
Integration of Static and Dynamic Analysis
Techniques for Checking Noninterference

Bernhard Beckert1, Mihai Herda1[0000−0002−0142−1718],
Michael Kirsten1?[0000−0001−9816−1504], and Shmuel Tyszberowicz2

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2 Afeka Academic College of Engineering, Tel Aviv, Israel
{beckert, herda, kirsten}@kit.edu, tyshbe@tau.ac.il

Abstract. In this article, we present an overview of recent combinations
of deductive program verification and automatic test generation on the
one hand and static analysis on the other hand, with the goal of checking
noninterference. Noninterference is the non-functional property that cer-
tain confidential information cannot leak to certain public output, i.e.,
the confidentiality of that information is always preserved.
We define the noninterference properties that are checked along with the
individual approaches that we use in different combinations. In one use
case, our framework for checking noninterference employs deductive ver-
ification to automatically generate tests for noninterference violations
with an improved test coverage. In another use case, the framework
provides two combinations of deductive verification with static analysis
based on system dependence graphs to prove noninterference, thereby
reducing the effort for deductive verification.

Keywords: Information-Flow Security · Deductive Verification · Soft-
ware Testing · Program Slicing

1 Introduction

Generally, software developers primarily focus on functional requirements, even
though non-functional requirements should also be at the center of attention.
One paramount non-functional requirement is confidentiality. In this article, we
target the preservation of confidentiality by the requirement that illegal infor-
mation flow shall be avoided, i.e., we want to prevent situations where high
(confidential) input leaks to low (public) output. This property is known as
noninterference [14]. Intuitively, it requires that high input cannot interfere with
low output. Thus, by observing the program’s output, one cannot distinguish be-
tween different high inputs, i.e., if a program is executed twice with different high
inputs but identical low inputs, then an attacker will observe identical behaviors
(an attacker can observe low but not high information). Various approaches and
tools for checking noninterference exist. Some have a high degree of automation,

? Corresponding author



2 B. Beckert, M. Herda, M. Kirsten, and S. Tyszberowicz

yet produce many false alarms due to an over-approximation of the possible
flows of information in the program. Others are more precise, but require more
effort and user interaction. Approaches that are based on System Dependence
Graphs (SDGs) syntactically compute the dependencies between the program’s
statements and check whether the low output potentially depends on the high
input (see, e.g., Hammer and Snelting [18]). Whereas such approaches scale
very well, they over-approximate the actual dependencies in a program, and
may yield false alarms. Logic-based approaches (see, e.g., Beckert et al. [7] and
Greiner and Scheben [32]) have a higher precision (i.e., they produce less false
alarms), since they more precisely analyze the concrete semantics of the pro-
gram statements. However, they have a lower scalability. In these approaches,
one tries to formally prove that the terminating states of two arbitrary execu-
tions of the same program are low-equivalent (i.e., the low parts of the states
have the same values), assuming that the two initial states are low-equivalent.
False alarms only occur when the system fails to find a proof in the allotted time
even though the proof obligation is valid. Since verifying noninterference using
logic-based approaches requires to compare two program executions simultane-
ously, a quadratic number of program paths must be considered compared to
functional verification. Approaches for test generation also require a quadratic
number of test cases to achieve the same coverage as for a functional property.

In this article, we present an overview of recent combinations [6, 21, 22] of
deductive program verification with automatic test generation on the one hand
and static analysis on the other hand, with the goal of checking noninterfer-
ence. The resulting Noninterference Framework can be used both for proving
that a given program fulfills a given noninterference property and, also, for find-
ing a counterexample that demonstrates a noninterference violation in case the
noninterference property is not fulfilled. For the task of proving noninterference,
the framework combines deductive program verification with static analysis, two
complementary approaches with respect to precision and scalability, and thereby
reduces the effort for the deductive verification. The task of finding counterexam-
ples is achieved by combining deductive program verification with automatic test
generation in order to improve the computation of the achieved test coverage.
For a more extensive framework description, we refer to Herda [20].

The rest of this article is structured as follows. In Section 2, which is based
on Herda et al. [21], we define the noninterference properties that are han-
dled with the framework. In Section 3, which is based on Ahrendt et al. [4],
Beckert et al. [6], and works by Herda et al. [21, 22], we present the used ap-
proaches. We provide an overview of the framework in Section 4, which is based
on Herda [20]. Section 5, which is based on Herda et al. [21], presents an approach
which uses deductive verification for automatic test generation. In Sections 6
and 7, which are based on Herda et al. [22] and Beckert et al. [6] respectively, we
consider two approaches which combine SDG-based and logic-based approaches
for proving noninterference. We discuss implementation aspects of the two com-
binations in Section 8, which is based on previous works [6,20]. In Section 9, we
present related work. Finally, we conclude in Section 10.



Static and Dynamic Techniques for Checking Noninterference 3

2 Information Flow Security

In this section, which is based on Herda et al. [21], we formally define the non-
interference properties that can be checked by the Noninterference Framework.
In this article, we consider only sequential and terminating programs. We intro-
duce the low-equivalence relation ∼L that characterizes program states that are
indistinguishable for an attacker with respect to a set L of low variables, where
a program state s is an assignment of values to variables. We assume that the
input of a program is included in the program’s prestate and that the output of
a program is part of the program’s poststate. Hence, we define low-equivalence
(Definition 1) and thereby noninterference (Definition 2) as follows:

Definition 1 (Low-equivalent states). Two states s1, s2 are low-equivalent
with respect to the set L of all low variables if and only if they assign the same
values to low variables:

s1 ∼L s2 ⇔ ∀ v ∈ L (vs1 = vs2) ,

where vsi denotes the value of the variable v evaluated in state si.

Definition 2 (Classical noninterference). A program P is noninterferent
if and only if, for any two initial states s1 and s2, the following holds:

s1 ∼L s2 ⇒ s′1 ∼L s′2
where s′1, s′2 are poststates after executing P in s1 and s2, respectively.

The classical noninterference property, as presented in Definition 2, requires that
any two executions of the program that start in two states which are indistin-
guishable for the attacker will also terminate in two indistinguishable states. If
this holds, then it is guaranteed that the high values of the prestates cannot
influence the low values of the poststates.

This property, however, is often too strong for cases where it is acceptable
that the attacker sees parts of the high values. A classical example is a login
system in which an attacker can try out different combinations of user names and
passwords. While the system does not immediately leak the user’s password, an
attacker can check whether particular combinations are correct, and thus obtain
information about sensitive data. To allow such a case, albeit still forbidding
cases in which the system outright leaks sensitive information to the attacker,
we define (see Definition 3) the notion of noninterference with declassification
(i.e., giving the attacker access to parts of the high information). For this, let
expr be an expression in first order logic describing the high information that an
attacker is allowed to know (we denote expr ’s evaluation in a state s by exprs).

Definition 3 (Noninterference with declassification). Given a declassifi-
cation expression expr , a program P is noninterferent if and only if we have for
all initial states s1, s2 that

s1 ∼L s2 ∧ exprs1 = exprs2 ⇒ s′1 ∼L s′2 ,

where s′1, s′2 are the final states after executing P in s1 and s2, respectively.



4 B. Beckert, M. Herda, M. Kirsten, and S. Tyszberowicz

For object-oriented programs, it is too restrictive to require that all low variables
and heap locations are equal for the final states to be low-equivalent. Consider the
case of programs that create new object references: a program will not necessarily
create the same reference for different executions, even for exactly the same
input. Beckert et al. [7] have developed a variation (Definition 4) of classical
noninterference using a semantics that is based on an object isomorphism.

Definition 4 (Low-equivalence with isomorphism). Two states s1, s2 are
low-equivalent if and only if

s1 ∼πL s2 ⇔ ∀ v ∈ L (π(vs1) = vs2) ,

where π is a bijective function on heap locations.

We assume that an attacker cannot see the exact reference address of an object
and can compare object references only for equality (e.g., with the Java ==
operator). Thus, if the object structures in the two poststates are isomorphic,
the attacker obtains the same results when comparing the object references for
equality. Note that the properties from Definitions 3 and 4 can be combined in
order to obtain noninterference with isomorphism and declassification.

3 Approaches of the Noninterference Framework

This section presents the approaches in the Noninterference Framework. We
present SDG-based approaches (using Herda et al. [22]) in Section 3.1, logic-
based approaches (using previous works [6,21]) in Section 3.2, and automatic test
generation based on symbolic execution (using Herda et al. [21]) in Section 3.3.

3.1 SDG-based Approaches

While the concepts of Program Dependence Graphs (PDG) [13] and System De-
pendence Graphs (SDG) [23] have been developed during the eighties, their use-
fulness in the context of information flow security has been first noticed by Snelt-
ing [34] in the nineties. Without loss of generality, we use the JOANA tool [18] to
explain the functionality of an SDG-based analysis. SDG-based information-flow
analyses are purely syntactic, highly scalable, and sound. However, some of the
reported noninterference violations may be false alarms. The desired noninterfer-
ence property (as in Definition 2) is specified by annotating which program parts
correspond to high information as well as the parts where low output occurs.
JOANA automatically builds an SDG from these annotations.

The resulting SDG is a directed graph consisting of interconnected PDGs,
where each PDG represents a single program procedure in the form of a directed
graph. Nodes in the SDG represent program statements, conditions, or input
parameters, and edges represent dependencies between the nodes (i.e., there is
an edge between two nodes if and only if the value or execution of one node may
depend on the outcome of the other node). Whether there is an edge between
two nodes in the SDG, is determined syntactically by analyzing the control-flow
graph of the program. There are three main types of edges in an SDG:



Static and Dynamic Techniques for Checking Noninterference 5

1. data dependency edges, which represent possible direct dependencies,
2. control dependencies, which represent possible indirect dependencies, and
3. interprocedural dependencies, which represent dependencies between nodes

in different PDGs.

Formal definitions for the three types of dependencies can be found in Ham-
mer [17, Chapter 2]. In the following, we give informal definitions. A node n′ is
data-dependent on a node n iff there is a program variable v that is used in n′
and defined in n, and there is a path from n to n′ in the Control Flow Graph
(CFG) such that v is not redefined on any node between n and n′ on that path.
A node n′ is control-dependent on a node n iff the choice of the outgoing edge
from n in the CFG determines whether node n′ is reached. Note that it is gen-
erally undecidable whether a CFG path represents an actual execution path in
the program, i.e., some paths in the CFG may represent executions that cannot
actually take place. Hence, the CFG is an over-approximation of the actual pro-
gram behavior. Since the dependencies are defined using CFG paths, they are
also an over-approximation of the actual dependencies in the program.

Method calls are represented by special formal-in and formal-out nodes in
the SDG. Formal-in nodes represent direct inputs that influence the method
execution. These can be input parameters, used fields, other classes called dur-
ing execution, or the class in which the method is executed. Formal-out nodes
represent the influence of the method and can represent the method’s return
value, global variables, fields in other classes, or exceptions. At each method call
site, there are actual-in nodes representing the arguments and actual-out nodes
representing the return values. For a given method site, each actual-in node cor-
responds to a formal-in node of the called method and each actual-out node
to a formal-out node. Interprocedural dependencies connect actual-in nodes to
the corresponding formal-in nodes, and formal-out nodes to the corresponding
actual-out nodes. For every method call, there are also so-called summary edges
in the SDG from any actual-in to any actual-out node of the method for which
the tool finds a possible information flow from the corresponding formal-in to
the corresponding formal-out node of the called method.

JOANA detects illegal information-flows through graph analysis, using a spe-
cial form of conditional reachability analysis, so-called (back- and forward) slic-
ing and chopping, at the SDG level. A forward slice of a node s consists of all
SDG-nodes that can be reached from s. Conversely, a backward slice of a node s
consists of all nodes on SDG paths ending in s. A chop from a node s to a node t
consists of all nodes on paths from s to t in the SDG and is commonly computed
by first calculating the backward slice for t, and then computing the forward
slice for s within the subgraph induced by the backward slice. JOANA reports
a security violation whenever there exists a path from a node in the SDG that
is annotated as high to a node annotated as low (i.e., when the chop of these
two nodes is not empty). Wasserrab and Lohner [36] proved that no potential
flow of information is missed, i.e., that JOANA is sound. Since the dependencies
modeled in the SDG are in fact over-approximations of actual dependencies in
the program, the program is guaranteed to be noninterferent if no SDG path



6 B. Beckert, M. Herda, M. Kirsten, and S. Tyszberowicz

from a high input to a low output is found. However, the program may still be
noninterferent, even though there is a path from a high input to a low output.

3.2 Logic-based Approaches

Logic-based information-flow analysis takes the semantics of the program lan-
guage into account. The semantics of modern program languages provide a high
degree of expressiveness, which becomes important for analysis to deal with
sources for illegal information-flow leaks which possibly exploit features of the
program semantics. Logic provides a means for formalizing such features, and
enables reasoning about their effects on any program variables or locations.

Dynamic logic [8] can express the functional property of partial correctness
of a program P for a precondition φ and a postcondition ψ by the formula
φ →

[
P
]
ψ. This means that ψ holds in all possible states in which P termi-

nates. Since we analyze only deterministic programs, this means that either P
terminates and ψ holds afterwards, or the program never terminates. Applying
a logical calculus with a deductive theorem prover (e.g., KeY [3]), we can sym-
bolically execute P and attempt to prove this formula. KeY allows for proofs
of functional properties specified with the Java Modeling Language (JML) [27].
Furthermore, KeY has been extended to support the verification of noninterfer-
ence for sequential programs [31,32]. The classical proof obligation (Definition 2)
requires that two program runs that start in low-equivalent states will also ter-
minate in low-equivalent states, i.e., given (simplified) in dynamic logic:

(
([P ] out l

.
= outAl )︸ ︷︷ ︸

Execution A

∧ ([P ] out l
.
= outBl )︸ ︷︷ ︸

Execution B

)
→
(
(inAl

.
= inBl )→ (outAl

.
= outBl )︸ ︷︷ ︸

Low-equivalent prestates imply
low-equivalent poststates

)

In the above proof obligation, the placeholder out l represents the low output
of program P . On the left hand side of the main implication, the proof obligation
contains two executions of P : execution A, after which the low output out l is
equal to outAl , and execution B, after which the low output is equal to outBl .
On the right hand side of the main implication, the proof obligation contains
an implication stating that, if the two low inputs inAl and inBl are equal, then
the low outputs outAl and outBl are equal as well. To support declassification as
defined in Definition 3, the second implication of the proof obligation requires
additionally that the declassified expressions are equal in the prestates of the two
executions. To support object isomorphism as defined in Definition 4, the second
implication of the proof obligation is enhanced with the predicate newObjIso:

(inAl
.
= inBl )→

(
newObjIso(N, hA, hB) ∧ (NA .

= NB → outAl
.
= outBl )

)
The predicate newObjIso accepts as parameters a list N of reference type ex-
pressions and the two heaps hA and hB that represent the two poststates of
executions A and B. The predicate holds under the following three conditions:



Static and Dynamic Techniques for Checking Noninterference 7

1. Every reference expression in N is newly created in the poststates of both
executions (A and B) of P .

2. Every reference expression in N has the exact same type in the post states
of executions A and B.

3. If two reference expressions in N are equal in the poststate of one execution
(A or B), then they must be equal in the poststate of the other execution.

These requirements ensure that the reference expressions in N are isomorphic in
both poststates. If the reference expressions in N fulfill the newObjIso predicate,
the proof obligation no longer requires their equivalence in the two poststates
(this relaxation is done with the second implication). Note that the user-provided
list N must also be part of the noninterference specification, in addition to the
variables that must be low-equivalent before and after both executions.

3.3 Automatic Test Generation

On top of the deductive theorem prover and its calculi for finding functional (or
non-functional, see Section 3.2) proofs, KeY was extended with an automatical
test generation for functional properties [12]. In this section, which is based
on [4], we give an overview of KeYTestGen, the current extension of KeY for
automatic test generation. KeYTestGen uses symbolic execution and attempts
to generate a test suite that achieves a high path coverage. In the following, we
present the three steps taken by KeYTestGen to automatically generate tests.

Step 1: Constraint generation. The input to KeYTestGen is a Java method under
test (MUT), together with a specified functional property. KeYTestGen loads the
proof obligation for the specified MUT and symbolically executes the program.
The Java code is transformed into updates, which are a compact representation
of the statements’ effects. Case distinctions (including implicit ones such as, e.g.,
whether or not an exception is thrown) in the program are reflected as branches
of the proof tree. The symbolic execution is bounded by a number b provided
by the user. Hence, loops in the program are unwound a maximum of b times.
Each branch in the obtained proof tree represents a b-path (i.e., a path that
goes through each cycle at most b times) in the CFG. At the end of the symbolic
execution, a model of a leaf of the tree is both a model of the precondition and
of the path condition of the b-path that corresponds to that proof tree branch.

Step 2: Test data generation. For generating a test, we first produce a concrete
test input s which satisfies the test data constraint (i.e., a path condition together
with the specification’s precondition) obtained from the first step. For finding
such models, we use the SMT solver Z3 [29]. The constraints from step 1 are
translated from KeY’s Java first order logic [33] into the SMT-LIB 2 language [5]
to be processed by Z3. The translation uses bounded data types (i.e., each data
type only has a bounded number of instances), so that the SMT solver can find
models much faster, but potentially misses some models for too small bounds.



8 B. Beckert, M. Herda, M. Kirsten, and S. Tyszberowicz

Step 3: Code generation. In the third and final step, the JUnit test cases are
generated. Each test case consists of a test preamble, a call of the MUT, and a
call of the test oracle. The test preamble prepares the inputs for the MUT call,
which are taken from the model found in the previous step. The MUT call in
the test case is the same as in the proof obligation. The generated test oracle is
a boolean method that checks the postcondition after the MUT was executed.
Hence, each test suite contains only one oracle method for all test cases.

4 The Noninterference Framework

Dependency
Analysis

Automatic Test
Generation

Deductive
Theorem Proving

Exclude 
Infeasible Paths

(Section 5)

Noninterference
Guarantee

Test Suite
Test Coverage

Counterexample

Reduce

Over-approximation

(Section 7)

Simplify Program
Exclude Paths
(Section 6)

Noninterference
 Framework

Program

Noninterference
Property

 

Figure 1: The Noninterference Framework

In this section, which is based on Herda [20], we present a framework (il-
lustrated in Figure 1) for checking noninterference properties. The framework
combines multiple contributions (presented in Sections 5 to 7) to the area of
information-flow security. We provide a short overview of the framework and
show how its individual approaches are integrated and cooperate. The framework
encompasses the following three approaches: (1) dependency analysis, (2) deduc-
tive theorem proving, and (3) automatic test generation. Each of these methods
has its strengths and weaknesses. By integrating them, the framework uses their
strengths to mitigate their weaknesses. The framework handles the following
two use cases. In the first one, the analyzed program does not fulfill the speci-
fied noninterference property, and the user is looking for a counterexample that
showcases the noninterference violation. For this case, the framework provides
an approach for automatic test generation, aiming to find noninterference viola-
tions. In the second case, the specified noninterference property is fulfilled by the
analyzed program, and the user attempts to prove this property. For this case,
the framework combines deductive theorem proving with dependency analysis.
In the following, we give an overview of the contributions for the two use cases.



Static and Dynamic Techniques for Checking Noninterference 9

4.1 Finding Noninterference Counterexamples

For the case in which the user tries to find a noninterference violation, the frame-
work provides an approach to automatically generate tests for noninterference
properties, which is presented in Section 5. The approach serves two purposes.
First, we can search for counterexamples of the analyzed noninterference prop-
erty. If such a counterexample is found, the user gets two program inputs that
are indistinguishable to the attacker but lead to two different low outputs, thus
demonstrating a noninterference violation. Second, we can generate a noninter-
ference test suite that achieves a certain test coverage. This is useful in the event
that neither the program could be proved correct nor a counterexample could
be found. Then, the user is provided with a test coverage value, which helps to
assess the strength of the generated tests. The test generation approach uses
deductive program verification to remove infeasible program execution paths
from the test generation and from the computation of the achieved coverage.
As shown in Section 6, the test generation also uses the results provided by the
SDG-based analysis for removing parts of the program which are not relevant
to the analyzed noninterference property.

4.2 Proving Noninterference

In case a user tries to prove that a given program fulfills a specified noninterfer-
ence property, the framework combines two existing approaches: (1) dependency
analysis (i.e., an SDG-based approach, see Section 3.1) and (2) deductive theo-
rem proving (i.e., a logic-based approach, see Section 3.2). In order to make use
of the advantages of both SDG-based and logic-based approaches, the framework
combines these approaches in two ways. In the first combination, as presented
in Section 6, the SDG-based approach is used to simplify the noninterference
proof obligations for the deductive program verification. Those parts of the pro-
gram that the SDG-method deems irrelevant to the noninterference property are
removed before the program is analyzed with the logic-based approach. In the
second combination, as shown in Section 7, the logic-based approach is used to
increase the precision of the SDG-based approach by identifying certain SDG
dependencies that are over-approximations and removing their corresponding
edges from the SDG. Both combinations can be joined, i.e., the program simpli-
fication from Section 6 can be applied to simplify the deductive proof obligations
for showing that a program dependency is over-approximated.

5 Test Generation for Noninterference Properties

This section presents the part of our Noninterference Framework that handles
programs that violate the given noninterference property. We extend the ap-
proach for automatic test generation described in Section 3.3 to support the
properties defined in Section 2. For a more extensive description of the auto-
matic test generation, we refer to Herda et al. [21], on which this section is



10 B. Beckert, M. Herda, M. Kirsten, and S. Tyszberowicz

based. In Section 5.1, we show how the properties from Section 2 can be tested.
in Section 5.2, we explain how such tests are generated automatically. Finally,
we extend existing coverage criteria such that they can be used for the generated
noninterference test suites in Section 5.3.

5.1 Noninterference Tests

We begin by defining noninterference tests suitable for testing classical nonin-
terference from Definition 2 by adapting functional tests from Ahrendt et al. [4].

A noninterference test can formally be described as a tuple 〈s1, s2, Or〉, con-
sisting of two prestates representing test inputs s1 and s2, and an oracle func-
tion Or. The two prestates s1 and s2 are required to be low-equivalent according
to either Definition 1 or 4. The oracle function Or(s′1, s′2) 7→ {pass, fail} checks
whether the two poststates are low-equivalent. Thus, in order to perform a nonin-
terference test, we execute the MUT twice, with inputs in1 and in2, respectively
(see Listing 1). Moreover, for a valid noninterference test, we require the two gen-
erated inputs to be low-equivalent. The oracle function then checks whether the
two outputs, out1 and out2, are also low-equivalent.
1 testMUT() {
2 in1 = generateInput(); // Execution 1 preamble
3 out1 = executeMUT(in1); // MUT call 1
4 in2 = generateLowEqInput(in1); // Execution 2 preamble
5 out2 = executeMUT(in2); // MUT call 2
6 oracle(out1,out2); // Oracle call #
7 }

Listing 1: Structure of a noninterference test

In order to check the noninterference properties from Section 2, we define
the semantics for the functions generateLowEqInput and oracle from List-
ing 1 as follows: For the noninterference property from Definition 2, the method
generateLowEqInput generates a second input that is low-equivalent accord-
ing to the relation ∼L from Definition 1. The method oracle checks whether
the two outputs are low-equivalent. For the property provided by Definition 3,
generateLowEqInput generates a second input such that the two prestates are
low-equivalent and, moreover, the results from evaluating the given expression
in the two prestates are identical. The oracle function again checks the low-
equivalence. Finally, for the property given by Definition 4, generateLowEqInput
and oracle use the low-equivalence relation with isomorphism ∼πL.

5.2 Automatic Test Generation

We describe the approach for generating test suites for a given MUT and a
specified noninterference property as defined in Section 2 by extending the ap-
proach for automatic test generation from Section 3.3. The main difference to
functional properties is that two related program runs are necessary. The test
generation approach offers two options that yield the following two scenarios:
With the first option, the user searches for noninterference violations. In this



Static and Dynamic Techniques for Checking Noninterference 11

case, the constraints that are passed on to the model generator require the two
poststates to be non-low-equivalent (i.e., to demonstrate a noninterference vio-
lation). This first option is useful in the event that the user has failed to prove
that the program is noninterferent and suspects that the program violates the
property. With the second option, the user generates a noninterference test suite
with a high test coverage. In this case, the constraints do not restrict the post-
states in any way. The second option is useful for finding errors given that both
verification and counterexample generation have failed. Moreover, generating a
high-coverage test suite is useful for finding violations introduced by the oper-
ating system or by the compiler. The coverage of the generated test suite can
increase the user’s confidence in the correctness of the program. The approach
for automatic test generation works in three steps as described in the following.

Step 1: Constraint generation. The MUT specified with a noninterference prop-
erty is loaded into KeY and symbolically executed (Section 3.3). At the end of the
bounded symbolic execution, we obtain a proof tree where each leaf contains a
pair of path conditions, one for each program execution. Thus, a model that sat-
isfies the formulas in a leaf is also a model for the two path conditions represented
by the leaf, and for the requirements that the prestates are low-equivalent and
the poststates are non-low-equivalent. With the second option, the constraint
requiring that the poststates violate the low-equivalence requirement is ignored.

Step 2: Test data generation. For test data generation, we can reuse the SMT-
translation used to generate tests for functional properties (see Section 3.3). This
step can also generate models that fulfill the declassification expressions and thus
supports noninterference with declassification (see Definition 3).

Step 3: Code generation. As shown in Listing 1, a noninterference test contains
two preambles and two calls of the MUT. For each call, an input configuration
is set up and—after the second MUT call—the test oracle is called to decide
whether the test was successful or not. For the two preambles, we create two
isomorphic input states by duplicating the objects and values from the model.
Thereby, we avoid that the second MUT execution affects the first MUT execu-
tion’s results. The MUT and its surrounding code are taken from the JavaDL
modality in the root node of the proof tree. It is important to use the surrounding
code—rather than just the MUT’s invocation—to ensure semantic equivalence
of the actual and the symbolic execution of the code. The surrounding code typ-
ically consists of a try/catch block which allows the test oracle to decide what to
do when an exception is thrown. Each test suite contains only one oracle method
that is used for all tests. The oracle checks equality for low variables of prim-
itive type and isomorphism for reference type variables. For references created
during the MUT execution, the requirements of newObjIso (see Section 3.2) are
checked. However, for references created in one of the preambles, only the second
and third requirements of newObjIso are checked.



12 B. Beckert, M. Herda, M. Kirsten, and S. Tyszberowicz

5.3 Coverage Criteria

We extend existing test coverage definitions in order to make them suitable for
measuring the coverage of noninterference test suites, and we discuss the cov-
erage provided by the test suites generated with our approach. Well-established
coverage criteria such as statement, branch, and path coverage are defined on the
CFG. Full statement coverage of a test suite requires each node in the CFG to
be traversed during the execution of the test suite, whereas full branch coverage
requires each edge to be traversed, and for full path coverage, each path must
be traversed. In order to extend these coverage criteria to the noninterference
test suites defined in this paper, we no longer use the standard CFG, but rather
the self-composed CFG, to define the notions of relational statement, branch
and path coverage. The self-composed CFG consists of two copies of the MUT’s
CFG, with renamed variables and with a directed edge from the end node of the
first copy to the start node of the second copy.

Since a CFG may contain loops, the number of paths is possibly infinite.
Hence, we only count b-paths (i.e., paths which pass through each cycle at most
b times) on the self-composed CFG, and define the relational bounded path cov-
erage criterion as #(covered b-paths) /#(b-paths). Our approach explicitly pro-
vides the required values for this coverage criterion: the number of generated tests
represents the number of covered b-paths, while the number of leaves of the proof
tree represents the total number of b-paths in the self-composed CFG. One prob-
lem with the relational bounded path coverage criterion is that typically a large
portion of the program execution paths in the self-composed CFG are infeasible
(i.e., the path condition for that execution path is unsatisfiable). It is generally
undecidable whether a path is infeasible or not. Hence, if our test suite has a low
coverage, we cannot know whether the paths for which no test was generated are
infeasible or whether, given more time, our approach would be able to generate
tests for those paths. For noninterference properties, the low-equivalence require-
ment for the two inputs may cause certain paths in the self-composed CFG to
be infeasible. A more useful criterion is therefore the relational bounded feasible
path coverage, defined as #(covered b-paths) /#(feasible b-paths) on the self-
composed CFG. Even though we cannot compute the exact number of feasible
b-paths, we can use the theorem prover to show that certain paths are infeasible,
and the remaining paths—that could not be proved infeasible—constitute an
over-approximation of the feasible b-paths. This over-approximated number is
used to compute an under-approximation of the relational bounded feasible path
coverage for a generated test suite.

An evaluation [21] done on a collection of benchmarks [16] containing both se-
cure and insecure programs shows that relational bounded feasible path-coverage
is an appropriate coverage criterion for noninterference properties: for high cov-
erage values, we either find no violations for the secure programs or find at least
one violation for most insecure programs.



Static and Dynamic Techniques for Checking Noninterference 13

6 Simplifying Programs for Testing and Verification

This section presents an approach which, given a program and a noninterference
property, uses an SDG-based analysis to generate a simplified version of the orig-
inal program. The simplified program is noninterference-equivalent (with respect
to the given property) to the original program, and can be analyzed with a sec-
ond, more precise approach. We use the logic-based approach (see Section 3.2)
and automatic test generation (see Section 5) as a second approach. Thus, the
simplification approach is used by our framework to simplify both searching for
counterexamples and proving the property. For a more extensive description of
the approach, see Herda et al. [22], on which this section is based. Section 6.1
presents an illustrative example that is also used in Section 7, Section 6.2 explains
how simplified programs are generated, and Section 6.3 presents the advantages
of the simplified programs for verification and test generation.

6.1 Running Example

Consider the method secure in Listing 2 with the parameter high as secret
input and the method’s result value as public output. Since the result value does
not depend on the value of high, the method is noninterferent—which can be
proven using deductive verification.

1 int secure(int high, int low) {
2 if (low == 5) {
3 low = identity2(low, high);
4 } else {
5 if (low == 2) {
6 low = identity1(low, high);
7 } else {
8 low = identity2(low, high);
9 }

10 }
11 return low;
12 }

13 int identity1(int low, int high) {
14 low = low + high;
15 low = low - high;
16 return low;
17 }
18
19 int identity2(int low, int high) {
20 return low;
21 }

Listing 2: Running example

The corresponding proof must handle nine symbolic execution paths: follow-
ing Definition 2, we need to analyze two program runs, for each of which we
distinguish three different cases, namely that the value of the parameter low is
(a) 5, (b) 2, or (c) any other value. For this example, SDG-based techniques for
checking noninterference will report a possible noninterference violation, as the
called method identity1 contains a syntactic dependency between its result
value (that is assigned low afterwards) and the parameter high. This depen-
dency, however, only affects the path for which the initial value of low is 2.
Hence, the other two execution paths can be guaranteed to be noninterferent by
the SDG-based approach.



14 B. Beckert, M. Herda, M. Kirsten, and S. Tyszberowicz

Figure 2: The SDG for the running example

6.2 Generation of the Simplified Program

In the following, we explain how we can simplify the program from Listing 2
in order to reduce the verification and testing effort. As seen in Section 3.1,
SDG-based analyses are purely syntactic, highly scalable, and sound, but some
of the reported violations may be false positives. However, even if there are
false warnings, the SDG-based analysis allows to exclude execution paths and
statements that are guaranteed not to affect have any effect on noninterference.



Static and Dynamic Techniques for Checking Noninterference 15

A further analysis then only needs to deal with those parts of the program that
can potentially lead to an illegal leak according to the SDG-based analysis.

Figure 2 shows the SDG generated by JOANA for the method secure in the
running example from Listing 2. The dependencies inside the three calls of the
methods identity1 and identity2 are hidden, and only the method call nodes
are shown. We use this simplification also in the following for describing paths in
the SDG. Therein, node 58 represents the parameter high of the method secure,
and node 55 the method’s exit node. The two nodes are annotated as high and
low, respectively. JOANA reports a security violation that contains an SDG
path from the parameter high to the result value of the method secure, but
successfully determines that there is no dependency between the parameter high
and the result value of the two calls to the method identity2. Since the edges
in the SDG represent all syntactical dependencies, JOANA cannot show the
same for the call of identity1. Therefore, the SDG path 58 → 69 → 82 → 55
is reported as possible violation (the numbers correspond to the node ids in
Figure 2). For the two execution paths where identity2 is called, the absence
of any illegal information flow is shown, and thus their analysis with the second,
more precise, approach can be skipped.

Hence, we create a simplified program by excluding the parts already proved
secure by JOANA. A simplified program is based on the backward slice of the
low output and excludes some execution paths. We determine which paths to
exclude by analyzing both the SDG of the entire program and the chop, to decide
whether a branching node (e.g., a node representing an if-statement) must be
true or false for an illegal information flow to occur, based on Definition 5.

Definition 5 (Analysis of branching nodes). Let nb be a conditional branch-
ing node in the backward slice with some node nl corresponding to the low out-
put. Let Ntrue be the set of successor nodes following the true branch of nb in
the CFG, and let Nfalse be the successor nodes following the false branch in the
CFG. We define nb to be a condition that must be true if the analyzed chop
C(nh, nl) contains nodes from Ntrue and no nodes from Nfalse. Conversely, nb is
defined as a condition that must be false if the chop contains nodes from Nfalse
and no nodes from Ntrue.

Consequently, given a high input and a low output corresponding to the SDG
nodes nh and nl, respectively, and a branching node nb that must be true (resp.
false), any execution path of the original program on the false (true) branch
of nb will not lead to an illegal information flow from nh to nl. This allows us to
exclude the execution paths that do not lead to an illegal information flow from
the further analysis with a second approach. We exclude these paths by adding
a special statement that disrupts the symbolic execution at the beginning of a
false branch for a branching statement that must be true and at the beginning of
a true branch for a branching statement that must be false. When the program is
symbolically executed for verification and we reach a disruptive statement, the
proof closes automatically for that branch. The test generation also immediately
halts for that path once the symbolic execution reaches a disruptive statement.
We can now define the simplified program by Definition 6 as follows.



16 B. Beckert, M. Herda, M. Kirsten, and S. Tyszberowicz

Definition 6 (Simplified program). Let nh and nl (corresponding to a high
input and a low output, respectively) be two nodes in the SDG of a program P .
The simplified program PS consists of the following statements:
1. all statements whose SDG-nodes are in the backward slice Sbw(nl),
2. disruptive statements on branches that cannot lead to an illegal information

flow (according to Definition 5).

As shown in Herda et al. [22], the simplified program generated according
to Definition 6 is noninterference-equivalent to the original program (i.e., the
simplified program is noninterferent if the original program is noninterferent, and
a counterexample for one program is also a counterexample for other program).

The chop reported by JOANA for the running example contains the nodes 58,
69, 82, and 55 (Figure 2). In the backward slice of the low output (i.e., of node 55),
there are two branching nodes, nodes 60 and 68, corresponding to the two if-
statements in the example program. Upon analyzing the two branching nodes,
we automatically determine that, if an illegal information flow was possible,
the first if-statement would need to take the false branch and the second if-
statement would need to take the true branch. The program in Listing 3 is
the simplified program of the running example. While in general the backward
slice of the return statement may be much smaller than the original program,
it contains the entire program from our example. Nevertheless, our approach
determines that the paths which lead to the call of identity2 cannot lead to
an illegal information flow, thereby adding two occurrences of the statement
disruptExecution(). This statement stops symbolic execution in the event of
verifying the running example or generating tests for it.
1 int secure(int high, int low) {
2 if (low == 5) {
3 disruptExecution();
4 low = identity2(low, high);
5 } else {
6 if (low == 2) {
7 low = identity1(low, high);
8 } else {
9 disruptExecution();

10 low = identity2(low, high);
11 }
12 }
13 return low;
14 }

Listing 3: Simplified program for the running example

6.3 Verification and Testing of the Simplified Program

When using KeY to prove noninterference for the running example, we require
771 rule applications. Once the symbolic program execution is finished, there
are still nine proof branches, one for each combination of paths in the two pro-
gram runs as explained in Section 6.1, with open goals that remain to be closed.
The verification of the simplified program in Listing 3 still requires 511 rule
applications. For other examples, the verification effort may be further reduced



Static and Dynamic Techniques for Checking Noninterference 17

by removing program statements through slicing. Therein, the symbolic execu-
tion halts when one of the two program runs reaches a path that has already
been deemed secure by JOANA, and the open goal of the corresponding proof
branch is automatically closed. Thus, of the nine open proof goals remaining
after symbolic execution, eight are trivially closed—in some cases even before
their symbolic execution is finished.

The running example showcases how the SDG-based approach can assist ver-
ification by excluding both statements and execution paths from the program.
The exclusion of execution paths is especially useful when proving noninterfer-
ence. For an original program with n execution paths, the verification process
must prove that the noninterference property holds for n2 paths. When adding
a single disruptive statement, the number of paths that need to be verified in
the simplified program drops to a number between (n−1)2 and n2/4 (depending
on whether the affected condition is the top level or not). Thus, the number of
execution paths that need to be analyzed with the theorem prover can drop to
a quarter of those in the original program.

The running example contains three execution paths. Thus, the automatic
test generation approach (see Section 5) will attempt to generate 32 input pairs.
However, only three pairs are low-equivalent as the branch that is taken gets
determined by the low input. Consequently, the automatic test generation ap-
proach generates a test suite with three noninterference tests. When running the
automatic test generation approach on the simplified program, only one test will
be generated for the case in which both low inputs have the value 2. This is
due to the inserted statements in the simplified program that disrupt symbolic
execution. For the simplified program, the automatic test generation approach
attempts (and succeeds) to generate a noninterference test only once, compared
to the above-mentioned nine attempts for the original program. Hence, we have
eight test generation attempts (calls to the SMT solver) that cannot lead to a
noninterference property violation and are hence soundly skipped.

Besides the exclusion of execution paths as in the case of the running example,
using the simplified program reduces the verification and testing effort also due
to the removal of program statements from the original program.

7 The Combined Approach

The final part of the Noninterference Framework is the Combined Approach (see
Beckert et al. [6], on which this section is based, for a more extensive descrip-
tion). The Combined Approach also integrates an SDG-based with a logic-based
approach and attempts to prove noninterference. A comparison between the
Combined Approach and the approach from Section 6 can be found in Section 8.

For a given program P , the first step of the Combined Approach is to run the
SDG-based analysis in order to check the noninterference property (according
to Definition 2) for P . If this step already clears out any illegal information flow
for P , we need no further action as noninterference is guaranteed to hold. If,
however, the automatic SDG-based approach detects a potential illegal informa-



18 B. Beckert, M. Herda, M. Kirsten, and S. Tyszberowicz

tion flow, we continue with the second step of the Combined Approach which
checks whether this information flow is a false positive or a genuine leak. Since
the SDG-based analysis is the first step, the results provided by our approach
are at least as precise as those of the SDG-based analysis. The second and final
step of the Combined Approach is to apply a logic-based approach which tries
to prove that certain syntactic dependencies in the SDG do not represent ac-
tual (semantic) dependencies. If all syntactic dependencies between high inputs
and low outputs reported by the SDG-based analysis are proved to not repre-
sent semantic dependencies using the logic-based approach, then the analyzed
noninterference property is proved to hold for P .

Formally, the Combined Approach (shown in Algorithm 1) works as follows.
Let Nh denote the set of all nodes annotated as high, and N` the set of all nodes
annotated as low. Moreover, we define for nh ∈ Nh and n` ∈ N` a violation as
a pair (nh, n`) for which there is a path from nh to n` in the SDG of P . We
call the set of all nodes on a path from nh to n` the violation chop c(nh, n`).
The result of the SDG-based approach is hence a set of violations (if this set is
empty, noninterference is already guaranteed) for which the Combined Approach
validates each violation chop and attempts to prove that it does not represent
a semantic dependency in program P . This is done by attempting to show that
the chop is interrupted (see Definitions 7 and 8) using a logic-based approach.

Definition 7 (Unnecessary summary edge). A summary edge e = (ai, ao)
is called unnecessary if and only if there is no potential information flow from
the formal-in node fi to the formal-out node fo corresponding to the actual-in
node ai and the actual-out node ao, respectively.

Definition 8 (Interrupted violation chop). A violation chop is interrupted
if we find a non-empty set S of unnecessary summary edges on this chop such
that upon deletion of the edges in S from the SDG, no path exists between the
source and the sink of the violation chop.

In order to show that a summary edge e = (ai, ao) is unnecessary, a proof
obligation is generated for the theorem prover of the logic-based approach. This
proof obligation states that there is no information flow from the formal-in node
fi to the formal-out node fo corresponding to the summary edge e. The proof is
done for all possible contexts of the called method. If the proof is successful, it is
guaranteed that the summary edge was only a result of the over-approximation
and can thus be soundly deleted.

As described above, the Combined Approach (see Algorithm 1) attempts to
prove each violation chop to be interrupted. For each violation chop, we pick a
summary edge, generate the appropriate information flow proof obligation for
the corresponding program method, and perform a proof attempt with the the-
orem prover. If the proof succeeds, the summary edge can, by Definition 8, be
safely deleted from the SDG. The choice of the summary edge in the viola-
tion chop, containing potentially multiple summary edges, is established by a
given heuristic. Note that we only need to consider summary edges that belong
to a violation chop and it is hence sufficient to regard only a smaller subset



Static and Dynamic Techniques for Checking Noninterference 19

Data: A set S of violation chops
Result: A set T of interrupted violation chops
foreach Violation chop CV ∈ S do

Build queue Q of summary edges in CV , ordered by given heuristic;
while CV not interrupted and Q not empty do

Pop summary edge e from Q;
Generate proof obligation PO for proving that e is unnecessary;
if PO proved with theorem prover then

Delete e from CV ;
end

end
if CV interrupted then

Add CV to T ;
end

end
return T

Algorithm 1: The Combined Approach

of all summary edges. When—upon a successful proof attempt—we delete the
corresponding summary edge, we check whether the deletion makes this viola-
tion chop interrupted. In this case, we can proceed with the remaining violation
chops, attempting to make all of them interrupted. In case either the violation
chop is not interrupted after deleting the summary edge or the proof attempt
is not successful, we choose the next—following the given heuristic—summary
edge from the violation chop. If we are able to interrupt every violation chop by
deleting unnecessary edges, the Combined Approach guarantees noninterference.

Note that each violation chop is guaranteed to contain at least one sum-
mary edge, namely the one corresponding to the main method. Generating a
proof obligation for the main method, however, is equivalent to verifying nonin-
terference of the entire program with the theorem prover. In practice, however,
programs are often inter-procedural, and there are plenty of (different) summary
edges for our approach to check. Nevertheless, it may happen in the worst case
that we need to verify the main method with the theorem prover. This worst
case scenario for our approach occurs in the event that not enough summary
edges from inner method calls can be proved to be unnecessary.

For the example in Listing 2, we attempt to show that there is no potential
information flow from the parameter high to the method’s result value secure.
When applying the SDG-based approach, an illegal information flow is reported,
because the method identity1’s result value syntactically depends on the pa-
rameter high of the same method. This reported violation, however, is a false
alarm. The violation chop consists of only one path that contains for a summary
edge which connects (as explained in Section 3.1) the actual-in SDG-node for
the parameter high and the actual-out SDG-node for identity1’s result value.
Proceeding with the Combined Approach, we automatically generate a proof
obligation for the theorem prover, stating that the result value for identity1
does not semantically depend on parameter high. Upon the attempt to prove



20 B. Beckert, M. Herda, M. Kirsten, and S. Tyszberowicz

the statement, we also prove that the result value of the method secure does
not depend on the parameter high and thus show the noninterference for the
method secure. This simple example showcases a major advantage of our ap-
proach: the logic-based approach does not need to analyze the entire program,
but only those parts that cannot be handled by the SDG-based approach.

The evaluation of the Combined Approach [6] shows that noninterference
can be proved for programs for which the SDG-based approach—on its own—
lacks the necessary precision and the logic-based approach—on its own—does
not need to analyze the entire program.

8 Discussion

In Section 8.1, which is based on Herda et al. [22], we discuss the challenges of
using the logic-based theorem prover KeY and the SDG-based static analysis tool
JOANA for implementing the approaches from Sections 6 and 7. In Section 8.2,
which is based on Herda [20], we compare the approaches in the Noninterference
Framework and show how they can be integrated.

8.1 JOANA and KeY

For JOANA and KeY’s challenges in our framework, we identified differing sup-
ports of Java features, possibly nonexecutable slices produced by JOANA, and
differing program entry points (i.e., modular versus whole-program analysis).

Java features. While JOANA supports full Java except for reflection, KeY
supports sequential Java programs only, as well as only a limited set of Java fea-
tures. KeY also requires that either the source code or the method contracts of
library methods are available. The implementation of the two approaches from
Sections 6 and 7 using JOANA and KeY thus supports the same Java subset that
KeY supports. Another challenge lies in the fact that the two tools do not work
on the same programming language (respective level). While JOANA works on
Java bytecode that is in a single static assignment (SSA) form, KeY works on
Java source code. For the soundness of our implementation, we make the (ar-
guably quite reasonable) assumption that the compilation of a Java program
into bytecode does not change the noninterference properties of the program.
Moreover, this also raises the issue of mapping byte code statements to source
code statements. We are able to determine the line in the source code (which
can contain more than one source code statement) from which a byte code state-
ment originates. However, a source code statement can be compiled into more
than one byte code statement and, due to the SSA form, for some source code
statements, we may not even have a corresponding byte code statement. The
simplified program from Definition 6 is thus impossible to generate using these
tools. Instead, we generate an over-approximation of the simplified program by
removing a line in the source code only if (1) the SDG contains a node corre-
sponding to a byte code statement originating from that line and (2) no such
node exists in the backward slice of the low output. In order to avoid multiple



Static and Dynamic Techniques for Checking Noninterference 21

source code statements on the same line, we first preprocess the source code and
transform it so that it contains only one statement per line.

Slice executability. Another implementation challenge is the fact that SDG-
based forward and backward slicing—as done by JOANA—can result in a pro-
gram that is not executable or may handle jump statements such as goto, break,
or continue incorrectly. This is not a problem for JOANA, since it does not need
to generate any code for the analysis. For the second step of the approaches from
Section 6, i.e., verification or test generation, however, having a program that
can actually be executed is of great importance. This is a problem when imple-
menting the approach using the slicers provided by JOANA off-the-shelf, but our
approach is nevertheless feasible, since (as stated in Hammer [17, Chapter 2])
various solutions have been proposed that enhance SDG-based slicing and enable
the generation of executable program slices [1,2,19]. For our implementation, we
go about this problem by generating an over-approximation of the simplified pro-
gram and by restricting ourselves to programs without jump statements. Thus,
we obtain executable slices by (a) preserving lines that contain certain types of
statements such as constructors or static initializers, and by (b) supporting only
programs without jump statements.

Modular and whole-program analysis. Another issue with combining the two
tools is the fact that, on the one hand, the analysis performed by KeY is done
modularly at method level, and the results hold for any prestate that fulfills the
precondition. JOANA, on the other hand, performs a whole-program analysis
where the entire program is checked starting from an entry point method—
in most cases the main method. If the goal is to verify the whole program, the
approaches described in Sections 6 and 7 do not need any modification regarding
this difference. For proving individual program methods, however, the SDG-
based approach must analyze the given method without any context information.
This is done in our implementation by adding an artificial main method as entry
point for JOANA’s analysis that only calls the method for which noninterference
should be proven. However, this is no problem, as the SDG-based analysis can
be implemented in such a way that any other method can serve as entry point.

8.2 Combinations of JOANA and KeY

The Combined Approach from Section 7 is well-suited for programs where the
part that cannot be handled by the SDG-based approach is concentrated in
a called method. If, however, syntactic dependencies between high input and
low output are spread throughout the program, the whole program needs to be
verified and no simplification is made. In such cases, the approach from Section 6
can still benefit from the SDG-based analysis. Using that approach, individual
statements that have no effect on a potential noninterference violation can be
removed, while the Combined Approach works on method-level granularity.

The Combined Approach and the simplification approach from Section 6 are
orthogonal. In fact, the program fragment analyzed with the Combined Ap-
proach can be further reduced by applying the approach from Section 6. By
simplifying the program (according to Definition 6), we can remove statements



22 B. Beckert, M. Herda, M. Kirsten, and S. Tyszberowicz

and execution paths that are not relevant with respect to the possible depen-
dency represented by the analyzed summary edge. Since the program that is
simplified in this way is noninterference-equivalent to, i.e., conforms to the same
noninterference properties as, the original program fragment, the soundness of
the Combined Approach is not affected by this simplification.

9 Related Work

A multitude of research has been done on information flow security, dating
back to the works by Denning and Denning [9, 10] and later by Goguen and
Meseguer [14]. A survey on approaches for proving noninterference can be found
in works by Sabelfeld and Myers [30]. In the following, we elaborate on some
approaches that are similar to ours.

The work by Küsters et al. [25] also aims to achieve the best of both worlds—
automatic analysis and interactive techniques for proving noninterference—by
combining an automatic SDG-based analysis and a logic-based approach, i.e., a
theorem prover. This approach (called Hybrid Approach) first attempts to prove
noninterference using an SDG-based approach, e.g., an analysis by JOANA. If
this attempt fails, the user must identify the cause of a possible false alarm
and extend the program such that the affected low output is overwritten with
a value that does not depend on the high input. The extended program is then
checked by JOANA and, if the modified program is shown to be noninterferent,
then—in the next step—a logic-based approach (using, e.g., the theorem prover
KeY) is used to show that the extended program is equivalent to the original
program (i.e., that the extended program results in the same low output). The
Hybrid Approach improves the precision provided by JOANA and reduces the
verification with KeY to purely functional proofs. However, the communication
between the tools is done completely manually by the user and there is no as-
sistance when searching for the causes of the false alarms. The approach does
not utilize the results provided by the SDG-based analysis tool that could both
discard those program parts that are irrelevant regarding the analyzed noninter-
ference property and simplify the program to be verified. In fact, applying the
program extension above makes the program to be verified in the second step
even more complex.

Another combination of SDG-based and logic-based approaches is to check
the satisfiability of path conditions for the execution paths that are determined
by the reported security violation [17, 35]. If a path condition is unsatisfiable,
then the respective execution path cannot lead to an illegal information flow.
A program input that satisfies the path condition serves as a “witness”, and
the user can thereby analyze the program execution with that single input (the
witness) and check whether an illegal information flow may occur. However,
this is a difficult task, especially for indirect dependencies. For our work, the
noninterference tests that we generate have two inputs and show the illegal
information flow more clearly.



Static and Dynamic Techniques for Checking Noninterference 23

Moreover, there are also other approaches for automatic test generation that
check noninterference. However, they do not support all the properties from
Section 2. Le Guernic [26] proposed a sound information-flow testing mechanism
based both on standard testing techniques and on a combination of dynamic
and static analysis. Once a path coverage property is achieved, an argumenta-
tion regarding noninterference can be established. Furthermore, Milushev et al.
present a tool that uses symbolic execution in combination with a form of self-
composition for noninterference testing of C programs [28]. A logic-based ap-
proach to detect and generate exploits for information flow properties which
presents them as JUnit tests is described by Do et al. [11]. Finally, information
flow test case generation was also done by Gruska and Hriţcu et al. [15, 24].

10 Conclusion

We presented an overview of recent combinations of deductive verification and
automatic test generation on the one hand, and static analysis on the other
hand, together establishing our Noninterference Framework.

In a first use case, we presented an approach that uses deductive verification
in order to automatically generate tests with the goal of finding noninterference
violations. Deductive verification allows for the systematic generation of nonin-
terference tests for all pairs of program execution paths and can identify pairs
of execution paths that may never lead to a counterexample. This combination
thus improves the computation of the achieved test coverage for noninterference.

In a second use case, we described two variants of an approach used for
proving noninterference properties that combines deductive verification with an
SDG-based static analysis. Deductive verification and SDG-based static analysis
are complementary approaches. The highly-scalable SDG-based approach is used
in a first step to show that large parts of the analyzed program cannot lead to
a noninterference violation. In the second step, we apply the precise deductive
verification approach for noninterference on the remaining program parts. This
combination thus reduces the effort for the deductive verification.

References

1. Abadi, A., Ettinger, R., Feldman, Y.A.: Fine slicing - theory and applications
for computation extraction. In: de Lara, J., Zisman, A. (eds.) 15th Interna-
tional Conference on Fundamental Approaches to Software Engineering (FASE).
Lecture Notes in Computer Science, vol. 7212, pp. 471–485. Springer (2012).
https://doi.org/10.1007/978-3-642-28872-2_32

2. Agrawal, H.: On slicing programs with jump statements. In: Sarkar, V.,
Ryder, B.G., Soffa, M.L. (eds.) SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). pp. 302–312. ACM (1994).
https://doi.org/10.1145/178243.178456

3. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich,
M. (eds.): Deductive Software Verification – The KeY Book: From Theory

https://doi.org/10.1007/978-3-642-28872-2_32
https://doi.org/10.1145/178243.178456


24 B. Beckert, M. Herda, M. Kirsten, and S. Tyszberowicz

to Practice, Lecture Notes in Computer Science, vol. 10001. Springer (2016).
https://doi.org/10.1007/978-3-319-49812-6

4. Ahrendt, W., Gladisch, C., Herda, M.: Proof-based test case generation. In:
Ahrendt et al. [3], chap. 12, pp. 415–451. https://doi.org/10.1007/978-3-319-49812-
6_12

5. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0. Tech.
rep., Department of Computer Science, The University of Iowa (2010), http:
//smt-lib.org/papers/smt-lib-reference-v2.0-r12.09.09.pdf, available at
www.smt-lib.org

6. Beckert, B., Bischof, S., Herda, M., Kirsten, M., Kleine Büning, M.: Using theo-
rem provers to increase the precision of dependence analysis for information flow
control. In: Sun, J., Sun, M. (eds.) Formal Methods and Software Engineering
(ICFEM). pp. 284–300. Springer (2018). https://doi.org/10.1007/978-3-030-02450-
5_17

7. Beckert, B., Bruns, D., Klebanov, V., Scheben, C., Schmitt, P.H., Ulbrich, M.:
Information flow in object-oriented software. In: Gupta, G., Peña, R. (eds.) Logic-
Based Program Synthesis and Transformation (LOPSTR). Lecture Notes in Com-
puter Science, vol. 8901, pp. 19–37. Springer (2013). https://doi.org/10.1007/978-
3-319-14125-1_2

8. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Hutter, D., Ullmann, M. (eds.) Security in Pervasive
Computing (SPC). Lecture Notes in Computer Science, vol. 3450, pp. 193–209.
Springer (2005). https://doi.org/10.1007/978-3-540-32004-3_20

9. Denning, D.E.: A lattice model of secure information flow. Communications of the
ACM 19(5), 236–243 (1976). https://doi.org/10.1145/360051.360056

10. Denning, D.E., Denning, P.J.: Certification of programs for secure in-
formation flow. Communications of the ACM 20(7), 504–513 (1977).
https://doi.org/10.1145/359636.359712

11. Do, Q.H., Bubel, R., Hähnle, R.: Automatic detection and demonstrator generation
for information flow leaks in object-oriented programs. Computers & Security 67,
335–349 (2017). https://doi.org/10.1016/j.cose.2016.12.002

12. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich,
Y., Meyer, B. (eds.) First International Conference on Tests and Proofs (TAP),
Revised Papers. pp. 169–188. Springer (2007). https://doi.org/10.1007/978-3-540-
73770-4_10

13. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. Transactions on Programming Languages and Systems
9(3), 319–349 (1987). https://doi.org/10.1145/24039.24041

14. Goguen, J.A., Meseguer, J.: Security policies and security models. In:
Symposium on Security and Privacy (S & P). pp. 11–20. IEEE (1982).
https://doi.org/10.1109/SP.1982.10014

15. Gruska, D.P.: Information flow testing. Fundamenta Informaticae 128(1-2), 81–95
(2013). https://doi.org/10.3233/FI-2013-934

16. Hamann, T., Herda, M., Mantel, H., Mohr, M., Schneider, D., Tasch, M.: A
uniform information-flow-security benchmark suite for source code and byte-
code. In: Gruschka, N. (ed.) Nordic Conference on Secure IT Systems (Nord-
Sec). Lecture Notes in Computer Science, vol. 11252, pp. 437–453. Springer (2018).
https://doi.org/10.1007/978-3-030-03638-6_27

17. Hammer, C.: Information flow control for Java: a comprehensive approach based on
path conditions in dependence graphs. Ph.D. thesis, Karlsruhe Institute of Tech-
nology (KIT), Germany (2009). https://doi.org/10.5445/KSP/1000012049

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6_12
https://doi.org/10.1007/978-3-319-49812-6_12
http://smt-lib.org/papers/smt-lib-reference-v2.0-r12.09.09.pdf
http://smt-lib.org/papers/smt-lib-reference-v2.0-r12.09.09.pdf
www.smt-lib.org
https://doi.org/10.1007/978-3-030-02450-5_17
https://doi.org/10.1007/978-3-030-02450-5_17
https://doi.org/10.1007/978-3-319-14125-1_2
https://doi.org/10.1007/978-3-319-14125-1_2
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/359636.359712
https://doi.org/10.1016/j.cose.2016.12.002
https://doi.org/10.1007/978-3-540-73770-4_10
https://doi.org/10.1007/978-3-540-73770-4_10
https://doi.org/10.1145/24039.24041
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.3233/FI-2013-934
https://doi.org/10.1007/978-3-030-03638-6_27
https://doi.org/10.5445/KSP/1000012049


Static and Dynamic Techniques for Checking Noninterference 25

18. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive in-
formation flow control based on program dependence graphs. International Journal
of Information Security 8(6), 399–422 (2009). https://doi.org/10.1007/s10207-009-
0086-1

19. Harman, M., Lakhotia, A., Binkley, D.: Theory and algorithms for slicing un-
structured programs. Information and Software Technology 48(7), 549–565 (2006).
https://doi.org/10.1016/j.infsof.2005.06.001

20. Herda, M.: Combining Static and Dynamic Program Analysis Techniques for
Checking Relational Properties. Ph.D. thesis, Karlsruhe Institute of Technology
(KIT), Germany (2020). https://doi.org/10.5445/IR/1000104496

21. Herda, M., Tyszberowicz, S., Müssig, J., Beckert, B.: Verification-based
test case generation for information-flow properties. In: 34th SIGAPP
Symposium on Applied Computing (SAC). pp. 2231–2238. ACM (2019).
https://doi.org/10.1145/3297280.3297500

22. Herda, M., Tyszberowicz, S., Beckert, B.: Using dependence graphs to as-
sist verification and testing of information-flow properties. In: Dubois, C.,
Wolff, B. (eds.) 12th International Conference on Tests and Proofs (TAP).
Lecture Notes in Computer Science, vol. 10889, pp. 83–102. Springer (2018).
https://doi.org/10.1007/978-3-319-92994-1_5

23. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
Transactions on Programming Languages and Systems 12(1), 26–60 (1990).
https://doi.org/10.1145/77606.77608

24. Hriţcu, C., Lampropoulos, L., Spector-Zabusky, A., Azevedo de Amorim,
A., Denes, M., Hughes, J., Pierce, B.C., Vytiniotis, D.: Testing nonin-
terference, quickly. Journal of Functional Programming 26, 1–62 (2016).
https://doi.org/10.1017/S0956796816000058

25. Küsters, R., Truderung, T., Beckert, B., Bruns, D., Kirsten, M., Mohr, M.:
A hybrid approach for proving noninterference of Java programs. In: Com-
puter Security Foundations Symposium (CSF). pp. 305–319. IEEE (2015).
https://doi.org/10.1109/CSF.2015.28

26. Le Guernic, G.: Information flow testing. In: Cervesato, I. (ed.) 12th Asian Com-
puting Science Conference on Advances in Computer Science: Computer and Net-
work Security (ASIAN). pp. 33–47. Springer (2007). https://doi.org/10.1007/978-
3-540-76929-3_4

27. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. SIGSOFT Software Engineering Notes
31(3), 1–38 (2006). https://doi.org/10.1145/1127878.1127884

28. Milushev, D., Beck, W., Clarke, D.: Noninterference via symbolic execution. In:
Giese, H., Rosu, G. (eds.) Formal Techniques for Distributed Systems. pp. 152–
168. Springer (2012). https://doi.org/10.1007/978-3-642-30793-5_10

29. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3_24

30. Sabelfeld, A., Myers, A.C.: Language-based information-flow security.
IEEE Journal on Selected Areas in Communications 21(1), 5–19 (2003).
https://doi.org/10.1109/JSAC.2002.806121

31. Scheben, C.: Program-level Specification and Deductive Verification of Secu-
rity Properties. Ph.D. thesis, Karlsruhe Institute of Technology (KIT), Germany
(2014). https://doi.org/10.5445/IR/1000046878

https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1016/j.infsof.2005.06.001
https://doi.org/10.5445/IR/1000104496
https://doi.org/10.1145/3297280.3297500
https://doi.org/10.1007/978-3-319-92994-1_5
https://doi.org/10.1145/77606.77608
https://doi.org/10.1017/S0956796816000058
https://doi.org/10.1109/CSF.2015.28
https://doi.org/10.1007/978-3-540-76929-3_4
https://doi.org/10.1007/978-3-540-76929-3_4
https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1007/978-3-642-30793-5_10
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.5445/IR/1000046878


26 B. Beckert, M. Herda, M. Kirsten, and S. Tyszberowicz

32. Scheben, C., Greiner, S.: Information flow analysis. In: Ahrendt et al. [3], chap. 13,
pp. 453–471. https://doi.org/10.1007/978-3-319-49812-6_13

33. Schmitt, P.H.: First-order logic. In: Ahrendt et al. [3], chap. 2, pp. 23–47.
https://doi.org/10.1007/978-3-319-49812-6_2

34. Snelting, G.: Combining slicing and constraint solving for validation of measure-
ment software. In: Cousot, R., Schmidt, D.A. (eds.) Third International Sympo-
sium on Static Analysis (SAS). Lecture Notes in Computer Science, vol. 1145, pp.
332–348. Springer (1996). https://doi.org/10.1007/3-540-61739-6_51

35. Snelting, G., Robschink, T., Krinke, J.: Efficient path conditions in dependence
graphs for software safety analysis. Transactions on Software Engineering and
Methodology 15(4), 410–457 (2006). https://doi.org/10.1145/1178625.1178628

36. Wasserrab, D., Lohner, D.: Proving information flow noninterference by
reusing a machine-checked correctness proof for slicing. In: Aderhold, M.,
Autexier, S., Mantel, H. (eds.) International Verification Workshop (VER-
IFY@IJCAR). EPiC Series in Computing, vol. 3, pp. 141–155. EasyChair (2010).
https://doi.org/10.29007/nnzj

https://doi.org/10.1007/978-3-319-49812-6_13
https://doi.org/10.1007/978-3-319-49812-6_2
https://doi.org/10.1007/3-540-61739-6_51
https://doi.org/10.1145/1178625.1178628
https://doi.org/10.29007/nnzj

	Integration of Static and Dynamic Analysis Techniques for Checking Noninterference

