).

These findings indicate that with our experimental set up we can investigate both the liquid
electrolyte and the solid V2O5 crystal at the same time as long as the electrolyte film thickness is smaller
than the XPS information depth (up to 10 nm). Such solid-liquid interfaces are important boundaries
in electrochemical devices. Especially the solid electrolyte interface (SEI) [28,29,39] on the negative
electrode of LIBs can be investigated with this setup.
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3.3. LiPF6 (Commercial) Electrolyte-V2O5 Crystal after Cleaning

After the immersion in the electrolyte (and a short ethanol rinse) the dry V2O5 crystal was investigated
to determine the remaining electrolyte components on the crystal’s surface. The corresponding C 1s and
O 1s core-level spectra are presented in Figure 2d.

EC/DMC-related carbon components are lost almost completely as seen in the C 1s spectra.
The main carbon species with a peak component area of 80% originates from CC/CH together with
minor contributions from C-O and COO species (cf. Table 3), which could originate from solvent
residues or contaminations on the crystal surface. Carbonate-related CO3 species could not be detected
in the C 1s spectrum of the crystal surface.

Table 3. Photoelectron peaks, binding energy positions, and relative peak areas of the fitted core-level
spectra from LiPF6 in EC/DMC and LiTFSI in PC as shown in Figure 4.

Peak Peak
Component

Binding Energy Position (eV) 1 and Relative Peak Component Areas
(%) 2

LiPF6 LiTFSI

C 1s CF3 - - 292.5 4.9
CO3 291.1 22.0 290.7 19.1

C-O (g)/C=O 288.9 4.0 288.4 6.1
C-O (l) 287.2 47.2 287.0 41.3
CC/CH 285.0 26.7 285.0 28.6

O 1s O=C 532.9 31.4 532.3 24.2
O–C 534.5 68.6 534.0 48.3
O=S 532.2 27.6

F 1s CF3 - - 688.5 69.4
PF6 686.7 100 - -
F- - - 684.7 30.6

Li 1s Li+ 55.6 100 55.6 100
1 For better comparison with published NAP-XPS data of LiTFSI the B.E. scale was referenced using the C 1s CC/CH
peak component located at 285.0 eV [16]. 2 A relative uncertainty of 20% has to be considered for the relative peak
component areas [31,32].
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The thickness of the adventitious carbon layer on the crystal surface after immersion in LP30 is
estimated to be ca. 3 nm under the assumption that this layer is mainly composed of hydrocarbons
(CC/CH), see Figure 2d and Table 1. On the pristine V2O5 crystal a hydrocarbon layer with a thickness
of only 0.5 nm was found, which implies that the outermost surface layers on the V2O5 crystal are
structurally and chemically very different after being immersed LP30. The elemental composition was
calculated to be 29 at.-% vanadium and 71 at.-% oxygen on the pristine crystal whereas 60 at% oxygen,
27 at.-% fluorine, and 13 at.-% vanadium were detected after contact with LP30 (compositions after
carbon correction, cf. Figure S8, details for contamination layer thickness estimations are given in the
Supplementary Material).

In the O 1s spectrum, the vanadium-related O 1s component is now the most intense one.
Additional contributions in the binding energy region from 532–535 eV are observed, which could
originate from oxidized carbon or lithium species, e.g., LixPFyOz, LixOy, LiOH, Li2CO3, or ROCO2Li.

Also F- and P-containing species were found on the crystal surface after drying. High-resolution P 2p
and F 1s spectra show only single peaks assigned to LixPFy species (cf. Figure S2, Supplementary Material).
The same was observed also in the liquid LiPF6 electrolyte and again that lack of other F 1s and P 2p
peaks at lower binding energies indicate the absence of F- and P-based decomposition products (LiF,
LixPOyFz, LixPF3−xO) even on the air-dried crystal. This is further corroborated by the fact that no
carbonate components like Li2CO3 or ROCO2Li [27,36,37] were detected in the C 1s spectrum.

Since neither phosphate nor carbonate peaks were detected the additional oxygen species present
around 532–535 eV in the O1s core-level spectrum of the dry crystal are most probably originating from
lithium oxide species like Li2O, LiOH, Li2O2, LiO2, or LixV2O5 together with some minor contributions
from carbon-oxygen related contaminations. This finding is supported by a broad Li 1s peak around
58 eV (cf. Figure S4, Supplementary Material).

Additional information could be obtained from the curve fit of V 2p3/2 core-level spectrum which
indicates reduction from V5+ to V4+ during intercalation and enrichment of V4+ species on the crystal
surface after cleaning and drying as illustrated in Figure 3.

Alkali intercalation in V2O5 leads to a charge transfer of the outer shell Li 2s electron to unoccupied
V 3d-derived conduction band states that split-off due to localization effects. Exposure of such an
intercalated LixV2O5 leads to surface reactions of the lithium with water vapor, forming lithium oxides
(Li2O), hydroxides (LiOH), peroxides (Li2O2), and superoxides (LiO2). Part of the oxygen needed for
this comes from the V2O5 structure itself, leaving behind oxygen vacancies. This reaction transfers
electrons back to the vanadium ions, filling unoccupied V 3d states, and by that increase the number of
V4+ species due to V5+-> V4+ reductions [15,38–40]. This effect is reflected by an increased V4+ peak
component area to the total V 2p3/2 peak area from 4.4% when in solution to 9.3% on the dry crystal.

With that basic but straightforward experiment using a V2O5 model cathode with the common
battery electrolyte LP30 (LiPF6 in EC/DMC), we could demonstrate exemplarily the enormous potential
of in situ and operando NAP-XPS for studying electrode surfaces and their interfacial reactions in
different environments. Each step of such a reaction or process can be followed in the XPS system and
changes in the respective core-level spectra, e.g., alkali incorporation into the V2O5 crystal surface and
vanadium reduction (V5+-> V4+) can be monitored immediately.

3.4. Comparison of LiTFSI (Model) and LiPF6 (Commercial) Electrolyte

After these encouraging experiments, we were able to relate the results of the LiPF6 electrolyte with
data of the LiTFSI model electrolyte, which was previously analyzed with synchrotron and in-house
NAP-XPS [16]. As we used the same setup for both liquids a direct comparison of the high-resolution
core-level spectra from the LiTFSI and LiPF6 electrolyte is possible. The measured core-level spectra
as shown in Figure 4 were fitted according to the method proposed by Maibach et al. [16] using
a minimum number of peak components. Thus, the contributions from gaseous and liquid phases are
combined (except for LP30, here an additional C-O gas component was needed). The resulting peak
components and assignments are summarized in Table 3.
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C 1s core-level spectra of LiTFSI and LiPF6 are showing similar components from the respective
organic carbonate solvents EC, DMC, and PC together with an additional hydrocarbon peak. LiTFSI has
an extra peak originating from the CF3 moiety located at 292.5 eV and an additional component
at 288.5 eV (C=O/O-C-O) related to unknown contamination or additional gas-phase contributions.
In contrast to the first report of NAP-XPS on LiTFSI, an additional CFx component at 289.4 eV was not
needed to fit and reconstruct our experimental C 1s data.

The O 1s core-level spectra of LiTFSI and LiPF6 are characterized by solvent related O=C and
O-C components with a nominal 1 to 2 ratio. Only the TFSI shows an additional O=S contribution at
532.2 eV due to the sulfonimide groups N(SO2CF3)2. The most obvious differences between the two
electrolytes are found in the respective F 1s spectra. LiPF6 exhibits only one single peak located at
686.7 eV whereas the LiTFSI shows two peaks at 688.5 eV (CF3) and a smaller one located at 684.6 eV
(F−) [16,27,36,37]. The latter peak results from an F− contamination of the LiTFSI salt. All these findings
are in accordance with earlier reports about LiTFSI [16]. The Li 1s, S 2p, and N 1s core-level spectra of
LiTFSI (cf. Figure S7) indicate no other species present in the electrolyte than the bis(trifluoromethane)
sulfonimide lithium salt. F 1s and P 2p single peaks indicate mostly intact LiPF6-anions in the LP30.

All elemental ratios of LiTFSI and LiPF6 electrolytes calculated from the quantified XPS data
are summarized in Table 4. The Li:F elemental ratios of 2:1 (LiPF6) and 2.3:1 (LiTFSI) indicate that
lithium is enriched at the surface of both electrolyte liquids under the applied measurement conditions.
The carbonate solvent contribution to the survey scans gives C:O ratios of 1:1 (LiPF6) and 1:1.5 (LiTFSI),
which are quite close to the expected values of 1:1 (LiPF6) and 1:1.3 (LiTFSI) as calculated from
stoichiometry. The LiTFSI concentration on the liquid surface appears to be higher than the nominal
one as determined from the CF3 to C-O ratio in C 1s spectra yielding a TFSI to PC ratio of 1 to 8
compared to the expected ratio of 1 to 12. Similar findings were reported earlier by Maibach et al. [16]
using the hanging droplet method.

Table 4. Elemental ratios of electrolyte components in LiTFSI and LiPF6.

Sample Element Experimental Ratio Stoichiometry

LiTFSI N:S:F:Li 1:3.5:6.25:14.5 1:2:6:1
LiPF6 P:F:Li 1:2:4 1:6:1

High-resolution F 1s and P 2p spectra of LiPF6 are shown in Figure S1 (Supplementary Material).
The quantitative analysis of the peak areas suggests a P to F ratio of 1 to 2 which is considerably less
than the 1 to 6 ratio expected from LiPF6 stoichiometry. These findings in the liquid PF6 electrolyte
are in contrast to earlier observations made on residual electrolyte components in SEI layers on dried
electrode surfaces where the phosphor is often depleted [28,29].

The results of these first tests with LiTFSI in PC correspond well with previous results from the
hanging static droplet experiments using synchrotron radiation NAP-XPS.

4. Conclusions

New possibilities for studying lithium-based electrolytes with a laboratory NAP-XPS system are
presented using one model and one commercial electrolyte example. The special design of the used
laboratory NAP-XPS machine (EnviroESCA) enables a simple experimental set up with easy handling
and operation due to a horizontal semi-static droplet design with a sufficient volume to investigate
Li-ion battery systems under realistic working conditions.

In the first set of experiments, we studied the commonly used LP30 electrolyte (LiPF6 in EC/DMC)
and found a useful fitting approach to interpret the elemental core-level spectra, especially C 1s
and O 1s.

Then we proceeded with a model V2O5 cathode placed in battery grade LiPF6 electrolyte to
illustrate the capabilities of NAP-XPS for studying surface reactions at the solid-liquid interphase.
It was also possible to probe different environments such as gas, liquid, and solid-phase during the same
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experiment. As a direct consequence, we were able to observe the surface reactivity of the V2O5 single
crystal with Li+ containing electrolyte by a reduction of the V-oxidation state (V5+-> V4+). The presence
of lithium at the crystal surface indicated the formation of LixV2O5 due to lithium incorporation.

Additional tests with a model electrolyte composed of LiTFSI in PC showed very good agreement
with earlier results from synchrotron and in-house NAP-XPS using a hanging version of the static
droplet design.

In contrast to those studies, we worked with much larger volumes of electrolyte. Thus, solvent evaporation
during the analysis is uncritical at the used working pressure and droplet stabilization with background gas is
not necessary. Additionally, accidental falling down of the hanging droplet is avoided. The electrolyte can be
measured as is immediately in a horizontal arrangement. Furthermore, a laboratory NAP-XPS circumvents
limited access to synchrotron facilities.

The possibility to extend this set up easily with additional electrodes, electrochemical cells,
liquid flow, and other devices will help to further promote operando NAP-XPS studies of Li-ion
batteries and other electrochemical systems in general.

Current work in progress aims to study lithium-ion batteries under working conditions with
applied potentials to get a deeper insight into the real nature of the solid-electrolyte interphase on the
negative electrode. A special focus lies on in situ studies of LiTFSI and PC decomposition in contact
with the electrodes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/11/1056/s1,
Figure S1: F 1s and P 2p core-level spectra of LP30 electrolyte and in contact with a V2O5 single crystal at 10
mbar, Figure S2: F 1s and P 2p core-level spectra of the immersed V2O5 single crystal after cleaning with EtOH,
Figure S3. V 2p core-level spectra of a pristine V2O5 single crystal and in contact with the LP30 electrolyte at
10 mbar, Figure S4: Li 1s core-level spectra of the V2O5 single crystal after immersion in LP30 electrolyte and
cleaning with EtOH, Figure S5: P 2p core-level spectrum of LP30 electrolyte at 10 mbar, Figure S6: Decrease of
the O2 peak at ~538eV in the O 1s core-level spectra of LiTFSI electrolyte, initially and after 40 min at 1 mbar,
Figure S7: Li 1s, S 2p, and N 1s core-level spectra of LiTFSI in PC electrolyte at 2 mbar, Figure S8: Survey spectra
and quantification results after carbon contamination correction of the pristine V2O5 single crystal and after
immersion in LiP306 electrolyte and cleaning with EtOH.
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