PRL 119, 221802 (2017)

1 DECEMBER 2017

Search for Evidence of the Type-III Seesaw Mechanism in Multilepton Final States in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV

A. M. Sirunyan *et al.*^{*} (CMS Collaboration) (Received 26 August 2017; published 1 December 2017)

A search for a signal consistent with the type-III seesaw mechanism in events with three or more electrons or muons is presented. The data sample consists of proton-proton collisions at $\sqrt{s} = 13$ TeV collected by the CMS experiment at the LHC in 2016 and corresponds to an integrated luminosity of 35.9 fb⁻¹. Selection criteria based on the number of leptons and the invariant mass of oppositely charged lepton pairs are used to distinguish the signal from the standard model background. The observations are consistent with the expectations from standard model processes. The results are used to place limits on the production of heavy fermions of the type-III seesaw model as a function of the branching ratio to each lepton flavor. In the scenario of equal branching fractions to each lepton flavor, heavy fermions with masses below 840 GeV are excluded. This is the most sensitive probe to date of the type-III seesaw mechanism.

DOI: 10.1103/PhysRevLett.119.221802

The discovery of neutrino oscillations established that neutrinos have mass [1]. Among proposed extensions of the standard model (SM) that explain neutrino mass, models based on the seesaw mechanism are an appealing possibility [2-10]. The seesaw mechanism introduces new heavy particles that couple to leptons and to a Higgs boson (H)doublet, and accounts for the smallness of neutrino masses [11–13]. Within the type-III seesaw model [8], the neutrino is considered a Majorana particle whose mass arises from the mediation of new massive fermions that form an SU(2)triplet of heavy Dirac charged leptons Σ^{\pm} and a heavy Majorana neutral lepton Σ^0 . In proton-proton (pp) collisions, these massive fermions may be pair-produced through leading order electroweak interactions, in both charged-charged and charged-neutral pairs. The renewed interest in the type-III seesaw models [14–19] emphasizes the importance of exploring such signatures at the CERN LHC.

We conduct a search for these new massive fermions by examining final states with at least three electrons and muons (including those that come from the decays of tau leptons) [20,21]. Such final states arise from these decays: $\Sigma^{\pm} \rightarrow W^{\pm}\nu_{\ell}, \ \Sigma^{\pm} \rightarrow Z\ell^{\pm}, \ \Sigma^{\pm} \rightarrow H\ell^{\pm}, \ \Sigma^{0} \rightarrow W^{\pm}\ell^{\mp}, \Sigma^{0} \rightarrow Z\nu_{\ell}, \text{ and } \Sigma^{0} \rightarrow H\nu_{\ell}, \text{ where } \ell = e, \mu, \text{ or } \tau.$ The branching fractions are mass dependent. A complete decay chain example would be $\Sigma^{\pm}\Sigma^{0} \rightarrow W^{\pm}\nu W^{\pm}\ell^{\mp} \rightarrow$ $\ell^{\pm}\nu\nu\ell^{\pm}\nu\ell^{\mp}.$ In this search, we consider all 27 different production and decay processes resulting from the decays of each of the $\Sigma^0 \Sigma^+$, $\Sigma^0 \Sigma^-$, and $\Sigma^+ \Sigma^-$ pairs to the nine different pairs of *W*, *Z*, and *H* bosons.

In the model used in this analysis [22], the Σ^{\pm} and Σ^{0} decays are prompt, and gauge invariance ensures that they are degenerate in mass at tree level. The branching fraction (B_{ℓ}) of a heavy fermion to a lepton of flavor ℓ is proportional to $|V_{\ell}|^2/(|V_e|^2 + |V_{\mu}|^2 + |V_{\tau}|^2)$, where V_{ℓ} is the heavy-light fermion mixing angle. A prior CMS search using 7 TeV data excluded heavy fermions with mass (m_{Σ}) below 179 GeV [23], probing a scenario where the branching fractions to all lepton flavors are equal (flavor-democratic scenario, $B_e = B_{\mu} = B_{\tau}$). Using 8 TeV data, the ATLAS Collaboration similarly excluded m_{Σ} below 335 GeV, assuming that the Σ 's decay only to the first two generations of leptons [24]. In this Letter, we probe all values of B_{ℓ} for each flavor of ℓ , subject to the constraint $B_e + B_{\mu} + B_{\tau} = 1$.

We pursue a search in final states with at least three charged leptons. The backgrounds can be classified as the irreducible ones due to the production and decay of dibosons (WZ and ZZ production), and the reducible ones due to the leptonic decay of Z + jets or $t\bar{t}$ + jets accompanied by leptons originating from heavy quark decay, or from misidentification of jets as leptons. In addition, small irreducible contributions to the background arise from other SM processes such as $t\bar{t}W$, $t\bar{t}Z$, triboson (ZZZ, WWZ, etc.), and Higgs boson production.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter, each composed of a barrel and two end cap sections. Forward calorimeters extend the

^{*}Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

pseudorapidity (η) coverage provided by the barrel and end cap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A detailed description of the CMS detector can be found in Ref. [25].

The data sample consists of pp collisions at $\sqrt{s} =$ 13 TeV collected by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 35.9 fb⁻¹. The data for this search are collected using several dilepton triggers based on a two-level trigger system [26]. The double-electron (double-muon) trigger requires two loosely isolated electrons (muons). The transverse momentum (p_T) thresholds on the leading (subleading) lepton are 23 (12) GeV for the double electron, and 17 (8) GeV for the double-muon trigger, respectively. We also use two muon-electron cross-trigger combinations that require a $p_T > 23$ GeV loosely isolated muon (electron) and a $p_T > 8$ GeV loosely isolated electron (muon).

The signal is simulated using MADGRAPH5_aMC@NLO v2.2.2 [27] at leading order precision using the NNPDF30_ lo_as_0130_nf_4 [28] parton distribution functions (PDFs). The signal cross section is calculated at next-to-leading order (NLO) plus next-to-leading logarithmic accuracy, assuming that the heavy leptons, $\Sigma^{\pm,0}$, are SU(2) triplet fermions [29,30]. The diboson backgrounds are generated at NLO with POWHEG 2.0 [31–33]. Backgrounds from Higgs boson production are generated using the POWHEG and JHUGEN 6.2.8 [34–37] generators. Triboson backgrounds are generated using MADGRAPH5_aMC@NLO. Bosonic decays, parton showering, fragmentation, and hadronization are simulated for all samples using PYTHIA 8.212 [38,39].

The response of the CMS detector is simulated using dedicated software based on the GEANT4 toolkit [40]. The presence of multiple pp interactions in the same or adjacent bunch crossing (pileup) [41] is incorporated by simulating additional interactions that are both in time and out of time with the collision.

Events satisfying the trigger are required to pass additional off-line selections. Electrons and muons must satisfy $p_T > 10$ GeV and $|\eta| < 2.5$ ($|\eta| < 2.4$ for muons). Electrons are reconstructed using Gaussian sum filter tracks matched to ECAL superclusters [42]. Muons are reconstructed using the particle-flow (PF) algorithm [43] that utilizes measurements from the tracker, calorimeter, and muon systems to reconstruct candidate muons, photons, and hadrons. Tracks of candidate electrons and muons must satisfy quality requirements and should match geometrically with either energy deposits in the ECAL (for electrons) or tracks in the muon detectors (for muons).

Jets are reconstructed from the PF candidates and electrons using the anti- k_T algorithm [44] with distance parameter R = 0.4. Jets are required to have $p_T \ge 30$ GeV and $|\eta| \le 3.0$ and satisfy quality criteria that remove contributions from pileup. The missing transverse momentum vector \vec{p}_T^{miss} is defined as the projection onto the plane perpendicular to the beam axis of the negative vector sum of the momenta of all reconstructed PF objects in an event [45]. Its magnitude is referred to as p_T^{miss} . Jet energy corrections are applied to all jets and also propagated to the calculation of \vec{p}_T^{miss} .

The reducible backgrounds include leptons inside or near jets and leptons from heavy quark decays. In addition, hadrons that reach the muon detectors, or hadronic showers with large electromagnetic energy fractions can be misidentified as leptons. Henceforth, we refer to all leptons not arising from vector boson decay (either directly or via an intermediate tau lepton) as misidentified leptons. Backgrounds from misidentified leptons are significantly reduced by an isolation requirement comparing the p_T of a lepton to the summed p_T of particles in its neighborhood. We utilize relative isolation, which is defined as the scalar p_T sum, normalized to the lepton p_T , of photon and hadron PF candidates within a cone around the lepton. This relative isolation is required to be less than 25% within a cone of size $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$ for muons, where ϕ is azimuthal angle in radians. For electrons, the relative isolation within a cone of R = 0.3 must be less than 7% (8%) for the reconstructed energy deposits situated in the ECAL barrel $[|\eta| < 1.479]$ (ECAL end cap $[|\eta| > 1.479]$). Charged tracks returned by a jet finding algorithm [44,46] and the corresponding p_T^{miss} are associated with each reconstructed vertex. The vertex with the largest value of Σp_T^2 over the charged tracks and the p_T^{miss} is taken to be the primary *pp* interaction vertex. All isolation quantities are corrected for contributions from particles originating from pileup vertices. Electrons and muons must satisfy $|d_z| < 0.1$ and $|d_{xy}| < 0.05$ cm, where d_z and d_{xy} are the longitudinal and transverse impact parameters of leptons with respect to the primary vertex, respectively. For electrons in the ECAL end cap, we relax these requirements to $|d_z| < 0.2$ and $|d_{xy}| < 0.1$ cm.

For the two leading leptons we apply off-line p_T thresholds of 25 and 15 GeV. Additional leptons must satisfy $p_T > 10$ GeV. With these thresholds, the trigger efficiency for trilepton events is close to 100%. Events containing an opposite-sign same-flavor (OSSF) lepton pair with mass below 12 GeV are vetoed to reduce background from low-mass resonances. We reject trilepton events containing an OSSF pair with mass below 81 GeV when the trilepton mass is within a Z boson mass window (91 ± 10 GeV). This suppresses events from the $Z \rightarrow \ell \ell^* \rightarrow \ell \ell \gamma$ background process, where the photon converts into two additional leptons, one of which is lost.

We classify the selected multilepton events into statistically independent search channels using the number of leptons and OSSF pairs, and other kinematic quantities as described below. The number of OSSF pairs is counted using each lepton once. For example, $\mu^+\mu^+e^-$ is tagged as OSSF0, while $\mu^+\mu^-e^+e^-$ is tagged as OSSF2. We further classify events as "on Z," "below Z," and "above Z," based on the presence and mass of at least one OSSF pair relative to a Z boson mass window, defined as the range 81–101 GeV. In cases of ambiguity (such as $\mu^+\mu^-\mu^-$), the OSSF pair with its mass closest to that of the Z boson takes precedence. We define L_T as the scalar sum of all charged lepton p_T 's, and we use $L_T + p_T^{\text{miss}}$ as the main discriminating variable. This choice allows us to maintain sensitivity to decay modes such as $\Sigma^{\pm} \to \ell^{\pm} Z \to \ell^{\pm} \ell^{\pm} \ell^{\mp}$ with large charged-lepton momenta, as well as $\Sigma^0 \to H\nu \to WW\nu$, where charged lepton p_T 's are lower but the neutrinos contribute to p_T^{miss} . For events with OSSF1 and on Z, the sensitivity is improved by considering the transverse mass, $M_T = \{2p_T^{\text{miss}} p_T^{\ell} | 1 \cos(\vec{p}_T^{\text{miss}}, \vec{p}_T^{\ell})$] $^{1/2}$ using the lepton that is not part of the OSSF pair. Events are grouped in eight bins of width 150 and 100 GeV for $L_T + p_T^{\text{miss}}$ and M_T , respectively. In each case the highest bin includes overflow events.

Altogether, six event categories are considered with eight bins of $L_T + p_T^{\text{miss}}$ in (i) three leptons, OSSF1, above Z; (ii) three leptons, OSSF1, below Z; (iii) three leptons, OSSF0; (iv) four or more leptons, OSSF1; (v) four or more leptons, OSSF2; and eight bins of M_T in (vi) three leptons, OSSF1, on Z. The 48 mutually exclusive signal regions are summarized in Table I.

The irreducible backgrounds are estimated using simulation samples. The dominant processes are WZ and ZZproduction and are normalized to data using dedicated control regions. The WZ control sample consists of events with exactly three leptons, tagged as OSSF1 on Z, satisfying $50 < p_T^{\text{miss}} < 100$ and $M_T > 30$ GeV. The ratio of the predicted WZ rate to data (after correcting for backgrounds other than WZ) is 1.15 ± 0.08 , where the uncertainty includes statistical and systematic contributions. The ZZ control sample consists of events with exactly four leptons, OSSF2, on Z for both pairs, and with $p_T^{\text{miss}} < 50$ GeV. The ratio of the predicted ZZ rate to data is 1.25 ± 0.06 . These factors are used to normalize the WZ and ZZ background estimates. We also use these control regions to verify the modeling of kinematic distributions such as $L_T + p_T^{\text{miss}}$ and M_T . The "rare" irreducible backgrounds from triboson, $t\bar{t}W$,

TABLE I. The signal regions summarized in terms of the number of leptons, the presence of an OSSF pair, and the kinematic variable used for signal discrimination. Each region is divided into eight bins in the kinematic variable, leading to 48 independent signal regions. Additional criteria based on p_T^{miss} ensure that signal and control regions do not overlap.

N _{leptons}	OSSF and mass	Variable	p_T^{miss} requirement
3	OSSF1, on Z	M_T	$p_T^{\text{miss}} > 100 \text{ GeV}$
	OSSF1, above Z	$L_T + p_T^{\text{miss}}$	no requirement
3	OSSF1, below Z	$L_T + p_T^{\text{miss}}$	$p_T^{\text{miss}} > 50 \text{ GeV}$
	OSSF0	$L_T + p_T^{\text{miss}}$	no requirement
≥4	OSSF1	$L_T + p_T^{\text{miss}}$	no requirement
	OSSF2	$L_T + p_T^{\text{miss}}$	$p_T^{\text{miss}} > 50 \text{GeV}$ if on Z

 $t\bar{t}Z$, and Higgs boson processes are estimated from simulated samples using the theoretical cross sections.

The misidentified lepton background is estimated from observations using a three-dimensional implementation of a matrix method [47] in which probabilities (rates) of prompt and misidentified leptons satisfying a loose lepton selection to also pass a tight lepton selection are measured in data using a dilepton selection for prompt leptons, and a trilepton signal-depleted selection (OSSF1, on *Z*, $p_T^{\text{miss}} < 50 \text{ GeV}$) for misidentified leptons. The rates are parametrized as a function of lepton p_T , η and the number of PF candidates around the lepton. The rate measurements are dominated by Z + jets events, and are corrected using simulation to an average of Z + jets and $t\bar{t}$ + jets events.

A residual "conversion" background is also estimated using the data. When a final-state radiation photon from a lepton converts asymmetrically, often only one of the resultant leptons is reconstructed in the detector. To estimate this background, we count trilepton events where the trilepton mass is on Z, but the dilepton mass is below Z. These events are compared with dilepton + photon events where the dilepton invariant mass is below Z, but the combined invariant mass of the two leptons and the photon is on Z. Photons suitable for modeling conversions are selected by ignoring photons that are far away from a lepton or are close to a jet. The photon conversion rates are 3% to 5% depending upon the lepton type and p_T . The conversion background in a signal region is estimated by scaling the observed number of dilepton + photon events with these rates.

As an example of the complete background estimation, Fig. 1 shows the background predictions and the observed events with three leptons, OSSF1, above Z, and for events with four or more leptons, OSSF1, along with systematic uncertainties. The WZ (ZZ) background has a systematic uncertainty of 7% (5%) arising from the normalization factor measurement. The rare backgrounds have an uncertainty of 50% in the theoretical cross section and 2.5% due to the integrated luminosity measurement. The misidentified background has an uncertainty of 30%, which is derived by varying the measured rates up and down for each lepton flavor within their respective uncertainties. This uncertainty is dominated by the differences in rates in Z + jets and $t\bar{t}$ + jets events. The conversion background has an uncertainty of 30% arising from contamination by nonconversion backgrounds in the control sample used to measure the conversion rate.

Corrections are applied to the simulated background events to account for differences from data in lepton identification and isolation efficiencies, dilepton trigger efficiencies, as well as in the overall scale and resolution of energy and momentum measurements for electrons, muons, and jets. The minor uncertainties due to these corrections are considered separately and result in a 1%–10% variation of the simulationbased background yields across all signal regions.

The uncertainties in the signal acceptance due to the PDF uncertainties are estimated by utilizing the replica weights

FIG. 1. The $L_T + p_T^{\text{miss}}$ distribution for events with three leptons and one OSSF pair with mass above Z (upper) and the $L_T + p_T^{\text{miss}}$ distribution for events with four or more leptons and one OSSF pair (lower). The total SM background is shown as a stacked histogram of all contributing processes. The predictions for signal models (sum of all production and decay modes) with $m_{\Sigma} = 700$ (solid line) and $m_{\Sigma} = 380$ GeV (dashed line) are also shown. The lower panels show the ratio of observed to expected events. The hatched gray band in the upper panel, and the dark and light gray bands in the lower panel represent the total, statistical, and systematic uncertainties in the expected background, respectively.

of the NNPDF30_lo_as_0130_nf_4 PDF set [48], and are found to be less than 3% in all signal bins. The signal yields also have uncertainties due to the integrated luminosity measurement (2.5%) and the corrections applied to the simulation samples mentioned in the previous paragraph.

We observe no statistically significant excess in the various signal regions that we probe. We calculate a 95% confidence level (CL) upper limit on the sum of cross sections for the production of heavy fermion pairs $(\Sigma^0 \Sigma^+, \Sigma^0 \Sigma^-, \text{ and } \Sigma^+ \Sigma^-)$ using the CL_s criterion [49–52]. We consider all sources of systematic and statistical uncertainties as nuisance parameters, with log-normal and gamma prior distributions, respectively, and perform a simultaneous fit across all search regions. Figure 2 shows the upper limits on the cross section in the flavor-democratic scenario where the observed (expected) limit

FIG. 2. The 95% confidence level upper limits on the cross section for production of heavy fermion pairs ($\Sigma^0 \Sigma^+$, $\Sigma^0 \Sigma^-$, and $\Sigma^+ \Sigma^-$). Also shown is the theoretical prediction for the cross section of the Σ pair production via the type-III seesaw mechanism, with its uncertainty. In the flavor-democratic scenario ($B_e = B_\mu = B_\tau$), heavy fermion pair production is excluded for masses below 840 GeV.

on masses of heavy fermions is 840 (780) GeV. The signal cross section has an uncertainty of approximately 5%–15% due to choices of PDFs, and factorization and renormalization scales in the mass range we consider. Figure 3 shows the expected and observed excluded mass limits in the B_e - B_τ plane [note that $B_\mu = 1 - (B_e + B_\tau)$]. The limits are the most restrictive when the Σ branching fraction to either electron or muon flavor is maximal, and become less restrictive as the branching fraction to τ flavor increases.

FIG. 3. The 95% confidence level expected (upper) and observed (lower) limits on the heavy fermion mass m_{Σ} (GeV) for each combination of branching fractions to the individual lepton flavors. The color scale represents the mass exclusion limit obtained at each point. The branching fraction to μ can be obtained from $B_{\mu} = 1 - [B_e + B_{\tau}]$. The highlighted box indicates the limit on m_{Σ} for the flavor-democratic scenario ($B_e = B_{\mu} = B_{\tau}$).

In summary, a search has been performed for type-III seesaw heavy fermions in multilepton final states using 35.9 fb⁻¹ of *pp* collision data at $\sqrt{s} = 13$ TeV, collected using the CMS detector. No significant discrepancies are observed between the data and the standard model prediction. Assuming degenerate heavy fermion masses, previously unexplored regions of the signal model as a function of the branching ratio of heavy fermions to each lepton flavor are excluded. In the lepton-flavor democratic scenario ($B_e = B_\mu = B_\tau$), heavy fermions with mass below 840 GeV are excluded at 95% confidence level. In the τ -phobic case ($B_{\tau} = 0, B_e + B_{\mu} = 1$) the mass limits range from 900 GeV in the pure electron scenario to 930 GeV in the pure muon scenario. In the electron- or muon-phobic case $(B_{\tau} = 1, B_e + B_{\mu} = 0)$ the mass limit is 390 GeV. These are the strongest constraints to date on the mass of heavy fermions associated with the type-III seesaw mechanism.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

- [2] P. Minkowski, $\mu \rightarrow e\gamma$ at a rate of one out of 10⁹ muon decays?, Phys. Lett. **67B**, 421 (1977).
- [3] R. N. Mohapatra and Goran Senjanoviç, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44, 912 (1980).
- [4] M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94, 61 (1980).
- [5] R. N. Mohapatra and G. Senjanovic, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23, 165 (1981).
- [6] J. Schechter and J. W. F. Valle, Neutrino masses in $SU(2) \otimes U(1)$ theories, Phys. Rev. D **22**, 2227 (1980).
- [7] J. Schechter and J. W. F. Valle, Neutrino decay and spontaneous violation of lepton number, Phys. Rev. D 25, 774 (1982).
- [8] R. Foot, H. Lew, X. G. He, and G. C. Joshi, See-saw neutrino masses induced by a triplet of leptons, Z. Phys. C 44, 441 (1989).
- [9] R. N. Mohapatra, Mechanism for Understanding Small Neutrino Mass in Superstring Theories, Phys. Rev. Lett. 56, 561 (1986).
- [10] R. N. Mohapatra and J. W. F. Valle, Neutrino mass and baryon-number nonconservation in superstring models, Phys. Rev. D 34, 1642 (1986).
- [11] W. Wang and Z.-L. Han, Naturally small Dirac neutrino mass with intermediate $SU(2)_L$ multiplet fields, J. High Energy Phys. 04 (2017) 166.
- [12] T. Li and X.-G. He, Neutrino masses and heavy triplet leptons at the LHC: Testability of type III seesaw, Phys. Rev. D 80, 093003 (2009).
- [13] F. F. Deppisch, P. S. Bhupal Dev, and A. Pilaftsis, Neutrinos and collider physics, New J. Phys. 17, 075019 (2015).
- [14] P. F. Perez, Type III seesaw and left-right symmetry, J. High Energy Phys. 03 (2009) 142.
- [15] A. Arhrib, B. Bajc, D. K. Ghosh, T. Han, G.-Y. Huang, I. Puljak, and G. Senjanovic, Collider signatures for the heavy lepton triplet in the type I + III seesaw mechanism, Phys. Rev. D 82, 053004 (2010).
- [16] F. del Aguila and J. A. Aguilar-Saavedra, Electroweak scale seesaw and heavy Dirac neutrino signals at LHC, Phys. Lett. B 672, 158 (2009).
- [17] R. Franceschini, T. Hambye, and A. Strumia, Type-III seesaw mechanism at CERN LHC, Phys. Rev. D 78, 033002 (2008).
- [18] K. L. McDonald, Probing exotic fermions from a seesaw/ radiative model at the LHC, J. High Energy Phys. 11 (2013) 131.
- [19] R. Ding, Z.-L. Han, Y. Liao, H.-J. Liu, and J.-Y. Liu, Phenomenology in the minimal cascade seesaw mechanism for neutrino masses, Phys. Rev. D 89, 115024 (2014).
- [20] F. del Aguila and J. A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B813, 22 (2009).
- [21] F. del Aguila, J. A. Aguilar-Saavedra, and J. de Blas, Trilepton signals: the golden channel for seesaw searches at LHC, Acta Phys. Pol. B 40, 2901 (2009).
- [22] C. Biggio and F. Bonnet, Implementation of the Type III seesaw model in FeynRules/MadGraph and prospects for discovery with early LHC data, Eur. Phys. J. C 72, 1899 (2012).

F. Capozzi, G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, and A. Palazzo, Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89, 093018 (2014).

- [23] CMS Collaboration, Search for heavy lepton partners of neutrinos in proton-proton collisions in the context of the type III seesaw mechanism, Phys. Lett. B 718, 348 (2012).
- [24] ATLAS Collaboration, Search for type-III seesaw heavy leptons in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, Phys. Lett. D 92, 032001 (2015).
- [25] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008).
- [26] CMS Collaboration, The CMS trigger system, J. Instrum. 12, P01020 (2017).
- [27] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079.
- [28] R. D. Ball et al. (NNPDF), Parton distributions for the LHC Run II, J. High Energy Phys. 04 (2015) 040.
- B. Fuks, M. Klasen, D. R. Lamprea, and M. Rothering, [29] Gaugino production in proton-proton collisions at a centerof-mass energy of 8 TeV, J. High Energy Phys. 10 (2012) 081.
- [30] B. Fuks, M. Klasen, D. R. Lamprea, and M. Rothering, Precision predictions for electroweak superpartner production at hadron colliders with Resummino, Eur. Phys. J. C 73, 2480 (2013).
- [31] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, J. High Energy Phys. 11 (2004) 040.
- [32] S. Frixione, P. Nason, and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POW-HEG method, J. High Energy Phys. 11 (2007) 070.
- [33] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, J. High Energy Phys. 06 (2010) 043.
- [34] Y. Gao, A. V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, and N.V. Tran, Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81, 075022 (2010).
- [35] S. Bolognesi, Y. Gao, A.V. Gritsan, K. Melnikov, M. Schulze, N. V. Tran, and A. Whitbeck, On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86, 095031 (2012).
- [36] I. Anderson, S. Bolognesi, F. Caola, Y. Gao, A. V. Gritsan, C.B. Martin, K. Melnikov, M. Schulze, N.V. Tran, A. Whitbeck, and Y. Zhou, Constraining anomalous HVV

interactions at proton and lepton colliders, Phys. Rev. D 89, 035007 (2014).

- [37] A.V. Gritsan, R. Röntsch, M. Schulze, and M. Xiao, Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques, Phys. Rev. D 94, 055023 (2016).
- [38] T. Sjöstrand, S. Mrenna, and P.Z. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 05 (2006) 026.
- [39] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159 (2015).
- [40] S. Agostinelli et al. (GEANT4), GEANT4-a simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
- [41] CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-JME-14-001, 2014.
- [42] CMS Collaboration, Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV, J. Instrum. **10**, P06005 (2015).
- [43] CMS Collaboration, Particle-flow reconstruction and global event description with the CMS detector, J. Instrum. 12, P10003 (2017).
- [44] M. Cacciari, G. P. Salam, and G. Soyez, The anti- k_t jet clustering algorithm, J. High Energy Phys. 04 (2008) 063.
- [45] CMS Collaboration, Performance of the CMS missing transverse momentum reconstruction in pp data at $\sqrt{s} = 8$ TeV, J. Instrum. **10**, P02006 (2015).
- [46] M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual, Eur. Phys. J. C 72, 1896 (2012).
- [47] CMS Collaboration, Measurement of the $t\bar{t}$ production cross section in the dilepton channel in pp collisions at $\sqrt{s} = 7$ TeV, J. High Energy Phys. 11 (2012) 067.
- [48] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43, 023001 (2016).
- [49] T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).
- [50] A.L. Read, Presentation of search results: The CL_s technique, J. Phys. G 28, 2693 (2002).
- [51] ATLAS and CMS Collaborations, Technical Report No. CMS NOTE-2011/005 and No. ATL-PHYS-PUB-2011-11, 2011.
- [52] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71, 1554 (2011); Erratum, Eur. Phys. J. C 73, 2501(E) (2013).

A. M. Sirunyan,¹ A. Tumasyan,¹ W. Adam,² F. Ambrogi,² E. Asilar,² T. Bergauer,² J. Brandstetter,² E. Brondolin,² M. Dragicevic,² J. Erö,² M. Flechl,² M. Friedl,² R. Frühwirth,^{2,b} V. M. Ghete,² J. Grossmann,² J. Hrubec,² M. Jeitler,^{2,b}

A. König,² N. Krammer,² I. Krätschmer,² D. Liko,² T. Madlener,² I. Mikulec,² E. Pree,² D. Rabady,² N. Rad,² H. Rohringer,² J. Schieck,^{2,b} R. Schöfbeck,² M. Spanring,² D. Spitzbart,² W. Waltenberger,² J. Wittmann,² C.-E. Wulz,^{2,b} M. Zarucki,²

V. Chekhovsky,³ V. Mossolov,³ J. Suarez Gonzalez,³ E. A. De Wolf,⁴ D. Di Croce,⁴ X. Janssen,⁴ J. Lauwers,⁴

H. Van Haevermaet,⁴ P. Van Mechelen,⁴ N. Van Remortel,⁴ S. Abu Zeid,⁵ F. Blekman,⁵ J. D'Hondt,⁵ I. De Bruyn,⁵

J. De Clercq,⁵ K. Deroover,⁵ G. Flouris,⁵ D. Lontkovskyi,⁵ S. Lowette,⁵ S. Moortgat,⁵ L. Moreels,⁵ Q. Python,⁵

K. Skovpen,⁵ S. Tavernier,⁵ W. Van Doninck,⁵ P. Van Mulders,⁵ I. Van Parijs,⁵ H. Brun,⁶ B. Clerbaux,⁶ G. De Lentdecker,⁶ H. Delannoy,⁶ G. Fasanella,⁶ L. Favart,⁶ R. Goldouzian,⁶ A. Grebenyuk,⁶ G. Karapostoli,⁶ T. Lenzi,⁶ J. Luetic,⁶ T. Maerschalk,⁶ A. Marinov,⁶ A. Randle-conde,⁶ T. Seva,⁶ C. Vander Velde,⁶ P. Vanlaer,⁶ D. Vannerom,⁶ R. Yonamine,⁶ F. Zenoni,⁶ F. Zhang,^{6,c} A. Cimmino,⁷ T. Cornelis,⁷ D. Dobur,⁷ A. Fagot,⁷ M. Gul,⁷ I. Khvastunov,⁷ D. Poyraz,⁷ C. Roskas,⁷ S. Salva,⁷ M. Tytgat,⁷ W. Verbeke,⁷ N. Zaganidis,⁷ H. Bakhshiansohi,⁸ O. Bondu,⁸ S. Brochet,⁸ G. Bruno,⁸ A. Caudron,⁸ S. De Visscher,⁸ C. Delaere,⁸ M. Delcourt,⁸ B. Francois,⁸ A. Giammanco,⁸ A. Jafari,⁸ M. Komm,⁸ G. Krintiras,⁸ V. Lemaitre,⁸ A. Magitteri,⁸ A. Mertens,⁸ M. Musich,⁸ K. Piotrzkowski,⁸ L. Quertenmont,⁸ M. Vidal Marono,⁸ S. Wertz,⁸ N. Beliy,⁹ W. L. Aldá Júnior,¹⁰ F. L. Alves,¹⁰ G. A. Alves,¹⁰ L. Brito,¹⁰ M. Correa Martins Junior,¹⁰ C. Hensel,¹⁰ A. Moraes,¹⁰ M. E. Pol,¹⁰ P. Rebello Teles,¹⁰ E. Belchior Batista Das Chagas,¹¹ W. Carvalho,¹¹ J. Chinellato,^{11,d} A. Custódio,¹¹ E. M. Da Costa,¹¹ G. G. Da Silveira,^{11,e} D. De Jesus Damiao,¹¹ S. Fonseca De Souza,¹¹ L. M. Huertas Guativa,¹¹ H. Malbouisson,¹¹ M. Melo De Almeida,¹¹ C. Mora Herrera,¹¹ L. Mundim,¹¹ H. Nogima,¹¹ A. Santoro,¹¹ A. Sznajder,¹¹ E. J. Tonelli Manganote,^{11,d} F. Torres Da Silva De Araujo,¹¹ A. Vilela Pereira,¹¹ S. Ahuja,^{12a} C. A. Bernardes,^{12a} T. R. Fernandez Perez Tomei,^{12a} E. M. Gregores,^{12b} P. G. Mercadante,^{12b} S. F. Novaes,^{12a} C. A. Bernardes, ^{12a} T. R. Fernandez Perez Tomei, ^{12a} E. M. Gregores, ^{12b} P. G. Mercadante, ^{12b} S. F. Novaes, ^{12a} Sandra S. Padula, ^{12a} D. Romero Abad, ^{12b} J. C. Ruiz Vargas, ^{12a} A. Aleksandrov, ¹³ R. Hadjiiska, ¹³ P. Iaydjiev, ¹³ M. Misheva, ¹³ M. Rodozov, ¹³ M. Shopova, ¹³ S. Stoykova, ¹³ G. Sultanov, ¹³ A. Dimitrov, ¹⁴ I. Glushkov, ¹⁴ L. Litov, ¹⁴ B. Pavlov, ¹⁴ P. Petkov, ¹⁴ W. Fang, ^{15,f} X. Gao, ^{15,f} M. Ahmad, ¹⁶ J. G. Bian, ¹⁶ G. M. Chen, ¹⁶ H. S. Chen, ¹⁶ M. Chen, ¹⁶ Y. Chen, ¹⁶ C. H. Jiang, ¹⁶ D. Leggat, ¹⁶ H. Liao, ¹⁶ Z. Liu, ¹⁶ F. Romeo, ¹⁶ S. M. Shaheen, ¹⁶ A. Spiezia, ¹⁶ J. Tao, ¹⁶ C. Wang, ¹⁶ Z. Wang, ¹⁶ E. Yazgan, ¹⁶ H. Zhang, ¹⁶ J. Zhao, ¹⁶ Y. Ban, ¹⁷ G. Chen, ¹⁷ Q. Li, ¹⁷ S. Liu, ¹⁷ Y. Mao, ¹⁷ S. J. Qian, ¹⁷ D. Wang, ¹⁷ Z. Xu, ¹⁷ C. Avila, ¹⁸ A. Cabrera, ¹⁸ L. F. Chaparro Sierra, ¹⁸ C. Florez, ¹⁸ C. F. González Hernández, ¹⁸ J. D. Ruiz Alvarez, ¹⁸ D. Ruiz Alvarez, ¹⁹ D. K. Liu, ¹⁹ D. K B. Courbon,¹⁹ N. Godinovic,¹⁹ D. Lelas,¹⁹ I. Puljak,¹⁹ P. M. Ribeiro Cipriano,¹⁹ T. Sculac,¹⁹ Z. Antunovic,²⁰ M. Kovac,²⁰ V. Brigljevic,²¹ D. Ferencek,²¹ K. Kadija,²¹ B. Mesic,²¹ A. Starodumov,^{21,g} T. Susa,²¹ M. W. Ather,²² A. Attikis,²² G. Mavromanolakis,²² J. Mousa,²² C. Nicolaou,²² F. Ptochos,²² P. A. Razis,²² H. Rykaczewski,²² M. Finger,^{23,h} M. Finger Jr.,^{23,h} E. Carrera Jarrin,²⁴ E. El-khateeb,^{25,i} S. Elgammal,^{25,j} A. Ellithi Kamel,^{25,k} R. K. Dewanjee,²⁶ M. Kadastik,²⁶ L. Perrini,²⁶ M. Raidal,²⁶ A. Tiko,²⁶ C. Veelken,²⁶ P. Eerola,²⁷ J. Pekkanen,²⁷ M. Voutilainen,²⁷ J. Härkönen,²⁸ T. Järvinen,²⁸ V. Karimäki,²⁸ R. Kinnunen,²⁸ T. Lampén,²⁸ K. Lassila-Perini,²⁸ S. Lehti,²⁸ T. Lindén,²⁸ P. Luukka,²⁸ E. Tuominen,²⁸ J. Tuominiemi,²⁸ E. Tuovinen,²⁸ J. Talvitie,²⁹ T. Tuuva,²⁹ M. Besancon,³⁰ F. Couderc,³⁰ P. Luukka,²⁰ E. Tuominen,²⁰ J. Tuominiemi,²⁰ E. Tuovinen,²⁰ J. Talvitie,²⁵ T. Tuuva,²⁵ M. Besancon,³⁰ F. Couderc,³⁰ M. Dejardin,³⁰ D. Denegri,³⁰ J. L. Faure,³⁰ F. Ferri,³⁰ S. Ganjour,³⁰ S. Ghosh,³⁰ A. Givernaud,³⁰ P. Gras,³⁰ G. Hamel de Monchenault,³⁰ P. Jarry,³⁰ I. Kucher,³⁰ E. Locci,³⁰ M. Machet,³⁰ J. Malcles,³⁰ G. Negro,³⁰ J. Rander,³⁰ A. Rosowsky,³⁰ M. Ö. Sahin,³⁰ M. Titov,³⁰ A. Abdulsalam,³¹ I. Antropov,³¹ S. Baffioni,³¹ F. Beaudette,³¹ P. Busson,³¹ L. Cadamuro,³¹ C. Charlot,³¹ R. Granier de Cassagnac,³¹ M. Jo,³¹ S. Lisniak,³¹ A. Lobanov,³¹ J. Martin Blanco,³¹ M. Nguyen,³¹ C. Ochando,³¹ G. Ortona,³¹ P. Paganini,³¹ P. Pigard,³¹ S. Regnard,³¹ R. Salerno,³¹ J. B. Sauvan,³¹ Y. Sirois,³¹ A. G. Stahl Leiton,³¹ T. Strebler,³¹ Y. Yilmaz,³¹ A. Zabi,³¹ A. Zghiche,³¹ J.-L. Agram,^{32,1} J. Andrea,³² D. Bloch,³² J.-M. Brom,³² M. Buttignol,³² E. C. Chabert,³² N. Chanon,³² C. Collard,³² E. Conte,^{32,1} X. Coubez,³² J.-C. Fontaine,^{32,1} D. Gelé,³² U. Goerlach,³² M. Jansová,³² A.-C. Le Bihan,³² N. Tonon,³² P. Van Hove,³² S. Gadrat,³³ S. Beauceron,³⁴ C. Bernet,³⁴ G. Boudoul,³⁴ R. Chierici,³⁴ D. Contardo,³⁴ P. Depasee,³⁴ H. El Mamouni,³⁴ I. Eav,³⁴ L. Einco,³⁴ S. Gascon,³⁴ C. Bernet,³⁴ G. Boudoul,³⁴ R. Chierici,³⁴ D. Contardo,³⁴ P. Depasse,³⁴ H. El Mamouni,³⁴ J. Fay,³⁴ L. Finco,³⁴ S. Gascon,³⁴ M. Gouzevitch,³⁴ G. Grenier,³⁴ B. Ille,³⁴ F. Lagarde,³⁴ I. B. Laktineh,³⁴ M. Lethuillier,³⁴ L. Mirabito,³⁴ A. L. Pequegnot,³⁴ S. Perries,³⁴ A. Popov,^{34,m} V. Sordini,³⁴ M. Vander Donckt,³⁴ S. Viret,³⁴ T. Toriashvili,^{35,n} D. Lomidze,³⁶ C. Autermann,³⁷ S. Beranek,³⁷ L. Feld,³⁷ M. K. Kiesel,³⁷ K. Klein,³⁷ M. Lipinski,³⁷ M. Preuten,³⁷ C. Schomakers,³⁷ J. Schulz,³⁷ T. Verlage,³⁷ A. Albert,³⁸ E. Dietz-Laursonn,³⁸ D. Duchardt,³⁸ M. Endres,³⁸ M. Erdmann,³⁸ S. Erdweg,³⁸ T. Esch,³⁸ R. Fischer,³⁸ A. Güth,³⁸ M. Hamer,³⁸ T. Hebbeker,³⁸ C. Heidemann,³⁸ K. Hoepfner,³⁸ S. Knutzen,³⁸ M. Merschmeyer,³⁸ A. Meyer,³⁸ A. Güth,³⁸ M. Hamer,³⁸ T. Hebbeker,³⁶ C. Heidemann,³⁸ K. Hoepfner,³⁸ S. Knutzen,³⁸ M. Merschmeyer,³⁸ A. Meyer,³⁸ P. Millet,³⁸ S. Mukherjee,³⁸ M. Olschewski,³⁸ K. Padeken,³⁸ T. Pook,³⁸ M. Radziej,³⁸ H. Reithler,³⁸ M. Rieger,³⁸ F. Scheuch,³⁸ D. Teyssier,³⁸ S. Thüer,³⁸ G. Flügge,³⁹ B. Kargoll,³⁹ T. Kress,³⁹ A. Künsken,³⁹ J. Lingemann,³⁹ T. Müller,³⁹ A. Nehrkorn,³⁹ A. Nowack,³⁹ C. Pistone,³⁹ O. Pooth,³⁹ A. Stahl,^{39,0} M. Aldaya Martin,⁴⁰ T. Arndt,⁴⁰ C. Asawatangtrakuldee,⁴⁰ K. Beernaert,⁴⁰ O. Behnke,⁴⁰ U. Behrens,⁴⁰ A. Bermúdez Martínez,⁴⁰ A. A. Bin Anuar,⁴⁰ K. Borras,^{40,p} V. Botta,⁴⁰ A. Campbell,⁴⁰ P. Connor,⁴⁰ C. Contreras-Campana,⁴⁰ F. Costanza,⁴⁰ C. Diez Pardos,⁴⁰ G. Eckerlin,⁴⁰ D. Eckstein,⁴⁰ T. Eichhorn,⁴⁰ E. Eren,⁴⁰ E. Gallo,^{40,q} J. Garay Garcia,⁴⁰ A. Geiser,⁴⁰ A. Gizhko,⁴⁰ J. M. Grados Luyando,⁴⁰ A. Grohsjean,⁴⁰ P. Gunnellini,⁴⁰ L. Korol,⁴⁰ D. Krücker,⁴⁰ W. Lange,⁴⁰ A. Lelek,⁴⁰
A. Kalogeropoulos,⁴⁰ M. Kasemann,⁴⁰ J. Keaveney,⁴⁰ C. Kleinwort,⁴⁰ I. Korol,⁴⁰ D. Krücker,⁴⁰ W. Lange,⁴⁰ A. Lelek,⁴⁰ T. Lenz,⁴⁰ J. Leonard,⁴⁰ K. Lipka,⁴⁰ W. Lohmann,^{40,r} R. Mankel,⁴⁰ I.-A. Melzer-Pellmann,⁴⁰ A. B. Meyer,⁴⁰ G. Mittag,⁴⁰

 PRL 119, 221802 (2017)
 PHYSICAL REVIEW LETTERS
 DECEMBER 2017
 J. Mnich, ⁴⁰ A. Mussgiller, ⁴⁰ E. Ntomari, ⁴⁰ D. Pitzl, ⁴⁰ A. Raspereza, ⁴⁰ B. Roland, ⁴⁰ M. Savitskyi, ⁴⁰ P. Saxena, ⁴⁰
 R. Shevchenko, ⁴⁰ S. Spannagel, ⁴⁰ N. Stefaniuk, ⁴⁰ G. P. Van Onsem, ⁴⁰ R. Walsh, ⁴⁰ Y. Wen, ⁴⁰ K. Wichmann, ⁴¹ C. Wissing, ⁴⁰
 O. Zenaiev, ⁴⁰ S. Bein, ⁴¹ V. Blobel, ⁴¹ M. Centis Vignali, ⁴¹ T. Dreyer, ⁴¹ E. Garutti, ⁴¹ D. Gonzalez, ⁴¹ J. Haller, ⁴¹
 A. Hinzmann, ⁴¹ M. Hoffmann, ⁴¹ A. Karavdina, ⁴¹ R. Klanner, ⁴¹ R. Kogler, ⁴¹ N. Kovalchuk, ⁴¹ S. Kurz, ⁴¹ T. Lapsien, ⁴¹
 Marconi, ⁴¹ M. Meyer, ⁴¹ M. Niedziela, ⁴¹ D. Nowatschin, ⁴¹ F. Pantaleo, ^{41,0} T. Peiffer, ⁴¹ A. Pericanu, ⁴¹
 C. Scharf, ⁴¹ P. Schleper, ⁴¹ A. Schmidt, ⁴¹ S. Schwandt, ⁴¹ J. Sonneveld, ⁴¹ H. Stadie, ⁴¹ G. Steinbritck, ⁴¹
 M. Akbiyik, ⁴² C. Barth, ⁴² S. Baur, ⁴² E. Butz, ⁴² R. Caspart, ⁴² T. Chwalek, ⁴² F. Colombo, ⁴² W. De Boer, ⁴² A. Dierlamm, ⁴²
 F. Kassel, ⁴² O. S. Kudella, ⁴² H. Midher, ⁴² M. U. Mozer, ⁴² T. Muller, ⁴³ M. Heindi, ⁴² U. Husemann, ⁴²
 F. Kassel, ⁴² O. S. Kudella, ⁴² H. Midher, ⁴⁴ M. U. Mozer, ⁴² T. Muller, ⁴³ W. Plagge, ⁴² G. Quast, ⁴² K. Rabbert, ⁴²
 S. Williamson, ⁴² C. Wöhrmann, ⁴² R. Wolf, ⁴² G. Anagnostou, ⁴³ G. Baskalakis, ⁴³ T. Geralis, ⁴³ V. A. Giakoumopoulu, ⁴³
 A. Kyriakis, ⁴³ D. Loukas, ⁴³ I. Topsis-Giotis, ⁴³ G. Karathanasis, ⁴⁴ S. Kesisoglou, ⁴⁴ A. Banagiotou, ⁴⁴ N. Savolidou, ⁴⁴
 I. Evangelou, ⁴⁵ C. Foudas, ⁴⁵ N. Kukas, ⁴⁵ S. Mallios, ⁴⁵ N. Manthos, ⁴⁵ I. Panadopoulos, ⁴⁵ E. Paradas, ⁴⁵ J. Stologas, ⁴⁵
 F. Malis, ⁴⁴ M. Karatok, ⁴⁵ N. Eukins, ⁴⁵ N. Chaudhury, ⁵⁰ J. R. Komaragiri, ⁵⁰ S. Bahinipati, ⁵¹ V.
 S. Bhowrik, ⁴¹ P. Kaises, ⁴¹ A. Rapoor, K. Kolnekar, S. Pandey, A. Rahe, S. Sharma, S. Chenarani, Y. E. Eskandari Jadavani, S. M. Etesami,^{60,z} M. Khakzad,⁶⁰ M. Mohammadi Najafabadi,⁶⁰ M. Naseri,⁶⁰ S. Paktinat Mehdiabadi,^{60,aa}
 F. Rezaei Hosseinabadi,⁶⁰ B. Safarzadeh,^{60,bb} M. Zeinali,⁶⁰ M. Felcini,⁶¹ M. Grunewald,⁶¹ M. Abbrescia,^{62a,62b} C. Caputo,^{62a,62b} A. Colaleo,^{62a} D. Creanza,^{62a,62c} L. Cristella,^{62a,62b} N. De Filippis,^{62a,62c} M. Maggi,^{62a}
 G. Mainello,^{62a,62b} S. My,^{62a,62b} S. Nuzzo,^{62a,62b} A. Pompili,^{62a,62b} G. Pugliese,^{62a,62b} G. Maggi,^{62a,62c} M. Maggi,^{62a}
 G. Miniello,^{62a,62b} S. My,^{62a,62b} S. Nuzzo,^{62a,62b} A. Pompili,^{62a,62b} G. Pugliese,^{62a,62b} G. Abbiendi,⁵³ C. Battilana,^{63,63b} D. Bonacorsi,^{63a,63b} S. Braibant-Giacomelli,^{63a,63b} R. Campanini,^{63a,63b} P. Capiluppi,^{63a,63b} A. Castro,^{63a,63b} D. Fasanella,^{63a,63b} D. Bonacorsi,^{63a,63b} G. Codispoti,^{63a,63b} M. Cuffiani,^{63a,63b} G. M. Dallavalle,^{63a} F. Fabbri,^{63a} A. Castro,^{63a,63b} D. Fasanella,^{63a,63b} D. Fasanella,^{63a,63b} G. M. Dallavalle,^{63a,63b} A. Montanari,^{63a} F. L. Navarria,^{63a,63b} A. Perrotta,^{63a} A. M. Rossi,^{63a,63b} T. Rovelli,^{63a,63b} G. P. Siroli,^{63a,63b} N. Tosi,^{63a} S. Albergo,^{64a,64b} S. Costa,^{64a,64b} A. Oriclari,^{64a,64b} A. Di Mattia,^{64a} F. Giordano,^{64a,64b} R. Potenza,^{64a,64b} A. Tricomi,^{64a,64b} C. Tuve,^{64a,64b} G. Barbagli,^{65a} K. Chatterjee,^{65a,65b} V. Ciulli,^{65a,65b} C. Civinini,^{65a} R. D'Alessandro,^{65a,65b} E. Foccardi,^{65a,65b} P. Lenzi,^{65a,65b} M. Meschini,^{65a} S. Paoletti,^{65a} L. Russo,^{65a,65b} M. Sea,^{65a,65b} D. Strom,^{65a} L. Viliani,^{65a,65b} C. Biggio,^{67a} V. Calvelli,^{67a,67b} F. Ferro,^{67a} E. Robutti,^{67a} S. Tosi,^{67a,67b} L. Brianza,^{68a,68b} B. Pivio,^{68a,68b} M. Ciriolo,^{68a,68b} M. E. Dinardo,^{68a,68b} D. Menasce,^{68a} L. Moroni,^{68a} A. Ghezzi,^{68a,68b} P. Govoni,^{68a,68b} M. Malberti,^{68a,68b} S. Forendi,^{68a,68b} S. Bountempo,^{69a} N. Cavallo,^{69a,60c} S. Di Guida,^{69a,60c} C. Sigazzini,

 PRL 119, 221802 (2017)
 PRT 31CAL KEV1EW LETTEKS
 IDECEMBER 2017
 A. T. Meneguzzo, ^{70a,70b} N. Pozzobon, ^{70a,70b} P. Ronchese, ^{70a,70b} R. Rossin, ^{70a,70b} F. Simonetto, ^{70a,70b} E. Torassa, ^{70a}
 M. Zanetti, ^{70a,70b} P. Zotto, ^{70a,70b} G. Zumerle, ^{70a,70b} A. Braghieri, ^{71a} F. Fallavollita, ^{71a,71b} A. Magnani, ^{71a,71b} P. Montagna, ^{71a,71b} S. P. Ratti, ^{71a,71b} V. Re, ^{71a} M. Ressegotti, ^{71a} C. Riccardi, ^{71a,71b} P. Salvini, ^{71a} I. Vai, ^{71a,71b} P. Vitulo, ^{71a,71b} V. Re, ^{71a} M. Ressegotti, ^{72a,72b} G. M. Bilei, ^{72a,72b} D. Ciangottini, ^{72a,72b} L. Fanò, ^{72a,72b}
 P. Lariccia, ^{72a,72b} R. Leonardi, ^{72a,72b} E. Manoni, ^{72a} G. Mantovani, ^{72a,72b} V. Mariani, ^{72a,72b} M. Menichelli, ^{72a} A. Rossi, ^{72a,72b} A. Santocchia, ^{72a,72b} D. Spiga, ^{72a} K. Androsov, ^{73a} P. Azzurri, ^{73a,0} G. Bagliesi, ^{73a} J. Bernardini, ^{73a} T. Boccali, ^{73a} L. Borrello, ^{73a} R. Castaldi, ^{73a} M. A. Ciocci, ^{73a,73b} R. Dell'Orso, ^{73a} G. Fedi, ^{73a} L. Giannini, ^{73a,73c} A. Giassi, ^{73a}
 M. T. Grippo, ^{73a,cc} F. Ligabue, ^{73a,73c} T. Lomtadze, ^{73a} E. Manca, ^{73a,73c} G. Mandorli, ^{73a,73c} L. Martini, ^{73a,73b} A. Messineo, ^{73a,73b}
 F. Palla, ^{73a} A. Rizzi, ^{73a,73b} A. Savoy-Navarro, ^{73a,ee} P. Spagnolo, ^{73a} R. Tenchini, ^{73a} G. Tonelli, ^{73a,73b} A. Venturi, ^{73a}
 P. G. Verdini, ^{73a} L. Barone, ^{74a,74b} F. Cavallari, ^{74a} M. Cipriani, ^{74a,74b} N. Daci, ^{74a} D. Del Re, ^{74a,74b} R. Paramatti, ^{74a,74b} F. Preiato, ^{74a,74b} S. Rahatlou, ^{74a,74b} B. Marzocchi, ^{75a,75b} C. Biino, ^{75a} N. Cartiglia, ^{75a} F. Cenna, ^{75a,75c} S. Argiro, ^{75a,75b} M. Arneodo, ^{75a,75c} N. Bartosik, ^{75a} R. Bellan, ^{75a,75b} C. Biino, ^{75a} N. Cartiglia, ^{75a} F. Cenna, ^{75a,75b} M. Arneodo, ^{75a,75b} A. Degano, ^{75a,75b} M. Monteno, ^{75a,75b} C. Biino, ^{75a} N. Cartiglia, ^{75a} S. Maselli, ^{75a}
 E. Migliore, ^{75a,75b} V. Monaco, ^{75a,75b} A. Degano, ^{75a,75b} A. Rome M. Pelliccioni, ^{75a} G. L. Pinna Angioni, ^{75a,75b} F. Ravera, ^{75a,75b} A. Romero, ^{75a,75b} M. Ruspa, ^{75a,75c} R. Sacchi, ^{75a,75c} K. Shellina, ^{75a,75b} V. Sola, ^{75a} A. Solano, ^{75a,75b} A. Staiano, ^{75a} P. Traczyk, ^{75a,75b} S. Belforte, ^{76a} M. Casarsa, ^{76a} F. Cossutti, ^{76a} G. Della Ricca, ^{76a,76b} A. Zanetti, ^{76a} D. H. Kim, ⁷⁷ G. N. Kim, ⁷⁷ M. S. Kim, ⁷⁷ J. Lee, ⁷⁷ S. Lee, ⁷⁷ S. W. Lee, ⁷⁷ C. S. Moon, ⁷⁷ Y. D. Oh, ⁷⁷ S. Sekmen, ⁷⁷ D. C. Son, ⁷⁷ Y. C. Yang, ⁷⁷ A. Lee, ⁷⁸ H. Kim, ⁷⁹ D. H. Moon, ⁷⁹ G. Oh, ⁷⁹ J. A. Brochero Cifuentes, ⁸⁰ J. Goh, ⁸⁰ T. J. Kim, ⁸⁰ S. Cho, ⁸¹ S. Choi, ⁸¹ Y. Go, ⁸¹ D. Gyun, ⁸¹ S. Ha, ⁸¹ B. Hong, ⁸¹ Y. Jo, ⁸¹ Y. Kim, ⁸¹ K. Lee, ⁸¹ K. S. Lee, ⁸¹ J. Lim, ⁸¹ S. K. Park, ⁸¹ Y. Roh, ⁸¹ J. Almond, ⁸² J. Kim, ⁸² J. S. Kim, ⁸² H. Lee, ⁸² K. Lee, ⁸² K. Nam, ⁸² S. B. Oh, ⁸² S. Lee, ⁸¹ J. Lim, ⁸¹ S. K. Park, ⁸¹ Y. Roh, ⁸¹ J. Almond, ⁸² J. Kim, ⁸² J. S. Kim, ⁸² H. Lee, ⁸² K. Lee, ⁸² K. Nam, ⁸² S. B. Oh, ⁸² S. Lee, ⁸¹ J. Lim, ⁸¹ S. K. Park, ⁸¹ Y. Roh, ⁸⁴ J. Lee, ⁸⁴ I. Yu, ⁸⁴ V. Dudenas, ⁸⁵ A. Juodagalvis, ⁸⁵ J. Vaitkus, ⁸⁵ J. Ahmed, ⁸⁶ G. Ryu, ⁸³ Y. Choi, ⁸⁴ C. Hwang, ⁸⁴ J. Lee, ⁸⁴ I. Yu, ⁸⁴ V. Dudenas, ⁸⁵ A. Juodagalvis, ⁸⁵ J. Vaitkus, ⁸⁵ I. Ahmed, ⁸⁶ R. Reyes-Almanza, ⁸⁷ G. Ramirez-Sanchez, ⁸⁷ M. C. Duran-Osuna, ⁸⁷ H. Castilla-Valdez, ⁸⁷ E. De La Cruz-Burelo, ⁸⁷ S. Carrillo Moreno, ⁸⁸ C. Oropeza Barrera, ⁸⁸ F. Vazquez Valencia, ⁸⁸ I. Pedraza, ⁸⁹ H. A. Salazar Ibarguen, ⁸⁹ C. Uribe Estrada, ⁸⁹ A. Morelos Pineda, ⁹⁰ D. Krofcheck, ⁹¹ P. H. Butler, ⁹² A. Ahmad, ⁹³ M. Ahmad, ⁹³ Q. Hassan, ⁹³ H. R. Hoorani, ⁹³ A. Saddique, ⁹³ M. A. Shah, ⁹³ M. Shoaib, ⁹³ M. Waqas, ⁹³ H. Bialkowska, ⁹⁴ M. Bluj, ⁹⁴ B. Boimska, ⁹⁴ T. Frueboes, ⁹⁴ M. Górski, ⁹⁴ M. Kazana, ⁹⁴ K. Nawrocki, ⁹⁴ K. Romanowska-Rybinska, ⁹⁴ M. Szleper, ⁹⁴ P. Zalewski, ⁹⁴ L. Unoe Estrada, A. Morelos Pineda, D. Krötcheck, P. H. Butler, A. Anmad, M. Anmad, Q. Hassan,
H. R. Hoorani, ⁹³ A. Saddique, ⁹³ M. A. Shah, ⁹³ M. Shoaib, ⁹³ M. Waqas, ⁹³ H. Bialkowska, ⁹⁴ M. Bluj, ⁹⁴ B. Boimska, ⁹⁴
T. Frueboes, ⁹⁴ M. Górski, ⁹⁴ M. Kazana, ⁹⁴ K. Nawrocki, ⁹⁴ K. Romanowska-Rybinska, ⁹⁴ M. Sleper, ⁹⁴ P. Zalewski, ⁹⁴
K. Bunkowski, ⁹⁵ A. Byszuk, ^{95,ii} K. Doroba, ⁹⁵ A. Kalinowski, ¹⁵ M. Konecki, ⁹⁵ J. Krolikowski, ⁹⁵ M. Misiura, ⁹⁵
M. Olszewski, ⁹⁵ A. Pyskir, ⁹⁵ M. Walczak, ⁹⁵ P. Bargassa, ⁹⁶ C. Beirão Da Cruz E Silva, ⁹⁶ B. Calpas, ^{96,ij} A. Di Francesco, ⁹⁶
P. Faccioli, ⁹⁶ M. Gallinaro, ⁹⁶ J. Hollar, ⁹⁶ N. Leonardo, ⁹⁶ L. Lloret Iglesias, ⁹⁶ M. V. Nemallapudi, ⁹⁶ J. Seixas, ⁹⁶ O. Toldaiev, ⁹⁶
D. Vadruccio, ⁹⁶ J. Varela, ⁹⁶ S. Afanasiev, ⁹⁷ P. Bunin, ⁹⁷ M. Gavrilenko, ⁹⁷ I. Golutvin, ⁹⁷ I. Gorbunov, ⁹⁷ A. Kamenev, ⁹⁷
V. Karjavin, ⁹⁷ A. Lanev, ⁹⁷ A. Malakhov, ⁹⁷ V. Matveev, ⁹⁷kkl,¹¹ V. Palichik, ⁹⁷ V. Perelygin, ⁹⁷ S. Shmatov, ⁹⁷ S. Shulha, ⁹⁷
N. Skatchkov, ⁹⁷ V. Smirnov, ⁹⁷ N. Voytishin, ⁹⁷ A. Zarubin, ⁹⁷ Y. Ivanov, ⁹⁸ V. Kim, ^{98,mm} E. Kuznetsova, ^{98,mn} P. Levchenko, ⁹⁸
V. Murzin, ⁹⁸ V. Oreshkin, ⁹⁸ I. Smirnov, ⁹⁸ V. Sulimov, ⁹⁸ L. Uvarov, ⁹⁸ S. Vavilov, ⁹⁸ A. Vorobyev, ⁹ Yu. Andreev, ⁹⁹
A. Toropin, ⁹⁰ V. Epshteyn, ¹⁰⁰ V. Gavrilov, ¹⁰⁰ N. Lychkovskaya, ¹⁰⁰ V. Popov, ¹⁰⁰ I. Pozdnyakov, ¹⁰⁰ G. Safronov, ¹⁰⁰
A. Spiridonov, ¹⁰⁰ A. Stepennov, ¹⁰⁰ M. Toms, ¹⁰⁰ E. Vlasov, ¹⁰⁰ A. Zhokin, ¹⁰⁰ T. Aushev, ¹⁰¹ A. Bylinkin, ^{101,11} R. Chistov, ^{102,00}
M. Danilov, ^{102,00} P. Parygin, ¹⁰² D. Philippov, ¹⁰² S. Polikarpov, ¹⁰⁴ A. Belyaev, ¹⁰⁴ A. Bylinkin, ^{101,11} R. Chistov, ^{102,00}
M. Danilov, ^{102,00} P. Parygin, ¹⁰⁴ U. Blinov, ^{105,49} Y. Skovpen, ^{105,49} D. Shotol, ¹⁰⁶ S. Obraztsov, ¹⁰⁴
S. Petrush

J. M. Hernandez,¹⁰⁸ M. I. Josa,¹⁰⁸ A. Pérez-Calero Yzquierdo,¹⁰⁸ J. Puerta Pelayo,¹⁰⁸ A. Quintario Olmeda,¹⁰⁸ I. Redondo,¹⁰⁸ L. Romero,¹⁰⁸ M. S. Soares,¹⁰⁸ A. Álvarez Fernández,¹⁰⁸ J. F. de Trocóniz,¹⁰⁹ M. Missiroli,¹⁰⁹ D. Moran,¹⁰⁹ J. Cuevas,¹¹⁰ C. Erice,¹¹⁰ J. Fernandez Menendez,¹¹⁰ I. Gonzalez Caballero,¹¹⁰ J. R. González Fernández,¹¹⁰ E. Palencia Cortezon,¹¹⁰ S. Sanchez Cruz,¹¹⁰ I. Suárez Andrés,¹¹⁰ P. Vischia,¹¹⁰ J. M. Vizan Garcia,¹¹⁰ I. J. Cabrillo,¹¹¹ A. Calderon,¹¹¹ B. Chazin Quero,¹¹¹ E. Curras,¹¹¹ J. Duarte Campderros,¹¹¹ M. Fernandez,¹¹¹ J. Garcia-Ferrero,¹¹¹ B. Patelela Cortezon, S. Salcelez Cruz, I. Suarez Andres, F. Vischia, J. M. Vizan Garcia, T. J. Cabrilo, A. Calderon,¹¹¹ B. Chazin Quero,¹¹¹ E. Curras,¹¹¹ J. Duarte Campderros,¹¹¹ M. Fernandez,¹¹¹ J. Garcia-Ferrero,¹¹¹ G. Gomez,¹¹¹ A. Lopez Virto,¹¹¹ J. Marco,¹¹¹ C. Martinez Rivero,¹¹¹ P. Martinez Ruiz del Arbol,¹¹¹ F. Matorras,¹¹¹ J. Piedra Gomez,¹¹¹ T. Rodrigo,¹¹¹ A. Ruiz-Jimeno,¹¹¹ L. Scodellaro,¹¹¹ P. Martinez Ruiz, del Arbol,¹¹¹ F. Matorras,¹¹¹ J. Piedra Gomez,¹¹¹ T. Rodrigo,¹¹¹ A. Ruiz-Jimeno,¹¹¹ L. Scodellaro,¹¹¹ P. Martinez Ruiz, del Arbol,¹¹¹ R. Vilar Cortabitarte,¹¹¹ D. Abbaneo,¹¹² E. Auffray,¹¹² P. Baillon,¹¹² A. H. Ball,¹¹² D. Barney,¹¹² M. Bianco,¹¹² P. Bloch,¹¹² A. Bocci,¹¹² C. Botta,¹¹² T. Camporesi,¹¹² R. Castello,¹¹² M. Cepeda,¹¹² G. Cerminara,¹¹² E. Chapon,¹¹² Y. Chen,¹¹² D. d'Enterria,¹¹² A. Dabrowski,¹¹² V. Daponte,¹¹² A. David,¹¹² M. De Gruttola,¹¹² A. De Roeck,¹¹² E. Di Marco,^{112,ss} M. Dobson,¹¹² B. Dorney,¹¹² T. du Pree,¹¹² M. Düinser,¹¹² D. Gulhan,¹¹² S. Gundacker,¹¹² M. Guthoff,¹¹² P. Harris,¹¹² J. Fulcher,¹¹² W. Funk,¹¹² D. Gigi,¹¹² K. Gill,¹¹² F. Glege,¹¹² D. Gulhan,¹¹² S. Gundacker,¹¹² M. Guthoff,¹¹² P. Harris,¹¹² J. Hegeman,¹¹² V. Innocente,¹¹² P. Janot,¹¹² O. Karacheban,^{112,r} J. Kieseler,¹¹² C. Lourenço,¹¹² M. T. Lucchini,¹¹² L. Malgeri,¹¹² M. Mannelli,¹¹² A. Martelli,¹¹² F. Meijers,¹¹² J. A. Merlin,¹¹² S. Mersi,¹¹² E. Meschi,¹¹² P. Milenovic,^{112,m} F. Moortgat,¹¹² M. Mulders,¹¹² H. Neugebauer,¹¹² S. Orfanelli,¹¹² L. Orsini,¹¹² L. Paee,¹¹² E. Meschi,¹¹² P. Milenovic,^{112,m} F. Moortgat,¹¹² M. Mulders,¹¹² H. Neugebauer,¹¹² M. Seidel,¹¹² M. Selvaggi,¹¹² A. Starma,¹¹² P. Silva,¹¹² P. Shicas,^{112,w} A. Stakia,¹¹² J. Steggemann,¹¹² A. Seidel,¹¹² M. Seidel,¹¹³ A. Ca J. Pata,¹¹⁴ F. Pauss,¹¹⁴ G. Perrin,¹¹⁴ L. Perrozzi,¹¹⁴ M. Quittnat,¹¹⁴ M. Reichmann,¹¹⁴ M. Schönenberger,¹¹⁴ L. Shchutska,¹¹⁴ V. R. Tavolaro,¹¹⁴ K. Theofilatos,¹¹⁴ M. L. Vesterbacka Olsson,¹¹⁴ R. Wallny,¹¹⁴ D. H. Zhu,¹¹⁴ T. K. Aarrestad,¹¹⁵ J. Pata, F. Patas, G. Pernin, L. Perrozzi, M. Quittiai, M. Keininain, M. Schönenderger, L. Stichulska, V. R. Tavolaro,¹¹⁴ K. Theofilatos,¹¹⁴ M. L. Vesterbacka Olsson,¹¹⁴ R. Wallny,¹¹⁴ D. H. Zhu,¹¹⁴ T. K. Aarrestad,¹¹⁵ C. Amsler,^{115,37} M. F. Canelli,¹¹⁵ G. Rauco,¹¹⁵ R. Del Burgo,¹¹⁵ S. Donato,¹¹⁵ C. Galloni,¹¹⁵ T. Hreus,¹¹⁵ B. Kilminster,¹¹⁵ J. Ngadiuba,¹¹⁵ D. Pinna,¹¹⁵ G. Rauco,¹¹⁵ P. Robmann,¹¹⁵ D. Salerno,¹¹⁵ C. Seitz,¹¹⁵ Y. Takahashi,¹¹⁵ A. Zucchetta,¹¹⁵ V. Candelise,¹¹⁶ T. H. Doan,¹¹⁶ Sh. Jain,¹¹⁶ R. Khurana,¹¹⁶ C. M. Kuo,¹¹⁶ W. Lin,¹¹⁶ A. Pozdnyakov,¹¹⁶ S. S. Yu,¹¹⁶ Arun Kumar,¹¹⁷ P. Chang,¹¹⁷ Y. Chao,¹¹⁷ K. F. Chen,¹¹⁷ P. H. Chen,¹¹⁷ F. Fiori,¹¹⁷ W.-S. Hou,¹¹⁷ Y. Hsiung,¹¹⁷ Y. F. Liu,¹¹⁷ R.-S. Lu,¹¹⁷ E. Paganis,¹¹⁷ A. Psallidas,¹¹⁷ A. Steen,¹¹⁹ J. f. Tsai,¹¹⁷ B. Asavapibhop,¹¹⁸ K. Kovitanggoon,¹¹⁸ G. Singh,¹¹⁸ N. Srimanobhas,¹¹⁸ A. Adiguzel,^{119,22} F. Boran,¹¹⁹ S. Cerci,^{119,aaa} S. Damarseckin,¹¹⁹ Z. S. Demiroglu,¹¹⁹ C. Dozen,¹¹⁹ I. Dumanoglu,¹¹⁹ S. Girgis,¹¹⁹ G. Gokbulut,¹¹⁹ Y. Guler,¹¹⁹ I. Hos,^{119,hbb} E. E. Kangal,^{119,acc} O. Kara,¹¹⁹ A. Kayis Topaksu,¹¹⁹ U. Kiminsu,¹¹⁹ M. Oglakci,¹¹⁹ G. Onengut,^{119,ddf} K. Ozdemir,^{119,eee} D. Sunar Cerci,^{119,aaa} B. Tali,^{119,ana} S. Turkcapar,¹¹⁹ I. S. Zorbakir,¹¹⁹ C. Zorbilmez,¹¹⁹ B. Bilin,¹²⁰ G. Karapinar,^{120,fff} K. Ocalan,^{120,agg} M. Yalvac,¹²⁰ M. Zeyrek,¹²⁰ E. Gülmez,¹²¹ M. Kaya,^{121,hh} O. Kaya,^{121,hh} O. Kaya,^{121,hk} T. Stekten,¹²¹ E. A. Yetkin,^{121,ja} M. N. Agaras,¹²² S. Atay,¹²² A. Cakir,¹²² K. Cankocak,¹²² B. Grynyov,¹²³ L. Levchuk,¹²⁴ P. Sorokin,¹²⁴ R. Aggleton,¹²⁵ F. Ball,¹²⁵ L. Beck,¹²⁵ J. J. Brooke,¹²⁵ D. Burns,¹²⁵ E. Clement,¹²⁵ D. Cussans,¹²⁵ O. Davignon,¹²⁵ H. Flacher,¹²⁵ J. Goldstein,¹²⁵ M. Grimes,¹²⁵ G. P. Heath,¹²⁵ J. Seif El Nasr-storey,¹²⁶ D. Cussans,¹²⁵ O. Davignon,¹²⁵ H. Flacher,¹²⁵ J. Goldstein,¹²⁵ A. Grell,¹²⁵ T. Sakuma,¹²⁶ S. Seif El N C. Seez,¹²⁷ A. Shtipliyski,¹²⁷ S. Summers,¹²⁷ A. Tapper,¹²⁷ K. Uchida,¹²⁷ M. Vazquez Acosta,^{127,mmm} T. Virdee,^{127,o} D. Winterbottom,¹²⁷ J. Wright,¹²⁷ S. C. Zenz,¹²⁷ J. E. Cole,¹²⁸ P. R. Hobson,¹²⁸ A. Khan,¹²⁸ P. Kyberd,¹²⁸ I. D. Reid,¹²⁸ P. Symonds,¹²⁸ L. Teodorescu,¹²⁸ M. Turner,¹²⁸ A. Borzou,¹²⁹ K. Call,¹²⁹ J. Dittmann,¹²⁹ K. Hatakeyama,¹²⁹ H. Liu,¹²⁹

 PRL 119, 221802 (2017)
 PHYSICAL REVIEW LETTERS
 Decker Marge Data

 N. Pastika,¹²⁹ C. Smith,¹²⁹ R. Bartek,¹³⁰ A. Dominguez,¹³⁰ A. Buccilli,¹³¹ S. I. Cooper,¹³¹ C. Henderson,¹³¹ P. Rumerio,¹³¹
 C. West,¹³¹ D. Arcaro,¹³² A. Avetisyan,¹³² T. Bose,¹³² D. Gastler,¹³² D. Rankin,¹³² C. Richardson,¹³² J. Rohlf,¹³² L. Sulak,¹³³

 D. Zou,¹³² G. Benelli,¹³³ D. Cutts,¹³³ A. Garabedian,¹³³ J. Hakala,¹³³ U. Heintz,¹³³ J. M. Hogan,¹³³ K. H. M. Kwok,¹³³
 E. Laird,¹³³ G. Landsberg,¹³³ Z. Mao,¹³³ M. Narain,¹³³ J. Pazzini,¹³³ S. Piperov,¹³³ S. Sagir,¹³³ R. Syarif,¹³³ D. Yu,¹³³

 R. Band,¹³⁴ C. Brainerd,¹³⁴ D. Burns,¹³⁴ M. Calderon De La Barca Sanchez,¹³⁴ M. Chertok,¹³⁴ J. Cuonway,¹⁴⁴ R. Conway,¹⁴⁴
 P. Conva,¹³⁴ R. Erbacher,¹³⁴ C. Flores,¹³⁴ G. Funk,¹³⁴ M. Gardner,¹³⁴ M. Squires,¹³⁴ D. Stolp,¹³⁴ K. Tos,¹³⁴ M. Muptann,¹³⁴

 P. Pellett,¹³⁴ J. Pilot,¹³⁴ S. Shalhout,¹³⁴ M. Sari,¹³⁵ A. Dasgupta,¹³⁵ A. Florent,¹³⁵ J. Hauser,¹³⁵ M. Ignatenko,¹³⁵

 N. Mccoll,¹³⁵ D. Saltzberg,¹³⁵ C. Schnaible,¹³⁵ V. Valuev,¹³⁵ E. Bouvier,¹³⁶ K. Burt,¹³⁶ R. Clare,¹³⁶ J. Ignatenko,¹³⁶

 J. W. Gary,¹⁵⁶ M. Olmedo Negrete,¹³⁶ M. I. Paneva,¹³⁶ A. Shrinivas,¹³⁶ W. Si,¹³⁶ L. Wang,¹³⁶ H. Wei,¹³⁵ D. Suitmenny,¹³⁷

 G. R. Long,¹⁵⁶ M. Olmedo Negrete,¹³⁶ M. Teaneva,¹³⁷ R. Gerosa,¹³⁷ B. Hashemi,¹³⁷ A. Holzner,¹³⁷ D. Klein,¹³⁷

 G. Kole,¹³⁷ V. Kratelyov,¹³⁷ J. Letts,¹³⁷ I. Macneill,¹³⁷ M. Masciovecchio,¹³⁷ D. Olivito,¹³⁷ S. Padhi,¹³⁷ D. Klein,¹³⁷

 G. Kole,¹³⁷ V. Sharma,¹³⁷ S. Simon,¹³⁷ M J. Berryhill, ⁴⁵ P. C. Bhat, ⁴⁵ G. Bolla, ⁴⁵ K. Burkett, ⁴⁵ J. N. Butler, ⁴⁵ A. Canepa, ⁴⁶ G. B. Cerati, ⁴⁶ H. W. K. Cheung, ⁴⁶ F. Chlebana, ¹⁴³ M. Cremonesi, ¹⁴³ J. Duarte, ¹⁴³ V. D. Elvira, ¹⁴³ J. Freeman, ¹⁴³ Z. Gecse, ¹⁴³ E. Gottschalk, ¹⁴³ L. Gray, ¹⁴³ D. Green, ¹⁴³ S. Grünendahl, ¹⁴³ O. Gutsche, ¹⁴³ R. M. Harris, ¹⁴³ J. J. Lirschauer, ¹⁴³ Z. Hu, ¹⁴³ B. Jayatilaka, ¹⁴³ S. Jindariani, ¹⁴³ M. Johnson, ¹⁴³ U. Joshi, ¹⁴³ B. Klima, ¹⁴³ B. Kreis, ¹⁴³ S. Lammel, ¹⁴³ D. Lincoln, ¹⁴³ R. Lipton, ¹⁴³ M. Liu, ¹⁴³ T. Liu, ¹⁴³ R. Lopes De Sá, ¹⁴³ J. Lykken, ¹⁴³ K. Maeshima, ¹⁴³ N. Magini, ¹⁴³ J. M. Marraffino, ¹⁴³ S. Maruyama, ¹⁴³ D. Mason, ¹⁴³ P. McBride, ¹⁴³ P. Merkel, ¹⁴³ S. Mrenna, ¹⁴³ S. Nahn, ¹⁴³ V. O'Dell, ¹⁴³ K. Pedro, ¹⁴³ O. Prokofyev, ¹⁴³ G. Rakness, ¹⁴³ L. Ristori, ¹⁴³ B. Schneider, ¹⁴³ E. Sexton-Kennedy, ¹⁴³ N. Soha, ¹⁴³ W. J. Spalding, ¹⁴³ L. Spiegel, ¹⁴³ G. Rakness, ¹⁴³ L. Strait, ¹⁴³ R. Vidob, ¹⁴³ L. Taylor, ¹⁴³ S. Tkaczyk, ¹⁴³ N. V. Toan, ¹⁴³ L. Uplegger, ¹⁴³ E. W. Vaandering, ¹⁴³ C. Vernieri, ¹⁴³ M. Verzocchi, ¹⁴³ R. Vidal, ¹⁴³ M. Wang, ¹⁴³ H. A. Weber, ¹⁴³ A. Whitbeck, ¹⁴³ D. Acosta, ¹⁴⁴ P. Avery, ¹⁴⁴ P. Bortignon, ¹⁴⁴ D. Bourilkov, ¹⁴⁴ A. Brinkerhoff, ¹⁴⁴ A. Carnes, ¹⁴⁴ M. Carver, ¹⁴⁴ D. Curry, ¹⁴⁴ R. D. Field, ¹⁴⁴ I. K. Furic, ¹⁴⁴ J. Konigsberg, ¹⁴⁴ A. Korytov, ¹⁴⁴ K. Kotov, ¹⁴⁴ P. Ma, ¹⁴⁴ K. Matchev, ¹⁴⁴ M. Carver, ¹⁴⁴ D. Curry, ¹⁴⁴ R. D. Field, ¹⁴⁴ L. Thomas, ¹⁴⁴ J. Wang, ¹⁴⁴ S. Wang, ¹⁴⁴ J. Yelton, ¹⁴⁴ Y. R. Joshi, ¹⁴⁵ S. Linn, ¹⁴⁵ P. Markowitz, ¹⁴⁵ J. L. Rodriguez, ¹⁴⁵ A. Ackert, ¹⁴⁶ T. Adams, ¹⁴⁶ A. Askew, ¹⁴⁶ S. Hagopian, ¹⁴⁶ V. Hagopian, ¹⁴⁶ K. F. Johnson, ¹⁴⁶ T. Kolberg, ¹⁴⁶ G. Mitselmakher, ¹⁴⁷ D. Noonan, ¹⁴⁷ T. Roy, ¹⁴⁷ F. Yunniceva, ¹⁴⁷ M. R. Adams, ¹⁴⁸ D. Apaasevich, ¹⁴⁸ D. Berry, ¹⁴⁸ H. R. Betts, ¹⁴⁸ A. Cavanaugh, ¹⁴⁸ S. Chen, ¹⁴⁸ O. Evdokimov, ¹⁴⁸ C. Had

O. Baron,¹⁵⁴ A. Belloni,¹⁵⁴ B. Calvert,¹⁵⁴ S. C. Eno,¹⁵⁴ C. Ferraioli,¹⁵⁴ N. J. Hadley,¹⁵⁴ S. Jabeen,¹⁵⁴ G. Y. Jeng,¹⁵⁴ R. G. Kellogg,¹⁵⁴ J. Kunkle,¹⁵⁴ A. C. Mignerey,¹⁵⁴ F. Ricci-Tam,¹⁵⁴ Y. H. Shin,¹⁵⁴ A. Skuja,¹⁵⁴ S. C. Tonwar,¹⁵⁴ D. Abercrombie,¹⁵⁵ B. Allen,¹⁵⁵ V. Azzolini,¹⁵⁵ R. Barbieri,¹⁵⁵ A. Baty,¹⁵⁵ R. Bi,¹⁵⁵ S. Brandt,¹⁵⁵ W. Busza,¹⁵⁵ I. A. Cali,¹⁵⁵ M. D'Alfonso,¹⁵⁵ Z. Demiragli,¹⁵⁵ G. Gomez Ceballos,¹⁵⁵ M. Goncharov,¹⁵⁵ D. Hsu,¹⁵⁵ Y. Iiyama,¹⁵⁵ G. M. Innocenti,¹⁵⁵ M. Klute,¹⁵⁵ D. Kovalskyi,¹⁵⁵ Y. S. Lai,¹⁵⁵ Y.-J. Lee,¹⁵⁵ A. Levin,¹⁵⁵ P. D. Luckey,¹⁵⁵ B. Maier,¹⁵⁵ A. C. Marini,¹⁵⁵ C. Mcginn,¹⁵⁵ C. Mironov,¹⁵⁵ S. Narayanan,¹⁵⁵ X. Niu,¹⁵⁵ C. Paus,¹⁵⁵ C. Roland,¹⁵⁵ G. Roland,¹⁵⁵ J. Salfeld-Nebgen,¹⁵⁶ G. S. F. Stephans,¹⁵⁵ K. Tatar,¹⁵⁶ D. Velicanu,¹⁵⁵ J. Wang,¹⁵⁵ T. W. Wang,¹⁵⁵ B. Wyslouch,¹⁵⁵ A. C. Benvenuti,¹⁵⁶ R. M. Chatterjee,¹⁵⁶ A. Evans,¹⁵⁶ P. Hansen,¹⁵⁶ S. Kalafut,¹⁵⁶ Y. Kubota,¹⁵⁷ E. Avdeeva,¹⁵⁸ K. Bloom,¹⁵⁸ D. R. Claes,¹⁵⁸ C. Fangmeier,¹⁵⁸ R. Gonzalez Suarez,¹⁵⁸ R. Kamalieddin,¹⁵⁹ I. Kravchenko,¹⁵⁹ J. Monroy,¹⁵⁸ J. E. Siado,¹⁵⁸ G. R. Snow,¹⁵⁸ S. Rappoccio,¹⁵⁹ B. Roozbahani,¹⁵⁹ G. Alverson,¹⁶⁰ E. Barberis,¹⁶⁰ A. Hortiangtham,¹⁶⁰ A. Massironi,¹⁶⁰ D. M. Morse,¹⁶⁰ B. Stieger, ¹⁶⁰ M. Alyari, ¹⁶⁷ J. Dolen, ¹⁶⁷ A. Godshalk, ¹⁶⁷ C. Harrington, ¹⁶⁷ I. Iashvili, ¹⁶⁷ D. Nguyen, ¹⁶⁷ A. Parker, ¹⁶⁹ S. Rappoccio, ¹⁵⁹ B. Roozbahani, ¹⁵⁹ G. Alverson, ¹⁶⁰ E. Barberis, ¹⁶⁰ A. Hortiangtham, ¹⁶⁰ A. Massironi, ¹⁶⁰ D. M. Morse, ¹⁶⁰ D. Nash, ¹⁶⁰ T. Orimoto, ¹⁶⁰ R. Teixeira De Lima, ¹⁶⁰ D. Trocino, ¹⁶⁰ D. Wood, ¹⁶⁰ S. Bhattacharya, ¹⁶¹ O. Charaf, ¹⁶¹ K. A. Hahn, ¹⁶¹ N. Mucia, ¹⁶¹ N. Odell, ¹⁶¹ B. Pollack, ¹⁶¹ M. H. Schmitt, ¹⁶¹ K. Sung, ¹⁶¹ M. Trovato, ¹⁶¹ M. Velasco, ¹⁶¹ N. Dev, ¹⁶² M. Hildreth, ¹⁶² K. Hurtado Anampa, ¹⁶² C. Jessop, ¹⁶² D. J. Karmgard, ¹⁶² N. Kellams, ¹⁶² K. Lannon, ¹⁶² N. Loukas, ¹⁶² N. Marinelli, ¹⁶² F. Meng, ¹⁶² C. Mueller, ¹⁶² Y. Musienko, ^{162,kk} M. Planer, ¹⁶² A. Reinsvold, ¹⁶² R. Ruchti, ¹⁶³ G. Smith, ¹⁶² S. Taroni, ¹⁶³ M. Wayne, ¹⁶⁴ M. Wolf, ¹⁶² A. Woodard, ¹⁶² J. Alimena, ¹⁶³ L. Antonelli, ¹⁶³ B. Bylsma, ¹⁶³ L. S. Durkin, ¹⁶³ S. Flowers, ¹⁶³ B. Francis, ¹⁶³ A. Hart, ¹⁶³ C. Hill, ¹⁶³ W. Ji, ¹⁶³ B. Liu, ¹⁶³ W. Luo, ¹⁶³ D. Puigh, ¹⁶⁴ P. Habda, ¹⁶⁴ L. S. Durkin,¹⁰⁵ S. Flowers,¹⁰⁵ B. Francis,¹⁰⁵ A. Hart,¹⁰⁵ C. Hill,¹⁰⁵ W. Ji,¹⁰⁵ B. Liu,¹⁰³ W. Luo,¹⁰⁵ D. Puigh,¹⁰³
B. L. Winer,¹⁶³ H. W. Wulsin,¹⁶³ A. Benaglia,¹⁶⁴ S. Cooperstein,¹⁶⁴ O. Driga,¹⁶⁴ P. Elmer,¹⁶⁴ J. Hardenbrook,¹⁶⁴ P. Hebda,¹⁶⁴
S. Higginbotham,¹⁶⁴ D. Lange,¹⁶⁴ J. Luo,¹⁶⁴ D. Marlow,¹⁶⁴ K. Mei,¹⁶⁴ I. Ojalvo,¹⁶⁴ J. Olsen,¹⁶⁴ C. Palmer,¹⁶⁴ P. Piroué,¹⁶⁴
D. Stickland,¹⁶⁴ C. Tully,¹⁶⁴ S. Malik,¹⁶⁵ S. Norberg,¹⁶⁵ A. Barker,¹⁶⁶ V. E. Barnes,¹⁶⁶ S. Das,¹⁶⁶ S. Folgueras,¹⁶⁶ L. Gutay,¹⁶⁶
M. K. Jha,¹⁶⁶ M. Jones,¹⁶⁶ A. W. Jung,¹⁶⁶ A. Khatiwada,¹⁶⁶ D. H. Miller,¹⁶⁶ N. Neumeister,¹⁶⁶ C. C. Peng,¹⁶⁶ J. F. Schulte,¹⁶⁶
J. Sun,¹⁶⁶ F. Wang,¹⁶⁶ W. Xie,¹⁶⁶ T. Cheng,¹⁶⁷ N. Parashar,¹⁶⁷ J. Stupak,¹⁶⁷ A. Adair,¹⁶⁸ B. Akgun,¹⁶⁸ Z. Chen,¹⁶⁸
K. M. Ecklund,¹⁶⁸ F. J. M. Geurts,¹⁶⁸ M. Guilbaud,¹⁶⁸ W. Li,¹⁶⁸ B. Michlin,¹⁶⁸ M. Northup,¹⁶⁸ B. P. Padley,¹⁶⁸ J. Roberts,¹⁶⁸
J. Rorie,¹⁶⁸ Z. Tu,¹⁶⁸ J. Zabel,¹⁶⁸ A. Bodek,¹⁶⁹ P. de Barbaro,¹⁶⁹ R. Demina,¹⁶⁹ Y. t. Duh,¹⁶⁹ T. Ferbel,¹⁶⁹ M. Galanti,¹⁶⁹
A. Garcia-Bellido,¹⁶⁹ J. Han,¹⁶⁹ O. Hindrichs,¹⁶⁹ A. Khukhunaishvili,¹⁶⁹ K. H. Lo,¹⁶⁹ P. Tan,¹⁶⁹ M. Verzetti,¹⁶⁹
R. Ciesielski,¹⁷⁰ K. Goulianos,¹⁷⁰ C. Mesropian,¹⁷⁰ A. Agapitos,¹⁷¹ J. P. Chou,¹⁷¹ M. Christos,¹⁷¹ K. Feigelis,¹⁷¹ K. Clestelski, K. Goulianos, C. Mestopian, A. Agapitos, J. C. Chou, M. Chibtos, K. Pelgans, Y. Gershtein,¹⁷¹ T. A. Gómez Espinosa,¹⁷¹ E. Halkiadakis,¹⁷¹ M. Heindl,¹⁷¹ E. Hughes,¹⁷¹ S. Kaplan,¹⁷¹
R. Kunnawalkam Elayavalli,¹⁷¹ S. Kyriacou,¹⁷¹ A. Lath,¹⁷¹ R. Montalvo,¹⁷¹ K. Nash,¹⁷¹ M. Osherson,¹⁷¹ H. Saka,¹⁷¹ R. Kunnawalkam Elayavalli,¹⁷¹ S. Kyriacou,¹⁷¹ A. Lath,¹⁷¹ R. Montalvo,¹⁷¹ K. Nash,¹⁷¹ M. Osherson,¹⁷¹ H. Saka,¹⁷¹ S. Salur,¹⁷¹ S. Schnetzer,¹⁷¹ D. Sheffield,¹⁷¹ S. Somalwar,¹⁷¹ R. Stone,¹⁷¹ S. Thomas,¹⁷¹ P. Thomassen,¹⁷¹ M. Walker,¹⁷¹ B. Zhou,¹⁷¹ A. G. Delannoy,¹⁷² M. Foerster,¹⁷² J. Heideman,¹⁷² G. Riley,¹⁷² K. Rose,¹⁷² S. Spanier,¹⁷² K. Thapa,¹⁷² O. Bouhali,^{173,ttt} A. Castaneda Hernandez,^{173,ttt} A. Celik,¹⁷³ M. Dalchenko,¹⁷³ M. De Mattia,¹⁷³ A. Delgado,¹⁷³ S. Dildick,¹⁷³ R. Eusebi,¹⁷³ J. Gilmore,¹⁷³ T. Huang,¹⁷³ T. Kamon,^{173,uuu} R. Mueller,¹⁷³ Y. Pakhotin,¹⁷³ R. Patel,¹⁷³ A. Perloff,¹⁷³ L. Perniè,¹⁷³ D. Rathjens,¹⁷³ A. Safonov,¹⁷³ A. Tatarinov,¹⁷³ K. A. Ulmer,¹⁷³ N. Akchurin,¹⁷⁴ J. Damgov,¹⁷⁴ F. De Guio,¹⁷⁴ P. R. Dudero,¹⁷⁴ J. Faulkner,¹⁷⁴ E. Gurpinar,¹⁷⁴ S. Kunori,¹⁷⁴ K. Lamichhane,¹⁷⁵ N. Akchurin,¹⁷⁴ T. Libeiro,¹⁷⁴ T. Peltola,¹⁷⁴ S. Undleeb,¹⁷⁴ I. Volobouev,¹⁷⁴ Z. Wang,¹⁷⁴ S. Greene,¹⁷⁵ A. Gurrola,¹⁷⁵ R. Janjam,¹⁷⁵ W. Johns,¹⁷⁵ C. Maguire,¹⁷⁵ A. Melo,¹⁷⁵ H. Ni,¹⁷⁵ P. Sheldon,¹⁷⁵ S. Tuo,¹⁷⁶ J. Velkovska,¹⁷⁵ Q. Xu,¹⁷⁵ M. W. Arenton,¹⁷⁶ P. Barria,¹⁷⁶ B. Cox,¹⁷⁶ R. Hirosky,¹⁷⁶ A. Ledovskoy,¹⁷⁶ H. Li,¹⁷⁶ C. Neu,¹⁷⁷ M. Brodski,¹⁷⁸ J. Buchanan,¹⁷⁸ C. Caillol,¹⁷⁸ S. Dasu,¹⁷⁸ L. Dodd,¹⁷⁸ S. Duric,¹⁷⁸ B. Gomber,¹⁷⁸ M. Grothe,¹⁷⁸ M. Herndon,¹⁷⁸ A. Hervé,¹⁷⁸ U. Hussain,¹⁷⁸ P. Klabbers,¹⁷⁸ A. Lanaro,¹⁷⁸ W. H. Smith,¹⁷⁸ D. Taylor,¹⁷⁸ and N. Woods¹⁷⁸

(CMS Collaboration)

¹Yerevan Physics Institute, Yerevan, Armenia ²Institut für Hochenergiephysik, Wien, Austria ³Institute for Nuclear Problems, Minsk, Belarus ⁴Universiteit Antwerpen, Antwerpen, Belgium

⁵Vrije Universiteit Brussel, Brussel, Belgium ⁶Université Libre de Bruxelles, Bruxelles, Belgium ⁷Ghent University, Ghent, Belgium ⁸Université Catholique de Louvain, Louvain-la-Neuve, Belgium ⁹Université de Mons, Mons, Belgium ¹⁰Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil ¹¹Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil ¹²Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil ^{12a}Universidade Estadual Paulista ^{12b}Universidade Federal do ABC ¹³Institute for Nuclear Research and Nuclear Energy of Bulgaria Academy of Sciences ¹⁴University of Sofia, Sofia, Bulgaria ¹⁵Beihang University, Beijing, China ¹⁶Institute of High Energy Physics, Beijing, China ¹⁷State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China ¹⁸Universidad de Los Andes, Bogota, Colombia ¹⁹University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia ²⁰University of Split, Faculty of Science, Split, Croatia ²¹Institute Rudjer Boskovic, Zagreb, Croatia ²²University of Cyprus, Nicosia, Cyprus ²³Charles University, Prague, Czech Republic ²⁴Universidad San Francisco de Quito, Quito, Ecuador ²⁵Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt ²⁶National Institute of Chemical Physics and Biophysics, Tallinn, Estonia Department of Physics, University of Helsinki, Helsinki, Finland ²⁸Helsinki Institute of Physics, Helsinki, Finland ²⁹Lappeenranta University of Technology, Lappeenranta, Finland ³⁰IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France ³¹Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France ³²Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France ³³Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France ³⁴Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France ³⁵Georgian Technical University, Tbilisi, Georgia ³⁶Tbilisi State University, Tbilisi, Georgia ³⁷*RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany* ³⁸RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany ³⁹RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany ⁴⁰Deutsches Elektronen-Synchrotron, Hamburg, Germany ⁴¹University of Hamburg, Hamburg, Germany ⁴²Institut für Experimentelle Kernphysik, Karlsruhe, Germany ⁴³Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece ⁴⁴National and Kapodistrian University of Athens, Athens, Greece ⁴⁵University of Ioánnina, Ioánnina, Greece ⁴⁶MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary Wigner Research Centre for Physics, Budapest, Hungary ⁴⁸Institute of Nuclear Research ATOMKI, Debrecen, Hungary ⁴⁹Institute of Physics, University of Debrecen, Debrecen, Hungary ⁵⁰Indian Institute of Science (IISc), Bangalore, India ⁵¹National Institute of Science Education and Research, Bhubaneswar, India ⁵²Panjab University, Chandigarh, India ⁵³University of Delhi, Delhi, India ⁵⁴Saha Institute of Nuclear Physics, HBNI, Kolkata, India ⁵⁵Indian Institute of Technology Madras, Madras, India ⁵⁶Bhabha Atomic Research Centre, Mumbai, India ⁵⁷Tata Institute of Fundamental Research-A, Mumbai, India

⁵⁸Tata Institute of Fundamental Research-B, Mumbai, India

⁵⁹Indian Institute of Science Education and Research (IISER), Pune, India

⁶⁰Institute for Research in Fundamental Sciences (IPM), Tehran, Iran ⁶¹University College Dublin, Dublin, Ireland

⁶²INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy ^{2a}INFN Sezione di Bari ^{62b}Università di Bari ^{62c}Politecnico di Bari ⁶³INFN Sezione di Bologna, Università di Bologna, Bologna, Italy ^{63a}INFN Sezione di Bologna ^{63b}Università di Bologna ⁶⁴INFN Sezione di Catania, Università di Catania, Catania, Italy ^{54a}INFN Sezione di Catania ^{64b}Università di Catania ⁶⁵INFN Sezione di Firenze, Università di Firenze, Firenze, Italy ^{65a}INFN Sezione di Firenze ^{65b}Università di Firenze ⁶⁶INFN Laboratori Nazionali di Frascati, Frascati, Italy ⁶⁷INFN Sezione di Genova, Università di Genova, Genova, Italy ^{67a}INFN Sezione di Genova ^{67b}Università di Genova ^{68a}INFN Sezione di Milano-Bicocca ^{68b}Università di Milano-Bicocca ⁶⁹INFN Sezione di Napoli, Università di Napoli 'Federico II', Napoli, Italy, Università della Basilicata, Potenza, Italy, Università G. Marconi, Roma, Italy ^{69a}INFN Sezione di Napoli ^{69b}Università di Napoli 'Federico II' ⁶⁹*c*Università della Basilicata 69d Università G. Marconi ⁷⁰INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy ^{10a}INFN Sezione di Padova ^{70b}Università di Padova ^{70c}Università di Trento ⁷¹INFN Sezione di Pavia, Università di Pavia, Pavia, Italy ^{71a}INFN Sezione di Pavia ^{71b}Università di Pavia ⁷²INFN Sezione di Perugia, Università di Perugia, Perugia, Italy ^{2a}INFN Sezione di Perugia ^{72b}Università di Perugia ⁷³INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy ^{73a}INFN Sezione di Pisa ^{73b}Università di Pisa ⁷³cScuola Normale Superiore di Pisa ^{74a}INFN Sezione di Roma ^{74b}Sapienza Università di Roma ⁷⁵INFN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy ^{75a}INFN Sezione di Torino ^{75b}Università di Torino ⁷⁵*c*Università del Piemonte Orientale ⁷⁶INFN Sezione di Trieste, Università di Trieste, Trieste, Italy ^{76a}INFN Sezione di Trieste ^{76b}Università di Trieste ⁷⁷Kyungpook National University, Daegu, Korea ⁷⁸Chonbuk National University, Jeonju, Korea ⁷⁹Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea ⁸⁰Hanyang University, Seoul, Korea ⁸¹Korea University, Seoul, Korea ⁸²Seoul National University, Seoul, Korea ⁸³University of Seoul, Seoul, Korea ⁸⁴Sungkyunkwan University, Suwon, Korea ⁸⁵Vilnius University, Vilnius, Lithuania ⁸⁶National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia ⁸⁷Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

⁸⁸Universidad Iberoamericana, Mexico City, Mexico

⁸⁹Benemerita Universidad Autonoma de Puebla, Puebla, Mexico ⁹⁰Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico ⁹¹University of Auckland, Auckland, New Zealand ⁹²University of Canterbury, Christchurch, New Zealand ⁹³National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan ⁹⁴National Centre for Nuclear Research, Swierk, Poland ⁹⁵Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland ⁶⁶Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal ⁹⁷Joint Institute for Nuclear Research, Dubna, Russia ⁹⁸Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia ⁹⁹Institute for Nuclear Research, Moscow, Russia ¹⁰⁰Institute for Theoretical and Experimental Physics, Moscow, Russia ¹⁰¹Moscow Institute of Physics and Technology, Moscow, Russia ¹⁰²National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia ¹⁰³P.N. Lebedev Physical Institute, Moscow, Russia ¹⁰⁴Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia ¹⁰⁵Novosibirsk State University (NSU), Novosibirsk, Russia ¹⁰⁶State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia ¹⁰⁷University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia ¹⁰⁸Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain ¹⁰⁹Universidad Autónoma de Madrid, Madrid, Spain ¹¹⁰Universidad de Oviedo, Oviedo, Spain ¹¹¹Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain ¹²CERN, European Organization for Nuclear Research, Geneva, Switzerland ¹¹³Paul Scherrer Institut, Villigen, Switzerland ¹¹⁴Institute for Particle Physics, ETH Zurich, Zurich, Switzerland ¹¹⁵Universität Zürich, Zurich, Switzerland ¹¹⁶National Central University, Chung-Li, Taiwan ¹¹⁷National Taiwan University (NTU), Taipei, Taiwan ¹¹⁸Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand ¹¹⁹Cukurova University, Physics Department, Science and Art Faculty, Adana, Turkey ¹²⁰Middle East Technical University, Physics Department, Ankara, Turkey ¹²¹Bogazici University, Istanbul, Turkey ¹²²Istanbul Technical University, Istanbul, Turkey ¹²³Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine ¹²⁴National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine ¹²⁵University of Bristol, Bristol, United Kingdom ¹²⁶Rutherford Appleton Laboratory, Didcot, United Kingdom ¹²⁷Imperial College, London, United Kingdom ¹²⁸Brunel University, Uxbridge, United Kingdom ¹²⁹Baylor University, Waco, USA ¹³⁰Catholic University of America, Washington DC, USA ¹³¹The University of Alabama, Tuscaloosa, USA ¹³²Boston University, Boston, USA ¹³³Brown University, Providence, USA ¹³⁴University of California, Davis, Davis, USA ¹³⁵University of California, Los Angeles, USA ¹³⁶University of California, Riverside, Riverside, USA ¹³⁷University of California, San Diego, La Jolla, USA ¹³⁸University of California, Santa Barbara—Department of Physics, Santa Barbara, USA ¹³⁹California Institute of Technology, Pasadena, USA ¹⁴⁰Carnegie Mellon University, Pittsburgh, USA ¹⁴¹University of Colorado Boulder, Boulder, USA ¹⁴²Cornell University, Ithaca, USA ¹⁴³Fermi National Accelerator Laboratory, Batavia, USA ¹⁴⁴University of Florida, Gainesville, USA ¹⁴⁵Florida International University, Miami, USA ¹⁴⁶Florida State University, Tallahassee, USA ¹⁴⁷Florida Institute of Technology, Melbourne, USA ¹⁴⁸University of Illinois at Chicago (UIC), Chicago, USA

¹⁴⁹The University of Iowa, Iowa City, USA ¹⁵⁰Johns Hopkins University, Baltimore, USA ¹⁵¹The University of Kansas, Lawrence, USA ¹⁵²Kansas State University, Manhattan, USA ¹⁵³Lawrence Livermore National Laboratory, Livermore, USA ¹⁵⁴University of Maryland, College Park, USA ¹⁵⁵Massachusetts Institute of Technology, Cambridge, USA ¹⁵⁶University of Minnesota, Minneapolis, USA ¹⁵⁷University of Mississippi, Oxford, USA ¹⁵⁸University of Nebraska-Lincoln, Lincoln, USA ¹⁵⁹State University of New York at Buffalo, Buffalo, USA ¹⁶⁰Northeastern University, Boston, USA ¹⁶¹Northwestern University, Evanston, USA ¹⁶²University of Notre Dame, Notre Dame, USA ¹⁶³The Ohio State University, Columbus, USA ¹⁶⁴Princeton University, Princeton, USA ¹⁶⁵University of Puerto Rico, Mayaguez, USA ¹⁶⁶Purdue University, West Lafayette, USA ¹⁶⁷Purdue University Northwest, Hammond, USA ¹⁶⁸Rice University, Houston, USA ¹⁶⁹University of Rochester, Rochester, USA ¹⁷⁰The Rockefeller University, New York, USA ¹⁷¹Rutgers, The State University of New Jersey, Piscataway, USA ⁷²University of Tennessee, Knoxville, USA ¹⁷³Texas A&M University, College Station, USA ⁷⁴Texas Tech University, Lubbock, USA ¹⁷⁵Vanderbilt University, Nashville, USA ¹⁷⁶University of Virginia, Charlottesville, USA ¹⁷⁷Wayne State University, Detroit, USA ¹⁷⁸University of Wisconsin-Madison, Madison, WI, USA

^aDeceased.

- ^bAlso at Vienna University of Technology, Vienna, Austria
- ^cAlso at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
- ^dAlso at Universidade Estadual de Campinas, Campinas, Brazil
- ^eAlso at Universidade Federal de Pelotas, Pelotas, Brazil
- ^fAlso at Université Libre de Bruxelles, Bruxelles, Belgium
- ^gAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia
- ^hAlso at Joint Institute for Nuclear Research, Dubna, Russia
- ⁱAlso at Ain Shams University, Cairo, Egypt
- ^jAlso at British University in Egypt, Cairo, Egypt
- ^kAlso at Cairo University, Cairo, Egypt
- ¹Also at Université de Haute Alsace, Mulhouse, France
- ^mAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
- ⁿAlso at Tbilisi State University, Tbilisi, Georgia
- ^oAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland
- ^PAlso at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
- ^qAlso at University of Hamburg, Hamburg, Germany
- ^rAlso at Brandenburg University of Technology, Cottbus, Germany
- ^sAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
- ^tAlso at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
- ^uAlso at Institute of Physics, University of Debrecen, Debrecen, Hungary
- ^vAlso at IIT Bhubaneswar, Bhubaneswar, India
- ^wAlso at Institute of Physics, Bhubaneswar, India
- ^xAlso at University of Visva-Bharati, Santiniketan, India
- ^yAlso at University of Ruhuna, Matara, Sri Lanka
- ^zAlso at Isfahan University of Technology, Isfahan, Iran
- ^{aa}Also at Yazd University, Yazd, Iran
- ^{bb}Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
- ^{cc}Also at Università degli Studi di Siena, Siena, Italy

- ^{dd}Also at INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
- ^{ee}Also at Purdue University, West Lafayette, USA
- ^{ff}Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
- ^{gg}Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
- ^{hh}Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
- ⁱⁱAlso at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
- ⁱⁱAlso at Czech Technical University, Praha, Czech Republic
- ^{kk}Also at Institute for Nuclear Research, Moscow, Russia
- ¹¹Also at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
- ^{mm}Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
- ⁿⁿAlso at University of Florida, Gainesville, USA
- ⁰⁰Also at P.N. Lebedev Physical Institute, Moscow, Russia
- ^{pp}Also at California Institute of Technology, Pasadena, USA
- ^{qq}Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
- ^{rr}Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
- ^{ss}Also at INFN Sezione di Roma, Sapienza Università di Roma, Rome, Italy
- ^{tt}Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
- ^{uu}Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy
- ^{vv}Also at National and Kapodistrian University of Athens, Athens, Greece
- ^{ww}Also at Riga Technical University, Riga, Latvia
- xx Also at Universität Zürich, Zurich, Switzerland
- ^{yy}Also at Stefan Meyer Institute for Subatomic Physics
- ^{zz}Also at Istanbul University, Faculty of Science, Istanbul, Turkey
- ^{aaa}Also at Adiyaman University, Adiyaman, Turkey
- bbb Also at Istanbul Aydin University, Istanbul, Turkey
- ccc Also at Mersin University, Mersin, Turkey
- ^{ddd}Also at Cag University, Mersin, Turkey
- eee Also at Piri Reis University, Istanbul, Turkey
- fff Also at Izmir Institute of Technology, Izmir, Turkey
- ^{ggg}Also at Necmettin Erbakan University, Konya, Turkey
- hhh Also at Marmara University, Istanbul, Turkey
- ⁱⁱⁱAlso at Kafkas University, Kars, Turkey
- ⁱⁱⁱAlso at Istanbul Bilgi University, Istanbul, Turkey
- kkk Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
- ¹¹¹Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
- ^{mmm}Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
- ⁿⁿⁿAlso at Utah Valley University, Orem, USA
- ⁰⁰⁰Also at Beykent University
- pppAlso at Bingol University, Bingol, Turkey
- ^{qqq}Also at Erzincan University, Erzincan, Turkey
- ^{rrr}Also at Sinop University, Sinop, Turkey
- ^{sss}Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
- ttt Also at Texas A&M University at Qatar, Doha, Qatar
- ^{uuu}Also at Kyungpook National University, Daegu, Korea