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Zum Buch

Heutige Produktionssysteme tendieren durch die Marktanforderungen 
getrieben zu immer kleineren Losgrößen, höherer Produktvielfalt und größerer 
Komplexität der Materialflusssysteme. Diese Entwicklungen stellen bestehende 
Produktionssteuerungsmethoden in Frage. Im Zuge der Digitalisierung bieten 
datenbasierte Algorithmen des maschinellen Lernens einen alternativen Ansatz zur 
Optimierung von Produktionsabläufen. Aktuelle Forschungsergebnisse zeigen eine 
hohe Leistungsfähigkeit von Verfahren des Reinforcement Learning (RL) in einem 
breiten Anwendungsspektrum. 

Unter den Aufgaben der Produktionsplanung und -steuerung gewährleistet die 
Auftragssteuerung (engl. order dispatching) eine hohe Leistungsfähigkeit und 
Flexibilität der Produktionsabläufe, um eine hohe Kapazitätsauslastung und kurze 
Durchlaufzeiten zu erreichen. Motiviert durch komplexe Werkstattfertigungssysteme, 
wie sie in der Halbleiterindustrie zu finden sind, schließt diese Dissertation die 
Forschungslücke und befasst sich mit der Anwendung von RL für eine adaptive 
Auftragssteuerung. Die Einbeziehung realer Systemdaten ermöglicht eine genauere 
Erfassung des Systemverhaltens als statische Heuristiken oder mathematische 
Optimierungsverfahren. Zusätzlich wird der manuelle Aufwand reduziert, indem auf 
die Inferenzfähigkeiten des RL zurückgegriffen wird.

Der Lösungsansatz wird auf der Grundlage von zwei realen Produktionsszenarien 
eines Halbleiterherstellers analysiert. Die Ergebnisse zeigen, dass RL-Agenten 
adaptive Steuerungsstrategien erlernen können und bestehende regelbasierte 
Benchmarkheuristiken übertreffen. Spezifische RL-Agenten-Konfigurationen 
erreichen nicht nur eine hohe Leistung in einem Szenario, sondern weisen 
eine Robustheit bei sich ändernden Systemeigenschaften auf. Damit stellt die 
Forschungsarbeit einen wesentlichen Beitrag in Richtung selbstoptimierender und 
autonomer Produktionssysteme dar. Produktionsingenieure müssen das Potenzial 
datenbasierter, lernender Verfahren bewerten, um in Bezug auf Flexibilität 
wettbewerbsfähig zu bleiben und gleichzeitig den Aufwand für den Entwurf, 
den Betrieb und die Überwachung von Produktionssteuerungssystemen in einem 
vernünftigen Gleichgewicht zu halten.

Andreas Kuhnle
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Vorwort der Herausgeber
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der Globalisierung der Wirtschaft der entscheidende Wirtschaftsfaktor für produzierende
Unternehmen. Universitäten können als “Wertschöpfungspartner” einen wesentlichen Beitrag
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sowie neue Methoden und Technologien erarbeiten und aktiv den Umsetzungsprozess in die
praktische Anwendung unterstützen.

Vor diesem Hintergrund soll im Rahmen dieser Schriftenreihe über aktuelle Forschungsergeb-
nisse des Instituts für Produktionstechnik (wbk) des Karlsruher Instituts für Technologie
(KIT) berichtet werden. Unsere Forschungsarbeiten beschäftigen sich sowohl mit der Leis-
tungssteigerung von Fertigungsverfahren und zugehörigen Werkzeugmaschinen- und Hand-
habungstechnologien als auch mit der ganzheitlichen Betrachtung und Optimierung des
gesamten Produktionssystems. Hierbei werden jeweils technologische wie auch organ-
isatorische Aspekte betrachtet.
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Kurzfassung

Heutige Produktionssysteme tendieren durch die Marktanforderungen getrieben zu immer
kleineren Losgrößen, höherer Produktvielfalt und größerer Komplexität der Materialflusssys-
teme. Diese Entwicklungen stellen bestehende Produktionssteuerungsmethoden in Frage. Im
Zuge der Digitalisierung bieten datenbasierte Algorithmen des maschinellen Lernens einen al-
ternativen Ansatz zur Optimierung von Produktionsabläufen. Aktuelle Forschungsergebnisse
zeigen eine hohe Leistungsfähigkeit von Verfahren des Reinforcement Learning (RL) in einem
breiten Anwendungsspektrum. Im Bereich der Produktionssteuerung haben sich jedoch
bisher nur wenige Autoren damit befasst. Eine umfassende Untersuchung verschiedener
RL-Ansätze sowie eine Anwendung in der Praxis wurden noch nicht durchgeführt.

Unter den Aufgaben der Produktionsplanung und -steuerung gewährleistet die Auftragss-
teuerung (order dispatching) eine hohe Leistungsfähigkeit und Flexibilität der Produktions-
abläufe, um eine hohe Kapazitätsauslastung und kurze Durchlaufzeiten zu erreichen. Motiviert
durch komplexe Werkstattfertigungssysteme, wie sie in der Halbleiterindustrie zu finden sind,
schließt diese Arbeit die Forschungslücke und befasst sich mit der Anwendung von RL für
eine adaptive Auftragssteuerung. Die Einbeziehung realer Systemdaten ermöglicht eine
genauere Erfassung des Systemverhaltens als statische Heuristiken oder mathematische
Optimierungsverfahren. Zusätzlich wird der manuelle Aufwand reduziert, indem auf die In-
ferenzfähigkeiten des RL zurückgegriffen wird.

Die vorgestellte Methodik fokussiert die Modellierung und Implementierung von RL-Agenten
als Dispatching-Entscheidungseinheit. Bekannte Herausforderungen der RL-Modellierung in
Bezug auf Zustand, Aktion und Belohnungsfunktion werden untersucht. Die Modellierungsalter-
nativen werden auf der Grundlage von zwei realen Produktionsszenarien eines Halbleiter-
herstellers analysiert. Die Ergebnisse zeigen, dass RL-Agenten adaptive Steuerungsstrate-
gien erlernen können und bestehende regelbasierte Benchmarkheuristiken übertreffen. Die
Erweiterung der Zustandsrepräsentation verbessert die Leistung deutlich, wenn ein Zusam-
menhang mit den Belohnungszielen besteht. Die Belohnung kann so gestaltet werden, dass
sie die Optimierung mehrerer Zielgrößen ermöglicht. Schließlich erreichen spezifische RL-
Agenten-Konfigurationen nicht nur eine hohe Leistung in einem Szenario, sondern weisen
eine Robustheit bei sich ändernden Systemeigenschaften auf.

Damit stellt die Forschungsarbeit einen wesentlichen Beitrag in Richtung selbstoptimierender
und autonomer Produktionssysteme dar. Produktionsingenieure müssen das Potenzial daten-
basierter, lernender Verfahren bewerten, um in Bezug auf Flexibilität wettbewerbsfähig zu
bleiben und gleichzeitig den Aufwand für den Entwurf, den Betrieb und die Überwachung von
Produktionssteuerungssystemen in einem vernünftigen Gleichgewicht zu halten.
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tions

- R

rtree Reward function for the tree-based reward - R

rutil Reward function with utilization as reward value - R

ruti,ep Episodic utilization reward function - R



VIII Abbreviations

Symbol Description Unit Value range

rw,util Reward function with utilization time rewarded differ-
ently per action subset

- R

rwt Reward function with waiting time as reward value - R

rw,wt Reward function with waiting time rewarded differ-
ently per action subset

- R

rwt,ep Episodic waiting time reward function - R

rj Order release time of order j - R≥0

ri→end Reward at the intersection of the moving mean re-
ward and rlq

- R

rlq Average reward received in the last quarter of an
experiment run

- R

RPTi Remaining processing time at machine i TU R

rpti State variable indicating the remaining processing
time at machine i

- R

ρ Utilization of a process according to the queuing
theory

- [0, 1]

σ Standard deviation of a stochastic process time - R≥0

SO Source resources, nSO number of sources - -
SI Sink resources, nSI number of sinks - -
S Set of all possible states - -
s, s′ State, next state - S
St State representation at time t - S
ST Terminal state of an episode - S
SAT State element containing variable ati - -
SBEN State element containing variable beni - -
SBEX State element containing variable bexi - -
SBP T State element containing variable bpti - -
Sj,k Sequence of k operations of order j - -
SL State element containing variable li - -
SMF State element containing variable mfi - -
SRP T State element containing variable rpti - -
SV A State element containing variable vai - -
SW T State element containing variable wti - -
STj Setup time of order j TU R≥0

t Discrete time step or point in time - R≥0

T Time period TU R≥0



Abbreviations IX

Symbol Description Unit Value range

t→O Time to move from the current location to the origin
O of a dispatching action

TU R≥0

tload Handling time to load a resource TU R≥0

tO→D Time to perform dispatching from origin O to desti-
nation D

TU R≥0

tunload Handling time to unload a resource TU R≥0

TP Throughput of a manufacturing system orders
TU R≥0

TR Transportation resources, nT R number of transporta-
tion resources

- -

TTj Transport time of order j TU R≥0

U Average manufacturing uptime utilization of all ma-
chines

- [0, 1]

Udisp Utilization of the order dispatching resource - [0, 1]
Ui Manufacturing uptime utilization of machine i - [0, 1]
v Speed of the dispatching resource DU

TU R≥0

vπ(s) State value function of state s under policy π - R

vai State variable indicating valid actions - {0, 1}
W Weight vector of a perceptron - R|W |

wj Weight of order j - R≥0

WT max
i Longest waiting time of an order at resource i TU R≥0

WT mean
i Mean waiting time at resource i TU R≥0

WT std
i Standard deviation of the waiting time at resource i - R≥0

wti State variable indicating the waiting time at source
or machine i

- R≥0

WTj Waiting time of order j TU R≥0

x ∈ Ω Set of feasible solutions in an optimization problem - -
X Input vector of a perceptron - R|X|

xj,k,n Assignment variable indicating if operation k of order
j is assigned on machine n

- {0, 1}

ξ Initial state distribution - -
Ydist Distance-based evaluation of the tree-based reward - R≥0

Y i
l Evaluation of node i in layer l of the tree-based re-

ward
- R≥0

Yutil Utilization-based evaluation of the tree-based reward - R≥0

Z(X, W ) Perceptron state based on X and W - R
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1 Introduction

Manufacturing companies are confronted with ever-rising market demand and customer
requirements. First, the trend of individualization leads to smaller batch sizes (Koren 2010;
Abele & Reinhart 2011). Second, increasing product quality requirements result in specialized
and heterogeneous machinery and production operations (Mönch & Fowler et al. 2013).
Hence, manufacturing systems as a whole are characterized as highly dynamic systems with
a non-linear interplay of stochastic processes (Freitag 2005).

At the same time, the digitization and technological progression in the era of the fourth
industrial revolution is observed as significant enabler (Bauernhansl & Hompel et al. 2014;
Lasi & Fettke et al. 2014). Regarding production systems, this manifests itself primarily in a
comprehensive collection of real-time data that tracks and provides information about the
condition of products, machines, and material handling systems. The collected data serves
as a basis for an in-depth analysis and optimization of the system (Bauernhansl & Krüger
et al. 2016; Henke & Bughin et al. 2016). A broad and more accurate database combined
with powerful computing capacity and advanced algorithms are seen as revolutionary driving
forces in operations management (Schuh & Reuter et al. 2017; Chui & Manyika et al. 2018).

One frequently discussed approach is data-driven reinforcement learning (RL), which already
showed superior performance in popular board games such as Chess or Go (Silver & Hubert
et al. 2018). However, board games represent artificial applications with a well-defined system
scope and set of rules, describing the system behaviour. These assumptions are hardly given
for real-world production operations.

1.1 Motivation

In the manufacturing industry, production control systems are considered as the key enabler
for stable and cost-efficient production operations (Lödding 2016). However, integrating
advanced data-driven optimization techniques is not trivial and requires considerable effort
(Schuh & Reuter et al. 2017) and does, most likely, not overcome all obstacles such as the
dilemma of contradicting objectives (Gutenberg 1951).

From a research perspective, there are two directions that incorporate data-driven approaches:
On the one hand, further development of planning methods for the design of production
systems, towards agile production systems (Greschke 2016; Bochmann 2018) and robust
planning under consideration of uncertainty (Pinedo 2016; Echsler Minguillon 2020). On
the other hand, the research of production control systems, which is characterized by a
decentralized control architecture with autonomous decision agents (Gabel & Riedmiller 2012;
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Waschneck & Altenmüller et al. 2018a). The present work focuses on the latter research
direction.

If one considers established methods for real-time decision-making, quantitative methods such
as mathematical optimization and (meta-) heuristics can only partially meet the challenges
outlined above. Large problem instances cannot be solved with mathematical optimization
approaches with acceptable computational effort and heuristics, which are static and rule-
based, simplify the problem too far (Nickel & Stein et al. 2014). Moreover, both are so-called
model-based solution approaches which require extensive domain knowledge and information
about the production system characteristics (Waschneck & Altenmüller et al. 2016). Finally,
the effort to maintain mathematical models for planning systems is very high, as they are
often incorrect and outdated (Lödding 2016).

Autonomous systems, i.e. the implementation of adaptivity and learning ability, resemble
the essential strengths of human intelligence (Kagermann & Gaus et al. 2018). They allow
the design of advanced adaptive control methods (Russell & Norvig 2016). According to
Åström & Wittenmark (2008) and Niehues (2016), adaptivity refers to the ability of a system
to recognize deviations from the planned process at an early stage during operation and to
independently derive and implement necessary (counter-) actions (see Figure 1.1).

Adaptive

controller

Production
system

Parameter
adjustment

OutputSet-point
Control signal

Parameters

Figure 1.1: Adaptive controller for production systems (adapted from Åström & Wittenmark
(2008)).

The learning ability of autonomous systems ensures that the system adapts and reinforces
according to changing environmental conditions by combining (initial) knowledge with real-time
data (Russell & Norvig 2016). Hence, autonomous and self-optimizing production systems
show the same characteristics (Permin & Bertelsmeier et al. 2016). They overcome the
manual task of designing a controller, which, in general, is a demanding job, covering in-
depth process analysis, mathematical model building, and derivation of control rules (Hafner
& Riedmiller 2011). The central discipline in the development of autonomous systems is
machine learning, which provides various tools for this purpose, e.g. reinforcement learning
(Sutton & Barto 2018). Reinforcement learning overcomes the controller design process by
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interacting directly with the system in a closed-loop environment. There are still just a few
empirical applications for RL-based production control, as the literature review shows in the
following. So, the full potential of data-driven approaches in production control is not yet
realized.

1.2 Problem statement

Initially, this work is motivated by the challenges and characteristics of the semiconductor
industry. However, the scope of applications exceeds this industry and also covers other
industries with similar characteristics as elaborated in the following problem statement.

Industry turnover1
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Figure 1.2: Problem statement – complex job shop in the semiconductor industry (adapted
from Hilsenbeck (2005), Mönch & Fowler et al. (2013), and Ziarnetzky (2017)).

The current state and, hence, the problem statement addressed by this research is sum-
marized in Figure 1.2 and follows three stages. First, as a basis for a holistic view of the
problem, an analysis of the industry environment is necessary. The semiconductor industry
has traditionally been subjected to fast innovation cycles and a high level of capital investment,
e.g. machine equipment and clean room environment (Mönch & Fowler et al. 2013). Over the
last years, the turnover increased considerably, however, not continuously. The percentage
growth rate varies from below -30% to over 30% and sometimes the growth rate changes by a
margin of 50% from one year to the other (see Figure 1.2 on the left). Moreover, according to
Meier (2019), there is a strong bullwhip effect that causes substantial variations in the entire
semiconductor supply chain. This presents a particular challenge for companies whenever
facing any long-term decision, such as investments in machine capacities.

Second, a semiconductor factory (wafer fab) is operated 24 hours and 365 days a year to
amortize the high capital investment. The wafers are combined into lots of 25 and sometimes

1Raman Chitkara et al. (2013), Spotlight on Automotive – PwC Semiconductor Report. https://www.pwc.at/
de/images/tmt-studie-2.pdf (accessed on 17.06.2020).
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50 (Ziarnetzky 2017). A lot takes up to three months to go through all manufacturing processes,
of which around three-quarters are spent on wafer fabrication (frontend) and just one-quarter
on packaging and logistics (backend). A total of up to 800 operations are carried out on
different machines with processing times between 15 minutes and 12 hours (Ziarnetzky
2017). Moreover, flexible production systems are required since many product types are
manufactured with varying process steps. High cost of capital means that space has to be
used economically. Flow line production, which is commonly used in the automotive industry, is
therefore not suitable. Instead, the machines are arranged according to the job shop principle.
Disadvantages of this layout are potentially long distances and the fact that the material flow
becomes complex and hard to control (see a schematic illustration of the material flow for
one lot in the middle of Figure 1.2, adapted from Ziarnetzky (2017)).

Third, looking at a specific manufacturing area, the challenges just outlined decompose on the
operational level, where the best operational performance is aimed by controlling the material
flow and order processing (see Figure 1.2 on the right). Here, most companies are currently
using rule-based real-time dispatching systems (Mönch & Fowler et al. 2013). These rules
are designed by experienced production engineers and reflect process-specific requirements.
However, long-term observations have shown that these systems are sometimes too rigid to
consider the dynamics as well as manifold objectives and, therefore, a permanent adjustment
effort is required (Waschneck & Altenmüller et al. 2018a). Changes such as layout rearrange-
ment or product mix deviations are not foreseen and, hence, jam situations occur and the
operational performance drops.

1.3 Research goal

The problem statement just outlined is addressed by the following overall research goal:

Adaptive order dispatching of complex job shop manufacturing systems based on
reinforcement learning.

The research focuses on modelling, implementation, and evaluation of reinforcement learning.
A real-world use case by the example of a job shop manufacturing system of a semiconductor
company is chosen for evaluation and demonstration. Four research questions are derived
from the research goal, which will be considered integrally and answered in the remainder of
this research work:

1. RL-applicability: Is it possible to obtain an adaptive order dispatching system au-
tonomously based on real-time operational data?
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2. Multi-objective optimization: Do the modelling design choices of reinforcement learn-
ing extensively cover a multi-objective solution space, comparing to heuristic bench-
marks?

3. Transferability: Does the learning-based approach show a superior performance in
terms of changing system characteristics in comparison to existing benchmarks?

4. User acceptance: Is the acceptance of practitioners supported by a plausibility analysis
of the RL-based control policy?

Additionally, the research is striving for the underlying idea that any production system can be
described in a structured way, comprising all decision-relevant information as well as essential
system characteristics. Based on this input, a digital representation of the real production
system can be created (digital twin) to obtain an extensive database for the training of RL-
algorithms. After that, the trained algorithm is able to perform the control task in the real-world
system. Thereby, as little as necessary human effort is needed to create the control system.
Furthermore, the algorithm is not bound to modelled assumptions, such as for mathematical
optimization, but directly integrated into the simulated real-world system, which considers all
stochastic processes.

1.4 Structure of this work

Having motivated the problem statement and research goal in Chapter 1, this work is struc-
tured as follows. The next part starts with the descriptive definition of the problem features.
For this purpose, order dispatching is placed in the context of production planning and control
(PPC) in Chapter 2. After comparing different quantitative optimization methods, the basics of
reinforcement learning are outlined and its suitability is assessed. The fundamentals conclude
with research focus areas in Chapter 3. Subsequently, the state-of-the-art literature review
derives according to those areas the research deficit that is addressed. The methodology
and analytical model for an adaptive order dispatching based on reinforcement learning are
developed in four steps in Chapter 4. First, the problem scope is specified and analysed.
Next, a production system model is developed (digital twin). Then the adaptive RL-algorithm
is described and, finally, the performance evaluation criteria and experiment design are de-
termined. Chapter 5 assesses the suitability of the RL-based order dispatching by outlining
two use case scenarios and deductively evaluating the system’s performance based on a
comparison with conventional heuristic approaches. Moreover, the requirements for applying
the developed approach in a real-world setup are outlined. In a final examination in Chapter 6,
the results are discussed and an outlook is given to direct future research. Finally, Chapter 7
summarizes the entire work.
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2 Fundamentals

This chapter focuses on the fundamentals of production planning and control (PPC, see
Figure 2.1). Starting with a characterization of production systems that is relevant for the
second section, giving an overview on and categorization of production planning and control
tasks (e.g. order dispatching) and methods (e.g. heuristics). As the remainder of this work
focuses on order dispatching, the focus lies on the two domains production and logistics and
their close interaction. Using the example of semiconductor manufacturing, the properties
of modern, complex manufacturing systems are explained. The second part of this chapter
outlines alternative quantitative optimization methods that are well-established and applied in
industry. Finally, the basics of reinforcement learning are introduced.

Section 2.1

Production plan-
ning and control

Section 2.2

Quantitative opti-
mization methods

x1

x2
f1

Section 2.3

Reinforcement
Learning

Agent
Environ-

ment

St

At

Rt+1

Chapter 3

State-of-the-art
literature review

Figure 2.1: Structure of the fundamentals and the state-of-the-art literature review.

2.1 Production planning and control

The term production system is defined as the aggregation of all business, technological,
and organizational activities that relate to the processing of material (Eversheim & Schuh
1996). Thereby, the term ensembles various facets that are subdivided into seven levels (see
Figure 2.2 on the left). Firstly, from a hierarchical point of view, production systems cover the
following spectrum (Wiendahl & ElMaraghy et al. 2007): network, site, segment, system, cell,
station, and process. The present work sets the scope from production site level down to a
system level.
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Level
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System
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Station

Process

Layout
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Flow principle

Schematic job shop layout

with relevant resources

Work area 1 Work area 2

Work area 3

Legend:

Orders

Machines

Logistics

Order route

Figure 2.2: Production system level, layout alternatives, and relevant resources that are con-
sidered in the job shop system (adapted from Eversheim & Schuh (1996) and
Wiendahl (1997)). The scope of the present work is highlighted.

Looking at the system level, there are five principles regarding the layout of production
resources (Wiendahl 1997): workbench, worksite, job shop, group, and flow principle. Whereas
the automotive assembly is mainly organized as highly efficient flow assembly lines, job shops
are prevalent in semiconductor manufacturing. Job shops offer higher flexibility due to the
degree of freedom within the material flow and tact-freeness, but, at the same time, require
additional control effort. According to Heger (2014), semiconductor manufacturing is also
categorized as flexible flow shop, when product routes are reasonably similar.

Besides the layout, the batch size and the repetition frequency of the same production
order determine the following four production types (Aggteleky 1987): individual, small-scale,
series, and mass production. In general, the sequence of production layout principles and
production types are identical, meaning that a workbench comes along with small batch sizes
and individual or small-scale production and mass production is organized as flow principle.
However, there are also exceptions in order to meet specific requirements of the market,
product, or production processes. One example is semiconductor manufacturing, as outlined
in the next section, that operates a mass production in a job shop layout organization because,
usually, very large volumes are processed per product variant (Stegherr 2000).

Figure 2.2 also shows on the right a schematic job shop layout example, including relevant
resources: firstly, machines that perform the production processes, secondly, logistic resources
that connect machines, and, thirdly, the production orders1 itself.

1Hereinafter, product, order, job, lot, or batch are used as synonyms.
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2.1.1 Complex manufacturing systems

Nowadays, manufacturing systems are broadly seen as complex systems due to manifold
unprecedented challenges such as globally spread manufacturing operations (e.g. number of
partners, communication), volatile future development (e.g. dynamic changes), and uncertain
influencing factors (e.g. limited information) (Wiendahl & Scholtissek 1994; Schuh & Monostori
et al. 2008; Koren 2010; ElMaraghy & ElMaraghy et al. 2012). The number of product variants
is a major driver of complexity within manufacturing systems, as scarce resources need to be
managed efficiently for a widely spread product demand. This also links to the research area
of how to handle mass customization (ElMaraghy & Azab et al. 2009; Koren 2010). However,
before describing the complexity definition used in the present work, one can generally
summarize three types of complexity drivers:

• Problem complexity: number of different decisions that need to be made, e.g. order
release and order sequencing.

• Non-linear interdependencies: number of processes that are potentially stochastic and
non-linearly related to each other.

• Problem dimension: number of entities, e.g. machines and orders, to be considered.

The technical term complexity was first introduced by Alan Turing in the middle of the 20th
century to evaluate algorithmic procedures (Arora & Barak 2009). He subdivided the definition
into time complexity, space complexity, and communication complexity. Later, the computa-
tional complexity was transferred to categorize optimization problems. This led to the theory
of N P-hardness and most problems in operations management are N P-hard optimization
problems (Garey & Johnson 1979). N P-hardness means that the problem is not deterministi-
cally solvable in polynomial time. According to Garey & Johnson et al. (1976), determining
a shortest-length schedule in an m-machine flow shop is N P-complete for m ≥ 3 and for
an m-machine job shop for every m ≥ 2. However, this technical complexity definition is not
appropriate enough to describe the complexity of manufacturing systems.

The broader scientific definition of complexity differentiates the term from complicatedness
and chaos (ElMaraghy & ElMaraghy et al. 2012): Complicated systems consist of many
parts or sub-systems, whereas complex systems show uncertainty in addition. In chaotic
systems, the internal relations are intractable and slightly changing initial conditions may show
an entirely different outcome, whereas in complex systems the internal relations might be
non-linear but still trackable.

In order to define the term complex system in the context of the present work, it is referred
to the characteristics of semiconductor manufacturing and, in particular, the products itself
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that are, to a certain extent, unique. Semiconductor products are one of the world-leading
high-tech products (Horn 2008). At the heart of the manufacturing processes is the wafer
frontend fabrication, next to three further backend manufacturing steps: sort, assembly, and
test (Uzsoy & Lee et al. 1992). The frontend fabrication builds the chip’s product functions
layer by layer onto the silicon wafer and is the most time-consuming and capital-intensive step
(Mönch & Fowler et al. 2013). Moreover, the fabrication processes are required to operate
close to technological and sometimes even physical limits, which eventually leads to an
equally ranked level of complexity of the manufacturing system itself (Horn 2008; Mönch &
Fowler et al. 2011; Bauernhansl & Schatz et al. 2014).

Work area 1

Product mix
and setups

Work area 2

Batching

Work area 3

Multi-machine, break-
downs, and product mix

Re-entrant flow

Legend:

Orders (color: variant)

Machine

Order route

Figure 2.3: Exemplary illustration of characteristics of complex manufacturing system
(adapted from Waschneck & Altenmüller et al. (2016)).

All in all, the manufacturing system complexity is defined according to the following cate-
gories taken from Mönch & Fowler et al. (2013) and illustrated in Figure 2.3:

1. Changing mix of product variants.

2. Multiple parallel, costly, and, in some cases, highly unreliable machines that require
special maintenance actions.

3. Sequence-dependent setup times that can even exceed the processing time.

4. Tight customer due dates in a market where the product value degrades fast.

5. Various process types, ranging from batch processing (e.g. furnace) to single wafer
processes (e.g. lithography).

6. Re-entrant material flow, meaning lots are processed on the same machine several
times.
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The first four properties are mostly addressed and well-studied by the production scheduling
literature, i.e. job shop scheduling optimization problems focusing on tardiness, resulting in
optimal setup sequences with the highest possible machine utilization (Graham & Lawler
et al. 1979). In contrast, the last two properties mainly affect the material flow complexity and,
usually, neglected in most production scheduling approaches.

According to Lödding (2016), the complexity of the material flow system depends on the
number of predecessors and successors of a node, e.g. work centre, as well as the number of
return flows. Moreover, when various process types, e.g. batching and single processing, are
prevalent, both are self-amplifying effects and result in so-called inventory waves. A real-world
example, taken from a semiconductor company, is depicted in Figure 2.4. Herein, the number
of active transports varies with a spread of up to 186%, providing a particular challenge for
material flow systems.
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Figure 2.4: Real-world example of the number of active transports in a wafer frontend-
fabrication (Lanza & Nyhuis et al. 2018).

Another industry example of production systems that show properties similar to the semi-
conductor industry are matrix-like structured production systems with flexible transportation
links, e.g. autonomous guided vehicles (Greschke & Schönemann et al. 2014; Schönemann
& Herrmann et al. 2015; Küpper & Sieben et al. 2018). Due to the rising number of product
variants in the entire industrial sector and the challenges described above, traditional flow
line systems show a poor performance and more and more manufacturers are investigating
flexible (agile) production concepts (Echsler Minguillon 2020). Hence, the problem statement
of the present research can be extended to any job shop-like system that are increasingly rel-
evant to realize a cost-efficient mass-production of a large product portfolio. As such systems
are rather new, adequate production control methods are not yet established.
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Digitization in the semiconductor industry Driven by the complexity, semiconductor man-
ufacturers started comparatively early with digitizing and automating initiatives of production
resources and processes (Waschneck & Altenmüller et al. 2016). Hence, what was later
framed by the term “Industrie 4.0” has already been present a few years earlier. One reason
for that is that maximizing the yield of processes and operating close to physical limits re-
quires statistical process control in nearly every machine equipment (Mönch & Fowler et al.
2011). Another reason is the complex material flow, resulting from the given job shop layout
(Sturm 2006). Therefore, the entire factory and every production lot are equipped with a
localization system that provides location information of any order at any time. This enhances
the capabilities of material flow control methods by a more accurate database and supports
the application of automated material handling systems (Mönch & Fowler et al. 2013). Hence,
automated handling systems are broadly established and responsible for the material flow
between work areas and inside a work area between the machines (Sturm 2006). An efficient
material handling directly influences overall operational performance indicators such as cycle
time and machine utilization (Lin & Wang et al. 2001). Moreover, data-driven production
control systems can be applied for the complex job shops (Waschneck & Altenmüller et al.
2018a).

2.1.2 Logistical performance indicators

Performance indicators are used to measure the operational performance of manufacturing
systems. The performance measures are, from now on, named logistical performance in-
dicators (Lödding 2016). According to Nyhuis (2008), the importance of logistic operations
changed through the years. Initially, logistics just focused on transportation, storage, and
inventory handling. Due to the rising competition and customer orientation, logistics changed
from functional business unit orientation to cross-functional process orientation, also including
external supply chain partners (Chopra & Meindl 2019). The increasing integration towards
global production networks leverages the importance of logistic operations to a key manage-
ment focus (Lanza & Ferdows et al. 2019). Nowadays, production and logistics management
are closely interlinked to fulfil customer demand on-time (service level) and to ensure a
competitive market position (Lödding 2016; Chopra & Meindl 2019).

Wiendahl & Reichardt et al. (2014) describe the overall target of production operations as the
least costly implementation of all processes that are relevant for goods’ production. Thereby,
all operations need to aim at the long-term goal of maximizing profitability. According to Wien-
dahl (1997), there are four logistical performance indicators to evaluate the performance:
capacity utilization, order cycle time, adherence to due dates, and inventory level. Figure 2.5
illustrates these indicators according to Eversheim & Schuh (1996), and each indicator is
defined as follows (Mönch & Fowler et al. 2013; Lödding 2016; VDI 4400 Part 2 2004):
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Figure 2.5: Logistical performance indicators (adapted from Eversheim & Schuh (1996)).

• Cycle time CTj : Time period an order j is inside the manufacturing system, i.e. the time
difference between completion cj and order release rj, or the sum of processing time
PTj, setup time STj, waiting time WTj, and transportation time TTj. Lödding (2016)
emphasizes its importance, in particular for semiconductor manufacturers, as some
companies calculate a surcharge of up to 200% for the shortest delivery time.

CTj = cj − rj = PTj + STj + WTj + TTj 2.1

• Lateness Lj: An order delay refers to the actual completion time cj and the planned
completion time dj.

Lj = cj − dj 2.2

• Utilization U : The average manufacturing uptime utilization of N machines is defined
for a period T based on the sum of manufacturing time MTi without considering the
total down time DTi. Hence, it represents the ratio of used manufacturing time and total
available machine capacity.

U =
∑N

i=1 MTi∑N
i=1(T − DTi) · N

2.3

• Inventory I: The inventory level, also called work in process, counts the number of
orders inside the manufacturing system. This is the sum of all orders that are currently
processed at a machine, transported, or waiting in a buffer.
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The performance indicators can be split into two types: on the one hand, cycle time and
lateness are directly related to orders and, on the other hand, utilization and inventory are
related to resources (Domschke & Drexl et al. 2015). According to Figure 2.5, the order-
related indicators are referred to as external goals, whereas utilization and inventory represent
internal goals. Both types will be relevant in the present work.

Dilemma of contradicting objectives When optimizing the operational performance ac-
cording to the just mentioned indicators, the dilemma of contradicting objectives becomes
apparent. Generally speaking, the full realization of one objective can only be achieved at the
expense of reaching another (Gutenberg 1951; Lödding 2016). The inventory level minimiza-
tion of one product, for example, leads to a reduction in the utilization of specific resources. In
particular, resource- and order-oriented performance measures are contradicting.

Two formulas describe the relationship between the performance indicators and point out the
dilemma. On the one hand, Little (1961) introduced the basic queuing theory formula and,
similarly, Bechte (1980) developed the so-called “Trichtermodell” to capture, in a stationary
system, the relationship between the throughput TP of a system, the average inventory level
I , and the average order cycle time CT (alternatively, the throughput can be replaced by the
average arrival rate):

I = TP · CT 2.4

So, according to Little’s Law, inventory and cycle time are two indicators that support each
other, i.e. they correlate positively. On the other hand, the Kingman equation approximates the
expected waiting time E(WT ) of a G/G/1-queue with a given mean and standard deviation
of the time between arrivals μa, σa and processing time μp, σp, a given utilization ρ = μa

μp
, and

c being the coefficient of variation (Kingman 1961):

E(WT ) =
ρ

1 − ρ
· c2

a + c2
p

2
· μp 2.5

Two factors drive the waiting time: a high utilization (first term) and a high variation (second
term) increase the queue length and, hence, the waiting time.

To overcome the dilemma of contradicting objectives, it is therefore essential to consider
the interdependencies between different tasks and levels of production planning and control
in a comprehensive view (Adam 1996; Nyhuis & Wiendahl 2012). Generally speaking, it is
recommended to determine the most important strategic objective first and control the other
performance indicators accordingly. This approach is considered in the following section on
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production planning and control tasks. But first, three further concepts are presented that
relate to performance optimization and the dilemma of contradicting objectives. These are:
production operating curves, pareto-optimality, and robustness.

Production operating curve Another important concept of PPC is the so-called Produk-
tionskennlinie (eng., production operating curve) introduced by Nyhuis & Wiendahl (2012).
The curves are used to visualize the course of logistical performance indicators as a function
of the influencing variable. As a rule, the inventory level is used as independent influencing
variable, since it is the easiest to regulate.
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Figure 2.6: Production operating curve according to Nyhuis & Wiendahl (2012). The dashed
line refers to the dashed axis.

Representative curves of the average utilization and the average cycle time (arbitrary time unit
TU) are shown in Figure 2.6 (Nyhuis & Wiendahl 2012). It can be seen that higher inventory
levels lead to higher utilization. At the same time, there are longer order waiting times, since
the machine capacities are higher utilized when processing times are kept constant. The
utilization decreases for less inventory, because the machines are more likely idling and
waiting for orders. Consequently, the curves confirm that it is not possible to pursue both
goals, low cycle times and high utilization.

Production operating curves emphasize that, due to the dependencies and dilemma of
different objectives and influencing variables, a manufacturing system cannot be operated in
any arbitrary state. The course of the curves is the same for any kind of production system.
Therefore, the curves show the set of possible system operating states under the same
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boundary conditions. This approach is also called logistic positioning (Nyhuis & Wiendahl
2012).

Eventually, the curves are used to derive optimization measures if better operating states can
be identified. With this method, under specification of all non-controllable boundary conditions,
the desired operating state is determined by the performance measures inventory, utilization,
and cycle time. The boundary conditions are, for example, the existing machines, layout,
production orders, or external targets such as customer delivery times.

Pareto-optimality Further considerations of the dilemma of contradicting objectives, e.g.
by Kacem & Hammadi et al. (2002), apply the concept of Pareto-optimality to find a set
of efficient solutions for the multi-criteria optimization problem. A multi-criteria optimization
problem is defined as follows:

min
x∈Ω

f1(x), f2(x) . . . fn(x) 2.6

Where x is a feasible solution of the optimization problem, Ω the set of all feasible solutions,
and fi(•) represents an objective function for a single optimization criterion. In general, there
is no unique solution to such a multi-objective optimization problem (Domschke & Drexl et al.
2015). Therefore, solution xA is called Pareto-equivalent to another solution xB if they are
comparable in terms of all objective functions. If solution xC optimizes all objectives at least
as well as xA and at least one objective is better than xA, xC is called Pareto-superior to xA.
If there is no Pareto-superior solution to solution xD, then xD is Pareto-optimal. So, starting
from a Pareto-optimal solution, it is not possible to improve one objective without negatively
influencing another. Furthermore, all Pareto-optimal solutions yield a set of operating points
that can be named “optimal”.

Robustness Finally, the concept of robustness is important in PPC as it depicts another
performance characteristic of production systems. According to Stricker (2016), robustness
evaluates the performance of a system under changing conditions and represents the com-
promise between a high and stable performance level. Due to the high degree of interdepen-
dencies between production processes, disturbances accumulate so that even small changes
in the system parameters can have significant impact on the overall system performance
(Prabhu & Duffie 1999; Freitag 2005).

In the present work, the concept of robustness is considered. Not only high performance in
terms of one or multiple performance indicators is envisaged, but a robust performance is
likewise relevant.
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2.1.3 Production planning and control tasks

Generally speaking, there is a correlation between the complexity of production and material
flow systems and the usage of production planning and control methods (Lödding 2016). PPC
involves the planning, control, and administration of all processes necessary for the production
of goods (Günther & Tempelmeier 2012). Thereby, it is in between and closely connected to
the sales and purchasing functions of a company (Wiendahl 1997). It plays a vital role for any
manufacturing company in operations management, optimizing its performance and usage of
its production factors for the logistical performance indicators outlined in Section 2.1.2 (Schuh
& Stich 2012).

According to Arnold & Isermann et al. (2008) and Eversheim (2002), the main tasks of
PPC are the time-, quantity-, and capacity-related planning and control of all manufacturing
operations. Hackstein (1984) presented an early reference model for PPC, and the most
well-known model is called “Aachener PPS” introduced by Schuh & Stich (2012). The “Aach-
ener PPS” categorizes all tasks into tasks related to the production network (e.g. network
configuration, network sales planning, and network demand planning), the key tasks (e.g.
production program planning, production demand planning, and control of external sourcing
as well as internal sourcing), and cross-section tasks (e.g. controlling, order management,
and inventory management). Concerning these categories, this work focuses on the control
of internal sourcing.

However, more suitable for the remainder of this work are hierarchically structured models of
PPC, such as the ones introduced by Switalski (1989), Mönch & Fowler et al. (2013), Wiendahl
& Reichardt et al. (2014), and Kellner & Lienland et al. (2018). Herein, PPC decisions and
activities are structured according to the time horizon as follows (see also Figure 2.7):

1. The result of the first planning phase is a production program that covers a period from
months to a year. It contains the type, amount, and due date of products. The program
is based on the available resource capacity as well as customer demand. The demand
might also be a forecast for the planning period.

2. The production program is translated into production orders that are released based on
an order release policy. When an order is released, the production operations start and
a planned due date is defined for the respective product order.

3. Material and capacity planning is performed on a weekly or bi-weekly frequency. Detailed
bill of material lists, current inventory levels, and operator work plans are used as input to
determine order sequences and update due dates. These activities are also covered by
the term scheduling (Graham & Lawler et al. 1979; Brucker & Knust 2012). A schedule
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allocates (scarce) resources, such as machines or operators, over a period of time. It
can range from a single resource to an entire system with multiple resources.

4. The dispatching phase starts after production orders are released and scheduling is
performed. Hence, it mainly focuses on the control, implementation, and monitoring of
operations with respect to the plan determined in the previous phase. A rescheduling
might be performed in case of deviations from the initial plan (Vieira & Herrmann et al.
2003). Generally speaking, any dispatching decision needs to be taken in near real-time,
i.e. seconds or minutes without disturbing the production process (Sturm 2006).
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Figure 2.7: Production planning and control hierarchy (adapted from Mönch & Fowler et al.
(2013)). The scope of the present work is highlighted.

Production planning, the first two phases, incorporates manifold decisions that are synchro-
nized and covers a more extended period than production control. Production control, the
last two phases, is of particular importance due to its direct influence on the performance
indicators as any decision that is made will be implemented as such (Lödding 2016). Moreover,
a wide range of activities is required in order to react to disturbances such as a machine
breakdown, operator illness, or shortage of delivery (Nyhuis 2008).

Depending on the focal point where most decisions are made, it is either referred to as central
(planning-focused) or decentral (control-focused) PPC organization (Scholz-Reiter & Freitag
et al. 2005; Meissner & Ilsen et al. 2017).

Figure 2.8 gives an overview and classification of computational approaches to support
the decision-making process in production control that can be found in academic literature
according to Uzsoy & Lee et al. (1992) and Uzsoy & Lee et al. (1994). It differentiates between
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Figure 2.8: Computational approaches to support decision-making in production control
(adapted from Uzsoy & Lee et al. (1992) and Uzsoy & Lee et al. (1994)). The
focus of the present work is highlighted.

production planning, see above, production control, and performance monitoring that is used
to understand the system behaviour better. This classification is supported by the summary
of Nyhuis (2008). Further details on control theoretic approaches are found in Duffie (1996).
The present work focuses on knowledge-based, dispatching, and simulation methods.

2.1.4 Order dispatching

This last sub-section focuses on order dispatching as the central task on the lowest level of
the production control hierarchy (see Figure 2.7). If there is a planned schedule available,
dispatching might just cover the implementation of the schedule. However, in many cases,
there is no schedule or it is not up-to-date due to unforeseen disturbances. Then dispatching
is of crucial importance to control the entire order process flow (Gudehus 2010). Moreover,
Waschneck & Altenmüller et al. (2018b) show based on a real-world case study the relevance
and importance of order dispatching as the compliance of shopfloor operations with predeter-
mined schedules can be as low as 50%. As compliance reveals a gap between the planned
and as-is operational performance, it poses a key issue in operations management.

Because there are multiple and sometimes contradicting definitions of order dispatching, the
present work refers to the following definition, according to Lin & Wang et al. (2001) and
Mönch & Fowler et al. (2013), which covers two tasks:

• Dispatching of processing: selection of the next order to be processed, i.e. assignment
of an order to a processing resource.

• Dispatching of transport : selection of the next order to be transported, i.e. assignment
of an order to a transportation resource.
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Figure 2.9: Difference between scheduling for a time period t (left) and integrated order
dispatching at a point in time t0 of transport and processing (right) according to a
simplified example with three machines and three orders.

Dispatching decisions are made on the shopfloor either by machines or material handling
systems, e.g. manual forklifts or automated guided vehicles. In contrast to the broad scheduling
literature, e.g. by Graham & Lawler et al. (1979), order dispatching in the present work
considers not only machines but also transportation resources. The research in the domain of
integrated production and transportation optimization is rather new and not as well investigated
(Knust 2000; Fazlollahtabar & Saidi-Mehrabad 2013).

Summarizing the just described scheduling and dispatching tasks, Figure 2.9 depicts the
difference between both and describes the integrated order dispatching of transport and
processing as it is used in the remainder of this work. For illustration, a simplified example
with three machines and three orders is used. Scheduling considers a time horizon t (in the
future), whereas dispatching is a decision at a specific point in time t0 (Mönch & Fowler et al.
2013). Hence, a schedule assigns the three orders to the three machines according to their
work plan (Figure 2.9 on the left). A dispatching decision refers to a single action out of a
set of all feasible assignments of available orders and machines that can be illustrated as a
tree-structure (Figure 2.9 on the right).

2.1.5 Summary: Solution approach requirements

This summary shall conclude the fundamentals and concepts described so far, which are
relevant for the remainder of this work. Moreover, it forms the requirements for the next
section that introduces various quantitative optimization methods that are applicable as
solution approaches.
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1. A job shop manufacturing system needs to consider different machines, flexible trans-
portation resources, and orders. It relates to an entire production site or just a sub-system
of it.

2. Modern manufacturing systems exhibit characteristics of complex systems, as multiple
stochastic processes overlap each other and the range of variation is large.

3. The objective is to optimize logistical performance indicators in terms of resource
utilization and order cycle time. Furthermore, a robust performance is envisaged.

4. An integrated order dispatching, covering transportation and processing, is the PPC task
this research is based on. The dispatching system needs to be near real-time capable
and able to perform sufficiently well under changing conditions (adaptivity).

2.2 Quantitative optimization methods

Economic behaviour and decision-making are described as rational and objective-driven
processes (Adam 1996; Zimmermann 2008). Operations Research focuses on real-world
decision problems (Nickel & Stein et al. 2014) and its application in form of decision-making
support systems supposes to improve the quality of decisions (Domschke & Drexl et al. 2015).
Support systems cover any analytical and computational method that is applicable to find the
best solution alternative under a given set of constraints and objectives. This section defines
the basic terms and categorizes the most appropriate quantitative optimization methods.

In the following, decision and optimization problems are seen as synonyms. The solution
method can be either an exact method that guarantees to solve the problem to optimality or
methods that do not necessarily provide the optimal solution. Any method covers the following
problem solving phases (Domschke & Drexl et al. 2015):

1. Analysis of the problem

2. Determine the objective and solution alternatives

3. Mathematical modelling (descriptive model)

4. Data gathering

5. Solution algorithm

6. Evaluation and implementation of the solution
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Schematic illustration of alternative optimization approaches
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Figure 2.10: Comparison of quantitative methods with respect to applicable problem size,
feasible solution quality, and required computation time. The dashed, coloured
lines refer to the dashed, coloured axis.

Chapter 4 and Chapter 5 follow this procedure, as the problem of order dispatching represents
all characteristics of a decision problem (Mönch & Fowler et al. 2013; Domschke & Drexl et al.
2015).

In the following sub-sections, mathematical optimization, heuristics, and machine learning will
be characterized and application examples named. Figure 2.10 depicts and summarizes the
essential differences between the quantitative methods with respect to the applicable problem
size, the solution quality, and the computational effort. Moreover, the upper part of Figure 2.10
sketches the different approaches of the quantitative methods. Generally speaking, heuristics
follow a step-wise procedure, machine learning determines the optimal solution based on
an approximation model, and mathematical optimization exactly determines local and global
optima, for instance, based on the first and second derivative. Reinforcement learning is one
representative of the machine learning category, as explained in the following. Additionally,
simulation will be introduced as another quantitative approach that is, however, by itself not
classified as an optimization method.

2.2.1 Mathematical optimization

Mathematical optimization problems consist of three elements: an objective function f that
is optimized, i.e. maximized or minimized, constraints that need to be ensured, and a valid
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value range for the decision variables (Nickel & Stein et al. 2014). An example is given by
the basic scheduling problem as introduced in Brucker & Knust (2012): A set of J orders
has to be processed on a set of N machines. Each order j consists of kj operations that
have to be executed in a defined sequence Sj,k. Each operation must be performed on an
assigned machine xj,k,n ∈ {0, 1} with a processing time of PTj,k,n > 0. The objective function
f(x) : X → [0, +∞] represents, for instance, the total processing time.

minimize
x

f(x)

subject to
∑

n∈N

xj,k,n = 1, ∀j ∈ {1, ..., J} , k ∈ {1, ..., kj}

xj,k,n ∈ [0, 1] , ∀j ∈ {1, ..., J} , k ∈ {1, ..., kj} , n ∈ {1, ..., N}

Established mathematical optimization techniques are the following: linear, mixed-integer,
non-linear, dynamic, and constrained optimization. Those as well as the concept of online
optimization are explained in Appendix A1.

Many authors in the field of mathematical programming point out that the way of modelling
and mathematically formulating the real-world problem has a significant influence on the
computational effort (Zimmermann 2008; Nickel & Stein et al. 2014; Domschke & Drexl et al.
2015). “Good” models can be solved efficiently with the help of modern solution algorithms,
although they might be N P-hard. The following authors give an overview of efficient modelling
approaches for common real-world problems in operations management: Zimmermann (2008),
Klein & Scholl (2011), Kallrath (2013), and Domschke & Drexl et al. (2015).

2.2.2 Heuristics and metaheuristics

A heuristic represents an algorithm which tries to approximate the exact solution of an op-
timization problem. The solution approach is based on a procedure that includes empirical
knowledge on how to find a “good” solution and mostly foregoes any kind of mathematical
programming technique (Zimmermann 2008). In comparison to mathematical optimization,
heuristics do not guarantee to find the optimum and do not provide any information on the
solution quality with respect to the optimal solution, such as upper and lower bounds (Dom-
schke & Drexl et al. 2015). However, they show for most N P-hard optimization problems a
“good” compromise between solution quality and computational effort (Zimmermann 2008).

Heuristics are commonly divided into procedures that provide feasible initial solutions and
procedures that take a feasible solution and optimize it further in the direction of the objectives
(Nickel & Stein et al. 2014). Important additional characteristics of heuristics are the following:
firstly, feasibility especially for integer variables is always guaranteed, as naturally only feasible
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operations that handle integer variables as integers are allowed and no relaxation is applied.
Secondly, the trade-off between a myopic algorithm with fast convergence and an approach
that avoids deadlocks and local optimal solutions is known as the interplay of exploration and
exploitation. This trade-off is also relevant for reinforcement learning and explained in the
next sub-section in more details.

Generally speaking, simple heuristics follow a greedy approach, which always selects the
best decision alternative, related to the optimization objective (Zimmermann 2008). On the
contrary, algorithms that fit a broader range of problems are denoted as metaheuristics
(Gendreau & Potvin 2005). Metaheuristics outperform heuristics, if the latter is based on a
greedy-strategy that only obtains an inferior solution. This is, because the procedure of a
metaheuristic implements concepts to avoid myopia, for example, by allowing worse than
best (greedy) operations in some iterations or by adding randomness to the algorithm, which
is also referred to as exploration (Gendreau & Potvin 2005). A more detailed explanation of
heuristics and metaheuristics is outlined in Appendix A1.

Heuristics applied in PPC Simple heuristics, such as priority rules, are the prevailing
industrial practice in production control, particularly in semiconductor manufacturing (Sarin &
Varadarajan et al. 2011; Mönch & Fowler et al. 2013; Waschneck & Altenmüller et al. 2016).
They are advantageous in terms of computational efficiency, simplicity, and real-time capability.
In a semiconductor company, production control heuristics are implemented and executed by
a so-called real-time dispatcher system, which allows easy programming and implementation
of multi-level priority rules (Waschneck & Altenmüller et al. 2016). The system determines, for
example, which job is processed next. Herein, a priority index Ij(aj) is assigned to each job
j waiting in a queue based on its attributes aj, with either the highest or lowest index being
selected. Individual priority rules, thus, differ by choice of the attributes. The most important
and popular priority rules are listed in the following and based on the summaries of Panwalkar
& Iskander (1977), Blackstone & Phillips et al. (1982), Haupt (1989), Klemmt (2012), and
Mönch & Fowler et al. (2013):

• FIFO: First In First Out selects the next job based on the sequence of arrival. It has the
advantage to adhere to the initially planned, incoming sequence.

• EDD: Earliest Due Date chooses the job with the closest due date to ensure on-time
delivery, given that the system load is not too high so that not all due dates can be
achieved. Not always “real” customer due dates exist. If this is not the case, artificial
due dates can be defined, e.g. based on a targeted flow factor (Baker 1984).
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• LWT: Longest Waiting Time chooses the job with the longest waiting time in order to
minimize order cycle times and, in particular and in contrast to FIFO, orders remaining
and lingering for an extremely long time within the system.

• NJF: Nearest Job First selects the closest available job, leading to high utilization of the
dispatching unit. The opposite of this rule, Farthest Job First (FJF), can improve NJF as
circulation between two resources can be prevented.

• SST: Shortest Setup Time determines the next job based on the required setup time
and is common in order sequencing in front of a machine if setup times are present.

• SPT: Shortest Processing Time always selects the job with the shortest processing time
to keep the number of waiting jobs as small as possible and reduce the mean cycle time.
Vice versa, Longest Processing Time (LPT) selects the longest processing time.

• WSPT: Weighted Shortest Processing Time selects the job with the shortest processing
time that is multiplied with a weight factor, e.g. to separate regular and urgent jobs.

• SRPT: Shortest Remaining Processing Time selects the job with the shortest total
processing time of the left operations.

• MS: Minimum Slack chooses the job with the least remaining slack time, i.e. the job
with the least lateness. In general, this leads to a smoothing of lateness fluctuations. As
high variations increase the chance of non-utilized capacities, this rule is often used in
composite rules. Possible further extensions consider the variance of cycle times as
variance measure (referring to Kingman’s Equation 2.5).

• FLNQ: Fewest Lots in the Next Queue focuses on a high machine utilization as well as
a balanced workload in case of multiple machines. It selects the job that has the least
number of jobs in front of the next machine. Usually, this rule does not guarantee good
performance in terms of on-time delivery.

• ATC: Apparent Tardiness Cost, according to Vepsalainen & Morton (1987), uses an
index combining WSPT and MS. It is adjustable with a look-ahead parameter k (job j,
job weight wj , processing time PTj , due date dj , current time t, and average processing
time of waiting jobs PT ):

ATCj =
wj

PTj
· e− max{dj−P Tj−t,0}

k·P T 2.7
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The first term represents the WSPT and the second term the MS rule. However, com-
posite rules with parameters can potentially lead to additional effort to compute the best
parameter setting for the considered problem.

• An advanced composite rule example for order dispatching is given by Jeong & Rand-
hawa (2001), who summarize the distance to a job (NJF), the destination queue fill level
(FLNQ), and the left space at the current location of the job.

These rules can be classified into two categories according to the information and order
attributes based on which the decision is made (Mönch & Fowler et al. 2013): local rules just
use the information related to one resource, e.g. the waiting queue, and global rules consider
future jobs or other down- or up-stream resource information.

Furthermore, additional heuristic rules can be designed by applying the following: trunca-
tion, i.e. limiting a particular rule to an exceptional condition such as jobs waiting too long,
conditioning, i.e. adapting a rule to the current system state, or multi-level methods that add
hierarchical conditions or are required in case of a tie (Mönch & Fowler et al. 2013). In practice,
resolving a tie or deadlock and preventing starvation is of essential importance to ensure
running production operations. For instance, FIFO is more robust than EDD, which can lead
to unstable operations (Hilsenbeck 2005). Hence, in hardly any real-world application just a
single heuristic rule is enough.

So far, the research of priority rules has not found any heuristic rule that dominates all other
rules for any setup, system state, or objective as pointed out by Haupt (1989) and Geiger &
Uzsoy et al. (2006). This fact refers to the so-called no free lunch theorem, according to which
there is no such rule that surpasses random guessing over all possible applications (Wolpert
& Macready 1997). Recent approaches that are presented in Chapter 3 design multi-level
priority rules, for instance, with the help of evolutionary algorithms (Freitag & Hildebrandt
2016). However, these rules are neither obvious to understand nor simple to validate (Heger
2014). Moreover, they are still not generic enough to show a robust performance for different
systems and changing conditions. Finally, multi-level rules pose the risk of contradictions
within the rule-hierarchy, especially when applied in complex environments (Mönch & Fowler
et al. 2013).

2.2.3 Machine learning

Machine learning covers computer programs that generate knowledge by using empirical
data (experience) and optimize a specific performance criterion (Mitchell 1997). Thereby, the
key characteristic of machine learning lies in the ability to draw conclusions from a database
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about the underlying system and its behaviour. This process is also known as inference
(Russell & Norvig 2016).

The recent increasing importance of machine learning results mainly from the fact that for
some tasks no suitable algorithm exists or the development and constant adaptation would be
too costly (Alpaydin 2010). At the same time, an ever-increasing database emerges that is not
adequately considered in conventional algorithms. Inference can be used to build knowledge
that allows decisions to be made without having to program an explicit algorithm. This plays
an important role, especially in environments with a vast solution space, because the effort to
construct a tailored algorithm is inadequately high. Another factor that increases the relevance
of machine learning is the increasing importance of adaptive control systems that can (re-)
act in any situation autonomously (Nyhuis 2008; Stricker & Kuhnle et al. 2018).

Generally speaking, there are two ways of how learning is incorporated in algorithms: adjusting
model parameters, such as the connection weights of an artificial neural network, or varying
the model structure by changing the size of an artificial neural network.

Machine learning is commonly divided into three categories (Mitchell 1997): unsupervised
learning, supervised learning, and reinforcement learning. All three categories generate
knowledge, but based on a different range of experience and application of built-in knowl-
edge. Unsupervised learning focuses on finding patterns to separate an unknown database,
whereas supervised learning aims at pre-determined and labelled data structures. Reinforce-
ment learning uses self-initiated actions to change its environment and receive a reward
feedback to learn an optimal behaviour policy. Thus, reinforcement learning actively influences
its learning data as opposed to unsupervised or supervised learning. A more detailed descrip-
tion and evaluation concerning the applicability in the context of adaptive order dispatching of
unsupervised and supervised learning are provided in Appendix A1, according to Mitchell
(1997), Russell & Norvig (2016), and Ertel (2017). This section will continue with and focus
on the category of reinforcement learning.

Reinforcement learning Reinforcement learning, having its roots in psychology and the
investigation of animal intelligence (Thorndike 1911), addresses the question of how an
autonomous, intelligent program, which is called agent, observes and acts in its environment
and learns to choose optimal actions in order to achieve a goal formulated at the beginning of
the learning process. The term agent is, according to Russell & Norvig (2016), understood
as an instance that receives information about its environment, e.g. via sensors, and can
influence its surrounding, e.g. by means of actuators. Every agent’s action is rewarded or
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punished by a scalar value as an indicator of its desirability. The goal of the agent is to
maximize the cumulative reward.

The reward signal is, in some sense, a kind of supervision, which is why one can understand
reinforcement learning as an intermediate between supervised and unsupervised learning.
However, unlike supervised learning, reinforcement learning does not have independent data
instances, because past actions and states influence the evaluation of the current situation
and future states and actions. So there is a time-related dependency. Moreover, reinforcement
learning is used if a priori no relation between input and output data is available, but every
input-output-combination can be evaluated easily. These properties make reinforcement
learning attractive for the optimization of production operations.

2.2.4 Simulation

Simulation is a powerful quantitative method that, however, is not an optimization technique
itself. Nevertheless, there are several applications in which simulations show significant
advantages when combined with one of the previously outlined approaches. First, when it
is not possible, too dangerous, too costly, or too time-consuming to observe the process in
real-world and perform real-world experiments (Domschke & Drexl et al. 2015; VDI 3633 Part
1 2014). Second, when analytic models do not exist so far, include too many assumptions, or
are too complex to represent the real-world problem (Law 2014). So, the first and foremost
aim of simulation applied in production planning and control is the representation of systems
that do not exist, have stochastic properties, or consist of multiple components that interact
with each other, as in these cases analytical models are infeasible or even impossible to build
(Mönch & Fowler et al. 2013; Domschke & Drexl et al. 2015).

There are two types of simulations depending on the time progress within the simulation
(Law 2014; Gutenschwager & Rabe et al. 2017): discrete-event and continuous simulations.
The former type processes one event after another. After the simulation start, events are
generated, timed, and removed when their end is reached. An event handler keeps track of
all events and executes events based on their due time. Nearly all applications in logistics
and production within the discrete industry fall into this category. In the latter case, the time
progresses continuously, meaning in infinitesimal small time steps. This is appropriate for
process industry applications and, hence, not further considered in the present work.

Simulations can be combined with mathematical optimization methods or, more recently, with
machine learning algorithms. In the former case, the simulation is used to evaluate solution
alternatives, e.g. a schedule as output of a constraint optimization model (März & Krug 2011;
Gutenschwager & Rabe et al. 2017). That is beneficial when the system’s dynamics do not
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allow an analytic solution evaluation. However, due to the computational effort of running a
simulation, this approach is limited to small problems (Klemmt 2012).

For combined simulation and machine learning applications, the advantage of the simulation
is its ability to generate “cheap” training data. In most recent applications of reinforcement
learning, this is a common approach, such as the example of the board game Go (Silver &
Schrittwieser et al. 2017), the computer game StarCraft1, or a robotic hand solving Rubik’s
cube2. This approach will be further described in the next sections as it is also a central
element of the present research.

2.2.5 Summary: Quantitative methods for an adaptive order dispatching

Summarizing the presented quantitative methods, the two major influencing factors that affect
the selection of the appropriate method are the degree of centrality and the duration of the
planning horizon (Nyhuis 2008). Figure 2.11 gives a structured overview of the approaches
that are applicable for PPC.

Static control

Adaptive control

Mathematical optimization

Agent-based planningD
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Figure 2.11: Overview of appropriate quantitative methods for production planning and control
(adapted from Nyhuis (2008)). The focus of the present work is highlighted.

If the considered planning horizon is very long and the degree of centrality high, i.e. there is
only a single decision-making unit, mathematical optimization is predominant, whereas for
decentral systems agent-based planning is more appropriate (Domschke & Drexl et al. 2015).
The two most short-sighted approaches are static and adaptive control systems, which are
extensively discussed in the previous section.

1Vinyals et al. (2019), AlphaStar: Mastering the Real-Time Strategy Game StarCraft II https:
//deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
(accessed on 17.06.2020).

2Akkaya et al. (2019), Solving Rubik’s Cube with a Robot Hand https://openai.com/blog/solving-
rubiks-cube (accessed on 17.06.2020).



Fundamentals 29

In addition to that, the summary of this section is given as follows:

1. The requirements listed in Section 2.1.5 can be fulfilled by an adaptive order dispatching
system.

2. Heuristic priority rules are commonly applied in industrial applications and thoroughly
studied in academia.

3. The quality of an optimization method is largely determined by the level of knowledge
about the problem characteristics. For instance, the process of creating decision rules
requires deep understanding of the underlying system.

4. Reinforcement learning fulfils the requirements of an adaptive order dispatching.

5. Discrete-event simulation is a powerful tool to evaluate complex systems and to create
a sufficient database for a reinforcement learning application.

2.3 Reinforcement Learning

Reinforcement learning optimizes the behaviour of an autonomous agent within a defined
environment (Kulkarni 2012). The agent learns based on a trial-and-error approach, wherein
learning data is generated, iteratively based on observations that result in actions and a reward
value that is provided as feedback, i.e. a positive or negative scalar. Collecting experience by
actively interacting with the environment is referred to as sampling (Sutton & Barto 2018).

One reason for recent advances in reinforcement learning is that, nowadays, still many control
optimization applications ask for specific algorithms that do not exist yet. Either it is too
complex to develop or the system constantly changes and requires a continuous adjustment
of the control algorithm (Alpaydin 2010). Reinforcement learning offers a promising approach
to address these challenges.

2.3.1 Agent and environment

Since the definitions as well as related terms of agent and environment are ambiguous in
literature, the introduction by Russell & Norvig (2016) is considered from now on. The term
agent describes a computer system that is embedded in an environment and makes decisions.
According to these authors, there are the following agent types:

• Simple reflex agent: Behaving based on reflex-like condition-action rules, such as “if A

then B”.
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• Model-based reflex agent: In addition to the simple reflex agent, this agent keeps track
of the environment state via an internal model of the environment, e.g. a history of past
actions, but chooses the action in the same way.

• Goal-based agent: The behaviour is not driven by condition-action rules but directed by
certain goals that need to be achieved. Thereby, an internal model not only recalls the
history but also alternative actions are assessed.

• Utility-based agent: This agent replaces fixed goals by a utility function that determines
the preference among different future environment states. Usually, the expected utility is
maximized considering probabilities for each decision alternative.

• General learning agent: That concept is based on four major elements. A performance
element that decides on actions, a critic element that evaluates the current agent’s
performance in its environment and how to improve it, a learning element that changes
and adjusts the performance element, being the main optimization element, and, finally,
a problem generator, generating new learning experience.

Concerning the internal model of the agent, there are two options established (Kaelbling &
Littman et al. 1996): model-free means that there is no specific model given to the agent and
the agent itself learns a model directly from the environment based on a generic approach,
e.g. an artificial neural network. In contrast, model-based agents do have a constructed
internal model to start with and continuously adjust it to meet the current environment state.
An example of a model-based approach is, for instance, the usage of the set of rules in a
board game or the laws of Physics in a physical real-world application.

Reinforcement learning falls into the category of general learning agents. The interaction
between the agent and the environment is the central part of the learning process. It is
illustrated in Figure 2.12 and is linked to the concepts of control theory and adaptive controllers
introduced in Chapter 1 (see Figure 1.1). The agent represents the controller, the environment
the controlled system, the action the control signal, and the set-point is related to the reward.

Agent Environment

St, St+1

At

Rt+1

Figure 2.12: Key elements and basic interaction mechanism of reinforcement learning
(adapted from Sutton & Barto (2018)).
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The following introduction of reinforcement learning is based on the terminology of Sutton &
Barto (2018). The interaction between agent and environment happens in a series of discrete
time steps t = 0, 1, 2, . . . . The reinforcement learning agent (short RL-agent) receives in t the
information about the current state of the environment as state representation St whereupon
action At is selected. In the next time step t + 1 it receives the evaluation of choosing At in St

as reward Rt+1. Afterwards, a new state St+1 results based on the action and the environment
dynamics. This information is used by the agent to optimize the action selection policy. The
policy πt(a | s) represents the conditional probability of At = a if St = s. An exemplary
interaction sequence looks as follows:

S0, A0, R1, S1, A1, R2, S2, A2, R3, ... 2.8

Note that the learning process does not directly require manual supervision, once all elements,
i.e. state, action, and reward function, are defined. Chapter 4 will focus on the modelling of
reinforcement learning in details. Thus, at this point it is enough to conclude that the function
that determines the reward, the relevant state information, the set of possible actions, and the
optimization algorithm are the design elements that need to be adjusted for any application
of reinforcement learning. The remainder of this section explains the basic optimization
mechanisms as theoretical background of reinforcement learning.

Multi-agent reinforcement learning Systems that are subjected to numerous stochastic
influences and for which decisions are made in multiple instances show a high degree of
complexity (see Section 2.1.1). In such systems, agent-based decentral control architectures
are particularly suitable (Monostori & Váncza et al. 2006; Gabel 2009). Multiple agents can
pursue different goals and make autonomous decisions independently, which reduces the
complexity comparing to an integrated control architecture. Moreover, multi-agent systems are
promoted in the context of Industry 4.0 (Lasi & Fettke et al. 2014), cyber-physical production
systems (Monostori & Kádár et al. 2016), and self-optimizing production systems (Permin
& Bertelsmeier et al. 2016). However, multi-agent systems are not explicitly considered in
the present work, though some presented concepts are transferable and can be extended to
multiple agents. For literature on multi-agent systems and reinforcement learning, the reader
is referred to the work of Caridi & Cavalieri (2004), Mönch (2006), Monostori & Váncza et al.
(2006), Gabel (2009), Busoniu & Babuska et al. (2008), and Gupta & Egorov et al. (2017).
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2.3.2 Markov Decision Process

The theoretical foundations of reinforcement learning are ascribed to the theory of dynamic
programming. In particular, Markov Decision Processes (MDP) build the theoretical basis for
sequential decision problems, i.e. optimization tasks in stochastic and dynamic environments
in which the optimal decision-making for a set of feasible actions is asked for (Puterman 1994;
Bertsekas 2005).

A finite MDP is defined by the following elements (Sutton & Barto 2018): finite set of envi-
ronment states S, finite set of actions A, transition probabilities p, reward function r, and
discount rate γ. Herein, the transition probabilities p(s′, r | s, a) completely define the dynam-
ics and transition behaviour of the environment, i.e. what is the probability P of the next state
s′ ∈ S based on the prior state s ∈ S and a given action a ∈ A. The four-argument function
p(s′, r | s, a) stands for the entire environment dynamics and the three-argument function
p(s′ | s, a) for the state-transition probabilities. The reward function r describes the evaluation
according to the optimization objectives:

r(s, a, s′) = E [Rt | St−1 = s, At−1 = a, St = s′] 2.9

MDPs are divided into processes of episodic and continuous nature. If the interaction of the
agent with its environment is terminated at a certain time or event, there is an episodic MDP
and otherwise a continuous MDP. Another important differentiation characteristic of MDPs is
the observability of the state, i.e. whether it is completely observable (MDP) or just partially
observable (POMDP). Most real-world problems fall into the category of POMDP. Generally
speaking, the reinforcement learning methods discussed in this work are not limited to MDPs,
but also applicable for POMDPs as well as for episodic and continuous processes. Hence,
from hereupon just the term MDP is used.

Markov property The key concept of an MDP is the Markov property. It refers mainly to
the state representation, which needs to fulfil the following property (Sutton & Barto 2018):

p(s′, r | s, a) != P(St = s′, Rt = r | St−1 = s, At−1 = a) 2.10

The property is fulfilled, if the transition function p, i.e. the transition to state St under observa-
tion of reward Rt, depends only on the preceding state St−1 and action At−1.

When applying reinforcement learning, the agent receives the state information St in the form
of a vector in each time step. According to the Markov property, the state representation must,
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thus, contain all task- and objective-related information. However, as stated by Sutton & Barto
(2018) and demonstrated by other authors too (see Chapter 3), it is not necessarily required
that the property is strictly fulfilled and reinforcement learning is still applicable.

Visualization MDPs are usually visualized in the form of transition graphs. States and
actions are depicted as nodes and possible state transitions by weighted edges. The weight
of an edge represents its probability. An episodic process with three states and two actions is
shown in Figure 2.13. The state se is the terminal state and β indicates the probability of the
state transition if action a1 is selected in state s1. All other transition probabilities are equal to
1, as there is only one possible next state.

s0 a0 s1 a0 se

a1a1

1 1

β1 − β

1

Legend:

Terminal state

State Action

Transition probabilities

Figure 2.13: Exemplary Markov decision processes visualization as transition graph.

2.3.3 Basic concepts of Reinforcement Learning

Taking the mathematical formulation as an MDP, the basic concepts of RL-methods are the
following: the agent’s policy, the reward function, the value function, the optimal value function
as well as policy, and the exploration-exploitation trade-off. These form the basis for a broad
range of RL-methods and are described in more detail in this section, again according to the
terminology of Sutton & Barto (2018).

Policy The agent’s policy π(a | s) describes the agent’s action selection behaviour1. For
each combination of states s ∈ S and actions a ∈ A, it indicates the probability of selecting a
particular action while observing a specific state:

π(a | s) = P(At = a | St = s) 2.11

In reinforcement learning, the policy is a dynamic element that is iteratively adjusted during
the learning phase to optimize the agent’s behaviour. The initial probabilities are set random
in most implementations.

1For reasons of simplicity, the subscript t is omitted for the agent’s policy π. However, as the policy is adapted
over the learning process, it is not independent of t.
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Reward function The reward function r(s, a) is the numerical representation of the learning
objective. It determines the feedback and evaluation value Rt+1 ∈ R as a consequence of
action a ∈ A and state s ∈ S. In line with the MDP definition, the agent optimizes the
long-term goal fulfilment, i.e. not only the next reward but the sequence of future rewards
Rt+1, Rt+2, .... The expected discounted reward Gt is computed via:

Gt = Rt+1 + γ · Rt+2 + γ2 · Rt+3 + ... =
T∑

k=0
γk · Rt+k+1 2.12

The reward values per time step are weighted with a discount factor γ ∈ [0, 1], which de-
termines the weight of future and current valuations. Hence, the parameter γ is of central
importance to the reward function. If the factor is rather small, the impact of future rewards is
low and, hence, the agent aims at short-term reward maximization, while a high value implies
a far-sighted decision-making behaviour. In an episodic MDP, the sequence is cut off when a
terminal state is reached, and T is set to infinity in a continuous MDP.

Conclusively, the reward depicts what to achieve and not how to achieve it, which is relevant
when interpreting the computational results in Chapter 5.

Value function The value function vπ(s) determines the desirability of a state. Thereby,
it joins the policy π and the expected reward Gt, and forms the basis for any optimization
algorithm. It considers, based on state St, the expected future rewards under the current policy
π. In addition to that, the value can be determined on the basis of state-action combinations in
the form of the so-called Q-function qπ(s, a) (also called state-action value). Both are defined
as follows:

vπ(s) = Eπ

⎡
⎣ ∞∑

k=0
γk · Rt+k+1 | St = s

⎤
⎦ 2.13

qπ(s, a) = Eπ

⎡
⎣ ∞∑

k=0
γk · Rt+k+1 | St = s, At = a

⎤
⎦ 2.14

The value function can be also defined recursively, according to Bellman’s Equation 2.20.
This form of representation makes it possible to express the value of a state over the values
of its successor states (Sutton & Barto 2018):

vπ(s) = Eπ [Gt | St = s]

= Eπ [Rt+1 + γ · Gt+1 | St = s]

=
∑
a

π(a | s) · ∑
s′,r

p(s′, r | s, a) · [r + γ · Eπ [Gt+1 | St+1 = s′]]
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=
∑
a

π(a | s) · ∑
s′,r

p(s′, r | s, a) · [r + γ · vπ(s′)] 2.15

This is of central importance for any RL-algorithm and reconsidered in Section 2.3.4.

Optimal value function and optimal policy The recursively defined form of the value
function in Equation 2.15 allows, according to Bellman, the solution of an MDP. The optimality
principle of Bellman (1966) states that the solution, i.e. the optimal policy, of a decision problem
can be aggregated from a sequence of optimal solutions of sub-problems, i.e. sub-policies.

The agent’s goal is to maximize the expected reward Gt and determine an optimal policy π∗

according to that. A policy is called optimal if and only if Gt is greater or equal to any state
s ∈ S and any other possible policy π (Sutton & Barto 2018):

vπ∗(s) ≥ vπ(s) ⇒ π∗ ≥ π, ∀s ∈ S 2.16

Accordingly, determining the optimal policy is equivalent to the optimal value function. For this,
the maximum of the value function (Equation 2.13) or the Q-function (Equation 2.14) are:

v∗(s) = max
π

vπ(s), ∀s ∈ S 2.17

q∗(s, a) = max
π

qπ(s, a), ∀s ∈ S, a ∈ A(s) 2.18

The optimal value function v∗(s) can be re-formulated by exploiting the fact that the value of a
state under an optimal policy π∗ equals the expected total reward for the selection of the best
action of the optimal Q-function q∗(s, a). This formulation is particularly useful, as it avoids
the reference to a specific policy.

v∗(s) = max
a∈A(s)

q∗(s, a)

= max
a∈A(s)

Eπ∗ [Rt+1 + γ · Gt+1 | St = s, At = a]

= max
a∈A(s)

E [Rt+1 + γ · v∗(St+1) | St = s, At = a] 2.19

= max
a∈A(s)

∑
s′,r

p(s′, r | s, a) · [r + γ · v∗(s′)] 2.20
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Equation 2.19 and Equation 2.20 are two different forms of Bellman’s optimality equation that
can be formulated analogously for the Q-function:

q∗(s, a) = max
a′∈A(s)

E [Rt+1 + γ · q∗(St+1, a′) | St = s, At = a] 2.21

= max
a′∈A(s)

∑
s′,r

p(s′, r | s, a) · [r + γ · q∗(s′, a′)] 2.22

Solving these equations and determining the optimal value function are the core of value-
based RL-methods, which are outline in the next section. Bellman’s equation translates into a
system of equations and, hence, the optimal value function is equivalent to the solution of a
system of equitations with one equation for each state (Sutton & Barto 2018).

So, the optimal value function and optimal policy can be determined by mathematical opti-
mization and explicitly formulated. However, in real-world applications, this is computationally
hard due to the large amount of state-action pairs that need to be evaluated and stored.
Generally speaking, reinforcement learning is an approximation method, that approximates
the optimal policy, e.g. by reducing states with a low probability to a random action selection
policy and, thus, putting the focus just on frequently occurring states (Sutton & Barto 2018).
The underlying optimization approach follows the optimality principles just explained.

Exploration and exploitation In reinforcement learning, the agent learns a policy through
the experience gathered by interacting with the environment. This raises the question to what
extent the agent should explore the environment as it represents the solution space (referring
also to the problem generator feature of general learning agents in Section 2.3.1). Moreover,
exploring might result temporarily in a lower reward in order to receive a higher reward in
the long-run. To answer this question, there are two opposing concepts that are already
introduced in Section 2.2.2 on (meta-) heuristics (Witten 1976; Glover & Kochenberger 2003;
Sutton & Barto 2018): exploration and exploitation. In exploitation, known information is used
greedily to maximize the reward. In contrast, the purpose of exploration is to explore the
environment to gather new information and, potentially, discover an even better policy. It is
broadly agreed on, that only by combining exploration and exploitation the optimal policy can
be determined (Kaelbling & Littman et al. 1996).

One common approach in reinforcement learning to enforce exploration is the ε-greedy action
selection (Sutton & Barto 2018). Herein, at any time step a random action is selected with a
probability of ε ∈ [0, 1]. Usually, ε is set to a high value in the beginning and decreases over a
linear amount of iterations to zero or a small number above zero.
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2.3.4 Model-free methods

In most real-world applications, the transition probability function p, i.e. the dynamics of
the environment, is unknown. In such cases, model-free reinforcement learning methods
are applied, in contrast to model-based methods, such as dynamic programming, that are
applicable when the entire MDP is known (Kaelbling & Littman et al. 1996). Generally
speaking, using a model results in a more efficient learning process with fewer interactions
with the environment and, if the model is accurate, the RL-policy also matches more accurately
to the real-world than model-free methods. As stated before in Section 2.3.1, the regarded
application of this work does only allow for model-free methods, as a complete environment
model is not available. This sub-section explains which basic RL-methods exist that are used
to optimize and solve the underlying MDP.

All model-free RL-methods have in common that they first act according to arg max
a∈A(s)

qπ(s, a),

i.e. the action with the highest q-value is selected, and use the experience to adjust and
update the policy or the value function of the current policy. Collecting experience through
interaction with the environment is called sampling, as explained before. Computing the
value function for a given policy is called policy evaluation and improving the policy based on
an adjusted value function is named policy improvement. When combining both steps, the
agent’s policy eventually converges to the optimal policy π∗ (Sutton & Barto 2018).

According to Sutton & Barto (2018), three types of methods are introduced that are applicable
for model-free reinforcement learning (see also Figure 2.14 – the fourth method, Trust Region
Policy Optimization, will be presented in Section 4.4.1.1 as it is the method applied in the
present work): two value-based methods, Monte Carlo and Temporal-Difference, and policy-
based methods. The presented methods are generic procedures that enclose a range of
algorithms that implement the methods’ principles.

Figure A1.1 in Appendix A1 sketches the different approach of value- and policy-based
methods for a simplified and schematic example. Value-based methods iteratively compute
state values and derive the policy based on these. In contrast to that, policy-based methods
start with an initial policy and improve the entire policy in every iteration.

Monte Carlo First, Monte Carlo methods learn the optimal value function from an average
sample of an entire episode. Episodes terminate in a fixed manner and, at the end of an
episode, the policy is updated accordingly. So, this type of method is only applicable to MDPs,
where the environment can be defined in episodes.
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Model-free reinforce-

ment learning methods

Value-based
methods

Temporal-
Difference

Monte Carlo

SARSA Deep-Q Network ...Q-learning

Policy-based
methods

Trust Region
Policy OptimizationREINFORCE ...

Figure 2.14: Classification of model-free reinforcement learning methods. The focus of the
present work is highlighted.

For a given episode sample of policy π: S0, A0, R1, S1, A1, R2, ..., ST , where ST denotes the
terminal state, the return in each time step is calculated by Gt = Rt+1 + ... + γT −1 · RT . Monte
Carlo methods evaluate policy π by averaging the obtained returns for each state and action
via Equation 2.14, thus learning the value function over the empirical mean.

Temporal-Difference Second, temporal-difference (TD) methods do not require complete
episodes as evaluation experience to improve the value function of a policy, as it is required
for Monte Carlo methods. It improves the estimation of a value function after every time step.
To do this, the simplest algorithms use Equation 2.13 or Equation 2.14 directly. For a given
transition, i.e. action At, state St, policy π, reward Rt+1, and new state St+1, the estimation of
state value vπ(St) can be improved by using the estimate vπ(St+1) of the subsequent state
value and the obtained reward Rt+1:

vπ(St) ←− vπ(St) + α · (Rt+1 + γ · vπ(St+1) − vπ(St)) 2.23

The learning rate α is, next to the discount rate γ, another important parameter that needs to
be defined upfront and determines to what extent new experience updates the old evaluation1.
Due to this, TD-methods can be used in non-terminating environments to update the value
function directly after the execution of a single action.

If the value function is approximated by means of a TD-method and not just based on one
state transition but n state transitions, Equation 2.23 is extended to:

vπ(St) ←− vπ(St) + α ·
(
Rt+1 + ... + γn−1 · Rt+n + γn · vπ(St+n) − vπ(St)

)
2.24

1The improvement of an estimation based on an estimate is also called bootstrapping.
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For n = ∞, in the presence of an episodic environment, this equation converges to Gt

and, thus, the TD-method equals to a Monte Carlo method. Note that Equation 2.23 and
Equation 2.24 are transferable to the Q-function.

Q-learning and SARSA are two representative algorithms that fall into the category of TD (see
Figure 2.14). Both are explained in the following for the Q-function. Q-learning, developed by
Watkins & Dayan (1992), applies the following update rule:

qπ(St, At) ←− qπ(St, At) + α · (Rt+1 + γ · max
a∈A(St)

qπ(St+1, a) − qπ(St, At)) 2.25

The advantage of using the Q-learning algorithm, which also caused its breakthrough and
broad application (see Chapter 3), is that this update rule is independent of the actual
selected action At. In any step, the optimal value max

a∈A(St)
qπ(St+1, a) is used for the update and

improvement step, which directly follows Bellman’s principle of optimality. This facilitates the
algorithm’s proof of convergence to an optimal policy.

SARSA considers for every update step the state, action, reward, next state, and next selected
action (hence, the quintuple sequence of state, action, and reward explains the abbreviation
SARSA) (Rummery & Niranjan 1994):

qπ(St, At) ←− qπ(St, At) + α · (Rt+1 + γ · qπ(St+1, At+1) − qπ(St, At)) 2.26

The SARSA algorithm is called on-policy, as the update follows policy π, whereas the Q-
learning update in Equation 2.25 is off-policy, because the terms of the update formula are
independent of the current policy π.

Policy-based methods Finally, while the previous methods learn the value function and
select the next action based on value estimates, a policy-based method learns the policy
directly without relying on a value function for action selection. Usually, a vector θ is introduced
that parametrizes the policy as πθ(a | s, θ). The optimal parametrized policy is given by the
expected value vπ(ξ) = Es0∼ξ [vπ(s0)]1 for a starting state distribution ξ and starting state s0

taken from ξ according to:

max
π

vπ(ξ) ≈ max
θ

vπθ
(ξ) 2.27

For determining the optimal parameter vector θ∗, i.e. the optimal policy, optimization methods
are used that maximize the performance of the policy measured by a scalar function J(θ)

1The tilde symbol s0 ∼ ξ means that “s0 is distributed as ξ”.
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(Sutton & Barto 2018). The most frequently used method is the gradient descent method,
which determines the updated parameters θt+1 on basis of stochastic estimates ∇̂J(θt),
whose expectation approximates the gradient of the performance measure ∇J(θt) via (Sutton
& Barto 2018):

θt+1 = θt + α · ∇̂J(θt) 2.28

Again the learning rate α is used for the update. The action selection, for a discrete action
space, is commonly expressed by a numerical preference function h(s, a, θ) and the selection
probability is calculated according to the so-called soft-max distribution, which is defined as
follows (Sutton & Barto 2018):

π(a | s, θ) =
eh(s,a,θ)∑

a′∈A(s) eh(s,a′,θ) 2.29

This procedure reveals three advantages of policy-based methods (Sutton & Barto 2018).
First, they are feasible to converge to a deterministic policy and, at the same time, preserve
exploration properties. Second, the result can be a stochastic policy, as the policy naturally
represents a probability function. Stochastic policies are, for instance, advantageous in
environments with imperfect information. Finally, the insertion of an initial policy that is based
on prior knowledge is applicable.

One policy-based method is the REINFORCE algorithm by Watkins & Dayan (1992) (see
Figure 2.14). It takes the basic stochastic gradient update from Equation 2.28 and derives the
following update rule:

θt+1 = θt + α · Gt · ∇πθ(At | St, θt)
πθ(At | St, θt)

2.30

The update of the parameters θ is proportional to the total return of an episode Gt, as for
Monte Carlo, and the fraction of the action probability gradient and the action probability itself.
The second term directs the parameter update into the direction where the probability of
selecting action At in state St again is the highest and controls that a high action probability
does not self-enforce.

Hybrid policy- and value-based methods As stated before, the Q-function is not learned
in policy methods, but estimated by state transitions. However, without going into details,
there are hybrid algorithms called actor-critic methods that integrate value- and policy-based
methods. Generally speaking, the variance of an estimation is high when the number of sam-
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ples is low (Grondman & Busoniu et al. 2012). So, by additionally learning the Q-function in a
policy-based method, improved performance is expected. The actor optimizes the parameters
θ in the direction suggested by the critic that learns the Q-function, for example, using Monte
Carlo or TD methods, in order to reduce the variance. For further details, it is referred to the
survey of Grondman & Busoniu et al. (2012).

2.3.5 Value function approximation

For MDPs with a manageable number of states and actions, the evaluation of each possible
state v or state-action pair q can be stored in a look-up table. However, this is not possible for
MDPs with a large or infinite number of states and state-action pairs, since, on the one hand,
there is insufficient memory available and, on the other hand, learning every individual state
or state-action pair is extensively time-consuming (Sutton & Barto 2018).

Therefore, function approximators are applied in practice to approximate the value function.
Widely used approximators are artificial neural networks (ANN). ANNs are usually applied
in supervised learning. In reinforcement learning ANNs can be applied, too, and its weight
parameters are adjusted during the learning process to approximate the value function
or the parametrized policy (Sutton & Barto 2018). Another advantage of ANNs lies in the
ability to generalize and infer unseen states by using data samples (Russell & Norvig 2016).
Furthermore, ANNs have the strength, comparing to other approximation methods, that they
are able to capture non-linear dependencies.

A generic ANN consists of several connected layers, each consisting of multiple neurons.
A weight vector represents the connections from one layer to the following. Every neuron
passes all input values to an output value through a predefined mathematical operation.

Although there are several types of ANNs, it is here enough to understand a multi-layer
perceptron (MLP) as illustrated in Figure 2.15. It consists of a variable number of perceptron
neurons. Each perceptron is connected to each perceptron of the previous layer. The state Z

of a perceptron with input vector X and weight vector W is calculated via (Ertel 2017):

Z(X, W ) = x0 · w0 +
|X|∑
i=1

xi · wi 2.31

Note that the input x0 has a special meaning, as it always equals 1 and does not depend on
the output of a neuron of a previous layer. Together with the associated weight w0, this pair
is called bias and it can be shown that it increases the generalizability of the network (Ertel
2017). The activation function y = f(Z) is used to calculate the output of the perceptron,
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State S Action AHidden layers

Figure 2.15: Schematic illustration of an MLP network resembling an RL-policy with three
input neurons (states), two hidden layers, and three output neurons (actions).

which in turn represents an input for the perceptrons of the following layer. Common activation
functions are, for example, the rectified linear unit (ReLU) or the hyperbolic tangent:

fReLu(Z) = max {0, Z} , ftanh(Z) = tanh Z 2.32

The update rule of ANNs in reinforcement learning is equivalent to supervised learning
applications. The aim is to calculate the ANN’s output (prediction) for each training input data
and to minimize the error between the prediction and the given output. The squared error is
commonly applied as error measure (Ertel 2017). The update of weights is determined by the
backpropagation algorithm, which adjusts the weights depending on their influence on the
prediction error. Further details can be found in Ertel (2017).

Deep reinforcement learning Deep reinforcement learning refers to RL-algorithms that
apply “deep” ANNs, i.e. ANNs with several hidden layers and many neurons in each layer
(Mnih & Kavukcuoglu et al. 2013; Schmidhuber 2015). The most prominent applications
are the board games Chess and Go by Silver & Hubert et al. (2018), which led to a rise in
many other fields of application (see Chapter 3). Another application of deep reinforcement
learning is given by the just introduced policy-based methods that rely on a parametrized
policy. Herein, θ can be represented by all weights of an ANN. This idea is considered in the
algorithm applied in the present research.

Generally speaking, deep ANNs and deep reinforcement learning are regarded as black-box
approaches (Guidotti & Monreale et al. 2018). They are captured by inputs and outputs,
however, the internal structure is unknown because of the multifold stochastic and non-linear
dependencies between the neurons. On the contrary, the structure of white-box models, e.g.
linear regression, can be described explicitly. This fact will be considered in the evaluation of
the computational results in Chapter 5.
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2.3.6 Summary: Adaptive order dispatching based on Reinforcement Learning

Reinforcement learning algorithms are able to act as adaptive controller. Figure 2.16 illustrates
the key differences between learning-based and heuristic approaches. The figure depicts the
difference upon the extent and way of integrating data, as data is regarded as the main driver
of future operational performance improvements, not limited to PPC.

Heuristic

control

system

RL-based

control

system

History Control decision Future

Planning data Forecast data
Heuristic rule,
real-time data

Learning data Learned estimation
Agent con-
figuration,

real-time data

Figure 2.16: Schematic comparison of heuristic and RL-based control systems by emphasiz-
ing the different ways of integrating historic and future information.

Heuristics use real-time data and a predefined rule that is in most cases static. The rule
compromises the optimization objective as well as the domain knowledge about how best to
achieve high performance. Past and future data are hardly considered in terms of planning
data or forecasts. In contrast, reinforcement learning is just directed by a reward signal that
does only set the goal what to achieve by evaluating state-action pairs and not how to achieve
it. Moreover, the RL-algorithm records the history as learning data and information on the
future is implicitly incorporated in the decision by learned estimations.

Summarizing the key concepts of reinforcement learning leads to the following conclusion:

1. Reinforcement learning assumes an agent that directly interacts with its environment to
determine the optimal solution for a sequential decision problem.

2. The theoretical foundations of reinforcement learning are MDPs that also back up the
optimality of RL-algorithms and perfectly fit to the adaptivity requirement.

3. State, action, reward, and agent configuration form the basic modelling choices that
need to be defined upfront applying reinforcement learning.

4. This work focuses on a model-free, policy-based optimization method, optimizing the
likelihood of actions in contrast to value-based methods that optimize value estimations.

5. Most real-world problems come with large state and action spaces that require approxi-
mation methods, such as ANNs, and are also able to generalize.
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3 State-of-the-art literature review

The idea of learning the behaviour of systems autonomously goes back to the 1950s (Sutton
& Barto 2018). To date, numerous approaches have been developed for the implementa-
tion of learning-based systems that can be applied to optimization problems. Among these,
reinforcement learning offers great potential for production control tasks. Section 3.1 first
defines the research focus areas of this work and is based on the introduction and fundamen-
tals presented so far as well as the outcome of the literature review. Afterwards, the latest
research in three fields is introduced: Section 3.1.1 on advanced rule-based dispatching ap-
proaches, Section 3.1.2 on RL-approaches in adaptive PPC, and Section 3.1.3 on advanced
RL-applications that are not related to production applications. Finally, Section 3.2 concludes
with the research deficit that is addressed in the present work.

3.1 Literature review of research focus areas

The research focus areas of the present work are outlined in the following paragraphs. These
are the dimensions that are relevant to this research and are used to describe the research
deficit. Table 3.1 summarizes the review and is based on these dimensions, too.

System scope: Semiconductor manufacturing and, in particular, wafer frontend fabrication
is categorized as complex job shop (see Section 2.1.1), whereby the production program is
characterized by a high volume of a high number of variants. Moreover, the complexity is
based on numerous overlapping stochastic processes, e.g. machine availability, processing
times, and a complex material flow. Hence, semiconductor manufacturing differs from other
industries (Mönch & Fowler et al. 2013).

Production control task: As production control task, order dispatching related to trans-
portation and processing is considered. The control strategy needs to be adaptive, i.e. it is
characterized in such a way that control decisions are always made based on the current
state of the system. Ultimately, only a limited amount of computation time is available for
solving the control decision problem, i.e. a decision is required in near real-time, since the
execution cannot delay the production process.

Performance objective: The performance target system is multi-objective, i.e. the optimality
of the dispatching is defined by several goals. It can consist of both order-related, e.g. due
date or cycle time, and resource-related, e.g. utilization or uptime, performance indicators.
According to the adaptivity, control decisions need to be dynamically evaluated based on the
current system state, comparing to an evaluation at the end of a period, e.g. day or shift.
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Optimization approach: Rule-based heuristics meet the near real-time requirement. Addi-
tionally, data-driven reinforcement learning algorithms can be applied. The required learning
data is generated in a simulation-based approach. A simulation allows the generation of an
unlimited and consistent training database as well as the comparison of alternative production
system configurations. Besides, simulations enable a direct benchmarking with alternative
control methods, as they can be run in parallel. Moreover, an investigation of the plausibility
of the implemented RL-agents is feasible. Plausibility, in that case, does not mean the full
decision-making traceability of the black-box models, but to find an approach to capture some
kind of reasoning behind it. Finally, the results of the present work should be comprehensive
and evaluate RL-modelling alternatives to allow for recommendations for similar production
control applications.

3.1.1 Dynamic selection and parametrization of dispatching rules

In contrast to the adaptive selection of single dispatching decisions as evaluated in this work,
the authors covered in this sub-section show examples of optimization methods that select or
parametrize dispatching rules dynamically.

Kim & Lee (1998) design a genetic algorithm combined with RL-features for a fictional machine
scheduling problem. They propose an iterative list scheduling method that generates and
refines schedules iteratively. In order to handle the vast amount of possible states and actions,
they use the principle of genetic algorithms and policies are encoded as chromosomes. A
population represents a set of policies. Thereby, they reach for most computer experiments a
performance similar to specific heuristics.

Aydin & Öztemel (2000) investigate an RL-agent control architecture for dynamic scheduling.
The Q-learning agent, called Q-III, interacts with a simulation environment and selects the
most appropriate priority rule based on the queue size of the machine and mean slack time
of the queue. The reward signal is based on literature findings such as the following: the SPT
rule is most appropriate when the system is overloaded. Hence, a positive reward is given
when selecting the SPT rule in an overloaded system. As a finding from a simple prescinded
scenario, better results for the mean tardiness than each static decision rule on its own can
be achieved in most test cases.

Wang & Usher (2005) apply Q-learning to a single machine setup. The algorithm solves
the dispatching rule problem, and they confirm that the algorithm is able to learn the most
appropriate rule, i.e. EDD, SPT, or FIFO, according to three different objectives: minimize
the maximum lateness, the number of tardy jobs, and the mean lateness. If the correct rule,
meaning the best according to the current state, is selected, the agent receives positive
feedback and negative if not. In their previous work, Wang & Usher (2004) investigate the
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influence of the parameters one can manipulate when applying Q-learning, such as the
number of states, reward definition, learning rate, discount rate, exploration-exploitation trade-
off, and initial Q-values. Based on extensive computation experiments, recommendations are
provided. A similar approach is followed in the present work.

The research of Scholz-Reiter & Hamann (2008) on decentralized production control deals
with the task of inventory control at each workstation in a customer order-oriented job shop with
non-directional material flows. The goal is an adaptive control system that adjusts the inventory
target levels according to external and internal production environment conditions. A simulated
annealing metaheuristic is used to calculate the target stock levels and supplemented by
pre-trained neural networks, which regulate the material flow at each workstation by choosing
the most appropriate next workstation. However, next to the target stock level, no further
objectives are considered. The evaluation is performed in a system with 82 workstations and
two months of simulation time. This work is part of the German Collaborative Research Centre
637 “Autonomous Cooperating Logistic Processes: A Paradigm Shift and its Limitations”. More
work on autonomously controlled production systems and, in particular, the level of autonomy
is presented in Scholz-Reiter & Görges et al. (2009). They can show that a high level of
autonomous control, defined by the number of decentral decision-making units, increases the
performance, although coming at the expense of an increased level of complexity.

Heger (2014), Heger & Branke et al. (2016), as well as earlier results published in Scholz-
Reiter & Harjes et al. (2010) investigate the dynamic rule selection for the scheduling problem
of complex semiconductor production systems. The motivation is similar to previous authors
and addresses the problem that no static heuristic rule outperforms other rules in any case
and with respect to any objective (no free lunch theorem). They implement a Gaussian pro-
cess model to obtain a regression model, outperforming other methods, e.g. neural networks,
in previous studies for the dynamic selection of the most appropriate rule and rule-related
parameters. As validation example, they make use of Intel’s MiniFab1 test case (Tsakalis
& Flores-Godoy et al. 1997) and, additionally, consider a dynamic flow shop scenario with
sequence-dependent setup times. The Gaussian process is pre-trained from various simu-
lation runs and predicts the best-performing rule and, thereby, reduces the mean tardiness.
Furthermore, they are able to show that a reduced number of simulation runs is enough for
pre-training as no further accuracy improvement of the model performance is achieved.

The work of Chen & Xia et al. (2015) studies the application of a Q-learning algorithm for
the load carrier scheduling problem. The carriers supply an assembly line with material
and parts and are rewarded for the line throughput as well as their transportation distance,

1Kempf, K., Intel Five-Machine Six Step Mini-Fab Description: Dr. Karl Kempf. http://aar.faculty.asu.edu/
research/intel/papers/fabspec.html (accessed on 17.06.2020).



State-of-the-art literature review 47

hence, minimizing material handling costs. Improved performance can be achieved by adding
forecast information, e.g. product sequence or a list of required parts, to the state vector of
the decision agent, comparing to just current buffer fill levels. Their algorithm selects the
most appropriate pre-defined heuristic and, eventually, outperforms existing approaches. In
particular, the look-ahead feature is promising and investigated in the present work, too.

Freitag & Hildebrandt (2016) further advance the investigation on combined multi-level dis-
patching heuristics for semiconductor job shops. They develop a multi-criteria optimization
approach, which determines an optimized dispatch rule. A genetic algorithm optimizes, ac-
cording to the two performance targets average lead time and standard deviation of the lead
time, the dispatching rule based on a population of possible control rules. The population
is created via operators, such as arithmetic operations, constant parameters, and further
attributes. The used application scenario is the FAB6 model (Fowler & Robinson 1995) that
is available publicly and represents a benchmark test data set of a real-world semiconduc-
tor factory with complex material flow characteristics. As a result, they achieve significantly
improved performance in terms of just-in-time production.

Next, Niehues (2016) deals with the adaptive control of a job shop. The system is permanently
subjected to disruption events and has to be highly adaptive in order to minimize order-related
costs. The developed control system includes the identification of disruptive event classes,
which aggregate multiple root causes. Furthermore, the disruptions are assessed concerning
their effect on the logistical performance. A disruption-class-dependent catalogue of (counter-)
measures is created to preserve the initial plan. A re-optimization of the entire order sequence
is the last measure, if all other measures are not sufficient to repair the initial plan. The test
case is taken from an arbitrary flexible production system for which they are able to improve
the profitability, mean tardiness, and predictability of delivery dates.

Shahrabi & Adibi et al. (2017) apply reinforcement learning to the parameter estimation of
a variable neighbourhood search that determines a schedule for a dynamic job shop with
stochastic job arrivals and machine breakdowns. A Q-learning algorithm is implemented that
incorporates a method that evaluates the quality of selected parameters for the neighbourhood
search to compute the reward. In each rescheduling event, the algorithm determines a new
parameter set according to the actual shopfloor state. After a training period, the performance
outreaches standard dispatching rules, such as SPT and the simple variable neighbourhood
search without reinforcement learning. However, the flexibility of the algorithm is seen as the
most crucial advantage. This result is similar to the objectives of the present research, as
showing superior performance in just a single scenario is not satisfying in practice.
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Finally, Shiue & Lee et al. (2018) choose an RL-based system for a real-time scheduling
approach. The algorithm is based on a Q-learning module that learns to select the best
rule out of a set of multiple, pre-defined dispatching rules. They are able to show a better
performance than previously implemented single or combined dispatching rule systems.

3.1.2 Applications of Reinforcement Learning to adaptive scheduling and

dispatching

The research of the authors considered in this sub-section have in common that they all
apply RL-algorithms directly to production scheduling or dispatching, i.e. they differ from
the RL-applications in the previous section in such a way that not just a decision rule is
determined but the scheduling or dispatching decision itself.

Dietterich & Zhang (1995) and Zhang & Dietterich (1995) present, probably, the first research
on the application of reinforcement learning to job shop scheduling. The “NASA space shuttle
payload processing” problem, i.e. scheduling different tasks prior to a space shuttle launch
while minimizing the total duration of all operations, is investigated, which can be attributed to
the class of scheduling problems. Their approach takes an initially generated schedule that,
however, violates some constraints and repairs this schedule iteratively. A reward is given
for actions that repair the schedule and to the number of iterations needed. They implement
a time delay TD algorithm and further enhance it with two features: experience replay and
ε-greediness. Shortly before their research, the TD-gammon algorithm of Tesauro (1992)
showed promising results for the board game backgammon. The same results, i.e. high
performance with a lower effort on feature engineering, are shown in the scheduling use case.
The TD algorithm is, for instance, 1.8-times faster than a simulated annealing method.

Mahadevan & Theocharous (1998) demonstrate a simulation-based RL-algorithm, called
SMART, for the inventory control of a single-product transfer line with three machines. A
positive reward is given for satisfied demand and a negative reward for machine repairs in
case of breakdowns. Though output and inventory are optimized. Comparing to a Kanban
control heuristic, they show a lower inventory level. Additionally, the SMART algorithm allows
for the consideration of maintenance measures, because next to the production control policy
it also learns a maintenance policy. This is a new result, as it shows the generalization property
of learning algorithms. Paternina-Arboleda & Das (2001) continue this work and consider a
four machine case with different demand rates. Moreover, they implement ConWIP, basestock,
and two boundary control policies as benchmarks, in addition to the Kanban heuristic. The
RL-policy outperforms the benchmarks, in particular, for a Poisson demand case.

Another exemplary job shop production system is described by Riedmiller & Riedmiller (1999).
There is a single RL-agent that optimizes the summed tardiness of all jobs. They analyse the
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effect of varying state vectors and show that the Q-learning algorithm can optimize the local
dispatching strategy and outperform simple due date, relative slack, and waiting time heuristics.
The multi-layered neural network for representing the value function shows the generalization
capability, as the trained network could be applied to another setup successfully.

Stegherr (2000) is one of the first to investigate a multi-agent RL-system for the scheduling of
a variant series production, using the example of a semiconductor backend production. The
research follows a multi-criteria objective function that considers inventories, throughput times,
capacity utilization, and on-time delivery. First, state and reward definitions of individual agents
are derived for every single objective and then validated in a simplified production system.
Afterwards, they are successfully applied in the semiconductor use case. The multi-objective
consideration of the present work is based on this comprehensive work.

Csáji & Monostori et al. (2006) translate a market-based production control system into
the application context of cyber-physical production systems. They show an example of a
successful implementation and testing of the decentralized agent architecture presented by
(Monostori & Csáji et al. 2004). The investigations by Csáji & Monostori et al. (2006) reveal a
three-layered control architecture. It incorporates simulated annealing on the highest level
to control the exploration rate. Next, there are several RL-algorithms for so-called order and
resource agents to optimize the schedule for the maximum completion time. On the third
layer, the value function is approximated with a neural network.

Gabel & Riedmiller (2008), Gabel (2009), and Gabel & Riedmiller (2012) extend the research
on scheduling and multi-agent systems. Each agent represents a machine and decides
sequentially which order to process next. In this simple setup, they conclude that learning
methods surpass simple heuristics and reach even a near-optimal performance in some test
instances. In their further research, they examine both policy- and value-based RL-algorithms
and a setup in which agents can communicate with each other to achieve the best possible
schedule. The investigated application is, in all cases, fictitious or based on established
scheduling benchmarks. Their insights on RL-algorithms are considered in this work, though
the scheduling problem setup differs from the order dispatching task.

Shah & Gosavi et al. (2010) describe a Q-learning algorithm for the application to a re-
manufacturing production system. The decision whether to use remanufactured or as-new
components in the production process is considered as complex decision that is hard to solve
for large-size real-world problems. However, their work results in the trivial conclusion that
there is a cost advantage over non-use of remanufactured materials. Hence, their research
rather focuses on a new application area instead of an in-depth algorithm analysis.
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Zhang & Zheng et al. (2011) propose a SARSA(λ, k)-algorithm for the scheduling of final
quality tests of a semiconductor manufacturer. SARSA(λ, k) uses λ as decay and k as cutoff
parameter. The objective is to optimize the throughput of the testing work centre. They achieve
superior performance in comparison to industrial benchmarks and simple heuristics.

Wang & Li et al. (2012) address the stochastic economic lot scheduling problem for a
single machine and three products case. They implement an adaptive control based on a
Q-learning algorithm that optimizes the long-term cost. The agent decides what to produce
and thereby influences the setup, holding, and backorder cost. After the learning phase, the
agent surpasses two benchmark policies in all test cases. The benchmarks are the so-called
Brownian and the FIFO policy.

Arviv & Stern et al. (2016) present a collaborative reinforcement learning approach for the
scheduling of the job transfer on fixed parallel tracks of identical jobs in a multi-machine flow
shop. Two agents are considered. Moreover, the level of collaboration and information sharing
are investigated for four levels between the two extremes of full collaborative learning and
information sharing to no exchange and full independence. They develop a dual Q-learning
algorithm that optimizes the makespan and assigns the reward to the agents. This is just
one example of a much broader literature on collaborative and multi-agent systems that is,
however, not thoroughly considered in the present work.

Wang & Wang et al. (2016) investigate a resource-constrained flow line system with two
machines and a finite buffer in between, and consider the maintenance scheduling problem.
The problem is modelled as MDP and solved by a multi-agent RL-approach. They consider a
distributed RL-algorithm taken from the work of Das & Gosavi et al. (1999) and Mahadevan
& Marchalleck et al. (1997). The objective and reward are based on the cost related to
maintenance actions and the number of defects. They show that the cost-sharing approach
for both decision agents reveals better overall results than independent RL-agents.

The latest challenges and characteristics of job shop manufacturing in the semiconductor
industry are comprehensively summarized in Waschneck & Altenmüller et al. (2016). Subse-
quently, Waschneck & Reichstaller et al. (2018) and Waschneck & Altenmüller et al. (2018b)
train multiple DQN-agents in a semiconductor factory simulation. Each agent represents a dif-
ferent work centre, such as lithography, implant, or furnace, that have individual characteristics
and, therefore, require an individual scheduling policy. The scheduling considers the decision
of the next processing order, on the events of arrival and moveout of an order. The reward is
derived from the uptime utilization, and penalties are given for unfeasible actions. However,
after a training phase of two days, the heuristic benchmark cannot be surpassed in all test
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cases. This work is close to the present work and motivates a more in-depth investigation
into the capabilities of advanced RL-algorithms.

Echsler Minguillon (2020) investigates the trade-off between central and decentral PPC with
respect to the robustness in an agile production system setup taken from the automotive
industry. On a central level, an initial schedule is determined that contains a defined slack
to cover an expected range of disturbances. A decentral control system is implemented
that is based on the RL-algorithm of Gabel & Riedmiller (2008) and comes into play when
a disturbance happens that requires rescheduling. The algorithm learns which actions to
perform to repair the schedule. For an improved performance of the decentral rescheduling
after a certain training period, the slack on the central level can be reduced.

3.1.3 Advanced applications of Reinforcement Learning not related to

manufacturing

One objective of the present work is to make use of transferable results from RL-application
domains that are not related to production scheduling or dispatching. Most RL-applications
are currently found in the area of robotics and strategic games. Therefore, the last section of
the literature review elaborates on the most relevant applications of reinforcement learning
that are not related to the context of industrial production.

The dispatching of parallel elevators, according to Crites & Barto (1995) and Crites & Barto
(1998), is an early but still well-known example that gives a vivid illustration of reinforcement
learning. Manually designed heuristic decision rules usually perform the dispatching of
elevators. In their work, they apply Q-learning to a real-world problem setting with four
elevators. Because of the large number of possible states, i.e. more than 1022 states, they
chose a neural network to approximate the value function. Moreover, they compare different
modelling approaches, such as training one neural network for all elevators or a separate
network for each elevator, as well as the modelling choice, which state information to provide
to the decision agent. These basic considerations are similarly relevant in the application of
the present work.

Other scheduling examples are the scheduling of multiple cranes in a container terminal by
Zeng & Yang et al. (2009) and the project management problem investigated by Wauters &
Verbeeck et al. (2011). Qu & Wang et al. (2016) develop a multi-agent Q-learning algorithm
for the adaptive workforce management.

Additionally, Mnih & Kavukcuoglu et al. (2013) introduce an advanced DQN algorithm and ap-
ply it to computer games. The algorithm is able to learn policies from a high-dimensional state
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input, i.e. a screen pixel representation. Moreover, the algorithm shows superior performance
for several games without changing the algorithm significantly.

The latest research by Silver & Schrittwieser et al. (2017) and Silver & Hubert et al. (2018)
shows the enormous potential of RL-algorithms to reach an expert level of human performance
in board games, without providing any prior domain knowledge as training data. Their “self-
learning” approach is based on a simulated real-world application and motivates the research
of the present work to a large extend.

3.2 Research deficit

Table 3.1 highlights the just presented research that feeds into the present work and catego-
rizes them according to the focus areas presented in the first part of Section 3.1. From this
overview, it can be seen that there are both: prior work dealing with the control of job shops
and those in which reinforcement learning has been successfully implemented. All in all, the
research deficit can be summarized as follows:

• Basic heuristics provide control systems that require much manual adaption effort in
case of external or internal changes.

• Most existing RL-based PPC approaches implement a state-dependent rule selection or
parametrization, which means that adaptive decision-making on a dispatching decision-
level is not sufficiently realized.

• A real-world-sized production application, especially considering the integrated order
dispatching for transportation and processing and multiple stochastic processes, has
not been considered for reinforcement learning. Moreover, multiple objectives pose an
additional challenge, hardly addressed so far.

• The analysis of the plausibility of the agent’s behaviour as well as the comparison of
alternative RL-agent designs and its direct comparison with benchmark algorithms have
not yet been carried out.

• A methodical approach to the application of reinforcement learning in the context of PPC
applications does not exist and, often, just single application scenarios are presented.
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Table 3.1: Overview of relevant research for the adaptive order dispatching by means of
reinforcement learning.

System scope
Production

control task

Performance

objective

Optimization

approach

Legend:

considered

partially
considered
not considered

Jo
b

sh
op

pr
od

uc
tio

n
sy

st
em

M
an

y
va

ria
nt

s
w

ith
hi

gh
vo

lu
m

e

C
om

pl
ex

m
at

er
ia

lfl
ow

S
to

ch
as

tic
s

(e
.g

.b
re

ak
do

w
ns

)

D
is

pa
tc

hi
ng

(tr
an

sp
or

t)

D
is

pa
tc

hi
ng

(p
ro

ce
ss

in
g)

A
da

pt
iv

e
pr

od
uc

tio
n

co
nt

ro
l

R
ea

l-t
im

e
de

ci
si

on
-m

ak
in

g

M
ul

ti-
ob

je
ct

iv
e

op
tim

iz
at

io
n

D
yn

am
ic

pe
rfo

rm
.e

va
lu

at
io

n

O
rd

er
-r

el
at

ed
K

P
Is

R
es

ou
rc

e-
re

la
te

d
K

P
Is

R
ei

nf
or

ce
m

en
tl

ea
rn

in
g

S
im

ul
at

io
n-

ba
se

d
tra

in
in

g

P
la

us
ib

ili
ty

of
R

L-
be

ha
vi

ou
r

R
L-

m
od

el
lin

g
al

te
rn

at
iv

es

Dynamic selection and parametrization of dispatching rules

Kim 1998
Aydin 2000
Wang ’04, ’05
Scholz-Reiter ’08, ’09
Heger ’14, ’16
Chen 2015
Freitag 2016
Niehues 2016
Shahrabi 2017
Shiue 2018

Applications of Reinforcement Learning to adaptive scheduling and dispatching
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4 Adaptive order dispatching based on Reinforcement

Learning

This chapter describes the methodological approach developed in this work to achieve the
objectives set in Section 1.3 and to address the research deficit identified in Section 3.2. The
overall aim of this research is to develop a method for adaptive order dispatching. This is
investigated by implementing a reinforcement learning algorithm and, in doing so, it focuses
on the modelling and in-depth evaluation of it to increase the applicability of this rather new
type of machine learning algorithm (see Figure 4.1). Eventually, the outcome of the method is
a data-driven, adaptive order dispatching system, which enables the real-time control of a job
shop manufacturing system. The data-driven approach enforces the vision of developing high-
performing control systems autonomously with as less manual effort and domain expertise
as possible. So, the transferability to further applications is an essential requirement that
motivates this research, too.
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Figure 4.1: Methodological approach.

According to the problem solving approach of Domschke & Drexl et al. (2015) introduced
in Section 2.2, Section 4.1 frames the problem scope and most important assumptions.
Next, the description as formalized model is separated into two phases. First, the production
system is modelled to be implementable as a virtual training environment (digital twin) in
form of a discrete-event simulation (see Section 4.2). Second, the overall adaptive production
control architecture is described (see Section 4.3). After that, the RL-algorithm is presented in
Section 4.4 by describing the model-free, policy-based optimization algorithm, the state and
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action representation, the reward function, and the relevant hyper-parameters. Finally, the
evaluation approach, analysis of plausibility, and benchmarking are covered in Section 4.5.
The application of the herein outlined method is part of Chapter 5.

The method is based on the research of the author. Supporting work is based on the following
student theses that were written under guidance of the author: (A_Schäfer 2018), (A_Behrendt
2019), (A_Hettich 2019), (A_Kaiser 2019), (A_Theiß 2019), and (A_May 2019). In addition,
the problem setup and adaptive control architecture are published in the paper by Stricker
& Kuhnle et al. (2018). Recommendations for the modelling and design of reinforcement
learning are considered in Kuhnle & Röhrig et al. (2019) and Kuhnle & Schäfer et al. (2019).
Moreover, the detailed investigation of RL-modelling alternatives is summarized by Kuhnle &
Kaiser et al. (2020).

4.1 Scope and assumptions

The scope of this work was, to a certain extent, already narrowed down in Chapter 2. The
following assumptions further specify the scope of the approach:

1. An existing job shop manufacturing system with a fixed layout is the research object.
Inside the system, orders are processed and process data and performance measures
are continuously monitored. Processes outside the system are not considered, except
the generation of production orders that are fed into the system. This is performed based
on a predefined probability distribution (e.g. production program).

2. The order dispatching is the focused PPC-task. The number of dispatching agents is
fixed to a single agent type. However, multiple agents of the same type are in principle
applicable.

3. A discrete-event simulation represents the training environment and is automatically
created and parametrized based on a structured list of input parameters. The production
process logic is implemented in the simulation as described in this section. Hence, the
simulation model is generic to a certain extent.

4. The learning process starts directly on instantiation of the simulation model and is un-
coupled from the real production system. The RL-agent’s initial behaviour is completely
random. The current production system state is known at any time. These assumptions
are reconsidered in Chapter 5 and Chapter 6.

5. Learning is completed when a state of convergence is reached. Afterwards, the trained
agent can be applied and deployed as adaptive controller. However, as the real-world
application is not part of this work, no validation is provided for the deployment.
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6. Without actually applying it in real-world, it is assumed for the deployment that whenever
a trained and converged RL-agent is not valid or not accurate enough any more, e.g.
due to structural changes of the real-world system, a new simulation-based training
phase starts from scratch, considering the latest system parameters (see assumptions
3 and 4 above).

4.2 Production system modelling and virtual training environment

This section provides the foundation for all subsequent steps, such as training and evaluation
of the adaptive control system. A discrete-event simulation framework is described that is
required because of three reasons: First, generating sufficient training data in terms of quantity
would require roughly two years of data collection in a real-world production system. Next,
pure data-driven training methods need to try out invalid actions or actions with negative
consequences, as their consequence is only learned based on the reward signal. Usually,
negative consequences impede a real-world application. Third, all stochastic influencing
factors need to be controllable for an accurate comparison and benchmarking of different
control algorithms, which is not possible in reality. Moreover, following Section 2.2.4, simulation-
based training and evaluation environments are predominant in various reinforcement learning
applications.

The section starts with a description of the scope, most relevant elements (see Section 4.2.1),
and control structure (see Section 4.2.2) that make up the simulation model. This follows the
standard procedure of simulation in production and logistics according to VDI 3633 Part 1
(2014). The simulation is capable of representing a job shop with complex characteristics
(see Section 4.2.3). However, no claim is made to the completeness of the modelling. Finally,
a validation of the simulation model is essential and covered in the next chapter.

Purpose of system modelling The system scope covers all production resources, such
as machines and transport resources, and the process control structure. The control structure
is manifested in decision-making units, also called agents, that are linked to resources and
determine actions. So, the following three properties characterize the simulation framework:

• Time-invariant properties: production layout (e.g. job shop, flow-line), number of re-
sources (e.g. machines, buffers), and fixed properties of the resources (e.g. capacity).

• Time-variant processes: machine breakdowns, repair process, varying processing times,
and mix of product variants.
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• Control and decision-making units: decision alternatives and responsible areas of
decision-making (e.g. single machine, machine group) as well as decision-making
algorithm (e.g. heuristic, reinforcement learning).

The system model covers the entire material and information flow within the borders that are
defined by the input and output of production orders. Incoming orders contain information,
e.g. regarding the processing machines and lot size, and trigger production processes or
transportation processes. After processing, the orders leave the system and order-related
information, e.g. waiting and processing times, are recorded.

In order to be able to extend the scope of a single production system to multiple sub-systems
(see scope highlighted in Figure 2.2), being part of a factory plant or even a production
network, one either widens the scope of the system model to that level, i.e. order dispatching
covering the material flow within a production network, or defines separate models for each
sub-system as long as no interaction needs to be considered between those. Building a
simulation based on this framework, shall enable a broad application for various production
system setups, different types of decision-making algorithms, and even different production
control tasks.

4.2.1 Organizational structure

The organizational structure of the simulation model fulfils the requirement of a generic
approach, as just stated. Therefore, the model is designed in a way to ensure the transfer-
ability to different types and structures of production systems as well as the parametrization
according to changing real-world system parameters.

Next to production orders, four types of resources are part of the organizational structure of the
simulation framework (see Figure 4.2): processing resource or machines, transport resources,
sources, and sinks. Orders are not defined as resources, because they represent physical
and informational objects that do not take actions or change the state of other resources. The
resources are described in the following, along with the relevant decisions.

Machine resources perform the value-adding production processes that are required for
each order. A machine contains a single processing unit. Parallel processing is not considered.
Batching is also not part of the present work. The processing time is not fixed and, in fact, the
production order specification (“recipe”) determines the processing time. It is exponentially
distributed and the distribution is truncated by a minimum and maximum boundary value. The
exponential distribution is chosen to represent the large processing variance, as an order with
just a single wafer and a simple processing operation takes far less time than an order with
over 20 wafers and a long processing operation (Waschneck & Altenmüller et al. 2016).
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Figure 4.2: Categorization of production system components, i.e. resources and orders, and
relevant parameters. Stochastic parameters are highlighted.

Furthermore, machines contain an inbound (pre-processing) and outbound (post-processing)
buffer with parametrizable capacities (see Figure A2.1 of Appendix A2). A decision-making
unit selects the next order out of the inbound buffer, i.e. performs the order sequencing. Here,
the FIFO heuristic is assumed as no setup times or order-specific due date are explicitly
considered. Moreover, the FIFO sequencing heuristic supports the learning process of the
order dispatching agent because the sequence given by the order dispatching is processed
in precisely that way. Thereby, “noise” in the training data, e.g. by rearranging the order
sequence, is reduced.

Decision-making of machine resources: In which sequence should the available orders be
processed?

The availability of machines is not granted and machines require maintenance from time to
time or break down. The required maintenance activities and breakdowns are considered
together and follow a single exponential distribution with an occurrence rate of λ = 1

MT BF

(MTBF, mean time between failures). The required time to repair and setup the machine
is called mean time off line (MTOL) and follows an exponential distribution, too, with a rate
of λ = 1

MT OL . Again, the distribution assumption is backed by the standard procedures of
semiconductor operations described by Mönch & Fowler et al. (2013) and SEMI E10-0304
(2004). It is given that machines break down after an operation has finished and not within,
as machines recognize failures based on process and product tolerances that are evaluated
after every operation.
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Furthermore, machines are sub-organized into machine groups. Machines in the same
group are technically capable of performing the same processing operation. That is also why
machine setups do not need to be considered explicitly. The machine group definition is an
essential characteristic of the present work and will be discussed in Chapter 5.

The product quality and scrap rates are not considered. Given the fact that the primary
application is semiconductor manufacturing with sophisticated in-process quality control and
complete end-of-line inspection, scrap is handled separately and not in the scope of order
dispatching within a work centre.

Transport resources can represent either a fixed, e.g. conveyor belt, or a loose transportation
resource type, e.g. automated guided vehicle or forklift. In both cases, the responsible work
area, i.e. the resources that can be reached by the transport resource, is defined by a two-
dimensional connectivity matrix and, analogously, a distance matrix determines the distance.
By dividing the distance by the movement speed the transport time is calculated. Moreover,
handling times need to be considered for picking up and dropping orders. The capacity, i.e.
the number of orders that can be transported at the same time, is limited and set to one. The
availability is not restricted, as it is assumed that enough vehicles or forklift operators are
available also during breaks and in between shifts. To determine which order is transported
next, each transport resource has a decision-making unit assigned to it. In the present work,
the transport resource is considered as the key unit for the adaptive order dispatching.

Decision-making of transport resources: Which order should be transported next, i.e. from
where to transport an order, and to which machine should the order be transported?

Source resources create and release new production orders based on an arrival process
and feed them into the system. A set of product variants is assigned to each source that
defines which variants arrive at this respective source. Machines can be assigned to multiple
sources, and the assignment may not necessarily be the closest source. The product variant
demand is based on an empirical distribution represented by “orders per day”-probabilities.
The term product variant, as used in the present work, is defined below.

Similar to a machine, a source contains a limited outbound buffer, in which the released
orders are placed. The arrival time of new orders is exponentially distributed with a mean
arrival rate of λ = 1

mean arrival time . However, the rate can also be not restricted and then orders
arrive whenever a free buffer slot is available. The exponential arrival process is assumed as
the input of orders from external suppliers or previous work centres varies due to changing
product mixes and batch processes that cause inventory-waves. Moreover, it is in line with the
assumptions in Mönch & Fowler et al. (2013). As there is a predefined order release interval
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and the released variants are randomly chosen, no further decision needs to be made at the
source.

Sink resources store orders that finished processing and are defined by an inbound buffer
capacity. In the following, the sink is modelled with an unlimited capacity. No decision needs
to be made at this resource type.

Production orders are physical and information-containing objects that define their process
flow and specify which machine types and operations are required for processing (“recipe”).
The sequence of machines is defined as determination criteria for the product variant, and
the customer demand is defined per product variant, as described above. Hence, process
times are defined on an order-level. Any process auxiliaries are neglected in the present work.
Production orders itself do not make any decision.

Note that buffer resources are not explicitly considered, because the definition of machine,
source, and sink resources already include internal buffers.

Parametrization of fixed and transportation resources All not-moving resources, i.e.
machines M , sources SO, and sinks SI, define the set of fixed resources R that represent
an array:

R: SO1 . . . SOnSO
M1 . . . Mn SI1 . . . SInSI

The relevant parameters and value ranges are summarized in Table A2.1 of Appendix A2.
The list of parameters are resource-specific features and the number of resources can be
adjusted by adding, for instance, a machine to the set of machines and extending the array.

Loose transportation resources are defined as two-dimensional, symmetric distance matrix
based on the length of the resource array R:
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di,j SO1 . . . SOnSO
M1 . . . Mn SI1 . . . SInSI

SO1 0 . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 0 . . . . . . . . . . . . . . . . . . . . .

SOnSO
. . . . . . 0 . . . . . . . . . . . . . . . . . .

M1 . . . . . . . . . 0 . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . 0 . . . . . . . . . . . .

Mn . . . . . . . . . . . . . . . 0 . . . . . . . . .

SI1 . . . . . . . . . . . . . . . . . . 0 . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . 0 . . .

SInSI
. . . . . . . . . . . . . . . . . . . . . . . . 0

The layout of the considered production system, the possible transportation routes, and
restricted work areas can be modelled comprehensively by this two-dimensional matrix.
It defines the distance di,j and infeasible transportation links by the value of -1. Further
characteristics of the transportation resource have already been introduced before and the
list of parameters is stated in Table A2.1 of Appendix A2.

The modular simulation framework is primarily focused on the application to job shop man-
ufacturing systems. However, the framework is able to represent a flow line system, too.
Furthermore, multiple transport resources are implementable with the restriction that every
resource performs the same dispatching task.

Definition of operation modes Finally, Figure 4.3 defines and summarizes the most rele-
vant operation modes and operation times that are covered in the production system model
and that are related to the resources described so far. Note that the time axis and width do
not match real figures.

The definitions are ajar to the concept of overall equipment effectiveness (OEE), which is
established in operations management (Wiendahl 1997). Moreover, semiconductor operation
standards define these, too (SEMI E10-0304 2004). The figure links different operations
at production orders, transport resources, and processing resources. For example, the pro-
cessing time of the machine is equivalent to the period in which the order is in the mode
“processing”. Loading, transporting, and unloading operations together form the total transport
operation. The performance indicators such as the uptime utilization of machines, the order
cycle time, and transport resource utilization, which are introduced in Section 4.5.2, are based
on Figure 4.3, too.
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Figure 4.3: Definition and relationship of operation modes and times of production orders,
transport resources, and processing resources (adapted from Wiendahl (1997)
and SEMI E10-0304 (2004)).

4.2.2 Process control structure

So far, the organizational structure of the production framework was outlined. This sub-section
focuses on the process structure and how the process flow is controlled. It thereby takes the
production system and its elements as given, i.e. changing the aforementioned organizational
structure is not considered.

Figure 4.4 highlights the interlinkage of relevant PPC-tasks, taken from the fundamentals in
Section 2.1, and depicts the order process flow as a process flow chart. As already mentioned,
order dispatching is the decision of interest in the present work.

Start

Order release

Released Waiting

Order dispatching

Transporting
Done?

Waiting

Order sequencing

ProcessingEnd

Legend:

State

Decision

Figure 4.4: Order process flow chart with interfaces between order flow and the PPC-decisions
order release, dispatching, and sequencing.

When an order is released, it is assigned to a source buffer and waiting for transportation or
processing. At that moment, the order is already appointed to a target machine for the next
processing operation. The assignment is modelled by a stochastic demand distribution in the
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order generation process, as described above. However, in real-world it can be also based on
a schedule that assigns orders to machines and thereby manages the material flow between
work centres and minimizes machine setups and idle times.

When a transport resource is available, the order is moved to the next processing machine
and waits there for processing. The order sequencing is based on a simple decision rule,
which selects the next order out of the available orders in the inbound buffer. As stated before,
the decision rule is a deterministic FIFO heuristic in order to prevent side effects that might
influence the investigations of the RL-based order dispatching negatively. After processing,
the order is placed in the outbound buffer and is again waiting to be dispatched. If no further
processing is required, the final dispatching brings the order to a sink.

Note that the next machine assignment can be adjusted by the order dispatching to another
machine that is in the same machine group as the initially planned machine, as stated in
the previous section. This might be reasonable due to the levelling of processing capacities
or temporarily unavailable machines. As a consequence, the dispatching decision has a
twofold character: first, which order to dispatch next and, second, where to dispatch it. Hence,
it takes a focal role within the process control framework with a significant impact on the
performance.

Order dispatching decision subsets For the order dispatching decision, distinctive deci-
sion subsets are conceivable given the already defined organizational structure and order
process flow. These are the following (see also Figure 4.5 and Figure A2.1 of Appendix A2):

• Source → Machine: Order dispatching from a source to a machine buffer.

• Machine → Machine: Order dispatching from a machine’s outbound buffer to another
machine’s inbound buffer.

• Machine → Sink: Order dispatching from a machine to a sink buffer.

• Empty: Moving empty-handed, i.e. transporting no order, to any resource location.

• Idle: Idling, i.e. not dispatching an order and not changing the current location.

These five decision sets reduce the total number of possible decisions to just the relevant
ones. For instance, dispatching from a source to a sink is not reasonable in the given setting.
However, note that the last two sets are not necessarily required to fulfil the dispatching
task but both broaden the scope and degree of freedom for the dispatching agent, what is
particularly analysed in the computational experiments of Chapter 5.
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Figure 4.5: Schematic illustration of five order dispatching decision subsets.

4.2.3 Categorization of complexity drivers

The order dispatching decision problem faces two decisions simultaneously, i.e. which order
should be transported next and to which machine should the order be transported. Moreover,
multiple objectives are considered, as resource- and order-related objectives are relevant.
Hence, the decision problem is harder to solve than simple order sequencing or order release
problems.

Furthermore, the production processes are subjected to multiple interdependencies and
stochastic influences. These are the following:

• Processing resources: Unknown breakdowns and repair operations reduce the availabil-
ity of resources on a considerable scale.

• Production orders: The production program varies due to a stochastic product mix,
stochastic processing times, and the uncertainty concerning the processing machine
within the machine group. These result in an order list with widely distributed processing
times and, potentially, unequally utilized resources.

Hence, order dispatching in such a highly dynamic environment has to take into account
these complexity dimensions adequately. The present work uses an adaptive and RL-based
algorithm to find a control policy that is able to capture the complex system characteristics.
The necessary procedure is outlined in the following section.

4.3 Adaptive order dispatching architecture

After explaining the concepts behind all system elements, the system architecture as a whole
is described in this section. The conceptional model is translated into an architecture imple-
mented in a software environment and considers two concepts: modularity with standardized
interfaces and sequential event-based processing. The latter ensures the applicability and
transferability of the underlying MDP concept.
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4.3.1 Formal control architecture

Figure 1.1 illustrated the control-theoretic concept behind the overall approach of this work.
Figure 4.6 gives an aggregated and schematic overview of the event-based control archi-
tecture that ensures a continuous production process. Initially, the production framework is
running (Step 1), which means that, according to the process control structure explained in
Section 4.2.2, orders are released, dispatched, sequenced, and processed and machines
break down from time to time. For every event it is evaluated whether it causes a state change
that is relevant for the decision-making unit, e.g. the RL-agent making dispatching decisions
(Step 2). Whenever the state changes, all resources are reactivated and asked for a new
action (Step 3).
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Figure 4.6: Schematic control flow chart of the production and decision-making framework to
ensure a continuous production process.

The framework in the lower part of Figure 4.6 represents the decision units of the resources,
such as the transport or machine resources. If they are available at the moment, i.e. not
performing another action, they are reactivated and asked for a decision (Step 4). Afterwards,
they determine their next action (Step 5), e.g. transport an order to a machine. These actions
are transferred to the production framework and directly executed (Step 1). Eventually, the
state of the production system is changed and whenever an action is finished all other waiting
and newly available resources are reactivated again, as new actions might be requested.
When no feasible action is available, the respective resource waits until the next reactivation.
Actions once taken, are not aborted or reconsidered.

The decision framework is requested in any case a decision needs to be taken by a resource.
Either a heuristic decision algorithm or an RL-algorithm can be applied to determine the
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decision. The procedure for both is similar, as the single difference is that the heuristic
does not undergo a learning process. Hence, the interface towards the decision algorithm is
standardized and requires the following three elements:

• State: An adaptive decision-making derives the decision upon the latest state. Thus, the
state information includes, for instance, the buffer fill level, order waiting time, remaining
processing time, machine availability, or available dispatching orders. This information is
provided as binary or numerical values.

• Action: The output of the decision agent is a decision action that is also encoded as a
numeric value. The numerical value encodes the action and is looked-up in a pre-defined
table that defines how the action value needs to be interpreted.

• Reward: At least for RL-agents, a reward is required for any action, as the agent maxi-
mizes its reward in order to learn the optimal policy. The reward is, again, a numerical
function value and calculated based on the action and state.

4.3.2 Order dispatching decision-making based on Reinforcement Learning

The RL-based decision agent of the transport resource determines the order to be dispatched
to a destination. The entire procedure is illustrated in Figure 4.7. By means of the above-
described framework, first state St is derived in the state module. The agent selects, based
on its policy and St, an action At by calling the method act(St). Action At encodes two
information values: the order to be transported and the destination resource. An action-
mapping-procedure in the action module is applied to translate the numerical action value into
the order and destination information, which can be interpreted by the production framework.
The reward Rt+1 is calculated in the reward module for St, At, and St+1 and transferred to
the RL-agent module for optimizing the policy by calling the method observe(Rt+1). This
method updates policy π according to the optimization algorithm, which will be explained in
Section 4.4.

Whenever an action, i.e. a pair of order and destination, is invalid, a recursion is performed,
i.e. the agent is called recursively and a new action is requested for the same state. This
is repeated until the agent selects a valid action or the maximum number of recursions is
reached. The recursion limit is a customizable parameter. If the recursion limit is reached,
the resource performs an idle-action with a fixed, pre-determined idle time. The purpose of
this is to have enough time passed by for a production state change to happen and, so, the
RL-agent will decide the next time based on a new state.

It can be deduced from computational results that the learning speed of an RL-agent can
be increased significantly by introducing this recursion procedure in case of invalid actions
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Figure 4.7: Decision-making process flow of the dispatching agent to select the next action to
be performed.

(see Section 5.2). However, a too long forced idle time in case of the maximum recursion
limit results in both: a significantly longer learning process and a lower average performance.
Furthermore, the recursion limit and forced idle time parameter prevent the agent from getting
trapped in a loop of choosing invalid actions over and over again, which is a known issue for
ill-designed RL-agents (Sutton & Barto 2018).

Relation between MDP and RL-policy update Figure 4.8 depicts schematically the inter-
face and interplay between the MDP, which is implemented as simulated production environ-
ment, and the update of the RL-policy during the training process. The policy is represented
as ANN, and the weights of the network are adjusted continuously according to the state,
action, and reward values derived from the interaction with the environment. The update is
the actual optimization of RL-algorithms.

Furthermore, one can check whether the herein considered architecture fulfils the MDP
definition (see Section 2.3.2). First, the sequential event-based production and decision
framework supports the applicability of the basic MDP concepts. Second, to fulfil the Markov
property, all information of the stochastic processes, such as breakdowns of machines and
processing times, need to be represented in the state representation to allow an estimation
of the transition probability function p and a prediction of the subsequent state and reward.
However, this is hardly practicable in real-world applications due to the multitude of influences.
Therefore, Sutton & Barto (2018) call that case an approximation of the state representation
to the Markovian state representation. Still, they stress that reinforcement learning can be
successfully applied. Moreover, Chapter 3 showed state-of-the-art applications that are similar
to the application of the present work. So, it is assumed in the following that without strictly
proving the Markov property, reinforcement learning can be applied to the presented system
modelling.
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Figure 4.8: Relation between a Markov Decision Process and the updated RL-policy over the
training process.

4.3.3 Learning and operation phase

Two phases are separated when deploying the RL-based adaptive order dispatching in
practice (see also Figure 4.1). First, in the learning phase, the RL-agent is trained in the
simulation environment that represents the real production system (digital twin). Second, after
the training when the performance is on a level that is acceptable for application, the trained
agent can be applied in real-world operation. Without loss of generality, both phases are
feasible with the above presented adaptive control architecture. Hence, no further restrictions
apply for a deployment of the framework.

In addition to that, there are two alternative deployment modes: the training, i.e. policy update,
is either continued based on the data generated in reality or the training stops and the policy
is just applied. The former pursues the adaptive nature of the algorithm and continues to
adjust the performance according to the dynamics of the production system. This requires
that the reward module continues to determine a feedback that is observed by the RL-agent
and the learning rate α is still positive and not set to zero. Another reason for a continued
training after deployment is that in case the simulation does not entirely represent and match
to the reality the offset is levelled over time.

If training is turned off, i.e. the learning rate α is set to zero, it is recommended to have
a supervision of the system performance in place in order to capture system changes
that require a re-training. Again, both alternatives are applicable in the presented control
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architecture. Note that re-training of the agent from scratch with a new system configuration
is fast enough for most real-world applications, i.e. the frequency of significant changes
happening in real-world is far below the time to train a new RL-agent. Moreover, the time-
intense training can be outsourced and performed in parallel to real-world operations.

4.4 Reinforcement Learning modelling

This section introduces the RL-modelling that is the basis for finding an appropriate RL-
agent that fulfils the requirements of an adaptive order dispatching for a complex job shop
manufacturing system. Figure 4.9 summarizes the relevant features and outlines the structure
of this section. It is based on the process flow displayed in Figure 4.7. A more detailed
summary of the entire step-by-step approach is presented in Figure A3.1 in Appendix A3.

Sec. 4.4.3 State
representation

State module

Sec. 4.4.1 RL-algorithm, agent type
Sec. 4.4.5 Function approxi-

mation and hyper-parameters

Agent module

Sec. 4.4.2 Action
representation

Action module

Sec. 4.4.4 Reward function

Reward module

St

St, St+1

At

At

Rt+1

Figure 4.9: Methodological approach of modelling the RL-based adaptive order dispatching
introduced in Figure 4.7.

First and foremost, the model-free RL-algorithm is determined in Section 4.4.1, what is
hereinafter also called agent type. As already stated before, any agent type is based on
the sequential decision-making and, therefore, the key modelling elements of an MDP and
RL-agent are similar. The set of actions A is fixed and introduced in Section 4.4.2. All
possible states S are described as state representation in Section 4.4.3. The current state
St is calculated in the simulation environment as described in the previous Section 4.2.
Whenever there is a state transition, the reward function r determines the reward feedback
(see Section 4.4.4). The discount rate γ and learning rate α are two agent type-specific
hyper-parameters that are discussed in Section 4.4.5.

4.4.1 Agent type – Optimization algorithm

The application determines to a large extent which RL-algorithm is suitable. The RL-algorithms
described in Section 2.3.4, such as Q-learning or SARSA, use a tabular representation of the
value function. Therefore, their area of application is limited to problems with comparatively
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small state and action spaces, which is not given for most production control applications
in practice. Thus, this sub-section outlines, based on the theoretic concepts introduced
in Section 2.3.3, advanced methods in the form of two algorithms, which both have been
successfully applied in production control applications. As a summary, Table 4.1 gives an
overview of their advantages and disadvantages. Afterwards, episode design alternatives are
presented that are required due to the selected algorithm.

4.4.1.1 Advanced Reinforcement Learning methods

Deep-Q network (DQN), as introduced by Mnih & Kavukcuoglu et al. (2013), is an extension
of the value-based Q-learning algorithm described in Section 2.3.4 that uses a neural network
as function approximator. However, there are several drawbacks, e.g. unstable learning,
when combining Q-learning and ANNs, which are addressed by the authors via the following
additional enhancements of the basic Q-learning algorithm.

Experience replay is used to regularly update the network with a batch update method,
integrating past transition experiences, i.e. state-reward-action tuples, that are stored in a
replay memory. This increases the learning speed and the update robustness, as the temporal
correlation between experiences is reduced. Moreover, once learned experience is never
completely forgotten.

Next, in order to further improve and stabilize the training process, two ANNs are used.
The first network represents the target Q-function and is only updated, for instance, every
thousandth iteration to keep the target constant over that period. The second network includes
all update iterations and updates the first network after a thousand iterations.

Finally, all positive reward values are normalized to the interval [0, 1] and all negative values
to the limits of [−1, 0]. That shows a more stable learning process as noise in the update data
is further reduced.

However, the DQN algorithm requires additional parameters, e.g. for the experience replay, the
two networks, as well as the network update frequency, which limit its universal applicability.
Moreover, it shows a more evident sensitivity to hyper-parameter variations. For further
computational results, related to the application of this algorithm, the reader may be referred
to the work of (A_Schäfer 2018), (A_Kaiser 2019), and (A_May 2019).

Trust Region Policy Optimization (TRPO), developed by Schulman & Levine et al. (2015),
is a policy-based algorithm and mainly used in the optimization of large non-linear policies.
The specific goal is to find robust and sample-efficient gradients, as bad samples do affect
not only the output performance but also the subsequent input values and can, thereby, lead
to a vicious circle of deteriorating performance. Moreover, the learning rate α profoundly
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influences the step size of a gradient update, which can lead to a quickly declining performance.
Finally, looking at the mathematical details, changes between the actual policy space and
the parameter space of the parametrized policy could not be mapped efficiently before. The
TRPO algorithm addresses these obstacles.

In general, gradient methods optimize a policy by following the gradient of an objective function
in the optimization direction. Herein, TRPO makes use of a so-called advantage function
Lπ(π′) ≈ J(π′) − J(π) to evaluate the performance of the current policy π and the new policy
π′, and to direct the policy update (Sutton & Barto 2018). The update direction is computed
based on the parametrized policy using the conjugate gradient algorithm (Schulman & Levine
et al. 2015). However, this does not determine how far to go in the direction of the gradient.

Therefore, a trust region is defined around the current policy, i.e. the distance is constrained
to keep the policy update close to the old policy. For TRPO, the trust region concept by
Kakade & Langford (2002) is applied that implements the trust region restriction efficiently.
Moreover, the Fisher information matrix enables an efficient computation independent of
the parametrization and resolves the parameter mapping issue (Schulman & Levine et al.
2015).

All in all, the efficient computation without increasing the number of parameters are two theo-
retical advantages of TRPO compared to DQN. Moreover, the TRPO-algorithm shows a good
computational performance in terms of universality, training data efficiency, i.e. the number
of required training iterations, and robustness of the performance level also in stochastic
environments (Schulman & Levine et al. 2015).

Table 4.1: Comparison of the presented advanced reinforcement learning algorithms DQN
and TRPO.

DQN TRPO

Learning object value function policy
Approximation method ANN ANN
Continuous state yes yes
Large action space yes yes
Universality low high
Robustness low high

In conclusion, TRPO is selected based on the results of the theoretical and experimental
comparison of both advanced RL-algorithms in Table 4.1. However, note that changing the
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RL-agent type does not require an entirely new design and implementation as most model-
free algorithms are, in principle, interchangeable because they are all based on the concept
of an MDP. Mostly, hyper-parameters are different and some algorithms are, for instance, not
able to handle continuous state or action values.

4.4.1.2 Episode definition

Having decided on the RL-algorithm, an episode definition is required as policy-based opti-
mization algorithms are, by definition, multi-step methods and, therefore, need an episode
definition to optimize the policy and maximize the accumulated reward (see Section 2.3.4).

Due to the dynamics and continuous operation in production applications, a natural episode
definition is not self-evident. Hence, an assumption needs to be made. On the contrary,
RL-applications in robotics or strategic games have an apparent episode definition due to the
round-based setup, e.g. one robotic arm movement or one chess match. Moreover, Pardo
& Tavakoli et al. (2017) stress in their work the relevance of episode time limits, which are
caused by the episode definition. Four alternative episode definitions are considered in the
present work to evaluate the most suitable modelling assumption. These are, on the one
hand, time-based, meeting the timely nature of production operations, and, on the other hand,
action-based referring to a fixed number of performed actions:

• Time-based episode: An intuitive way to define episodes is to subdivide it according to
the time-based nature of production processes. An episode represents a period of fixed
length, such as a shift or a working day.

• Action-based episode Source → Machine: Fixed number of dispatching actions from
the subset of actions that release an order, i.e. dispatch an order from a source to a
machine.

• Action-based episode Machine → Sink: Fixed number of actions, dispatching and
transporting orders to a sink and thereby exiting the system.

• Action-based episode Avalid,t: Fixed number of any type of action that is valid in St.

A more detailed explanation, why these action subsets are selected, is given in the following
sub-section together with the definition of the action representation.
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4.4.2 Action representation

Finding an adequate action representation is rather straight forward because feasible decision
alternatives are usually well-known and can be derived from the considered production control
task. So, in the present work the actions are defined by the order dispatching decision-making
problem.

However, having set the control task, any RL-application requires an evaluation of the level
of detail for the action modelling. The two extremes are called macro- and micro-action
modelling. A macro-action is a high-level action that is followed by several decisions that
are taken by a deterministic procedure. For instance, a macro-action determines whether
to transport an order or wait. Which order is transported, is determined subsequently. In
contrast to that, micro-actions define every single step. Determining which order to transport
on which route and how to move from one location to another would be a detailed micro-action
modelling approach.

In the present work, an intermediate approach is developed. There are five subsets of
dispatching decisions (following Section 4.2.2): Source → Machine, Machine → Machine,
Machine → Sink, Empty, and Idle. Besides that, any dispatching integrates two (sub-)
decisions (following Section 4.3.2): which order to transport next and to which machine,
within the feasible machine group, should the order be transported. So, in order to meet both
requirements, the following dispatching action definition is used: an action AO→D consists
of a dispatching origin resource O ∈ R ∪∅ and dispatching destination resource D ∈ R ∪∅.
Because this definition determines the origin and destination but not the distinctive production
order, the order is selected subsequently by a deterministic procedure. This goes as follows: if
there is more than one order available for an origin-destination-pair, the order with the longest
waiting time is selected from the respective outbound buffer of the origin resource, i.e. the
FIFO-principle is applied.

Two further modelling assumptions are made. First, if the origin O is not the current location
of the dispatching resource, moving from the current location to the origin is included implicitly.
Second, the empty set ∅ is allowed for O and D, which means that the dispatching origin
or destination is not specified. This is required to represent the Empty and Idle decision
subsets. In conclusion, this action representation is able to uniquely identify a dispatching
decision that can be executed by the transport resource.

So, merging the five dispatching decision subsets with the origin and destination definition
gives the summary depicted in Table 4.2. The shown action subsets map the relevant
resource types, i.e. machines, sources, and sinks. Apparently, a source can only be an
action’s origin as well as a sink only an action’s destination. Moreover, an action from a
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source to a sink is in no case appropriate. The idle Aidle and empty-handed actions Aempty

are modelled either to have no specified origin and destination or just no origin. The remaining
action subsets were already explained before. All action subsets mentioned in Table 4.2
pooled together define the set of executable actions:

Aexec := Aidle ∪ Aempty ∪ AS→M ∪ AM→M ∪ AM→S 4.1

Table 4.2: Available action subsets for the reinforcement learning dispatching agent.

AO,D

∅ Source Machine Sink

∅ Aidle Aempty -

Source - - AS→M -

Machine - - AM→M AM→S

Sink - - - -

It is important to point out that the action subsets have a substantially different influence on
the performance measures. For instance, AS→M releases an order into the system, which
raises the inventory within the system and maybe also the machine utilization. Analogously,
AM→S has the opposite effect. Orders are taken out of the system, and the order cycle time
is recorded. The RL-agent needs to learn to distinguish the different action subsets to choose
its actions wisely. These effects were considered in the previously introduced episode design
(see Section 4.4.1.2) and are also relevant for the reward function in Section 4.4.4.

The RL-agent is, in principle, allowed to choose from all actions in any state. However,
depending on the current state St, not all actions are feasible. Avalid,t defines the set of
valid actions depending on St. Actions are infeasible, if the inbound buffer of the destination
resource is full, the outbound buffer of a resource has no orders that can be transported, or
the destination resource cannot perform the next process step, i.e. is not in the same machine
group. As stated in Section 4.3.2, a recursion mechanism is implemented to handle invalid
actions. Thereby, the agent is obliged to learn the action validity, too.

Action-mapping As the output of the RL-algorithm is always a discrete numerical value1,
an action-mapping is required to map the numerical value to the just defined dispatching
actions that can be executed in the production environment. The above-mentioned action

1Recall that, looking one step closer into the implementation, the actions represent the output layer of the ANN
and one output neuron is assigned to each action.
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module implements the mapping. Two alternatives are considered in the remainder of this
work to also analyse the effect of differently-sized action sets:

• Direct mapping enumerates every action of the subsets illustrated in Table 4.2 and,
hence, directly maps any reasonable action. This gives an action set of the size |Aidle| +
|Aempty| + |AS→M | + |AM→M | + |AM→S|. For instance, in the setup of Figure 4.5 with
one source, two machines, and one sink, the idle action gets the value 1 and the first
empty action to the source the value 2, to the first machine the value 3, and so on and
so forth, which makes in total ten actions.

• Resource mapping is less restricted and enumerates any possible origin-destination-
resource-pair, i.e. the entire two-dimensional matrix shown in Table 4.2 and does
not consider just the reasonable action subsets. Hence, the action set has a much
larger size and includes actions that are not valid in any case. The size equals to
|R| · (|R| − 1) + |R| + 1 = |R|2 + 1, i.e. the number of edges in a complete bidirectional
graph plus one for each empty action to a resource and adding one idle action. In the
example of Figure 4.5 this makes in total 17 actions.

Both action-mappings are investigated and compared in Chapter 5.

4.4.3 State representation

The decision basis for determining the optimal RL-action is the state representation. It is also
called state vector. Generally speaking, the state needs to be comprehensive enough but,
then again, not too large to be intractable. The state vector elements are also called features.
As for the action representation, the state information is transformed into numerical values
that are interpretable by the RL-algorithm. The way of how to efficiently represent the state is
elaborated in this section. Chapter 5 evaluates the herein presented modelling alternatives.

In the setup of the present work, all information is provided by the discrete-event simulation
environment. The simulation is, in principle, able to provide any kind of information. Therefore,
it presents an idealistic setup, which does not hold in any real-world application. So, one has
to consider that the selected state features are also available for decision-making in reality to
ensure transferability from the virtual to the real environment. Moreover, the information needs
to be available in near real-time in order to serve the adaptivity requirement. As stated in
Section 2.1.1 the semiconductor industry is a positive example in that sense as, for instance,
location information is available via an indoor-location system and, hence, this information
can be used in the training phase, too.
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4.4.3.1 Approach towards the state representation design

The approach followed in the present work for determining the state representation is sup-
ported by the Cross-Industry Standard Process for Data Mining (CRISP-DM by Chapman
& Clinton et al. (2000)). This is due to the similarity of the state vector as one major data
input in reinforcement learning with supervised or unsupervised learning approaches, for
which the CRISP-DM was initially developed. This sub-section focuses on two phases of the
CRISP-DM: data selection and data pre-processing. The alternative state representations
are presented afterwards in Section 4.4.3.2.

Data selection The first phase focuses on data selection. As stated before, the simulation
provides nearly any kind of information. This allows the investigation of having additional data
that might currently be not available in the real-world system. Eventually, when deploying the
RL-system, the additional information first needs to be provided, e.g. by additional sensors.
Moreover, it is recommended to consider just the relevant and necessary information in order
to limit the amount of data, which might be another restriction in practice.

In the present work, process data that is related to the dispatching action, agent, resources,
and orders are considered:

• Action-related data: feasibility of dispatching actions

• Agent-related data: current location

• Resource-related data: availability status, remaining processing time, inbound and
outbound buffer availability, and total processing time (including waiting orders)

• Order -related data: waiting time and location information

These data categories, on the one hand, describe the current system state as-is, i.e. what
one can see and observe on the shopfloor. On the other hand, they consider objective-related
information, i.e. which data is required to reach the objectives. Furthermore, these categories
are similar to the information that is used by established heuristic approaches outlined in
Section 2.2.2.
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Data pre-processing In most cases, the raw data from the shopfloor needs to be pre-
processed, meaning that data values are transformed. However, it can also mean that new
data values are generated based on the existing data. Furthermore, data pre-processing is
applied to reduce the amount of training data and the number of decision-relevant features. In
the following, simple mathematical pre-processing operations are presented together with an
example that are related to production control problems:

• Summing up all order processing times in a buffer in front of a machine gives the total
processing time or workload.

• Subtract the processing time from the total cycle time to get the waiting time, which is, in
turn, the relevant part of the cycle time that can be influenced by the dispatching agent.

• Dividing the buffer fill level by its capacity gives the relative fill rate of the buffer or, vice
versa, determines the availability of a buffer.

• Calculate the distance of an order relative to the current location of the RL-agent, instead
of providing absolute location coordinates.

Further normalization operations are recommended, in particular when working with ANNs, to
achieve a fast and robust convergence and reduce numerical instabilities (García & Luengo
et al. 2015). The following operations are assessed to be suitable for the order dispatching
application:

• Min-Max-Normalization: x is an element of the original value range [xmin, xmax] and
transformed to a new value range [a, b] via:

x′ =
(x − xmin)(b − a)

xmax − xmin
+ a 4.2

• Z-Score-Normalization: If xmin or xmax are not known, the dataset contains various
outliers, or the min-max-normalization is not reasonable for the desired application,
the z-score-normalization can be applied to a dataset DS with given mean μDS and
standard deviation σDS via:

x′ =
x − μDS

σDS
4.3

The transformed dataset DS ′ has the mean μDS′ = 0 and standard deviation σDS′ = 1.
In the present work, the entire dataset and value range are not known upfront. Therefore,
an incremental calculation of the mean and standard deviation is suggested. Since
the RL-agent influences the course of the data through its behaviour and makes its
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Machine

states

Encoding

operating 1 0 0
idle 0 1 0

broken 0 0 1

State element State entry nr. and descr. Value

Available
orders for
dispatching

1. Machine 1 to machine 2 1
2. Machine 1 to machine 3 0
3. Machine 2 to machine 1 1
4. Machine 2 to machine 3 1
5. Machine 3 to machine 1 0
6. Machine 3 to machine 2 1

Remaining
processing time

7. Machine 1 43
8. Machine 2 67
9. Machine 3 12

Figure 4.10: One-hot coding example for three machine states of one machine (left), and
one-dimensional state vector for an exemplary three machine setup (right).

decisions based on the normalized data, it also must be ensured that past data has
a limited influence on the most recent calculation. The exponentially weighted mean
and variance are suitable in that case (the parameter is set to λ = 0.01 if not stated
differently):

μt = (1 − λ) · μt−1 + λ · xt 4.4

σ2
t = (1 − λ) · (σ2

t−1 + λ · (xt − μt−1)2) 4.5

Finally, non-numerical, categorical data needs to be transformed into a numerical represen-
tation without losing any relevant information. For instance, order-machine-allocations or
machine states are categorical information1:

• One-hot coding: If a categorical information has n different categories, it can be rep-
resented by n binary values. Figure 4.10 on the left gives an example based on the
machine state information, for which three states are considered. These are represented
by a one-hot coding of three binary values.

The pre-processed data features are integrated into one state vector. Figure 4.10 on the right
illustrates a simplified example of three machines. The information about the available orders
from any origin to any destination machine (six state entries) and the remaining processing
time of all machines (three state entries) are integrated into the state vector.

1An overview of approaches for “coding” categorical information is given by Jeff Hale (2018), Smarter Ways
to Encode Categorical Data for Machine Learning. https://towardsdatascience.com/smarter-ways-
to-encode-categorical-data-for-machine-learning-part-1-of-3-6dca2f71b159 (accessed on
17.06.2020), and Max Kuhn & Kjell Johnson (2019), Feature Engineering and Selection: A Practical Approach
for Predictive Models. http://www.feat.engineering/ (accessed on 17.06.2020).
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4.4.3.2 State representation for an adaptive order dispatching in a job shop

The reasonable state representation for the dispatching decision is based on the approach
above and, on the one hand, considers information that is currently used by established
dispatching heuristics and, on the other hand, additional information that is based on findings
throughout this research. In this section, every investigated state element is listed and
explained. A state element is denoted as capital letter S followed by a subscription referring
to the information feature. All state elements are calculated based on the current time step
t. However, for reasons of improved readability, the following formulas omit the subscription
index t if not explicitly needed. Note that all state elements are compatible with each other,
and so the state vector St can be just a single state element or a combined set.

Action-related state information First, it is reasonable to indicate for every available action
whether it is valid or not in a certain state, i.e. whether it is an element of Avalid,t or not. As
invalid actions can be also part of the set of actions A, this indication is highly relevant for
learning action validity. The information is encoded in a binary variable vai and the state
element is named SV A:

vai :=

⎧⎪⎨
⎪⎩

1 ai ∈ Avalid,t

0 else
∀ai ∈ A 4.6

Agent-related state information Additionally, the information on the current location of
the dispatching agent is of interest as machines are spread due to the job shop layout. This
is, in particular, the case if the dispatching agent is the system bottleneck and, hence, the
transport route optimization is important. The NJF heuristic is grounded on this information and
reasoning, too. The location is encoded using the one-hot coding for categorical information,
i.e. every possible resource location R. The state element is named SL and the binary variable
for every resource li:

li :=

⎧⎪⎨
⎪⎩

1 if the dispatching agent is at resource i

0 else
∀i ∈ R 4.7

Machine-related state information As machines break down from time to time, the ma-
chine availability is another important information. For instance, a machine that is not avail-
able is less likely a “good” destination D of a dispatching action. The machine state SMF for
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every machine is defined as follows:

mfi :=

⎧⎪⎨
⎪⎩

1 if machine i is not available

0 else
∀i ∈ M 4.8

Next, it is relevant whether the machine is currently processing an order or not. More precisely,
every machine has a variable indicating the remaining processing time rpti, which gives
the state element SRP T . This variable indicates whether the machine is soon finishing an
operation and in consequence an order is available in the outbound buffer and another order is
instantly taken from the inbound buffer. rpti is calculated based on the remaining processing
time RPTi divided by the average processing time APTi at this machine. The fraction is
applied to scale the variable value and allow the comparison of different machines:

rpti :=
RPTi

APTi
∀i ∈ M 4.9

Apart from the remaining processing time and machine availability, the inbound and outbound
buffer availabilities are important to capture the workload in front of a machine as well as
the number of waiting orders that are finished and can be dispatched. Both information allow
the conclusion on the criticality of a machine, i.e. the risk of starvation or blocking. Starvation
means that the inbound buffer is empty and blocking happens when the outbound buffer is
fully occupied. For instance, the FLNQ heuristic captures the buffer availability, too. SBEN

represents the inbound buffer and SBEX the outbound buffer remaining free slots. As for
the remaining processing time, the variable is scaled based on the capacity CAP EN

i and
CAP EX

i and the number of occupied buffer slots OCCEN
i and OCCEX

i at machine i. So, the
variables beni and bexi have the value range [0, 1]:

beni := 1 − OCCEN
i

CAP EN
i

∀i ∈ M 4.10

bexi := 1 − OCCEX
i

CAP EX
i

∀i ∈ M 4.11

Finally, the workload of orders waiting in front of a machine, i.e. the total processing time, is
provided as state element SBP T , containing the state variable bpti for every machine i. This
information is redundant to the buffer fill level, though still relevant as processing times vary
on a large range. Hence, the information on just the buffer fill level might not be accurate
enough. PTi gives the sum of the waiting orders’ processing time. Again, the variable is scaled
according to APTi multiplied by the capacity of the inbound buffer CAP EN

i , and then shifted
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by 1 to take also negative values, e.g. if the total processing time is below the average:

bpti :=
PTi

CAP EN
i · APTi

− 1 ∀i ∈ M 4.12

Order-related state information Next, the state vector element SW T deals with the waiting

time of orders that are available for dispatching, i.e. orders that are placed in an outbound
buffer. The variable wti covers all source and machine outbound buffers and indicates the
longest waiting time WT max

i , similar to the heuristics FSFO and FIFO. Z-score-normalization
is applied to normalize the waiting time values according to the mean waiting time WT mean

i

and standard deviation WT std
i with respect to the resource type at which the order is currently

located, i.e. either source or machine. The reasoning behind the latter is the separation of
orders that are waiting at a source at the entrance of the job shop system and orders that
are inside the system, which do have different waiting time values as the total waiting time is
accumulative:

wti :=
WT max

i − WT mean
i

WT std
i

∀i ∈ M ∪ SO 4.13

This formula is clarified by giving an example: assuming there are multiple machines with
an average waiting time WT mean

i = 100 and standard deviation WT std
i = 10. There are

two orders in the outbound buffer of the first machine with waiting times 120 and 80. So, the
longest waiting time for the first machine is WT max

1 = 120 and the waiting time state value is
calculated as follows wt1 = 120−100

10 = 2.

Next, state SAT represents the time it takes to perform an action ai ∈ A. This allows the
RL-agent to get a grasp of temporal effects of specific actions. Any invalid action is set to
zero. For all valid actions, the time to move from the current location to the origin O of the
order t→O, the time to perform the transport tO→D, as well as handling times tload and tunload

are considered. Min-max-normalization is applied, and the variable is scaled by atmax, which
represents the maximum possible value that can be determined for any system based on the
layout and movement speed, i.e. taking the maximum distance between any two resources in
the layout, dividing it by the movement speed, and adding the handling times. Based on this
information, the dispatching agent can consider the time that passes by when selecting an
action, which helps to prioritize actions if the agent is the system bottleneck. Moreover, the
composite dispatching rule of Mönch & Fowler et al. (2013) captures this information:

ati :=

⎧⎪⎨
⎪⎩

t→O+tO→D+tload+tunload

atmax
ai ∈ Avalid,t

0 else
∀ai ∈ A 4.14
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4.4.4 Reward function

The objective of the RL-agent is to maximize the expected cumulative reward, resulting from
a continuous evaluation of the actions taken. Therefore, the reward must be defined so that
its maximization leads to the desired behaviour. In the present case, the desired behaviour
is described by the overall performance objectives. However, as there are various ways
of modelling the reward function that poses a challenge, particularly when looking at new
RL-applications, such as production control, which are not yet well-studied (Ng & Harada
et al. 1999; Dewey 2014; Hadfield-Menell & Milli et al. 2017; Ou & Chang et al. 2019). Most
authors agree that the reward design is one of the most critical steps in the implementation
of reinforcement learning and requires expertise and knowledge about the application domain.
Recalling the reward function definition r(s, a, s′), the reward design is not limited to the
purposeful definition of the reward in accordance with the objectives, but it must also reconcile
and correlate to the state and action representation.

A poor reward design bears, for example, the risk of reward hacking (Russell & Norvig 2016).
This is the case when “[...] a vacuum cleaner ejects collected dust so that it can collect even
more dust.” (Hadfield-Menell & Milli et al. 2017). Thereby, the agent maximizes its reward but
does not implement the desired behaviour.

The remainder of this sub-section explains, first, two reward modelling concepts with its advan-
tages and disadvantages (see Section 4.4.4.1) and, based on this, Section 4.4.4.2 outlines
the developed approach towards the reward design. Lastly, alternative reward representations
are introduced for the adaptive order dispatching (see Section 4.4.4.3).

4.4.4.1 Sparse and modelled reward

In episodic environments, the RL-agent receives a reward based on the performance in
each episode (see Section 2.3.2). This is especially straightforward in board games such as
chess. In that case, winning a game gives a positive reward and losing a negative reward.
The possibility of a draw might occur, whereby the RL-agent is neither rewarded nor pun-
ished. Modelling a similar reward function for a generic production control agent could go as
follows:

rsparse(•)1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 production plan fulfilled

−1 production plan not fulfilled

0 else

4.15

1For reasons of improved readability, the reward function r(s, a, s′) is shortened to r(•).
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Due to the possibly large number of state transitions within an episode, the RL-agent is rarely
updated according to positive or negative feedback. This setting is called sparse reward and
hereinafter defined as follows (Sutton & Barto 2018): during the episode, except in terminating
states, the RL-agent receives the neutral reward value zero. If the reward is triggered only
after a series of actions, it is for the agent hard to identify the relationship between its actions
taken and the rewards received for the chain of actions. This is also called credit assignment
problem (Sutton & Barto 2018). The key question is, what are the most relevant actions,
which are decisively involved in achieving the reward maximization and consequently need
to receive higher credits than those with a negative effect. This drawback of sparse reward
is opposed by the advantage that it rewards only the achievement of the objective. How the
objective is achieved, is not considered, and the agent is free to make its decisions towards it.
This, in turn, enables the agent to learn policies that outperform, for instance, human experts
such as shown by Silver & Schrittwieser et al. (2017).

On the contrary, modelled reward or reward shaping extends the reward function by incor-
porating additional rewards within an episode and on the way towards the objective (Kaelbling
& Littman et al. 1996; Randløv & Alstrøm 1998; Ng & Harada et al. 1999). This type of reward
modelling is preferred if the problem complexity does not, or only with high computational
effort, permit the achievement of the objective via sparse reward. So, the resulting reward
function is composed of two parts:

r(•) = rsparse(•) + rmodelled(•) 4.16

The modelled reward is designed in accordance with the application and, usually, requires
an extensive understanding of the problem domain to avert contradictions with the overall
objective represented by the sparse reward. Continuing with the simplified production control
example from Equation 4.15, a modelled reward could consider the in-time completion of an
order:

rmodelled(•) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.01 order finished in-time

−0.01 order not finished in-time

0 else

4.17

The modelled reward needs to be scaled with respect to the value range of the sparse reward.
Therefore, the modelled reward value is much smaller in this example, but still the numbers
are arbitrary values. Moreover, the sum of both rewards should be in a constant range.

In conclusion, the following needs to be considered when sparse and modelled rewards are
both considered. Any adjustment of the reward function changes the solution space of the
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original MDP and, hence, a new MDP is given. This can cause serious issues, because the
optimal policy for the original MDP can no longer be found as the modified MDP may have
a different optimal policy. Continuing with the vacuum cleaner example: The initial sparse
reward is +1 if the entire room is clean. Additional reward +1 is modelled for the collection of
dust to guide the cleaner towards an efficient cleaning route. Since the RL-agent does not
know the real problem to solve and only aims at maximizing the return, the optimal policy with
the modelled reward strives for a permanent collection of dust and, hence, deviates from the
desired policy.

To ensure that the optimal policy of the modified MDP corresponds to the optimal policy of the
original MDP, the modelled reward function needs to be representable through a real-value
function Φ(•) and discount rate γ such that for all states s, s′ ∈ S and actions a ∈ A the
following holds (Ng & Harada et al. 1999; Wiewiora 2011):

rmodelled(s, a, s′) != γ · Φ(s′) − Φ(s) 4.18

If this holds, the modelled reward function is called a potential-based shaping function, and a
necessary and sufficient condition is given to guarantee consistency with the original MDP.

Summarizing both reward concepts reveals that the definition of an appropriate reward
function should be based on what the objective of the RL-agent is and not how it should
solve the respective task. Only if the task is too complex, the agent should be guided towards
its desired behaviour by a more detailedly modelled reward, however, keeping the risks of
modifying the MDP and ignoring better options by limiting the agent’s degree of freedom in
mind. Furthermore, the efficiency of a reward signal can be increased by adjusting the state
and action representation accordingly.

Chapter 5 investigates sparse and modelled reward functions separately in order to examine
their applicability for an adaptive order dispatching in a complex job shop. Therefore, the
following sub-section describes the approach that is developed and applied in the present
work to define sparse and modelled reward functions that are appropriate in principle, and
the computational results will demonstrate their applicability.

4.4.4.2 Approach towards the reward function design

First, it is necessary to define the objectives for which the performance is evaluated and
optimized. In the domain of PPC it is, in particular, crucial to investigate the performance for the
dilemma of contradicting objectives (see Section 2.1.2). Having selected the objectives, it has
to be considered how the KPIs are correlated to the agent’s state and action representation.
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Optimization objectives The performance evaluation is based on the logistical perfor-
mance indicators defined in Section 2.1.2. As stated in Section 3.1 and Section 3.2, the
research focus is on multiple objectives, i.e. resource- and order-related indicators. The
following KPIs are considered in the present research:

• Minimize the average order cycle time CT

• Maximize the average machine utilization U

The utilization U is defined in Section 2.1.2 as manufacturing uptime utilization and serves
as a resource-related indicator, which is of particular interest in semiconductor operations.
Moreover, in accordance to the lean philosophy, a short order cycle time CT is preferred to
ensure a time-efficient order processing in job shop work centres.

Afterwards, one has to check for both KPIs if these are too aggregated to be used directly
as reward for the agent’s performance. For instance, the overall equipment effectiveness
(OEE) is an aggregated performance measure that is not necessarily influenced by a single
dispatching action. Thus, the herein presented approach considers the previous work of
Stricker (2016), which deals with production-related KPIs, their relationship to each other, and
the right aggregation level.

In fact, the cycle time is an aggregated performance indicator that is defined as the sum
of processing, waiting, setup, and transport time. As the processing time and the transport
time are fixed and pre-determined – the transport capacity is just one, so there is no waiting
time due to consolidated transport of multiple orders – the waiting time is the only part of
the cycle time that can be influenced by the dispatching agent. This will be considered in
Section 4.4.4.3. In contrast to that, the utilization is an appropriate performance measure, as
it is defined as uptime utilization and hence downtimes are already excluded.

Table 4.3: Influence of action subsets on optimization objectives (positive effect +, negative
effect −, or positive as well as negative effects ∼).

Action subset Utilization Cycle time

Aidle ∼
Aempty ∼
AS→M + −
AM→M + +
AM→S ∼ +
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Relate reward objectives with action and state space Next, it is required to understand
the environment dynamics and especially the state-action-reward relations better in order to
define a suitable reward function r(s, a, s′) that is based on these. Table 4.3 illustrates these
relationships on a qualitative level with respect to the objectives. The table does not show
the state separately, due to reasons of comprehensibility and readability, but the following
explanation of the effects considers both aspects and distinguishes different states that might
occur:

• Aidle and Aempty: If the transport resource is highly utilized, both action subsets are most
likely not beneficial for the objectives. However, idling to wait at a location for an order
that will arrive soon or moving empty-handed to a location where an order is expected
can, in principle, be an advantageous decision of the RL-agent. Hence, there is no clear
positive or negative effect.

• AS→M : Supplying a starving machine increases directly the overall machine utilization.
If the machine inbound buffer is already filled with an order or the machine is currently
broken, the effect is neutral. However, it also increases the inventory within the system
and, hence, causes rising average cycle times (see Little’s Law in Section 2.1.2).

• AM→M : Moving orders from machines to machines increases the destination machine’s
utilization, too (see explanation before). Moreover, it directly affects the cycle time
positively, as waiting in an outbound buffer of a machine is aborted. Generally speaking,
AM→M actions contribute to the levelling and distribution of inventory within the system
and between the machines.

• AM→S: Transporting an order from a machine to a sink increases the machine’s utiliza-
tion only if the machine is blocked due to a full outbound buffer. Except for that rather
rare case, this action does not influence the utilization. Other than that, it finishes the
order processing and, hence, has a positive effect on the cycle time, too (see explanation
before).

Intuitively, a positive effect in Table 4.3 should be rewarded by a positive value and, vice versa,
by a negative value. According to Sutton & Barto (2018), the value range of the reward should
be fixed and the interval [−1, 1] is recommended. The best state-action-pair should receive
the highest value +1 and −1 for the worst. In between, an exponential curved reward function
is recommended to achieve a continuous function with monotonously increasing gradients
towards the optimal state (Sutton & Barto 2018).
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4.4.4.3 Reward function for an adaptive order dispatching in a job shop

After the optimization objectives are determined and understood, the reward function can be
designed accordingly. First, modelled and sparse rewards are explained. After that, a tree-
based reward is introduced as an enhanced modelled reward function. All reward functions
are evaluated in Chapter 5.

Modelled reward Because of the different influences derived in Table 4.3, the first modelled
reward function is a constant reward function rconst, which rewards the action subsets AS→M

and AM→S separately, as those subsets show the most ambiguous effects on the objectives.
The reasoning is to analyse whether a reward for those two action subsets is enough to
optimize either objective according to Table 4.3. Two constant reward values ω1 and ω2 are
assumed for the action subset the selected action belongs to:

rconst(•) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω1 a ∈ AS→M ∩ Avalid,t

ω2 a ∈ AM→S ∩ Avalid,t

0 else

∀a ∈ A, s ∈ S 4.19

While the constant reward does only indirectly consider the objectives, two further modelled
reward functions rutil and rwt are introduced. Both take the actual objective function value as
is for the reward calculation. rutil rewards every valid action by the current average machine
utilization U . The average is computed based on the period since the last action. The
exponential function e is applied to achieve increasing gradients towards the optimum, i.e. the
maximum utilization. Additionally, two constant parameters help to align the reward according
to the normalized reward value range of [0, 1]. The value range of the utilization has the same
interval. Invalid actions are rewarded with zero. Figure 4.11 displays the chart of the reward
function:

ruti(•) :=

⎧⎪⎨
⎪⎩

e
U

1.5 − 1 a ∈ Avalid,t

0 else
∀a ∈ A, s ∈ S 4.20

The waiting time reward directs towards the minimization of the order cycle time. As stated
before, the cycle time is too aggregated and, therefore, just the relevant element, i.e. the
waiting time, is considered. Again, invalid actions are rewarded with zero. To take into account
that orders that just entered the system have a lower waiting time than orders leaving the
system, the waiting time is normalized for the resource type, as already explained in Equa-
tion 4.13 in Section 4.4.3.2. Again, two constant parameters take care of the normalization
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Figure 4.11: Modelled reward functions rconst (with exemplary ω1 = ω2 = 0.7), rutil, and rwt.

for the target reward value range of [0, 1]. The parameters are based on several simulation
experiments, from which the waiting time value range could be calculated. The normalized
waiting time can also be negative and the range is not limited since the normalized waiting
time value is theoretically unbound (see Figure 4.11):

rwt(•) :=

⎧⎪⎨
⎪⎩

e−0.1·W Ti − 0.5 a ∈ Avalid,t

0 else
∀a ∈ A, s ∈ S 4.21

Moreover, two weighted reward functions rw,util and rw,wt are defined that integrated the two
ideas behind the functions rconst and rutil or rwt, which were just explained:

rw,util(•) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω1 · ruti(•) a ∈ AS→M ∩ Avalid,t

ω2 · ruti(•) a ∈ AM→S ∩ Avalid,t

0 else

∀a ∈ A, s ∈ S 4.22

rw,wt(•) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω1 · rwt(•) a ∈ AS→M ∩ Avalid,t

ω2 · rwt(•) a ∈ AM→S ∩ Avalid,t

0 else

∀a ∈ A, s ∈ S 4.23

Sparse reward Sparse reward functions are just limited to a reward at the end of each
episode. The sparse reward functions are defined in a similar way to the modelled reward.
Analogously to rconst, the reward function rconst,ep gives a constant reward at the end of every
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episode:

rconst,ep(•) :=

⎧⎪⎨
⎪⎩

1 if a ends episode

0 else
∀a ∈ A, s ∈ S 4.24

Next, the sparse complements of ruti and rwt are ruti,ep and rwt,ep and calculated the same
way, except the fact that the utilization is averaged over the entire episode and the waiting
time is averaged for all orders that have been dispatched to a sink within the episode:

ruti,ep(•) :=

⎧⎪⎨
⎪⎩

e
U

1.5 − 1 if a ends episode

0 else
∀a ∈ A, s ∈ S 4.25

rwt,ep(•) :=

⎧⎪⎨
⎪⎩

e−0.1·W T − 0.5 if a ends episode

0 else
∀a ∈ A, s ∈ S 4.26

Multi-objective reward functions In addition to just a single rewarded objective, as pre-
viously defined, a weighted sum of multiple reward functions ri via weight factors ωi is
investigated. This follows the idea of multi-objective optimization1:

rres(•) :=
N∑

i=0
ωiri(•) ∀a ∈ A, s ∈ S 4.27

Tree-based reward Finally, a calculation routine for a tree-based reward is developed,
which aims at the optimization of multiple objectives and is based on the idea of a look-ahead
approach (see the work by Chen & Xia et al. (2015) and Silver & Hubert et al. (2018) presented
in Chapter 3). In order to address the dilemma of contradicting objectives, it incorporates
additional domain knowledge about the job shop system and order dispatching task under
consideration. Ou & Chang et al. (2018) show that a performance increase can be achieved if
additional system understanding is incorporated in the reward design.

Take the following as an illustrating example for the reasoning behind the tree-based approach:
three out of five machines in a job shop are blocked since their inbound and outbound buffers
are all filled. As a consequence, the machine utilization drops and order waiting times

1Note that by the weighted sum of multiple reward functions also modelled and sparse reward functions can
be combined. However, this is not explicitly analysed in the present work as no significant results could be
obtained in preliminary experiments.
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Figure 4.12: Example for the tree-based reward definition with three possible actions in state
St. The evaluation Y of each state and the rank indices I are highlighted. The
evaluations of the nodes on the deepest level are arbitrary distance values Ydist.
The other values are computed based on the avg aggregation rule.

accumulate. Herein, the optimal dispatching behaviour would be to dispatch the finished
orders in the outbound buffers first, so that the machines can continue processing as quickly
as possible. Therefore, the minimization of the total transport distance to these three machines
is the best way to minimize the machines’ and orders’ idle time. This far-sighted decision-
making should be the goal of the RL-agent. The tree-based reward function is designed to
achieve precisely this goal and reward the selected action At according to a tree of future state
evaluations. It has to be mentioned that a reward function that considers several consecutive
states and actions is somehow contrary to the reward function definition r(s, a, s′), but it is
not contradicting, because the future states and actions in the herein presented approach are
just estimates.

Figure 4.12 shows an example for the tree-based reward calculation. The reward calculation
compares the evaluation of the selected action with all other possible action evaluations and
defines a rank-based reward. The following formal explanation is based on Figure 4.12.

Given a state St, there are A(St) =
{

A1
t , . . . , A

|A(St)|
t

}
possible actions. St is drawn on the

top layer of the tree and called root. The root has |A(St)| child nodes Si
t+1 for each action

Ai
t ∈ A(St). A child represents an estimated following state St+1. Analogous to the root, every

child node again has |A(St)| − 1 further child nodes for any left action Aj
t+1 ∈ A(St+1) =

A(St) \ Ai
t. The node subscript in Figure 4.12 defines the level within the tree or, in other

words, the number of actions that need to be taken to reach that node, and the superscription
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indicates the action sequence. The number of nodes in a tree is given by |A(St)|!
(|A(St)|−m)! , where

m represents the number of look-ahead layers, i.e. by default the number of actions in state
St. m is a parameter that can be set by the user to control the tree size and, hence, the
computational effort.

Next, an evaluation function and an aggregation function are required to compute the reward
for the action selection on the root-level. The evaluation starts on the deepest look-ahead layer
of the tree, i.e. the leaves of the tree, in order to incorporate the most far-sighted behaviour.
The nodes on the deepest level are evaluated for the summed distance Ydist, i.e. the total
distance of all actions that are performed to reach that node. For comparison, the machine
utilization Yutil is considered as alternative evaluation criteria.

After that, the aggregation function faggr(•) determines the evaluation of the nodes in the
layers above. For instance, the first node S1

t+1 on layer t + 1 is based on the values of all
its children, i.e. Y 1

t+1 = faggr

({
Y 1,2

t+2, Y 1,3
t+2

})
. The following alternative aggregation functions

are investigated: min(•), max(•), or avg(•). min represents an optimistic estimate since the
reward is calculated assuming an optimal behaviour in all subsequent steps. On the contrary,
max corresponds to the worst-case-perspective. The reward calculation assumes that the
agent always chooses the worst action in the subsequent steps. Finally, avg corresponds to
the non-weighted expected value of all subsequent steps. The descriptions of min and max
are reversed in case of a maximization evaluation, such as the machine utilization Yutil.

Finally, from the aggregated values Yt+1 of the nodes in the first look-ahead layer, the reward
of the agent is determined by comparing the evaluations of all possible actions via an index
function I(•). The function indicates the rank according to a sorted list of all aggregated
values Yt+1. Whether sorting in ascending or descending order depends on the optimization
direction. The highest reward is given for the highest rank.

So, the tree-based reward for action At can be determined using the normalized index value
according to:

rtree(•) :=

⎧⎪⎨
⎪⎩

|A(s)|−I(a)
|A(s)|−1 a = At, s = St, a ∈ Avalid,t

0 else
∀a ∈ A, s ∈ S 4.28

One final remark on the computation time of the tree-based reward. The computation is
strongly influenced by the number of tree nodes, which grows more than exponentially as
the number of look-ahead layers increases. For this reason, the necessary time for a reward
calculation beyond a certain amount of look-ahead layers is too high. Therefore, a workaround
is integrated that allows the limitation of the tree to a pre-defined maximum number of nodes.
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Another advantage of limiting the tree based on the number of nodes compared to the number
of layers is that, especially when there are just a few possible actions, all actions are assessed,
i.e. very far-sighted. The tree is just limited when the number of actions is vast, in which case
the trade-off between the available actions should not be as critical.

4.4.5 Function approximation and hyper-parameters

After an appropriate RL-model is found, the algorithm’s fine-tuning needs to be performed.
Therefore, RL-algorithms come with hyper-parameters that require specification. The pa-
rameters that are relevant to the TRPO-algorithm are already introduced in Section 2.3 and
explained hereinafter. The parametrization is based on the analysis of several computational
experiments performed by (A_Schäfer 2018), (A_Jakubik 2018), (A_Kaiser 2019), (A_Theiß
2019), and (A_May 2019) as well as the author’s publications in Stricker & Kuhnle et al. (2018),
Kuhnle & Röhrig et al. (2019), and Kuhnle & Schäfer et al. (2019). Table 4.4 summarizes the
default parameter setting findings and computational results are captured in Figure A4.1 of
Appendix A4. In general, the investigations show that hyper-parameters influence primarily
the learning speed and the robustness of the agent’s performance.

Table 4.4: Default hyper-parameter definition of the TRPO-algorithm developed in the present
work.

Parameter Default value

Learning rate α 0.001
Discount rate γ 0.9
ε-greedy strategy - (turned off)
ANN configuration input layer (states) ×128 × 128×

output layer (actions)
ANN activation function tanh

The learning rate α is a parameter well-known from gradient descent-based methods. It
determines how much the error that is determined by the difference of the learned estimation
and the actual value goes into the policy update (see for comparison Equation 2.30). If the
learning rate is too high, according to Goodfellow & Bengio et al. (2016), the learning curve
oscillates strongly. If, on the other hand, it is too small, the learning process is slowed down.
However, significant effects on the achieved performance after the learning process cannot
be found for varying learning rates within reasonable boundaries in the present work. Within
the scope of this work, a learning rate of α = 0.001 has shown to be suitable.
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The parameter γ corresponds to the discount rate, which is included in the calculation of
the discounted reward (see Equation 2.12). To account for uncertainties about the future and
for numerical reasons, it is set to a value of less than one. Comparing it to the learning rate,
the discount rate has an application-specific intuition. The time lag in terms of time steps t

between an action and its effect on the performance indicators, i.e. the reward, is reflected
by the discount rate. Hence, applications in which the reward is directly related to an action
without any effect on future states and rewards do not require a high discount rate value.
Looking at the computational results of the present work, a higher learning speed is observed
for smaller γ values. This can be explained as follows: if a larger discount rate is used,
the agent must estimate further future rewards, thus, showing more far-sighted behaviour
compared to an agent with a small discount rate. However, agents with a high discount rate
achieved a significantly higher performance in terms of average utilization and order cycle
time. Hence, the trade-off between learning time and achieved performance prevails when
fine-tuning this parameter. If not stated differently, the value of γ = 0.9 is used as default,
which has shown good performance in most experiments.

The ε-greedy strategy is turned off in this work, i.e. the value is set to zero. Experiments
with the policy-based TRPO-algorithm showed good results with no additional exploration
induced by ε. The policy of the TRPO-algorithm is by itself stochastic and is not exploiting too
fast with the risk of getting stuck in a locally optimal solution. Moreover, setting ε to a positive
rate entails the risk of a negative influence on the agent’s performance as random actions are
performed that are most likely sub-optimal and do not result from the agent’s policy.

In terms of the ANN configuration, which represents the parametrized policy πθ, an MLP
network with two hidden layers and 128 nodes per layer was found to be reasonable. tanh is
defined as activation function. The results for larger networks are similarly good, but several
times the number of network weight update steps are necessary. Moreover, the computation
time to perform an update is longer for a larger ANN. Prior studies also showed that other
network architectures, such as convolutional neural networks (CNN) or a two-dimensional
state representation instead of a one-dimensional state vector, are applicable but do not lead
to an improved performance (A_Kaiser 2019). Generally speaking, one reason for using a
CNN is the poor scalability of the one-hot encoding. The higher the number of resources, the
higher the number of state variables required for the one-hot encoding. However, the problem
size considered in the present work seems still manageable for an MLP network of the above
mentioned size.

In general, it can be stated that there is not a unique optimal hyper-parameter configuration.
The presented results are based on the best knowledge according to various computational
experiments.
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4.5 Evaluation and benchmarking

The presented RL-modelling alternatives need to be evaluated in several experiments. Each of
it covers a range of multiple simulation runs. The experiments aim to test the problem-solving
ability of the RL-based order dispatching and the evaluation process is described in this
section. It follows a three-step approach. First, the state of convergence is defined for that
it is said that the agent has finished the learning process and the performance does not
change significantly any more. This state is required for the next step, the evaluation of the
performance based on the KPI values. Lastly, the RL-algorithm is compared to benchmark
algorithms that represent the current state-of-the-art approach for order dispatching in practice.
In addition, the benchmarks help to analyse and understand the agent’s policy in more detail.
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Figure 4.13: Schematic illustration of the course of agent’s reward per learning iteration of
four exemplary agents. For Agents 1 and 2 the convergence corridor and point
of convergence are depicted, too.

To get a first understanding of the range of possible results that can be observed in experi-
mental runs, Figure 4.13 sketches four characteristic reward curves for fictional RL-agents.
The reward is displayed over time, i.e. learning iterations or dispatching actions. Note, the
time between two consecutive actions differs, however, it is sufficiently small to be neglected
for these figures. The reward is used as the primary and most native evaluation measure to
analyse the agent’s performance, as it shows the feedback the agent receives. It indicates
if the agent can maximize its reward over time. Further, it is assumed that all shown agent
rewards are scaled to the same value range. For instance, Agent 1 shows good performance,
but Agent 2 reaches the same level earlier, i.e. the training phase is shorter. On the other
hand, Agent 3 performs poorly, maybe due to a locally optimal solution, which is likely due to
a poor RL-agent modelling as the agent is not directed enough or capable at all to capture the
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intended behaviour. Agent 4’s performance is not stable, which is not suitable in practice. In
most cases, an oscillating performance hints that either the agent hyper-parameters are not
properly refined or the environment dynamics hinder a stable performance. Hence, a proper
reward curve should look like the curves of Agent 1 and 2.

4.5.1 Analysis of convergence

Two elements influence the state of convergence in the approach of the present work. On the
one hand, there is the discrete-event simulation. Simulation experiments are, according to
Gutenschwager & Rabe et al. (2017), only valid when limited to the phase after the transient
phase. On the other hand, the RL-agent requires a training period to reach its state of
convergence. Chapter 5 determines, without loss of generality, first the simulation’s transient
phase based on established approaches described by Gutenschwager & Rabe et al. (2017).
After that, the RL-agent’s state of convergence is computed, as it is assumed that this takes
significantly longer than the simulation to converge. Anticipating the results and explanation
of Section 5.1.4, it can be stated that the transient phase can be neglected in the application
considered in the present work. A comparison with the training period shows that the transient
phase is a mere fraction of the time to reach the state of convergence.

Looking next at the agent’s convergence in theory, the following applies: although value-
and policy-based RL-algorithms introduced in Section 2.3 are proven to converge, there is
no generic convergence guarantee for advanced RL-algorithms, in particular with function
approximators such as ANN (Sutton & Barto 2018). Therefore, a procedure is developed to
compute the state of convergence.

The convergence definition that is used in the following is based on the reward signal as it
represents the optimization measure of the agent. So, looking at the reward one can evaluate
the agent’s performance (see Figure 4.13). If the reward reaches a certain level and does not
deviate from that level in the following iterations, it is assumed that the agent has reached its
state of convergence. The following calculation rule is applied (A_Kaiser 2019):

1. Calculate the average reward rlq of the last quarter of the entire experiment run.

2. Check for every intersection i of the reward with rlq, whether the average reward ri→end

from intersection i to the end satisfies the following condition:

|rlq − ri→end| < εconv · rlq 4.29

εconv represents an arbitrarily pre-defined threshold. If not stated differently, the threshold
is set to εconv = 0.005. Note, the list of intersection indices i is sorted in ascending order.
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3. If the condition is met, convergence is assumed, starting from intersection i.

This procedure does not prove or necessarily imply that the RL-agent converges. It computes
the point in time from whereof the state of convergence starts, given the agent converges
at all. In the present work, the convergence assertion is based on a visual inspection of the
course of the reward curve, as shown in Figure 4.13. So, double-checking every experiment
visually is a prerequisite and prevents the analysis of artificial results.

Confidence interval investigation To avoid that the mean performance of an RL-agent
resembles just a sequence of random events of a single experiment, several simulation runs
with different seed-values are performed. Seeds are implemented in the simulation to control
all stochastic processes, such as machine breakdowns or processing times, and, at the same
time, ensure reproducibility of the results. Two simulation runs with the same seed value have
the same sequence of stochastic events and, thus, give the same results. There is, however,
a minor limitation to that statement. As the behaviour of the RL-agent cannot be seeded due
to the nature of the ANN implementation, the results still vary in a small range.

Given the fact that seed values control the simulation experiments, the next question is, how
to determine the number of repetitions that are required to get meaningful results. Looking
at average performance indicator values (see Table 4.5), the confidence interval concept
following Robinson (2014) is applied. The confidence interval CI indicates how accurate
the average real value can be estimated. The interval is calculated according to the formula:

CI = μ ± tn−1,β/2 · σ√
n

4.30

Here, μ is the average value, σ the standard deviation, n the number of simulation runs, t

the t-distribution with n − 1 degrees of freedom, and β the confidence level. A frequently
chosen confidence level is β = 0.95. The confidence interval specifies the range around the
calculated average within which the real average value lies with a probability of 95%. The real
average value can only be reached for an infinite number of simulation runs. Computational
results for the confidence interval are shown the next chapter in Section 5.1.4.

4.5.2 Performance evaluation criteria

After having analysed the reward signal as an indication of the agent’s learning performance,
the state of convergence, and the confidence interval, a concluding statement of the overall
system performance is essential to derive insights for decision-makers in practice. Various
system parameters are recorded in the simulation at constant time intervals so that a detailed
database is given that allows an in-depth investigation of the progression of the performance
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as well as a benchmarking in comparison to other algorithms or the current real-world
performance. The used performance evaluation criteria are listed in Table 4.5 and shortly
explained hereinafter (recalling also Figure 4.3).

Table 4.5: Overview of the selected performance evaluation criteria, their relation, and if they
are dependent variables or actively varied in experiments (independent).

Evaluation criteria Related to Type of variable

Utilization of machines U machine dependent
Waiting time WT order dependent
Utilization of the dispatching agent Udisp agent dependent & independent
Reward R agent dependent
Variability α-value system dependent
Inventory I system dependent & independent
Throughput TP system dependent

The machine utilization measures the averaged value-adding usage of machines. It is
calculated based on the cumulative time all machines have been processing orders in a
certain period. Machines that cannot finish processing due to blocking, i.e. a full outbound
buffer, are not recorded as utilized. The main objective is to maximize the overall utilization
and, hence, reduce any efficiency losses caused by blocking or starvation. The standard
deviation of the utilization σU may also be considered in the evaluation to see if machines are
utilized differently.

The waiting time is the main criteria to evaluate the cycle time as order-level performance, i.e.
the customer service level in the absence of order due dates. It covers all waiting phases that
an individual order undergoes, e.g. in inbound or outbound buffers of machines. Minimizing
the average value is the primary optimization objective. Again, the standard deviation σwt is
considered as an indicator for the consistency of the dispatching performance and to evaluate
the chance of orders that are “missed” by the dispatching agent and reside in the system for
a long time.

The calculation of the dispatching agent’s utilization differs slightly from the machine
utilization calculation. Handling and transporting are value-adding activities and the time
required to move to a pick-up location is non-value-adding but necessary and, therefore,
included in the measure. The variance of the utilization indicates if the agent has phases with
varying workload. As there is just a single agent, no further insights can be obtained from the
variation.
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As already stated, the reward is an artificial evaluation criterion that is calculated as defined
in Section 4.4.4.3 and helps to analyse the agent’s learning performance. However, in
the following chapter it is regarded as a subordinate measure when looking at operational
performance analysis.

The variability α-value has its origin in the literature on operating curves by Boebel & Ruelle
(1996) and Aurand & Miller (1997), which in turn are based on Kingman’s Equation and Little’s
Law (see Section 2.1.2). The calculation is comprehensively explained in Hilsenbeck (2005)
according to the formula:

α-value =
(dynamic flow factor − 1) · (1 − U)

U
4.31

The dynamic flow factor is a rolling indicator of the flow factor, which is the fraction of order
cycle time and raw processing time. Without going into further details on the calculation, it
is so far sufficient to understand that it is proportional to the flow factor and the inverse of
the machine utilization. Hence, by combining both indicators, the α-value is an information-
rich measure of the system’s overall performance, where a small value indicates a better
performance. For a small value, the utilization is high and the flow factor small, i.e. both are
close to the value 1.

The inventory level is closely linked to the order waiting time, due to Little’s law, and broadly
seen as bounded capital. According to Nyhuis & Wiendahl (2012), it is of major concern in
operations management, and many PPC-approaches look at the optimal inventory level. In
the following, it measures the system’s overall performance, too. The same applies to the
throughput measure, counting the number of finished jobs within a period.

As highlighted in Table 4.5, the utilization of the dispatching agent and the maximum allowed
inventory level are varied as independent variables in the following chapter in order to obtain
different validation scenarios with heterogeneous system characteristics.

Pareto-optimal solutions Finding an optimal balance for multiple performance measures
is non-trivial. To this, the Pareto-concept introduced in Section 2.1.2 is used to evaluate the
performance of the adaptive order dispatching agent, when both optimization objectives, i.e.
utilization and waiting time, are considered. As a result, a two-dimensional Pareto-optimal
frontier can be approximated that allows an investigation of the agent’s multi-objective perfor-
mance and identification of Pareto-optimal RL-agent configurations.
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4.5.3 Benchmark algorithms

This sub-section describes the benchmark algorithms that are considered and represent
state-of-the-art heuristic approaches that are established in practice as well as in academia
(see Section 2.2.2). All heuristics need to ensure that no deadlocks arise throughout the
production processes and, at the same time, follow the optimization objectives.

In concrete terms, the heuristics VALID, FIFO, NJF, and EMPTY are developed as benchmarks
for the adaptive order dispatching. The heuristics follow the same control flow chart as depicted
in Figure 4.6 and Figure 4.7. In particular, just the agent module in Figure 4.7 is replaced with
the heuristic decision-making procedure and the reward module is not required.

The VALID heuristic is a simple refinement of a heuristic that selects dispatching actions
entirely at random. Therefore, the VALID heuristic considers just the set of valid actions
Avalid,t in every iteration. Although this seems trivial, it is an important benchmark to analyse
if the learning algorithm is able to optimize its dispatching policy and thereby outperforms the
VALID heuristic, as the RL-policy is initialized with random values.

Next, FIFO heuristic selects the order that is ready for dispatching with the longest waiting
time within the system. It refers to the time of order release and from then on the total waiting
time is added up. Hence, it also mirrors the sequence of order arrival. After selecting the
order, the destination needs to be determined. In doing so, that machine out of the set of all
machines in the same machine group is selected, which has the lowest number of orders
in its inbound buffer. This rule levels the workload and reduces the average waiting time
of orders in machine inbound buffers. If the order selected in the first step is finished with
processing and needs to be delivered to a sink, it is dispatched to the closest sink. In fact, the
FIFO heuristic is a combined FIFO and FLNQ rule.

When focusing on the performance of the dispatching agent, the NJF heuristic is a predomi-
nant rule in practice (Mönch & Fowler et al. 2013). The evaluation of the agent’s utilization is
equivalent to the total transport distance, as the transport capacity is limited to one. The order
selection for the NJF rule is conditioned to the distance from the agent’s current location to
the respective order origin. In case of more than one available order at the same location, the
secondary selection rule refers to the longest order waiting time. The dispatching destination
is, analogously to FIFO, determined via the machine with the lowest inbound buffer fill level
within the same machine group or the nearest sink.

EMPTY focuses primarily on machine utilization. The list of available orders is sorted accord-
ing to their next processing time. Orders that are finished and need to be taken to a sink are
assigned with an arbitrarily large number. The order with the shortest time is selected, as
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for the SPT rule. SPT is known as optimal sequencing heuristic in a one-machine setup. It
optimizes the waiting time, by keeping the queue size small. The destination is determined
according to the inventory level of the destination inbound buffer, too. So, EMPTY supplies
machines that are most likely to run empty first and, in addition to that, raises the inventory in
the system as orders to sinks are less likely dispatched.

Eventually, according to Burke & Gendreau et al. (2013), finding high-performing heuristics
is difficult for any real-world problem. In the present case, the next order, its destination, the
route of the dispatching agent, the machine availability, the inventory level at machines, the
order waiting time, and a continuous production process need to be considered at the same
time and finely tuned to optimize the operational performance. The computational results in
Chapter 5 show how good the heuristics and the RL-agent are able to handle all these.

4.6 Implementation of adaptive order dispatching system

Once the modelling choices are made, the production and decision framework are formalized
and the RL-based dispatching algorithm is described, the entire conceptual model and
framework can be implemented. This is outlined in the following by pointing out some essential
implementation considerations. The implementation is realized in the Python programming
language using mainly two libraries: the discrete-event simulation framework SimPy1 and the
modular TensorFlow-based library for RL-applications tensorforce2.
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Figure 4.14: Implementation framework.

1SimPy – A free discrete-event simulation package based on Python (v3.0). https://pypi.org/project/
simpy/ (accessed on 17.06.2020).

2Tensorforce – A TensorFlow library for applied reinforcement learning (v0.4). https://pypi.org/project/
Tensorforce/ (accessed on 17.06.2020).
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Figure 4.14 resumes the methodological approach introduced in the front matter of this chap-
ter (see Figure 4.1) and replaces the phases of the approach by the key inputs and outputs
that are, at the same time, the interfaces towards the user. First, the sim_config.ini-file
contains all time-invariant and time-variant information that are required to describe and
model the production system, e.g. machine parameters, job shop layout, distances, stochastic
processes, and simulation duration. So, based on this configuration file, the simulation is
created and all simulation objects are initialized. Each resource type is implemented as
a class with separately defined properties and procedures. The process logic of each re-
source type is based on its tasks and implemented in SimPy by processes that consist of
activities and events. Events control the interaction of multiple processes and are executed
successively. Recalling the process flow in Figure 4.6, the two most important events are
production.changed() and resource.reactivate(). The two events are part of a main
controller unit monitoring all processes and changes happening. Each resource first waits for
the main controller for reactivation, before it can select an action and execute it. Reactivation is
only triggered if there is a change in the production system state, expressed by triggering the
event production.changed(). This process flow results in a chain of actions that represents
the real-world production process and, in addition, considers the key concepts of an MDP, as
all processes are controlled by the main controller.

Next, the RL-agent is created according to the modelling specified in the agent_config.ini-
file, e.g. state features, reward function, hyper-parameters, and action-mapping. The TRPO-
algorithm itself is provided by tensorforce as introduced by Schulman & Levine et al. (2015).
Lastly, the evaluation phase is based on log-files that are recorded while the simulation is
running. It is set up according to the log_config.ini-setting.

4.7 Summary of approach and framework

This chapter described a reinforcement learning approach for an adaptive order dispatching
in a complex job shop. The dispatching decision addresses the question of which and where
should the next order be dispatched to. Reinforcement learning represents an adaptive
decision-making algorithm that determines the next action based on the current state and the
dispatching policy is continuously adjusted and optimized according to the reward signal. The
developed RL-agent aims at machine utilization (resource-related KPI) and order cycle time
(order-related KPI). For an extensive evaluation, a simulation-based training environment is
presented. Finally, the approach of modelling RL-agents is described (see also Figure A3.1
in Appendix A3), which is, in certain parts, generic enough to be applicable for adjacent
production control tasks, such as order release, sequencing, or capacity control. Hence, the
requirements stated in Section 3.1 are met, and the next chapter continues with the application
and evaluation.
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Summarizing the key insights gives the following list:

1. The adaptive control architecture presents a generic decision-making framework that
can be either performed by an RL-agent or a heuristic algorithm.

2. TRPO shows, as representative of policy-based RL-algorithms, theoretical advantages
in terms of universality and robustness.

3. The action representation of an RL-agent is specified by the application domain. A
proper modelling, i.e. a condensed action space, reduces the computational effort.

4. Insights from supervised learning are applicable for the design of the state representa-
tion, such as one-hot encoding. However, domain-knowledge is required to define the
decision-relevant input data, since including all data is an in-efficient approach.

5. The reward design requires the most domain-knowledge as it directs the learning and
adjusting the reward function may change the MDP’s underlying optimal policy.

6. A profound evaluation and benchmarking of RL-agents is required as the knowledge on
the applicability and plausibility of reinforcement learning in PPC is still limited.
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5 Evaluation and computational results

For the evaluation of the RL-based adaptive order dispatching in a complex job shop, first, a
use case description is required, emphasizing, in particular, the characteristics of the problem
setup. The use case needs to sufficiently fulfil the previously stated requirements in order to
rate as validation setup. The subsequent sections refer to the research questions stated in
the introduction. All obtained findings are summarized at the end of this chapter.

An overview of industry-wide trends in the semiconductor industry was already offered in
Chapter 1. The considered complex job shop system represents a distinctive work centre
area taken from a wafer frontend manufacturer. Consistent with the industry’s characteristics,
the company faces short innovation cycles and capital-intensive machinery equipment. The
sales volumes are high, but the margins per unit sold low. This combination makes high
resource utilization essential to ensure economic success. Moreover, following the theory
of operating curves and the lean philosophy, short order cycle times are a similarly crucial
operational performance measures.

To face these challenges and the necessity to continue to be highly adaptable to new product
generations and rapid innovation cycles, the company concentrates on automation and
digitalization of all production processes. Individual work centres are already operated fully
automated today. Since there is a broad diversity of product variants, a high degree of flexibility
for manufacturing and material flow systems is required, too. In order to ensure the efficiency
of fully automated work centres in the presence of a highly dynamic environment, this chapter
evaluates the autonomous, learning-based design of an adaptive order dispatching system
that controls, in particular, the order material flow. A robust control system is essential to
exploit the full capabilities of all resources and avoid unused capacities due to inadequate
control decisions.

Section 1.3 stated the research goal and four research questions. The primary goal is to
examine an adaptive order dispatching system which is based on reinforcement learning and
applicable in complex job shops. The approach summarized in Figure 5.1 states the relevant
sub-steps and addresses the research questions.

First, the use case and experiment design are characterized in Section 5.1. These include
the validation of the simulation model, together with the evaluation of the transient phase.
Moreover, the performance of the benchmark heuristics is presented to get an understanding
of the conventional dispatching performance. Next, Section 5.2 focuses on RL-agent modelling
alternatives and the first research question on RL-applicability. It shows the results of the
design choices introduced in Section 4.4. After that, the RL-agents are compared in the
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5.1 Use case characterization

KPI1
FIFO

t

• Description of use case and evaluation scenarios

• Analysis of system dimensions

• Evaluation of heuristic benchmark performance

• Validation of discrete-event simulation

5.2 RL-agent modelling

r
RL

t

• Distinction of valid and invalid actions

• Identification of decision-relevant state data

• Comparison of action-mappings

• Sparse, modelled, and tree-based reward

• Research question: (1) RL-applicability

5.3 Multi-objective analysis

KPI1

KPI2

• Performance evaluation based on multiple
objectives

• Identification of areas in objective space

• Determination of Pareto-optimal solutions

• Research question: (2) Multi-objective
optimization

5.4 Transferability of RL-policies
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• Analysis of transferability of the dispatching policy

• Evaluation of RL-agents for changing scenarios
and comparison with heuristic performance

• Research question: (3) Transferability

5.5 Plausibility of RL-policy

• Learning the behaviour of static heuristics

• Comparison of single decision actions with
benchmarks

• Research question: (4) User acceptance
?

Figure 5.1: Overview of the approach to derive computational results and address the re-
search questions.
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two-dimensional objective space, and Pareto-optimal solutions are identified, referring to the
second research question (see Section 5.3). The third question focuses on the transferability
of the learning-based control system, which is covered in Section 5.4. Finally, the learned
RL-policy itself is evaluated in order to understand the decision-making and, thereby, increase
the plausibility of the black-box approach, which is the fourth research question.

5.1 Complex job shop application use case

In the considered job shop work centre, the implantation process is performed on the semi-
conductor wafers. Currently, the material flow of wafer lots, i.e. production orders, is handled
manually by operators. Automation is only implemented for the processing operations as
well as handling operations of loading and unloading a lot from the machine buffer into the
machine. The aim is the full automation of the area through the use of centrally controlled
and freely movable robots, handling the lot dispatching. This work deals with the control
problem of optimal dispatching decision-making. In the following, the corresponding boundary
conditions and production system characteristics are described. The use case was part of
the research project “Intro 4.0 – Empowerment and Implementation Strategies for Industry
4.0” (Lanza & Nyhuis et al. 2018) and funded by the German Federal Ministry of Education
and Research (BMBF).

5.1.1 Production system parameters

Within the job shop, a continuous incoming flow of lots can be expected. Hence, it is assumed
that there is always a lot available to be released into the system. Besides that, a high product
variety with changing machine requirements and fluctuating process times must be processed.
As already stated, a production order is considered as a lot and represented by a single
transport box. A box full of wafers equals to considerably more processing time, i.e. workload,
than a box with just a single wafer.

The layout of the work centre is drawn in Figure 5.2 on the left. The characteristic values
and parameters are summarized in Table 5.1. The layout and values represent real-world
parameters that are taken from the industrial use case. According to Section 4.6, they define
the sim_config.ini input file.

Machines M1 to M8 process, on average, around 490 orders per day. The machines are
grouped into sub-areas according to the work centre layout (see Figure 5.2 on the left).
The sub-areas represent separate rooms, i.e. geographically spread locations. One can say
that the layout of a semiconductor factory is never optimally arranged and the result of a
continuous evolving factory. Moreover, each sub-area has a lift where orders are released
into the system and also leave the system again, i.e. representing the source SO and sink
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Figure 5.2: Schematic layout and feasible order routes of the considered job shop system.

Table 5.1: Machine parameters (*in arbitrary time unit, TU).

Machine Machine

group

Sub-area Buffer

capacity

Demand

rate

Mean process

time*

MTBF* MTOL*

M1 I 1

sc
en

ar
io

-s
pe

ci
fic

63.3 19.7 1158 174
M2 II 1 43.8 28.1 1368 156
M3 II 2 31.8 39.5 1506 156
M4 II 2 36.4 30.8 502 108
M5 II 2 50.1 25.3 1578 138
M6 III 3 77.7 16.3 972 102
M7 III 3 80.5 15.6 750 78
M8 III 3 105.0 11.0 888 162

SI resources. Hence, the source and sink locations fall at the same place. The sub-area
determines also, which product order variants arrive at the respective source. For example,
the first source releases orders for M1 and M2, the second for M3 to M5, and the third source
for M6 to M8 (see also Table 5.1).

Three machine groups are defined according to Table 5.1, indicating which machines are
technically able to process the same orders. One can see that the machine group and sub-
area definitions do not match for the first and second machine group and sub-area. That
is why, for instance, jobs from the first source can be also dispatched to machines in the
second sub-area. In order to clarify the difference, and because it is an important feature of
the use case, all feasible order routes between sources, machines, and sinks are depicted in
Figure 5.2 on the right, including the machine group and sub-area definitions. For example,
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source SO1 releases orders for machines M1 and M2, according to the sub-area definition.
However, an order for machine M2 may be also dispatched to an alternative machine in the
same machine group and, hence, machines M3 to M5 are also reachable.

Moreover, Figure 5.2 on the right reveals that completed orders are always dispatched to the
closest sink. Furthermore, one can see that the action subset AM→M is not required in this use
case, as all orders are just processed on a single machine within the work centre, and the next
process step is always outside the system scope in another work centre. Hence, the available
action subsets introduced in Table 4.2 can be reduced by one subset to: Aidle, Aempty, AS→M ,
and AM→S.

Each machine has a certain number of so-called load ports representing the inbound and
outbound buffer capacities (see Figure A2.1 of Appendix A4). The buffer capacities are varied
in the computational experiments and, therefore, defined later in the course of this section
when the experiment scenarios are described (see Section 5.1.2). The lots to be processed
are loaded to the machine from the outside, and within the machine, they are unloaded and
processed automatically. After processing, the wafers are stored again in the same transport
box in an outbound load port. So, after processing the entire lot, the box can be accessed
from the outside of the machine.

Due to the variable numbers of wafers per lot, the process times per order vary between
0.5 and 150 time units (TU). They are modelled as exponential distribution with the mean
values stated in Table 5.1. For reasons of simplicity, process times are shown in the machine
parameter list, although they are assigned to the order (see Figure 4.2). The MTBF and
the MTOL are known for every machine, based on analyses of historical data on scheduled
maintenance activities as well as unexpected downtimes due to breakdowns (see Table 5.1).
Again, the exponential distribution is assumed.

The layout of the work centre is given by the distances that are outlined in Table 5.2. As
stated before, the entire system is operated by a single dispatching operator and the transport
capacity is one. An average speed v is assumed. The speed is specified according to the
experiment scenario in Section 5.1.2. For loading and unloading lifts, i.e. sources and sinks,
the operator needs in total 0.5 TU, which also equals the handling time at machines. The
system is operated in a three-shift model and breaks are neglected as a secondary operator
jumps in when the primary operator takes its break.

Lastly, orders are released at the sources. Sources continuously provide new orders, i.e.
whenever an order is taken from a source a new order is instantly available. The distribution of
the next order variant is taken from the demand rate in Table 5.1. The demand rate represents
the average orders per machine per day.
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Table 5.2: Transport distances (in arbitrary distance unit, DU).
SO1,
SI1

SO2,
SI2

SO3,
SI3

M1 M2 M3 M4 M5 M6 M7 M8

SO1, SI1 0 23.7 13.4 9.5 9.5 26.9 24.9 34.1 9.7 9.7 18.1
SO2, SI2 23.7 0 34.9 30.7 16.7 6.4 2.7 10.4 28.3 28.3 36.7
SO3, SI3 13.4 34.9 0 25.3 18.4 35.6 33.6 43.9 5.7 5.7 6.9

M1 9.5 30.7 25.3 0 15.1 33.9 31.9 41.0 21.9 21.9 30.3
M2 9.5 16.7 18.4 15.1 0 19.7 17.7 26.8 15.4 15.4 23.8
M3 26.9 6.4 35.6 33.9 19.7 0 6.9 15.9 34.4 34.4 42.8
M4 24.9 2.7 33.6 31.9 17.7 6.9 0 10.7 32.4 32.4 40.8
M5 34.1 10.4 43.9 41.0 26.8 15.9 10.7 0 41.3 41.3 48.6
M6 9.7 28.3 5.7 21.9 15.4 34.4 32.4 41.3 0 2.2 9.2
M7 9.7 28.3 5.7 21.9 15.4 34.4 32.4 41.3 2.2 0 8.1
M8 18.1 36.7 6.9 30.3 23.8 42.8 40.8 48.6 9.2 8.1 0

5.1.2 Use case evaluation scenarios

The use case needs to depict all characteristics that are necessary to investigate the research
questions. So, in order to appropriately answer these questions, multiple scenarios are
required to examine the adaptivity and transferability of the RL-agent. Two scenarios are
derived from the general use case just described (see Table 5.3). The first scenario is the base
case, representing the real-world setup with comparatively small buffer capacities. Moreover,
the dispatching transport speed is slow. In the second scenario, the speed of the dispatching
operator is increased as well as load port capacities at machines are doubled.

Table 5.3: Parameters specifying the two use case scenarios.

Scenario Parameter M1 M2 M3 M4 M5 M6 M7 M8

Scenario 1 –
slow speed &
small buffers

Inbound buffer 2 2 1 2 2 2 2 1
Outbound buffer 1 2 1 2 2 2 2 1
Operator speed v 0.3

Scenario 2 –
fast speed &
large buffers

Inbound buffer 3 4 2 4 4 4 4 2
Outbound buffer 3 4 2 4 4 4 4 2
Operator speed v 1.0

However, note that, to some extent, the cases are artificial referring to a real semiconductor
manufacturer, as machine load port capacities cannot be changed that easily. Varying the
operator speed, on the other hand, is more realistic and, for instance, aims at analysing
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different velocities of a freely moveable robot. Conclusively, the two scenarios enable the
evaluation of the dispatching algorithms for different test cases and whether the RL-algorithm
can be transferred to other production system setups. Nevertheless, the number of two
scenarios is obviously not sufficient to make generic statements. This fact is discussed again
in Chapter 6.

As the experimental results in the following confirm, both scenarios differ in multiple ways. For
example, the bottleneck is, in the first scenario, the dispatching operator and, hence, route
optimization is more critical than in the second scenario. Limited buffer capacities increase
the chance of empty inbound buffers, i.e. starving and idling machines, and reducing the
transport speed makes sub-optimal operator moves even more critical. In the second scenario,
the machines limit the overall system performance and order dispatching needs to focus
on levelling of the overall machine utilization and minimization of order waiting times due to
possibly higher inventory levels as the buffer capacities are less restrictive. These theoretical
considerations are incorporated in the following investigations in order to avert misleading
interpretations of potentially artificial results.

5.1.3 Analysis of system dimensions

Before looking at the computational results derived from simulation experiments, the system’s
capacity dimensions are analysed for both scenarios to gain further system understanding.
The estimations focus on machine and transport resources, and the numbers are shown in
Table A5.1 and Table A5.2 of Appendix A5.

Apparently, machine capacities are sufficient for the daily demand rate with an overall average
uptime utilization of 98.3%, including breakdowns and other downtimes. Just the first machine
is slightly overloaded. However, it has to be considered that this rough estimation does not
take into account the possibility to change the order assignment to alternative machines in
the same machine group and it is just looking at mean values.

It is worth noticing that the machine utilization including downtimes varies, i.e. the average
availability of machines differs. Hence, some resources are more reliable than others.

Considering the dispatching operator’s capacity dimension, three cases are conceived to take
the two use case scenarios into account as the capacity is different in both scenarios due to
the varying transport speed. First, for the fast dispatching operator, the total transport and
handling workload can be covered by a single transport resource with the utilization of 79.6%
in an average estimation. The average case means that transport distances to order pick-up
and destination locations are evenly distributed, i.e. assuming the probability of the operator’s
location relative to the pick-up location is evenly distributed. Second, if the speed is reduced,
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the utilization would rise to 179.5% in the average case, which clearly indicates a limitation of
the system output, i.e. bottleneck. Hence, a third estimation is performed. The slow speed is
sufficient with a utilization of 97.9%, when transport distance are, in any case, the shortest
possible distances, i.e. the dispatching operator does not need to move to a pick-up location,
and it can always continue with another job. This assumes that the transport route is perfectly
optimized.

All in all, these estimations, in particular for the operator’s capacity, are bound to assumptions
that substantially influence the results. However, one can state that the capacities are sufficient
in both scenarios, though more constrained in the first scenario.

5.1.4 Benchmark heuristics and validation of simulation model

The application of the benchmark heuristics to the two use case scenarios gives the baseline
of the performance. At the same time, the discrete-event simulation can be validated by
looking at the heuristics and considering the just described theoretical observations. The
heuristics implement the procedures outlined in Section 4.5.3. First, the VALID heuristic is the
absolute performance baseline as any optimizing algorithm should outperform the random
selection. Especially for learning algorithms, it is still a common and essential benchmark,
for instance, to evaluate how consistent the RL-agent differentiates valid and invalid actions.
FIFO minimizes the longest waiting time of any order in the system. NJF focuses on the
utilization of the dispatching resource, minimizes the transport distance, and empty-handed
walks are reduced. Finally, EMPTY supplies machines evenly with orders and the chance of
machines idling is reduced, i.e. the utilization is maximized.

Table 5.4 reports the performance indicators of the heuristics for both scenarios. The average
utilization U , waiting time WT , inventory I, dispatching agent’s utilization Udisp, and α-value

are shown. The measures are computed based on the data after the state of convergence
has been reached and, additionally, averaged over three simulation repetitions. The reasoning
behind the number of repetitions is given in the next paragraphs.

In general, it can be seen that the average inventory in Scenario 1 is lower due to the limited
buffer capacities. Similarly, the order waiting time values are smaller, which follows from Little’s
Law. Moreover, the machine utilization is, on average, lower and the operator utilization higher,
what indicates that the limited buffer capacities and the slower dispatching speed results in
a bottleneck at the dispatching resource and a higher chance of starvation and blocking of
machines. Hence, it can be confirmed that Scenario 1 is said to be more constrained than
Scenario 2 (see Section 5.1.3). Finally, the heuristics’ performance varies on a larger scale in
the more constrained Scenario 1, as there is more potential for optimization.
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Table 5.4: Performance of benchmark heuristics in both scenarios.

Scenario 1 Scenario 2
Heuristic

U [%] WT [TU] I Udisp[%] α-value U [%] WT [TU] I Udisp[%] α-value

VALID 56.3 86.1 6.1 94.3 3.74 83.3 114.1 18.8 63.2 0.70
FIFO 68.7 81.4 6.9 88.3 1.95 84.4 114.1 18.6 55.4 0.57
NJF 82.3 89.8 10.9 75.3 0.64 84.9 115.3 19.5 50.6 0.51

EMPTY 68.8 92.6 11.4 83.8 2.31 86.3 120.9 20.4 55.6 0.55

Analysing the heuristics in more detail confirms that the dispatching behaviour matches
the intentions of the heuristic rules. It is noticeable that VALID scores best in terms of the
inventory level in the first scenario, although it selects an action without any context and
process knowledge. However, as it randomly selects an order it reduces the waiting time, but
also increases the operator utilization.

FIFO focuses on the waiting time and performs best in regard to this measure in both
scenarios. The longest waiting orders are mostly orders in outbound buffers of machines. As
a result, the inventory level is reduced, too.

NJF performs best in terms of the α-value, indicating that the rule represents a near-optimal
dispatching policy in both scenarios, since the α-value aggregates both performance indi-
cators, utilization and waiting time. In particular in Scenario 1, NJF achieves good results,
because it minimizes empty walks at the bottleneck resource, what in turn also results in
higher machine utilization.

EMPTY performs similarly well as FIFO in terms of the α-value, but focusing instead more
on machine utilization. In particular in the second scenario with high inventory levels, the
heuristic reaches the highest utilization. Moreover, the rule pushes inventory into the system
and the highest inventory levels are recorded. However, its drawback is that it only performs
well if the dispatching operator is not the bottleneck and running at high utilization.

The results for both scenarios show that heuristics suffer from the trade-off and dilemma
between both performance objectives. A higher machine utilization comes with longer waiting
times, e.g. for NJF and EMPTY, whereas a lower waiting time reduces the machine utilization,
e.g. for FIFO. This strengthens the motivation of the research question, how an RL-agent
performs in terms of multiple objectives, however, knowing that the underlying trade-off can
never be resolved entirely.
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Transient phase Using discrete-event simulation for evaluation requires the specification
of the transient phase in which the simulation has not yet reached a stable performance
(Gutenschwager & Rabe et al. 2017; Law 2014). The transient phase is, in most production
simulations, caused by the process of filling up the system with orders and ends when all
buffers reach their average fill level. As there is no standard approach to determine the
transient phase, a simple visual inspection is chosen, according to the recommendations of
Gutenschwager & Rabe et al. (2017). The performance indicators are plotted directly over
the simulation time, and the end of the transient phase is visually estimated.
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Figure 5.3: Exemplary utilization and waiting time data for the first 1000 iterations of the
NJF heuristic and highlighting the estimated end of the transient phase between
iteration 500 to 700.

Looking at Figure 5.3, the course of the utilization and waiting time for the NJF heuristic is
depicted. After just a few 500 to 700 iterations1 a performance level is reached that does not
change more than the oscillation due to the stochastic production processes.

Comparing this with the usual RL-agent training duration of over one million iterations, the
transient phase is negligible and does not influence the learning process. Therefore, the tran-
sient phase is stated here once, but not explicitly considered in the aftermath. Moreover, it is
assumed that disabling the agent’s learning during the transient phase, such as accomplished
by Waschneck (2018), is not required. This is also due to the reasoning that the agent should
be able to act in any situation in the best way, as long as the agent is able to generalize.
Hence, a system with initially just a few orders is similarly important to the agent as a fully
loaded system.

1From hereupon the time axis shows the iteration steps, i.e. the number of interactions between the simulation
environment and the dispatching agent, which equals the number of dispatching actions performed and
correlates with the simulation time.
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Number of repetitions After determining the transient phase, the simulation duration and
the appropriate number of simulation repetition runs are determined. It is worth noticing,
looking at Figure 5.3, that the raw data that goes into the performance indicators in Table 5.4
fluctuate considerably. The standard deviations and the coefficients of variation CV for each
performance indicator are shown in Table 5.5 for the first scenario. Similar figures apply for the
second scenario just on another scale. The performance variation is caused by the stochastic
production processes and the dispatching heuristic itself. The influence of the heuristic can
be seen, as the coefficient of variation, i.e. the ratio of standard deviation and mean value,
is not consistent for all heuristics. Recall that the shown values are already based on three
simulation repetitions. A comparison with the RL-agent’s performance in terms of variation is
performed at a later stage in Section 5.2.2.

Table 5.5: Comparison of performance indicators’ mean, standard deviation, and coefficient
of variation (CV ) for the heuristics in the first scenario.

Heuristic U [%] σU CVU WT [TU] σW T CVW T I σI CVI

VALID 56.3 20.9 0.37 86.1 97.0 1.13 6.1 2.5 0.41
FIFO 68.7 20.9 0.30 81.4 99.6 1.22 6.9 2.7 0.40
NJF 82.3 24.6 0.30 89.8 118.3 1.32 10.9 2.5 0.21

EMPTY 68.8 20.1 0.29 92.6 110.1 1.19 11.4 3.8 0.32

Table 5.6: Confidence interval (CI) for the waiting time taken from NJF heuristic data in the
first scenario and based on the confidence level of β = 0.95.

Repetition WT per

repetition

σW T per

repetition

±CI-value per

repetition

1 89.2331 116.3701 0.00057
2 90.3584 119.5932 0.00059
3 89.8561 118.8976 0.00058

WT for all repetitions 89.7958
σW T for all repetitions 0.5627

±CI-value for all repetitions 0.6367

The simulation duration and number of repetitions are determined with the help of Table 5.6
and the confidence interval concept introduced in Section 4.5.1. The table shows the figures
with β = 0.95 for the NJF heuristic and the waiting time criterion, as the waiting time shows
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the highest coefficient of variation 1.32 (see Table 5.5) and is, therefore, an appropriate
worst-case estimation for all other heuristics and performance measures. One can see that,
according to the CI-value per repetition in the rightmost column of Table 5.6, the confidence
is high enough to ensure that the simulation duration, here in total two million iterations, is
sufficient. On the other hand, the CI-value in the lower section of Table 5.6 indicates that
three repetitions, which is the default for any experiment in this chapter, gives accurate overall
results, too. However, as the CI-value is roughly 0.5 an interpretation of performance values
in decimal digits is not recommended.

Validation of discrete-event simulation The conclusion of the first computational results
demonstrated so far is that the discrete-event simulation is regarded as accurate enough to
represent the real-world manufacturing area. First, an in-depth verification of the simulation
model was performed by multiple parties throughout this research and leaves a negligible
chance of minor errors in the implementation. Second, several interviews with industrial
experts confirm that the results of the benchmark dispatching heuristics are appropriate
and match real-world values. Third, the heuristics perform as one would expect from their
theoretical description. Lastly, as Table 5.4 reveals, the fundamental trade-offs between the
logistical performance indicators can be confirmed, too.

Based on these findings, the following sections focus on the RL-algorithm evaluation. It is from
now on assumed that the loss of accuracy between the simulated and real-world environment
does not negatively influence the interpretation of the results. Of course, this fact is still
considered in the discussion in Chapter 6.

5.2 Performance evaluation of Reinforcement Learning algorithm

The focus from hereupon is on the RL-algorithm. First, three further problem-specific parame-
ters are introduced in addition to the hyper-parameters already defined in Table 4.4. These
parameters are defined according to the experiments shown in Figure A6.1 in Appendix A6.
The maximum number of recursions, when an invalid action is chosen, is set to 5 repetitions
and, if the recursion limit is reached, the idle-action is performed with a time duration of 2
TU (see Section 4.4.2 for the details on the invalid action handling procedure). Both param-
eters support the RL-agent in the learning process, but have almost no effect on its final
performance, as the number of invalid actions is negligibly small for a converged RL-agent.
Numbers on the rate of invalid actions are reported later in Table 5.7. The episode length,
i.e. the number of actions within an episode, is set by default to 100. This allows the agent to
operate for enough iterations to evaluate the performance accurately.
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Moreover, for the first presented RL-agents, the action subsets introduced in Table 4.2 are
reduced to the subsets AS→M and AM→S , and the direct action-mapping is used. Any moves
that are not related to an order, i.e. Aempty or idling Aidle, are not considered. Later, RL-agents
are investigated that use these actions, too. This assumption is, amongst others, due to
reasons of comparability with the benchmark heuristics that also do not consider these action
subsets. The explicit numbering of in total 20 feasible actions is shown in Table A7.1 in
Appendix A7. These are the following (see also Figure 5.2):

AS→M := {aSO1→M1, ..., aSO1→M5, aSO2→M2, ..., aSO2→M5, aSO3→M6, ..., aSO3→M8} 5.1

(12 actions)

AM→S := {aM1→SI1, aM2→SI1, aM3→SI2, aM4→SI2, aM5→SI2, aM6→SI3, aM7→SI3, aM8→SI3} 5.2

(8 actions)

For that given scope, the RL-agent needs to recognize valid and invalid actions in any
state. This is investigated first in Section 5.2.1. Furthermore, the agent needs to optimize its
performance based on the learning data it receives through the interaction of state information,
action selection, and reward feedback. Therefore, the results in Section 5.2.2 reveal insights
into the modelling of RL-agents. Section 5.3 continues with the investigation of the multi-
objective performance.

The following sub-sections only show the results for Scenario 1 in the main matter, and the
results for Scenario 2 are collected in the Appendix. If not stated differently, three repetitions
are computed and the performance measures are reported as average values after the state
of convergence. Note that the average is calculated for the time-independent KPIs, e.g. waiting
time, as a simple mean and for the time-dependent KPIs, e.g. utilization and inventory, as
weighted mean considering the actual time per measurement interval, i.e. iteration or episode,
as weight factor.

Correlation of all performance indicators Figure A8.1 in Appendix A8 summarizes the
performance measures of all experiments presented in this chapter, i.e. heuristics as well
as RL-agents. It shows two-dimensional scatter plots for all possible combinations of the
evaluation criteria machine utilization U , waiting time WT , dispatching operator’s utilization
Udisp, throughput TP , α-value, and inventory I (according to Table 4.5). These correlations
are kept in mind when the results are explained. For example, the waiting time and inventory
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are correlated confirming Little’s Law. Additionally, the machine utilization is a nearly equivalent
measure for the throughput.

5.2.1 Validity of action selection

This sub-section starts with the results for the modelled reward, and after that, the sparse
rewards are presented. The first investigation primarily focuses on the distinction of valid and
invalid actions and the effect of rewarding different action subsets separately.

Modelled reward Table 5.7 summarizes the results for state information SV A and reward
function rconst in the first scenario (see Table A9.1 for Scenario 2). The factors ω1 and ω2

determine the constant reward depending on the selected action subset. The constant reward
is used to evaluate whether the RL-agent is able to distinguish valid and invalid actions, and
the action subset weights should measure if there is a difference between the two action
subsets that needs to be considered in the aftermath.

Table 5.7: Mean performance results for RL-agents receiving state information SV A and
reward signal rconst with varying factors ω.

Reward and weight factor Scenario 1
Agent

(ω1=̂AS→M , ω2=̂AM→S) U [%] WT [TU] I Share of
Ainvalid,t[%]

Iteration of
convergence

1 rconst, ω1 = 1, ω2 = 0 66.5 139.2 17.4 0.18 24,000
2 rconst, ω1 = 0.5, ω2 = 0.5 64.3 97.5 9.7 0.16 20,333

3 rconst, ω1 = 0, ω2 = 1 60.3 73.4 5.7 0.18 37,000

The results reveal that an RL-agent that is based solely on the simple state representation
SV A with binary state information and rewarded for valid actions is able to learn a meaningful
dispatching policy. The learned policy outperforms the VALID heuristic in at least some
performance measures (see Table 5.4). Hence, in case the state representation or reward
function are hard to define and not known upfront, this simple configuration is able to achieve
reasonable results.

The Ainvalid,t values shown in Table 5.7 represent the rate of selecting an invalid action per 100
actions. The rate is an average for the last one million actions when the state of convergence
is already reached. The number of invalid actions decreases from an initial average rate of
roughly two invalid actions per performed valid action to the values depicted in the table. In
conclusion, the RL-agent can successfully learn the validity of actions as a rate of 0.16%
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invalid actions is negligible. So, it is not explicitly considered in the following computational
results.

Moreover, changing the weights indicates that there is a substantial difference between the
action subsets. First, for Agent 1 the action subset AS→M is enforced by ω1 what increases
the waiting time and inventory as orders are pushed to the machines. Likewise, the machine
utilization is improved because the chance of empty inbound buffers is reduced. However,
the agent is not entirely neglecting actions from subset AM→S whose respective actions are
not rewarded. Analogous considerations can be made for Agent 3, which emphasizes AM→S

and, thereby, minimizes the order waiting time. In other words, changing the weights results
in a transition of the two concepts: push and pull production.

Sparse reward The same computational experiments are also performed for the sparse
reward design. Here the reward function rconst,ep is used with an episode definition analogous
to the previous setting. For instance, the episode ended after 100 valid AS→M actions. The
results are depicted in Table A9.2 in Appendix A9.

However, these agents do not perform reasonably well. They take much more time to converge
and achieve a stable performance. In contrast to Agents 1 to 3 that converge within below
100, 000 iterations in Scenario 1 (see Table 5.7), the sparse agent for the simple constant
reward function rconst,ep requires even above two million iterations (see Table A9.2 in Appendix
A9). The reason for that is the less frequent learning feedback the RL-agent receives in the
sparse case.

All in all, providing rewards only based on the episode end, e.g. end-of-production targets,
leads to a significantly longer learning period. Although theoretically well-suited, the sparse
reward comes with considerable disadvantages when applied in production control applica-
tions. Rewarding actions directly via a modelled reward guides the RL-agent more quickly
and insistently in the direction of the objectives. Therefore, the sparse reward function is not
further investigated and it is referred to (A_Theiß 2019) for more computational results that
confirm these findings.

5.2.2 State, action, and reward design alternatives

Next to learning valid actions, RL-agents need to capture the interplay between state infor-
mation, action selection, and reward feedback in order to maximize the accumulated reward.
Hereinafter, each modelling element, i.e. state, action, and reward, is investigated in depth.
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The alternative modelling approaches reveal decisive insights into the capabilities of a data-
driven, RL-based order dispatching. Note that the values shown for the standard deviation in
Table 5.8 are investigated afterwards in Section 5.2.3.

Table 5.8: Mean performance results for RL-agents with varying state information and reward
signals, aiming to optimize specific production performance indicators.

Scenario 1
Agent State Reward

U [%] σU WT [TU] σW T I σI α-value

2 SV A rconst 64.3 22.7 97.5 107.8 9.7 2.9 2.81
4 SV A, SAT rconst 60.6 20.8 109.6 109.0 10.8 3.1 3.81
5 SV A, SW T rconst 60.9 22.8 90.1 97.1 7.5 2.8 2.72

6 SV A rutil 76.5 22.8 102.0 120.8 12.1 2.5 1.39
7 SV A, SW T rutil 73.8 23.1 105.2 120.7 12.1 2.8 1.57
8 SV A, SAT rutil 76.5 23.8 98.6 116.4 11.8 2.8 1.27

9 SV A, SBEN , SBEX rutil 78.0 22.9 101.6 121.0 12.1 2.3 1.28

10 SV A rwt 54.7 25.5 80.2 109.4 7.2 2.9 2.73
11 SV A, SW T rwt 55.7 25.4 76.0 104.7 6.4 2.7 2.45

Table 5.8 compares the alternative modelling approaches, which are introduced in Sec-
tion 4.4.3 (see Table A9.3 in Appendix A9 for Scenario 2). The state vector size varies from
20 entries for SV A to up to 40 entries for SV A, SAT . The reward is the same for both action
subsets AS→M and AM→S, i.e. equal action subset weights.

The numbers disclose that the influence of the modelling on the performance is significant. In
the first place, the multi-objective performance is not considered in detail. Hence, an agent
modelling is called “good” or “better” with respect to a single referred performance measure
and not in terms of the Pareto-definition.

The intuitive presumption that more state information is better in any case, cannot be con-
firmed when comparing, for instance, Agents 2, 4, and 5. The latter two agents have the
same constant reward weights as Agent 2 but are extended with further information on the
required action times and order waiting times. However, their performance is not better for all
performance indicators. Just an improvement of the waiting time and inventory is achieved
for Agent 5, when including the waiting time information in the state vector. Therefore, more
information is not necessarily beneficial for the RL-agent, as it does not generally support the
agent to accumulate higher rewards.
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To further validate this presumption, additional RL-agents are investigated and shown in the
table. rutil rewards the average machine utilization and rwt minimizes the average waiting time.
For both scenarios, a positive improvement and optimization of the rewarded performance
indicator are conceivable. For instance, modifying Agent 2 to Agent 6 increases the average
machine utilization.

Comparing Agent 7 to Agent 6, it is perceived that providing additional state information on
order waiting times to an agent that is rewarded for machine utilization does not increase its
performance. This confirms the previous results. In contrast, enhancing the state vector with
reward-relevant information enables the agent to optimize the specific performance indicator.
For machine utilization rutil these observations are apparent for Agents 8 and 9. For the
waiting time rwt, Agent 11 depicts a reduced waiting time based on the additional information
on order waiting times.

However, the dilemma of contradicting objectives prevails and the optimization of one objective
simultaneously impairs another performance indicator. Looking at Agents 6 to 11 and, in
particular, at the α-value, these agents are as such not able to improve multiple performance
indicators significantly at the same time.

In conclusion, the combination of state information with an appropriate reward function that
utilizes all state entries shows good results, e.g. Agents 9 and 11. Still, it might occur that
these agents just optimize a single objective to the disadvantage of others. This investigation
is continued in Section 5.3. The number of iterations, i.e. dispatching actions, until the state of
convergence is reached increases for agents with an extended state vector. This is due to the
increased number of relationships between state, action, and reward that need to be captured
and updated accordingly in the policy. Additionally, an extended state vector adds neurons
and weights to the ANN that slightly raise the computation time of a network update.

Episode design The episode design regulates the policy update procedure and reward
processing. Table 5.9 summarizes the results for varying episode designs for two configura-
tions with state vector SV A, SAT , SBEN , SBEX and SV A, SAT , SW T as well as reward signal
rutil and rwt (see Table A9.4 in Appendix A9 for Scenario 2). These state-reward-pairs already
showed a good performance in the previous experiments.

Looking at all results and comparing it to Table 5.8, the influence of the episode design is less
significant and the performance does not vary a lot. Moreover, as discovered in the previous
results, all agents rewarded with rutil consistently come with higher machine utilization and
the ones rewarded with rwt reach a lower average waiting time.
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Analysing the results in more detail, the optimization approach of the TRPO-algorithm needs
to be taken into account. Policy gradient methods increase during the optimization (learning)
phase the likelihood of an action execution relative to its impact on the cumulative reward
received in that episode. If certain actions result in a high cumulative reward, the likelihood of
executing these actions is increased in the policy. In addition to that, an episode ends when
the limit is reached. Hence, there is a trade-off between the action subsets if just one subset
increases the episode counter, but both subsets are rewarded. When an episode ends, for
instance, after 100 AM→S actions, the RL-agent collects additional reward by performing
AS→M actions without getting closer to the episode end. The agent learns this relationship and
increases the likelihood of those actions. Thus, the higher machine utilization for the AM→S

episode limit and rutil for Agent 14 can be explained. Analogous considerations can be made
for Agent 17, where the episode type AS→M is used and the waiting time is minimized.

Table 5.9: Mean performance results for RL-agents with fixed state information and reward
functions rutil and rwt when varying the episode design.

Scenario 1
Agent State Reward Episode design

U [%] WT [TU] I α-value

12
SV A, SAT ,
SBEN , SBEX

rutil

100 Avalid,t 79.5 96.3 12.0 1.05
13 100 AS→M 80.0 90.0 10.8 0.88

14 100 AM→S 81.4 95.3 12.2 0.88

15 100 time steps 79.3 95.0 11.7 1.08

16
SV A, SAT ,
SW T

rwt

100 Avalid,t 52.8 80.9 6.9 2.88
17 100 AS→M 54.4 72.8 5.8 2.61
18 100 AM→S 52.6 83.8 7.6 3.02
19 100 time steps 57.4 76.6 6.8 2.48

The introduction of a time-based episode type for Agent 15 and 19 establishes a temporal
link between production processes and the agent’s behaviour. In this case, the agent must
optimize the number of any action during the episode. For the reward rwt, this is achieved by
implicitly increasing the utilization through as many dispatching actions as possible and, at
the same time, keeping the waiting time as low as possible.

Action-mapping Besides the episode design, the action-mapping is an important RL-
design feature. The two action-mapping alternatives direct mapping and resource mapping,
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introduced in Section 4.4.2, are investigated. All agents converge, hence, both mappings work
in principle (see Table 5.10 for Scenario 1 and Table A9.5 in Appendix A9 for Scenario 2).

Nonetheless, the direct mapping is easier in terms of computation time to capture and
optimize for the RL-agent, because, for instance, Agent 12 has just 20 actions (see Table A7.1
in Appendix A7) to select from, Agent 22 has an action space of 122 entries (eleven resources
to the power of two, plus one idle action), and 32 actions for Agent 20 (eleven empty actions
and one idle action in addition to the usual 20 actions). This is why the agents also need
significantly more time until they converge (direct mapping: 475, 917 iterations on average,
resource mapping: 5, 935, 167 iterations on average for Scenario 1).

Table 5.10: Mean performance results for RL-agents with fixed state information and reward
signal when varying the action-mapping as well as the executable action subsets.

Scenario 1
Agent State Reward Mapping Action subsets

U [%] WT [TU] I α-value

12
SV A, SAT ,
SBEN , SBEX

rutil

direct AS→M , AM→S 79.5 96.3 12.0 1.05

20 direct
AS→M , AM→S,
Aempty, Aidle

80.6 95.0 11.8 0.95

21 resource AS→M , AM→S 66.4 84.8 8.1 1.97

22 resource
AS→M , AM→S,
Aempty, Aidle

64.4 82.7 8.1 1.96

16
SV A, SAT ,
SW T

rwt

direct AS→M , AM→S 52.8 80.9 6.9 2.88

23 direct
AS→M , AM→S,
Aempty, Aidle

48.9 83.1 6.5 4.1

24 resource AS→M , AM→S 53.1 73.4 4.9 3.29

25 resource
AS→M , AM→S,
Aempty, Aidle

52.4 71.9 4.9 3.61

Looking at the results for reward function rutil, it is apparent that direct mapping leads to a
higher average machine utilization but also higher, however proportionally less, waiting times
and inventory levels. So, the overall performance in terms of the α-value for rutil improves for
the direct mapping, which cannot be seen as clearly for the reward function rwt. For the latter
case, Agents 24 and 25 are in the first scenario able to optimize the waiting time objective
unilaterally with the resource mapping. The second scenario is, in general, less affected by
the change of the action-mapping.

Agents 20 and 22 are able to chose empty-handed moves and idling as actions. It is noteworthy
that these agents perform better in terms of the α-value than their counterparts, i.e. Agents
12 and 21, except for Agent 20 in the second scenario, which is slightly worse. Hence, the



122 Evaluation and computational results

agent is able to use these additional actions in such a way that it is in favour of the objectives.
These insights are reconsidered in the discussion and outlook of Chapter 6. However, note
that the results for the rwt-rewarded Agents 23 and 25 are not as clear in that case.

In conclusion, providing more freedom in the action selection by using the resource mapping
or considering idling and empty moves comes with a substantially extended learning period
but increase the performance slightly.

Tree-based reward The last experiments in this sub-section evaluate the tree-based reward.
The reward configurations are set as follows (see Table 5.11 for Scenario 1 and Table A9.6 in
Appendix A9 for Scenario 2): the latest state representation SV A, SAT , SBEN , SBEX is kept
and a flexible look-ahead tree is used, which is limited to at most 1500 tree nodes. Depending
on the evaluation function, either avg(•) is used for the transport distance or max(•) for the
utilization. These configurations are based on the results of previous research undertaken by
(A_Behrendt 2019).

Table 5.11: Mean performance results for RL-agents with the tree-based reward calculation
and varying the tree evaluation function.

Scenario 1
Agent State Evaluation Tree size

U [%] WT [TU] I α-value

26
SV A, SAT ,
SBEN , SBEX

Distance 1500 80.1 91.0 10.9 0.91

27 Utilization 1500 73.0 86.7 9.6 1.23
12 Reference Agent 12 79.5 96.3 12.0 1.05

Table 5.11 reveals that the RL-agents reach a slightly different performance level. Agent
26 is characterized by a high utilization, but also high waiting times and inventory stocks.
Nonetheless, it is performing better than Agent 27 in terms of the α-value and is able to
outperform the reference Agent 12 in the first scenario. That confirms the presumption that
optimizing the distance over several future dispatching actions is reasonable and increases
the performance.

In summary, it cannot be stated as conclusively as expected that the tree-based reward
calculation achieves better results in any case. Nevertheless, integrating a look-ahead into the
reward calculation can have a positive effect on the performance. Moreover, the tree-based
reward is compatible with multiple evaluation functions that can consider different objectives.
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5.2.3 Performance variance analysis

The mean, upper quantile, and lower quantile of the utilization, waiting time, and inventory for
the benchmark heuristics and two RL-agents are shown in Figure 5.4, with the data taken from
Table 5.5 and Table 5.8. Note that the two reference RL-agents, Agents 9 and 11, are taken
as representative examples. They are primarily chosen based on their mean performance,
the first in terms of utilization and the second for the waiting time. Their performance variation
is representative for other RL-agents.

The utilization results show that the spread is, by and large, similar for the heuristics and
RL-agents. Nearly the same applies to the waiting time. However, the waiting time spread is
much larger. Remarkable is the waiting time variation of FIFO since the mean is very close
to the upper quantile. Thus, it is confirmed that FIFO enforces short order cycle times on
average and, in particular, concerning the upper limit. More interesting are the inventory
results. Apparently, the inventory levels of NJF and Agent 9 are varying significantly less than
the other agent and heuristics. In fact, Agent 9 shows the smallest coefficient of variation.
Hence, the agent indirectly learns to keep the inventory level constant and, thereby, keep the
machine utilization on a stable high level, without being explicitly rewarded for it.
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Figure 5.4: Variance analysis comparing the mean, upper quantile 0.75, and lower quantile
0.25 of the heuristic benchmarks and two reference RL-agents for Scenario 1.

In conclusion, the heuristic benchmarks and RL-agents show a comparable level of robustness
in terms of performance variance. So, the main reason for performance variations can be seen
in the stochastic production processes and less in an unstable dispatching performance.
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5.3 Analysis of multi-objective performance

Multi-objective optimization is a special challenge for RL-agents, as for any optimization
approach in general (Domschke & Drexl et al. 2015). Improving single performance indicators
can lead to poor performance concerning another or all other objectives. Therefore, this
section puts the aim at investigating the performance in terms of multiple objectives and
particularly the question, how RL-agents are able to handle these.

5.3.1 Multi-objective reward functions

One approach of multi-objective optimization is the following: combine the approaches of
action weights from Table 5.7 and rewarding a specific objective as in Table 5.8. Herein,
the agent is rewarded based on an objective when selecting a valid action and the reward
depends on the action subset chosen. In doing so, not only the reward value but also the
action subset and its specific effect on the system performance are integrated to guide the
RL-agent. Additionally, the aim is to actively influence the inventory level, being of central
importance for managing the performance of production systems in general (Wiendahl &
Reichardt et al. 2014).

Table 5.12: Mean performance results for RL-agents with fixed state information and the
reward functions rw,util and rw,wt while varying weight factors of the action subsets.

Weight factor Scenario 1
Agent State Reward

(ω1=̂AS→M , ω2=̂AM→S) U [%] WT [TU] I α-value

28 SV A, SAT ,
SBEN , SBEX ,
SL, SMF ,
SBP T , SRP T

rw,util

ω1 = 0.25, ω2 = 0.75 77.1 69.4 5.0 0.93

29 ω1 = 0.5, ω2 = 0.5 82.0 88.1 10.5 0.73

30 ω1 = 0.75, ω2 = 0.25 78.1 120.7 18.0 1.54

31 SV A, SAT ,
SBEN , SBEX ,
SL, SMF , SW T ,
SBP T , SRP T

rw,wt

ω1 = 0.25, ω2 = 0.75 51.5 71.8 4.1 3.40

32 ω1 = 0.5, ω2 = 0.5 53.7 80.0 6.8 2.93

33 ω1 = 0.75, ω2 = 0.25 58.3 157.7 19.2 5.12

The two weighted reward functions rw,util and rw,wt are designed for that purpose. An extended
state vector is used to have sufficient information available and, in addition to that, analyse the
RL-agents’ performance for even larger state spaces as investigated so far. SW T is omitted for
reward signal rw,util due to its unverifiable effect on the performance. Of course, the simulation
duration of one repetition run is considerably longer comparing to the previous agents as the
state space is extended, but the performance measures shown are still based on the state of
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convergence. The results are presented in Table 5.12 for Scenario 1 and in Appendix A9 in
Table A9.7 for Scenario 2.

The first conclusion is that for Agents 29 and 32, which have the same reward function as
rutil and rwt just scaled by the factor of 0.5, the performance is superior to their counterpart
Agents 12 and 16. Hence, the additional state information is used in a beneficial way in both
scenarios.

Moreover, the expected behaviour regarding the inventory level is observable for Agents 28
and 31. The agents perform actions to sinks more likely when weight ω2 is increased. This, in
turn, lowers the average inventory level and, subsequently, the average waiting time. Vice
versa holds for the weight ω1. However, the effect on the machine utilization is less significant.
In both scenarios, the best performance is achieved for the balanced weights ω1 = ω2 = 0.5
for both objectives.

It is noticeable that the agents rewarded with rw,wt show, in general, a relatively poor machine
utilization. However, when rewarded for actions towards machines, i.e. weight ω1, the utilization
as well as average waiting time increase significantly. The rise is contradicting to the reward
objective. Overall, rw,util-agents outperform others in terms of the α-value. This leads to the
presumption that the RL-agent benefits from the utilization reward more, i.e. it can capture
the correlation between actions, states, and utilization reward more easily than for the waiting
time reward.

For both reward signals, the results indicate that an action weighting is beneficial and able
to influence the waiting time as well as the inventory as one would expect. However, equal
weights do still show the best overall performance, in terms of the α-value. Hence, weighting
different action subsets can be an important design feature when looking for specifically
tuned RL-agents. Eventually, the α-value of Agent 29 reveals the best overall performance,
including the computational results that are presented next.

Next, the reward function is extended to a weighted sum of the reward functions rutil and
rwt. In doing so, both objectives are integrated in the reward and the focus can be intuitively
adjusted by changing the weights. The results are shown in Table 5.13 for Scenario 1 and in
Appendix A9 in Table A9.8 for Scenario 2. In these experiments, the state vector is, again,
extended in order to enable the agent to use the entire state information for optimization.
Action subsets are not rewarded separately.

Positive results can be obtained looking at the machine utilization and increasing the weight
for rutil in both scenarios. There is a positive correlation between the average machine
utilization and its reward weight factor. The same positive correlation applies to the inventory
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level. Moreover, the α-value indicates a superior performance when enforcing the machine
utilization reward.

Table 5.13: Mean performance results for RL-agents with fixed state information and a multi-
objective reward function when varying weight factors of the multi-objective re-
wards.

Scenario 1
Agent State Reward

U [%] WT [TU] I α-value

34 SV A, SAT ,
SBEN , SBEX ,
SL, SMF , SW T ,
SBP T , SRP T

0.75 · rutil + 0.25 · rwt 80.4 91.4 11.0 0.88

35 0.5 · rutil + 0.5 · rwt 77.9 91.7 10.8 1.07

36 0.25 · rutil + 0.75 · rwt 66.5 97.7 10.7 2.14

However, for rwt, only the second scenario shows similar results, i.e. the waiting time reward
weight correlates positively with a waiting time improvement. Scenario 1 reveals a somehow
unexpected agent behaviour, which might be due to the fact that Scenario 1 is more restrictive
than Scenario 2 and, therefore, harder to optimize.

In general, all three Agents 34 to 36 do not show a superior performance to the previously
presented experiments for the action subset weights in Table 5.12. Their performance is
in between Agents 29 and 32 in terms of the α-value. Hence, weighting objectives is less
successful than one might anticipate in the first place. One reason might be that it is hard for
the agent to grasp the different objective function elements and a weighted multi-objective
reward signal is either too noisy or too flat, i.e. without a clear gradient towards the optimum.

5.3.2 Pareto-optimal Reinforcement Learning configurations

The previous results demonstrated the variety of feasible solutions, depending on the RL-
modelling choice. The term solution, in this case, refers to a single RL-agent or benchmark
heuristic. Especially when multiple objectives are optimized, the Pareto-concept helps to
identify Pareto-optimal solutions (see Section 2.1.2). Figure 5.5 and Figure 5.6 show in two
scatter plots the mean performance in terms of waiting time and machine utilization for all
RL-agents and benchmark heuristics considered so far in this chapter. Solutions to the right
or the lower part of the diagram are preferable.
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Figure 5.5: Overview of RL-agents and comparison with benchmark heuristics in Scenario 1
(Agents 1 and 33 are not shown as they are well outside the set value range).
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Figure 5.6: Overview of RL-agents and comparison with benchmark heuristics in Scenario 2.

Furthermore, the Pareto-front of all Pareto-optimal solutions that are not dominated by any
other solution is indicated in the figure. It is important to state that the displayed Pareto-front
resembles just an estimate of the expected border of Pareto-optimality as the theoretically
optimal points are unknown and the front assumes that the solution space is continuous.
Mostly, RL-agent solutions span the Pareto-front. Just in the first scenario, the NJF heuristic
is included. Hence, the performance of the heuristics is Pareto-dominated by RL-agents.
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Moreover, reinforcement learning enables a broader coverage of the solution space. This
is, in particular, relevant for decision-makers in practice as they are not just interested in a
single solution that is the optimal operation point under specific conditions and objectives.
Depending on the current situation and objectives, the optimal solution varies. Hence, a set of
(Pareto-optimal) solutions is preferred and allows the selection of the best solution according
to the current requirements.

The scatter plots also conclude what was already explained in detail before, how the different
concepts and ideas behind the RL-agents are evident in the achieved performance. The
colours highlight agents that follow a similar concept, i.e. they are previously reported in
the same table. For instance, agents with waiting time and utilization rewards are clearly
distinguishable in the two-dimensional solution space and the extended state for utilization
reward further improves the performance.

Connecting the weighted reward functions, i.e. Agents 34, 35, and 36 highlighted in red,
suggests a straight line, which confirms the linear weighted sum modelling choice. Figure A9.2
in Appendix A9 displays the straight line and the agent solutions in a separate scatter plot.
Such a result is promising as further solutions, i.e. operating points, can be designed by
changing a single weight factor.

Finally, Agent 28 shows a “remote” solution in both scenarios, comparing to the other solutions
that are accumulating in similar areas of the solution space. So, using weights for different
action subsets combined with the utilization reward rw,util allows reaching new areas in the
solution space and extend the Pareto-front. The areas in the solution space with several
solutions further support the idea of feasible operating points at which a production system
can be operated, what was introduced as central idea of the production operating curves by
Nyhuis & Wiendahl (2012).

Comparing both scenarios, some further differences are evident. Scenario 1 has fewer buffer
capacities and the operator’s speed is reduced, putting the focus on improving the dispatching
performance as the bottleneck resource. Hence, waiting times do not vary so much and are
shorter due to, on average, less occupied buffers comparing to Scenario 2. Scenario 2, on the
other hand, is less constrained. Hence, the agent’s performance does not spread as much
as in Scenario 1, when looking at the x- and y-axis scaling. Moreover, the highest machine
utilization is reached for the NJF heuristic in the first scenario. This is counter-intuitive when
just looking at its rule description. It would be assumed that EMPTY achieves the highest
utilization, as in Scenario 2. However, the optimization of the bottleneck leads in Scenario 1 to
the highest machine utilization for the NJF heuristic. This is further analysed in the following
Section 5.4.
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All in all, the results support the hypothesis that RL-based order dispatching enables pro-
duction managers to find more desirable operation states than just using static, predefined
heuristics. Moreover, reinforcement learning provides a convenient way to identify new control
policies by varying the reward function, state representation, or action representation.

5.3.3 Computational effort

Because the multi-objective agents are the most computational complex, a brief overview
of the computation time is given in this sub-section. The experiments were conducted
on an Intel Xeon E5-2698 v4 2.2 GHz with 20 cores and 256 GB RDIMM DDR4 system
memory. Processual parallelization of a single simulation experiment on multiple cores was
not activated since no improvement could be achieved. As the used ANNs are rather small
comparing to other Deep Learning applications, the computation speed is mostly limited
by the sequential processing of the discrete-event simulation, i.e. most computation time is
required for the execution in the simulation framework.

Generally speaking, RL-agents converged faster in Scenario 2 than in Scenario 1. Simple
agents such as in Table 5.7 or Table 5.8 required, for instance, three to five million iterations,
which is equivalent to approximately three to five hours computation time. Hence, one million
iterations are approximately equivalent to a one-hour computation. Additional state information
and changing the reward function increase the training time, as the time until the state of
convergence is reached is considerable longer. The agents presented in Table 5.13, for
instance, took 20 to 25 million iterations in Scenario 1 and 10 to 13 million in Scenario 2.

5.4 Transferability of dispatching policy

This section builds on and continues the two-dimensional Pareto-analysis. Herein, the trans-
ferability of the agent’s dispatching policy is investigated. First, the solutions for both scenarios
are integrated to compare their overall performance (see Section 5.4.1). After that, the change
from one to the other scenario is examined in Section 5.4.2. The results yield insights into
the research question, whether the RL-policy is transferable for changing production system
characteristics.

5.4.1 Integrated comparison of multiple scenarios

When comparing the performance of the heuristics and RL-agents for both scenarios, the
upper charts of Figure 5.7 display the solutions from the previous figures next to each other.
Associated solutions in both scenarios are coloured in the same way. The performance of
the heuristics is shown in Figure A9.1 in Appendix A9. The heuristics vary largely comparing
both scenarios. Not only the location in the scatter plot changes but also the ranking of the



Evaluation and computational results 131

heuristics as, for instance, VALID and FIFO are apart in the first scenario, whereas in the
second scenario they are close to each other. This is because the rule-based heuristics do not
necessarily take the system characteristics and its bottleneck into account. The relative poor
performance of NJF in Scenario 2 compared to its Pareto-optimality in Scenario 1 supports
this presumption, too.

In contrast, Agents 28 and 29 are almost robust when comparing both scenarios (see
Figure 5.7). Herein, robustness is understood in terms of the location relative to the other
solutions in the two-dimensional objective space. If a solution is in the same area of the
objective space, although the scenario is changing, this solution is regarded as robust.
Additionally, they show an overall superior performance when looking at both performance
indicators and comparing it to the heuristics as well as other RL-agents. However, it has to be
stated that, in particular, the results for the heuristics are just limited to four examples and,
hence, it cannot be generalized and further investigations are required.

The bottom chart of Figure 5.7 goes one step further in analysing the location and spread of
RL-agents in the objective space. It separates the entire space that is spanned by all solutions
found into four quadrants. The quadrants are bounded based on the minimum, maximum,
and midway between the minimum and maximum value of the respective solution space. The
quadrant definition has a significant influence on the depicted results, but it is assumed that
the computed solutions span a feasible and reasonable solution space. For each quadrant,
Figure 5.7 shows the probability that a solution, i.e. an RL-agent, is in exactly that quadrant
in Scenario 1’s and Scenario 2’s solution space. For instance, 88.9% of all RL-agents in the
first quadrant, i.e. the bottom left quadrant, are in that quadrant in Scenario 1 and 2. Again,
the results for the benchmark heuristics are displayed in Figure A9.1 of Appendix A9. The
fact that the overall mean quadrant-similarity of all RL-agent is 81.9% and above 75.0% for
the heuristics is an additional hint that supports the above-mentioned conclusion that the
performance of heuristics varies more for different scenarios. However, note that these results
are just an approximation as just four heuristics are analysed.

To sum it up, although the two scenarios are substantially different, the performance of a
specifically designed RL-agent is robust with respect to production system characteristics. In
other words, an RL-agent that shows a “good” performance in one scenario is also most likely
appropriate in another. This is due to the fact that reinforcement learning learns by itself and
the interaction with the actual production environment how to achieve a reward maximization
and is not forced to follow a predefined rule that is based and limited to certain assumptions
concerning the system characteristics.
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Figure 5.7: Comparison of RL-agents in Scenario 1 and 2 (top). Colouring indicates the
solution index to capture the association between one solution in both scenarios.
The four-quadrant-plot (bottom) depicts the probability that a solution that is in
a specific quadrant in the solution space of Scenario 1 is also in that same
quadrant in Scenario 2. The limits of the quadrants are defined by the minimum
and maximum value of the respective solution space.
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5.4.2 Investigation of changing scenarios

So far, the two scenarios are investigated separately, i.e. the RL-agent or heuristic is just
applied in one scenario. As a conclusion, the elementary transferability of the RL-agent’s
design choice could be demonstrated. In this sub-section, two heuristics and one RL-agent
first operate in a production system that is parametrized according to Scenario 1, and after
ten million iterations it is changed to the second scenario. Figure 5.8 depicts the course of the
moving mean of the machine utilization and the average order waiting time for FIFO, NJF, and
Agent 12. Agent 12 is chosen due to its efficiency in both scenarios, i.e. low computational
effort but still good performance. As before, the reported figures are mean values based on
three repetition runs.
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Figure 5.8: Average machine utilization and order waiting time when changing from Scenario
1 to Scenario 2 after ten million iterations. The dashed line depicts the RL-agent’s
performance in both scenarios separately (see Table 5.9 and Table A9.4). The
transparent green scatter plot shows the KPI’s raw data.

The RL-agent needs its training period until a stable performance level is reached in the
first ten million iterations. When the scenarios change, both heuristics and the RL-agent
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adjust their performance level according to the characteristics of Scenario 2. Although this is
expected for the rule-based heuristics, since they operate based on a deterministic procedure,
it is not obvious for the RL-approach. However, the RL-agent adjusts its performance similarly
fast. No second training phase can be seen in the performance measures, looking at the mean
performance line plots and the transparent raw data scatter plots of Figure 5.8. Moreover,
the agent achieves almost identical performance values as for a separated training in either
Scenario 1 or Scenario 2. The utilization and waiting time are even slightly better after the
change in the second scenario, which might be due to the extended learning period and
additional training data. Therefore, it is concluded that an RL-agent adapts to changing
production conditions and no significant training phase is required.

Another advantage of the RL-agent designs presented in Section 4.4 and analysed here is
their “technical” transferability to similar use cases as presented by the two scenarios. This
means that the state and action representations are generic enough that the agent design
can be applied to both scenarios. Moreover, the agent can re-use the learned knowledge,
i.e. already adjusted ANN-weights (also referring to the research on transfer learning). For
instance, the state element SBEN gives the relative inbound buffer fill level as a relative
measure, what is applicable and has the same interpretation in both scenarios. Hence, the
ANN does not need to be extended by additional input or output neurons. An adjustment is
only required if, for instance, the number of machines is changed, because then the input and
output layer of the ANN are changed, which modifies the structure of the network.

5.5 Dispatching policy plausibility analysis

The final investigations address the last research question on the plausibility of RL-agent’s
dispatching policy in order to better understand the underlying reasoning and, thereby, in-
crease the confidence and trust in the black-box algorithm. It, first, deals with the validity check,
whether RL-agents can imitate heuristic behaviour (see Section 5.5.1). Extending this analysis,
Section 5.5.2 focuses on action-level differences compared to heuristic decision-making.

5.5.1 Imitation of heuristic behaviour

The validity check and imitation analysis aim to examine whether the RL-agent is able to learn
deterministic heuristic decision-making procedures. By passing heuristic-relevant system
state information and a constant reward for the selection of the action, which the respective
heuristic would take, it is intended that the RL-agent captures the rule-based heuristic policy.
The herein presented results are based on Scenario 1 and 2, but just show one heuristic
example. However, it is likely to expect similar results for further heuristics as the described
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state and reward design follows the same mechanism for any heuristic and, therefore, the
learning task is similar.

In the following, the NJF* heuristic with a slightly adjusted rule-setting than the NJF is selected
as reference heuristic. NJF* is transformed in such a way that still the nearest available order is
selected, however, the destination is the predefined next order destination without considering
machine groups. In this way a simple decision rule is given that just relies on a single rule
and state element.

The RL-agent receives information on all possible actions SV A as well as the action time
state entries SAT , indicating the distance to the next job. These are equivalent to the decision-
relevant information of NJF*. The reward rNJF ∗ is based on whether the selected action
corresponds to the NJF*-action aNJF ∗:

rNJF ∗(•) :=

⎧⎪⎨
⎪⎩

1 a = aNJF ∗

0 else
∀a ∈ A, s ∈ S 5.3

The results for the moving mean reward per episode over the training phase are shown in
Appendix A10 in Figure A10.1 and the mean performance indicators are summarized in
Table 5.14. Two RL-agents are presented. For Agent 37, the discount rate γ is set to 0.1
and, for Agent 38, it is the default value of 0.9. In particular, Figure A10.1 reveals that the
smaller γ-value is slightly beneficial for the learning speed and final reward level. Although
the differences are just small, the explanation goes as follows: in this experiment, the reward
is just related to the current state and action selection and, hence, no time delay needs to
be considered. Since the delay is usually controlled by the γ-parameter, and a large value
extends the period, just a small γ-value is adequate for the imitation of a heuristic rule.

Table 5.14: Comparison of RL-agents imitating the NJF* heuristic with the NJF* performance.

Scenario 1 Scenario 2
Agent γ-value

Reward U [%] WT [TU] Reward U [%] WT [TU]

37 0.1 0.948 81.9 92.0 0.941 84.7 123.5
38 0.9 0.943 81.9 93.0 0.910 85.2 124.0

NJF∗ - 81.7 92.2 - 84.7 123.9

Given the above-defined reward function, the mean reward value directly translates into the
probability of selecting the same action as NJF*. So, according to Table 5.14, the similarity
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is close to 95%. Moreover, the performance measures utilization and waiting time confirm a
high conformity and imitation capability of the RL-agent, as the average performance values
are nearly identical. Hence, the RL-agent is able to approximate policies that are similar
to rule-based heuristics. This fact increases the confidence in the learned RL-policy and
presumes that an RL-policy can reach a near-deterministic level.

5.5.2 Decision-making comparison on an action-level

After having seen that the agent learns rule-based dispatching policies and achieves similar
results, it is crucial to understand the decision-making behaviour of RL-agents in more detail.
One approach is to compare RL-agents and heuristics on an action-level. In the following, an
RL-agent is compared to FIFO, NJF, and EMPTY.

The averaged results from three repetitions are reported in Figure 5.9. It shows a Venn
diagram of the average probabilities that actions similar to heuristics are chosen. All possible
cases are reported, i.e. in particular the overlapping areas when two or all three heuristics
select the same action are separated. Again, the first scenario is more constrained and,
therefore, the probabilities are smaller and overlapping actions are less likely.

Scenario 1

FIFO

4.7%

NJF

19.9%

EMPTY

12.2%

8.2% 1.2%

6.2%

9.7%

Overall similarity: 62.1%

Scenario 2

FIFO

7.7%

NJF

4.5%

EMPTY

11.7%

4.3% 1.3%

5.7%

34.8%

Overall similarity: 70.0%

Figure 5.9: Venn diagrams for the average probability that the same actions are selected
comparing three heuristics with reference Agent 12 based on the last 500,000
actions.

The overall probability of selecting the same action as one of the three heuristics is well above
50% in both scenarios. However, a clear picture on which rule is preferred cannot be derived.
According to Figure 5.5, the performance of Agent 12 is nearby the NJF heuristic in Scenario
1 and the overlapping probability for NJF is the highest, too. The same applies for Scenario 2,
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in which the RL-agent is closer to EMPTY and, therefore, the probability is also the highest
for this heuristic.

However, taking these interpretations further, several obstacles need to be considered (May
2019): First, the number of possible actions is influencing the results to a reasonable extent
and could lead to an overestimate of the presented percentage values. For example, when
there is only one valid action, then all heuristics and the RL-agent are similar. Thus, Fig-
ure A10.2 in Appendix A10 shows a frequency histogram of the number of possible actions at
every decision point. As the mean value is 7.4 actions per iteration, the risk of overestimation
does not seem to apply here, but still in above 10% of all occasions just a single action is
feasible. Second, the comparison is limited as the actual heuristic dispatching decisions are
not executed, meaning that it could happen that for several iterations, a heuristic selects the
same action and, thus, biasing the data. This risk cannot be removed entirely.

All in all, the results present first insights into the behavioural investigation of RL-based
dispatching policies. However, an in-depth analysis of the internal RL-processes, i.e. mainly
the ANN (e.g. saliency maps), as well as a path-dependence analysis of multiple actions
would lead most likely to more insights. First attempts in this direction are found in the work of
(A_May 2019). Moreover, Section 6.2 provides an outlook into this direction.

5.6 Summary of evaluation and computational results

This chapter evaluates the method developed in Chapter 4 for an RL-based adaptive order
dispatching in a complex job shop. The results are based on a discrete-event simulation of a
semiconductor frontend manufacturer.

The research questions as displayed in Figure 5.1 are covered and discussed in the next
chapter. Hereinafter, the key insights from the computational experiments are summarized:

1. Derived from a complex real-world job shop, a simulation environment is implemented
that can be used as accurate training environment (digital twin). Moreover, not just a
single validation scenario is designed to also evaluate the transferability of the results.

2. The RL-based system is able to make integrated dispatching decisions in real-time.

3. Comparing the performance of RL-agents to benchmark heuristics reveals that, first,
even simple agent configurations present reasonable results and, second, more complex
and sophisticated agents, taking domain expertise into account, outperform benchmark
heuristics.
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4. The ANN structure, learning rate, discount rate, and episode design are hyper-parameters
and modelling choices that have a less significant influence on the results. Here default
values are recommended.

5. The presented reinforcement learning algorithm is able to autonomously learn the
following:

a) If not all actions are feasible in every iteration, the agent is able to reliably distinguish
the validity of actions.

b) Rewarding action subsets separately has a significant effect and reveals the differ-
ences between push and pull production.

c) The performance indicator variances of heuristics and RL-agents are comparable.
The most constant inventory level was found for an RL-agent.

d) Sparse reward functions are less efficient in terms of training speed and required
amount of training data. Hence, an additional modelled reward is recommended in
production control applications.

e) Extending the state information improves the results, whenever the information
is related to the reward and decision-making. Generally speaking, more state
information does not always yield an improvement.

f) An action representation that is not condensed to just the relevant actions increases
the training effort, too. Though, adding extra actions, such as idling, can have a
profound effect on the learned control strategy.

g) Finally, the dispatching policy of an RL-agent can be close to a deterministic rule.
Further analyses on the plausibility reveal that the learned strategy shows an above
50%-similarity with benchmark heuristics.

6. In a multi-objective solution space, reinforcement learning covers the solution space
more extensively, e.g. by using weighted reward functions or a reward that distinguishes
different action subsets. All in all, new Pareto-optimal RL-solutions can be identified.

7. RL-agents show a more robust performance with respect to changing production system
characteristics and modifying the scenario setup within the learning process does no
harm. Hence, the results show the ability to transfer a learned policy.
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6 Discussion and outlook

This work presented an approach for an adaptive order dispatching that is based on reinforce-
ment learning. The approach was successfully applied in a job shop setting that is derived
from a semiconductor manufacturing application. The entire approach and computational
results are discussed in Section 6.1 along the questions stated in Section 1.3 and the research
deficit from Section 3.2. Moreover, the simulation-based training is examined separately. Next,
Section 6.2 describes directions for forthcoming research.

6.1 Discussion

The research goal of this work was to increase the applicability of reinforcement learning in
PPC by the design of an adaptive order dispatching system that is comprehensibly applicable
to a broad range of complex production environments. To evaluate this goal, the derived and
leading research questions are discussed critically in the following.

RL-applicability: Is it possible to obtain an adaptive order dispatching system autonomously
based on real-time operational data?

The adaptive order dispatching system builds on a modular architecture to fully address the
first research question. First, a production simulation framework is chosen that is able to
represent a broad range of job shop-like systems. In particular, the necessity for agile and
flexible production systems propagates job shops as they meet changing market requirements
more efficiently. Logistic operations are similarly important, which are neglected in most state-
of-the-art research work. Moreover, stochastic processes are enclosed to correspond to
the dynamic nature of production processes. All in all, the simulation framework acts as
valid and accurate digital twin, which allows to run the data-driven training in parallel to real-
world operations and, thereby, significantly reduce the training time. However, the presented
framework does not thoroughly cover all relevant production system characteristics and PPC
tasks, such as setup processes, changing order release policies, or maintenance management.
So, further extensions would be required to broaden the scope.

Second, the order dispatching decision framework integrates twofold decisions, namely: the
transport decision as well as the next processing machine decision. The developed framework
is based on the concept of an MDP, which adequately covers sequential decision-making
problems. It is also not merely compatible with RL-algorithms but rule-based heuristics,
too. Moreover, an MDP fulfils the requirement to derive dispatching decisions adaptively as
every action is based on the current state. Finally, the execution of a trained RL-algorithm is
real-time-compatible.



140 Discussion and outlook

The integration of the production and decision framework gives a system that is able to
obtain dispatching policies that are only based on data and, hence, limits the manual effort
a practitioner has to spend. The feedback of the learning algorithm is directly taken from
the production framework, what allows a dynamic performance evaluation and demonstrates
the successful application of a discrete-event simulation to train RL-agents autonomously.
Eventually, an extensive list of experiments showed that RL-agents are competitive and, when
appropriately designed, even superior to benchmark heuristics. However, the presentation
of different RL-modelling approaches also indicated that the application of reinforcement
learning is still not conceivable when entirely foregoing domain knowledge. Simple RL-agents
show a performance that is not altogether out of range, but surpassing benchmark heuristics
requires intensive studies of a wide range of RL-agents.

Multi-objective optimization: Do the modelling design choices of reinforcement learning
extensively cover a multi-objective solution space, comparing to heuristic benchmarks?

The performance is evaluated based on two objectives, i.e. order- and resource-related
measures. In reinforcement learning, the objectives are translated into the reward function.
In contrast to mathematical optimization, where a well-defined objective function rigidly
determines the objective space, the reward mechanism in RL-algorithms is less straight-
forward. It is conditional to the definition of state, action, episode, and hyper-parameters, such
as the discount rate. For example for the state representation, it could be concluded that state
features have to correlate to the reward to have a positive effect. In conclusion, Figure 5.5
and Figure 5.6 demonstrated the extensive coverage of the solution space for a broad range
of RL-agents. This is, in particular, relevant for production managers in practice, as they are
able to select the most appropriate agent configuration.

However, the results affirm that modelling features that are beneficial in other domains, such
as using a sparse reward, are not vividly transferable to the domain of production control.
The computational effort does not outweigh the benefits with respect to a comfortable and
intuitive reward design. Moreover, a comparison of RL-agents that are rewarded for machine
utilization rutil with the waiting time reward rwt showed heterogeneous results in such a sense
that optimizing the waiting time seems to be harder. This might be due to several reasons.
One could be that multiple reasons cause an order to idle, e.g. after order release, before
processing, or after processing, which are hard to capture and relate to the reward. Finally,
the tree-based reward provided reasonable results, but one would have expected a more
significant improvement.

The investigation of rule-based heuristics was limited to four heuristics. An extensive study
of further heuristics was not conducted. Nevertheless, additional heuristics can, in principle,



Discussion and outlook 141

be designed to cover the solution space more extensively, too. Still, the advantages of
reinforcement learning are the multitude of modelling choices and that every modelling
choice is just one part of the entire RL-mechanism. For instance, the weighted reward
function demonstrated that the performance in the two-dimensional objective space can be
projected (see Figure A9.2). In contrast, adjusting heuristic decision rules requires an in-depth
investigation and knowledge about the production system characteristics.

Transferability: Does the learning-based approach show a superior performance in terms of
changing system characteristics in comparison to existing benchmarks?

A superior performance for single production scenarios was already concluded before. This
question was evaluated based on two scenarios that depict two extreme manifestations of
the considered real-world use case. Apparently, two scenarios are not enough to profoundly
state general conclusions. Still, the reported results at least support the hypothesis that the
learning-based approach is able to handle changing production system characteristics. By
varying both scenarios in a single experiment and comparing both scenarios separately,
the RL-agent showed an adaptivity to adjust its dispatching policy according to new system
characteristics, without any performance compromises. In contrast, the heuristics are not able
to modify their decision rules and so their performance cannot be projected.

Furthermore, this work exhibited two ways to react to changing system conditions: on the one
hand, an RL-agent balances minor variations via its training ability and, on the other hand, a
new re-training can be easily initiated if the system characteristics change significantly via a
modified simulation setup.

User acceptance: Is the acceptance of practitioners supported by a plausibility analysis of
the RL-based control policy?

The RL-algorithm is, by itself, a black-box approach that does not allow a complete under-
standing of its internal procedures. This fact is a prevailing drawback of any advanced Deep
Learning algorithm and causes reluctance when applied in reality (Goodfellow & Bengio et al.
2016). The present work made a first step into the direction of evaluating RL-policies by an
analysis of the policy on an action-level and a comparison with well-understood heuristics.

Although having obtained initial results, still more research is required to extend the knowledge
in this area and to capture in which ways the RL-policy differs from existing dispatching
approaches. It is, in particular, of interest whether the learning algorithm reaches the state
of reliably self-optimizing production systems. If understood entirely, the insights taken from
RL-policies could also be translated back into the design of rule-based production control
systems or even the design of advanced manufacturing systems.



142 Discussion and outlook

Discussion of the application setup In addition to the research questions, the dispatching
application use case is discussed, once more, and compared to state-of-the-art scheduling
research in order to provide an additional note. In the present case, transportation requires a
significant amount of time. Hence, it is worth considering the dispatching route. As the literature
review showed, not many authors consider transports explicitly. Moreover, dispatching rarely
integrates the order selection and next processing decision. So, a rough classification of
the herein presented use case with respect to established scheduling approaches goes
as follows: transport times differ for orders as they are placed at different locations and
processed on specific machines. Hence, from an order point of view, the time before the
actual operation starts shows parallels to machine setup times, which are considered in most
scheduling approaches. Hence, although dealing with separate problems, analogies can be
found between the considered dispatching and the broad scheduling literature.

Discussion of the simulation-based approach Before looking at future research direc-
tions, concluding remarks on the simulated training environment are outlined. The accuracy
of the simulation highly affects the applicability of the presented approach as well as the trans-
ferability of the results towards a real-world application. Herein, two risks remain unsolved.
First, the risk of deploying a simulation-trained RL-agent and then situations occur, i.e. states,
that never happened in the simulated environment before. The second risk is that the real
dynamics, e.g. stochastic processes, do not match with the simulation assumptions. Both lead
to an unknown RL-behaviour. However, the first risk seems less likely, as the investigation of
changing scenarios showed a robust performance. Moreover, the state is based on normal-
ized values such as waiting times or buffer fill levels that vary within a realistic range in the
simulation, too. In contrast, the second risk can only be faced and assessed in a real-world
RL-application. Eventually, both risks are significantly reduced if the input data that describes
the production system is accurate, which is supported by the industrial digitization. So, more
accurate digital models of production systems are likely in the near future. Furthermore,
this issue is already well-addressed in recent RL-research activities. In fact, most recent
breakthrough applications rely on simulated environments and, still, demonstrate a successful
deployment, such as the board game Go (Silver & Schrittwieser et al. 2017), the computer
game StarCraft1, or the robotic hand solving Rubik’s cube2. Finally, one might consider seeing
it the other way round: autonomous RL-agents may further enhance digital twins as they allow
the representation and integration of human-like behaviour.

1Vinyals et al. (2019), AlphaStar: Mastering the Real-Time Strategy Game StarCraft II https:
//deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
(accessed on 17.06.2020).

2Akkaya et al. (2019), Solving Rubik’s Cube with a Robot Hand https://openai.com/blog/solving-
rubiks-cube (accessed on 17.06.2020)
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6.2 Outlook and further considerations

The present work contributes to the research on the application of reinforcement learning to
the domain of production planning and control. It brings the autonomous control of production
systems one step closer to reality. Nevertheless, in the course of this work, further avenues
for future research are identified.

First, the presented results barely touched on the investigation of state, action, and reward
design. In particular, the question of how these elements are related to each other is interesting.
If the relationships are better understood specifically for the application domain, even more
advanced RL-agents could be designed. The question of which state information is necessary
to optimize one particular or multiple objectives or whether the encoding can be improved
are two examples. For instance, Silver & Hubert et al. (2018) include, in addition to the
current state, the latest states into the state vector. However, the state representation drives
the data intensity, which is particularly relevant for practitioners, and, hence, a state vector
that is as condensed as possible needs to be found. Finally, the trade-off between sparse
and modelled reward is still not sufficiently answered. Although, modelled reward showed a
superior performance, it needs to be handled with care, as it perhaps changes the underlying
MDP and, so, the optimal solution for the new MDP might not match to the original MDP.
In conclusion, reinforcement learning modelling is still a new research area with manifold
unaddressed questions. Taking mathematical optimization as an example, there are a broad
range of efficient modelling choices known and available, e.g. for modelling time constraints.
As shown in this work, insights from supervised learning can be translated to the state
representation modelling, as both steps are similar. Further synergies have to be identified in
future research in order to develop efficient reinforcement learning models. Also, advanced
hyper-parameter optimization techniques and design of experiment methods could be applied
to find such models.

Second, in the domain of operations management, a broad range of quantitative optimization
techniques are already in use and extensively studied (Domschke & Drexl et al. 2015). Hence,
the algorithmic properties of reinforcement learning need to be evaluated in comparison to
existing techniques. Although having provided an explanation of the RL-algorithm and shown
computational results, just a rough outline of the algorithmic properties on a high level could
be provided. For instance, Waschneck & Altenmüller et al. (2018a) demonstrate good results
by using a value-based DQN-algorithm, whereas this work implements the policy-based
TRPO-algorithm. Therefore, an investigation of the benefits and drawbacks of both types
is mandatory. Furthermore, maybe even a combination of RL-algorithms and mathematical
optimization techniques is a promising avenue, as proposed by Amos & Kolter (2017).
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Third, there are already some approaches to unravel artificial neural networks. Morch & Kjems
et al. (1995) present the idea of saliency, i.e. a map that quantifies for every input vector
element its importance with respect to the output. Simonyan & Vedaldi et al. (2014) continue
their research and are able to draw saliency maps for convolutional neural networks. These
techniques help to identify the reasoning behind the decision-making RL-policy network,
which in the end raises the acceptance. Moreover, a composite parametric rule could be
derived from those insights, analogously to the approach of Verma & Murali et al. (2018), or a
decision tree can be used to capture hierarchical decision-rules (Guidotti & Monreale et al.
2018).

Last but not least, this work presented just a single agent system and only two scenarios. In
order to support the hypotheses with additional proofs, further scenarios and applications
need to be investigated. There is a large variety of production system types (Wiendahl 1997).
This work focused mainly from a bottleneck perspective on the system characteristics. It
would be interesting to see how reinforcement learning performs for other systems. For
instance, sequence planning in automotive assembly lines is a complex task, too. Additionally,
maintenance management is promising as it is a data-intensive problem. Reinforcement
learning can help to implement a closed-loop maintenance system by not just predicting
upcoming machine breakdowns but directly deriving an appropriate action upon the prediction
(Kuhnle & Jakubik et al. 2019). Furthermore, this work just focused on the order dispatching,
leaving aside other control tasks summarized by Lödding (2016). For instance, the order
release policy has a major influence on the inventory level and, hence, the system performance
(see Section 2.1.2). So policies such as ConWIP (constant work in process) need to be
investigated, too. A related research hypothesis would be to investigate if reinforcement
learning is capable to learn WIP-controlling policies autonomously without external triggers,
e.g. rewarding low inventory.

Eventually, multi-agent systems, such as introduced by Paternina-Arboleda & Das (2005),
show additional mechanisms, e.g. communication and coordination, that need to be inves-
tigated when multiple agents are learning and operating simultaneously. State-of-the-art
production systems propagate decentral decision agents for any operation on the shopfloor,
which requires a holistic architecture to be capable to ensure a robust and global-optimal
performance. For instance, Heger & Voss (2019) investigate the combination of sequencing,
dispatching, and routing heuristics in a flexible job shop. This research needs to be extended
towards the application of RL-agents. In particular in multi-agent systems, the need to evaluate
the most appropriate action scope is a paramount research question. This work just focused
on a rather low-level control decision and, hence, more high-level and long-term decisions,
such as planning tasks, are not thoroughly addressed.
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7 Conclusion

Striving for operational excellence in the competitive and ever faster changing environment of
manufacturing companies challenges existing production control methods. With the upcoming
age of digitization, data-driven machine learning algorithms offer an alternative approach to
optimize operations and exploit the full potential of data sources in manufacturing systems.

The latest research findings show a superior performance of reinforcement learning in a broad
range of application domains, even outperforming human experts without using any human
knowledge to train algorithms. However, in the field of production control, just a limited number
of authors have looked into the application of reinforcement learning so far. An extensive
investigation of different RL-configurations was not yet performed.

Within various tasks of production planning and control, order dispatching is key to ensure
flexibility and high performance in terms of high capacity utilization and short cycle times. Mo-
tivated by the operations in complex job shops, this work closed the research gap and focused
on the application of reinforcement learning for an adaptive order dispatching. Incorporating
actual system data allows capturing the system behaviour more accurately than approaches
that are based on static procedures or mathematical optimization that is just applicable when
too many modelling simplifications are made. Additionally, the manual effort can be reduced by
relying on the inference capabilities of RL-algorithms and digital representations of production
systems.

A comprehensive methodology is presented for the design and implementation of RL-agents
as central dispatching decision-making unit. Known RL-modelling challenges concerning
the state, action, reward, and hyper-parameters are addressed. Multiple design choices are
analysed based on two real-world production scenarios taken from a semiconductor manu-
facturer. The results reveal that RL-agents perform adaptive policies successfully and adjust
their policy to different objectives. Moreover, RL-agents can outperform existing rule-based
benchmarks. Extending the state representation clearly improves the performance if there is a
relation to the objectives. The reward can be designed to enable the integrated optimization of
multiple objectives. Finally, specific RL-agent configurations reach not just a high performance
in one scenario, but a robust performance for changing system characteristics.

Hence, the research shows a substantial contribution in the direction of self-optimizing and
autonomous production systems. Operations managers need to evaluate the potential of the
presented approach to stay competitive in terms of flexibility and, at the same time, keeping
the manual effort of designing, operating, and monitoring operation production systems in a
reasonable balance.
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Geiger, C. D.; Uzsoy, R. & Aytuğ, H. (2006), „Rapid Modeling and Discovery of Priority
Dispatching Rules: An Autonomous Learning Approach“, Journal of Scheduling 9.1, pp. 7–
34.

Gendreau & Potvin 2005
Gendreau, M. & Potvin, J.-Y. (2005), „Metaheuristics in Combinatorial Optimization“, Annals
of Operations Research 140.1, pp. 189–213.

Glover & Laguna 1998
Glover, F. & Laguna, M. (1998), „Tabu Search“. Handbook of Combinatorial Optimization.
Ed. by D.-Z. Du & P. Pardalos. Boston, MA: Springer US, pp. 2093–2229.

Glover & Kochenberger 2003
Glover, F. & Kochenberger, G. (2003), Handbook of metaheuristics. 1st ed. Boston: Springer.

Goldberg & Holland 1988
Goldberg, D. E. & Holland, J. H. (1988), „Genetic Algorithms and Machine Learning“,
Machine Learning 3.2, pp. 95–99.



154 References

Gomory 1958
Gomory, R. E. (1958), „Outline of an algorithm for integer solutions to linear programs“,
Bulletin of the American Mathematical Society 64.5, pp. 275–279.

Goodfellow & Bengio et al. 2016
Goodfellow, I.; Bengio, Y. & Courville, A. (2016), Deep Learning. 1st ed. Cambridge, MA:
MIT Press.

Graham & Lawler et al. 1979
Graham, R. L.; Lawler, E. L.; Lenstra, J. K. & Kan, A. H. (1979), „Optimization and ap-
proximation in deterministic sequencing and scheduling: A survey“, Annals of Discrete
Mathematics 5.C, pp. 287–326.

Greschke & Schönemann et al. 2014
Greschke, P.; Schönemann, M.; Thiede, S. & Herrmann, C. (2014), „Matrix structures for
high volumes and flexibility in production systems“, Procedia CIRP 17, pp. 160–165.

Greschke 2016
Greschke, P. I. (2016), „Matrix-Produktion als Konzept einer taktunabhängigen Fließferti-
gung“. Dissertation. Essen: Technische Universität Carolo-Wilhelmina zu Braunschweig.

Grondman & Busoniu et al. 2012
Grondman, I.; Busoniu, L.; Lopes, G. A. D. & Babuska, R. (2012), „A Survey of Actor-Critic
Reinforcement Learning: Standard and Natural Policy Gradients“, IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42.6, pp. 1291–1307.

Gudehus 2010
Gudehus, T. (2010), Logistik - Grundlagen, Strategien, Anwendungen. 4th ed. Berlin,
Heidelberg: Springer.

Guidotti & Monreale et al. 2018
Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F. & Pedreschi, D. (2018), „A
survey of methods for explaining black box models“, ACM Computing Surveys 51.5.

Günther & Tempelmeier 2012
Günther, H.-O. & Tempelmeier, H. (2012), Produktion und Logistik. 9th ed. Berlin, Heidel-
berg: Springer.

Gupta & Egorov et al. 2017
Gupta, J. K.; Egorov, M. & Kochenderfer, M. (2017), „Cooperative Multi-agent Control
Using Deep Reinforcement Learning“. Autonomous Agents and Multiagent Systems. Ed.
by G. Sukthankar & J. A. Rodriguez-Aguilar. 10642nd ed. Cham: Springer International
Publishing, pp. 66–83.

Gutenberg 1951
Gutenberg, E. (1951), Grundlagen der Betriebswirtschaftslehre. 1st ed. Berlin, Heidelberg:
Springer.



References 155

Gutenschwager & Rabe et al. 2017
Gutenschwager, K.; Rabe, M.; Spieckermann, S. & Wenzel, S. (2017), Simulation in
Produktion und Logistik. 1st ed. Berlin, Heidelberg: Springer.

Hackstein 1984
Hackstein, R. (1984), Produktionsplanung und -steuerung (PPS): Ein Handbuch für die
Betriebspraxis. Düsseldorf: VDI-Verlag.

Hadfield-Menell & Milli et al. 2017
Hadfield-Menell, D.; Milli, S.; Abbeel, P.; Russell, S. J. & Dragan, A. (2017), „Inverse Reward
Design“. Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach,
04.12. - 09.12.2017. Ed. by I. Guyon; U. V. Luxburg; S. Bengio; H. Wallach; R. Fergus;
S. Vishwanathan & R. Garnett. Red Hook: Curran Associates Inc., pp. 6765–6774.

Hafner & Riedmiller 2011
Hafner, R. & Riedmiller, M. (2011), „Reinforcement learning in feedback control“, Machine
Learning 84.1-2, pp. 137–169.

Hansen & Mladenović 2001
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Appendix

A1 Explanation of quantitative optimization methods

Linear optimization Linear programs consist of a linear objective function and constraints.
All variables are real values. Most basic planning problems, such as production planning
or transport planning, fall into this category (Domschke; Drexl et al. 2015). The Simplex
algorithm is an efficient solution algorithm for linear optimization problems (Bertsimas &
Tsitsiklis 1997).

Mixed-integer optimization More complex, in terms of computational complexity (see
Section 2.1.1), are integer or mixed-integer programs for which some decision variables are
restricted to integer or binary values (Nemhauser & Wolsey 1999). These variables enable the
consideration of logical constraints as well as the modelling of resources that cannot be split.
For instance, resource allocation, sequencing, or selection problems require mixed-integer
variables (Domschke; Drexl et al. 2015). These problems are mostly combinatorial problems.
They are more complex as numerous alternatives have to be evaluated without using the
properties of continuous, linear problems that enable efficient mathematical operations. They
are commonly solved by cutting-plane methods (Mitchell 2000), such as first introduced
by Gomory (1958) and Benders (1962), or Branch-and-Bound methods (Brucker & Knust
2012).

Non-linear optimization Non-linear optimization problems have either a non-linear objec-
tive function or at least one non-linear constraint. They are far more computationally complex
to solve, as convexity is not ensured. Hence, optimal solutions are not necessarily corner
points of the solution space (Zimmermann 2008). However, some specific forms of non-linear
problems can be solved efficiently, e.g. second-order cone programs (Alizadeh & Goldfarb
2003). General solution approaches translate the problem with the help of Lagrange multiplier
into a problem without constraints that can be solved by gradient methods, such as Newton’s
method (Zimmermann 2008).

Dynamic optimization Dynamic optimization, also named dynamic programming, assumes
a different problem setup and particularly considers problems that range over multiple time
steps (Domschke; Drexl et al. 2015). The optimal solution can be determined by recursion,
i.e. defining a sub-problem for each time step and solving each separately. However, this is
computationally expensive and requires large memory storage for all possible stages (Mönch;
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Fowler et al. 2013). Dynamic programming is commonly applied in stochastic decision
problems, in particular for MDPs, such as inventory management and lot size planning. They
are solved using Bellman’s principle of optimality and backward introduction (Bellman 1966).

Constrained optimization Finally, constrained optimization is a rather new field of research
that makes use of established methods from computer science that are based on logical
programming (Lustig & Puget 2001; Hofstedt & Wolf 2007). Especially, scheduling problems
are highly constrained problems, e.g. precedence, sequence, and due date constraints. Hence,
they are hard to solve when formulated as mixed-integer program due to the large number of
variables that is required (Baptiste; Pape et al. 2001). Logical programming techniques are
more efficient in that case.

Online optimization The mathematical optimization methods explained so far assume that
the input data is thoroughly known. In practice, however, this is often not the case, as data
becomes known over time and requires repeated decisions under uncertainty (Dunke & Nickel
2019). Online optimization assumes that there is none or just limited knowledge about the
future and one needs to optimize based on partial knowledge of the present and past. The
optimization objective is to ensure not to be too far from a retrospectively optimal solution,
even in the worst case. For further details on the foundations and latest research, the reader
is referred to Hazan (2016) and Dunke & Nickel (2017).

Heuristics Greedy heuristics can determine the optimal solution but are generally described
as too short-sighted (myopic), since the selection of the best alternative at a point in time
does not include the following steps (Pearl 1984). Procedures that take this into account
randomize the selection of alternatives or apply look-ahead strategies (Mönch; Fowler et al.
2013). Furthermore, heuristics are formulated in a problem-specific way and do not search the
solution space of the optimization problem holistically (Zimmermann 2008). Some examples
are listed in the following: The k-opt heuristic gives a well-known example in the area of mixed-
integer programs for the travelling salesman problem and Kruskal’s algorithm for finding
a minimum-spanning-tree (Nickel; Stein et al. 2014). For simple scheduling applications,
common heuristics are priority rules. For multi-level scheduling problems, e.g. in a job shop
manufacturing system, the shifting bottleneck algorithm by Adams; Balas et al. (1988) provides
a widespread and superior heuristic (Acker 2011; Heger; Branke et al. 2016). In each iteration
it selects the machine that raises the total cycle time the most, i.e. the bottleneck machine,
and determines the schedule for this machine. However, the algorithm does not consider, e.g.
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breakdowns of machines, which leads to poor performance in complex production systems
(Mönch 2006).

Metaheuristics Common metaheuristics are the following: local (neighbourhood) search
that is sometimes also called hill climbing algorithm (Hansen & Mladenović 2001), tabu
search (Glover & Laguna 1998), simulated annealing (Kirkpatrick; Gelatt et al. 1983), and
evolutionary algorithms (Goldberg & Holland 1988; Rothlauf 2006). Search heuristics evaluate
the neighbourhood of a solution, wherein the neighbourhood is determined by solutions that
are reachable by search operations that, for instance, switch the sequence of two jobs in a
schedule. Simple optimization heuristics would just select better or the best solution in the
neighbourhood. However, in order to reduce the chance of getting stuck in a local optimum,
randomized search procedures show a better performance. An example is given by the
randomized-greedy procedure introduced by Feo & Resende (1995) or the tabu search, which
ignores solutions within a tabu list of last visited solutions. Simulated annealing imitates
the natural processes of metal cooling and, for instance, the degree of randomness or the
probability of selecting a worse solution is decreasing over time, i.e. cooling down, to still
enforce a state of convergence to the end of the cooling process. An example of job shop
scheduling is found in the work of Laarhoven; Aarts et al. (1992).

Unsupervised learning For unsupervised learning, only unstructured input data is provided.
The number of reasonable clusters into which the database can be divided is unknown.
Therefore, the aim of clustering is to determine the number of clusters and their boundaries.
Unsupervised learning is particularly useful when data need to be understood and explored,
as there is no prior knowledge required. However, an application in a domain where an
optimization objective needs to be achieved, such as order dispatching, does not match the
unsupervised nature. Hence, it is not considered in the remainder of this research.

Supervised learning In supervised learning, the input and output data are explicitly defined.
In contrast to unsupervised learning, the range of values is already determined before the
learning process. The learning process aims to learn the relation between input and output
data. For a continuous numeric output, the relationship between an input and the correct
associated output is represented by a regression function and for discrete output values via a
classification function. The trained model can be applied to data, previously not used in the
training process, for quality assessment. A disadvantage of supervised learning is the amount
of data that needs to be gathered, which might cause a considerable manual data labelling
effort. In principle, supervised learning would match the requirements of the order dispatching
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problem, but the entire training data is not known upfront due to the dynamic nature of the
production environment. Hence, it does not sufficiently address the adaptivity requirement.

Model-free Reinforcement Learning methods
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Figure A1.1: Comparison of value- and policy-based methods for one optimization iteration.
The goal of the simplified example is to find the shortest path from the start in
the upper left to the goal in the lower right corner.

1Although the initialization of the policy-based method is, in general, randomized, too, in the example an
artificial initialization is displayed to depict the update more precisely.
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A2 List of simulation parameters

Table A2.1: List of parametrizable order- and resource-related simulation parameters.

Sources Value range and unit

Capacity outbound buffer N≥0

Product variants List of machines, subset of M
Mean arrival time R≥0, [TU]
Machines Value range and unit

Capacity inbound buffer N≥0

Capacity outbound buffer N≥0

MTBF R≥0, [TU]
MTOL, repair time R≥0, [TU]
Machine group N≥0

Internal order sequencing rule FIFO

Sinks Value range and unit

Capacity N≥0

Transport Value range and unit

Capacity N≥0

Movement speed R≥0,
[

DU
TU

]
Time to load machine R≥0, [TU]
Time to unload machine R≥0, [TU]
Time to load sink R≥0, [TU]
Time to unload source R≥0, [TU]
Responsible work area List of resources, subset of R
Orders Value range and unit

List of processes List of machines, subset of M
Mean processing time R≥0, [TU]
Min. processing time R≥0, [TU]
Max. processing time R≥0, [TU]
Demand per variant R≥0,

[
orders

day

]
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Figure A2.1: Example illustration of resource types with inbound and outbound buffers (load
ports).
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A3 Methodological approach of modelling RL-based adaptive

order dispatching

5. Select relevant system data,
i.e. decision-relevant
information

6. Preprocess raw data for
high-value state features,
considering supervised
learning techniques

7. Define modular state elements

State module

1. Select RL-algorithm, agent
type (e.g. policy-based
TRPO)

2. Define episode type and end,
i.e. the terminal states

12. Find a robust configuration
for the algorithm-specific
hyper-parameters

Agent module

3. Specify the level of detail for
an appropriate action
definition

4. Determine a mapping for the
association between numerical
action values and control
decisions

Action module

8. Set the optimization
objectives

9. Check if the objective is an
too aggregated KPI

10. Identify relationships between
objectives, actions and states

11. Define modelled and / or
sparse rewards, considering
a fixed and monotonous
value range that increases
towards the target state

Reward module

St

St, St+1

At

At

Rt+1

Figure A3.1: Overview of step-by-step approach for modelling the RL-based adaptive order
dispatching introduced in Figure 4.7.
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A4 Computational results for varying hyper-parameter

settings

The computational results in Figure A4.1 are based on Scenario 2 (see Section 5.1.2 for more
details) as this scenario is less restricted and, hence, easier to learn for the RL-agent. However,
the results are transferable to Scenario 1. The figure shows the mean episode reward values
as well as the moving mean standard deviation, aggregated from three repetitive simulation
runs. The moving mean window is set to 100.

The state representation includes the SV A feature and a constant reward rconst with the
constant reward value of 0.2 is given for any valid action Avalid,t. This represents a basic
RL-agent, which allows the analysis of the hyper-parameter influences as any other factors
are excluded, such as complex state features or reward functions.

The default values of the present work are an ANN configuration of 128 × 128, α = 0.001,
γ = 0.9, and ε turned off. Apparently, the ANN configuration does not have a significant
influence on the RL-agent’s performance. Next, one can see that for an increasing learning
rate α the agent performs less stable, in particular for α = 0.1. On the other hand, a small α

slows down the learning process, what can be seen for α = 0.0001. Furthermore, a higher
γ-value of 0.95 shows a slower learning process comparing to the default setting. In this
simple RL-agent configuration, a smaller γ even further increased the learning speed, however
this could not be confirmed for more complex agent configurations as analysed in Chapter 5.
Finally, using ε-decay from 0.9 → 0.001 in 4 Mio. iterations does result in a longer learning
phase, too.
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Figure A4.1: Varying hyper-parameter settings.
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A5 Theoretical computations of the system’s capacity

dimensions

Table A5.1: Analytical calculation of machine capacities.

Machine Work load [TU] Utilization* (excluding

breakdowns) [%]
Work load +

breakdowns [TU]
Utilization* [%]

A B C D

M1 1247.0 86.6 1463.4 101.6
M2 1230.8 85.5 1395.0 96.9
M3 1256.1 87.2 1405.3 97.6
M4 1121.1 77.9 1430.9 99.4
M5 1267.5 88.0 1393.5 96.8
M6 1266.5 88.0 1417.6 98.4
M7 1255.8 87.2 1405.6 97.6
M8 1155.0 80.2 1417.7 98.5

Average 1416.1 98.3

Calculation rule per column:

Column A: Demand rate · Mean process time

Column B: Column A
1440

Column C: Column A · 1440
MTBF · MTOL

Column D: Column C
1440

* The utilization values are calculated with the basis of 1440, i.e. the number of minutes per
day.
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Table A5.2: Analytical calculation of dispatching operator capacities for varying transportation
speed values v = 0.3.

Machine Dispatching operator

work load [TU]
(average, v = 1.0)

Dispatching operator

work load [TU]
(average, v = 0.3)

Dispatching operator

work load [TU]
(minimal, v = 0.3)

A B C

M1 138.8 302.6 135.4
M2 85.0 172.7 93.7
M3 87.7 212.0 129.5
M4 95.5 226.2 140.1
M5 158.9 403.0 244.1
M6 156.5 325.3 167.9
M7 161.9 336.1 174.0
M8 261.5 606.3 324.9

Total
∑

1145.8 (79.6%)* 2584.1 (179.5%)* 1409.6 (97.9%)*

Calculation assumption per column:

The work load is computed based on the demand rate per machine multiplied by the total
transport and handling time.

Columns A and B: Assuming average transport distances for the destination machine out
of the set of feasible machines as well as for distances to the order’s origin to pick it up, i.e.
assuming the probability of the location of the operator relative to the pick-up location is evenly
distributed.

Column C: Assuming minimal transport distances for the destination machine out of the set
of feasible machines as well as for distances to the order’s origin to pick it up, i.e. assuming
that the operator is always directly at the pick-up location.

* The percentage utilization values in brackets are calculated with the basis of 1440, i.e. the
number of minutes per day.
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A6 Recursion limit, forced idle time, and episode length

parameter analysis

The computational results in Figure A6.1 are based on Scenario 2 (see Section 5.1.2 for
more details) as this scenario is less restricted and, hence, easier to learn for the RL-agent.
However, the results are transferable to Scenario 1. The figure shows the moving mean
episode reward values as well as the moving mean standard deviation, aggregated from three
repetitive simulation runs. The moving mean window is set to 100. The state representation
includes the features SV A, SAT , SBEN , SBEX and the utilization reward rutil is used for any
valid action Avalid,t.

The default values are a recursion limit of 5, a forced idle time of 2, and an episode length
of 100. The influence of forced idle time is less significant. A long idle time slows down the
training process as the agent is inactive for a longer time. Although the learning is even
slightly faster than in the default setting for an idle time of 0 it is not chosen due to the fact that
no time passes and, hence, the agent observes the same state over and over again, which
showed in other experiments with more complex RL-agents a deteriorating performance.

Furthermore, one can see that for an increasing recursion limit the learning process is faster,
as less forced idle actions are executed. However, the performance also shows a higher
standard deviation. If the recursion is turned off, i.e. the value is set to 0, the training is
clearly negatively influenced. For the episode length, a higher value obviously inhibits the
training process, too. But it also reduces the variance due to the larger episode window that
averages out short-term changes. On the other hand, a shorter episode length speeds up the
training, but it is less robust. Hence, the default episode length is set to 100. Comparing the
performance of an episode length of 10 and a recursion limit of 10, it can be concluded that
both have a similar effect. This is due to the fact that limiting the episodes also acts somehow
as recursion limit, because at every episode end, i.e. upon a terminal state, the policy update
is performed.
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Figure A6.1: Varying recursion parameter, forced idle time, and episode length settings.



Appendix XXIII

A7 Overview of feasible actions

Table A7.1: Numbering of 20 feasible actions for the action subsets AS→M and AM→S.

SO1 SO2 SO3 M1 M2 M3 M4 M5 M6 M7 M8 SI1 SI2 SI3

SO1 1 2 3 4 5

SO2 6 7 8 9

SO3 10 11 12

M1 13

M2 14

M3 15

M4 16

M5 17

M6 18

M7 19

M8 20

SI1

SI2

SI3
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A8 Correlation of performance indicators

U– WT U– Udisp U– TP U– alpha U– I

WT– U WT– Udisp WT– TP WT– alpha WT– I

Udisp– U Udisp– WT Udisp– TP Udisp– alpha Udisp– I

TP– U TP– WT TP– Udisp TP– alpha TP– I

alpha– U alpha– WT alpha– Udisp alpha– TP alpha– I

I– U I– WT I– Udisp I– TP I– alpha

Figure A8.1: Correlation of performance indicators for all heuristics and RL-agents. The first
term of the title corresponds to the values displayed on the x-axis and the second
to the y-axis.
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A9 Computational results of RL-agents for Scenario 2

Table A9.1: Mean performance results for RL-agents receiving state information SV A and
reward signal rconst with varying factors ω.

Reward and weight factor Scenario 2
Agent

(ω1=̂AS→M , ω2=̂AM→S) U [%] WT [TU] I Share of
Ainvalid,t[%]

Iteration of
convergence

1 rconst, ω1 = 1, ω2 = 0 85.4 124.1 22.1 0.25 95,000
2 rconst, ω1 = 0.5, ω2 = 0.5 83.7 119.2 22.3 0.07 33,667

3 rconst, ω1 = 0, ω2 = 1 78.8 107.3 17.6 0.21 58,667

Table A9.2: Mean performance results for RL-agents receiving state information SV A and
sparse reward signal rconst,ep.

Agent Scenario Reward U [%] WT [TU] I Iteration of

convergence

39 1 rconst,ep 61.7 102.6 11.0 2,626,333
40 2 rconst,ep 84.1 126.1 23.6 204,667

Table A9.3: Mean performance results for RL-agents with varying state information and reward
signals, aiming to optimize specific production performance indicators.

Scenario 2
Agent State Reward

U [%] σU WT [TU] σW T I σI α-value

2 SV A rconst 83.7 25.2 119.2 145.2 20.3 4.9 0.69

4 SV A, SAT rconst 82.6 25.7 119.1 143.5 20.2 5.1 0.69

5 SV A, SW T rconst 78.7 27.5 108.1 133.5 17.8 5.2 0.83

6 SV A rutil 86.2 23.2 122.6 148.7 21.3 5.0 0.58
7 SV A, SW T rutil 83.9 25.2 119.9 143.7 20.5 5.3 0.65
8 SV A, SAT rutil 86.3 22.9 122.3 145.1 21.2 5.0 0.59
9 SV A, SBEN , SBEX rutil 86.7 23.5 119.6 145.8 20.8 5.0 0.51

10 SV A rwt 79.2 27.2 111.0 135.9 18.7 5.2 0.78

11 SV A, SW T rwt 78.7 27.3 106.6 133.5 17.6 5.2 0.83
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Table A9.4: Mean performance results for RL-agents with fixed state information and reward
functions rutil and rwt when varying the episode design.

Scenario 2
Agent State Reward Episode design

U [%] WT [TU] I α-value

12
SV A, SAT ,
SBEN , SBEX

rutil

100 Avalid,t 87.1 120.3 21.4 0.53
13 100 AS→M 86.6 119.7 21.0 0.52

14 100 AM→S 87.0 123.4 22.0 0.52

15 100 time steps 86.9 120.2 21.3 0.54

16
SV A, SAT ,
SW T

rwt

100 Avalid,t 77.6 106.3 17.5 0.83

17 100 AS→M 77.5 107.2 17.3 0.83

18 100 AM→S 78.2 106.7 17.9 0.83

19 100 time steps 79.4 109.3 18.2 0.83

Table A9.5: Mean performance results for RL-agents with fixed state information and reward
signal when varying the action mapping as well as the action subsets the agent
can execute.

Scenario 2
Agent State Reward Mapping Action subsets

U [%] WT [TU] I α-value

12
SV A, SAT ,
SBEN , SBEX

rutil

direct AS→M , AM→S 87.1 120.3 21.4 0.53

20 direct
AS→M , AM→S,
Aempty, Aidle

87.0 120.5 21.2 0.54

21 resource AS→M , AM→S 85.0 113.0 18.9 0.62

22 resource
AS→M , AM→S,
Aempty, Aidle

85.0 115.4 19.2 0.60

16
SV A, SAT ,
SW T

rwt

direct AS→M , AM→S 77.6 106.3 17.5 0.83

23 direct
AS→M , AM→S,
Aempty, Aidle

77.1 106.4 17.4 0.89

24 resource AS→M , AM→S 78.6 108.8 17.4 0.89

25 resource
AS→M , AM→S,
Aempty, Aidle

77.5 105.9 17.0 0.94
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Table A9.6: Mean performance results for RL-agents with the tree-based reward calculation
and varying the tree evaluation function.

Scenario 2
Agent State Evaluation Tree size

U [%] WT [TU] I α-value

26
SV A, SAT ,
SBEN , SBEX

Distance 1500 86.5 123.5 21.5 0.55
27 Utilization 1500 82.8 115.6 19.6 0.63
12 Reference agent 87.1 120.3 21.4 0.53

Table A9.7: Mean performance results for RL-agents with fixed state information and the re-
ward functions rw,util and rw,wt while varying weight factors of the action subsets.

Weight factor Scenario 2
Agent State Reward

(ω1=̂AS→M , ω2=̂AM→S) U [%] WT [TU] I α-value

28 SV A, SAT ,
SBEN , SBEX ,
SL, SMF ,
SBP T , SRP T

rw,util

ω1 = 0.25, ω2 = 0.75 84.8 109.5 18.0 0.57

29 ω1 = 0.5, ω2 = 0.5 86.9 119.7 20.6 0.47

30 ω1 = 0.75, ω2 = 0.25 86.1 123.7 21.9 0.51

31 SV A, SAT ,
SBEN , SBEX ,
SL, SMF , SW T ,
SBP T , SRP T

rw,wt

ω1 = 0.25, ω2 = 0.75 78.7 106.7 17.4 0.86

32 ω1 = 0.5, ω2 = 0.5 78.1 108.1 17.8 0.76

33 ω1 = 0.75, ω2 = 0.25 86.6 125.9 22.6 0.56

Table A9.8: Mean performance results for RL-agents with fixed state information and a multi-
objective reward function when varying weight factors of the multi-objective re-
wards.

Scenario 2
Agent State Reward

U [%] WT [TU] I α-value

34 SV A, SAT ,
SBEN , SBEX ,
SL, SMF , SW T ,
SBP T , SRP T

0.75 · rutil + 0.25 · rwt 86.3 118.8 20.5 0.54

35 0.5 · rutil + 0.5 · rwt 86.0 118.6 20.3 0.58

36 0.25 · rutil + 0.75 · rwt 82.5 114.1 19.0 0.72
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Figure A9.1: Comparison of benchmark heuristics in Scenario 1 and 2 (top). The colouring
indicates the solution index to capture the association between one solution in
both scenarios. The quadrants (bottom) depict the probability that a solution that
is in a specific quadrant in the solution space of Scenario 1 is also in that same
quadrant in Scenario 2. The limits of the quadrants are defined by the minimum
and maximum value of the respective solution space.

1Due to the limited number of data points, i.e. just four benchmark heuristics, these results need to be interpreted
with caution.
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A10 Additional computational results
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Figure A10.1: Comparing moving mean reward for Agents 37 and 38 imitating the NJF*
performance for two γ-values in Scenario 1.
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Figure A10.2: Frequency of the number of feasible actions at the decision point for a single
simulation run of Agent 12 in Scenario 1, based on the last 500,000 actions.



Band 0
Dr.-Ing. Wu Hong-qi

Adaptive Volumenstromregelung mit Hilfe von drehzahlgeregelten 
Elektroantrieben 

Band 1
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Band 7
Dr.-Ing. Paul Stauss

Automatisierte Inbetriebnahme und Sicherung der Zuverlässigkeit und 
Verfügbarkeit numerisch gesteuerter Fertigungseinrichtungen

Band 8
Dr.-Ing. Günter Möckesch

Konzeption und Realisierung eines strategischen, integrierten 
Gesamtplanungs- und -bearbeitungssystems zur Optimierung der 
Drehteilorganisation für auftragsbezogene Drehereien 

Band 9
Dr.-Ing. Thomas Oestreicher

Rechnergestützte Projektierung von Steuerungen 

Band 10
Dr.-Ing. Thomas Selinger

Teilautomatisierte werkstattnahe NC-Programmerstellung im Umfeld einer 
integrierten Informationsverarbeitung 

Band 11
Dr.-Ing. Thomas Buchholz

Prozessmodell Fräsen, Rechnerunterstützte Analyse, Optimierung 
und Überwachung 

Band 12
Dr.-Ing. Bernhard Reichling

Lasergestützte Positions- und Bahnvermessung von Industrierobotern 

Band 13
Dr.-Ing. Hans-Jürgen Lesser

Rechnergestützte Methoden zur Auswahl anforderungsgerechter  
Verbindungselemente 

Band 14
Dr.-Ing. Hans-Jürgen Lauffer

Einsatz von Prozessmodellen zur rechnerunterstützten Auslegung  
von Räumwerkzeugen 

Band 15
Dr.-Ing. Michael C. Wilhelm

Rechnergestützte Prüfplanung im Informationsverbund moderner  
Produktionssysteme 



Band 16
Dr.-Ing. Martin Ochs

Entwurf eines Programmsystems zur wissensbasierten Planung 
und Konfigurierung 

Band 17
Dr.-Ing. Heinz-Joachim Schneider

Erhöhung der Verfügbarkeit von hochautomatisierten 
Produktionseinrichtungen mit Hilfe der Fertigungsleittechnik 

Band 18
Dr.-Ing. Hans-Reiner Ludwig

Beanspruchungsanalyse der Werkzeugschneiden beim Stirnplanfräsen 

Band 19
Dr.-Ing. Rudolf Wieser

Methoden zur rechnergestützten Konfigurierung von Fertigungsanlagen 

Band 20
Dr.-Ing. Edgar Schmitt

Werkstattsteuerung bei wechselnder Auftragsstruktur 

Band 21
Dr.-Ing. Wilhelm Enderle

Verfügbarkeitssteigerung automatisierter Montagesysteme 
durch selbsttätige Behebung prozessbedingter Störungen 

Band 22
Dr.-Ing. Dieter Buchberger

Rechnergestützte Strukturplanung von Produktionssystemen 

Band 23
Prof. Dr.-Ing. Jürgen Fleischer

Rechnerunterstützte Technologieplanung für die flexibel 
automatisierte Fertigung von Abkantteilen

Band 24
Dr.-Ing. Lukas Loeffler

Adaptierbare und adaptive Benutzerschnittstellen 

Band 25
Dr.-Ing. Thomas Friedmann

Integration von Produktentwicklung und Montageplanung durch neue  
rechnergestützte Verfahren 



Band 26
Dr.-Ing. Robert Zurrin

Variables Formhonen durch rechnergestützte Hornprozesssteuerung 

Band 27
Dr.-Ing. Karl-Heinz Bergen

Langhub-Innenrundhonen von Grauguss und Stahl mit einem 
elektromechanischem Vorschubsystem 

Band 28
Dr.-Ing. Andreas Liebisch

Einflüsse des Festwalzens auf die Eigenspannungsverteilung und die  
Dauerfestigkeit einsatzgehärteter Zahnräder 

Band 29
Dr.-Ing. Rolf Ziegler

Auslegung und Optimierung schneller Servopumpen 

Band 30
Dr.-Ing. Rainer Bartl

Datenmodellgestützte Wissensverarbeitung zur Diagnose und 
Informationsunterstützung in technischen Systemen 

Band 31
Dr.-Ing. Ulrich Golz

Analyse, Modellbildung und Optimierung des Betriebsverhaltens von  
Kugelgewindetrieben 

Band 32
Dr.-Ing. Stephan Timmermann

Automatisierung der Feinbearbeitung in der Fertigung von 
Hohlformwerkzeugen 

Band 33
Dr.-Ing. Thomas Noe

Rechnergestützter Wissenserwerb zur Erstellung von Überwachungs- und 
Diagnoseexpertensystemen für hydraulische Anlagen 

Band 34
Dr.-Ing. Ralf Lenschow

Rechnerintegrierte Erstellung und Verifikation von Steuerungsprogrammen 
als Komponente einer durchgängigen Planungsmethodik 



Band 35
Dr.-Ing. Matthias Kallabis

Räumen gehärteter Werkstoffe mit kristallinen Hartstoffen 

Band 36
Dr.-Ing. Heiner-Michael Honeck

Rückführung von Fertigungsdaten zur Unterstützung einer 
fertigungsgerechten Konstruktion 

Band 37
Dr.-Ing. Manfred Rohr

Automatisierte Technologieplanung am Beispiel der Komplettbearbeitung 
auf Dreh-/Fräszellen 

Band 38
Dr.-Ing. Martin Steuer

Entwicklung von Softwarewerkzeugen zur wissensbasierten
Inbetriebnahme von komplexen Serienmaschinen 

Band 39
Dr.-Ing. Siegfried Beichter

Rechnergestützte technische Problemlösung bei der 
Angebotserstellung von flexiblen Drehzellen 

Band 40
Dr.-Ing. Thomas Steitz

Methodik zur marktorientierten Entwicklung von Werkzeugmaschinen mit 
Integration von funktionsbasierter Strukturierung und Kostenschätzung 

Band 41
Dr.-Ing. Michael Richter

Wissensbasierte Projektierung elektrohydraulischer Regelungen 

Band 42
Dr.-Ing. Roman Kuhn

Technologieplanungssystem Fräsen. Wissensbasierte Auswahl von Werkzeugen, 
Schneidkörpern und Schnittbedingungen für das Fertigingsverfahren Fräsen
 
Band 43
Dr.-Ing. Hubert Klein

Rechnerunterstützte Qualitätssicherung bei der Produktion von 
Bauteilen mit frei geformten Oberflächen 



Band 44
Dr.-Ing. Christian Hoffmann

Konzeption und Realisierung eines fertigungsintegrierten Koordinaten-
messgerätes 

Band 45
Dr.-Ing. Volker Frey

Planung der Leittechnik für flexible Fertigungsanlagen 

Band 46
Dr.-Ing. Achim Feller

Kalkulation in der Angebotsphase mit dem selbsttätig abgeleiteten  
Erfahrungswissen der Arbeitsplanung 

Band 47
Dr.-Ing. Markus Klaiber

Produktivitätssteigerung durch rechnerunterstütztes Einfahren 
von NC-Programmen 

Band 48
Dr.-Ing. Roland Minges

Verbesserung der Genauigkeit beim fünfachsigen Fräsen von Freiformflächen 

Band 49
Dr.-Ing. Wolfgang Bernhart

Beitrag zur Bewertung von Montagevarianten: Rechnergestützte Hilfsmittel zur 
kostenorientierten, parallelen Entwicklung von Produkt und Montagesystem 

Band 50
Dr.-Ing. Peter Ganghoff

Wissensbasierte Unterstützung der Planung technischer Systeme: 
Konzeption eines Planungswerkzeuges und exemplarische Anwendung 
im Bereich der Montagesystemplanung

Band 51
Dr.-Ing. Frank Maier

Rechnergestützte Prozessregelung beim flexiblen Gesenkbiegen durch  
Rückführung von Qualitätsinformationen 

Band 52
Dr.-Ing. Frank Debus

Ansatz eines rechnerunterstützten Planungsmanagements für die Planung  
in verteilten Strukturen 



Band 53
Dr.-Ing. Joachim Weinbrecht

Ein Verfahren zur zielorientierten Reaktion auf Planabweichungen in der 
Werkstattregelung 

Band 54
Dr.-Ing. Gerd Herrmann

Reduzierung des Entwicklungsaufwandes für anwendungsspezifische  
Zellenrechnersoftware durch Rechnerunterstützung 

Band 55
Dr.-Ing. Robert Wassmer

Verschleissentwicklung im tribologischen System Fräsen: Beiträge 
zur Methodik der Prozessmodellierung auf der Basis tribologisher  
Untersuchungen beim Fräsen 

Band 56
Dr.-Ing. Peter Uebelhoer

Inprocess-Geometriemessung beim Honen 

Band 57
Dr.-Ing. Hans-Joachim Schelberg

Objektorientierte Projektierung von SPS-Software 

Band 58
Dr.-Ing. Klaus Boes

Integration der Qualitätsentwicklung in featurebasierte CAD/CAM-Prozessketten 

Band 59
Dr.-Ing. Martin Schreiber

Wirtschaftliche Investitionsbewertung komplexer Produktions- 
systeme unter Berücksichtigung von Unsicherheit 

Band 60
Dr.-Ing. Ralf Steuernagel

Offenes adaptives Engineering-Werkzeug zur automatisierten 
Erstellung von entscheidungsunterstützenden Informationssystemen 

Band 62
Dr.-Ing. Uwe Schauer

Qualitätsorientierte Feinbearbeitung mit Industrierobotern: Regelungsansatz 
für die Freiformflächenfertigung des Werkzeug- und Formenbaus 



Band 63
Dr.-Ing. Simone Loeper

Kennzahlengestütztes Beratungssystem zur Verbesserung der
Logistikleistung in der Werkstattfertigung 

Band 64
Dr.-Ing. Achim Raab

Räumen mit hartstoffbeschichteten HSS-Werkzeugen 

Band 65, 
Dr.-Ing. Jan Erik Burghardt

Unterstützung der NC-Verfahrenskette durch ein bearbeitungs- 
elementorientiertes, lernfähiges Technologieplanungssystem 

Band 66
Dr.-Ing. Christian Tritsch

Flexible Demontage technischer Gebrauchsgüter: Ansatz zur Planung und 
(teil-)automatisierten Durchführung industireller Demontageprozesse

Band 67
Dr.-Ing. Oliver Eitrich

Prozessorientiertes Kostenmodell für die entwicklungsbegleitende Vorkalkulation 

Band 68
Dr.-Ing. Oliver Wilke

Optimierte Antriebskonzepte für Räummaschinen - Potentiale zur Leistungs-
steigerung 

Band 69
Dr.-Ing. Thilo Sieth

Rechnergestützte Modellierungsmethodik zerspantechnologischer Prozesse 

Band 70
Dr.-Ing. Jan Linnenbuerger

Entwicklung neuer Verfahren zur automatisierten Erfassung der geometri-
schen Abweichungen an Linearachsen und Drehschwenkköpfen 

Band 71
Dr.-Ing. Mathias Klimmek

Fraktionierung technischer Produkte mittels eines frei beweglichen  
Wasserstrahlwerkzeuges 



Band 72
Dr.-Ing. Marko Hartel

Kennzahlenbasiertes Bewertungssystem zur Beurteilung der 
Demontage- und Recyclingeignung von Produkten 

Band 73
Dr.-Ing. Jörg Schaupp

Wechselwirkung zwischen der Maschinen- und Hauptspindelantriebsdynamik 
und dem Zerspanprozess beim Fräsen 

Band 74
Dr.-Ing. Bernhard Neisius

Konzeption und Realisierung eines experimentellen Telemanipulators  
für die Laparoskopie 

Band 75
Dr.-Ing. Wolfgang Walter

Erfolgsversprechende Muster für betriebliche Ideenfindungsprozesse. 
Ein Beitrag zur Steigerung der Innovationsfähigkeit 

Band 76
Dr.-Ing. Julian Weber

Ein Ansatz zur Bewertung von Entwicklungsergebnissen in virtuellen Szenarien 

Band 77
Dr.-Ing. Dipl. Wirtsch.-Ing. Markus Posur

Unterstützung der Auftragsdurchsetzung in der Fertigung durch  
Kommunikation über mobile Rechner 

Band 78
Dr.-Ing. Frank Fleissner

Prozessorientierte Prüfplanung auf Basis von Bearbeitungsobjekten für die 
Kleinserienfertigung am Beispiel der Bohr- und Fräsbearbeitung 

Band 79
Dr.-Ing. Anton Haberkern

Leistungsfähigere Kugelgewindetriebe durch Beschichtung 

Band 80
Dr.-Ing. Dominik Matt

Objektorientierte Prozess- und Strukturinnovation (OPUS) 



Band 81
Dr.-Ing. Jürgen Andres

Robotersysteme für den Wohnungsbau: Beitrag zur Automatisierung des 
Mauerwerkabaus und der Elektroinstallation auf Baustellen 

Band 82
Dr.-Ing. Dipl.Wirtschaftsing. Simone Riedmiller

Der Prozesskalender - Eine Methodik zur marktorientierten 
Entwicklung von Prozessen 

Band 83
Dr.-Ing. Dietmar Tilch

Analyse der Geometrieparameter von Präzisionsgewinden auf der Basis einer 
Least-Squares-Estimation 

Band 84
Dr.-Ing. Dipl.-Kfm. Oliver Stiefbold

Konzeption eines reaktionsschnellen Planungssystems für Logistikketten auf 
Basis von Software-Agenten 

Band 85
Dr.-Ing. Ulrich Walter

Einfluss von Kühlschmierstoff auf den Zerspanprozess beim Fräsen: Beitrag 
zum Prozessverständniss auf Basis von zerspantechnischen Untersuchungen 

Band 86
Dr.-Ing. Bernd Werner

Konzeption von teilautonomer Gruppenarbeit unter Berücksichtigung  
kultureller Einflüsse 

Band 87
Dr.-Ing. Ulf Osmers

Projektieren Speicherprogrammierbarer Steuerungen mit Virtual Reality 

Band 88
Dr.-Ing. Oliver Doerfel

Optimierung der Zerspantechnik beim Fertigungsverfahren 
Wälzstossen: Analyse des Potentials zur Trockenbearbeitung 

Band 89
Dr.-Ing. Peter Baumgartner

Stufenmethode zur Schnittstellengestaltung in der internationalen Produktion



Band 90
Dr.-Ing. Dirk Vossmann

Wissensmanagement in der Produktentwicklung durch Qualitäts- 
methodenverbund und Qualitätsmethodenintegration

Band 91
Dr.-Ing. Martin Plass

Beitrag zur Optimierung des Honprozesses durch den Aufbau einer  
Honprozessregelung 

Band 92
Dr.-Ing. Titus Konold

Optimierung der Fünfachsfräsbearbeitung durch eine kennzahlen- 
unterstützte CAM-Umgebung 

Band 93
Dr.-Ing. Jürgen Brath

Unterstützung der Produktionsplanung in der Halbleiterfertigung durch 
risikoberücksichtigende Betriebskennlinien 

Band 94
Dr.-Ing. Dirk Geisinger
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