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Abstract -- This paper presents an extended dq0-model for 

small delta-connected Permanent Magnet Synchronous 

Machines (PMSM), the design of a prototype and the 

parameterization of the model parameters by testbench 

measurement. The familiar dq-fundamental equations are 

thereby extended to consider harmonic effects. This allows the 

inclusion of the zero-sequence flux-linkage. The model, based on 

the dq0-flux-linkages and the stator resistance, enables the 

calculation of the zero-sequence current and a more precise 

inner torque estimation compared to state of the art fundamental 

models. The rotor position dependent dq-flux-linkage estimation 

is based on the measured dq-voltages and the solution of the 

simplified differential system equation. Detection of the zero-

sequence current yields to the zero-sequence flux-linkage. In this 

paper, we also present a prototype design of a PMSM machine 

with additional zero-sequence current sensing. Testbench 

measurement at constant controlled currents enables the 

parameter identification. For validation, the identified 

parameters are compared with existing Finite Element Analysis. 

 
Index Terms – Electric machines, delta connection, Fourier 

analyses, parameter extraction, permanent magnet machines, 

system identification, system modelling, zero-sequence current.  

I.   INTRODUCTION 

mall electric drives with power from a few hundred watts 

up to one kilo watt, developed for car actuators, 

drivetrains, electric bikes or scooters, are nowadays often 

realized as PMSM. For mass production, these machines are 

designed with concentrated- and delta-connected stator 

windings. The nonlinear magnetic circuit, spatial harmonics 

and the zero-sequence flux- and current-component yield to 

additional losses, desaturation effects and additional torque 

ripple [1]. State of the art equivalent circuit models are 

fundamental dq-models considering saturation based on mean 

values, without rotor position dependencies, as shown in [2]. 

Therefore, in the past the delta-connected PMSMs were often 

described and analyzed as converted star connected PMSMs 

by wye/delta- transformation. The different electromagnetic 

behaviour concerning the flux-linkages as well as the missing  

zero-sequence components, leads to less precise and possibly 

incorrect model descriptions [3]. But the quality of model 

based control algorithms as well as precise system simulation 

rely on a detailed model descriptions and their parameters. 
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Due to slotting and other design parameters of electrical 

machines, torque distortion is unpreventable. But precise 

machine models filled with flux-linkage lookup tables based 

on the currents, the rotor speed and the rotor position enable 

modern inner torque / or noise distortion compensation 

algorithms. Smooth output torque can, for example, achieved 

with rotor position depended torque reference lookup tables, 

Fig. 1. 
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Fig. 1  Control strategy and MTPA/MTPV rotor position and reference 
torque lookup tables (in red) for the dq-currents and smooth output torque 

of the machine. 

Moreover, for model based self-sensing [4] and fault detection 

algorithms of delta-connected PMSMs precise models with 

the knowledge of also the zero-sequence components, even in 

simulation, are mandatory. 

Several models and identification methods were presented in 

the past. In [5], an extended model is derived with position 

dependent flux-linkages and incremental inductances for a 

precise description of the inner torque ripple at constant and 

various currents. For parameter identification of this model a 

simplified approach is used due to the current distortion at 

testbench control. In [6], an extended model of the inner 

torque of star-connected PMSMs based on dq-flux-linkages is 

described. Testbench measurements of the permanent magnet 

flux-linkage are done at steady-state with harmonic analysis 

of the back-EMF. Additional, locked-rotor tests enable 

calculation of differential inductances of each rotor position. 

Compared to the aforementioned methods of modelling and 

parameterization, this paper shows the parameter 

identification of position dependent flux-linkages only by 

steady-state testing at constant currents at different rotor 

speeds. With this parameterized dq0-flux-linkages, the 

precise inner torque and the zero-sequence current at any time 

can be calculated. The build-up and FEA analysis of the flux-

linkages of the investigated PMSM Device Under Test (DUT) 

is shown. Furthermore, the additional zero-sequence current 

sensing is motivated and the implementation into the phase 

interconnector is displayed. With the implemented repetitive 

control algorithm, constant controlled currents can be applied 

and enable the parameter identification. The necessary 

parameterization algorithm is thereby briefly explained and 

implemented in the post processing of the measured data. 
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II.   DQ0 - MODEL  

The dq0-model of the equivalent circuit is shown in Fig. 2 

and derived in the following. We assume three symmetric, 

delta-connected stator windings. For simplification, the 

friction as well as the iron losses are neglected. Furthermore, 

dielectric currents, thermal, skin and proximity effects are not 

considered. 

The machines three phase stator voltage equations are derived 

from Ohm’s law, Kirchhoff’s law and the Maxwell’s 
equations. Park-transformation, including the zero-sequence 

component [6], from the stator-oriented three phase system to 

the rotor-oriented dq0-reference frame yields the 

equations (1) to (3).  𝑣d = 𝑅𝑖d + d𝜓dd𝑡 − 𝜔𝜓q (1) 𝑣q = 𝑅𝑖q + d𝜓qd𝑡 + 𝜔𝜓d (2) 𝑣0 = 𝑅𝑖0 + d𝜓0d𝑡  (3) 

The ohmic resistance of the stator windings is 𝑅 and the 

electric angular frequency is 𝜔. The voltage, flux-linkage and 

current components of the direct-axis and quadrature-axis are 𝒗𝑥, 𝝍𝑥 and 𝒊𝑥 with 𝑥 ∈ {d, q}, while 𝑣0, 𝜓0 and 𝑖0 are the zero-

sequence components. As the sum of the phase voltages of 

delta-connected machines equals zero at every point in time, 

the voltage 𝑣0  equals zero too (Kirchhoff’s second law). 

 
Fig. 2  Delta-connected PMSM with the zero-sequence current 𝑖0, the phase 

current 𝑖12 and the terminal current 𝑖1. 

The flux-linkages 𝝍dq0 can described, as also in [7] shown, 

as a function of 𝒇(𝑖d, 𝑖q, 𝛾, 𝜔) with 𝛾 as the electric rotor 

angular. The zero-sequence flux-linkage is thereby assumed 

to be independent of the zero-sequence current because this 

current cannot be directly controlled. The machine voltage 

equations (1) to (3) can rewritten, considering the total 

derivative of the flux-linkages with the partial derivations, as 

derived in [8]. Constant currents and constant rotor speed 

yield to disappearing time-derivatives of the currents in the 

voltage equations and allow the simplification of the 

equations as seen in (6) and (7). Furthermore, the flux-

linkages and the stator resistance at steady-state operation 

allow the inner torque and zero-sequence current calculation, 

[7]. Due to this, the inner torque can be calculated considering 

the inner power of the machine and the power balance with 

the mechanical power, as described in [9]. The inner torque 𝑇i 
is represented only through the time-variant rotor position 

flux-linkages and the currents, as shown in equation (4). 

Thereby 𝑝 denotes the number of pole pairs, the factor 3/2 is 

due to the amplitude invariant transformation. As explained 

in [6,10], the effects of cogging torque cannot be calculated 

properly with electrical quantities and are therefore neglected 

in the following. In equation (4), the term 
3𝑝2  (𝜓d𝑖q −  𝜓q𝑖d) 

describes the already known fundamental torque 𝑇i,fnd.. The 

terms 
∂𝜓dq0∂𝛾 𝑖dq0 supplement the fundamental equation [6], 

they are denoted as dynamic inner torque and describe the 

rotor angular position dependent inner torque of the machine. 𝑇i = 3𝑝2 ((𝜓d𝑖q − 𝜓q𝑖d) + (∂𝜓d∂𝛾 𝑖d + ∂𝜓q∂𝛾 𝑖q + 2 ∂𝜓0∂𝛾 𝑖0)) (4) 

The extended dq0-model enables also the zero-sequence 

current calculation. The evaluation of the partial derivation of 

the zero-flux-linkage at steady-state operation yields the zero-

sequence current, with 𝜔 = ∂𝛾/d𝑡. 𝑖0 =  − 1𝑅 ∂𝜓0  ∂𝛾 𝜔 (5) 

III.   PARAMETERIZATION APPROACH 

For the identification of the parameters, the dq-voltages and 

the zero-sequence current from testbench measurement and 

FEA simulation are evaluated. The flux-linkages 𝝍dq0(𝑖d,𝑖q, 𝛾, 𝜔) at different constant rotor speeds are 

simplified to 𝝍dq0(𝑖d,𝑖q, 𝛾)|𝜔=const.. 
A.   Stator Resistance 

The stator resistance can be measured directly. Assuming a 

balanced stator resistance and applying a constant DC-current 𝑖DC with a DC-source at terminals ‘1’ and ‘2’ at defined 

thermal conditions yields the voltage drop 𝑣12. Considering 

the machines ohmic voltage divider 𝑅 =  32 𝑣12𝑖DC yields the 

stator resistance of the model.  

B.   DQ-Flux-Linkage 

Ideal constant dq-currents, at constant rotor speed enable, 

as motivated, the simplification of the voltage equations (1) to 

(3). Due to this, the time-dependent dq-currents vanish and 

the flux-linkage can be further simplified to 𝝍dq0(𝛾)|𝜔,𝑖d,𝑖q=const. which lead to the simplified voltage 

equations (6) and (7). 𝑣d = 𝑅𝑖d + ∂𝜓d∂𝛾 d𝛾d𝑡 − 𝜔𝜓q𝑖d (6) 𝑣q = 𝑅𝑖q + ∂𝜓q∂𝛾 d𝛾d𝑡 + 𝜔𝜓d𝑖q (7) 

For the solution of these coupled differential equations the 

“separation of the variables” method, as described in detail in 

[7], is used. Thereby the measurable voltage time-series can 

rewritten as a Fourier series as shown in equation (8), 𝜌 

denotes thereby the order of the investigated harmonic 

frequency in the dq-reference frame. 

𝒗dq(𝑡) =  𝒗dq2̅̅ ̅̅ ̅ + ∑ 𝒗dq,a,𝜌 cos(𝜔𝜌𝑡)𝑁2
𝜌=1 + 𝒗dq,b,𝜌sin (𝜔𝜌𝑡) 

(8) 

The general solution 𝑦 of the differential equation is 

assumed as 𝑦  =   𝑦c  +  𝑦p. Equation (9) denotes the 

particular integral 𝑦p of the solution, which is the trivial 

solution of this differential equation. The variables of 𝑦p are 

all time-invariant. (�̅�d�̅�q) = 1𝜔 ( 0 1−1 0) ⋅ ((�̅�d�̅�q) − 𝑅 (𝑖d𝑖q)) (9) 

As a result of 𝑦p the complementary function 𝑦c  includes 

𝑖1  𝑣12  𝑖12  
1  

2  3  
𝑖0  

𝑅 ⋅ 𝑖31  dd𝑡 𝜓31  



  

only the time-variant terms (10), the current or stator 

resistance dependencies are vanished. (𝑣d,𝜌(𝑡)𝑣q,𝜌(𝑡)) = dd𝑡 (𝜓d,𝜌(𝑡)𝜓q,𝜌(𝑡)) + 𝜔 (0 −11 0 ) ⋅ (𝜓d,𝜌(𝑡)𝜓q,𝜌(𝑡)) (10) 

As the flux-linkages are the time-derivatives of the 

voltages, the flux-linkage harmonics are assumed as of the 

same order as the voltage harmonics. Insertion of both 

(voltage and flux-linkage) Fourier series, simplifies the 

complementary function (10) to equation (11). The Fourier 

series coefficients for the voltages are 𝒗dq,ab,𝜌, as shown in 

(8). For the flux-linkages the coefficients are similar defined 

as 𝝍dq,ab,𝜌. 

The matrix 𝑽 denotes all the voltage Fourier coefficients, the 

matrix 𝝍 denotes all the flux-linkage Fourier coefficients. The 

matrix 𝑭 describes a vector with (cos (𝜔𝜌𝑡)sin (𝜔𝜌𝑡)). 𝑽 ⋅ 𝑭(𝜔𝜌𝑡) = dd𝑡 (𝝍 ⋅ 𝑭(𝜔𝜌𝑡)) + 𝜔 (0 −11 0 ) 𝝍 ⋅ 𝑭(𝜔𝜌𝑡) (11) 

After mathematical simplification, with using the method 

of equating coefficients for the system of linear equations 

(11), the Fourier series coefficients of the dq-flux-linkages 

can be calculated directly through the measured voltage 

coefficients, as displayed in (12). 

I. 𝜓d,a,𝜌 = −𝑣q,a,𝜌−𝜌𝑣d,b,𝜌𝜔(𝜌2−1)  

II. 𝜓d,b,𝜌 = −𝑣q,b,𝜌+𝜌𝑣d,a,𝜌𝜔(𝜌2−1)  

III. 𝜓q,a,𝜌 =  𝑣d,a,𝜌−𝜌𝑣q,b,𝜌𝜔(𝜌2−1)  

IV. 𝜓q,b,𝜌 =  𝑣d,b,𝜌+𝜌𝑣q,a,𝜌𝜔(𝜌2−1)  

(12) 

The flux-linkage coefficients 𝝍dq,ab,𝜌 of each 𝜌 describes 

the Fourier series of the flux-linkages 𝝍dq at constant rotor 

speed ω and constant currents 𝒊dq. Evaluation of the Fourier 

series for each 𝜌 leads to the estimated flux-linkage time-

series 𝝍dq(𝑡) with 𝛾(𝑡) = 𝜔𝑡. The flux-linkage time-series 

can rewritten as 𝝍dq(𝑖d, 𝑖q, 𝛾)|𝜔=const., [7]. 

C.   Zero-Sequence Flux-Linkage 

For zero-sequence flux-linkage parameterization terminal 

current sensors, measuring 𝑖1,2,3 are not sufficient, additional 

phase current sensors, measuring 𝑖12,23,31 are necessary. The 

zero-sequence current 𝑖0 can calculated through (13). 𝑖0 = 13 (𝑖12 + 𝑖23 + 𝑖31) (13) 

According equation (3) with 𝑢0 = 0 V for delta-connected 

PMSMs, the mathematical integration of the ohmic voltage 

drop of 𝑖0 over the stator resistance 𝑅 results in the flux-

linkage 𝜓0(𝑖d, 𝑖q, 𝑡) as shown in equation (14). As motivated 

before, 𝜓0(𝑖d, 𝑖q, 𝑡) can be rewritten as 𝜓0(𝑖d, 𝑖q, 𝛾)|𝜔=const.. ∫ 𝑅𝑖0𝑡1𝑡0 d𝑡 = 𝜓0 (14) 

IV.   DEVICE UNDER TEST 

A.   Requirements 

For the determination of the zero-sequence currents, 

control as well as precise and symmetrical measurement of 

the phase currents 𝑖12,23,31 is mandatory. With purchasable 

delta-connected PMSM machines, measurement of these 

inner currents is difficult or even impossible. Therefore, a 

special DUT was created with a possible delta- and star- 

connection of the phases. The requirements for this machine 

differs from the typical design issues. The goal was the design 

of an easy manufacturable PMSM with visible iron saturation 

for valid zero-sequence currents and preferably symmetrical 

phase current measurement. Furthermore, the peak torque has 

to be smaller than 8.5 Nm with a maximum power smaller 

than 1 kW because of the maximum quantities of the available 

testbench, inverters and load machine. 

B.   Machine Design 

Due to the manual manufacturing process of the DUT 

PMSM, an available commercial stator and rotor lamination 

from Kienle + Spiess of the type KSPM 80/4.70 was selected. 

The DUT is built with distributed windings. The stator and 

rotor lamination is shown in Fig. 3 (a), the main properties of 

the design are listed in Table I. 

 
(a) 

 
(b) 

Fig. 3.  (a) Quarter of the stator and rotor lamination of the DUT. (b) Stator 
body with connectors for assembly of a printed circuit board, encapsulated 

with epoxy resin. 

The machine mechanics as body, bearing shields and the 

shaft are standardized parts. The stator body including the 

windings, the connectors for a Printed Circuit Board (PCB) 

and additional thermocouples are encapsulated with epoxy 

resin for thermal and mechanical linkage as shown in Fig. 3 

(b). The rotor lamination with the magnetized NdFeB magnets 

is mounted on a shaft. The machines design process, 

analytical calculations, winding placement was done 

equivalent as described in [9]. The windings are serially 

connected; the three phases are delta-connected, the phase 

connectors are accessible from the outside. 

TABLE I 

MAIN DESIGN PROPERTIES OF THE DEVICE UNDER TEST 

Quantities Symbol Value 

Num. of pole pairs 𝑝 2 

Num. of  phases 𝑚 3 

Num. of slots per pole per phases 𝑞 2 
Num. of winding turns 𝑁t 23 

Num. of slots 𝑁s 24 
Inner stator diameter 𝐷i 70 mm 
Outer stator diameter 𝐷O 120 mm 

Rotor diameter 𝑑i 69 mm 
Length 𝐿Fe 30 mm 

Wire diameter 𝐷𝑤 1.5 mm 

For the additional Finite Element Analysis (FEA) the 

software Flux 2D (Altair) was used. FEA and measurement 

results enable the comparison of both data for a detailed 

analysis. The main quantities for the measurement and the 

FEA are listed in Table II. The permanent magnet flux-

linkage of the FEA as well as the stator resistance was adopted 

from the testbench parameters for improved coherence. 



  

TABLE II 
MAIN QUANTITIES OF THE DEVICE UNDER TEST 

Quantities Symbol Value 

Maximum voltage  𝑣 48 V 
Maximum current  𝑖 16 A 

Nominal speed  𝑛 1000 rpm 
Nominal torque 𝑇 3.3 Nm 

Permanent magnet flux-linkage 𝜓PM 70.1 mVs 
Stator resistance 𝑅 413 mΩ 

C.   Phase Interconnection 

For the symmetrical and low impedance interconnection of 

the three phases, a PCB was designed. Each phase is thereby 

connected to the other via precise current sensors of type 

LEM CKSR-25NP. The PCB contains also shielded signal 

wiring and the power supply connectors, Fig. 4 (a). The 

manufactured and mounted PCB is shown in Fig. 4 (b). 

 
(a) 

 
(b) 

Fig. 4.  (a) PCB interconnection with precise current measurement. 
(b) Mounted and wired PCB without outer bearing shield. 

V.   EXPERIMENTAL SETUP 

A.   Power Electronics and Signal Processing System 

The back to back mounting of the DUT and the Load 

Machine (LM) is shown in Fig. 5 (b). The LM is a PMSM 

type Nanotec DB80C04803-ENM05J. The used voltage 

source inverters have a shared DC-link, supplied by a DC 

power supply. The inverter MOSFETs are of the type 

Texas Instrument CSD19535KCS with a switching frequency 

of 16 kHz. The currents for the control of the DUT are 

detected by the introduced phase current measurement of the 

DUT. The phase voltages are directly measured via precise 

voltage dividers. The sampling frequency of the ADCs, type 

Texas Instrument THS 1206 (12 bit), is 1.5 Msps. The rotor 

speed and the rotor position are determined with a Heidenhain 

ROC1013 13-bit encoder. The control for the LM and the 

DUT each, is done by a TMS320C6748 digital signal 

processor from Texas Instruments. The control period is 62.5 μs, according to the switching frequency of 16 kHz. The 

inverter switching signals are generated on a Cyclone 4 field 

programmable gate array from Altera/Intel. A more detailed 

view of the modular signal processing system can be found 

in [11]. The whole power electronics and signal processing 

system cabinet is shown in Fig. Fig. 5(a). 

B.   Control Algorithm and Parameter Measurement 

The LM is speed controlled by a standard PI type control 

algorithm. The DUT is controlled by a specially designed 

control algorithm for nonlinear machines [2], with additional 

mitigation of the current harmonics. The implementation of 

the control algorithm and the block diagram is adopted 

from [12]. This control algorithm enables nearly ideal 

constant dq-currents on the testbench as required for 

parameterization approach. For the initial fundamental flux-

linkage lookup tables of the controller [2] the estimated FEA 

flux-linkages are used. For the testbench parameter estimation 

of the flux-linkages, various operating points with evenly 

distributed (𝑖d, 𝑖q) currents from −16A to 16A, constant 

speed 𝜔 = 1000 rpm and constant temperatures 𝜗 = 40°C 

are automatically applied by a National Instruments 

LabVIEW routine. The quantities of interest are measured 

with the introduced signal processing system. 
 

 
(a) 

 
(b) 

Fig. 5.  (a) Testbench cabinet with inverters and signal processing, 

(b) mechanical assembly of DUT and LM. 

VI.   RESULTS 

In the following section the identification of the main 

model parameters 𝑅 and 𝝍dq0(𝑖d, 𝑖q, 𝛾)|𝜔=const., for the 

parameter lookup table, is described. The flux-linkages planes 

are visualized for 𝜔 = const., at one defined rotor position. 

For the rotor position dependencies the time-response of the 

flux-linkages, the zero-sequence current and the inner torque 

for an exemplarily operation point with 𝑖d, 𝑖q, 𝜔 = const., is 

shown. 

A.   Stator Resistance Parameterization 

Applying a constant DC-current of 10 A at 𝜗 = 40°C leads 

to a stator resistance of 𝑅 =  0.4125 Ω. The theoretical stator 

resistance, calculated by the material resistivity and the length 

is 𝑅ideal = 0.0556 Ω. The significant difference is due to the 

contact resistances, the interconnection of the windings, the 

PCB and the additional current sensors within the phases. 

B.   DQ-Flux-Linkage Parameterization 

    1)   Time-Variant DQ-Flux-Linkages 

At stationary operation the flux-linkages are still time-

variant since they depend on the rotor angular position. Fig. 6 

draft the principle of the dq-flux-linkage parameterization 

based on measureable voltages, exemplarily with FEA 

generated data for a better visibility and interpretation. In Fig. 

6 (f), the dq-flux-linkages, which have to be identified are 

displayed blue and green. The corresponding and measureable 

dq-voltages are shown in the subfigure (a), also in green and 

blue. The dominant flux-linkage harmonics are the sixth and 

twelfth, [9]. Then, also the dq-voltages show the sixth and 

twelfth harmonics, but in different amplitudes and phasing. 

The parameterization approach from [7], is used to calculate 

the solution of the differential equation 𝑦 =  𝑦c +   𝑦p. 

Thereby, the particular solution 𝑦p is calculated with the dq-

mean-voltage and the stator resistance. The complementary 

solution 𝑦c is reconstructed by permutation of the d- and 

q- axis Fourier voltage coefficients and their factorization 

with their harmonic 𝜌. As an example, the d-axis-voltage 

Fourier coefficients 𝑣d,ab,𝜌 are shown in Fig. 6 (b, c). The 

green crosses in (a), show thereby the d-axis voltage time-

series of the Fourier coefficients for the Fourier analysis 

validation. The calculated q-axis-flux-linkage Fourier 



  

coefficients are shown in (d) and (e). Due to ideal conditions 

in the FEA simulation only the expected harmonics of the 6th 

and 12th of the flux-linkages and voltages are visible [9]. In (f) 

the flux-linkage time-series, based on this Fourier 

coefficients, is drawn as blue circles. The directly FEA 

calculated q-flux-linkage is shown as blue line, both results 

are similar to each other. 

 
Fig. 6 (a) FEA calculated d- and q-axis voltages with the Fourier 

approximated time-series of the d-axis-voltage. (b, c) describes the Fourier 

coefficients of the d-axis voltage. The Fourier coefficients after 

reconstruction of the q-flux-linkage are (d, e). (f) shows the FEA calculated 

dq-flux-linkages. Additionally, the time-series of the parameterized position 

dependent q-flux-linkages is drawn. 

Fig. 7 shows the FEA, the estimated and the with the mean 

values corrected rotor position dependent dq-flux-linkages at 

constant rotor speed and currents. Thereby the FEA calculated 

dq-values are green and blue, the estimated flux-linkages are 

marked with gray dots. The black dashed line is only for 

visibility, without the mean value error: 𝝍dq,corr = �̅�dq,FEA −�̅�dq,MEAS + 𝝍dq,MEAS. Comparing the FEA simulated 

dq-flux-linkages and the estimated dq-flux-linkages, the 

harmonic frequency behavior and the amplitudes of both look 

similar even with the slight phasing error. The mean value 

error �̅�dq,FEA − �̅�dq,MEAS is thereby larger compared to the 

mismatch of the harmonics. There could be many reasons for 

this error. Reasons are, the neglected effect of the 

manufacturing process which influences the simulation 

results. Further, the iron losses are not considered in the FEA 

but visible in the measurement results. For comparability of 

both, without extensive test-bench iron loss characterization, 

the measurement is done at relatively low rotor speed for a 

small impact. Also a non-ideal relation of stator diameter and 

length had to be chosen due to the testbench requirements, 

especially with the available 2D FEA the coil end effects are 

not covered and yield to an additional mismatch. 

Additionally, the permanent magnet parameters as well as the 

iron parameter B(H) curve were only assumed as datasheet 

parameters and the rotor/stator geometry was retraced. Even 

with disregarding all of these effects in the simulation and 

measurement, the flux-linkages of both yield to comparable 

results. The harmonic behavior relies on the geometrical 

design of the slotting of the machine, etc. and behave similar 

results for measurement and calculation. 

 
Fig. 7 FEA simulated, testbench estimated and the corrected testbench 

estimated rotor position dependent dq-flux-linkages at 𝑛 =  1000 rpm with 𝑖d = −7 A and 𝑖q = 11.5 A. 

    2)   DQ-Flux-Linkage Planes 

In Fig. 8 the flux-linkages 𝝍dq(𝑖d, 𝑖q)|𝜔,𝛾=const. are shown. 

Thereby the FEA flux-linkage plane is the colored surface, the 

testbench estimated flux-linkage plane is the gray meshed 

plane.  

  
Fig. 8 (a) d-flux-linkage and (b) q-flux-linkage plane at 𝛾 = 60° and 𝑛 =  1000 rpm. The colored surface is thereby the FEA generated result, the 
gray mesh is the corresponding estimated data. 

The supporting points of the displayed planes are the constant 

dq-currents 𝑖d and 𝑖q. There are flux-linkage planes for each 

rotor position 𝛾 at constant rotor speed 𝜔 as derived in Fig. 6. 

Iron saturation and cross-coupling effects are visible in the 

estimated and simulated flux-linkage planes. The difference 

between the flux-linkage planes from the measurement and 

the simulated data in the d- and q-axis is at least about 10%. 

Possible reasons were discussed before. 

C.   Zero-Sequence Flux-Linkage Parameterization 

    1)   Zero-Sequence Current 

In Fig. 9, the zero-sequence current of an operating point at 

constant dq-currents and constant rotor speed is shown. The 



  

x-axis shows the angular rotor position from 0° to 360°, with 𝛾(𝑡) = 𝜔𝑡. The rotor position dependent zero-sequence 

current 𝑖0 from the FEA simulation is drawn red, the testbench 

measured current is shown as gray dotted line. The 

corresponding dq-currents are blue and green. As described in 

[9], the main harmonic of the zero-sequence current, can be 

identified as a multiple of a third harmonic in relation to the 

fundamental frequency. Thereby the amplitude and the phase 

of the zero-sequence current is dependent on the operating 

point, in this case at  √(𝑖d2 +  𝑖q2 ) = 13.5 A. The peak-to-peak 

(p–p) value of the zero-sequence-current in the FEA 

simulation is approx. 𝑖0,FEA,p−p = 5.5 A. The value of the 

measurement is 𝑖0,MEAS,p−p = 5.2 A. Reasons for the 

difference, are imprecise parameters for the FEA simulations 

as discussed before. Further factors which influence particular 

the zero-sequence current are detailed investigated in [13]. 

For the testbench zero-sequence flux-linkage identification, 

the measurement of the current 𝑖0 is mandatory. 

 
Fig. 9 Rotor position dependent FEA calculated current 𝑖0,FEA and testbench 

measured current 𝑖0,MEAS is displayed at 𝑛 =  1000 rpm at 𝑖d = −7 A and 𝑖q = 11.5 A. 

    2)   Time-Variant Zero-Sequence Flux-Linkage 

Fig. 10 shows the zero-sequence flux-linkage of an 

operating point at constant dq-currents and constant rotor 

speed. The x-axis denotes also one electric rotor angular from 0° to 360°.  

 
Fig. 10 Rotor position dependent FEA calculated zero-sequence flux-linkage 𝜓0,FEA and the testbench estimated zero-sequence flux-linkage 𝜓0,MEAS at 𝑛 =  1000 rpm at 𝑖d = −7 A and 𝑖q = 11.5 A. 

The rotor position dependent flux-linkage 𝜓0 from the FEA 

simulation is red drawn, the measurement result is shown as 

gray dotted line. For the calculation of 𝜓0 as shown in 

equation (14), the measured current and a precise determined 

stator resistance is necessary. The integration of the voltage 

drop of the zero-sequence current at the stator resistance is 

thereby sensitive to stator resistance parameter variations and 

inaccuracy of the current measurements. Despite supposed 

parameter mismatches of the FEA and the measurement 

results, both results look similar and enable further 

calculations based on these quantities. 

    3)   Zero-Sequence Flux-Linkage Plane 

Fig. 11 shows the flux-linkage plane 𝜓0(𝑖d, 𝑖q)|𝜔,𝛾=const.. 
The FEA calculated flux-linkage plane is the colored surface, 

the testbench estimated flux-linkage plane is the gray meshed 

plane. The supporting points of the displayed plane are the 

dq-currents 𝑖dq. There is a flux-linkage plane for each rotor 

position 𝛾 at constant rotor speed 𝜔. The difference between 

the flux-linkage planes from the measurement and the 

simulated data is at least about 16%. As before discussed, the 

reasons for the difference are material data, geometrical 

tolerances, etc. Compared to the dq-flux-linkages as smooth 

surface, the zero-sequence flux-linkage plane appears with 

three raisings due to local iron saturation of the resulting non-

ideal three phase system. During machine operation these 

flux-linkage raisings yield a compensating current due to 

Lenz’s law. These zero-sequence current lowers the zero 

sequence flux-linkage and therefore the iron saturation level 

of the machine. This also influences the behavior of the 

d-  and q-axis flux-linkages. 

 
Fig. 11 Zero-Sequence flux-linkage plane at 𝛾 = 60° and 𝑛 = 1000 rpm. 
The colored surface is thereby the FEA generated result, the gray mesh is the 

corresponding estimated data. 

D.   PMSM Inner Torque 

In Fig. 12 the theoretical torques of the DUT are shown. 

The estimated inner torque 𝑇i,MEAS calculated with (4) is the 

gray dotted line. The FEA inner torque 𝑇i,FEA, also calculated 

with the simulated flux-linkages and the currents is the purple 

line. As described in [6], an additional torque is effective due 

to the stray fluxes within stator and rotor, without coupling 

into the identifiable flux-linkages within the electric domain. 

The characterization of cogging torque is challenging [6] and 

needs extended measurements which is not part of this paper. 

Nevertheless, in FEA this term can be determined and is 

shown as 𝑇FEA in the figure. In the FEA, torque calculation is 

usually based on virtual displacement methods [5], these 

methods allow the full magnetic torque calculation including 

the cogging torque. Considering the cogging torque as 

difference of the inner torque and the FEA torque, it can be 

written as 𝑇COG = 𝑇FEA − 𝑇i,FEA.  

The motivated inner torque representation 𝑇i,FEA is thereby 

an approximation, closer to the real torque 𝑇FEA, compared to 

the state of the art fundamental and constant torque 

representations. This torque is thereby only dependent on the 

identifiable flux-linkages. The differences between the inner 

torque of the FEA and the measurement are due to the 

differences of the identified flux-linkages as described above. 

However, the mean value of the torque and especially the 

occurring harmonic frequencies and their phasing show 

correct behavior in the FEA and the measurement which 

allows a more precise machine torque description for further 

applications. 



  

 
Fig. 12 Rotor position dependent FEA torque 𝑇i,FEA, inner FEA torque 𝑇i,FEA 

and the testbench estimated inner torque 𝑇i,MEAS at 𝑛 =  1000 rpm and 𝑖d =  − 7 A and 𝑖q = 11.5 A. 

VII.   CONCLUSION 

The rotor position and rotor speed dependent dq0-flux-

linkages and the stator resistance, describe a dq0-model for 

delta-connected PMSMs. Usually FEA or extended analytical 

data is used for parameterization of these models. But since 

these data is always just an approximation, testbench 

measurements are desired. There are several theoretical 

parameterization approaches published in the past, but the 

time-variant flux-linkage calculation was still a challenging 

task. This paper shows a suitable testbench parameterization 

approach for the flux-linkages at steady-state testing. For the 

validation a self-build DUT PMSM is presented. The 

additional phase current sensing and the fast repetitive control 

algorithms at the testbench operation in combination with the 

introduced parameter identification scheme according [7] 

enables the full parameter identification. It can be shown that 

it is possible to parameterize rotor position and rotor speed 

depended flux-linkages for the introduced extended dq0-

model. Furthermore, a comparison between the FEA and the 

measurement data is shown and the differences are discussed. 

The extended, testbench parameterized model can be used for 

advanced control algorithms with mitigation of the stationary 

inner torque ripple or sensorless control methods. Also a more 

precise system simulation is feasible, considering the zero-

sequence current losses in the thermal domain calculations 

based on this precise estimated data. 
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