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Abstract

The present work aims to characterise the influence of turbulence and in par-
ticular the influence of the Reynolds number (Re) on the dynamic processes of
vortex formation and decay. Inspired by vortex wakes in bio-propulsion, three
characteristic features of vortex formation and decay are identified, each re-
sulting from the interaction of a vortex with a solid structure (e.g. a propulsor):
a curved free shear layer, the vortex core and a boundary layer between vor-
tex and propulsor. Multiple studies are presented that isolate the characteristic
flow features in simplified configurations and study the influence of turbulence
on vortex evolution. In the first study, the interaction of a generic vortex with
a wall is investigated by impulsively-stopping the walls of a rotating cylinder
containing a fluid in solid-body rotation (SBR). The decay of the initial SBR
is characterised by means of direct numerical simulations (DNS) in a lim-
ited Re range (Re ≤ 2.8 · 104). Based on the underlying flow structures, five
stages of the decay process are identified. The evaluation of the DNS results
provides empirical scaling laws for various stages of the decay, which are sub-
sequently validated in two experimental campaigns covering the moderate Re

range (Re≤ 5.6 ·105) and the high Re range (Re≤ 4 ·106), respectively. Here,
the spin-down from SBR is captured by means of particle-image velocimetry
(PIV). Furthermore, the free shear layer and the vortex core are investigated
in the wake of accelerated low-aspect ratio propulsors. In PIV experiments,
performed in a large towing-tank facility, a wide range of Re is investigated. In
addition, the turbulent structures in the wake are modified through bio-inspired
undulations at the circumferential edge of the propulsor. The introduction of
turbulent structures larger than the thickness of the free shear layer is shown
to influence the vortex growth and thus the propulsion force.
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Kurzfassung

Das Ziel der vorliegenden Arbeit ist es den Einfluss von Turbulenz und im
speziellen der Reynoldszahl (Re) auf die Prozesse der Wirbelformation und
des Wirbelzerfalls zu untersuchen. Inspiriert von Wirbeln, die bei der Fort-
bewegung von schwimmenden und fliegenden Tieren auftreten, werden drei
charakteristische Merkmale identifiziert, die durch das Zusammenspiel eines
Wirbels mit einem beschleunigten Festkörper (z.B. einem Flügel oder einer
Flosse) entstehen: eine gekrümmte freie Scherschicht, der Wirbelkern und die
Grenzschicht zwischen dem Wirbel und dem beschleunigten Körper. Im Rah-
men der Arbeit werden mehrere Experimente und Simulationen vorgestellt,
welche diese Merkmale der Wirbel in vereinfachten Konfigurationen repro-
duzieren und von anderen Effekten isolieren. Dies ermöglicht es den Einfluss
der Turbulenz auf besagte Wirbelmerkmale zu quantifizieren. Zunächst wird
die Interaktion eines generischen Wirbels mit einer Wand betrachtet. Hierzu
wird ein Zylinder, welcher ein Fluid in Starrkörperrotation enthält, schlagar-
tig angehalten. Das Abklingen und der Zerfall der des Starrkörperwirbels
wird mithilfe einer direkten numerischen Simulation (DNS) für Reynolds-
zahlen im Bereich Re ≤ 2.8 · 104 analysiert. Fünf Stufen des Wirbelzerfalls
können aufgrund der zugrundeliegenden Strukturen der Strömung charakter-
isiert werden. Darüber hinaus liefern die Ergebnisse der DNS empirische
Skalierungsgesetze, die verschiedene Stufen den Wirbelzerfalls beschreiben.
Die Skalierungsgesetze werden anschließend anhand von zwei experimentellen
Kampagnen im moderaten (Re≤ 5.6 ·105) und hohen (Re≤ 4 ·106) Reynolds-
zahlbereich validiert. Anschließend wird die gekrümmte Scherschicht und
der Wirbelkern genauer betrachtet. In Experimenten in einem großskali-
gen Schleppkanal wird eine runde Platte aus der Ruhe beschleunigt. Hier-
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Kurzfassung

bei liefern Experimente in einem großen Reynoldszahlbereich Erkenntnisse
über die Auswirkungen von kleinskaligen Strukturen auf die Wirbelforma-
tion. Weiterhin wird die Turbulenz im Wirbel durch Modifikationen der um-
laufenden Plattenkante beeinflusst. Inspiriert von in der Natur auftretenden
Flossenformen werden wellenartige Strukturen aufgeprägt, welche Strukturen
im Bereich ihrer eigenen Wellenlänge in die Strömung einbringen. Sind diese
Wellenlängen größer als die Dicke der gekrümmten Scherschicht, wird das
Wirbelwachstum beeinflusst und damit die Kraft, die auf die Platte wirkt,
modifiziert.
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1 Introduction

Vortical structures are ubiquitous in nature as well as in engineering applica-
tions. On the one hand, the effects of vortices are sometimes unwanted or even
dangerous. Popular examples include vortex shedding off buildings, buffeting
in transonic flow, tip vortices off of wings, and extreme weather phenomena
such as hurricanes. On the other hand, however, the material and momentum
transport of vortical structures can also be fundamental for the working princi-
ple of a functional engineering system. Technical applications utilise vortical
structures in: swirl cooling systems; mixing devices; process engineering and
biotechnology; tank draining; and engine injection, to name but a few. In na-
ture, vortices might play an even more significant role. Both, the atmosphere
as well as the ocean (in particular the global conveyor belt) are dominated by
vortices, which eventually determine the climate we are living in. Another
– if not the most prominent – example of vortices found in nature is associ-
ated with animal locomotion. A large variety of swimmers and flyers utilises
vortices to produce their lift and thrust.

The present work addresses the above phenomena by means of investigations
into the physics of vortex formation and decay. Hereby, the locomotion of
swimmers and flyers is selected as the guiding example. Note, however, that
due to the high degree of abstraction, many of the fundamental results pre-
sented in this thesis apply for a wide variety of vortical structures, such as
among others, the above-mentioned examples.
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1 Introduction

(a) Roll-up of shear layer (b) Formation of LEV (c) Detachment of LEV

Figure 1.1: Formation and detachment of a two-dimensional leading-edge vortex (LEV). Blue and
red contours show positive and negative vorticity, respectively. Streamlines adapted
from Eldredge & Jones [25].

1.1 Motivation

A sudden change of the angle of attack over a propulsor (e.g. wings or flippers)
leads to dynamic flow separation. A free shear layer is formed that subse-
quently rolls up into a vortex. The interaction of the pressure minimum in the
vortex with the propulsor itself produces thrust and/or lift while maintaining
a high degree of manoeuvrability. As an example, figure 1.1 presents the for-
mation of a leading-edge vortex (LEV) in a quasi two-dimensional flow. Once
the propulsor accelerates, a free shear layer is formed, rolls up and results in
an LEV (figure 1.1a), which then grows (figure 1.1b) and eventually detaches
(figure 1.1c). Pitt Ford and Babinsky [105] point out that most of the bound
circulation of the propulsor is contained in the LEV and thus its influence on
lift and thrust is maintained while the vortex remains attached to the propul-
sor. As such, vortex stability and the evolution of circulation are crucial to
assess the forces acting on propulsors. The influencing factors on stability and
circulation have been extensively addressed in recent research. Often inspired
by observations on the shape and kinematics of animal propulsors, a large va-
riety of influencing factors have been investigated. For example, swept wings
[141] and spanwise wing curvature [48, 127] were found to influence the
three-dimensional vortex structure. Concerning the kinematics, the reduced
frequency of pitching [40], the wake mechanics [129, 131] and the influence
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1.2 Objectives and Procedure

of rotational accelerations was investigated [70]. Chin & Lentink [18] pro-
vide a comprehensive overview of the evolutionary convergence of propulsor
kinematics. Interestingly, similar kinematics are observable in a wide range of
Reynolds numbers (Re) reaching from small insects to large mammals: Both
the wake kinematics (described by the Strouhal number, St) as well as the
influence of rotational accelerations (described by the Rossby number, Ro)
remain in a small range (Ro < 4 [70] and 0.2 < St < 0.4 [129, 131]).

While St and Ro influence the three-dimensional vortex structure on a macro
scale, Re scaling comes along with a varying range of flow structure sizes in
a turbulent flow. At first glance, the wide range of Re, at which vortices are
formed in nature, suggests an insensitivity of vortical flows towards turbu-
lence. However, as a vortex in bio-propulsion is a separated flow with shear
and boundary layers, the influence of turbulence on vortex driven locomotion
is apparent and remains yet to be fully understood. A very limited amount of
studies focusses on the interplay of vortical structures with turbulence as the
three-dimensional and unsteady flow during vortex formation makes an quan-
titative assessment of turbulence an extremely challenging endeavour. The
present thesis aims to close this gap in the literature.

1.2 Objectives and Procedure

The major objective of the present thesis is to explore the influence of turbu-
lence on vortex formation and vortex stability. In particular, the influence of
turbulence on the mass, momentum and circulation budget of a generic vortex
are of interest. The main challenge of these investigations into the impact of
turbulence on vortex formation is to derive a deeper understanding of the inter-
play between a unsteady and three-dimensional large-scale vortical structures
and local small-scale effects due to turbulence.

The investigation of such a complex problem is tackled through identification
and subsequent isolation of varying aspects of the vortex by designing suitable

3



1 Introduction

Figure 1.2: (a) Drawing of a LEV on a bird’s wing. (b) Schematic describing the vorticity distri-
bution (colour coded) and azimuthal velocity profile (vectors) before (initial condition
(ic)) and after the start of the decay of a vortex in solid-body rotation. (c) Shear layer
and vortex core during vortex formation in the wake of a circular plate.

experiments, which focus on a detailed analysis of the respective feature. In
particular, the present manuscript focuses on three aspects of vortex-driven lo-
comotion highlighted in figure 1.2(a), where turbulence and its scaling modify
the flow through:

• the vorticity-annihilating boundary layer between the vortex
and the suction side of the propulsor;

• the free shear layer, which rolls up into the vortex; and

• the vortex core and its pressure minimum.

The first flow investigated in this manuscript focuses on the Re scaling of the
suction-side boundary layer, which is unique in the sense that the vorticity in-
side the vortex interacts with opposite-signed vorticity of the boundary layer.
Thus, boundary-layer growth is basically a cross-annihilation process between

4
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the vorticity in the vortex itself and the opposite-signed vorticity of the bound-
ary layer. Eslam Panah et al. [26] and Akkala & Buchholz [1] investigated the
role of the suction-side boundary layer on the circulation budget of an LEV
and found that the cross-annihilated vorticity compensates for up to 50% of
the vorticity fed into the vortex through the shear layer. As such, this process
strongly influences the evolution of circulation and thus affects both the forces
as well as vortex stability.

To allow for statistical analysis of this dynamic and transitional problem, a rel-
atively simple experiment has been conceived, which quantifies the influence
of the cross-annihilating vorticity on the boundary-layer formation.

An infinitely long vortex in solid body rotation (SBR), with angular speed Ω

and radius R, is placed inside a cylinder that is impulsively stopped at t = 0
(see figure 1.2b). Eventually, all vorticity inside the SBR is annihilated by
the opposite-signed vorticity of the boundary layer and the flow becomes qui-
escent. However, during its spin-down to rest the flow undergoes multiple
transitions to various flow stages. Each of the stages contains flow features
that result from the interaction of opposite-signed vorticity. In order to ex-
plore these phenomena, the flow is first analysed in detail by means of direct
numerical simulations. The well-resolved data allow elaborate statistical eval-
uation in a moderate range of Re; see chapter 3. Subsequently, in chapter 4
the Re scaling for very high-Re is investigated by means of particle image ve-
locimetry (PIV) measurements at the large-scale CORIOLIS II experimental
platform in Grenoble, France.

The second flow condition investigated in the present thesis is designed in or-
der to further study the impact of turbulence on the separated shear layer, the
vortex core and vortex stability. Therefore, a simplified propulsor of circu-
lar shape is accelerated perpendicular to its orientation (see figure 1.2c and
chapter 5), where the influence of small-scale structures in the shear layer
is assessed by conducting experiments over a wide range of Re. Additional
three-dimensionality of the flow is enforced by modifying the circumferential
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edge of the propulsor with undulations of various wavelengths. The impact of
Re and the edge undulations is addressed by means of PIV and force measure-
ments at Queen’s University in Kingston, Canada.

The present thesis contains results which were previously published by the
author in [Kaiser et al., 2020a] and [Kaiser et al., 2020b]. All quotations from
those publications are highlighted.
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2 Fundamentals

In the present chapter an overview of the theoretical background for the fol-
lowing studies is provided. First, the fundamental equations of hydrodynamics
are outlined in § 2.1. Subsequently, the properties of vortices are discussed and
methods for their identification are provided in § 2.2. Eventually, as various
instabilities occur during vortex formation and decay, an overview of the most
important instability mechanisms is provided in § 2.3.1 (centrifugal instabili-
ties) and § 2.3.2 (Kelvin-Helmholtz instabilities).

2.1 Governing equations of hydrodynamics

The fundamental equations utilised throughout this work are based on multi-
ple assumptions [4, 125]. In particular, the fluid is described as a incompress-
ible Newtonian continuum. First of all, the continuum hypothesis implies
that the fluid volume under consideration consists of an infinite number of
infinitesimally small fluid elements and that thereby all quantities inside the
fluid are a continuous function in time and space. The fluid is further con-
sidered to be Newtonian. As such, all viscous stresses relate linearly to the
rate-of-strain (cf. § 2.1.2) by a constant factor µ , called the dynamic viscosity.
Finally, the fluid is assumed to be incompressible. In contrast to aerodynamics
and thermodynamics where compressibility effects are significant, the field of
hydrodynamics covers flows where the material derivative of the density ρ

vanishes such that

Dρ

Dt
=

∂ρ

∂ t
+u ·∇ρ = 0 . (2.1)

7



2 Fundamentals

Equation (2.1) implies that a fluid element convecting with velocity u con-
serves its density at all times t. The present chapter details the fundamental
equations of hydrodynamics.

2.1.1 Conservation of mass and momentum

Utilising the assumptions outlined above, the motion of a fluid can be de-
scribed by the incompressible continuity equation

∇ ·u = 0 , (2.2)

and the incompressible Navier-Stokes equation as

ρ

[
∂u
∂ t

+(u ·∇)u
]

︸ ︷︷ ︸
I

=− ∇p︸︷︷︸
II

+µ∇
2u︸ ︷︷ ︸

III

+ ρG︸︷︷︸
IV

, (2.3)

where I is the material derivative consisting of the temporal velocity change
∂u
∂ t and the convection (u ·∇)u, II is the gradient of the pressure p, III are
the viscous forces acting in the Newtonian fluid and IV is a body force G

(e.g. gravity).

To generalise findings and to transfer insights into physics between different
flows, the equations are often written in their dimensionless representation.
As a first step dimensionless quantities are defined

u∗i =
ui

U0
; t∗ = t/T0; x∗i =

xi

L0
; p∗ =

p−P∞

P0−P∞

; G∗ =
G
g

(2.4)

utilising the scaling parameters U0, L0, T0, P0−P∞ (reference pressure dif-
ference) and g. The index i denotes the respective direction in the chosen
coordinate system.

8



2.1 Governing equations of hydrodynamics

The dimensionless quantities of (2.4) are inserted into (2.2) and (2.3), leading
to the dimensionless continuity equation

∇
∗ ·u∗ = 0 (2.5)

and the dimensionless Navier-Stokes equation

ρU0

T0

∂u∗

∂ t∗
+

ρU2
0

L0
(u∗ ·∇∗)u∗ = P0−P∞

L0
∇
∗p∗+ρgG∗+

µU0

L2
0

∇
∗2u∗ . (2.6)

Equation (2.6) multiplied by the constant L0/(ρU2
0 ) results in

L0

T0U0

∂u∗

∂ t∗
+(u∗ ·∇∗)u∗ = P0−P∞

ρU2
0

∇
∗p∗+

gL0

U2
0

G∗+
ν

U0L0
∇
∗2u∗ , (2.7)

where ∇∗ = L0∇ and ν = µ/ρ is the kinematic viscosity. Note that the scaling
parameters U0, L0, T0, P0−P∞ and g can be defined to be characteristic quan-
tities of the flow under consideration. Thereby, the dimensionless parameters
occurring before the distinct terms of the normalised Navier-Stokes equation
(2.7) provide an estimate of the magnitude of the terms, which they multiply.
The Strouhal number (St = L0/(T0U0)) describes the temporal dynamics of
the system and scales inverse to the time scale T0. Furthermore, the Froude
number Fr = U2

0 /(gL0) is an estimate of the ratio between inertial and body
forces (relevant in chapter 4) while the Euler number (Eu = (P0−P∞)/(ρU2

0 ))
provides the ratio between the influence of pressure and inertial forces. Fi-
nally, the viscous term is scaled by 1/Re, where

Re =
U0L0

ν
(2.8)

is the Reynolds number that represents the ratio between inertial and viscous
forces. Generally speaking high Re implicate a higher probability for a flow to
transition to turbulence, and in the case that turbulence is established, a higher
ratio between the size of the largest and the smallest structures in the flow.

9



2 Fundamentals

The spin-down problem in an infinite cylinder (chapter 3) of radius R and ini-
tial angular velocity Ω only has a very limited amount of characteristic phys-
ical quantities influencing the problem. The simplicity of the geometry and
the kinematics allows for a normalisation with a reduced number of scaling
parameters, such as

u∗i =
ui

ΩR
; x∗i =

xi

R
; t∗ = Ωt; p∗ =

p
ρΩ2R2 . (2.9)

If the influence of gravity is neglected, the dimensionless Navier-Stokes equa-
tion simplifies to

∂u∗

∂ t∗
+(u∗ ·∇∗)u∗ =−∇

∗p∗+
ν

ΩR2 (∇
∗)2u∗ , (2.10)

with the Reynolds number Re = ΩR2/ν and St = Eu = 1.

In the present thesis, the Navier-Stokes equation is often used in a cylindrical
coordinate system. Appendix A.1 provides the detailed equations.

2.1.2 Vorticity equation and circulation

The velocity gradient tensor ∇u can be divided into an symmetric and anti-
symmetric contribution

∇u = E +ΩR =
1
2
[
(∇u)+(∇u)T]+ 1

2
[
(∇u)− (∇u)T] . (2.11)

The symmetric contribution E (rate-of-strain tensor) describes the speed of
local deformation and is coupled with the viscous stresses in the fluid. In
contrast, the antisymmetric part ΩR (spin tensor) only provides information
about the local rigid body rotation of the fluid element. Hereby, the elements

10



2.1 Governing equations of hydrodynamics

in the upper triangular of the spin tensor ΩR are equivalent to the elements
of the vorticity vector

ω = ∇×u . (2.12)

The viscous term III in (2.3) can be rewritten by means of a vector identity

µ∇
2u = µ

 ∇ ·u︸︷︷︸
=0;seeeq.2.2

−∇× (∇×u)︸ ︷︷ ︸
ω

 . (2.13)

Equation (2.13) implies that if the vorticity is zero or homogeneous the fluid
can be considered to be frictionless. As such, the transport of vorticity is of
interest. A transport equation for ω can be derived by taking the curl of the
Navier-Stokes equation (2.3) such that:

∂ω

∂ t︸︷︷︸
I

+(u ·∇)ω︸ ︷︷ ︸
II

= (ω ·∇)u︸ ︷︷ ︸
III

+ν∇
2
ω︸ ︷︷ ︸

IV

. (2.14)

Conservative body forces G are assumed. The detailed derivation of (2.14) is
given in A.4. Terms I, II, and IV are similar to the terms in the Navier-Stokes
equation (2.3). The additional term III describes the amplification of vortic-
ity due to stretching and/or reorientation. The continuum equation and the
Navier-Stokes equation suffice to find a solution for any incompressible flow.
Therefore, a solution of the vorticity equation is not required. However, ac-
cording to Morton [94], the equation has interesting properties that provide ad-
ditional possibilities to interpret the underlying physics of the flow in question.

1. The pressure term as well as the body forces are eliminated. Therefore,
the propagation of vorticity in the inner flow (away from the bound-
aries), does not (directly) depend on the pressure nor conservative body
forces.

11



2 Fundamentals

2. There is no source term in the vorticity equation. Thus, in a homoge-
neous fluid with no (or only conservative) body forces the generation of
vorticity is limited to the boundaries of the flow. The only possibility
for vorticity to decay is through cross-annihilation (or cross-diffusion)
with opposite-signed vorticity.

3. The production of vorticity at the boundaries can either result from a
boundary acceleration [4] or from tangential pressure gradients [73].

4. The generation of vorticity is instantaneous and inviscid. It does not
depend on the prior existence of vorticity in the flow. While wall shear
stress indicates the presence of vorticity it does not directly imply its
generation.

The accumulated vorticity normal to closed surface S is defined as the cir-
culation

Γ =
∫∫

S
ω ·dA =

∮
u ·dl , (2.15)

which by means of Stokes’ theorem can also be computed by a line integral
of the velocity along a closed curve around S. This implies, that through in-
tegrating (2.14) over a closed surface S, the budget of circulation Γ can be
computed.

2.2 Vortices and their identification

Various definitions of a vortex exist. However, none of them are particularly
conclusive nor satisfactory. Green [42] labels the term vortex as fuzzy, which is
an accurate description, as attempts of definitions in literature [2, 10, 145] can
be easily refuted by simple examples [42]. Green suggests a general and quite
subjective definition, where he defines a vortex as a flow structure that “a ma-
jority of fluid dynamicists would label as such” [42]. However, the subjective
definition is not particularly applicable for objective data evaluation. Despite
their limitations, multiple criteria in the literature have proven to be useful in
studies on vortex dynamics. Therefore, after a brief review of the Eulerian and
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Lagrangian frames of reference in § 2.2.1, selected Eulerian methods (§ 2.2.2)
and a Lagrangian method (§ 2.2.3) are outlined in the present section and later
applied throughout the manuscript.

2.2.1 Eulerian versus Lagrangian frames of reference

The position of a moving particle in a fluid or solid can be described by the
vector

x = x(b, t) , (2.16)

where b is a reference vector and t is the instance in time. Often the position
x0 of the particle at a time t0 is chosen as the reference vector

b = x0 . (2.17)

The Lagrangian perspective is most commonly applied in solid mechanics,
where the deformation is often small, and the strain and stress are coupled by
a Young’s modulus [7]. In fluid mechanics, historically the Eulerian frame
of reference is preferred. Modification of (2.16) implies that every reference
vector can be described by a position x and a time t such that

b = b(x, t) . (2.18)

The combination of (2.18) and the Lagrangian description of the velocity u =

u(b, t) leads to the Eulerian description where

u = u(b(x, t), t) = u(x, t) , (2.19)

that provides the temporal development of a quantity (such as u) at a fixed
location x. The Eulerian frame of reference is well suited for the description
of most fluids, as stress is only coupled to the strain rate (by the viscosity µ)
and not to the local strain. Thus, only the local velocity gradients and not
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2 Fundamentals

the deformation of the fluid volume are of interest. However, in contrast to
the Lagrangian frame of reference, the Eulerian description does not directly
provide the information of material transport. Therefore, in addition to the
classical Eulerian flow description, wich are often based on the velocity gra-
dient tensor (see § 2.2.2), several studies proposed Lagrangian methods [47],
where the relation of material transports of neighboured particles are utilised
to identify regions of coherent movement. The regions of coherent movement
often are vortical structures.

2.2.2 Eulerian vortex identification

Jeong & Hussain [57] review and compare the most common Eulerian meth-
ods, which are based on the velocity gradient tensor: the ∆-criterion [19], the
Q-criterion [55] and the λ2-criterion [57]. As all criteria show similar results
for the detection of a vortex in the present manuscript, the Q-criterion is cho-
sen. The Q-criterion is easy to implement and provides a straight-forward
interpretation of its value as it compares the magnitude of the rate-of-strain
tensor E to the magnitude of the spin tensor ΩR (2.11). Hunt et al. [55] define
the second invariant of ∇u as Q, which provides

Q =
1
2
(
||ΩR||2−||E||2

)
, (2.20)

where ||ΩR|| is the trace of ΩRΩT
R. If Q > 0, the rotation of the fluid ele-

ment dominates over its stretching. Therefore, while still being an arbitrary
threshold, Q = 0 at least provides a physical interpretation why it could be
regarded as an instantaneous border of a vortex. The local maximum of Q,
where ||ΩR|| � ||E|| is defined as the vortex core.

As the criterion is evaluated locally and is gradient-based, it is highly sensitive
towards local fluctuations due to small-scale turbulence and/or measurement
errors. The Γ1 and Γ2 criteria introduced by Graftieaux [39] are similar yet
more robust methods than the Q-criterion to identify the core and the bound-
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2.2 Vortices and their identification

aries of a vortex, respectively. For the non-Galilean invariant Γ1(xc) at a lo-
cation xc is defined as

Γ1(xc, t) =
1

Ag

∫
xm∈Ag

[(xm− xc)×u(xm, t)] ·n
||xm− xc|| · ||u(xm, t)||

dA , (2.21)

where Ag is the surface of which the Γ1 is evaluated, n is the normal to the sur-
face of evaluation. The magnitude |Γ1| is bound by 1 and its local maximum
provides an estimate of the vortex centre, which (due to the integration over A)
is more robust towards local fluctuations and/or measurement errors. In con-
trast to Γ1, Γ2 is indeed Galilean invariant by accounting for the convection
velocity u(xc, t), which leads to

Γ2(xc, t) =
1

Ag

∫
xm∈Ag

[(xm− xc)× (u(xm, t)−u(xc, t))] ·n
||xm− xc|| · ||u(xm, t)−u(xc, t)||

dA . (2.22)

For small Ag it can be shown that Γ2 > 2/π corresponds to Q > 0 and thus a
dominant influence of rotation over shear [39]. As such Γ2 = 2/π provides a
vortex boundary, which is similar to the vortex boundary from the Q-criterion.
However, Γ2 is more robust, as the integration over Ag limits the influence
of local fluctuations.

2.2.3 Lagrangian vortex identification

“The identification of Lagrangian coherent structures (LCS) can provide deeper
insight into the material transport of complex flows [47]. LCS separate flow
regions of coherent movement. A classical method to calculate attracting LCS
is the backward finite-time Lyapunov exponent (FTLE) σb

Tint
(t), which deter-

mines the local attraction rate of particle tracks over a finite time span. The
first step to determine the backward FTLE is seeding massless tracers in the
computational domain and tracking them backward in time over the timespan
Tint . In the present work, flow-map interpolation, as suggested by Brunton &
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Rowley [13], is applied to reduce the computational effort. The resulting flow
map Ψ

t−Tint
t is used to determine the right Cauchy-Green tensor

C = (∇Ψ
t−Tint
t )T

∇Ψ
t−Tint
t . (2.23)

The terms of the deformation gradient ∇Ψ
t−Tint
t are obtained by the numerical

schemes described in § 3.1. By evaluating and normalising the maximum
eigenvalue Λmax(C), the backward FTLE

σ
b
Tint

(t) =
1

Tint
ln(Λmax(C)) (2.24)

is determined. Shadden et al. [122] define thin ridges of the FTLE as LCS.
For the present flow [see chapter 3], the FTLE provides a clear visualisation
of the complex three-dimensional interface between the boundary layer and
the vortex core. The FTLE is particularly useful during the onset of three-
dimensionality in the flow, as it captures the location and evolution of the
secondary instability through an alternative visualisation of the flow field.”
[Kaiser et al., 2020a]

2.3 Important instability mechanisms of vortical flows

2.3.1 Centrifugal instabilities

Centrifugal instabilities are observable in various flows. Examples include the
flow over curved walls, parallel shear flows in a rotating frame of reference,
and the vortex-wall interaction in vortices on the suction side of propulsors
[14]. As a result of centrifugal instabilities, elongated vortices in the stream-
wise direction are formed, which often act as the nucleus of transition to tur-
bulence. Rayleigh [107] provides a criterion for the appearance of centrifugal
instabilities in axisymmetric two-dimensional flows. The equilibrium between
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centrifugal forces and the pressure is unstable, if the magnitude of the circula-
tion (|Γ(r)|) does decrease with increasing radius r such that

∂ |Γ(r)|
∂ r

< 0. (2.25)

This implies that a change of sign of the vorticity leads to an unstable flow.
Kloosterziel & van Heijst [65] extended the criterion to axisymmetric flows in
rotating frames of references and Bayly [5] found a general criterion for non-
symmetric flows in inertial systems. Eventually, Sipp & Jacquin [124] formu-
lated a general criterion for centrifugal instabilities along a two-dimensional
streamline, allowing a non-axisymmetric flow as well as a rotating frame of
reference. A streamline is considered as unstable when at each point

2
(
|u|
R

+ΩC

)
(ω +2ΩC)< 0 (2.26)

is fulfilled, where |u| is the magnitude of the velocity, R = |u|3/((∇Ψ) · [u ·∇u])

is the local curvature of the streamline, Ψ is the streamfunction and ΩC is the
angular velocity of the coordinate system.

Buchner et al. [14] applied the criterion of Sipp & Jacquin [124] to the vortex
formation on a pitching propulsor and identified regions affected by centrifu-
gal instabilities. The unstable regions spatially correlate with the interface
between the vorticity in the vortex and the opposite-signed vorticity contained
in or advected from the boundary layer (see figure 1.1). The interface between
the opposite-signed vortical layers and its scaling with Re is analysed in de-
tail in chapters 3 and 4. As mentioned in chapter 1, the problem is simplified
to allow statistical analysis of the eventual turbulent flow. The interface of
opposite-signed vorticity is analysed during the spin-down process of a vor-
tex in SBR that interacts with the walls of a resting cylinder; see figure 2.1.
This vortex decay is enclosed by a curved boundary layer with a temporally
growing boundary-layer thickness δ . A broad body of literature deals with
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a) b) c) d) IC 2
0

ω
δ99

ω=2

Figure 2.1: Overview of distinct boundary-layer types and their concave counterpart: (a) spatially
developing boundary layers (b) fully developed channel flow (c) Couette and Taylor-
Couette flow (d) temporally-developing boundary layers, with the respective initial
condition (ic). Figure adapted from [Kaiser et al., 2020a].

the effects of wall curvature in various flow scenarios.The spin-down process
addressed in the present manuscript (chapters 3 and 4) embodies aspects of
those curved-wall flows. As such, a brief review on concave boundary layers
is adapted from [Kaiser et al., 2020a] and provided in the following.

“By identifying the inviscid centrifugal instability mechanism Rayleigh [107]
paved the way for research on the influence of curvature on wall-bounded
flows. Subsequently, canonical flows with flat boundaries in the streamwise
direction w were also assessed in their respective curved counterpart (figure
2.1). Examples include the spatially developing boundary layer (figure 2.1(a),
statistically steady, no streamwise pressure gradient ∂ p

∂w = 0, spatially develop-
ing boundary-layer thickness ∂δ

∂w 6= 0), the fully developed channel flow (figure
2.1(b), statistically steady, ∂ p

∂w 6= 0, ∂δ

∂w = 0), the Couette flow (figure 2.1(c),
statistically steady, ∂ p

∂w = 0, ∂δ

∂w = 0) and the temporally-developing bound-
ary layer (figure 2.1(d), statistically unsteady, ∂ p

∂w = 0, ∂δ

∂w = 0) after a sudden
change of boundary conditions. In the following, we briefly review studies that
modify these canonical flow scenarios to a similar flow over concave walls.

[. . .] Modifying the classic stability problem of a flat, spatially developing
boundary layer to account for concave wall curvature (figure 2.1(a)) signifi-
cantly changes its stability properties, as described by Floryan [35] and Saric
[112]. In flows above concave walls, pairs of streamwise vortices, i.e. Görtler
vortices [38], are formed, which get corrupted further downstream by sec-
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ondary instabilities. Experiments by Bippes [9] and Swearingen & Black-
welder [126] provide visualisations of two distinct secondary instability mech-
anisms: a sinuous mode, leading to spanwise meandering of the streamwise
vortices and a varicose mode, resulting in hairpin-like structures. Linear sta-
bility theory was applied to assess the primary instability [34] and the sec-
ondary instabilities [46, 72]. Due to its high relevance in turbomachinery,
recent work focuses on the receptivity of Görtler vortices towards roughness
and freestream turbulence [120, 144], compressibility effects [108] as well as
the control of these instabilities [121].

The canonical, spatially developing boundary layer over flat plates has been
extensively studied both in laboratory experiments and in recent numerical
simulations [118, 143, 123]. The sizeable computational cost limits the value
of Re that can be achieved in numerical investigations. This limitation is
shared also by studies of boundary layers over concave walls, which consist
almost exclusively by laboratory experiments. Meroney & Bradshaw [92],
Hoffmann et al. [51] and Barlow & Johnston [3] allow transition to turbulence
in a straight channel section and, before the flow becomes fully developed, a
boundary layer of finite thickness enters a curved section of the channel. The
studies revealed persistence of streamwise rolls with wavelengths similar to
the boundary-layer thickness even in the turbulent stage, which result in en-
hanced Reynolds stresses.

Significantly lower computational effort and experimental complexity than in
spatially developing boundary layers is required when turbulence is charac-
terised in spatially confined, fully developed and pressure-driven flows such
as channels and pipes (see figure 2.1(b) and amongst others [60]). Experimen-
tal [54] and numerical [95] investigations on fully developed curved channel
flows also showed deviations in Reynolds stresses due to large-scale, stream-
wise and wall-parallel vortices with scales similar to the channel height (the
so-called Dean instability [22]).
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Applying curvature to the classical Couette flow leads to a shear flow between
two coaxial cylinders: the TC flow, first addressed by Taylor [128] (figure
2.1(c)). As the system can be easily controlled, statistically steady, closed,
and symmetric, it allows accurate measurements with moderate complexity of
the experimental apparatus as well as affordable numerical simulations even
for large values of Re. Depending upon the relative and absolute rotational
speeds, the radii of the two cylinders and fluid properties, a large variety of dif-
ferent flow structures can be produced. A broad body of literature deals with
TC thanks to its simple set-up, the variety of competing physical phenomena
occurring in the flow and the similarity with the Rayleigh-Bénard convection.
Recent reviews are given by Fardin et al. [30] and Grossmann et al. [45].

The temporal evolution of a turbulent incompressible boundary layer after an
impulsive acceleration of a flat wall – the so-called Stokes’ first problem (fig-
ure 2.1(d)) – is the flat plate counterpart of the problem investigated here in
the present study [chapters 3 and 4], at least during the first phases of the spin-
down process. While the linear stability of the flow was already analysed by
Luchini & Bottaro [81] almost two decades ago, Kozul et al. [66] recently
identified and closed a gap in the literature concerning the in-depth analysis
of the turbulent state of such flows. Transferring Stokes’ first problem to a
flow with concave wall curvature, results in an azimuthally accelerated cylin-
der. According to the Rayleigh criterion the effects of centrifugal instabili-
ties are only present in the case of a cylinder deceleration, which corresponds
to the spin-down case investigated in the present study [chapters 3 and 4].”
[Kaiser et al., 2020a].

2.3.2 Free shear layers

As mentioned in § 2.3.1, the suction-side boundary layer and its vorticity an-
nihilation introduce centrifugal instabilities into the flow. However, simul-
taneously with the suction-side boundary layer, another shear flow develops
when a propulsor is accelerated: a separated free shear layer. A sheet of high
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vorticity separates from the propulsor at a separation point, which is subse-
quently referred to as the vortex-forming edge (VFE). Before the separated
shear layer rolls up into the vortex, it inherits its own instabilities, which in
turn influence the entrainment of non-vortical fluid into the shear layer (and
thus the vortex). In the present section, an overview of previous studies on
free shear layers is given. In particular, the influence of shear-layer curvature
and Re on entrainment is discussed.

The dominant instability mechanism for a planar free shear layer is the Kelvin–
Helmholtz instability (KHI) [74, 93]. Both, inviscid linear spatial [93] and
temporal [74] stability theory provide good agreement with experimental re-
sults concerning the early evolution of the instabilities. During the linear
stage, viscous effects are minor and mainly damp the evolution of the domi-
nant wavelengths, while not significantly influencing their wavenumber [74].
However, viscous effects become more relevant once the non-linear regime
is entered. Vortices start to merge [50] and additional small scale structures
emerge as visualised in Schaal et al. [116]. Inside those structures, non-
vortical and vorticity-containing fluid are separated by a sharp interface, which
is often referred to as the turbulent non-turbulent interface (TNTI). Along the
TNTI vorticity is transferred at scales on the order of the Kolmogorov length
scale [20], leading to entrainment of non-vortical fluid into the shear layer.
While viscous effects (and thus Re) intrinsically influence vorticity diffusion
and thereby the entrainment process at the interface [139, 17], also the evolu-
tion and size of the vortical structures in the shear layer impact the entrainment
process. Vortical structures engulf areas of non-vortical fluid [12] and thereby
increase the surface of the TNTI and the entrainment rate.

In the case of curved free shear layers, the curvature influences the linear insta-
bility mechanisms [77]. Dependent on the boundary conditions, the curvature
effects can decrease the spatial growth rate of the dominant KHI wavelength
due to centrifugal forces or even introduce additional structures resulting from
centrifugal instabilities [77].

21





3 Wall-bounded vortex decay –
numerical approach

This chapter is based on the publication On the stages of vortex decay in an

impulsively stopped, rotating cylinder [Kaiser et al., 2020a]. The chapter is
supplemented by additional discussions, which go beyond the scope of the
publication and relate the fundamental results to the guiding example of the
present thesis, i.e. vortex formation in bio-propulsion.

“An infinitely long cylinder of radius R has its axis aligned with the axial direc-
tion of a cylindrical coordinate system with radial, azimuthal and axial coordi-
nates denoted respectively (r,ϕ,z). The cylinder is filled with an incompress-
ible Newtonian fluid of kinematic viscosity ν and rotated with angular velocity
Ω (see figure 3.1) until solid-body rotation (SBR) of constant axial vorticity
ω = 2Ω is achieved. This flow is characterised by the following velocity field

uϕ(r) = Ωr, ur = uz = 0 .

Figure 3.1: Schematic describing the evolution of vorticity (colour coded) and azimuthal velocity
profile (vectors) during the distinct stages of the spin-down process: initial condition
(ic), laminar stage (I), instabilities and transition to turbulence (II), sustained turbu-
lence with intact vortex core (III), corruption of vortex core and decay of turbulence
(IV), and relaminarisation (V). Spirals illustrate the existence of turbulent fluctuations
in stages III and IV. Figure adapted from [Kaiser et al., 2020a].
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The numerical experiment begins at the temporal instant t = 0 when, start-
ing from the condition of SBR, the rotation of the cylinder wall is suddenly
stopped. Following this event, a transient unsteady flow develops, referred to
here as spin-down.

Figure 3.1 presents the different stages of the spin-down process. Each stage
is characterised by unique flow features, which are strongly influenced by the
boundary conditions – specifically the concave walls of the cylinder. After the
laminar boundary layer formation (stage I), centrifugal instabilities emerge as
addressed experimentally by Euteneuer [28] and Mathis & Neitzel [86]. These
instabilities have also been studied analytically by Neitzel [96] and Kim et

al.[62]. However, only Euteneuer [28] extended their work up to the nonlin-
ear saturation of the primary instability (in stage II). Yet the subsequent stages
of the spin-down process have not been investigated: the secondary instabil-
ity (end of stage II), a stage of sustained turbulence (stage III), the decay of
turbulence (stage IV) and the relaminarisation (stage V) itself.

These later stages (stages II-V) are characterised by centrifugal instabilities
and the onset of turbulence. The kinetic energy initially present in the SBR
is not only dissipated through the viscous dissipation associated with a time-
varying velocity profile of laminar spin-down, but also converted to turbulent
fluctuations and eventually dissipated via turbulent viscous dissipation. When
a large fraction of the total energy has been dissipated, turbulence does not
self-sustain and a stage of viscous decay occurs yielding relaminarisation. As
mentioned in studies on decaying Taylor-Couette (TC) flow by Verschoof et

al. [134] and Ostilla-Mónico et al. [102], the rate at which energy is dis-
sipated during the sustained and decaying turbulent regimes is not known a

priori. In a similar manner, the details of production and dissipation of energy
associated with turbulent fluctuations are also poorly understood. The statis-
tical properties of the turbulent flow and the turbulence production and decay
processes depend on the Reynolds number (Re) in at least two instances. On
the one hand, there is the obvious impact of Re on the relative importance
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of viscous and inertial stresses, and thus on turbulent statistics. On the other
hand, the value of Re determines the stability properties of the laminar bound-
ary layer forming at the initial stages of spin-down, thereby determining the
boundary-layer properties at the instant in which instability and transition to
turbulence occur.

The objective of the present work is to describe the spin-down process through-
out all of its phases from onset of centrifugal instabilities to the decay of tur-
bulence. Particular focus lies on the flow stages that have not been discussed
previously and on the analysis of the turbulent properties and the effect of Re.
This study by no means strives to completely cover all aspects of the spin-
down process. Rather the paper provides an initial overview of this complex
transient flow and its phenomena. Each stage on its own has significant po-
tential for further investigations and therefore makes the spin-down problem
an interesting canonical flow to assess unsteady turbulence in the presence of
concave walls.” [Kaiser et al., 2020a].

The present chapter is structured as follows. “Section § 3.1 contains a detailed
description of the numerical method and the flow cases considered in the fol-
lowing. Particularly relevant are the description of the adopted Reynolds de-
composition and the budget equations utilised to describe the temporal be-
haviour of the kinetic energy as described in § 3.2 and the definition energy
spectra (see § 3.4). Starting with an overview over the temporal flow develop-
ment in § 3.5, the different stages of the spin-down are discussed in detail for
one of the simulated Re in § 3.5.1- § 3.5.5. Finally, in § 3.6 the Re-influence is
addressed by evaluating four simulations at different Re, ranging over almost
one order of magnitude.” [Kaiser et al., 2020a]

3.1 Numerical methods and parameter space

“A newly created database of the turbulent spin-down process in cylinders is
produced via direct numerical simulation (DNS). The code used in the present
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Re umax
τ /ΩR Lcyl/R Nmax

ϕ ×Nr×Nz R+∆ϕ ∆r+ ∆z+ ∆t+

3000 0.0814 2π 136×68×272 11.28 1.60 5.64 0.20

6000 0.0809 2π 282×141×566 10.81 1.52 5.38 0.16

12000 0.0766 π 502×249×504 11.51 1.63 5.73 0.18

28000 0.0693 π 1024×500×1024 11.92 1.71 5.96 0.20

Table 3.1: Discretisation parameters of the direct numerical simulations performed in the present
study. Nmax

ϕ and Nz are the number of maximum azimuthal and axial Fourier modes
used to represent the flow field without accounting for the additional modes required
to exactly remove the aliasing error. Nr is the number of collocation points adopted
in radial direction. The value of spatial and temporal resolutions are computed at the
temporal instant of transition to turbulence, for which the friction velocity achieves
its maximum value umax

τ . Line colours are used in section 3.6. Table adapted from
[Kaiser et al., 2020a].

(a) Temporal development of the friction velocity uτ

at different values of Re. The maximum value,
achieved during transition and used to determine
the spatial resolution in the numerical simulation,
is marked with dashed black lines.

(b) Averaged azimuthal velocity profiles at Ωt = 0.5
(the instant is marked by a vertical dotted orange
line in figure 3.2(a)) compared with the respective
analytical solution (dashed black lines).

Figure 3.2: Procedure to select the spatial and temporal resolution of the numerical simulation.
Figure adapted from [Kaiser et al., 2020a].
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study is a mixed-discretisation parallel solver of the incompressible Navier–
Stokes equations in cylindrical coordinates [29, 85]. Velocity and pressure
fields are discretised via a Fourier–Galerkin approach along the two statisti-
cally homogeneous azimuthal (ϕ) and axial (z) directions, while second-order
explicit compact finite-difference schemes [69] based on a three-point compu-
tational stencil on an inhomogeneous grid are adopted in the radial direction
(r). Spectral accuracy is therefore achieved for the discretisation of all differ-
ential operators in the statistically homogenous directions. The accuracies of
the differential operators D1 =

∂

∂ r and D∗ = ∂

∂ r

(
r ∂

∂ r

)
operating in the radial

direction are fourth and second order, respectively. The incompressibility con-
straint is enforced within machine accuracy by direct solution of the continuity
equation, which is coupled with pressure through the radial component of the
momentum equation for the collocation point in the fluid domain closest to
the wall. The number of Fourier modes in the azimuthal direction decreases
from the wall towards the cylinder axis as a linear function of r, so that the
azimuthal resolution r∆ϕ is kept constant across the cylinder. The regularity
boundary conditions (RBCs) [71] are based upon the invariance of the solu-
tion with respect to the origin of the coordinate system. RBCs are enforced
at the cylinder axis, for all wavenumber pairs that exist throughout the cylin-
der cross-section, or at the radial position that represents the boundary for
wavenumber pairs that only exist above certain values of r.

The governing equations are advanced in time starting from the initial condi-
tion of a fully established SBR. No pressure gradient is imposed in the axial
direction. Temporal discretisation is achieved with an implicit second-order
Crank–Nicholson scheme for the linear terms combined with an explicit third-
order low-storage Runge–Kutta scheme for the nonlinear part of the governing
equations. Random disturbances with constant energy of 10−12Ω2R2 satisfy-
ing no-slip boundary conditions are superimposed to each wavenumber and
velocity component of the initial velocity field in the whole cylinder volume.
The first time step of the simulation forces the random disturbance to ful-

27



3 Wall-bounded vortex decay – numerical approach

fil the continuity equation. In the resulting divergence-free field, the energy
contained in each wavenumber and velocity component space is randomly
distributed and is bound by 10−12.55Ω2R2 and 10−11.5Ω2R2. Henceforth, gov-
erning equations and all variables are normalised via the cylinder radius R

and the initial angular velocity Ω of the SBR. Four different numerical exper-
iments are performed, characterised by different values of the Reynolds num-
ber Re = ΩR2

ν
∈ {3000,6000,12000,28000}, where ν is the kinematic viscos-

ity of the fluid. The discretisation parameters are summarised in table 3.1.

Spatial and temporal resolutions are set to fulfil the requirements for wall-
bounded turbulence [60] at all times of the temporal evolution of the flow.
The resolutions are expressed in terms of viscous units, i.e. normalised via
the kinematic viscosity ν of the fluid and the friction velocity uτ =

√
τw/ρ .

Here, τw is the spatially averaged wall shear stress and ρ is the fluid density.
Normalisation in viscous units is indicated with the superscript +. The most
stringent requirement for spatial resolution is achieved after onset of transi-
tion, when uτ reaches the maximum value umax

τ . At this time instant, indicated
by dashed black lines in figure 3.2(a), the azimuthal, axial and minimum ra-
dial resolutions are R+∆ϕ ≈ 11, ∆z+ ≈ 6 and ∆r+min ≈ 1.5, respectively. These
values are computed without taking into account the additional modes used to
exactly remove the aliasing error. It must be noted that such resolution is finer
than the one required to correctly describe the onset of turbulent transition, as
discussed in § 3.5. The resolution in viscous units improves for all other later
time instants. The axial extent Lcyl of the computational domain is a com-
promise between the need for accommodating several Taylor rolls [100, 11],
providing sufficient area for reliable computation of spatially averaged quanti-
ties, and constraining the computational effort and the required disk space for
storing the large data sets.” [Kaiser et al., 2020a]
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3.2 Reynolds decomposition and energy budgets

3.2 Reynolds decomposition and energy budgets

For the sake of brevity, this section only provides a brief overview (in parts
adapted from [Kaiser et al., 2020a]) of the budget equations utilised in section
3.5. The detailed derivation of the given equations is provided in Appendix
A.1–A.3.

“The spin-down process is statistically unsteady, for which the Reynolds de-
composition applied to the velocity field reads

ui(r,ϕ,z, t) =〈ui〉ϕ,z(r, t)+u′i(r,ϕ,z, t), (3.1)

where index notation is used to indicate the i-th velocity component in the re-
spective direction of cylindrical coordinates (r,ϕ,z): 〈·〉ϕ,z denotes averaging
along the statistically homogeneous azimuthal and axial directions. It must
be noted that the ensemble average of independent repetitions of the same ex-
periment is applicable to unsteady problems. However, this has not been per-
formed in the present study, for which spatial averaging resulted in sufficient
statistical convergence. In equation (3.1) u′i(r,ϕ,z, t) is the fluctuating velocity
field about the average value 〈ui〉ϕ,z(r, t). In the following, the notation 〈ui〉=
〈ui〉ϕ,z(r, t) and u′i = u′i(r,ϕ,z, t) is used for brevity.” [Kaiser et al., 2020a]

3.2.1 Mean and turbulent kinetic engergy

“The temporal decay of the kinetic energy contained in the initial SBR is inves-
tigated in the present study. In the framework of the Reynolds decomposition,
kinetic energy is split into mean kinetic energy K, associated with the averaged
flow field 〈ui〉, and turbulent kinetic energy k, associated with the fluctuating
field u′i. As〈ur〉=〈uz〉= 0 in the present flow, the mean kinetic energy is given
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3 Wall-bounded vortex decay – numerical approach

by K = 1
2

〈
uϕ

〉
2. Its temporal evolution is governed by the following budget

equation [derivation of the equations given in Appendix A.3]:

∂K
∂ t

=− ∂

∂ r

(〈
uϕ

〉〈
u′ru
′
ϕ

〉)
−
〈
uϕ

〉〈
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(3.2)

where Tm is the turbulent diffusion, Vm the viscous diffusion and εm the dissi-
pation of K. The turbulence production term P couples the budget equation of
K and k as it draws energy from the mean flow and transfers it to the fluctuat-
ing field. Following Mansour et al.[83] and Bilson & Bremhorst[8] the budget
equation for k = 1

2
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′
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〉
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(3.3)

Here, the viscous diffusion Vt , the pressure diffusion Πd and the turbulent dif-
fusion Tt describe the transport of k, while εt is its viscous dissipation.
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3.3 Wall-based flow description

Beyond the averaging in axial and azimuthal direction, the closed system al-
lows averaging in the cylinder volume V , which is indicated in the following
with the volume averaging operator [·]. The volume-averaged total kinetic en-
ergy [K] + [k] can be expressed as

[K]+[k]=
1

2V Ω2R2

∫
V

uiuidV =
1

2V Ω2R2

∫
V
〈ui〉2dV +

1
2V Ω2R2

∫
V

〈
u′iu
′
i
〉
dV .

(3.4)
Due to the no-slip conditions at the decelerated cylinder walls, energy is con-
stantly withdrawn from the system. The temporal change of kinetic energy
[K]+[k] can be described by volume averaging and summation of the equa-
tions (3.2) and (3.3). All transport terms Tt , Vt , Tm, Vm and Πd contained in the
two equations vanish by definition. Also the production P, which appears in
both equations for [K]and [k]with an opposite sign, vanishes when the volume
average of the kinetic energy [K]+[k] is evaluated. As a consequence, only the
dissipation terms εt and εm remain.” [Kaiser et al., 2020a]

The temporal change of the volume average of total kinetic energy simpli-
fies to

∂ ([K]+[k])
∂ t

=
∂ [K]

∂ t
+

∂ [k]
∂ t

=[εm]+[εt ]=[εtot ]. (3.5)

3.3 Wall-based flow description

“To characterise turbulence in the developing boundary layer during spin-
down, the classical friction Reynolds number

Reτ = uτ δ99/ν (3.6)
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3 Wall-bounded vortex decay – numerical approach

is introduced [58], in which δ99 is the boundary-layer thickness and uτ =√
τw/ρ is the friction velocity based on the mean wall shear stress

τw = ρν
∂
〈
uϕ

〉
∂ r

∣∣∣∣∣
r=R

. (3.7)

Note that in the investigated flow τw, uτ , δ99 and Reτ change with time t.
Due to the lack of a constant outer velocity, the traditional definition of δ99 is
adapted by using the retracting vortex core in SBR as follows

Ω(R−δ99)−
〈
uϕ

〉
= 0.01ΩR , (3.8)

i.e. δ99 is defined as the distance from the wall, at which the flow deviates
0.01ΩR from the initial SBR.” [Kaiser et al., 2020a]

3.4 Energy spectra

“The appearance of Taylor rolls will be assessed by the analysis of the power
spectral density of k. The summands of k = 1

2 〈u
′
iu
′
i〉 are split up into the con-

tribution of different axial modes κz of wavelength λz = Lcyl/κz. The axial
energy spectra are given by

Φuiui = Φuiui(r,κz) =
∫

κmax
ϕ

κmin
ϕ

R
〈
ûi(κϕ ,κz,r)û∗i (κϕ ,κz,r)

〉
dκϕ (3.9)

where R is the real part of a complex number, ·̂ indicates the Fourier coeffi-
cients and the superscript ∗ denotes complex conjugation. By accumulating
the energy of all modes except the base flow the summands of k are recovered,

〈
u′iu
′
i
〉
(r, t) =

∫
κmax

z

κ1
z

Φuiuidκz =
∫

λ max
z

λ min
z

κzΦuiuid(ln(λz)). (3.10)
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3.5 Flow regimes

To gather information about the linear and subsequent nonlinear growth of
the different modes κz in the boundary layer, the energy spectrum Φuϕ uϕ

is spatially averaged over the fluid volume contained in the boundary layer
Vδ = π(2Rδ99−δ 2

99)Lcyl, resulting in the one-dimensional spectrum

1
Vδ

∫
Vδ

∫
κmax

z

κ1
z

Φuϕ uϕ
dκzdV =

∫
κmax

z

κ1
z

2πLcyl

Vδ

∫ R

R−δ99

Φuϕ uϕ
rdr︸ ︷︷ ︸

ξϕϕ (κz)

dκz (3.11)

for each time step: ξϕϕ thus describes the contribution to
〈
u′ϕ u′ϕ

〉
of each

wavenumber κz throughout the whole boundary layer. ” [Kaiser et al., 2020a]

3.5 Flow regimes

“Dimensional analysis provides two dimensionless groups for the present
flow: the Reynolds number Re = ΩR2/ν and a dimensionless time. Two
distinct yet convertible representations of the dimensionless time are utilised
in the following: the viscous time νt/R2 and the outer time Ωt = Re ·νt/R2,

(a) Boundary-layer thicknesses δ99, friction velocity uτ

and friction Reynolds number Reτ .
(b) Mean [K] and turbulent [k] kinetic energy. Ro-

man numbers I-V and background colouring
indicate the different stages of the decay pro-
cess.

Figure 3.3: Temporal development of bulk flow statistics for the spin-down process at Re =
12000. Figure adapted from [Kaiser et al., 2020a].
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3 Wall-bounded vortex decay – numerical approach

(a) Turbulent production [P], mean dissipation [εm],
turbulent dissipation [εt ] and total dissipation
[εtot ].

(b) Ratio [εt ]/[εm]and excess production |[P]/[εt ]|.

Figure 3.4: Temporal development of the volume-averaged [K] (3.2) and [k] (3.3) budgets for the
spin-down flow at Re = 12000. Figure adapted from [Kaiser et al., 2020a].

where Ωt = 2π represents a full revolution of the SBR. This section discusses
the temporal development of the spin-down flow at Re = 12000, before the
Re scaling is addressed in § 3.6.

Figures 3.3 and 3.4 provide a first overview of the flow evolution. Roman num-
bers I-V and background colouring indicate the different stages of the decay
process. While each stage is characterised by unique features, the transition
between stages occurs gradually and thus cannot be exactly localised in time.

During stage I, a stable, laminar boundary layer grows from the cylinder wall
at a rate proportional to the viscous time scale

√
νt (see figure 3.3(a)), while

the friction velocity uτ decreases. Since the increase in boundary-layer thick-
ness outweighs the decrease in uτ , Reτ increases mildly in time. Figure 3.3(b)
shows the corresponding evolution of volume-averaged mean and turbulent
kinetic energy. As expected, [K]decreases and the initial random disturbances
contained in [k] also decay in the stable boundary layer. Stage II is charac-
terised by the centrifugal instability associated with the emergence of Taylor
vortices and subsequent breakdown to turbulence. The sudden increase of uτ

and δ99 (and thus Reτ ) is accompanied by the exponential growth of [k].
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3.5 Flow regimes

After transition to turbulence, stage III is entered. In this stage, [k] varies
slowly in time. The flow consists of the superposition of a constantly retracting
SBR core at the centre of the cylinder and a turbulent boundary layer close to
the cylinder wall. The latter is characterised by decreasing uτ and increasing
δ99. The beginning of stage IV is marked by the breakdown of the SBR core,
in which turbulent fluctuations become non-negligible and induce a reduction
of
〈
uϕ

〉
inside the vortex core. Two distinct phenomena occur during stage IV.

First, the breakdown of the SBR core is accompanied by a sudden increase
of δ99 with no discernible effect on uτ or [k]. Then, after the SBR core has
been completely eroded by turbulence, [k] and Reτ drop in time. Finally, the
temporal evolution of the flow ends with the viscous decay of stage V.

Figure 3.4a shows the temporal evolution of [P], [εt ] and [εm] during the five
stages. In stage I, energy dissipation is governed by [εm], while very small
values of [εt ] indicate the decay of the initial disturbances (figure 3.4(a)). At
the end of stage I, [P] begins to increase in time until [P] exceeds [εt ], at which
point the Taylor rolls emerge in stage II and yield the fast increase of [k] dis-
cussed above. The onset of turbulence is accompanied by a strong increase
of [εt ]/[εm] (figure 3.4(b)), after which [εt ] and [P] are in equilibrium, yield-
ing the sustained turbulent regime of stage III with only marginal variation of
[k] (figure 3.3(b)). Within stage IV the ratio of dissipation [εt ] and produc-
tion [P] leans towards dissipation and [k] begins to decay. Eventually, the flow
laminarises and the ratio [εt ]/[εm] drops significantly while [εtot ] ≈ [εm]. This
final stage, which is most evident in figure 3.4(b), is referred to as stage V.”
[Kaiser et al., 2020a]
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3 Wall-bounded vortex decay – numerical approach

3.5.1 Stage I: Laminar boundary layer

“The laminar stage of the flow, for which u′i = 0 and thus ulam
ϕ =

〈
uϕ

〉
, can be

described by the analytical solution of [96]

ulam
ϕ

ΩR
=−2

∞

∑
i=1

J1(βir/R)
βiJ0(βi)

exp(−β
2
i νt/R2) , (3.12)

where J0 and J1 are Bessel functions of the first kind and βi are the roots
of J1(βi) = 0. For small t, while δ99/R is small and the local curvature is
negligible, the present boundary layer above the concave wall is similar to
Stokes’ first problem [119]. Thus, for small t, the growth rate of δ99 coincides
with the growth rate of the boundary layer in the vicinity of a impulsively
accelerated flat plate (here indicated with the superscript St),

δ
St
99 = aSt

lam
√

νt ≈ 3.64
√

νt . (3.13)

However, with increasing δ99/R the growth rate of δ99 in the spin-down prob-
lem, computed exploiting the exact analytical solution (3.12), deviates from
δ St

99 due to curvature effects. The deviation is such that δ99 can be made di-
rectly proportional to

√
νt, only if the proportionality coefficient alam is a

weak function of time.

For simplicity, in the following analyses the growth rate during stage I is char-
acterised through a constant growth rate coefficient alam, which is determined
via a least square fit of the expression

δ99 ≈ alam
√

νt (3.14)

to the analytical solution for the spin-down process, which yields alam ≈ 3.68.
The approximation of neglecting the temporal variation of alam in (3.14) intro-
duces an error smaller than 0.01δ99 for 0< δ99 < 0.28R. The good agreement
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3.5 Flow regimes

(a) Critical wavelength λc as a function of Re. Hollow
symbols and lines are experimental data and corre-
lations from the literature mentioned in the legend,
respectively. Green dots denote current results

(b) Temporal evolution of δ99 and λT (t) for the
present numerical simulation compared against
the measurement by [28] at Re = 12000.

Figure 3.5: Critical λc for differrent Re and dominant wavelength λT (t) for Re = 12000. Note
that in (a) the values of λc reported by Maxworthy [87] and Mathis & Neitzel [86]
have been rescaled by a factor 0.5 due to their different definition of λc, as noted by
Kim & Choi [61]. Figure adapted from [Kaiser et al., 2020a].

of (3.14) (black line) with the numerical results is emphasised in figures 3.3(a)
and 3.6(a).” [Kaiser et al., 2020a].

3.5.2 Stage II: Emergence of Taylor rolls and laminar-to-turbulent
transition

“If Re is large enough (the stability limit in literature varies in the range of
128< Re< 350), the boundary layer is linearly stable only until a critical time
θc = νtc/R2, after which the boundary layer undergoes linear primary cen-
trifugal instability. The instability results in the emergence of radial plumes,
which later evolve into Taylor rolls. The plumes occur at a characteristic time-
dependent spacing λT (t) in the axial direction, which at the critical time θc is
representative of the linearly most-amplified axial wavelength, the so-called
critical wavelength λc = λT (θc). For the sake of validation, the values of λc

extracted from the present numerical simulation are compared in figure 3.5(a)
against results obtained in the literature via linear stability analyses [61] and
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3 Wall-bounded vortex decay – numerical approach

laboratory experiments [87, 27, 28, 86]. In the present work, λc is measured
as the most energetic wavelength of ξϕϕ(κz,θc) (see § 3.4 for the definition
of ξϕϕ ) during the early stage of the linear growth and shows excellent agree-
ment with these existing studies.

Figure 3.5(b) compares λT (t) computed from the present numerical data
against the experimental results of Euteneuer [28] at Re = 12000. Euteneuer
[28] estimated the critical wavelength by counting the number of toroidal
Taylor rolls aligned along the axial dimension of his experimental set-up.
It was found that the rate of change in the observed number of streamwise
rolls changes abruptly. This change in growth rate was referred to as ‘Knick-

stelle’, the German word for “kink”, the origin of which will be discussed
in the following.

Figure 3.6 shows the initial evolution of δ99, uτ , [k], [K] and ξϕϕ . The flow
at four selected time instances, marked with dashed black lines in figure 3.6,
is visualised in figure 3.7. Figure 3.7 consists of a pre-multiplied spectrum
κzΦuiui , the one-dimensional spectrum ξϕϕ averaged over the boundary layer
and a (r,z)–slice of u′ϕ . The respective boundary-layer thickness δ99 is de-
picted with an orange line. The complete corresponding temporal evolution
is provided in supplementary material [of [Kaiser et al., 2020a]] Movie1.mp4
available at https://doi.org//10.1017/jfm.2019.974.

During the early linear stage (Ωt = 1, figure 3.7(a)) most modes decay and
only a narrow band of axial wavenumbers κz ≈ κc is amplified. This is most
clearly visible in figure 3.6(c), where the temporal evolution of ξϕϕ is re-
ported for relevant wavenumbers. As the mean velocity profile changes due
to the temporal growth of the boundary layer, the stability properties of the
mean velocity profile also change, and so does the most amplified wavenum-
ber. Already at Ωt = 2 wavenumbers κz < κc are amplified and carry more
energy than κc. This temporal change of the most amplified disturbances are
represented in figure 3.6(d), in which ξϕϕ is reported as function of κz at dif-
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3.5 Flow regimes

(a) Temporal evolution of δ99 and uτ (b) Temporal evolution of [K] and [k]

(c) Temporal evolution of ξϕϕ (κx, t) (d) Wavenumber dependence of ξϕϕ (κx, t)

Figure 3.6: Statistical quantities during the onset of primary and secondary instability. The verti-
cal dashed lines indicate the four temporal instances Ωt ∈ {1.0,2.0,4.3,5.3} that are
discussed in detail in figure 3.7. The vertical dotted line marks the onset of turbulence
as visualised in figure 3.10(a). The vertical dashed-dotted line in (d) marks the critical
wavenumber κc. Figure adapted from [Kaiser et al., 2020a].
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(a) exponential growth of primary instability: Ωt = 1

(b) exponential growth for a broad range of modes: Ωt = 2

(c) significant influence of instabilities onto the mean flow: Ωt = 4.3

(d) right before onset of secondary instability: Ωt = 5.3, uτ (5.3) = max(uτ (t))

Figure 3.7: Pre-multiplied 1D spectra κzΦuiui (left), 1D spectra ξϕϕ averaged across the bound-

ary layer (middle) and instantaneous velocity fluctuations
〈

u′ϕ u′ϕ
〉

(right) during tran-

sition (Re = 12000). The orange line marks the boundary-layer thickness δ99 (left
and right) and the wavenumber κδ = 2 · 2π/δ99, which would be the most energetic
wavenumber if the streamwise vortices were circular and had diameter δ99. The ver-
tical dashed-dotted line marks the critical wavelength λc (left) and wavenumber κc
(right), respectively. Figure adapted from [Kaiser et al., 2020a].
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3.5 Flow regimes

ferent temporal instances distinguishable through colour coding from the start
of spin-down (bright colour) onwards.

Starting from Ωt = 2 the energy of almost all wavenumbers grows exponen-
tially, leading to increasing [k] (figure 3.6(b)), until nonlinear saturation is
reached and the growth stops at Ωt = 4.3. At this moment, the initially am-
plified wavenumbers achieve their maximum energy content. The fluctuations
start to influence the mean profile

〈
uϕ

〉
and thus δ99, uτ and [K]. The pre-

multiplied spectrum Φuzuz shows a distinct second peak at a radial position
close to δ99, marked by an orange line in the left panels of figure 3.7(c) and
3.7(d). The second peak is related to the axial flow at the head of the radial
jets, which starts the formation of plumes and streamwise vortices by redi-
recting the radial flow in axial direction. This process is accompanied by a
simultaneous rapid growth of δ99, uτ and [k] (figure 3.6a,b).

The friction velocity uτ reaches its maximum at Ωt = 5.3, right before the
breakdown of this still coherent and quasi-axisymmetric flow through pres-
ence of a secondary instability. This effect will be discussed later in more
detail. At this instance (figure 3.8(e)), the plumes are roughly twice as tall in
the radial direction than they are wide in the axial direction, and begin to merge
with adjacent plumes towards restoring an aspect ratio of unity. The sudden
merging of consecutive plumes causes the dominant wavelength λT to shift
from the critical wavelength of early linear primary instability to λT ≈ δ99 (fig-
ure 3.6(d)). This, together with the rapidly growing δ99, explains the “kink”
observed by Euteneuer [28]. It can be seen in figure 3.5(b) that the numerical
data reproduce the “kink” around νt/R2 ≈ 3.7 ·10−4 (Ωt ≈ 4.4). However,
during the later evolution of the flow, large deviations between the present
data and the curve published by Euteneuer exist. These deviations are related
to the onset of the secondary instabilities and breakdown to turbulence, as
discussed in the following.

Eventually, the interaction of the slow fluid transported from the wall with
the fast fluid in the core leads to secondary instabilities, which cause the
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3 Wall-bounded vortex decay – numerical approach

(a) Ωt = 4.3: primary instability (b) Ωt = 4.8: asymmetric growth of
primary instability

(c) Ωt = 5.3: observable streamwise
ends of streamwise vortices

(d) Ωt = 5.8: onset hairpin-like
vortices

(e) Ωt = 6.8: corruption of
streamwise vortices

(f) Ωt = 7.8: late transition

Figure 3.8: FTLE visualisations of the transition process to turbulence at Re = 12000. Figure
adapted from [Kaiser et al., 2020a].
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breakdown of the quasi-axisymmetric flow patterns formed after the primary
centrifugal instability. Two distinct competing mechanisms responsible for
the onset of the secondary instability have been identified in prior studies on
concave-wall flows [112]: the varicose and the sinuous mode, described in
§ 2.3.1. In order to observe which of the two mechanisms dominate the onset
of secondary instabilities during spin-down, the LCS in the flow are visualised
by means of the FTLE (§ 2.2.3). Figure 3.8 and supplementary material [of
[Kaiser et al., 2020a]] Movie2.mp4 show the temporal evolution of the three-
dimensional flow during transition. Linear amplification of the random dis-
turbances given by the initial condition (details in § 3.1) results in Taylor rolls
that do not cover the whole circumference of the cylinder. As such, figure
3.8(a-c) presents Taylor rolls with distinct start and ending points along the
circumference. Under the action of shear, the two ends of the Taylor vortices
roll up into hairpin-like vortices (figure 3.8(d)), which grow in time (figure
3.8(e)) and eventually lead to a turbulent flow populated by a richer range of
vortical structures (figure 3.8(f)). Note that the detected structures are similar
to FTLE visualisations of an isolated hairpin vortex in a turbulent boundary
layer [41]. Therefore, the varicose mode seems to be the dominant secondary
instability mechanism of the spin-down process.” [Kaiser et al., 2020a]

The hypothesis that the onset of the secondary instability mechanism is re-
lated to the non-axissymmetric initial disturbances is investigated by means of
an additional simulation. For Re = 3000 the simulation described in § 3.1 is
repeated with axisymmetric initial conditions. The simulations with axisym-
metric and non-axisymmetric initial conditions are compared in figure 3.9. As
expected the onset of secondary instabilities is delayed for the simulation with
axisymmetric initial conditions.

3.5.3 Stage III: Turbulent regime with intact vortex core

“Stage III is entered once the plumes break down into a turbulent flow. The
statistical flow quantities only change slowly and multiple characteristic fea-
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(a) non-axisymmetric Taylor rolls (top) vs.
axisymmetric Taylor rolls (bottom)

(b) onset of secondary instabilities (top)

Figure 3.9: FTLE visualisations of two distinct simulations: arbitrary, non-axisymmetric initial
conditions (top) and axisymmetric initial conditions (bottom) (Re = 3000). Even
though the simulation are performed independently, the results are presented together
in a single visualisation to emphasise the difference.

(a) turbulent state: Ωt = 9.3

(b) turbulent state: Ωt = 22.8

Figure 3.10: Pre-multiplied spectra κzΦuiui (left), 1D spectra ξϕϕ in the boundary layer (middle)

and instantaneous velocity fluctuations
〈

u′ϕ u′ϕ
〉

(right) during stage III (Re= 12000).
Figure adapted from [Kaiser et al., 2020a].

44



3.5 Flow regimes

(a) Temporal evolution of
〈
uϕ

〉
(b) Temporal evolution of 〈ωz〉

Figure 3.11: Temporal evolution of mean quantities during the stages I-III for the spin-down at
Re = 12000. The black solid line marks the end of the transition (II) at Ωt ≈ 9.
The temporal dependence of

〈
uϕ

〉
and 〈ωz〉 is colour-coded. Figure adapted from

[Kaiser et al., 2020a].

tures co-exist. Figure 3.10 shows two time instances at the beginning (figure
3.10(a)) and during the later evolution (figure 3.10(b)) of stage III. The radial
plumes have merged, leading to an average axial plume spacing of approxi-
mately δ99. Moreover, velocity fluctuations start to reach outside the boundary
layer into the SBR core (figure 3.10(a)).

Figure 3.11 shows
〈
uϕ

〉
and the mean axial vorticity 〈ωz〉 during stages I-III.

The temporal development is colour coded and the black line depicts the end
of the laminar-to-turbulent transition and the beginning of stage III. As soon
as stage III is entered (Ωt > 9) a region of negligible mean axial vorticity
〈ωz〉≈ 0 is established at radial distances between the near-wall region and
the SBR. A region where 〈ωz〉= 0 implies a spatially constant angular mo-
mentum l = l(t) =

〈
uϕ

〉
r and is thereby equivalent to the marginally stable

case of the Rayleigh instability criterion. This region is well known in other
flows on concave walls, such as the TC flow [84, 103, 101] and swirling pipe
flows [63]. Recovering the region of spatially constant angular momentum
in this unsteady problem implies that the time scale of self-organisation in
the turbulent boundary layer is significantly smaller than the outer time scale
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3 Wall-bounded vortex decay – numerical approach

(a) Mean velocity profile
〈
u+ϕ
〉

in viscous wall units
presented in the form of the law of the wall. Dot-
ted lines indicate the relationship

〈
u+ϕ
〉
= y+ and

(3.15) with M = 1.11 and N = 6.81.

(b) Angular momentum l+ =
〈
u+ϕ
〉
(r/R) in wall

units. Dash-dotted vertical line marks the wall-
normal distance up to which the angular momen-
tum l+ is approximately constant.

Figure 3.12: Two vertical dashed lines enclose the region of approximately logarithmic behavior
of
〈

u+ϕ
〉

. Results refer to the spin-down process at Re = 12000. Figure adapted from
[Kaiser et al., 2020a].

of the temporally varying mean flow. This is in good agreement with recent
laboratory experiments on unsteady and turbulent TC flow by [135].

Examining the temporal development of the instantaneous value of Reτ during
stage III (figure 3.3(a)) shows that the decline of uτ is compensated by the
growth of δ99 so that Reτ increases only slightly in time. Therefore, near-wall
similarity is expected when turbulent statistics are normalised in time-varying
viscous units, despite the statistical unsteadiness of the boundary layer. Figure
3.12(a) reports the mean velocity profile

〈
u+ϕ
〉

at different temporal instances.
A clear collapse of

〈
u+ϕ
〉

against the wall-normal distance y+ = (R− r)uτ/ν is
visible as soon as stage III is entered. The approximate logarithmic behaviour

〈
u+ϕ
〉
= M logy++N (3.15)

is found for y+ > 25, resembling what has been observed for the statistically
steady TC flow, for which the constants M and N are related to the degree
of curvature of the system [103, 67]. This ratio, here described by δ99/R,
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3.5 Flow regimes

(a) Terms of the K budget equation (azimuthal veloc-
ity profiles presented in the inlay).

(b) Terms of the k budget equation.

Figure 3.13: Terms of the budget equations for K and k during stage III at Ωt = 9 and Ωt =
32 at Re = 12000. Two vertical dashed lines enclose the region of approximately
logarithmic behavior of

〈
u+ϕ
〉
. Figure adapted from [Kaiser et al., 2020a].

varies in time. Interestingly, disregarding the significant increase of δ99/R

during stage III, M and N are observed to be only a function of Re and do
not depend on time.

An even clearer collapse within the boundary layer is obtained for the profiles
of angular momentum

l+ =
〈
u+ϕ
〉 r

R
=

l
uτ R

(3.16)

in viscous units, as shown in figure 3.12(b). Besides being constant throughout
a range of wall-normal distances, l+ is found to be approximately constant in
time, indicating that l ∼ uτ during stage III.” [Kaiser et al., 2020a]

The profiles of both
〈
u+ϕ
〉

and l+ at Re ∈ {3000,6000,28000} are reported
in Appendix B.

“In order to understand the effects of turbulence on the decay of the SBR core,
the terms of the budget equations for K and k (§ 5.2.2) are studied for an early
(Ωt = 9) and a late (Ωt = 32) phase of stage III. Again, normalisation with the
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3 Wall-bounded vortex decay – numerical approach

instantaneous wall units is adopted. Furthermore, the terms are pre-multiplied
by the factor r/R to compensate for curvature effects and by y+ to compensate
for the use of a logarithmic scale [52]. Integrated over the cylinder volume, all
transport terms are zero by definition. The aforementioned pre-multiplication
allows one to capture this property visually in figure 3.13. As an additional
benefit, this representation highlights the significant contribution of the outer-
most part of the boundary layer to the overall development of kinetic energy.
Similarly to

〈
u+ϕ
〉
, the profiles only collapse in the near-wall region. Figure

3.13(a) shows the different terms of the K budget equation. Viscous dissipa-
tion εm mainly takes place in the viscous sublayer and the buffer region. The
viscous transport term Vm transfers K from the outer buffer layer towards the
wall. In the vorticity free region (y+ > 100) all viscous terms except of εt are
negligible and the transport of K and k from the vortex core towards the buffer
region is mainly driven by turbulence (Tt and Tm). Starting from the buffer re-
gion (y+ > 5), k is produced all through the boundary layer. In the logarithmic
region, the sum Ξ = P+ εt of production and dissipation of k tends towards
a local excess of dissipation, in contrast to fully developed flat boundary lay-
ers [83]. While ε+m is roughly unchanged between the two exemplary time
instances, ε+t increases, implying that the relative contribution of [εt ] to the
total dissipation [εtot ] increases during stage III. An overview of the temporal
evolution of the statistics shown in figures 3.11-3.13 is given in supplementary
material [of [Kaiser et al., 2020a]] Movie3.mp4.” [Kaiser et al., 2020a]

3.5.4 Stage IV: Vortex-core breakdown and decay of turbulence

“Regime III ends with the breakdown of the SBR core and the sudden in-
crease of δ99 (figure 3.3(a)). Figure 3.14 shows three time instances during
stage IV. The region of constant angular momentum (〈ωz〉≈ 0) still exists dur-
ing this flow stage. At the start of stage IV,

〈
uϕ

〉
at the interface between SBR

and boundary layer is higher than in the initial condition, as indicated by the
dashed circle in figure 3.3. Eventually, the velocity profile within the whole

48



3.5 Flow regimes

(a) Averaged velocity profiles for different time in-
stances during stage IV.

(b) Cumulative contribution A(·) of various terms to
the K budget equation at the time instances shown
in figure 3.14(a).

Figure 3.14: The line markers introduced in the legend of the panel (a) indicate different time
instances. Results refer to the spin-down process at Re = 12000. Figure adapted
from [Kaiser et al., 2020a].

SBR core substantially deviates from the initial condition, as indicated by the
solid circle for the time instances Ωt = 90 and Ωt = 170. To understand how
the breakdown of the SBR core occurs, the influence of the different K trans-
port terms on the flow state at a time t is evaluated. The cumulative influence
A of such terms is derived by integration of the respective term from t = 0
until the time t under consideration

A(T ) =
1

Ω3R2

∫ t

t̃=0
T dt̃ (3.17)

where T is a generic term in the K or k budget equation. Figure 3.14(b) shows
A for the terms of the K budget equation at the same temporal instances shown
previously in figure 3.14(a). Both the excess of mean kinetic energy at Ωt =

35 as well as the decaying core flow can be clearly related to the turbulent
transport term A(Tm). At Ωt = 35 fast fluid from the outer areas of the cylinder
has been transported inwards by turbulent fluctuations, inducing larger

〈
uϕ

〉
in

the SBR at the interface with the boundary layer. For the decaying core flow
the mechanism is the opposite. A(Tm) transports K from the core and towards
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3 Wall-bounded vortex decay – numerical approach

Figure 3.15: Cumulative contribution A(·) of various terms to the k budget equation at
time instance Ωt = 90 during stage IV (Re = 12000). Figure adapted from
[Kaiser et al., 2020a].

the wall. The azimuthal velocity profile suggests that the boundary layer does
not yet reach the core region. Yet there are enough fluctuations in the core to
allow a significant transport of K (see also figure 3.10(b)). To understand how
fluctuations reach into the SBR core, A is also determined for the terms of the k

budget equation (figure 3.15). The influence of turbulent transport A(Tt) on the
propagation of k into the core flow is small. However, the impact of pressure
diffusion A(Πd) is significantly larger and not-fully cancelled by A(εt).

Due to the closed geometry under consideration, the length scale of the bound-
ary layer δ99 is bounded by the cylinder radius R and tops off with the break-
down of the vortex core. Moreover, after the transition to turbulence, the wall
shear stress and the friction velocity continuously decrease. As time passes
this leads to small Reτ (figure 3.3(a)). While the ratio [P]/[εt ] is approximately
constant and equals unity during stage III of the spin-down process, the ratio
decreases during the later phases of stage IV. As a consequence also [k] starts
to decline (figure 3.3(b)) and [εm] becomes the main contributor to [εtot ] (see
figure 3.4(b)).” [Kaiser et al., 2020a]

50



3.5 Flow regimes

(a)
〈
uϕ

〉
in the transition from stage IV to stage V. Blue

dashed line depicts the analytical solution of the lam-
inar flow (3.12) for Ωt = 4430, black dotted line rep-
resents the initial SBR.

(b) Instantaneous terms of the K budget equation
after reentering the viscous state V at Ωt =
2400.

Figure 3.16: Remlaminarisation after the decay of turbulence at Re= 12000. Figure adapted from
[Kaiser et al., 2020a].

3.5.5 Stage V: Relaminarisation

“Eventually, 〈k〉 becomes negligible and the flow relaminarises. The tempo-
ral evolution of

〈
uϕ

〉
during transition from stage IV to V is shown in figure

3.16(a). The viscous nature of the flow is highlighted by means of the K budget
equation for Ωt = 2400, shown in figure 3.16(b). Both P and Tm are negligi-
ble compared to the other terms not involving turbulent quantities. With the
decay of turbulence, the flow recovers the laminar state and

〈
uϕ

〉
approaches

the analytical solution for the laminar flow ulam
ϕ , given by (3.12) and visu-

alised as a dashed blue line in figure 3.16(a). However, the effect of turbulent
dissipation results in a temporal shift ∆T when

〈
uϕ

〉
is compared with the cor-

responding laminar solution ulam
ϕ :

〈
uϕ

〉
(t) = ulam

ϕ (t +∆T ). As shown in figure
3.16(a), for Re = 12000 the present solution at time Ωt = 2400 is compared
to the laminar solution at Ωt = 4430, which results in effective temporal shift
of Ω∆T = 2030.” [Kaiser et al., 2020a]
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3 Wall-bounded vortex decay – numerical approach

3.6 Low ReReRe scaling

The influence of varying Re on the spin-down process are discussed in the
following. Various simple empirical models are derived. As the Re-range of
the data is limited (3000 < Re < 28000), the models ought to be validated by
experimental investigations for higher Re (see chapter 4).

“First, the Re scaling of the transition onset is addressed and compared to
classical Taylor-Couette flow in § 3.6.1. Second, the Re-dependent effects of
transition on the evolution of δ99 are evaluated in § 3.6.2 before the influence
of Re on the evolution of Reτ is discussed in § 3.6.3. Furthermore, the scaling
of energy decay (both [K]and [k]) is analysed in § 3.6.4.” [Kaiser et al., 2020a]

In addition, a Re-independent flow feature is investigated in detail. The region
of constant angular momentum, which exists for all investigated Re, is utilised
to model the flow as a Rankine vortex during stage III (§ 3.6.5). The constant
angular momentum l+ is then used to derive a model for the evolution of
uτ . Finally, in § 3.6.6 the Re scaling of the vorticity annihilation process is
addressed and its effect on the pressure distribution is discussed.

3.6.1 Critical Taylor number

“In TC flow with a gap width d, a resting outer cylinder and a rotating inner
cylinder of radius Ri (angular velocity Ωi) the onset of Taylor rolls typically
occurs for a characteristic Taylor number [30] of

Tatc =
ΩidRi

ν

√
d
Ri
≈ 41.2 . (3.18)

In contrast, the stability of the spin-down flow is usually described by a critical
time θc and a critical wavelength λc. The critical values can be obtained by
stability analysis as performed by Neitzel [96] and Kim & Choi [61], which
showed good agreement with present DNS results as reported in § 3.5.2.
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3.6 Low Re scaling

For the sake of comparison between TC and spin-down flow, the critical time
θc of the spin-down problem can also be translated into a Taylor number.
Defining the SBR core as the inner cylinder and δ99 as the gap width, the
spin-down Taylor number results in

Ta =
Ωδ

3/2
99 (R−δ99)

1/2

ν
. (3.19)

Note that different flow events and their respective onset time can be analysed
and related to a Taylor number. Examples include the visual onset of insta-
bilities [28] or the time where the energy of the critical wavelength λc first
starts to increase. However, for the following evaluation, the critical time θc

is utilised, that was obtained by the propagation theory of Kim & Choi [61].
Here, θc is the point in time at which the energy growth rate of the most am-
plified disturbance is larger than the energy decay rate of the base flow. Its
Re-dependence can be approximated by

θc =
νtc
R2 = 9.4Re−4/3, (3.20)

if Re is large enough. Equation (3.20) is inserted into the approximate ex-
pression for δ99 (see (3.14)) to provide the critical boundary-layer thickness
δc ≈ 11.28R ·Re−2/3, which plugged into (3.19) leads to the critical Taylor
number

Tac ≈ 37.9

√
R−δc

R
= 37.9

√
1−11.28Re−2/3. (3.21)

Thus, similar to TC flow also for the spin-down problem a Taylor number Tac

can be formulated, that is related to the onset of Taylor rolls. Tac tends to the
constant value 37.9 for Re→ ∞.” [Kaiser et al., 2020a]

3.6.2 Boundary-layer thickness

“Figure 3.17(a) presents the evolution of δ99 for different Re. The value of
δ99 collapses for all Re during the laminar stage if time is expressed in units
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3 Wall-bounded vortex decay – numerical approach

(a) Temporal evolution of δ99 at different values of
Re (colour-coding as in figure 3.18).

(b) Ratio aturb/alam at different values of Re. A
least-squares fitted power-law is indicated by the
dashed line.

Figure 3.17: Scaling of the boundary-layer thickness evolution δ99(t) for different Re. δ99 grows
proportionally to

√
νt with the proportionality constant alam during the laminar stage

(stage I) and aturb during the sustained turbulent stage (stage III). Figure adapted
from [Kaiser et al., 2020a].

of νt/R2. The thickness of the laminar boundary layer grows as described
by (3.14) proportionally to

√
νt with a proportionality constant alam ≈ 3.68,

until Taylor rolls start to emerge. The onset of Taylor rolls happens at an
earlier time and thus at lower value of δ99 with increasing Re. During stage II
the fast increase of δ99 is related to the growth of radial plumes as discussed
in figure 3.7(d) in § 3.5.2. Subsequently, the growth of the plumes becomes
nonlinear and eventually ceases. Secondary instabilities appear and initiate the
breakdown to turbulence. Also in the turbulent flow of stage III the boundary
layer grows approximately proportionally to

√
νt (figure 3.17(a)), albeit with

a different and Re-dependent proportionality constant aturb = aturb(Re). The
ratio aturb/alam is plotted in figure 3.17(b) for different values of Re. Utilising
the present results, the ratio of these two quantities can be linked to Re by
the empirical correlation

aturb/alam = 0.1Re
1
3 .” (3.22)
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3.6 Low Re scaling

[Kaiser et al., 2020a]

3.6.3 Friction Reynolds number Reτ

“Figure 3.18 shows the temporal history of Reτ for each value of Re consid-
ered in the present study. As expected, larger peak values of Reτ correspond
to larger values of Re. For the same total energy of the initial perturbations, a
larger Re lead to an earlier onset of the primary centrifugal instability so that
stage II is entered at an earlier time which also yields a smaller value of δ99.
For the two smallest values of Re considered in the present work, the simul-
taneous increase of δ99 and decrease of uτ result in an almost constant value
of Reτ during the boundary-layer growth with an intact vortex core in stage
III. For larger values of Re, however, the growth of δ99 increasingly outweighs
the decrease of uτ , resulting in a mild increase of Reτ during phase III. The
breakdown of the vortex core, which marks the beginning of stage IV and the
related sudden increase of δ99, is associated with the peak values of Reτ for all
considered values of Re. This is a consequence of the boundary-layer thick-

Figure 3.18: Temporal development of Reτ for different Re in the range of 3000 < Re < 28000.
Two steep gradients can be detected for each Re. The first gradient corresponds to
the primary and secondary instability, followed by the transition to turbulence (start
of stage II). The second gradient corresponds to the breakdown of the SBR core (start
of stage IV). Figure adapted from [Kaiser et al., 2020a].
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ness being bounded by the cylinder radius (δ99/R = 1) and the monotonically
decreasing uτ .” [Kaiser et al., 2020a]
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3.6 Low Re scaling

3.6.4 Decay of kinetic energy

“The decay of [K] and [k] at different Re is shown in figure 3.19. The data is
normalised by the volume-averaged total kinetic energy of the initial condition
[K0] = [K](t = 0) = 1/4, which is identical for all considered Re. The tempo-
ral evolutions of [K] and [k] are presented with a logarithmic (figures 3.19(a)
& 3.19(c)) and a linear timescale (figures 3.19(b) & 3.19(d)) to emphasise the
early and the later stages of the decay, respectively. Different non-dimensional
time units are used, which are related by Ωt = Re · νt

R2 .

(a) (b)

(c) (d)

Figure 3.19: Temporal development of (a,b) [K]; and (c,d) [k] at different values of Re (colour-
coding as in figure 3.18). Roman numbers I−V and the background highlight the
different stages of the decay.
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The larger the value of Re, the slower the decay of [K] in units of Ωt, due to
the expected less dominant role of viscosity; see figure 3.19(a). There is a
clearly noticeable increase in the decay rate (i.e. the negative slope) of [K]

when Taylor rolls emerge and the flow transitions to turbulence during stage
II. Towards the end of stage III the decrease of [K] follows a logarithmic decay
for all cases, which can be described by

f III
[K] (Re, t) =−h[K] · log(Ωt)+g[K](Re), (3.23)

where h[K] is constant and g[K](Re) depends on Re. The fact that the logarithmic
decay of equation (3.23) is either approached from larger (low Re) or lower
(high Re) values of [K] is best understood by considering the temporal evolu-
tion of [k] shown in figure 3.19(c). Note that the initial decrease of [k] before
the onset of primary instability, which was previously discussed in the context
of figure 3.3(b), is not visible here due to the linear scale. For all considered
values of Re, the emergence of Taylor rolls with the primary instability yields
the visible strong increase of [k]and results in the peak of [k]at the end of stage
II. In particular, the peak of [k] is larger for lower values of Re, due to the larger
radial extent of the Taylor rolls before secondary instabilities occur. In fact,
the larger the size of the Taylor rolls, the larger the amount of kinetic energy
the Taylor rolls can extract from [K] and redistribute into [k] in form of stream-
wise vortices. Therefore, a faster decay of [K] at the beginning of stage III is
observed for lower Re, until the logarithmic decay of (3.23) is approached at
approximately Ωt = 20. The value of [k] grows slowly during stage III for all
Re considered in the present study. Yet the growth is more pronounced for the
larger Re cases. As a result, except at Re = 3000, the global maximum of [k]
is not given by the peak of stage II but occurs later on during stage III. The
relative importance of the two mechanisms of [K] conversion, via the initial
Taylor rolls and via turbulence, determines how the logarithmic decay of [K]

(3.23) is approached; see figure 3.19(a).
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3.6 Low Re scaling

The decay of [k] during the late portion of stage IV exhibits an exponential
character as shown in figure 3.19(d). The decay can be described by

f IV
[k] (Re, t) = g[k](Re) · exp(−h[k] ·νt/R2) , (3.24)

where h[k] is constant and g[k](Re) depends on Re. Once [k] is small enough,
a laminar velocity profile ulam

ϕ is recovered; see § 3.5.5. This leads to the
collapse of the data with the kinetic energy of the laminar solution

[Klam]=
1

2V Ω2R2

∫
V
(ulam

ϕ )2dV (3.25)

in stage V , if the latter is shifted by a Re-dependent ∆T = ∆T (Re) (see fig-
ure 3.19(b)):

f V
[K]=

[Klam](t +∆T (Re))
[K0]

. (3.26)

Note that the decay of [Klam]and as such also of [K] is approximately exponen-
tial for large t (3.12).” [Kaiser et al., 2020a]

3.6.5 Rankine-vortex analogy

“For all investigated Re, three distinct regions can be distinguished in the radial
profile of

〈
uϕ

〉
during stage III: the region of SBR, the region of spatially

constant angular momentum (〈ωz〉= 0, l = l(t)) and the shear layer at the
wall. These are visualised in figure 3.20(a). The two innermost regions of the〈
uϕ

〉
profile are well approximated by a Rankine vortex

〈
uran

ϕ

〉
(l,r) =

Ωr ∀r ≤
√

l/Ω

l/r ∀r >
√

l/Ω

, (3.27)
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(a) Velocity profiles
〈
uϕ

〉
at different values of Re are

compared against the velocity profile of a Rank-
ine vortex uran

ϕ . Insets show close-ups of the re-
gions, where uran

ϕ deviates most significantly from〈
uϕ

〉
.

(b) Temporal evolution of [K]at various Re for the ac-
tual

〈
uϕ

〉
profile (solid line) and its Rankine vortex

approximation [K]ran (dashed lines).

Figure 3.20: Modeling the velocity profile in stage III as a Rankine vortex for different Re (colour-
coding as in figure 3.18). The irrotational part of uran

ϕ in (a) is chosen to match the
angular momentum l of the 〈ωz〉≈ 0 portion of

〈
uϕ

〉
. Temporal instants correspond-

ing to three different values of l ∈ {l1, l2, l3} are indicated with a subscript. Figure
adapted from [Kaiser et al., 2020a].

with angular momentum l in its irrotational portion chosen to match the〈ωz〉≈
0 portion of

〈
uϕ

〉
.

Rankine vortices at three different values of l = li are presented in figure
3.20(a). At each value of li a matching time instance is selected for each
of the four investigated Re. As expected, the velocity profiles almost col-
lapse. Only near the wall and at the interface between the region of SBR and
〈ωz〉= 0 the profiles differ (see close ups in figure 3.20(a)). With increasing
Re, the error made by the Rankine-vortex approximation decreases, as shown
exemplarily for [K] and its approximation Kran estimated with (3.27) in fig-
ure 3.20(b). This bears particular potential for experimental investigations, as
now

〈
uϕ

〉
and the connected quantities (i.e. angular momentum and K) can

be estimated by determining the temporal velocity development
〈
uϕ

〉
(r1, t) at

a single radial position r1 inside the region of constant angular momentum.”
[Kaiser et al., 2020a]
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3.6 Low Re scaling

(a) Magnitude of the angular momentum l+(Re) in the
region where 〈ωz〉≈ 0 during stage III for different
Re. Dashed blue line: fitted correlation approxi-
mating l+ = gl+ ln(Re)+hl+ .

3.30

(b) Temporal evolution of friction velocity uτ com-
pared to the model given by (3.30). Colour-
coding of the different Re in (b) as in figure 3.18.

Figure 3.21: Scaling of l+(Re) and modeling of the temporal evolution of uτ .

In the following, the Rankine model is combined with the averaged angular
momentum equation (see e.g. [125]) and the observation of a constant l+

for each Re (see § 3.5.3) to derive an ordinary differential equation for uτ .
For the present flow the integral form of the angular momentum equation in
azimuthal direction simplifies to

d
dt

∫ R

0

〈
uϕ

〉
r2dr =−u2

τ R2 . (3.28)

The combination of the rankine model (3.27) and the angular momentum
equation (3.28) leads to

d
dt

[
lR2

2
− l2

4Ω

]
=−u2

τ R2. (3.29)

As described in § 3.5.3, the value of angular momentum l+(Re) = l/(uτ R)

(see (3.16)) in viscous units is constant in time during stage III and only
depends on Re. The values of l+(Re) are extracted from figure 3.12(b) (at
Re = 12000) and Appendix B (at all other Re) and follow a logarithmic trend
in the investigated Re range, as shown in figure 3.21(a). Equation (3.29) can
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be reduced to a non-linear ordinary differential equation for uτ by substituting
l+ in place of l as follows

d
dt

[
l+uτ R

2
− (l+)2u2

τ

4Ω

]
=−u2

τ R2 . (3.30)

Figure 3.21(b) compares the numerical data to the solution of (3.30) for var-
ious Re. The accordance between (3.30) and the numerical results increases
with Re, as diminishing viscous effects increase the accuracy of both the Rank-
ine model and the assumption that l+ is constant in time.

3.6.6 Cross-annihilation of vorticity and the pressure distribution

After the cylinder walls are impulsively stopped no further vorticity is intro-
duced at the side walls [94]; see also § 2.1.2. Thus, the overall circulation in
axial direction is zero at all times

Γ = 2π

∫ R

r=0
〈ωz〉rdr = 0 ∀t > 0. (3.31)

However, at t = 0 all negative vorticity is in an infitisimally small layer at
the wall. During spin-down the negative vorticity diffuses into the core un-
til eventually 〈ωz〉= 0 for all r when the flow is at rest. This implies that
there is a temporally decreasing amount of positive vorticity in the core of the
cylinder. The core circulation is defined as the accumulation of all remain-
ing positive vorticity

Γc = 2π

∫ Rc

r=0
〈ωz〉rdr , (3.32)

where Rc is the radius at which 〈ωz〉(r = Rc) = 0. On a viscous time scale
νt/R2 (figure 3.22(b)) the earlier onset of turbulence leads to a faster decay
of Γc for high Re. On the outer time scale Ωt (figure 3.22(a)), the issue is
more complex. A smaller Re leads to a faster decay of Γc due to more pro-
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3.6 Low Re scaling

(a) Time normalised as Ωt. (b) Time normalised as νt/R2.

Figure 3.22: Decay of core circulation Γc for different Re and distinct normalisations of t. Colour-
coding of the different Re as in figure 3.18.

nounced viscous effects during the laminar stage. However, this is (in parts)
compensated for by earlier transition for high Re. For example, Γc is almost
identical for Re = 3000 and Re = 28000 for 7 < Ωt < 9, despite Re differing
almost one order of magnitude. In regards to the guiding example of this the-
sis, the similar evolution of Γc is particularly interesting, as it could motivate
the limited Re scaling of vortex formation in animal locomotion reported by
Taylor [129]. The statement that Re has small effects should, therefore, be
clarified: Re scaling has two distinct effects (viscous diffusion and transition)
which compensate at therefore lead to similar behaviour for a wide range of
Re. Note, however, that if a vortex, which is used to obtain lift or thrust is
stabilised on a propulsor for a long period of time Ωt > 10 a Re scaling effect
is likely to become more apparent (cp. figure 3.22(b)).

The vorticity annihilation process leading to the decay of core circulation Γc

also influences the pressure distribution inside the vortex. Figure 3.23 shows
the spatially averaged pressure distribution

∆p(r) =〈p〉(r)−〈p〉(r = 0) (3.33)
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3 Wall-bounded vortex decay – numerical approach

Figure 3.23: Azimuthal velocity profiles and the pressure difference ∆p between the center of
the cylinder and the wall at Re = 12000 at three different time instances Ωt = 2.0
(x-shaped markers, stage I), Ωt = 11.3 (circular markers, stage III), Ωt = 93.5 (no
markers, stage IV). The distribution of ∆p is compared to its approximations by
∆pSBR and ∆pran.

and the respective azimuthal velocity profile
〈
uϕ

〉
at Re = 12000 and at three

time instances. During the laminar stage and when the boundary-layer thick-
ness is relatively small and the pressure distribution of an SBR proves to be
a good approximation

∆pSBR =〈p〉(r)−〈p〉(r = 0) =
ρΓ2

cr2

8π2R2 . (3.34)

However, with increasing boundary-layer thickness the agreement between the
SBR approximation and the real pressure distribution decreases. Yet again, in
stage III the Rankine-vortex approximation provides a good model for pres-
sure distribution. The pressure inside the Rankine vortex [42] is given by

∆pran(r) = pran(r)− pran(r = 0) =
ρΓ2

c

8π2


r2

R4
c

∀ r < Rc

2
R2

c
− 1

r2 ∀ r > Rc .
(3.35)
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3.6 Low Re scaling

Rc is well approximated by the intersection of a potential vortex fit in the
region of constant angular momentum and the initial SBR, leading to

Rc =
√

l/Ω . (3.36)

As positive vorticity predominately exists inside the SBR (cp. figure 3.11(b)),
Γc can be approximated by

Γc = 2ΩπR2
c = 2πl . (3.37)

The application of the aforementioned approximations to (3.35) simplifies the
expression to

∆pran(r) = pran(r)− pran(r = 0) = ρ

Ω2r
2 ∀ r < Rc

Ωl− l2

r2 ∀ r > Rc ,
(3.38)

which shows good agreement with the numerically obtained pressure distri-
bution ∆p(r) during stage III as presented in figure 3.23 (circular markers).
However, as expected, for Ωt = 93.5 (stage IV) the corrupted SBR leads to a
significant deviation of numerical data and Rankine model. The simplified ex-
pression for ∆pran provides a relation of angular momentum l and the pressure
difference between the cylinder wall and the center of the cylinder

∆pran(r = R) = ρ

(
Ωl− l2

R2

)
, (3.39)

for all time instances during stage III. Figure 3.24 compares the temporal evo-
lution of the modelled pressure difference ∆pran(r = R) to the numerical data
∆p(r = R). Similar to Γc (cp. figure 3.22(a)) on the outer time scale Ωt (figure
3.24(a)) also for ∆p(r = R) the transition to turbulence compensates in parts
for the different impact of viscosity at varying Re.
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3 Wall-bounded vortex decay – numerical approach

(a) Time normalised as Ωt. (b) Time normalised as νt/R2.

Figure 3.24: Decay of ∆p for different Re and distinct normalisations of t. Colour-coding of the
different Re as in figure 3.18.

3.7 Summary

In this chapter the results of a DNS, which covered a complete spin-down
from SBR, are presented.

”The generated data, which cover almost a decade of Reynolds numbers up
to Re = 28000, allow for the observation of five different flow stages (I−V)
during the decay of the initial SBR, each entailing its own characteristic phe-
nomena. The following describes these five stages:

Numerical experiments over almost a decade of Re were performed. Evalua-
tion of the spin-down process showed five distinct flow stages (I−V). The flow
phenomena that occur during those stages are summarised in the following:

I. In the first stage of spin-down a laminar boundary layer, similar to
Stokes’ first problem, grows at the cylinder walls.

II. The formation and merging of Taylor rolls following linear and non-
linear growth of a primary centrifugal instability is the characteristic
phenomenon of stage II. This causes a fast increase in boundary-layer
thickness δ99, which is associated with a simultaneous shift of the dom-
inant axial wavelength in the energy spectra. The subsequent transi-
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tion to turbulence, initiated by secondary shear instabilities, is analysed
by means of LCS. Hereby, the streamwise endpoints of the elongated
streamwise vortices (Taylor rolls) are identified as the origin of evolving
hairpin-like vortices and thus as the nucleus of transition. Larger values
of the global Reynolds number Re are associated with earlier transition
and smaller wavelengths of the primary instability. As such, the max-
imum of kinetic energy accumulated in the Taylor rolls decreases with
increasing Re.

III. Once transition to turbulence is completed, the boundary-layer flow is
turbulent while the retracting SBR vortex core is still intact. Therefore,
the flow resembles turbulent TC flow between two concentric rotating
cylinders, in which the inner cylinder in TC flow represents the SBR
core in the present case. However, the unique feature of the present
flow is that the radius of the SBR core varies in time, due to the growth
of the boundary layer. In addition, turbulent fluctuations are allowed at
the interface with the SBR core, whereas in TC flow a no-slip condition
exists at the inner cylinder.

Interestingly, in the investigated Reynolds number range, δ99 still grows
at the laminar growth rate

√
νt, albeit with a different constant of pro-

portionality. The simultaneous increase of δ99 and decrease of uτ lead
to a negligible temporal variation of Reτ and thus to a collapse of turbu-
lence statistics in the near-wall region. In addition, the outer boundary
layer organises as dictated by the marginal stability criterion [107]. A
slowly growing region of constant angular momentum l = uϕ r forms,
so that the mean velocity profile is well approximated by an appropri-
ately defined Rankine vortex. It is found that the angular momentum
l+ = (r/R)

〈
u+ϕ
〉

in viscous units is constant in time. Similarly, the con-
stants M and N describing the logarithmic behaviour of

〈
u+ϕ
〉

do not
vary significantly during stage III, despite significant changes of the lo-
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3 Wall-bounded vortex decay – numerical approach

cal curvature δ99/R in the boundary layer. During stage III and the early
stage IV a logarithmic decay of [K] is observed.

IV. Eventually, the SBR core breaks down. Applying a temporal integration
of k and K budget equations, the mechanism behind the core breakdown
is identified: the pressure diffusion term Πd transports fluctuations into
the core region. These fluctuations in turn transport K from the core
into the boundary layer (term Tm). Towards the end of stage IV turbu-
lent dissipation εt overtakes its production P and [k] starts to decrease
exponentially.

V. As [k] diminishes, laminar flow is recovered and the velocity profile col-
lapses with the analytical solution [96]. The net effect of transition and
turbulence can be lumped into a single parameter, namely the tempo-
ral shift Ω∆T that needs to be added to the laminar solution in order to
match the velocity profile of the actual flow.” [Kaiser et al., 2020a]
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4 Wall-bounded vortex decay –
experimental approach

The in-depth analysis of DNS data in chapter 3 provides insights into the
flow phenomena occurring during the wall-bound decay of an idealised vor-
tex in SBR. In particular, § 3.6 discusses the Re scaling of the spin-down
and formulates several scaling laws, which are valid for the limited Re range
provided by the numerical simulations (3000 < Re < 28000). However, de-
spite the efficient spectral code used to produce the results of chapter 3, the
range of Re in DNS is still fairly limited by today’s computational resources.
Thus, the present chapter strives to extent the Re range experimentally up to
Re = ΩR2/ν = 4 · 106 in order to elaborate whether the suggested scalings
also hold up to very high Re. In particular, the following questions are ad-
dressed in this chapter:

• Very high values of Re result in small δ99/R during the growth of the
primary instability, and thus a diminishing influence of curvature. In TC
flow the narrow-gap limit with negligible curvature converges towards
the linearly stable Couette flow. However, for the present spin-down
case, Stokes’ first problem is approached when δ99/R is very small dur-
ing transition. As such, for very large Re, Tollmien–Schlichting waves
[81] could originate before or simultaneously with the centrifugal insta-
bility. It is thus of interest, which instability mechanisms triggers the
transition to turbulence.

• The prediction of transition of Kim & Choi [61] holds for the Re range
addressed in chapter 3. The present chapter strives to validate the scal-
ing for very high Re.
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4 Wall-bounded vortex decay – experimental approach

• The scaling law for the boundary-layer growth due to the transition pro-
cess aturb/alam (3.22) is tested for a significantly wider range of Re as
in chapter 3.

However, the design of an experiment, which allows to investigate the afore-
mentioned statements, proves to be challenging and is therefore also discussed
in detail. In contrast to the numerical implementation of the spin-down, where
axially periodic boundary conditions mimic an infinitely long cylinder, end-
wall effects and/or a free surface are inevitably present in an experimental im-
plementation of the flow. The fluid in a cylinder of filling height H is bounded
by a bottom wall and either a top wall or a free surface. End-wall/free-surface
effects influence the flow and might falsify any attempts to evaluate the afore-
mentioned Re scaling experimentally. Literature on the influence of the end
wall and a free surface is reviewed in § 4.1. Subsequently, a method is sug-
gested, which reduces the end-wall influence: A saturated salt-water layer is
introduced at the bottom of the cylinder. To address the Re scaling experimen-
tally, two consecutive experimental campaigns were performed.

First, the feasibility of experiments on such a complex and unsteady flow is
tested in a small-scale campaign performed in a 0.49m diameter acrylic glass
cylinder filled with distelled water; see § 4.2. The measurement technique at
hand – particle image velocimetry (PIV) – is shown to be capable of extracting
the unsteady statistical properties of the spin-down. In addition, the suitability
of a salt-water layer to reduce end-wall effects is tested.

Second, the insights gained in the small-scale experiment are utilised to de-
sign a large-scale campaign, which is realised at the CORIOLIS II platform in
Grenoble, France. The 13m diameter platform allows measurements at very
high Re while allowing a high temporal and spatial resolution in normalised
units (r/R for space and νt/R2 for time). Multiple PIV measurements are
performed in parallel to capture various aspects of the flow: The scaling of
both, the transition process as well as the boundary-layer growth are assessed.
Furthermore, the high-Re behavior of the logarithmic region is investigated.
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4.1 End-wall and free-surface effects

Note that preliminary results of the present chapter were partially reported
in [Kaiser et al., 2016], [von der Burg et al., 2017], and [Kaiser et al., 2017].
Adapted figures and paraphrased quotations are highlighted. Furthermore, the
following student theses contributed to the evaluation of the data presented in
this chapter: [Wah16], [Sch17], [vdB17], and [Oßw18].

4.1 End-wall and free-surface effects

4.1.1 Background

Besides the side-wall boundary layer with thickness δ99 and the bulk flow
in SBR a third flow region is present in the experimental setup: an end-wall
boundary layer (Ekman boundary layer [24]); see figure 4.1. In the Ekman
layer the inequality of centrifugal forces and pressure forces leads to a radial
acceleration of the flow. For the present spin-down case this boundary layer
is also referred to as Bödewadt layer [136]. The end-wall boundary layer also

Figure 4.1: Spin-down: (a) Ekman pumping in a closed cylinder with the position of first occuring
Rayleigh instability during non-linear spin-down (green dots) as presented by [97]; (b)
Ekman pumping in a free-surface configuration; (c) free surface effects as investigated
by [82]. Black and red line highlight the surface shape before spin-down and at a later
time during spin-down, respectively; and (d) Ekman pumping confining salt-water
layer (orange).
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affects the bulk flow as slow fluid is ejected from the near-wall region into
the bulk and hereby provides an additional convective decay mechanism that
leads to a faster decay of the SBR; see figure 4.1a. This additional decay
mechanism is often referred to as Ekman pumping.

For very small absolute values of the Rossby number

Ro = ∆Ω/Ω , (4.1)

the linearisation of the swirl equation leads to an approximate analytical solu-
tion of the flow [43]. The value of ∆Ω hereby describes the change of rota-
tional speed of the cylinder, while Ω is its initial rotational speed.

The effects on linear and slightly non-linear spin-up and spin-down of closed
cylinders are comprehensively reviewed by Benton & Clark [6] and Duck &
Foster [23]. Even though the present experiment is in the highly non-linear and
turbulent regime, the investigations on linear spin-down yet provide valuable
insights on the properties and formation of the Ekman layer and are therefore
briefly summarised in the following.

First, in case of linear spin-down the formation time of the Ekman layer is
delayed to approximately Ωt = 1. Second, for linear spin-down the time scale
of the spin-down due to Ekman pumping is tE = Ω−1Ek−1/2, where the Ek-
man number

Ek =
ν

ΩH2 (4.2)

describes the relative impact of viscous forces to Coriolis forces. The ratio be-
tween tE and the time scale of laminar decay of the vortex due to the side-wall
boundary layers tD = R2/ν is given by tE/tD = Ek1/2(H/R)2. This implies
that (for linear spin-down) only in case of large aspect ratios A = H/R the
decay rate of the side wall boundary layer is much faster and thus roughly
unaffected by the Ekman pumping.
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To further reduce the effects of the Ekman layers, the experiment can be per-
formed in a free-surface configuration. The impact of the free surface can be
described by the ratio of intertial (centrifugal) forces and gravitational forces;
i.e. the Froude number

Fr =
Ω2R2

gH
. (4.3)

In the linear regime, the combined effects of removing the top-wall Ekman
layer (see figure 4.1(b)) and the surface deformation during spin-down (see
figure 4.1(c)) increases the Ekman time scale tE by a factor 1 + 1

2 Fr [82,
98]. Note that while high Fr counteract the effects of Ekman pumping, the
free-surface deformation could possibly introduce its own (unwanted) three-
dimensional vortex stretching effects. At higher Ro but yet small Re, the linear
theory has been extended to the non-linear regime [44, 133, 137, 138]. How-
ever, this still does not provide an accurate description of the present problem,
as the non-linear theory only applies until one of the boundary layers becomes
unstable. Besides the well-known Rayleigh instability at the side walls (see
chapter 3), two distinct spiral instability modes were identified in the end-wall
boundary layer, commonly referred to as Type I (Class B) and Type II (Class
A) modes [79, 80, 113]. Note that the different instability mechanisms do not
occur independently: The convection caused by the end-wall boundary layer
can trigger the side wall instability as presented by Neitzel & Davis [97] and
highlighted by a green dot in figure 4.1(a).

4.1.2 Approaches to reduce end-wall and free-surface effects

The present section reviews various approaches to minimise end-wall and
free surface effects. In particular, the scalability of the approaches is eval-
uated concerning safety and costs. The obvious measure to achieve quasi
two-dimensional vortex decay would be very high A [28, 86] to reduce Ek-
man pumping and small Ω and large R to minimise free surface effects
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(Fr = Ω2R2/gH) while still achieving high Re = ΩR2/ν . As large R and A

are requirements that are in direct contrast to the requirements of an affordable
high-Re experiment, alternative approaches have to be considered.

Burin et al. [15] reduced Ekman-pumping successfully by splitting the end-
walls into multiple slices that can be rotated and controlled interdependently.
Yet again, a physical implementation of this multi-disc approach in a large
scale facility (such as the aforementioned CORIOLIS II platform) would come
with high costs and is thus not further considered in the following.

An alternative approach was first suggested by Pedlosky [104]. Two immisci-
ble fluid layers of different density are filled into the cylinder. If the top of the
upper layer is confined by a free surface, linear theory [104] predicts that the
effects of Ekman pumping on the upper layer are significantly reduced. Exper-
imental investigations (on spin-up) [99] validated the theoretical results. The
scale of a large scale and high-Re experiment excludes hazardous or expensive
fluids as possible liquids. Therefore, a saturated salt-water solution (density
ρs ≈ 1.2 g

cm3 at 20◦C [130]) is selected as the high-density fluid, while the
measurements are performed in a water layer (density ρw ≈ 1.0 g

cm3 at 20◦C
[130]). Even though linear theory does not apply at high Re, it is hypothesised
that also for the highly non-linear spin-down, the Ekman pumping is confined
to the salt-water layer as depicted in figure 4.1(d). Note that the faster decay
of the salt-water layer leads to an inverse parabola at the interface between
the fluids. The applicability of this mechanism to reduce end-wall effects is
investigated in the following. First, the background is elaborated in § 4.1.3,
before the effect is further discussed alongside experimental investigations in
sections 4.2.3 and 4.2.4.

4.1.3 Salt-water layer: parabola and interface stability

Two requirements have to be met for the salt-water layer to reduce end-wall
effects. First, the upper water layer should not reach the bottom wall during all
stages of the spin-down. Linden & van Heijst [76] reported the occurrence of
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Figure 4.2: Spin-down: (a) Ekman pumping in a closed cylinder with the position of first occuring
Taylor rolls during non-linear spin-down (green dots) as presented by [97]; (b) Ekman
pumping in a free-surface configuration; (c) free surface effects as investigated by
[82]; and (d) Ekman pumping confining salt-water layer (orange).

instabilities as soon as the top layer reaches the bottom end-wall, which in turn
lead to mixing of the two fluid layers. Second, the interface between saturated
salt-water solution and water has to remain stable to replicate the non-mixing
two-phase flow suggested by Pedlosky [104].

Sufficient salt-water layer thickness

Contact of the upper water layer with the bottom wall can be easily avoided
by an appropriate thickness of the salt-water layer Hmin

s . A lower limit for
Hmin

s is estimated with the assumption of a worst-case scenario during spin-
down: a salt-water layer, which is already at rest and an upper fluid, which
rotates in SBR; see figure 4.2. The pressure distribution in the water layer
in SBR is given by

pw(r,z) = p0 +ρwg(z− z0)+ρw
Ω2r2

2
, (4.4)

where p0 is the ambient pressure and z0 the water level at r = 0. The pressure
at the interface between the two surfaces at a radial position r is given by

pint = p(r,z = z0− zIII− zint) = ρw
Ω2r2

2
+ zIIIρwg+ zintρwg+ p0 (4.5)
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The pressure in at the same height and at r = 0 is

pa = p(r = 0,z = z0− zIII− zint) = ρwgzIII +ρsgzint + p0 . (4.6)

As the salt-water layer is at rest and no centrifugal forces apply pa = pint ,
which yields

zint(r) =
ρw

ρs−ρw

Ω2r2

2g
. (4.7)

This results in

zII =
ρw

ρs−ρw

Ω2R2

2
, (4.8)

which due to ρw/(ρs−ρw) ≈ 5 corresponds a significantly larger parabola
height at the interface during spin-down than in the initial SBR. The salt-water
volume during spin-down can be described by

V SD
s =

∫ 2π

ϕ=0

∫ R

r=0

(
zI +

ρw

ρs−ρw

Ω2

2g

(
R2− r2))rdrdϕ . (4.9)

V SD
s is constant in time and thus equal to the salt-water volume after the com-

plete decay of the flow V 0
s = πR2Hs. Thus, for zI = 0 the minimum required

salt-water thickness Hmin
s is given by:

Hmin
s =

ρw

ρs−ρw

Ω2R2

4g
. (4.10)

Interface stability

The stability of the interface is hypothesised to depend on the ratio of the
kinetic energy that is dissipated during spin-down (∼ ρsΩ

2R2) and the sta-
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bilising effects of the potential energy (∼ (ρs−ρw)gHs). The relation of the
forces yields a hypothesis for a modified Froude number

Frs =
ρsΩ

2R2

(ρs−ρw)gHs
, (4.11)

where a large Frs implies a higher chance for the interface to become unstable.
Note, accordingly, that a high relative density (ρs−ρw)/ρs, large Hs, small Ω,
and small R result in a stable two-layer system.

4.2 Small-scale experiments – medium ReReRe

The preliminary goal of the small-scale experiments is to clarify whether or
not an experimental approach is feasible for the spin-down problem. The fea-
sibility study is presented as follows: § 4.2.1 provides the experimental setup
before § 4.2.2 discusses the data quality and the reproducibility of the exper-
iments. Thereafter, the stability of the salt-water layer is addressed in § 4.2.3
and its influence on the spin-down flow is evaluated in § 4.2.4.

(a) Small-scale test rig with rotating cylinder (left) and laser
with light sheet optics (right).

(b) Sketch of the planar PIV setup.

Figure 4.3: Setup of the small-scale experiments performed at Karlsruhe Institute at Technology.
Figures similar to figures in [Kaiser et al., 2016].
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4.2.1 Experimental setup

As depicted in figure 4.3(a) an acrylic glas cylinder with an inner diameter
of 2R = 0.49m is mounted on a central shaft. The shaft is fixed with ball
bearings, which allow co-axial rotation, and connected to a step motor via a
toothed driving belt. The transmission ratio of the driving belt (3:1) in com-
bination with a closed-loop controlled step motor (NEMA 42, holding torque
2.5Nm) allows fast acceleration and deceleration of the cylinder without
mounting an additional braking system. The cylinder can be decelerated from
a maximum rotational speed of f = 1.5Hz (Ω = 2π f = 9.42/s) within one
revolution. The closed-loop control is implemented with an incremental posi-
tion encoder and a motor controller. The control loop allows smooth rotation
without noticeable artifacts of motor stepping for f ≥ 0.075Hz (Ω≥ 0.47/s).
The tank is filled with distilled water (room temperature 20◦C, kinematic
viscosity ν = 1.004 · 10−6) up to the level H. All experiments were per-
formed in an free-surface configuration (cp. § 4.1) and various aspect ra-
tios 0.5 < A = H/R < 2 are tested. The rotational speed before spin-down
is in the range of 0.47 ≤ Ω ≤ 9.42, which corresponds to a Re range of
28200≤ Re≤ 564000. The salt-water layer (height Hs) and its stability is
further tested in additional experiments.

The flow is measured with low-speed planar PIV setup as sketched in figure
4.3(b). A double-frame CCD camera (PCO Pixelfly, 1392px × 1040px) is
mounted below the tank to avoid image deformation due to free surface ef-
fects. The camera records double-frame images at 5Hz and is equipped with
an AF Nikkor 50mm objective lens. A dual pulsed Nd:YAG laser (Quantel Ev-
ergreen 70) provides a horizontal light sheet (thickness 2mm) at the measure-
ment height Hm, which is placed at medium filling height Hm = 0.5H unlesss
explicitly stated otherwise in the following. A pulse energy of 20mJ/pulse
provides sufficient illumination of 20 µm Polyamid 12 particles in a 90mm ×
60mm field of view (FOV). Note that a mirror is mounted between the cylin-
der and the CCD camera to simplify the adaptation of the object distance and
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ensure a similar FOV for different measurement heights Hm. The pulse dis-
tance is adapted to the initial condition (i.e. Ω) of the respective experiments
to ensure a maximum displacement of 15px, which at the present spatial reso-
lution of 15px/mm corresponds to a displacement of 1mm. Following Raffel
et al.[106], a multi-grid scheme with non-uniform final interrogation areas
(96px × 32px with 75% and 50% overlap, respectively) was applied during
post-processing to minimise in-plane loss. The long axis was aligned tangen-
tial to the circumferential main-flow direction.

4.2.2 Data quality and reproducibility

The three-dimensional DNS data of chapter 3 allows for a spatial average
〈.〉=〈.〉ϕ,z(r, t) in a large volume in ϕ- and z-direction and thus makes the
instantaneous evaluation of high-order statistics possible. The present exper-
imental data, in contrast, is limited to the FOV of the PIV measurements,

(a) Five consecutive runs of the spin-down experi-
ment are depicted in different colors. The mea-
surement plane is set at Hm = 0.5H. The ellipse
highlights the footprint of core decay due to Ek-
man pumping.

(b) Comparison of measurements at different mea-
surement planes Hm = 0.5H and Hm = 0.25H.

Figure 4.4: Reproducibility of spin-down measurements exemplarily shown for Re = 282000
at five arbitrary time instances Ωt ∈ {11,22.5,45,90,180}, which corresponds to
θ = νt/R2 ∈ {3.9,8.0,16.0,31.9,63.8}×10−5. SBR and regions of constant angular
momentum l(t) are emphasised with dotted and dashed lines, respectively. Aspect
ratio was set to A = H/R = 2.
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which requires a thorough test of statistical significance. Accordingly, this
section evaluates if the average over the FOV in azimuthal direction

〈
uϕ

〉
ϕ =

〈
uϕ

〉
ϕ(r, t) =

1
ϕmax−ϕmin

∫
ϕmax

ϕ=ϕmin

uϕ(r,ϕ, t)dϕ (4.12)

allows a sufficient approximation of
〈
uϕ

〉
or if a combination of spatial and

moving temporal average such that

〈
uϕ

〉
ϕ,t =

〈
uϕ

〉
ϕ,t(r, t) = ...

...
1

(ϕmax−ϕmin)tavg

∫
ϕmax

ϕ=ϕmin

∫ t+tavg/2

t∗=t−tavg/2
uϕ(r,ϕ, t∗)dt∗dϕ (4.13)

is necessary. The parameters ϕmax,ϕmin are the azimuthal limits of the FOV
and tavg is the window of the moving temporal average. The reproducibil-
ity of the results is tested by repeating and evaluating the same experiment
multiple times.

Figure 4.4(a) presents the results of five consecutive spin-down experiments at
Re = 282000. While the instantaneous data

〈
uϕ

〉
ϕ (grey lines) shows run-to-

run scatter, a moving temporal average over five time steps (tavg = 1s) delivers
good run-to-run reproducibility for

〈
uϕ

〉
ϕ,t . Despite the limited FOV, the re-

sults of the five different runs agree well for the entire spin-down process and
thereby validate sufficient statistical convergence as well as the repeatability
of the experiment. As expected, the region of constant angular momentum
l(t) = uϕ r (see § 3.5.3) is also uncovered experimentally.

The results of the present section are obtained without a salt-water layer.
Therefore, an influence of the bottom wall is expected and is already obvious
at Ωt = 22, where the vortex core has lost momentum, (circled by an ellipse
in figure 4.4(a)). Linear theory implies that outside the Ekman layer,

〈
uϕ

〉
does not depend on z [23]. To clarify if this property holds also for the non-
linear spin-down, measurements at different heights Hm are performed. Figure
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4.2 Small-scale experiments – medium Re

4.4(b) presents a comparison of Hm = 0.25H and Hm = 0.5H in experiments
with A= 2. Matching results suggest that the effect of the measurement height
is minor and

〈
uϕ

〉
is independent of Hm and thus z.

4.2.3 Stability and required thickness of the salt-water layer

As suggested in § 4.1.3, a saturated salt-water layer is introduced at the bottom
of the tank to reduce end-wall effects. The present section estimates the critical
Froude number Frc

s (cp. (4.11)), at which the interface becomes unstable and
validates the existence of the predicted inverse parabola during spin-down.

Frc
s is determined experimentally in various spin-down experiments, where Ω

is increased from run to run, while the other quantities remain constant; sat-
urated salt water: (ρs−ρw)/ρs = 6; R = 0.245m, Hs = 0.5R at A = 0.5. To
visualise the interface, the salt-water layer is colored with food ink as shown
in figure 4.5. At f = 0.25Hz (Frs = 2.265) the interface shows first signs
of instability. In addition, the expected inverse parabola for the interface be-
tween saltwater and distilled water can be observed. Note, however, that as
expected the height of the parabola appears to be below the theoretically es-
timated value (zII , see § 4.1.3).

(a) spin-down from Ω = 0.075Hz. Interface remains
stable and without visible curvature.

(b) spin-down from Ω = 0.25Hz. Color-coded salt
water mixes into distilled-water layer. The fluid-
fluid interface shows an inverse parabola.

Figure 4.5: Pictures captured during early spin-down for experiments with different Ω and thus
Frs. Experimental parameters: (ρs−ρw)/ρs = 6; R = 0.245m; Hs = 0.04m at A =
0.5.
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4 Wall-bounded vortex decay – experimental approach

f [Hz] Ω [1/s] Re Frs zII [cm] Hmin
s [cm] stable

0.075 0.47 28 200 0.204 0.34 0.17 yes

0.150 0.94 56 400 0.815 1.36 0.68 yes

0.200 1.26 75 200 1.450 2.42 1.21 yes

0.250 1.57 94 000 2.265 3.77 1.89 no

Table 4.1: Re, Frs, stability of the interface, and the theoretical values for the height of the in-
verse parabola zII and minimum salt-water level Hmin

s for various Ω in the small-scale
experiments. Parameters: (ρs−ρw)/ρs = 5; R = 0.245m; Hs = 0.04m, and A = 0.5.

Table 4.1 provides an overview of the performed experiments on interface
stability and the theoretical parameters zII and Hmin

s for different Frs. The
critical modified Froude number below which the interface is stable was found
to be within the range 1.450 < Frc

s < 2.265.

4.2.4 End-wall effect reduction: AAA and HsHsHs

While for A = 2 end-wall effects are already existent (see figure 4.4), lin-
ear theory suggests a more significant influence for smaller A = H/R as
tE/tD = Ek1/2A2; cp. § 4.1. The present section evaluates if the predictions
on the importance of A from linear theory still apply for the turbulent and
non-linear spin-down. Furthermore, it is quantified whether or not a stable
salt-water layer (see § 4.2.3) is capable to significantly reduce those end-wall
effects. Figure 4.6(a) presents the scaling of Ekman pumping with A for
Re ≈ 56400. The effects of A are significant as the vortex core decays faster
for A = 0.5 as for A = 2. However, the introduction of a salt-water layer into
the low aspect-ratio setup (A = 0.5), results in a vortex core that contains its
kinetic energy even better as the comparable experiments with A = 2 and no
salt-water layer. To further validate the two-layer setup concerning its capa-
bility to mimic an infinite cylinder, figure 4.6(b) compares the experiments at
Re ≈ 28200 with the DNS data presented in chapter 3 (Re = 28000). Within
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4.2 Small-scale experiments – medium Re

(a) Re = 56400: spin-down experiments with A = 2
(red) and A = 0.5 (blue, yellow). Bottom wall
influence increases with decreasing A. However,
a salt-water layer significantly reduces end-wall
effects (yellow).

(b) Comparison of DNS results for Re = 28000 and
experimental results at Re = 28200 with A = 0.5.
The experiment with salt-water layer show good
agreement with the simulation.

Figure 4.6: Influence of aspect ratio A = H/R and the presence of a salt-water layer on the flow
character during spin-down experiments. Five time instances Ωt ∈ {2,8,16,32,64}
are presented. SBR and regions of constant angular momentum l(t) are emphasised
with dotted and dashed lines, respectively. Measurements were performed at height
Hm = 0.5H.

the accuracy of the experimental data, the experiment with salt-water layer
shows good agreement with the DNS data.

In conclusion, the small-scale experiment validates the capability of the exper-
imental method to approximate low order statistics such as

〈
uϕ

〉
and provides

a salt-water layer as an appropriate technique to obtain a flow, which is similar
to the decay in an infinite cylinder. This end-wall effect reducing technique
provides reliable data for Frs ≤ 1.45. A destabilisation of the interface was
observed at Frs = 2.265. In conclusion the critical Froude number, where the
interface destabilises, lies within the range 1,45< Frc

s < 2.265 For Frs > Frc
s

the salt-water layer cannot be used and a large aspect ratio A is considered an
alternative measure to reduce end-wall effects.
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4 Wall-bounded vortex decay – experimental approach

4.3 Large-scale experiments – high ReReRe

To increase the Reynolds number range (Re = ΩR2/ν) of the spin-down prob-
lem towards very high Re, experiments were conducted during a three-week
campaign at the CORIOLIS II platform in Grenoble, France. The platform
with 2R = 13m diameter and an approximate weight of 300t is the largest
of its kind.

The large dimensions of the platform allow high temporal and spatial resolu-
tions and small curvatures of the free surface while Reynolds numbers up to
Re = 4 ·106 can still be achieved. The present section describes the parameter
range, the experimental setup, and investigates if the scaling of the salt-water
layer stability suggested in § 4.2.3 holds for very large Re.

4.3.1 Parameter range

For the present campaign, the filling height of the 13m diameter platform
was set to 1m, which results in approximately 133m3 of water and an aspect
ratio A = H/R = 2/13 for all conducted experiments. For the PIV measure-
ments the complete volume was seeded with polyamide 12 particles (density
ρp = 1.03g/cm3, diameter dp = 30 µm; Orgasol 2002 ES3 NAT). To reduce
particle settlement during the very long spin-up times until SBR is reached
(2h-3h) the density of the water is slightly increased to ρw = 1.004g/cm3 by
dissolving a small amount of salt. Due to temperature variations of the water
Tw during the measurement campaign (15.8◦C≤ Tw ≤ 18◦C), ν varied within
the range 1.06 ·10−6 m2/s≤ ν ≤ 1.12 ·10−6 m2/s. To account for the temper-
ature changes, the water temperature was measured before each run.
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4.3 Large-scale experiments – high Re

revolution runs ramp time

time [s] Re ×106 (total) (salt water) tSD [s]

470 0.5 2 - 10.9

240 1.0 2 - 16.9

120 2.0 8 2 23.4

90 2.7 4 2 30.3

60 4.0 2 - 37.8

Table 4.2: Overview of conducted spin-down experiments at the CORIOLIS II platform.

Table 4.2 provides an overview of the performed spin-down experiments. In
a total of 18 successful runs, five different rotation rates within the range
0.0134/s ≤ Ω ≤ 0.105/s were tested. The high mass of the platform lim-
its the maximum deceleration rate to 3.4 · 10−3 rad/s2. In combination with
jerk-free acceleration, the time span until the final velocity of the platform is
reached (ramp time tSD) varies in the range 0.12≤ΩtSD ≤ 3.97 or θ < 10−6.

(a) Time and Ωcyl in SI units. Second time axis nor-
malised as θ = νt/R2.

a

(b) Time and Ωcyl normalised by Ω.

Figure 4.7: Angular velocity of the platform Ωcyl during the deceleration process for different
revolution times 1/ f = 2π/Ω.
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4 Wall-bounded vortex decay – experimental approach

The angular velocity of the cylinder Ωcyl during the deceleration is visualised
in figure 4.7.

For the last two days of the campaign a layer of saturated salt-water was care-
fully introduced at the bottom of the cylinder. Approximately 3.4t of salt
were dissolved to produce 10.6m3 of saturated salt-water solution, which cor-
responds to a layer of 8cm thickness. Four spin-down experiments were con-
ducted with the salt-water layer.

4.3.2 Experimental setup

Figure 4.8(a) provides an overview of the three PIV setups that are conducted
simultaneously. All experimental equipment is mounted on the rotating plat-
form and thus co-rotates and accelerates/decelerates with the cylinder. A
stereo setup (figure 4.8d) uses the optical access through one of the 16 lat-

Figure 4.8: Measurement setup at the CORIOLIS II platform: (a) schematic overview; (b) planar
PIV at 1.5m distance from side walls; (c) planar three camera PIV system; and (d)
high-speed stereo PIV.
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4.3 Large-scale experiments – high Re

eral windows. In addition, planar PIV is captured through the open surface
(figures 4.8b,c).

All three PIV setups utilise the same horizontal laser sheet produced by a con-
tinuous 25W Spectra Physics Millennia laser. Exposure time tE ≤ 0.5 ·10−3 s
and repetition rate are controlled by the respective camera.

A pco.1200 HS (AF Nikkor 50mm, figure 4.8(b)) records the flow at a ap-
proximate side-wall distance of 1.5m (r = 5m). A FOV of 25cm× 20cm
results in a resolution of approximately 5px/mm. Note that during the mea-
surement time, the side-wall boundary layer will not grow up to δ99 = 1.5m.
Thus, the purpose of this camera is solely to record if end-wall effects lead
to a decay of the core flow.

The side-wall boundary layer is recorded by a time-resolved three-camera sys-
tem consisting of two pco.edge 5.5 (Samyang ED AS UMC 35mm) and a
Dalsa Falcon 4M (AF Nikkor 28mm). The cameras shown in figure 4.8(c)
provide an overlapping FOV with a radial extend of approximately 75cm and
a resolution of 10px/mm. Due to varying flow velocities at different Re (differ-
ent Ω) the recording frequency varies between 25Hz–200Hz. For the higher
recording frequencies the cameras cannot operate in full-frame mode. As
such, the azimuthal extent of the FOV varies within the range 4cm – 21.5cm.

The stereoscopic high-speed PIV setup shown in figure 4.8(d) focuses on the
onset of instabilities. Two Phantom Miro M310 cameras (AF Micro-Nikkor
60mm) are each oriented 45◦ towards the light-sheet and record the near-wall
region with a resolution of 14.5px/mm. Image distortion is minimised by a
water-filled acrylic glass prism attached to the lateral window. Dependent on
Ω, the recording frequency varies within the range 40Hz-400Hz.

4.3.3 End-wall effect reduction

The aspect ratio is limited by the maximum filling height of the CORIOLIS
II platform and set to A = 2/13. As discussed in § 4.2.4, small A imply large
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4 Wall-bounded vortex decay – experimental approach

impact of end-wall effects. Therefore, the evaluation of experiments without
a salt-water layer is limited to the early stages of the flow and in particular
the transition process. However, to gather information about the boundary-
layer growth during the turbulent stage III (see § 3.5.3), seven experiments are
performed with a saturated salt-water solution at the bottom of the cylinder;
see § 4.3.1.

1/ f [s] Ω [1/s] approx. Re Frs zII [cm] Hmin
s [cm] stable

120 0.052 2.0×106 0.89 0.74 0.37 yes

90 0.070 2.7×106 1.57 2.95 1.48 yes

Table 4.3: Re, Frs, stability of the interface, and the theoretical values for the height of the inverse
parabola zII and minimum salt-water level Hmin

s for various Ω in the small-scale ex-
periments. Parameters: (ρs−ρw)/ρs = 6; R = 6.5m; Hs = 0.08m, Tw = 15.8◦C , and
A = 2/13.

The experimental parameters of the experiments with salt-water layer satisfy
the requirements formulated in sections 4.1.3 and 4.2.3. Table 4.3 provides an
overview of the parabola height zII and the hypothesised measure of interface
stability Frs. The small-scale experiments provided an estimate for the crit-
ical Frounde number within the range 1.45 ≤ Frc

s ≤ 2.65. As for 2.7× 106,
the Frounde number Frs = 1.57 slightly exceeds the maximum stable Froude
number found in the small-scale experiments (Frs = 1.45), the interface sta-
bility is additionally validated by capturing the interface with an additional
camera through one of the lateral windows. The interface remained stable
for two days and four spin-down experiments. Two runs at Re = 2 · 106 and
two runs at Re = 2.7 · 106 were performed. However, at the third day of the
measurements with salt-water layer the interface became unstable during an
experiment, which made the data of the run unusable and also marked the end
of the experimental campaign. It is hypothesised that the interface thickness
had grown due to diffusion and thus lost its stability.
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4.3 Large-scale experiments – high Re

(a) spin-down at different Re. (b) Influence of salt-water layer on spin-down.

Figure 4.9: End-wall effects and their reduction. While 〈urel
ϕ 〉r,ϕ/ΩRhs ≈ 1 the core is still in

SBR. The ramp of of the acceleration/deceleration process varies for different Re.
The experiments where a saturated salt-water layer was introduced are marked with
the tag ”salt”.

The influence of end-wall effects was further assessed quantitatively by eval-
uating the results of the pco.hs1200 (figure 4.8b), which was positioned at
Rhs = 5m. The relative velocity of the fluid towards the platform urel is eval-
uated and spatially averaged over the complete FOV. The resulting quantity
〈urel

ϕ 〉r,ϕ grows to 〈urel
ϕ 〉r,ϕ ≈ ΩRhs during the acceleration/deceleration of the

platform and should remain constant, while the core flow is still intact.

Figure 4.9 shows the temporal evolution of 〈urel
ϕ 〉r,ϕ to analyse the impact of

Ekman pumping. Figure 4.9(a) shows a strong end-wall effect during spin-
down without the salt-water layer for all Re. In particular, for Re = 4 · 106,
the increased deceleration times for high Re (see table 4.2) in combination
with the end-wall effects during spin-down, leads to a decay of the SBR in
the vortex core before the platform is completely at rest. In figure 4.9(b) the
influence of the salt-water layer is evaluated. The saturated salt-water layer
preserves the SBR and thus significantly extends the time span, where mean-
ingful observations of the side-wall boundary layer can be made.

In conclusion, the reduction of end-wall effects with the salt-water layer
proves to be successful and the suggested scaling of the interface stability
with Frs is confirmed. While the usability of experiments without salt-water
layer is limited to an analysis of the transition process, the successful re-
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duction of end-wall effects allows a long-term observation of the turbulent
side-wall boundary layer.

4.4 Results

This section strives to validate the hypothesised scaling which resulted from
the DNS presented in chapter 3. In § 4.4.1 the transition to turbulence is ad-
dressed. In particular, the primary instability mechanism is discussed and
the scaling of the onset time θo is investigated. Thereafter, the scaling of
boundary-layer growth during the turbulent stage is described in § 4.4.2.

4.4.1 Transition

The objectives of the present section are twofold. First, it is to be validated if
centrifugal instabilities also occur at very high Re. Second, the time instance
θo = νto/R2, where

〈
uϕ

〉
first deviates from a laminar profile is captured and

compared to analytical, numerical and experimental studies in literature. The
time instant θo is equivalent to the onset time defined by Neitzel & Davis [97],
who defined the time instance of minimal torque on the cylinder walls as their
characteristic time.

The Re range of the present data exceeds prior measurements by two orders of
magnitude. Note, however, that the finite deceleration time of the CORIOLIS
II platform discussed in § 4.3.1 has to be taken into account, when comparing
the present data to literature. In particular, the onset time θo and in some cases
also Re are corrected in the following.

Primary instability

At very high Re, the influence of curvature decreases as δ99/R is very small
during transition. Thus, the flow asymptotically approaches Stokes’ first prob-
lem with growing Re. Stokes’ first problem is also linearly unstable [81],
however the transition to turbulence is initiated by Tollmien-Schlichting (TS)
waves instead of a destabilisation of streamwise vortices as they appear in
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Figure 4.10: Exemplary horizontal cuts through spin-down data of the DNS (Re = 12000, Ωt =
4.7) depicting the footprint of Taylor rolls on two-dimensional data: (a) Possible
positions of the FOV of PIV; (b) profiles of

〈
uϕ

〉
in the respective FOV compared to〈

uϕ

〉
averaged over ϕ and z and the laminar solution at the same time instance; (c)-(e)

vertical cut through the respective FOVs: (i) fluid moving in negative radial direc-
tion; (ii) fluid moving in positive radial direction; and (iii) cut through the middle of
the streamwise vortex.

the case of centrifugal instabilities. In flat and spatially developing boundary
layers, spanwise periodic arrays of boundary-layer streaks were shown to suc-
cessfully stabilise TS waves [21, 36, 117]. Thus, it is hypothesised, that even
if the onset times of TS waves and centrifugal instabilities were similar, the
streamwise structures would damp TS waves. However, if Re is high enough,
TS waves could possibly occur before spanwise periodic structures. Assum-
ing impulsive spin-down, the critical wavelength λc of possible centrifugal
instabilities are estimated using the prediction of Kim et al. [61]. Small λc

within the range 7.5mm ≤ λc ≤ 28.9mm for initial rotation times 470s - 60s
are expected. Therefore, the highly resolved horizontal stereo setup (figure
4.8d, resolution: 14.5px/mm) is utilised to capture the transition process. Due
to very large scales of the facility (R = 6.5) the normalised spatial resolution
and the normalised temporal resolution (θ = νt/R2) is sufficient to capture
the transition process at the present high Re.
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The footprint of Taylor rolls in the FOV of the PIV measurements depends on
the relative axial position of the light sheet towards the Taylor rolls. Three dis-
tinct scenarios occur as visualised with numerical data from chapter 3 in figure
4.10(a), where three possible relative positions of the Taylor rolls towards the
light sheet are presented with three synthetic FOVs (i)− (iii). Figures 4.10(c-
e) show a vertical cut through the respective FOV and motivate the origin of
the deviating vorticity distributions of cases (i)− (iii). If the light sheet cuts
through the centre of the streamwise vortices a distinct vorticity profile is de-
tected (case (iii), see figure 4.10(a,e)). The effects of Taylor rolls are less
obvious if the light sheet cuts through the centre or the outer border of the
plumes (cases (i)&(ii) in figures 4.10(a,c,d)). Here, the movement of fluid in
either positive or negative radial direction leads to an increase or decrease of
the boundary-layer thickness, respectively. Figure 4.10(b) presents the effect
of cases (i)− (iii) on

〈
uϕ

〉
ϕ . During the primary instability, the velocity pro-

files averaged over the synthetic FOVs
〈
uϕ

〉
ϕ deviate significantly from the

statistically converged average over the complete volume of the simulation〈
uϕ

〉
=
〈
uϕ

〉
ϕ,z. While case (iii) shows a characteristic profile with two inflic-

tion points, case (i) is hard to distinguish from a laminar profile at an earlier
stage. During transition the axial position and the size of Taylor rolls change.
Thus, cases (i)− (iii) might be observable in the same FOV during the same
experiment. As only the footprint of case (iii) is unique, it is utilised as the
criterion that a Taylor roll occurred at the time θ(iii); see table 4.4.

For almost all experiments the existence of Taylor rolls is validated at a time
θ(iii) (see table 4.4) before the transition to turbulence. For the two experi-
ments, where case (iii) is not detected, it is unclear which mechanism led to
transition to turbulence. Taylor rolls could still have been present (only case
(i) and/or case (ii) in the FOV), however also other mechanisms could have
led to transition. Yet it can be concluded, that for the present high Re mea-
surements the centrifugal instability generally occurs before TS can evolve.
This is in good agreement with studies on spatially developing boundary lay-
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1/ f Re ν
[m

s2

]
θ(iii) θo ∆Ω(θo)

[ 1
s
]

Recor θ cor
o

[s] ×106 ×10−6 ×10−7 ×10−7 ×10−2 ×106 ×10−7

470 0.52 1.08 12.82 8.81 1.34 0.52 7.41

470 0.52 1.10 15.38 9.34 1.34 0.52 6.23

240 1.01 1.09 8.14 6.34 2.62 1.01 3.16

240 1.03 1.07 - - - - -

120 2.10 1.06 4.99 4.49 4.39 1.75 1.27

120 2.03 1.09 4.70 4.59 4.35 1.68 1.29

120 1.97 1.12 4.52 4.52 4.14 1.56 1.33

120 1.97 1.12 3.80 3.80 3.20 1.20 1.41

120 1.97 1.12 4.26 4.26 3.80 1.43 1.20

120 1.98 1.12 3.96 3.69 3.17 1.20 1.27

120 1.98 1.12 3.75 3.75 3.17 1.20 1.21

120 1.98 1.12 - - - - -

90 2.66 1.11 4.73 4.73 4.45 1.69 1.58

90 2.62 1.12 4.31 4.31 3.84 1.44 1.38

90 2.65 1.12 4.59 4.59 4.25 1.61 1.53

90 2.65 1.12 4.30 4.30 3.84 1.46 1.48

60 3.99 1.11 4.47 4.47 4.71 1.79 1.18

60 3.94 1.12 4.52 4.52 4.71 1.77 1.14

Table 4.4: Performed spin-down experiments. Note that due to varying water temperatures. the
kinematic viscosity and thus Re slightly varies for the experiments with equal f .

ers with small curvature ratios δ99/R [9, 126], where centrifugal instabilities
lead to the evolution of Görtler vortices.

Transition time θo

After the presence of Taylor rolls is confirmed, in the following their onset
time θo is compared to prior experiments of smaller Re and predictions from
stability analysis.
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(a) Temporal developement of
〈
uϕ

〉
. ωz at the time in-

stant θ(iii), where Taylor rolls first appear (vorticity
field shown in inlay).

(b) Development of the fitted time θ f it that corre-
sponds to the analytical solution of a laminar
profile for a perfectly impulsive spin-down.

Figure 4.11: Application of the method to determine the corrected onset time θ cor
o at Re≈ 1 ·106.

At the time instant θo at which the velocity profile starts to deviate from laminar
growth (here t(ii)) the fitted to time of the equivalent analytical soltution θ f it is de-
termined and set to θ cor

o . At Re ≈ 1 · 106 the tank is at rest before transition starts
tT > tSD.

The rotation of the CORIOLIS II platform does not stop instantaneously but
within a finite ramp time θSD = νtSD/R2 (cp. § 4.3.1). Therefore, even for
the laminar stage the velocity profiles

〈
uϕ

〉
are not equivalent with the analyti-

cal solution ulam
ϕ (cp. (3.12)). To account for θSD 6= 0 a five step algorithm

is applied. Figure 4.11 visualises the process for one of the experimental
runs at Re≈ 1 ·106.

• First, it is checked if case (iii) is detected at any time within in the FOV
of the PIV measurement, as highlighted with the magenta line and the
inlay in figure 4.11(a). The experiments in which case (iii) was not
detected are excluded from the following analysis.

• For all times θ < θ(iii) an alternate time θ f it is found, where the relative
fit error

e f it(θ f it ,θ) =
1

0.01R

∫ R

r=0.99R

∣∣∣∣∣ulam
ϕ (θ f it ,r)−

〈
uϕ

〉
ϕ(θ ,r)〈

uϕ

〉
ϕ(θ ,r)

∣∣∣∣∣dr (4.14)
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is minimal. Figure 4.11(a) shows the temporal evolution of θ f it(θ).
While for a perfectly impulsive spin-down θ f it = θ , the finite ramp
times yield θ f it < θ .

• In addition to accounting for the finite ramp times, θ f it also provides a
measure if case (i) or (ii) occur in the FOV before case (iii). As shown
in figure 4.11(b), θ f it starts to decline at θi = 6.3. This is due to case
(ii) being present in the FOV. The onset time θo is set to whichever case
occurs first

θo = min(θ(i),θ(ii),θ(iii)) . (4.15)

For the experiment shown in figure 4.11 case (ii) is first detected, lead-
ing to θo = θ(ii).

• As of now the corrected onset time θ cor
o = θ f it(θo) can be defined.

ulam
ϕ (θ cor

f it ,r) (dashed black line in figure 4.11(a)) shows excellent agree-
ment with

〈
uϕ

〉
ϕ(θ(i),r) (light blue line).

• For the experiments with Re≥ 2 ·106 Taylor rolls occur before the tank
is fully at rest. Therefore, the spin-down process cannot be considered
to be impulsive. However, to compare the data of those Re ≥ 2 · 106

experiments with the impulsive spin-down theory, a second correction is
applied. The change of angular velocity at the time instance of transition
θo is determined: ∆Ω = Ω−Ωcyl(θo). ∆Ω is utilised to formulate a
corrected Reynolds number Recor = ∆ΩR2/ν .

The algorithm is applied to all performed spin-down experiments. The results
are reported in table 4.4 and compared to literature data in figure 4.12.

The critical time θc predicted by propagation theory [61] (solid line, see
§ 3.6.1) occurs significantly earlier as the onset time θo. Kim et al. [61]
reported good agreement between θo from experiments and simulations and
4θc (dashed line). The numerical results for the onset time θo from chapter 3
coincide with the visually captured onset time θv of earlier experiments. The
visual onset time θv is the time instant, where aluminium flakes in the fluid
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Figure 4.12: Comparison of present experimental data of the small (SSE) and large-scale exper-
iment (LSE) to numerical data (empty markers) and prior experiments (filled mark-
ers). Due to the significant spin-down time for the large scale experiments, both Re
and θo are corrected. The corrected onset times θ cor

o are also plotted.

first revealed the onset of Taylor rolls during spin-down experiments. The
experimental results from the small-scale (LSE) and large-scale (SSE) exper-
iments align with the predicted trends and extend the Re range significantly.
Note that for the for each large-scale experiment θo(Re) and θ cor

o (Recor) are
plotted, respectively. The data, where the instability occured before the plat-
form was at rest is highlighted with a coloured background.

4.4.2 Boundary-layer thickness

The numerical results presented in chapter 3 hypothesise a scaling for the tur-
bulent boundary-layer growth. After the transition to turbulence, the growth
of the boundary-layer thickness maintains its viscous time scale ∼

√
νt, yet

with a Re dependent proportionality factor aturb (cp. § 3.6). In particular the
scaling law (3.22)

aturb/alam = 0.1Re
1
3
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Figure 4.13: Fitting techniques for a robust approximation of δ99 exemplarily shown
for an experiment at Re ≈ 2.6 · 106 with salt water layer at five arbi-
trary time instances Ωt ∈ {1.1,2.2,4.3,8.7,23.9}, which corresponds to
θ = νt/R2 ∈ {4.1,8.2,16.4,32.9,90.0} × 10−7. The applied fitting functions
are: analytical solution of the laminar profile during laminar stage, linear fit during
transition to turbulence and potential vortex during turbulent stage.

is suggested based on the numerical date within the range 3000≤ Re≤ 28000.
The present section strives to validate the scaling law with experimental data
for high Re. As discussed in § 4.4.1 the limited FOV of the PIV measurements
leads to non-converged velocity profiles

〈
uϕ

〉
ϕ after the onset time θo. This

complicates the extraction of such sensitive quantities as δ99. Therefore, more
robust methods as the 1% threshold (cp. (3.8)) are applied to estimate δ99 from
the experimental data. In particular, for each flow stage (laminar, transition to
turbulence and turbulent stage) the data is fitted with an appropriate function.
Figure 4.13 provides an overview of the algorithm.

Stage I: Laminar stage – circular marker〈
uϕ

〉
ϕ(θ) is approximated by ulam

ϕ (θ f it) (see equation (4.14) and the inlay
in figure 4.13). The respective δ99 is evaluated by δ99/R = alam

√
θ f it

(3.14). The highly resolved data of the stereo system is utilised during
this stage (figure 4.8(d)).
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4 Wall-bounded vortex decay – experimental approach

Figure 4.14: Comparison of present experimental data of the small (SSE) and large-scale ex-
periment (LSE) to numerical data (DNS). The plotted curves correspond to Re ∈
{3000,6000,12000,28000} (DNS), Re ∈ {28200,56400,94000} (SSE, salt, A =
0.5), Re ∈ {282000,564000} (SSE, no salt, A = 2.0), and Re ∈ {2.0 ·106,2.7 ·106}
(LSE, salt, A= 2/13) Dashed lines show the predicted Re scaling of turbulent bound-
ary layers from equation (3.22).

Stage II: Emergence of Taylor rolls – plus shaped marker

As the boundary layer thickness quickly exceeds the FOV of the stereo
setup, the planar PIV setup is utilised in the following (figure 4.8(c)).
To achieve better convergence of the velocity profiles, the data is addi-
tionally averaged over a moving time window of ∆θ = 10−7. The result-
ing velocity profiles

〈
uϕ

〉
ϕ,t are fitted with a linear fit and the intersection

with the SBR is selected as the approximation of δ99.

Stage III: Turbulent regime – triangle shaped marker

After transition to turbulence
〈
uϕ

〉
ϕ,t , a region of constant angular mo-

mentum l(t) forms. As suggested in § 3.6.5 this feature of the flow is
utilised by fitting the vorticity free region of a Rankine vortex l(t)/r onto〈
uϕ

〉
ϕ,t . Again the intersection with the SBR is depicted as the approxi-

mation of δ99.
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Figure 4.15: Re scaling of aturb/alam for numerical resulsts (DNS, cp. figure 3.17(b)) small-scale
experiments (SSE) and large-scale experiments (LSE).

Figure 4.14 presents δ99(θ) for the different performed experiments and nu-
merical simulations. Hereby, the data of the small-scale experiments as well
as the large-scale experiments is considered. For parameters with Frs < Frc

s ,
the experiments with salt-water layer and small aspect ratios (SSE: A = 0.5
(green lines in figure 4.14), LSE: A = 2/13 (blue and orange lines)) are eval-
uated. In case of the small-scale experiments additional experiments at higher
Ω are considered in figure 4.14 (purple lines). No end-wall effect reducing
salt-water layer is possible in those experiments as Frs > Frc

s . Therefore, end-
wall effects are reduced by a larger aspect ratio A = 2.

As discussed in § 4.4.1, the deviation of δ99/R 6= alam
√

νt during the laminar
stage of the large-scale experiments results from the finite ramp time θSD. All
performed experiments show good agreement with the expected boundary-
layer development aturb(Re)

√
νt during the turbulent stage. This is addition-

ally emphasised in figure 4.15, where the present data is compared to the sug-
gested scaling of aturb/alam from equation (3.22).

4.5 Summary

The present chapter describes two experiments that were designed to validate
various Re-scaling hypotheses of the vorticity annihilating spin-down process
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4 Wall-bounded vortex decay – experimental approach

formulated in chapter 3. Two requirements were satisfied for the experimen-
tal design:

• End-wall effects: To mimic the infinite cylinder simulated in chapter 3,
end-wall effects in the experiments have to be minimised. Hereby, two
approaches were tested and adapted. First, if possible, a large aspect
ratio (A) is chosen. Second, as a large A is not an option in experiments
at the CORIOLIS II platform (A = 2/13), an alternate approach was
suggested, tested, and validated. While the top wall is simply removed
(free-surface configuration), the bottom wall influence is reduced by a
saturated salt-water layer. Two requirements are identified for the salt-
water layer so as not to mix with the water layer: A sufficient salt-water
layer thickness (Hs); and a small modified Froude number (Frs). If
these two requirements were met, the salt-water layer reduced the end-
wall effects to such an extent, that the side wall time scale dominated
over the end-wall effects.

• Measurement technique: To capture statistics of a transient and tur-
bulent flow enough data had to be captured simultaneously to allow
for sufficient averaging. In contrast to single-point measurements tech-
niques, the planar (and stereo) PIV measurements that were used, al-
lowed for the capture of the flow evolution in a two-dimensional FOV,
and thus a spatial average. The combination of a spatial average (along
the ϕ-direction) and a moving temporal average proved to be sufficient
to estimate first-order statistics such as

〈
uϕ

〉
≈
〈
uϕ

〉
ϕ,t .

The large-scale CORIOLIS II platform, in combination with the carefully-
designed experiments, allowed for the extent of the Re range for more than
two orders of magnitude when compared to experimental data available in the
literature. The hereby captured data now provides insights into the Re scaling
of the spin-down process.
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• Instability mechanism: Even at very high Re, and for very slightly
curved streamlines (small δ99/R), the centrifugal instability remains the
primary instability mechanism.

• Onset time: The time instant where
〈
uϕ

〉
first deviates from the laminar

profile ulam
ϕ scales as predicted by Kim et al. [61] by θo ∼ Re−4/3.

• Turbulent growth of boundary-layer thickness: During stage III
the boundary-layer thickness grows proportional to

√
νt for all Re.

However, the proportionality constant aturb is Re-dependent such that
aturb/alam = 0.1Re1/3. This empirical scaling law suggested in chap-
ter 3 is confirmed by both the results of the small as well as the large
scale experiments.
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5 Scales of vortex formation –
accelerated propulsors

Chapters 3 and 4 focus on the vorticity annihilating boundary layer between
a vortex and a solid boundary. The interaction of oppositely signed vorticity
is discussed in the simplified scenario of a vortex decaying from SBR. In bio-
propulsion however, a vortex results from the roll-up of a shear layer separat-
ing from a vortex-forming edge (VFE, highlighted in green in figure 5.1). This
chapter shifts the focus away from vortex decay and the vorticity-annihilating
boundary layer and towards vortex formation and its stability. Hereby, the
vorticity-feeding shear layer, as well as the evolution of the vortex core, are
analysed.

“In particular, we strive to draw insight into the influence of turbulence and
associated coherent flow structures of different length scales on the vortex for-
mation process. Inspired by undulated modifications on the VFE of multiple

Figure 5.1: Undulatory modifications of the vortex-forming edge (VFE; depicted in green): (a)
leopard frog (sketch abstracted from [59]); (b) sea lion (sketch abstracted from
[115]); (c) humpback whale (sketch abstracted from [33]). Figure adapted from
[Kaiser et al., 2020b].
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5 Scales of vortex formation – accelerated propulsors

propulsors in nature (see figure 5.1), this problem is tackled with a combined
study of vortex formation over a wide range of Re superimposed with various
VFE modifications. While an increase of Re is known to extend the range
of turbulent substructures towards additional smaller vortices, VFE modifica-
tions allow for the introduction of disturbances with distinct wavelengths λ ,
which are predetermined by the propulsor itself.” [Kaiser et al., 2020b]

This chapter is based on the publication The influence of edge undulation on

vortex formation for low-aspect-ratio propulsors [Kaiser et al., 2020b]. In ad-
dition, preliminary results of the data presented in this chapter were previously
reported in [Kaiser et al., 2018] and [Kaiser et al., 2019].

5.1 Background on vortex formation

5.1.1 ReReRe scaling of vortex formation in bio-propulsion

The short review of evolutionary convergence in nature given in chapter1 high-
lighted reoccurring kinematics in animal locomotion such us similar wake be-
haviour (0.2≤ St ≤ 0.4) and the use of rotation for LEV stabilisation (Ro< 4).
In contrast, the Re range in which vortical structures occur (102 ≤ Re ≤ 108

[37]) suggests that, independent of viscous effects, vortices can be a efficient
method to produce lift and thrust. However, the brief review of free shear
layers in § 2.3.2 as well as the detailed analysis of vorticity annihilation in
chapters 3 and 4 clearly motivates that Re will somehow influence vortex for-
mation and its decay.

“By conducting experiments over a wide range of Re, the present study at-
tempts to address the paradox, that on the one hand, the Re influence based on
dimensional analysis seems to be small, yet, on the other hand, the entrainment
in free shear layers is influenced by the small structures and thus Re. Particular
focus lies on the interaction of the Re scaling with the aforementioned VFE
modifications.” [Kaiser et al., 2020b]
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5.1 Background on vortex formation

5.1.2 Background on vortex-forming edge modification

“For quasi-steady flows, applications of passive flow control by means of geo-
metrical modifications are well established, as already outlined by Carmichael
[16]. For instance, Lissaman [78] demonstrated significant delay of flow sep-
aration on stalling airfoils by means of tripping strips, fixed at the respective
leading edges. Similarly, vortex generators and bio-inspired serrations have
been applied for airfoil flow control by Lin [75] and Ito [56], respectively.
Furthermore, lobe mixers have been proven by McComrmick & Bennett [90]
to reduce the noise through mixing in the wake of jet engines. These exam-
ples underline the importance of the nonlinear impact of convective effects,
where the introduction of small-scale structures leads to a significant change
in behaviour of the global system.

In the category of separated flows, Usherwood & Ellington [132], Rival et al.

[109] and Leknys et al. [68] investigated the influence of mild VFE modifi-
cations for accelerating propulsors. Motivated by the reports of Hertel [49]
on the dragonfly-wing leading edge, Usherwood & Ellington [132] imprinted
a spanwise saw-like structure on the VFE under consideration. This study -
most likely due to the choice of a single wavelength - did not reveal notable
influences of VFE modifications on the flow and the measured forces. Rival et

al. [109] and Leknys et al. [68] focused on small changes of the leading-edge
curvature and reported small yet measurable delays on vortex formation.

The high impact of nonlinear effects onto quasi-steady flows and the already
measurable influence of VFE modifications in the case of small VFE modi-
fications suggest that there is merit in further investigation of a wider range
of introduced disturbances in separated flows. This is supported by the ob-
servation of significant VFE modifications on propulsors in nature. The list
of examples - even though from strongly differing lineages - includes webbed
frog feet [59], the hind limbs of sea lions [115] and the tubercles on the flip-
pers of humpback whales [33]; see also figure 5.1. Note that each of those
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5 Scales of vortex formation – accelerated propulsors

VFE modifications is of distinct wavelength λ , all significantly smaller than
the length scale L of the propulsor itself.” [Kaiser et al., 2020b]

5.1.3 Objectives and experimental procedure

“The combined effects of VFE modification and Re scaling are investigated
on the reference case of an impulsively accelerated, rigid, and circular plate
of diameter D.” [Kaiser et al., 2020b]

The plate is accelerated to its final velocity U∞ within half a plate diameter of
travelled distance. The plate’s Reynolds number is therefore defined as

Rep =
U∞D

ν
. (5.1)

“This canonical flow for vortex formation was recently characterised by Fer-
nando & Rival [32] and combines several features, qualifying it as a suitable
base case for this study. First, the lack of leading-edge sweep, no rotational
accelerations of the propulsor and the absence of wing-tip or wing-body ef-
fects minimises three-dimensional effects during vortex formation. Thus, the
influence of small scales in the flow can be observed without being super-
imposed by complex, global and three-dimensional flow features. Second,
Fernando & Rival [31] showed that in contrast to non-circular propulsors, the
circular case produces a stable vortex, which only pinches off after multiple
diameters D travelled. The stable vortex allows a longer observation time and
provides the possibility to investigate the effects of VFE modifications onto
vortex stability. The bio-inspired VFE modifications are abstracted from the
undulatory examples mentioned in § 5.1.1 and modelled by adding a cosine
function of different wavelengths λ with amplitude a = λ/4 onto the circular
edge geometry; see § 5.2.1 for more parameter details.

Early on during the onset of vortex formation, a thin layer of vorticity is pro-
duced along the VFE on the varying plates, as indicated in figures 5.2(a)–
5.2(c). While the frontal area remains constant for all plates, the effective
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5.1 Background on vortex formation

Figure 5.2: Summary of possible flow topologies around various plate geometries; (a)-(c) sketch
of the shear layer directly after the onset of acceleration for different plate geome-
tries; (d)-(i) different possible vortex formation topologies for varying Rep and plate
geometries. Figure adapted from [Kaiser et al., 2020b].

perimeters vary due to the superimposed waves. Therefore, it is expected that
the magnitude and orientation of vorticity generated on the edge should vary
between the different geometries. During the subsequent vortex formation,
the shear layer detaches, rolls up and forms a vortex. For the circular plate,
the vortex evolution is well known (see figure 5.2d). KHIs appear during
the plate’s acceleration and are continuously produced during the whole vor-
tex formation process, as has been shown by Wong et al. [142] and Rosi
& Rival [110].

A high-vorticity core remains stable until azimuthal instabilities appear and
destabilise the system. The wavelength of the azimuthal instabilities and their
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5 Scales of vortex formation – accelerated propulsors

onset in a circular vortex ring depend on Rep, which has been shown by Max-
worthy [89] for vortices produced by a classical piston–cylinder vortex genera-
tor. Fernando & Rival [32] confirmed the existence of the azimuthal instability
for vortex rings in the wake of an accelerated circular plate. For the geome-
tries with VFE modifications, however, the formation of the vortex wake is
yet unknown. Various wakes seem possible, all of which are outlined in figure
5.2. It is hypothesised that the relation

B = λ/2δ (5.2)

of the undulatory VFE modification height λ/2 to shear-layer thickness δ is a
crucial relative quantity. Therefore, the flow around the plates is colour-coded
accordingly in figure 5.2, where red indicates flow around a smooth circular
plate, and green corresponds to VFE wavelengths in the order of magnitude
of the shear-layer thickness or smaller (B ≤ 1). The flow around plates with
VFE modifications with significantly larger wavelengths is visualised in blue
(B� 1). Three flow topologies seem possible for small λ (B≤ 1). As a trivial
solution, the effects of the VFE modifications might be irrelevant or directly
damped out such that the vortex formation would then appear similar as for the
unmodified circular plate (see figure 5.2e). The disturbances introduced by the
undulated VFE could also promote transition to a turbulent shear layer, where
the presence of turbulent small-scale structures directly corrupts the forming
KHIs (see figure 5.2g). Recent reports by Buchner et al. [14] suggest that
a change of the dominant instability mechanism towards centrifugal instabil-
ities (CIs) is also possible. Small-scale VFE modifications could favour the
formation of CIs as indicated in figure 5.2(h). The shear layer of larger undu-
latory VFE modifications λ (B� 1) might reorient towards a circle and roll
up as discussed for the smaller perturbations (similar to figure 5.2e). In con-
trast, a complete disruption of the vortex formation process and an expedited
transition to the fully separated and turbulent state also seems possible (see
figure 5.2f). However, a mixture between these above cases is most likely: a
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destabilised shear layer that rolls up to a complex turbulent flow with a diffuse
vortex core, as sketched in figure 5.2(i).

As a consequence of the above-outlined variety of possible flow conditions
and hypotheses, the objective of the present work centres around which VFE
modifications influence the unsteady vortex wake behind accelerating propul-
sors. A systematic variation of λ across a wide range of Rep is performed by
means of time-resolved particle image velocimetry (PIV) and force measure-
ments in an optical towing tank. The resulting data serve as a basis to study
the instability mechanisms as they occur with varying wavelength λ and/or
Rep. In particular, the footprint of the VFE modifications in the vortex forma-
tion is evaluated with respect to the resulting loading on the propulsor and the
stability of the vortex wake itself.” [Kaiser et al., 2020b]

5.2 Methods

The following section provides an overview of the investigated kinematics,
the four geometries under consideration and the Reynolds number space. Fur-
thermore, the testing facility, the experimental parameters, and the applied
measurement techniques are outlined.

5.2.1 Kinematics and parameter space

“The kinematics and the Rep space are chosen to match the previous study by
Fernando & Rival [32]. The plates of mean diameter D are impulsively accel-
erated perpendicular to their orientation to a terminal velocity of U∞ within a
distance of s∗ = s/D = 0.5, where s is the physical distance travelled. Two
terminal velocities U∞ are compared, which correspond to Rep = U∞D/ν =

50000 and Rep = 350000 based on constant values for plate diameter D and
kinematic viscosity of water ν .

Three plates with undulatory VFE modifications of varying wavelengths λ

are compared to a smooth circular plate (np = ∞). The mean perimeter πD
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5 Scales of vortex formation – accelerated propulsors

Figure 5.3: (a) Sketch of the chosen vortex-edge modification. Wavelength λ , undulatory dis-
turbance amplitude a and mean plate diameter D. (b) Geometries with number
of undulations np = ∞ , np = 12, np = 50 and np = 200. Figure adapted from
[Kaiser et al., 2020b].

is divided into np waves of length λ = πD/np. To avoid the introduction of
additional (and confusing) length scales into the system, the wavelength λ

and amplitude a of the introduced undulations are held constant at a ratio of
a/λ = 1/4. Consequently, the radius of the modified plates is defined as

R(ϕ) = D/2+λ/4cos(npϕ), (5.3)

which is indicated in figure 5.3(a). The frontal surface area Ap of all plates
is held constant, which is achieved by iteratively adjusting D. Note that
the addition of the cosine function in combination with a constant frontal
area Ap implies different perimeters Pp for plates of different wavenumbers
kp = 1/λ = np/πD. In particular, the influence of the number of undulations
np = 12, np = 50 and np = 200, is tested. Additionally, the experiments for a
circular plate (np = ∞) from Fernando & Rival [32] are repeated for reference
and comparison. All plate geometries considered are shown in figure 5.3(b);
the geometrical details are also listed in table 5.1. The plate with np = 50
leads to a length scale 2a similar to the spacing of KHIs and the shear-layer
thickness δ (B ≈ 1). Accordingly, undulatory VFE modifications with larger
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Plate D [m] a [m] np [-] kp [m−1] Ap [m2] Pp [m]

Base 0.300 0 ∞ ∞ 0.707 0.942

200 0.300 0.012 200 212.2 0.707 1.39

50 0.300 0.047 50 53.1 0.707 1.381

12 0.298 0.195 12 12.8 0.707 1.423

Table 5.1: Parameters of the tested plate geometries. Table adapted from [Kaiser et al., 2020b].

Figure 5.4: Optical towing tank (a) and PIV setup (b). The light sheet enters the tank from the
bottom window; multiple high-speed cameras (A,B,C) capture the accelerating plate
in a lab-fixed frame of reference. Figure adapted from [Kaiser et al., 2020b].

or smaller wavelengths (np = 200 and np = 12) introduce structures that are
smaller (B< 1) or larger (B> 1) than the shear-layer thickness, respectively.”
[Kaiser et al., 2020b]

5.2.2 Experimental set-up

“The experiments were conducted in the 15 m long optical towing tank facil-
ity at Queen’s University as shown in figure 5.4(a). The cross-section spans
1m× 1m and is optically accessible from three sides. An overhead traverse
is used to tow models, where an additional non-transparent semi-enclosed
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Experiment Rep force I II III IV V VI VII

Base 50000 X X X X - - - -

200 50000 X X X X - - - -

50 50000 X X X X - - - -

12top 50000 X X X X - - - -

12bot 50000 X X X X - - - -

Base 350000 X - X X X X X X

200 350000 X - X X - - - -

50 350000 X - X X - - - -

12top 350000 X - X X X X X X

12bot 350000 X - X X X X X X

Table 5.2: Overview of the conducted experments; roman letters I-VII corrrespond to different
FOVs of the PIV setup; cp. also figure 5.5. Table adapted from [Kaiser et al., 2020b]

ceiling minimises free-surface effects. In the present study, the four plates
considered were mounted onto a cylindrical sting with a diameter of 0.08D

and length 2D, which was further connected to the traverse by a symmetric
profile of thickness 0.08D. A six-component, submersible ATI Nano force
transducer was applied between the sting and the plates to record force data
at 1000 Hz with a static resolution of 0.125 N (see figure 5.4(b)). Every pa-
rameter combination was repeated 20 times for s∗ ≤ 33 and the data were
ensemble-averaged accordingly.

Complementary to the force measurements, the flow fields in the wake of all
plates were captured by means of time-resolved planar PIV, as shown in figure
5.4(b). A 2mm thick light sheet was created through a 40 mJ/pulse Photonics
high-speed laser, and then introduced into the tank through the bottom win-
dow. The light sheet was centred parallel to the sidewalls in the tank and was
tilted towards the towing direction to avoid shadows in the wake.
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campa

on of m

z

Figure 5.5: Overlapping fields of view (FOV) and campaigns of the conducted PIV experiments
(plate motion from right to left). Figure adapted from [Kaiser et al., 2020b].

Three multi-camera PIV campaigns were performed in a lab-fixed frame of
reference, as illustrated in figure 5.5 and listed in table 5.2. Raw images
were recorded at 200 frames per second (f.p.s) for Rep = 50000 and 1400 f.p.s
for Rep = 350000. Note that for plate 12 (np = 12) the PIV measurements
were performed twice per Rep, where the light sheet was either aligned with
the maximum or with the minimum of the plate radius (r = 169.3 mm, r =

129.3 mm). These two measurements are from here on referred to as 12top
and 12bot. Similar to the force measurements, 20 runs of PIV data collection
were performed for each set of parameters throughout all campaigns.

Three cameras were used during the first measurement campaign to cover
a combined field of view (FOV) of s∗ = 0− 2.3 on the bottom half of the
plate (see figure 5.5). The early acceleration stage was captured in a small
FOV (I in figure 5.5) of 0.7D× 0.7D with a Photron Fastcam Mini WX100
(2048× 2048pixels, camera A) to ensure sufficient spatial resolution near
the VFE. Two additional Photron SA4 cameras (1024× 1024 pixels, cam-
eras B & C) captured the further evolution of the vortex, where larger FOVs
of 0.85D×0.85D (II & III in figure 5.5) were chosen to account for the vortex
growth. All cameras were equipped with AF-S Micro-Nikkor 60mm 1:2.8G
ED lenses, which resulted in a resolution of 9.8 px/mm (FOV I) and 4 px/mm
(FOVs II and III).
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Owing to frame rate limitations, camera A (Mini WX100) was only used for
the lower-Rep cases. The evaluation of the first campaign (i.e. the force mea-
surements), however, provided evidence to investigate later vortex formation
stages - particularly for the high-Rep case. This insight will be elaborated in
more detail in § 5.3. Therefore, two additional PIV campaigns were performed
for the circular and the np = 12 plate and the higher Rep (Rep = 350000). The
two Photron SA4 cameras (cameras B & C) were readjusted to allow for an
even larger FOV of 1.0D× 1.0D and were used to measure the vortex evolu-
tion from s∗ = 2.3− 4.2 (campaign 2 - FOVs IV and V) and s∗ = 4.2− 6.1
(campaign 3 - FOVs VI and VII). The frame rates were kept identical to cam-
paign 1, but, owing to the larger FOV, the resolution decreased to 3.4 px/mm.

The raw images were pre-processed in MATLAB in terms of ensemble-based
median subtraction, edge detection and plate tracking, and masking of the
shadowed area. DaVis 8.4 was used to calibrate and process the data of each
camera separately. A multi-grid scheme with a final interrogation area of
32× 32 pixels and 75% overlap was chosen for FOVs II–VII. FOV I was
evaluated with an interrogation area of 48× 48 pixels and 75% overlap. The
resulting velocity fields of all 20 runs were ensemble-averaged for each FOV.
Finally, all FOVs were merged on a common plate-fixed grid. Note that the
interplay of accurate calibration, edge tracking and good reproducibility of
the flow even allows stitching of the separate campaigns to a single FOV.”
[Kaiser et al., 2020b]

5.2.3 Analysis methods

“To further analyse the ensemble-averaged and merged velocity fields, vari-
ous post-processing strategies are applied, each of which is outlined in this
section and indicated in Figure 5.6. Hunt, Wray & Moin [55] introduced the
second invariant Q of the velocity gradient tensor as a robust means to lo-
cate vortical structures [see also § 2.2.2]. Its maximum Qmax is frequently
applied to localise the core of such structures. More recently, Graftieaux,
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Figure 5.6: Sample processing for Case 12 top, s∗ = 3.5. (a) Overview of applied methods: x′,y′-
coordinate system aligned with the shear layer (red); vortex core centers (rc,zc) deter-
mined with Γ1 and Q; horizontal line through the vortex core (light blue); vortex core
boundaries evaluated with Γ2 (black); CV for total vortex circulation (orange). (b)
Velocity vectors and vorticity contours of the (x′,y′) domain (red box). (c) Spatially-
averaged profiles of velocity 〈uy′ 〉y′ and vorticity 〈ωϕ ′ 〉y′ . Black lines in b) and c)
indicated the domain for the calculation of circulation flux Γ̇sl . Figure adapted from
[Kaiser et al., 2020b].

Michard & Grosjean [39] proposed two criteria (Γ1 and Γ2) to identify the core
and boundaries of vortical structures, respectively [see also § 2.2.2]. Huang
& Green [53] showed that Γmax

1 and Qmax lead to similar core locations in
cases where the reference frame for Γ1 was chosen appropriately, as indicated
in figure 5.6(a) for a plate-fixed frame of reference. However, the location
rc(t),zc(t) of the vortex core is estimated based on the Galilean invariant Qmax

throughout the present work to avoid any possible uncertainties resulting from
reference-frame issues.

The Galilean invariant Γ2-criterion is chosen to identify the boundaries of vor-
tical structures for Γ2 = 2/π . The core locations rc(t),zc(t) are enclosed by
one such boundary (see black line in figure 5.6a), which is referred to as vor-
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tex core area AΓ2 . The equivalent diameter d and corresponding circulation Γc

of the vortex core are determined by

d = 2

√
AΓ2

π
(5.4)

and
Γc =

∫
AΓ2

ωϕ dA, (5.5)

respectively.

An estimate of total vortex circulation Γ including the shear layer is derived
from the integration of vorticity across a large control volume behind the plate,
which is highlighted orange in figure 5.6(a). The lower boundary of the con-
trol volume is fixed at r/D = 0.19 to exclude the secondary vortex from the
circulation budget. The secondary vortex occurs during the later stages of the
flow and near the centre of the plate; see § 5.3.

Recent reports on vortex formation evaluated the convective fluxes through a
cut perpendicular to the propulsor and directly behind the flow separation to
estimate the circulation flux Γ̇sl from the shear layer into the vortex [26], [1].
The present work attempts to advance beyond this plate-oriented approach
to overcome two shortcomings: First, the optical access to the shear layer
is blocked in the immediate vicinity of the VFE for 12bot, since the plate
is an obstruction in front of the light sheet due to radius changes; see (5.3).
The velocity information in this region, therefore, remains unknown. Second,
instabilities in the shear layer lead to a strong fluctuation of the circulation
flux over time due to KHIs.

Consequently, the flux evaluation is shifted slightly leeward and away from the
solid structure, and a spatial average of the shear layer is evaluated to smooth
the effects of instabilities. This four-step approach is illustrated in figure 5.6.
First, the average velocity of the shear layer is evaluated in the red dashed
area behind the plate to determine the shear-layer orientation. This direction
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is then aligned with the y′-axis of a (x′,y′) coordinate system. A close-up of
this tilted (x′,y′) domain (solid red box) is shown in Figure 5.6(b). Profiles of
spatially filtered velocity 〈uy′〉y′ and out-of-plane vorticity 〈ωϕ〉y′ along y′ are
shown in figure 5.6(c). The origin of x′ is set to collapse with the maximum
of 〈ωϕ〉y′ . The spatial filter along y′ minimises the influence of remaining PIV
uncertainties and small-scale instabilities in the shear layer.

Despite slight shear-layer thickness variations, a band of −0.025D < x′ <

0.025D was found to be a reasonable and robust domain for the circulation-
flux calculation, since ωϕ ≈ 0 in the vicinity of the shear layer:

Γ̇sl =
∫ 0.025D

x′=−0.025D
〈uy′〉y′〈ωϕ〉y′dx′. (5.6)

Note that more accurate strategies to approximate the shear-layer thickness
[12] do not apply for the present data, as only ≈ 5− 6 velocity vectors are
found within the width of the shear layer itself.” [Kaiser et al., 2020b]

5.3 Results

“First, the impact of edge undulations and Rep scaling on the overall force
histories is evaluated in § 5.3.1. Complementary to force measurements, ve-
locity and ensemble-averaged vorticity fields provide insight into the under-
lying flow patterns for varying VFE modifications and Rep, as addressed in
§ 5.3.2.” [Kaiser et al., 2020b]

5.3.1 Forces

“The force histories of each run were temporally filtered with a least-squares
estimator as per Savitzky & Golay [114] and ensemble-averaged across 20
runs. Subsequent normalisation of the force (drag) was performed as follows:

Cd =
2|Fz|

ρAU2
∞

, (5.7)
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(a) Rep = 50000 (b) Rep = 350000

Figure 5.7: Force history Cd(s∗) for all plate geometries and Rep; the shaded area indicates
the scatter through a 2σ uncertainty margin. Significant force deviations for the
np = 12 plate are emphasised in the close-up of subfigure (b). Figure adapted from
[Kaiser et al., 2020b].

as presented in figure 5.7. To further check the repeatability of the mea-
surements and uncover significant case-to-case variations, two standard de-
viations (±2σ) are added to the plots. The small uncertainty margins during
acceleration, with its associated added-mass peak (0.0≤ s∗ ≤ 0.5), relaxation
stage (0.5 < s∗ < 2.5) and the stable vortex-growth stage (2.5 ≤ s∗ ≤ 5 for
Rep = 50000, 2.5 ≤ s∗ ≤ 9 for Rep = 350000) indicate good repeatability.
Once the flow destabilises and detaches from the plate, the run-to-run scat-
ter increases by an order of magnitude, which indicates the sensitivity of this
instability-triggered topology change. Finally, beyond s∗ > 20 the fully sepa-
rated and turbulent flow collapses to similar terminal values Cd , which implies
that this stage is stable and highly repeatable again.

Interestingly, no significant variations of the drag coefficient are found be-
tween the circular reference plate and the small-scale modifications np = 50
and np = 200 for both Rep - despite considerable changes in the perimeter.
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Only the force history of the np = 12 plate deviates from the circular base
case, which still lies within the uncertainty margin for Rep = 50000 (see fig-
ure 5.7(a)). For Rep = 350000, in contrast, the np = 12 plate generates a
significantly higher force during the vortex-growth stage as compared to the
reference and small-scale cases. A close-up of this difference is added to
figure 5.7(b) so as to emphasise the 20% offset in relation to the small uncer-
tainty margin. Note that the abscissa of the inset starts from s∗ = 2.0, since
the forces are significantly higher during the early acceleration (s∗ ≤ 0.5) and
relaxation (0.5 < s∗ < 2.5). During the acceleration, the forces collapse for
identical plate cross-sections A.

The force deviation for the stable vortex-growth stage implies that the large-
amplitude VFE modification of the np = 12 plate significantly influences the
vortex formation process. However, the vortex topology remains similar in the
wake. Consequently, the wavy shear layer still rolls up into a vortex, which
remains attached to the plate for a comparable duration as with the circular
reference case. To explore these differences we now turn to the flow fields.”
[Kaiser et al., 2020b]

5.3.2 Field data

“To compare the early vortex formation process (1.25≤ s∗ ≤ 2.25) of the var-
ious plate geometries, the vorticity fields for all cases are shown in figures
5.8 and 5.9 for Rep = 50000 and Rep = 350000, respectively. Note that only
selected vorticity fields are displayed here for the sake of brevity. The com-
plete temporal evolution (s∗ < 2.3) of all cases is provided in a supplemen-
tary movie (see Movie1.mp4) available at https://doi.org/10.1017/jf
m.2019.908.

The circular plate (Base, np = ∞) and the high-wavenumber plates (np = 50
and np = 200) reveal similar results in the force measurements for both Rep

(see figure 5.7). The corresponding PIV measurements confirm these results,
where the similarity of the extracted vorticity fields (see figure 5.7) indicates
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5 Scales of vortex formation – accelerated propulsors

Figure 5.8: Early vortex formation at Rep = 50000: Vorticity fields in the range of
1.25≤ s∗ ≤ 2.25 for all plate geometries. Similar results for no and small-scale VFE
modifications (np ∈ {∞,200,50}) - also applies for Rep = 350000, cf. figure 5.9.
KHI length-scale variation and convection of opposite-signed vorticity from the lee-
ward boundary layer for large-scale VFE modifications (np = 12). Figure adapted
from [Kaiser et al., 2020b].120
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Figure 5.9: Early vortex formation at Rep = 350000: Vorticity fields in the range of
1.25≤ s∗ ≤ 2.25 for all plate geometries. Similar results for no and small-scale VFE
modifications (np ∈ {∞,200,50}). Note that the KHI spacing remains constant for
the small-scale VFE modifications (np ∈ {∞,200,50}), but is reduced for np = 12
at Rep = 350000 compared to Rep = 50000, cf. figure 5.9. Figure adapted from
[Kaiser et al., 2020b].
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Figure 5.10: Rep = 350000: 1
r

∂uϕ

∂ϕ
=− 1

r
∂ (rur)

∂ r −
∂uz
∂ z calculated for the solenoidal velocity fields

(div(u) = 0) at s∗ = 2.25 for (a) the circular plate; (b) 12top; and (c) 12bot. Figure
adapted from [Kaiser et al., 2020b].

that similar topologies during the early relaxation stage (s∗ = 1.25) and during
the late relaxation stage (s∗ = 2.25) are equivalent for the three geometries
(np ∈ {∞,200,50}) and both Rep. The strong repeatability of the measure-
ments, furthermore, leads to clear visualisations of the dominant KHI. Neither
disturbances smaller than the shear-layer thickness δ (B < 1, np = 200) nor
disturbances of the same order of magnitude (B ≈ 1, np = 50) affect the in-
stability mechanism or lead to significant corruption of the KHI. Also, the
influence of Rep onto the instabilities is small, since the same spatial offsets of
consecutive KHI structures are found in the shear layer for both Rep; compare
figures 5.8(a)-(i) and 5.9(a)-(i). It is important to mention at this point that this
finding does not hold for the earlier stage of plate acceleration (s∗< 0.5) [110].

The similarity between the circular case and the small-scale VFE modifica-
tions (np ∈ {∞,200,50}) indicates that the shear-layer formation smoothes the
spanwise spatial disturbances smaller than or in the range of the shear-layer
thickness (B≤ 1). The force histories (see § 5.3.1) and also the vorticity fields
of the smallest tested wavenumber np = 12 lead to the observation that such
geometrical disturbances become influential once their length scale λ exceeds
the shear-layer thickness itself (B� 1).
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Figures 5.8(j)-(o) and 5.9(j)-(o) present the early evolution of the vortex in the
12top and 12bot measurement plane, where the laser sheet cuts the vortex at
the maximum and minimum radius of the plate, respectively. The non-circular
shape of the vorticity maximum in the vortex core can be associated with sig-
nificant vortex stretching. Figure 5.10 presents the out-of-plane gradient of the
out-of-plane velocity 1

r
∂uϕ

∂ϕ
. Furthermore, in contrast to the high-wavenumber

geometries (np ∈ {∞,200,50}), the main part of the vortical structure in the
12top plane is located at a smaller radius than the maximum radius of the un-
dulated vortex edge at R = D/2+ a. Recent surface pressure measurements
on wings by Eslam Panah et al. [26] and Akkala & Buchholz [1] provide ev-
idence that this vortex position leads to an adverse pressure gradient in parts
of the boundary layer between vortex and plate, which in turn results in a flux
of (positive) vorticity from the plate into the vortex (see also [73]). While
the positive vorticity in the boundary layer between the leeward side of the
plate and the vortex wake is not sufficiently well resolved in the PIV mea-
surements, the advected positive vorticity is clearly visible in figures 5.8(j)-(l)
and 5.9(j)-(l). The advected vorticity cross-annihilates with the shear-layer
vorticity and thus reduces the circulation growth of the vortex itself. In addi-
tion, this cross-annihilation also changes the wavelength of the KHI, which -
in contrast to the geometries np ∈ {∞,200,50} - varies significantly between
the low- and high-Rep case. Interestingly, the 12top case comprises of sig-
nificant amounts of engulfment from the irrotational outer region between the
shear layer and the vortex.

Figures 5.8 and 5.9 reveal differences during the early stages of vortex for-
mation between the high-wavenumber cases (np ∈ {∞,200,50}) and the low-
wavenumber case (np = 12). Despite the topological differences between
these cases, the drag coefficient Cd is similar for all geometries and Rep dur-
ing the plates acceleration and the relaxation stage. Only for the high-Rep case
(Rep = 350000) and for later stages (s∗ > 2.5) do significant differences be-
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Figure 5.11: Differences in the long-term vortex formation for the circular plates and np = 12 at
Rep = 350000: Stronger shear layer, higher turbulence level and more diffuse vortex
core for both np = 12 measurements compared to the circular case. Counter-rotating
vortex near the axis for both cases. Black lines: vortex boundaries of Γ2 = 2/π . The
connected area AΓ2 around the maximum vorticity core is defined as the vortex core
(cf. § 5.2.3). Figure adapted from [Kaiser et al., 2020b].

tween the cases exist, which in turn motivated the additional PIV experiments
for 2.3 ≤ s∗ ≤ 6 and Rep = 350000; cf. § 5.2.2.

The resulting vorticity fields for the circular and np = 12 plates are shown in
figure 5.11 and are available in a supplementary Movie (see Movie2.mp4). A
secondary vortex appears near the plate centre in all measurements. In com-
parison with figure 5.9 the shear layer weakens for both cases. Yet the shear
layer remains more pronounced for the non-circular plate (np = 12). However,
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the interaction of shear layer and vortex core varies between the circular and
the non-circular plate. At s∗ = 3, the shear layer of the circular plate gets de-
flected by the vortex core, convects around the vortex center, and eventually
merges with the low-vorticity region in the core vicinity. At the largest plate
radius of the low-wavenumber plate (12top), the shear layer is furthest from
the core, where parts of the shear layer even start to convect into the wake from
s∗ = 3; see figure 5.11(d) and supplementary movie Movie2.mp4. In contrast,
the shear layer at the smallest plate radius (12bot) directly convects into the
vortex core, as indicated in figure 5.11(g)-(i). The vortex core behind the cir-
cular plate remains coherent within the measured FOV s∗ < 6. The vortex
core boundaries – as introduced in § 5.2.3 – enclose a small area where rota-
tion dominates shear. The corresponding core boundary for the np = 12 plate
appears larger and accordingly comprises a more diffuse vortex core. Further-
more, the area of the overall vortex is larger, while its maximum vorticity is
smaller due to turbulent mixing. The secondary vortex near the np = 12 plate
centre is found to be corrupted and, therefore, less pronounced as compared
to the circular plate.” [Kaiser et al., 2020b]

5.4 Discussion

“This section focuses on a quantitative comparison between vortex formation
on the plate with wavenumber np = 12 and the circular base case. Simple mod-
els are applied to elucidate the physics behind the most important observations
stated in § 5.3 and the influence of the ratio B; see (5.2). First, the changes in
shear layers for varying plate geometries, and their effects on the vortex cir-
culation are analysed (§ 5.4.1). Second, a discussion on how the vortices stay
attached to the plate for similar periods of time, even though the vortex wake
behind the np = 12 plate is significantly less coherent (§ 5.4.2), is presented.
Finally, the physical mechanism behind the changes in force is addressed
(§ 5.4.3) by considering the momentum and size of the vortex wake and es-
timating the pressure in front of and behind the plates.” [Kaiser et al., 2020b]
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Figure 5.12: Vorticity distribution directly after the plate and perpendicular to the flow (see figure
5.6) for Rep = 50000 (dotted line) and Rep = 350000 (solid line) for different s∗ and
geometries. Left of the shear layer: vorticity free outer flow. Right of the shear layer:
vortex wake

5.4.1 Feeding shear layer and vortex wake circulation

“When recalling the similar spacing of KHIs (figures 5.8 & 5.9), it was hy-
pothesised that the shear-layer thicknesses δ for both Rep under consideration
would be similar. This is confirmed in figure 5.12. Applying the methods
introduced in § 5.2.3, figure 5.12 presents the averaged vorticity distribution
perpendicular to the shear layer. No significant influence of Rep on the shear-
layer thickness δ is observed.

The similarities between all high-wavenumber plates (B≤ 1, np ∈{∞,50,200}),
as observed in §§ 5.3.1 and 5.3.2, are confirmed. In contrast, the maximal vor-
ticity in the shear layer is consistently higher for the np = 12 plate (B� 1).
However, with regards to the temporal change of circulation in the vortex, the
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Figure 5.13: (a) Circulation flux through the feeding shear layer Γ̇sl for 1 < s∗ < 6 for the vary-
ing cases at Rep = 350000. Blue lines depict the average of 12top and 12bot. (b)
Accumulated circulation in the vortex wake for 1< s∗ < 6.

higher vorticity in the shear layer is balanced by a flux of oppositely signed
vorticity from the leeward side of the plate during the early stages (figures
5.12b,c), as parts of the fed vorticity are directly annihilated. For the later
stages of the vortex-formation process (s∗ > 2.5) less vorticity diffuses from
the leeward boundary layer (see figure 5.12d). Yet the shear layer is still more
pronounced compared to the circular plate. As a consequence, the circulation
fed through the shear layer is higher for np = 12 than for the other plates.

Applying (5.6), the circulation flux through the shear layer is evaluated. Fig-
ure 5.13(a) shows, as expected, high Γ̇sl during the early stages, where the
forces are also higher. During the stable vortex growth (s∗ > 2.5), Γ̇sl remains
fairly constant for each geometry. However, the circulation flux of the low-
wavenumber plate (np = 12) is higher than for the circular reference case. The
overall circulation behind the plate, and as such in the vortex wake, is captured
in figure 5.13(b). Despite the differing circulation flux through the feeding
shear layers, the temporal development of overall circulation in the vortex is
similar. A superposition of various circulation-reducing mechanisms in the
vortex itself is hypothesised as mechanisms to limit the circulation growth:
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Figure 5.14: Rep = 350000: (a) vortex-center position based on the maximum of the Q-criterion.
The blue line depicts the average of 12top and 12bot. (b) s∗ = 5: Magnitude of
radial velocity along a horizontal cut through the vortex center estimated by the Q-
criterion. The distance between the two maxima defined as the vortex-core diameter
dz. (c) s∗ = 5: Vorticity along a horizontal cut through the vortex core.

• reorientation of vorticity, followed by cross-annihilation in the turbulent
vortex wake;

• loss of circulation due to convection of vorticity into the wake;

• interaction and cross-annihilation of vorticity in the primary vortex with
the vorticity in the secondary vortex; and

• interaction of the vortex with the boundary layer on the leeward side of
the plate.

The above mechanisms are more pronounced in the highly turbulent wake
of the non-circular geometry (B� 1, np = 12) and, as such, compensate for
the higher Γ̇sl . As a consequence, there only remain small differences in the
overall circulation budget (see figure 5.13b).” [Kaiser et al., 2020b]
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5.4.2 Vortex core and its stability

“The position of the vortex centre is estimated by the maximum of the Q-
criterion (see § 5.2.3) and is presented in figure 5.14(a). The undulatory shape
of the low-wavenumber plate (np = 12) influences the vortex core radius rc and
its distance from the plate zc. Relative to the circular plate (Base), rc is either
larger (12top) or smaller (12bot). Yet the average position (blue solid line) is
similar to the radial position of the circular plate’s vortex center. However,
the axial position zc increases more quickly for the low-wavenumber plate
np = 12 than for the circular plate (dashed lines).

The distinct rc values in the 12top and 12bot plane suggest an undulatory
shape of the vortex wake, which most likely results in a significant radial vor-
ticity component ωr in between the measurement planes 12top and 12bot and
induces stretching of the vortex core as depicted in figure 5.10. The stretching
contributes to the qualitative differences between the different plates concern-
ing the coherence, symmetry and size of the vortex core reported in § 5.3.2 and
further discussed utilising figure 5.14(b) and (c). The magnitude of velocity
(|ur|) and the vorticity (ωϕ ) are presented in a horizontal cut through the vor-
tex centre (rc,zc) (see dashed blue line in figure 5.6). Note that while ur is the
radial velocity in the coordinate system introduced in § 5.2, it also represents
the azimuthal velocity of the vortex wake itself.

Maxworthy [89] defines the horizontal distance between the velocity peaks on
both sides of the vortex core as the core diameter dz (see figure 5.14b). This dz

provides similar results as the reduced vortex core diameter d defined in § 5.2
(see figures 5.15a,b). The vorticity peak of the circular plate’s vortex is higher,
while its diameter dz is significantly smaller as for the plate with np = 12.

As mentioned in § 5.1.2, Maxworthy [88] related the laminar-to-turbulent tran-
sition of a vortex ring with an azimuthal instability. The vortex core of diam-
eter d develops a wavy structure along the ring with radius rc (similar to the
shape of the geometries in this study), which amplifies in time and finally
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Figure 5.15: Rep = 350000: (a) Reduced vortex-core diameter d estimates (based on Γ2); and (b)
dz estimated by the distance of the maxima in figure 5.14(b). (c) Circulation in the
vortex core as identified by the boundary Γ2 = 2/π .

corrupts the vortex core itself. The onset and wavelength of the azimuthal in-
stability depends on Rep. Counter-intuitively, smaller Rep lead to an earlier
onset of the instability [89]. While the findings of Maxworthy are based on
careful analysis of piston–cylinder vortex generators, Fernando & Rival [32]
captured the same instability mechanism for the vortex formation on a circular
plate and observed an earlier vortex pinch-off for smaller Rep. Combining the
earlier vortex pinch-off for smaller Rep observed by Fernando & Rival [32]
with the earlier onset of the instability for smaller Rep observed by Maxwor-
thy [89] suggests a causal relationship between the vortex core corruption and
the vortex pinch-off. The core transition leads to reorientation of vorticity,
followed by cross-annihilation and eventually a reduced circulation Γc in the
vortex core. Furthermore, the additional mixing results in a more diffuse (and
as such larger) vortex core.

Figure 5.14(b) supports modelling the vortex core as a Rankine vortex, and
thus its core as a solid-body rotation. Applying this model, the pressure differ-
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ence between the vortex centre p(rc,zc) and the pressure at the core boundary
p(rc,zc + d/2) can be estimated by

p(rc,zc)− p
(

rc,zc +
d
2

)
=− ρΓ2

c

2π2d2 , (5.8)

where Γc is the circulation of the core. Equation (5.8) clarifies that both effects
of transition, the reduction of |Γc| as well as the increasing core diameter d,
decrease the magnitude of the pressure minimum in the core. This leads to
vortex pinch-off as the attracting forces from the vortex core towards the plate
are eventually insufficient to avoid pinch-off.

While explaining the Rep scaling of the vortex stability in the wake of a cir-
cular plate, the chain of events described above contradicts at first glance the
fact that the vortex behind the np = 12 plate is stable. For this geometry,
even before the onset of an azimuthal instability, the vortex core is already
turbulent. This turbulence leads to a growth of the vortex core size: d and dz

(figure 5.15a,b). Hence, according to (5.8), a comparable core pressure min-
imum similar to the circular plate can only exist if the core circulation also
grows in time. The magnitude of core circulation |Γc| (see (5.5)) is shown in
figure 5.15(c). While |Γc| slightly decreases over time for the circular plate,
|Γc| increases in the vortex core of the np = 12 plate. The growth of |Γc|
results from the direct merging of shear layer and vortex core at the lowest
plate radius (12bot, see § 5.3.2 and in particular figure 5.11(g-i). As a con-
sequence, even though the vortex formation and as such the physics behind
the stabilisation are distinct, the magnitude of the pressure minimum is simi-
lar for both plate geometries and both vortex cores stay attached to the plate.”
[Kaiser et al., 2020b]

5.4.3 Propulsion force

“The quantitative evaluation of the vortex wake circulation Γ (figure 5.13(b)),
the radial position of the vortex centre rc (figure 5.14a), and the approximate
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(a) (b)

Figure 5.16: (a) Vortex-size estimation based on the outer streamlines of the vortex; here shown
at s∗ = 6 for the circular plate at Rep = 350000. The red line denotes the estimated
vortex boundary. (b) Vortex volumes shown for the varying cases at Rep = 350000
over traveled distance of the plate s∗. Blue lines represent the average of 12top and
12bot.

pressure at the vortex centre (5.8) provide similar results. As such, the physi-
cal phenomenon behind the force enhancement up to 20% (see § 5.3.1) for the
small-wavenumber plate (np = 12) as yet remains unclear and is addressed in
the following. Two distinct approaches to reconstruct forces from the mea-
sured data are applied. First, the momentum of the flow is discussed. It pro-
vides an intuitive explanation for the force enhancement but does not resolve
the measured propulsion force to its full extent. This is achieved by the second
approach, i.e. the evaluation of the pressure at the plate’s surface.

Motivated by the different observed vortex sizes during the later stages of the
measurement (see figure 5.11), a simple model is applied to estimate the in-
fluence of vortex volume growth on the rate of change of momentum and as
such the propulsion force. By assuming the vortex of growing volume V trav-
els with approximately the same velocity as the plate U∞, the momentum in
the axial direction can be split into the contribution of the vortex momentum,
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Figure 5.17: (a,b) Combined measured and reconstructed velocity data, which is utilised for the
pressure evaluation: (a) shadowed area in front of the plate and (b) the far-field
extending the FOV of the measurement. The areas of potential flow solution and
their respective Neumann boundary conditions are highlighted: measured velocity
data (solid lines), ur = 0 (dashed lines), uz = 0 (dotted lines). The plate is position
is depicted in green. (c) Propulsion force at Rep = 350000 measured by the force
transducer (Fz; same as figure 5.7(b)), estimated by the plate’s surface integral of the
pressure (Fp) and by the rate of change of vortex momentum (Fv = ρV̇U∞). Figure
adapted from [Kaiser et al., 2020b].

Iv = ρVU∞, and the momentum of the also time-dependent flow outside of
the vortex, Io:

Iz = Iv + Io = ρVU∞ + Io . (5.9)

During the later stages of vortex formation (s∗ > 2.5), where distinct forces
were measured for the different geometries, the plate velocity U∞ is constant.
The approximated force results in

Fz = İz = Fv +Fo = ρV̇U∞ + İo , (5.10)

where Fv = İv = ρV̇U∞ and Fo = İo.

The fluid mass ρV , which travels with the plate, and as such can be consid-
ered as part of the vortex, is analysed in the following. Multiple mechanisms
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lead to a growing vortex mass ρV . The vorticity-containing shear layer feeds
mass into the vortex volume [140]. In addition, turbulent entrainment [111],
as well as engulfment of inviscid fluid (e.g. figure 5.9), adds additional mass
to the vortex core. The additional fluid, which subsequently travels with the
propulsor, also requires momentum. Similar to the findings of McPhaden &
Rival [91], equation (5.10) suggests that the change of vortex volume influ-
ences the propulsion forces. To approximate the instantaneous vortex volume
V , the topology of the flow is analysed. The streamline originating in the node
behind the plate is identified (red line in figure 5.16a) and the underlying vor-
tex volume is defined as V . Figure 5.16(b) shows the temporal evolution of
the vortex volumes. The large disturbances due to the undulatory VFE of plate
12 result in a turbulent vortex wake and thus in additional entrainment. For
the small-wavenumber plate (np = 12), the volume is estimated by linear in-
terpolation between the results from 12top and 12bot. A linear fit on V (figure
5.16b) is utilised to estimate the force contribution Fv of the growing vortex
wake of the respective geometries (F12

v and FBase
v ) in the interval 3 ≤ s∗ ≤ 6;

see figure 5.17(a). The trends of the reconstructed forces Fv are consistent with
the trends of the forces measured by the force transducer Fz; i.e. F12

v > FBase
v .

However, Fz is not reproduced to its full extent as the contribution of Fo is
unknown and missing.

To obtain a more accurate force reconstruction, the pressure distribution at the
plate is estimated. Multiple steps are performed for each dataset: the circular
plate (Base), 12top and 12bot:

1. The area directly in front of the plate was not captured as the plate itself
casts a shadow (see figure 5.4b). The flow field in the shadowed area
is reconstructed by employing a two-dimensional potential flow solver.
As presented in figure 5.17(b), the measured velocity data (solid lines),
the impermeability of the plate (dotted line) and the symmetry of the
flow (dashed line) are utilised as Neumann boundary conditions (NBC).
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Figure 5.18: Rep = 350000: Pressure fields evaluated by means of the ensemble-based approach
of Kling et al. [64] at s∗ = 4.5 for (a) the circular plate; (b) 12top; and (c) 12bot.
The vortex wake of the circular plate shows steeper pressure gradients, resulting in a
higher pressure at the leeward side of the plate and as such a smaller propulsion force.
Due to the unknown out-of-plane velocity/gradients in the highly three-dimensional
vortex core of the undulated plate (see figure 5.10), the core area is excluded from the
pressure calculation for 12top and 12bot.Figure adapted from [Kaiser et al., 2020b].

2. In addition, the potential flow solver is used to extend the limited FOV
of the measurement. NBC are applied at the boundaries of the flow
area of interest (see figure 5.17c). While the measured velocity data
provide NBC at the FOV boundaries (solid lines), the far-field NBC
are estimated to be ur = 0 at the upper and lower boundaries (dashed
lines) and uz = 0 at the windward and leeward boundaries (dotted lines).
Note that these far-field NBC are only an approximation. To reduce the
influence of these imperfect NBC a large area of 13D× 4D is selected
to reconstruct the far field.

3. The pressure field p is evaluated by applying the ensemble-based pres-
sure estimation method of Kling et al. [64]. An ensemble-based
Reynolds decomposition is applied on the divergence of the momentum
equation. Kling et al. [64] calculate the Reynolds stresses by means of
the variance and covariance of the ensemble-averaged data at a single
time instant. As only 20 runs were performed in the present experiment,
the method is extended by an additional moving temporal average in the
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plate-fixed frame of reference over 100 time steps. Furthermore, due to
the two-dimensional measurements in the present study, uϕ , ∂ur/∂ϕ

and ∂uz/∂ϕ are unknown. Therefore, for the undulated plate the vortex
core is excluded from the pressure reconstruction, as significant out-
of-plane gradients exist in this region (see figure 5.10). The far-field
solution estimated in the previous step of the calculation allows ap-
plication of the required Dirichlet boundary condition p0 = const. far
away from the plate, in particular at the upper boundary of the far-field
solution. The NBC are derived from the momentum equations. The
estimated pressure fields ∆p = p− p0 are presented in figure 5.18 for
s∗ = 4.5.

4. The reconstructed axial force resulting from the pressure field Fp is eval-
uated by integration of the pressure along the plate’s front and back sur-
faces:

Fp =
∫

A f ront

pdA−
∫

Aback

pdA. (5.11)

The net force on the undulatory plate (np = 12) is estimated by averag-
ing between the two measurement planes F12

p = F12bot
p +F12top

p .

Despite the limitations of the two-dimensional data and the limited number
of measurement planes, the estimated forces Fp closely resemble the forces
measured by the transducer Fz (see figure 5.17a). This good agreement of the
integral value provides evidence to further interpret the instantaneous pressure
fields presented in figure 5.18: The larger and more diffuse vortex core in the
wake of the undulatory plate results in less steep pressure gradients and thus
in a lower pressure at the leeward side of the plate, which in turn explains the
higher propulsion force.” [Kaiser et al., 2020b]

5.5 Summary

“The convergence of unsteady propulsion in nature for a broad range of Rep at
first glance suggests a minor impact of turbulence and small-scale structures
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on vortex formation. Conversely, recent studies on free shear layers and the
influence of Rep on entrainment refute this argument. This study explores the
impact of small-scale coherent structures on vortex formation. This problem
is on the one hand addressed by performing measurements for a wide range
of Rep, where at higher Rep it is expected that the size of the smallest struc-
tures in the flow will be reduced. On the other hand disturbances of distinct
wavelengths λ are introduced into to flow. Motivated by varying undulations
on propulsors of swimming animals, the disturbances are introduced into the
flow by modifying the VFE of accelerating low-aspect-ratio plates. The rela-
tion B = λ/2δ (see (5.2)) hereby describes the height of the undulation λ/2
relative to the length scale of the shear-layer thickness δ . As such, this study
explores the influence of varying edge undulation on vortex formation over a
wide ranges of B and Rep.

Conclusions relating to the scaling of B and Rep are categorised below with
regard to vortex stability and forces on the propulsor.

1. The influence of edge undulations strongly depends on the relation B.
The shear layer and, as such, the forming vortex are found to be in-
sensitive to VFE modifications smaller than similar to the shear-layer
thickness δ . The vortex formation process is only affected significantly
for large-scale VFE modifications (B� 1).

2. For B� 1, the force is increased during the stable vortex-growth stage.
Up to 20% higher forces are measured in the present study. A change in
vortex volume growth and a more diffuse vortex core are identified as
the cause of these variations. This observed increase in force is likely
one cause for the undulatory VFE modifications observed in nature.

3. For all geometries tested here, the wake vortices remain stable over an
equivalent normalised distance. Yet a different mechanism stabilises the
vortex for large λ (B� 1). The vortex wake for the circular base case
depends on the coherence of its vortex core to remain stable. Transi-
tion due to azimuthal instabilities leads to vortex pinch-off. For larger
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VFE modifications B� 1 the vortex core is turbulent from the start.
However, the circulation of the turbulent and spatially expanding core
grows continuously, preserving the magnitude of the required pressure
minimum inside the core.

4. For small VFE modifications (B ≤ 1) other than the known Re scaling
associated with the azimuthal instability [32] no additional scaling was
observed. In accordance with findings on quasi-steady free shear layers
[50], neither the spacing of KHIs nor the shear-layer thickness δ vary
within the available accuracy of the data and within the Rep range un-
der consideration. The existence and the effects of coherent structures
that are significantly smaller than the observed KHIs, cannot be eval-
uated with the available data. Repeating the high-resolution particle-
tracking experiments of [111] for the quasi-steady regime of the flow
could provide insight if additional entrainment due to very small struc-
tures occurs at high Rep. In contrast, for the case of B� 1, higher Rep

leads to smaller spacing of the KHIs. Following the model of [110],
the smaller spacing could result in higher entrainment, a faster-growing
vortex volume, and consequently a higher overall force. As such, the
higher impact of coarse VFE modifications in cases of larger Rep can be
motivated by the observed smaller KHI spacing.” [Kaiser et al., 2020b]
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This thesis focused on the influence of turbulence on vortex formation and
decay. In particular, the interaction of vortical structures with solid boundaries
is investigated in detail over a wide range of Re. With the vortex formation in
bio-propulsion as a guiding example, a variety of mechanisms, that result from
the interaction of a solid (propulsor) with a surrounding fluid, are identified in
chapter 1. Subsequently, three studies are presented that isolate and simplify
specific features. The simplifications allow for a detailed analysis of each
respective mechanism without interactions with other aspects of the usually
highly three-dimensional flow in the vicinity of a non-simplified propulsor.

The findings for each study are summarised at the end of the respective chap-
ter. Thus, the present section reiterates only selected conclusions and syn-
thesises the studies with regard to their implications for vortex formation and
decay in more complex configurations such as vortices in bio-propulsion.

In chapter 3 the boundary layer between a vortex and a solid (e.g. a propulsor)
is investigated numerically. In particular, its unique feature of oppositely-
signed vorticity is addressed in detail by a spectral DNS of the vortex decay
from SBR due to decelerated cylindrical walls at its boundary. The mecha-
nism of transition to turbulence due to centrifugal instabilities is visualised
by means of LCS. Furthermore, the effects on the transport of vorticity, tur-
bulent kinetic energy and mean kinetic energy are evaluated throughout the
five stages of the flow: laminar boundary-layer formation, transition to tur-
bulence, turbulent state with intact vortex core, vortex-core corruption, and
finally, the relaminarisation. As vorticity annihilation in bio-propulsion is lim-
ited to the time period of a stroke, the latest stages (IV and V) of vortex decay
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are unlikely to become relevant in nature. However, the early stages (I-III)
of the spin-down experiment provide insights into phenomena that are likely
to occur in the suction-side boundary layer of a propulsor. The time scale of
boundary-layer growth remains proportional to

√
νt before and after transition

to turbulence for all Re. However, the proportionality constant scales with the
Reynolds number such that aturb/alam ∼ Re1/3 (3.22). For increasing Re, the
earlier transition θo ∼ Re−4/3 in combination with larger aturb in parts com-
pensates for the reduced effects of viscosity, and leads to similar decay rates
of the core circulation Γc and the core pressure for a wide range of Re (see
§ 3.6.6) during the early stages of the vortex decay.

As the Re range of the DNS in chapter 3 is limited (Re≤ 2.8 ·104), in chapter
4 results from two experimental campaigns are reported, which were designed
to achieve very high Re. The Re range of the experiments (Re≤ 4 ·106) herby
matches the scales of vortices produced by medium to large-sized swimmers in
nature. Due to the expected scaling of the transition onset time, θo ∼ Re−4/3,
and the scaling of the length scale of the instabilities, λc/R∼ Re−2/3, the ex-
periments had to be performed at a large-scale facility. The one-of-a-kind,
CORIOLIS II platform in Grenoble provided the required dimensions. De-
spite the diminishing effects of curvature (small δ99/R) during transition to
turbulence for very high Re, the centrifugal instability persists for very high
Re and the expected scaling of θo is confirmed. As such, centrifugal insta-
bilities are expected to occur in bio-propulsion also for only mildly curved
streamlines and beyond the medium Re range, where Buchner et al. [14] re-
ported their existence. Furthermore, it was shown that a saturated salt-water
layer at the bottom of the cylinder reduces end-wall effects to such an extent
that sensible information on the side-wall boundary layer could be measured
up to stage III. As a result, this novel technique provided a means to confirm
the scaling of aturb/alam (see § 4.4.2).

Finally, chapter 5 presented the influence of different turbulent scales on
the shear layer and the core of a forming vortex. The experimental cam-
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paign, performed in a 15m-long towing tank at Queen’s University, captures
the vortex evolution in the wake of circular and undulated plates, respec-
tively. Hereby, the plate’s Reynolds number (Rep) is varied in the range
50000≤ Rep ≤ 350000. In addition, edge undulations of different wave-
lengths λ are tested, which introduce flow structures of varying size. After
the plate has reached its final velocity, no influence of Rep on the shear layer
could be detected at the given accuracy of the measurements. KHIs of similar
spacing and similar shear-layer thicknesses are observed. However, Rep influ-
ences the spatial extent of the vortex core and as such the long-term stability
of the vortex ring (see § 5.4.2). The effects of edge undulations are found
to be negligible if the undulations are smaller than the shear-layer thickness
(B = λ/2δ < 1; cp. (5.2)). However, large-scale undulations (B� 1) intro-
duce flow structures that influence the vortex core and also the entrainment
rate through the shear layer. It is shown that edge undulation can increase en-
trainment and therefore the growth rate of the vortex itself. As a consequence,
the plate with the largest tested undulations provides an up to 20% increase
in the propulsion force (see § 5.4.3).

The work presented in this thesis took a fundamental approach to unravel some
of the effects of turbulence on the unsteady phenomena of vortex formation
and decay. However, by reducing the complex and three-dimensional prob-
lem of vortex formation in bio-propulsion to the canonical flows investigated
in this thesis, many effects are neglected. Propulsor flexibility, more com-
plex propulsor shapes and three-dimensional kinematics are known to impact
vortex formation as well. Future work should address the interaction of such
influences on the scaling of the suction-side boundary layer as well as on the
effects of edge undulation.

On a final note, the author wishes to emphasise the potential of the spin-down
problem for fundamental research on turbulence and transition. For exam-
ple, its canonical nature as the equivalent of Stokes’ first problem for curved
walls (cp. § 2.3.1), the unique TNTI during spin-down with vorticity on both
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sides, and its close relation to the Taylor-Couette problem provide merit for
further investigations.
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Nomenclature

All indices used (i,j,k...) run from 1− 3. The superscript ? indicates that the
quantity is scaled to be dimensionless. The superscripts 〈.〉 and ′ used with
flow quantities indicate the spatial average and the fluctuation, respectively.
The superscripts [.] describes the volume average. The superscript + marks
quantities scaled in plus units.

Latin letters – Upper case

SYMBOL SI UNIT DESCRIPTION

A aspect ratio

Aback m2 surface area of the back plate

A f ront m2 surface area of the front plate

Ag m2 area where Γ1 or Γ2 is evaluated

Ap m2 cross section of the plate

B ratio between shear layer thickness and edge un-

dulation

C Cauchy-Green tensor

Cd drag coefficient

D m diameter

E m2 s−1 symmetric part of ∇u
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Nomenclature

Ek Ekman number

Eu Euler number

Fv kgms−1 force due to change in vortex momentum

Fo kgms−1 force due to change of momentum of fluid outside

the vortex

Fz kgms−1 force due to a change of momentum in axial direc-

tion

Fp kgms−1 force estimated by surface pressures

Fr Froude number

Frs modified Froude number

Frc
s critical modified Froude number

G kgms−2 body force

H m filling height of the cylinder

Hm m measurement height

Hs m filling height of salt water

Hmin
s m minimum required filling height of salt water

Iv kgms−1 momentum of the vortex

Io kgms−1 momentum of fluid outside vortex

Iz kgms−1 momentum in axial direction

K m2 s−2 mean kinetic energy

Kran m2 s−2 kinetic energy distribution in Rankine vortex

Klam m2 s−2 mean kinetic energy of laminar solution

K0 m2 s−2 mean kinetic energy at t = 0

Lcyl m cylinder length
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Nomenclature

L0 m characteristic length

L m length scale of propulsor

M coefficient of logarithmic law

N coefficient of logarithmic law

Ni resolution in i-direction

P m2 s−3 production of k

P0−P∞ kgs−2 m−1 reference pressure difference

Pp m perimeter of the plate

Q s−1 Q-criterion

R m radius

Rc m radius of vortex core

Rhs m radial position of the HS camera

R m−1 local curvature

Re Reynolds number

Recor corrected Reynolds number

Rep plate Reynolds number

Reτ friction Reynolds number

Ro Rossby number

St Strouhal number

Ta Taylor number

Tac critical Taylor number

Tw
◦C water temperature

Tm m2 s−3 turbulent transport of K

Tt m2 s−3 turbulent transport of k
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Nomenclature

Tint s integration time of FTLE

T0 s characteristic time

U0 ms−1 characteristic velocity

U∞ ms−1 free-stream velocity

Vm m2 s−3 viscous transport of K

Vt m2 s−3 viscous transport of k

V m3 volume

Vδ m3 volume of the boundary layer

Vs m3 salt-water volume

Latin letters – Lower case

SYMBOL SI UNIT DESCRIPTION

a m amplitude

alam coefficient for laminar growth rate of the boundary

layer

aturb coefficient for turbulent growth rate of the bound-

ary layer

b m reference vector for Lagrangian description

d m equivalent vortex-core diameter

dz m vortex-core diameter based on peak azimuthal ve-

locities

dp m particle diameter

f s−1 frequency

f III
[K] logarithmic decay law for K

fV
[K]

exponential decay law for K
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Nomenclature

f III
[k] exponential decay law for k

g[K] coefficient of logarithmic decay law for K

h[K] coefficient of logarithmic decay law for K

g[k] coefficient of logarithmic decay law for k

h[k] coefficient of logarithmic decay law for k

k m2 s−2 turbulent kinetic energy

kp m−1 wavenumber of plate’s edge undulations

k0 m2 s−2 turbulent kinetic energy at t = 0

l m2 s−1 angular momentum

np number of plate’s edge undulations

u s velocity vector

ui s velocity vector component in i-direction

uran
ϕ ms−1 azimuthal velocity in a Rankine vortex

ulam
ϕ ms−1 laminar azimuthal velocity profile during spin-

down

urel
ϕ ms−1 relative azimuthal velocity of fluid towards plat-

form

uτ ms−1 friction velocity

p kgm−1 s−2 pressure

pw kgm−1 s−2 pressure in water layer

pint kgm−1 s−2 pressure at the interface

pran kgm−1 s−2 pressure distribution in Rankine vortex

pSBR kgm−1 s−2 pressure distribution in SBR

r m radial coordinate
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Nomenclature

rc m radial position of the vortex core

zc m axial position of the vortex core

s m travelled distance

t s time

tc s critical time

to s onset time

tcor
o corrected onset time

tavg s time span over which the a moving average is cal-

culated

tE s time scale of Ekman pumping

tD s time scale of side-wall boundary layer

tSD s spin-down time of platform

w m streamwise direction

x m position in space

xm m center of area used for Γ1 and Γ2

y m wall-normal coordinate

z m axial coordinate

zI m height in two-phase flow cylinder

zII m height in two-phase flow cylinder

zIII m height in two-phase flow cylinder

zint m height in two-phase flow interface
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Nomenclature

Greek letters – Upper case

SYMBOL SI UNIT DESCRIPTION

Γ m2 s−1 circulation

Γc m2 s−1 vortex-core circulation

Γ1 m2 s−1 Galilean variant Graftieaux criterion

Γ2 m2 s−1 Galilean invariant Graftieaux criterion

Γ̇sl m2 s−2 flux of circulation into the vortex due to the shear

layer

∆ . . . spacing of (. . .)

∆T s time shift of turbulent towards laminar solution

Λmax maximum Eigenvalue of C

Ω s−1 angular speed of the cylinder/platform

ΩR s−1 symmetric part of ∇u

ΩC s−1 angular speed of a rotating coordinate system

Φuiui m3 s−2 axial energy spectra

Πd m2 s−3 pressure diffusion of k

Ξ m2 s−3 sum of production and dissipation of k

Greek letters – Lower case

SYMBOL SI UNIT DESCRIPTION

δ m shear-layer thickness

δc m critical boundary-layer thickness

δ99 m boundary-layer thickness

εm m2 s−3 dissipation of K
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Nomenclature

εt m2 s−3 dissipation of k

εtot m2 s−3 dissipation of kinetic energy

κc m−1 wavenumber of critical mode

κδ m−1 wavenumber of boundary-layer thickness

κz m−1 wavenumber of axial modes

λ m wavelength

λc m critical wavelength

λT m currently dominating wavelength

µ kgm−1 s−1 dynamic viscosity

ν m2 s−1 kinematic viscosity

ϕ angular coordinate

ρ kgm−3 density

ρp kgm−3 density of particles

ρs kgm−3 density of salt water solution

ρw kgm−3 density of water

σb
Tint

s−1 FTLE

τw kgm−1 s−2 wall shear stress

θ normalised (viscous) time

θc normalised critical time

θo normalised onset time

θv normalised visual onset time

θ f it normalised fit to estimate onset time

θ cor
o normalised corrected onset time

θSD normalised spin-down time
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Nomenclature

θi−iii time instances at which cases (i),(ii) or (iii) are

measured

ξii m3 s−2 one-dimensional spectrum

ω s−1 vorticity vector

ωi s−1 vorticity component in i-direction

Mathematical operators

SYMBOL DESCRIPTION

A(. . .) integrated temporal evolution of (. . .)

∂ (. . .) partial derivative

D...)
Dt material derivative

∇ Nabla operator∫ ∫
(. . .)dA surface integral∫ ∫ ∫
(. . .)dV surface integral

R real part of complex number
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Nomenclature

Abbreviations

SYMBOL DESCRIPTION

DNS direct numerical simulation

FOV field of view

FTLE Finite-time Lyapunov exponent

f.p.s. frames per second

KHI Kelvin-Helmholtz instabilities

LCS Lagrangian coherent structures

LEV leading-edge vortex

NBC Neumann boundary conditions

PIV particle image velocimetry

SBR solid-body rotation

TC Taylor-Couette flow

TS Tollmien-Schlichting

TNTI Turbulent-non turbulent interface

VFE Vortex-forming edge
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A Detailed derivation of equations

This appendix includes the extended derivations of various equations used
throughout this manuscript and mainly in chapter 3. Pelasaeedi [Pel17] con-
tributed to the derivation of the following equations during her Master Thesis.

A.1 Incompressible Navier-Stokes equations:
cylindrical coordinates

For an incompressible flow, the continuity equation is given in Section 2.1
by (2.2)

∇u = 0,

which expressed in cylindrical coordinates is equal to

1
r

∂ (rur)

∂ r
+

1
r

∂uϕ

∂ϕ
+

∂uz

∂ z
. (A.1)

The momentum equations are given by (2.3)

ρ

[
∂u
∂ t

+(u ·∇)u
]

︸ ︷︷ ︸
I

=− ∇p︸︷︷︸
II

+µ∇
2u︸ ︷︷ ︸

III

+ ρG︸︷︷︸
IV

,

where I is the material derivative consisting of the temporal velocity change
∂u
∂ t and the convection (u ·∇)u, II is the gradient of the pressure p, III are the
viscous forces acting in the Newtonian fluid and IV is a body force G (e.g.
gravity). Dividing by ρ and expanding the equation into cylindrical coordi-
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A Detailed derivation of equations

nates leads to the following equations:
radial direction

∂ur

∂ t
+ur

∂ur

∂ r
+

uϕ

r
∂ur

∂ϕ
−

u2
ϕ

r
+uz

∂ur

∂ z
=

− 1
ρ

∂ p
∂ r

+ν

[
1
r

∂

∂ r

(
r

∂ur

∂ r

)
+

1
r2

∂ 2ur

∂ϕ2 +
∂ 2ur

∂ z2 −
ur

r2 −
2
r2

∂uϕ

∂ϕ

]
+Gr

(A.2)

azimuthal direction

∂uϕ

∂ t
+ur

∂uϕ

∂ r
+

uϕ

r
∂uϕ

∂ϕ
+

uruϕ

r
+uz

∂uϕ

∂ z
=

− 1
ρr

∂ p
∂ϕ

+ν

[
1
r

∂

∂ r

(
r

∂uϕ

∂ r

)
+

1
r2

∂ 2uϕ

∂ϕ2 +
∂ 2uϕ

∂ z2 −
uϕ

r2 +
2
r2

∂ur

∂ϕ

]
+Gϕ

(A.3)
axial direction

∂uz

∂ t
+ur

∂uz

∂ r
+

uϕ

r
∂uz

∂ϕ
+uz

∂uz

∂ z
=

− 1
ρ

∂ p
∂ z

+ν

[
1
r

∂

∂ r

(
r

∂uz

∂ r

)
+

1
r2

∂ 2uz

∂ϕ2 +
∂ 2uz

∂ z2

]
+Gz

(A.4)

A.2 Reynolds decomposition and simplifications

Statistical analysis of the transitional flow is performed by means of spatial
averaging. The spin-down discussed in chapter 3 is statistically homogeneous
in axial and azimuthal direction. Thus, the decomposition

ui(r,ϕ,z, t) =〈ui〉ϕ,z(r, t)+u′i(r,ϕ,z, t), (A.5)

is applied in the following, where i is the direction in cylindrical coordinates
(r,ϕ,z) and 〈.〉ϕ,z the spatial average in axial and azimuthal direction. In the
following, the simplified notation 〈ui〉=〈ui〉ϕ,z(r, t) and u′i = u′i(r,ϕ,z, t) is ap-
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A.2 Reynolds decomposition and simplifications

plied. the In addition to the Reynolds decomposition, numerous features of the
flow at hand are utilised in the following simplifications of transport equations:

a) no radial mean flow: 〈ur〉= 0;

b) no axial mean flow: 〈uz〉= 0;

c) statistical homogeneity in azimuthal direction: ∂〈.〉
∂ϕ

= 0;

d) statistical homogeneity in axial direction: ∂〈.〉
∂ z = 0;

e) features of averaging: 〈〈ui〉u′i〉= 0 and 〈u′i〉= 0.

A.2.1 Reynolds averaged Navier-Stokes equation:
Azimuthal direction

In the following the momentum equation in azimuthal direction is simplified
by means of the Reynolds decomposition and subsequent simplifications. Ne-
glecting the body force G and rewriting the convective term of (A.3) leads to

∂uϕ

∂ t
+

∂ (uruϕ)

∂ r
−uϕ

∂ur

∂ r
+

1
r

∂ (uϕ uϕ)

∂ϕ

− 1
r

uϕ

∂uϕ

∂ϕ
+

uruϕ

r
+

∂ (uxuϕ)

∂x
−uϕ

∂ux

∂x
=

− 1
rρ

∂ p
∂ϕ

+ν

[
1
r

∂

∂ r

(
r

∂uϕ

∂ r

)
+

1
r2

∂ 2uϕ

∂ϕ2 +
∂ 2uϕ

∂x2 −
uϕ

r2 +
2
r2

∂ur

∂ϕ

]
.

(A.6)
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A Detailed derivation of equations

The equation is expanded by adding and subtracting the term
uϕ ur

r
, which

allows to separate and eliminate the terms of the continuity equation (2.2)

∂uϕ

∂ t
+

∂ (uruϕ)

∂ r
+

1
r

∂ (uϕ uϕ)

∂ϕ
+

uruϕ

r
+

∂ (uzuϕ)

∂ z

−uϕ

(
∂ur

∂ r
+

1
r

∂uϕ

∂ϕ
+

∂uz

∂ z
+

ur

r

)
︸ ︷︷ ︸

=0

+
uruϕ

r
=

− 1
rρ

∂ p
∂ϕ

+ν

[
1
r

∂

∂ r

(
r

∂uϕ

∂ r

)
+

1
r2

∂ 2uϕ

∂ϕ2 +
∂ 2uϕ

∂ z2 −
uϕ

r2 +
2
r2

∂ur

∂ϕ

]
.

(A.7)

Applying the Reynolds decomposition and simplifications a)-e) leads to

∂
〈
uϕ

〉
∂ t

+
∂
(〈

u′ru
′
ϕ

〉)
∂ r

+2

〈
u′ru
′
ϕ

〉
r

= ν

[
1
r

∂

∂ r

(
r

∂
〈
uϕ

〉
∂ r

)
−
〈
uϕ

〉
r2

]
. (A.8)

A.3 Mean kinetic energy

The mean kinetic energy K is given by

K =
1
2
(
〈ur〉2 +

〈
uϕ

〉2 +〈uz〉2
)
=

1
2
〈
uϕ

〉2 (A.9)

Its temporal derivative can be expressed as

∂K
∂ t

=
1
2

∂
〈
uϕ

〉
2

∂ t
=
〈
uϕ

〉∂
〈
uϕ

〉
∂ t

, (A.10)
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A.4 Vorticity transport equation

where
∂〈uϕ〉

∂ t can be rewritten using (A.8). This yields the following budget
(see (3.2)):

∂K
∂ t

=− ∂

∂ r

(〈
uϕ

〉〈
u′ru
′
ϕ

〉)
−
〈
uϕ

〉〈
u′ru
′
ϕ

〉
r︸ ︷︷ ︸

Tm

+
∂

∂ r

(
ν
〈
uϕ

〉∂
〈
uϕ

〉
∂ r

)
+

ν

2r
∂
〈
uϕ

〉
2

∂ r︸ ︷︷ ︸
Vm

...

...+
〈
u′ru
′
ϕ

〉(∂
〈
uϕ

〉
∂ r

−
〈
uϕ

〉
r

)
︸ ︷︷ ︸

P

−ν

(
∂
〈
uϕ

〉
∂ r

)2

−ν

〈
uϕ

〉
2

r2︸ ︷︷ ︸
εm

. (A.11)

The turbulent transport terms of K are gathered in Tm. Fluctuations carry K

from one radial position to another. In contrast, the viscous transport Vm does
not include any fluctuations u′i.

A.4 Vorticity transport equation

The vorticity transport equation can is derived by application of curl onto the
momentum equation (2.3), leading to

∇×
[

∂u
∂ t

+(u ·∇)u
]
=− 1

ρ
∇×∇p+ν∇×∇

2u+∇×G . (A.12)

For conservative body forces G with a potential G (G = ∇G) and incompress-
ible fluids body forces as well as the pressure term immediately vanish as

∇×∇E= 0 (A.13)

where E is an arbitrary scalar field. The convective term of the momentum
equation can be expressed with the vector identity

(u ·∇)u = ∇

(
1
2

u ·u
)
−u×ω . (A.14)

181



A Detailed derivation of equations

When the curl is applied, the first term on the right hand side can be neglected
as ∇×∇

( 1
2 u ·u

)
; see (A.13). The remaining terms are again rewritten as

∇× (u×ω) = −ω(∇ ·u)︸ ︷︷ ︸
=0 as (∇·u)=0

+(ω ·∇)u− (u ·∇)ω . (A.15)

Due to Youngs theorem, the viscous term simplifies to

ν∇×∇
2u = ν∇

2(∇×u) = ν∇
2
ω , (A.16)

All terms combined, provide the vorticity transport equation (2.14)

∂ω

∂ t︸︷︷︸
I

+(u ·∇)ω︸ ︷︷ ︸
II

= (ω ·∇)u︸ ︷︷ ︸
III

+ν∇
2
ω︸ ︷︷ ︸

IV

where I is the temporal change, II is the convection, III accounts for stretching
and reorientation of vorticity and IV describes the diffusion of vorticity.
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B Boundary-layer scaling in stage III

For stage III, section 3.5.3 presents collapsing azimuthal velocity profiles
〈
u+ϕ
〉

in the near-wall region and collapsing normalised angular momentum profiles
l+ in the vorticity-free region for Re = 12000. This appendix supplements the
profiles by the data of the simulations with Re ∈ {3000,6000,28000}. Also
here the profiles collapse. However, the constants M and N of the logarithmic
fit as well as l+ are a function of Re. A scaling law for l+ is suggested in
section 3.6.5.

(a) Mean velocity profile
〈
u+ϕ
〉

presented in the form
of the law of the wall. Dotted lines indicate the
relationship

〈
u+ϕ
〉
= y+ and (3.15).

(b) Angular momentum l+ =
〈
u+ϕ
〉
(r/R) in wall

units. The dash-dotted vertical line marks the
wall-normal distance up to which the angular mo-
mentum l+ is approximately constant.

Figure B.1: Two vertical dashed lines enclose the region of approximately logarithmic behaviour
of
〈

u+ϕ
〉
. Results refer to the spin-down process at Re = 3000. Figure adapted from

[Kaiser et al., 2020a].
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B Boundary-layer scaling in stage III

(a) Mean velocity profile
〈
u+ϕ
〉

(b) Angular momentum l+ =
〈
u+ϕ
〉
(r/R)

Figure B.2: Results refer to the spin-down process at Re = 6000. See figure B.1 fur detailed
subcaptions. Figure adapted from [Kaiser et al., 2020a].

(a) Mean velocity profile
〈
u+ϕ
〉

(b) Angular momentum l+ =
〈
u+ϕ
〉
(r/R)

Figure B.3: Results refer to the spin-down process at Re = 28000. See figure B.1 fur detailed
subcaptions. Figure adapted from [Kaiser et al., 2020a].
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