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Abstract: Multi-sensor imagery data has been used by researchers for the image semantic segmen-

tation of buildings and outdoor scenes. Due to multi-sensor data hunger, researchers have imple-

mented many simulation approaches to create synthetic datasets, and they have also synthesized 

thermal images because such thermal information can potentially improve segmentation accuracy. 

However, current approaches are mostly based on the laws of physics and are limited to geometric 

models’ level of detail (LOD), which describes the overall planning or modeling state. Another issue 

in current physics-based approaches is that thermal images cannot be aligned to RGB images be-

cause the configurations of a virtual camera used for rendering thermal images are difficult to syn-

chronize with the configurations of a real camera used for capturing RGB images, which is im-

portant for segmentation. In this study, we propose an image translation approach to directly con-

vert RGB images to simulated thermal images for expanding segmentation datasets. We aim to in-

vestigate the benefits of using an image translation approach for generating synthetic aerial thermal 

images and compare those approaches with physics-based approaches. Our datasets for generating 

thermal images are from a city center and a university campus in Karlsruhe, Germany. We found 

that using the generating model established by the city center to generate thermal images for cam-

pus datasets performed better than using the latter to generate thermal images for the former. We 

also found that using a generating model established by one building style to generate thermal im-

ages for datasets with the same building styles performed well. Therefore, we suggest using training 

datasets with richer and more diverse building architectural information, more complex envelope 

structures, and similar building styles to testing datasets for an image translation approach. 

Keywords: building envelopes; thermal image simulation; segmentation datasets; data hunger 

 

1. Introduction 

 Unmanned aircraft systems (UASs), also known as drones, have commonly been 

used in civil engineering and military applications [1]. For example, UAS-based aerial im-

ages integrated with photogrammetric technologies allow for classifying building ele-

ments [2], monitoring and controlling construction sites [3], and creating virtual environ-

ments for mission planning and rehearsals [1]. The photogrammetric technology, which 

maps images acquired by drones onto a 3D model, provides simple analytics, for example, 

distance and dimension measurement. Integrated with other tools and applications, a 

photogrammetry-recreated 3D model can detect not only structural damage but also heat 

loss from buildings and district heating networks. Such a 3D model can also be used to 
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locate roads and classify their materials to precisely calculate driving time for route plan-

ning. All these examples emphasize on the need for extracting semantic information from 

photogrammetry-recreated models.  

To extract semantic information, also known as semantic segmentation, from images 

or photogrammetric models, many computer vision algorithms, especially deep learning 

approaches, have been applied, such as MaskRCNN [4], Yolo family [5], and DeepLab 

family [6]. Early studies used images or 3D models with only one channel (mostly the red-

green-blue (RGB) color channel obtained by an image sensor). However, segmentation 

based on single sensor images is insufficient when facing complex scenarios; thus, for 

more accurate classification and segmentation, researchers have added more channels and 

features to RGB images [7]. For example, Chen et al. [1] added texture, point density, local 

surface, and open source features, while Liu et al. [8] added depth information to improve 

photogrammetric point cloud segmentation. Researchers have also improved segmenta-

tion by adding thermal information [7,9]. 

Despite the great success achieved by the previously described studies, deep learning 

algorithms are quite data hungry as demonstrated in many studies [10,11]. Data hunger 

refers to the size of the training dataset required for generating a model with a good pre-

dictive accuracy [12]. It is difficult for individual research groups to expand the training 

datasets because researchers are often unwilling to share data, or their data formats are 

incompatible. Therefore, researchers are forced to collect more data on their own. How-

ever, collecting data usually takes several days for a large district and is labor-intensive, 

costly, and inefficient [13]. Additionally, annotating these new acquired training datasets 

also requires many hours of labor and inspection for annotation accuracy. In order to solve 

the data hunger problem, some researchers have used synthetic data. For example, Chen 

et al. [14] designed a framework to generate synthetic images from a 3D virtual environ-

ment. They simulated drone flight paths over the synthetic virtual environment (3D point 

cloud) that had annotated information such as the ground, buildings, and trees to render 

synthetic images with corresponding annotations. In their framework, depth images, 

which can be obtained by Lidar, and RGB images, which can be obtained by color cameras, 

in the real world were instead generated virtually. Data hunger also occurs with images 

that fuse RGB with thermal information. For example, Li et al. [15] used thermal images 

taken outdoors and indoors on the ground to segment pedestrians, cars, tables, lamps, 

and other objects. This takes advantage of the thermal camera’s ability to capture infor-

mation in dark and hazy environments. They also introduced synthetic thermal images to 

improve segmentation. Inspired by Li’s studies, we planned to use thermal information 

to improve the segmentation of aerial images of buildings outdoor scenes because it 

would allow us to capture different thermal signatures of each part of the building and its 

surroundings [10,16,17]. Segmentation of building components has many benefits for en-

ergy analysis such as detecting building envelopes’ heat loss, moisture, and thermal 

bridges [18–20]. It also allows for simulating energy consumption [21,22]. Therefore, gen-

erating synthetic thermal images as complementary information for RGB images could 

further improve the segmentation process. 

There are several simulation approaches to generate synthetic thermal information. 

For instance, physics-based building surface thermal simulation enables the precise quan-

tification of energy fluxes and simulates the building surface temperatures by using heat 

equations [23–25]. Many recent studies have used 3D models to simulate heat transfers 

[26,27]; however, these studies are limited to their level of detail (LOD), and accuracy and 

effectiveness are reduced [23,28–30]. To be precise, there is no surface temperature simu-

lation based on an as-is built model (the highest LOD model) due to the computational 

complexity and inherent uncertainties caused by the many default parameters and as-

sumptions used in a simulation process [31]. Furthermore, physics-based simulation 

mainly works for buildings or specific infrastructures not for the surrounding environ-



Energies 2021, 14, 353 3 of 17 
 

 

ment such as trees or streets. Physics-based simulation methods do not simulate the sur-

rounding environment in detail and simplify the surrounding environment as boxes in 

the geometric models [25]. 

Unlike the aforementioned approaches, this study focuses on simulating temperature 

information for generating synthetic aerial thermal images. Our approach learns features 

and extracts information from historical data of drone-based images instead of a physics-

based thermal simulation. Our approach avoids using default configurations when de-

tailed system information such as building material and users’ behaviors is not available. 

Furthermore, our approach is not limited to geometric models’ LOD; on the contrary, cur-

rent approaches depend on 3D models’ precision for accuracy. Our approach implements 

computer vision algorithms to translate RGB images acquired by drones over a large-scale 

area to thermal images, which also enables them to be fused with RGB images for seg-

mentation with multi-sensor data. Our study is designed to answer the following ques-

tions: (1) How can RGB images of buildings be used to generate thermal images? (2) How 

can training data of captured RGB images affect simulation results? Particularly, how is 

the generation model established by one building style used to generate thermal images 

with another? (3) What are the similarities and differences between the current ap-

proaches and our proposed approach for generating thermal images? This study will only 

focus on thermal image generation performance by evaluating the generated results com-

pared to the ground truth. The performance of deep learning using generated images will 

be evaluated in a future study. The rest of this paper is organized into the following sec-

tions: Sections 2 and 3 review the current work of surface temperature simulation and 

computer vision techniques that have been used in this study. Section 4 presents the meth-

odology of this study. Section 5 presents results and discussion. Section 6 concludes the 

paper and presents future work possibilities. 

2. Thermal Simulation for Building Envelope to Generate Thermal Images 

A building model’s complexity affects the resolution of the surface temperature sim-

ulation for generating synthetic thermal imagery data [32]. Some case studies have shown 

that less comprehensive models only simulate one unified surface temperature per whole 

façade, while more complex models can incorporate more specific parameters of facades 

such as their material, orientations, and functions, which makes the temperature simula-

tions more accurate.[25,29,32]. For example, Aguerre et al. [33] designed and implemented 

ThRend, a facade thermogram simulation tool, which rendered building thermal images 

based on different components’ emissivity and reflectivity configurations [25]. The mod-

els used in their experiments were simplified down to four uniformly thick boxes repre-

senting street buildings. Therefore, the simulation results could not capture slight temper-

ature changes on the facades. For example, at 4 a.m. and 7 p.m., the facades in the simu-

lated thermal images have uniform simulated thermal temperature. Additionally, the re-

sults cannot simulate thermal bridges on the walls. In their new studies that were devel-

oped as an incremental improvement over their previous work [34,35], they integrated a 

higher level of detail geometry into a finite element method (FEM) solver. Their simula-

tion results were more accurate and detailed, for instance, their results could simulate the 

temperature changes between windows and walls. 

There are other similar studies conducted by Henon et al. [28,36], Kottler et al. 

[23,24,29], and Xiong et al. [30,37]. Henon et al. conducted their experiments using soft-

ware SOLENE, which can simulate the climatological factors of urban neighborhoods, to 

compute building surface temperature and evaluate the sensible heat flux to the city at-

mosphere [28,36]. Kottler et al. chose a physical approach to simulate the building surface 

temperatures using heat equations [23,24,29]. First, different building components simu-

lated in the models were clearly classified and linked to a material library. Second, the 

vegetation and trees were also taken into consideration when the building surface tem-

perature was simulated, but the model in their experiment was still simplified. As the 

authors described in their research, vegetation and trees were roughly represented as so 
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called forest boxes. Furthermore, trees that were close to each other were integrated in one 

model, and single trees were ignored. Xiong et al. argued that geometric model generation 

for simulation was labor-intensive and time-consuming; therefore, they implemented a 

method to semi-automatically simulate temperature signatures [30,37]. Their simulation 

pipeline included 3D model reconstruction, component classification, model surface sub-

division, material assignment, and infrared rendering with limitations due to the level of 

detail (LOD). LOD is a term describing the overall planning or modeling state at a certain 

time for design and construction. It can present the complexity of 3D model visualization 

[38]. Xiong et al.’s simulation was based on an approximated mesh model by using planar 

primitives. Their simulation model was classified as LOD 2, at which roofs and facades 

were illustrated, but detailed objects of the roofs and facades were not generated. There-

fore, synthetic thermal imagery data generated by such approaches do not allow the 

growth of semantic segmentation training datasets. 

Current simulation approaches, based on physics equations and laws of thermody-

namics, are limited to model details and computational time. These approaches are known 

as deterministic systems or a “white box.” However, many stochastic systems or “black 

box” approaches like neural networks have achieved competitive results. It is then neces-

sary to study stochastic systems that allow to simulate objects’ temperatures for the gen-

eration of synthetic data. 

3. Computer Vision and Generative Adversarial Networks (GAN) 

As reviewed in the last section, earlier temperature simulation tasks have used math-

ematical and physics models to predict the energy transfer between indoors and outdoors 

to estimate the building envelope temperature. However, such approaches bring with 

them many assumptions and can be limited due to the artificial models used for simula-

tion. Therefore, researchers have been attempting to improve models’ LOD to the highest 

as-built level by deploying computer vision and photogrammetry since RGB images can 

directly record the buildings’ appearance, which inspires researchers to interpret the in-

formation behind the images, such as image-to-image translation that converts RGB im-

ages to thermal images [39,40]. There are many computer vision approaches used for im-

age translation, and the most robust and successful approach is generative adversarial 

network (GAN). The approach we propose to use in this study is also based on GAN. 

3.1. Computer Vision and Neural Networks 

Computer vision tasks include collecting, processing, extracting, analyzing, and un-

derstanding digital images. There are many computer vision applications in civil engi-

neering [41], such as damage detection [42–45], change detection [46–49], and structural 

component recognition [50–53]. Additionally, computer vision is also used in urban en-

ergy tasks such as detecting leakage for district heating networks [18,54,55], identifying 

thermal bridge and moisture on building envelopes [19,20], and simulating energy con-

sumption based on thermal images [21,22]. 

Compared to more traditional computer vision approaches, convolutional neural 

networks (CNNs) introduce non-linearity, which considers the dependency between each 

pixel in an image. Krizhevsky et al.’s AlexNet is considered the pioneer use of CNNs [56]. 

After them, VGGNet [57], ZFNet [58], and GoogleNet [59] had improved image pro-

cessing performance. These computer vision approaches have been used for object recog-

nition, semantic segmentation, scene reconstruction, and many other topics. Researchers 

have also discovered the potential of computer vision in translating and generating im-

ages. 

3.2. From “Unstructured” to Conditional Generative Adversarial Network (GAN) 

To translate and generate images, researchers have adapted structures and neurons 

of hidden layers in the original CNNs. Since image-to-image translation tasks are pixel-
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wise classification and regression based [39,60–62], researchers need to modify the output 

layers to generate images. In earlier work, the formulations and processes usually trans-

formed input to output in a “unistructural” way, which means that each pixel is inde-

pendent of other pixels. Nevertheless, conditional generative adversarial networks 

(GANs) proposed by Goodfellow et al. [63] instead learned a “structured loss” that con-

sidered the joint features of the output pixels. Additionally, loss function, an important 

technique, is different from other network approaches in conditional GANs [6,64,65]. Con-

ditional GAN is a machine learning framework used to generate information such as a 

block of text or a robot’s action. It is formed by the generative network which can generate 

candidates (sentences or actions) and the discriminative network which evaluates the gen-

erated candidates. Due to the rapid development of neural networks, the performance of 

generating information using GAN has been improved in recent years. Not only can a 

GAN generate sentences and actions, but it also has applications in image translation. 

GAN has been used for many image-to-image transformation applications including 

image prediction (next frame prediction [66], product photo generation [67]), image gen-

eration from sparse annotations [68,69], and painting style transfer [70]. However, these 

approaches are application specific. Isola et al. [39] and Zhu et al. [40] proposed a 

“pixel2pixel” and a “cycle-consistent” GAN. Their approaches are not task-specific. Par-

ticularly, Zhu et al.’s work also learned the input-output image mapping without the need 

for paired training examples. 

4. Research Method 

4.1. Research Design 

This study includes three steps: (1) dataset preparation, (2) building envelope ther-

mal image rendering, and (3) evaluation. Figure 1 illustrates the research method work-

flow. 

 

Figure 1. Research method flowchart. 

The first step is data preparation. In order to fit the algorithm and save memory and 

computation time, the resolution of aerial captured RGB images needs to be reduced. Ad-

ditionally, the method used in this approach requires the whole dataset to be divided into 

training and testing datasets following a commonly used proportion. In this study, our 

datasets included both campuses and city areas. 

The second step is rendering building envelope thermal images. The image transla-

tion neural network was introduced in this step, and its network parameters were trained 

and updated by campus and city training datasets. Such trained network models were 

used to simulate thermal images. 

The last step is evaluation of the proposed method. The simulated thermal images 

were compared with ground truth via two evaluation criteria including two mathematical 

approaches: pixel-wise mean squared error (MSE) and structural similarity index (SSIM). 

The evaluation criteria were conducted on campus and city data with their respective test-

ing data as well as cross evaluation. 
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4.2. Simulation Domains and Dataset Preparation 

To easily detect the thermal image contrast of building envelopes, we collected data 

in the winter in Karlsruhe, Germany, since the temperature difference between indoors 

and outdoors is obvious there in the winter. The experiments were conducted in two 

structurally different outdoor scenes. One was on a college campus where modern build-

ings, separated by lawn and roads, were not close in proximity in a suburban area. The 

other one was in a dense city area in Germany where traditional multi-story European 

buildings were located close together. The reasons for the selection of these two scenarios 

are that (1) the heat island effect is more obvious in city areas than in suburban areas; and 

(2) architectural styles of buildings are different in city areas and in suburban areas. Con-

ducting experiments in both areas allowed us to comprehensively explore our ap-

proaches. 

In this study, we designed four experiments. Thermal and corresponding RGB im-

ages were taken from two separated areas on the campus area for experiments one and 

two, as shown in Figure 2a. These two experiments are abbreviated as “Camp1” and 

“Camp2”. Images were also taken from two separated areas in the city area for experi-

ments three and four, as shown in Figure 2b and abbreviated as “City1” and “City2”. 

 

(a) Two experiments on campus. (b) Two experiments in a European city center 

Figure 2. Illustration of the experiment locations. 

In order to keep the size of the dataset balanced, there were around 20,000 images in 

each experiment. Each image had a resolution of 2048 × 2048 pixels2 and was resized to 

256 × 256 pixels2 to save algorithm computing memory and time. It is common to divide 

datasets into training and testing sets. Training dataset usually accounts for 70% (14,000 

images) of the whole dataset, and testing dataset accounts for the rest. Therefore, datasets 

in these four experiments were all divided into training and testing datasets. 

4.3. As-Built Building Envelope Thermal Image Rendering 

The algorithms used in this paper were based on Isola et al.’s previous work called 

“pixel2pixel”, which is an image-to-image translation based on GAN and is not task spe-

cific. The network architecture used inside of the algorithm is a fully convolutional net-

work (U-net). The basic theory of image translation used in this study is to directly convert 

RGB images to thermal images via networks. 

In a commonly used neural network flowchart, training datasets can train and build 

a learning model. The learning model learns rules and features from training datasets by 

comparing predicted results with ground truth. After the model learns features by con-

tinuously adjusting its parameters, it can process testing datasets with its updated param-

eters. In this study, datasets consisted of pairs of real captured RGB and thermal images 

by cameras. The RGB images in proportionally separated training datasets were fed into 
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the initial GAN model. The model then converted RGB images to simulated thermal im-

ages, and updated its inner parameters based on reducing the discrepancies between sim-

ulated thermal images and captured thermal images to improve the simulation perfor-

mance. After many rounds of updating parameters (200 epochs in this study), the GAN 

model was ready to process RGB images in proportionally separated testing datasets. 

Since we had four experiments as shown in Figure 2, we had four training datasets and 

four testing datasets. In this study, we used a training dataset and built a GAN model to 

process a testing dataset not only in the same experiment but also in a different experi-

ment. The cross-evaluation between every two experiments allowed us to observe how 

the generation model established in one building style could be used to generate thermal 

images on another. As the examples show in Figure 3, the GAN model converts the RGB 

images, Figure 3a,d, to the simulated thermal images Figure 3b,e. The latter images are 

compared with the captured thermal images in Figure 3c,f. Training datasets and testing 

datasets in Figure 3 are from the same experiment, so simulated and captured thermal 

images look identical. Other cases with cross-evaluations are illustrated and discussed in 

the results section, and some discrepancies between simulated and captured thermal im-

ages are observed. The shades of gray color in the thermal images indicate hotter areas 

(light gray) and colder areas (dark gray). We selected the black-white palette for two rea-

sons. First, the monotonous color palette can intuitively represent the contrast between 

hot areas and cold areas. Second, the black-white palette only uses one channel to repre-

sent images, and we can color code from 0 to 255 to represent temperature information, 

which is easy for algorithms to calculate in the GAN model. 

   

(a) RGB image on campus area (b) Simulated thermal image on campus area (c) Captured thermal image on campus area 

   

(d) RGB image in city area (e) Simulated thermal image in city area (f) Captured thermal image in city area 

Figure 3. Examples that explain thermal image rendering. 
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4.4. Evaluation Metrics 

The performance of each experiment and cross-evaluation between every two exper-

iments were measured by comparing rendered thermal images (R) generated from RGB 

images by the GAN model with real captured thermal images (C) by using image similar-

ity evaluation criteria, pixel-wise mean squared error (MSE), and structural similarity in-

dex (SSIM), as shown in Equations (1) and (2) [71]. These criteria calculate pixel-wise per 

image and compare rendered with captured thermal images. 

MSE(𝑅, 𝐶) =  
1

𝑚𝑛
∑ ∑[𝑅(𝑥, 𝑦) − 𝐶(𝑥, 𝑦)]2

𝑛−1

𝑦=0

𝑚−1

𝑥=0

 (1) 

SSIM(𝑅, 𝐶) =
(2𝜇𝑅𝜇𝐶 + 𝑐1)(2𝜎𝑅𝐶 + 𝑐2)

(𝜇𝑅
2 + 𝜇𝐶

2 + 𝑐1)(𝜎𝑅
2 + 𝜎𝐶

2 + 𝑐2)
 (2) 

In Equation (1), R represents a rendered image and C represents a captured image. 

The resolutions of those two images are both 256 pixels times 256 pixels. The character 

(𝑥, 𝑦) represents the same coordinate of pixels in both rendered and thermal images. The 

differences of every two relevant pixels in two compared images are evaluated by squar-

ing these differences, summing them up, and dividing the sum of squares by the total 

number of pixels (256 × 256) in the images. An MSE of value 0 shows that two compared 

images are completely identical, and an MSE that is bigger than 0 indicates that two com-

pared images are different. The bigger the MSE values are, the more differences the two 

compared images have, which means that the generation model renders a rendered image 

with more errors compared to a captured image. However, MSE is unable to agree with 

human subjective analysis [72]. Therefore, SSIM was selected as a complimentary evalua-

tion approach. 

SSIM is used to compare the structural information of images. In Equation (2), R rep-

resents a rendered image and C represents a captured image. Symbols 𝜇𝑅 and 𝜎𝑅 repre-

sent the mean value and standard deviation value of pixels in a rendered image, as shown 

in Equations (3) and (4), and 𝜇𝐶, 𝜎𝐶 represent these values for a captured image. Symbol 

𝜎𝑅𝐶  represents the covariance of rendered images and captured images, as shown in 

Equation (5). Coordinate (𝑥, 𝑦) indicates the same coordinate of pixels in the compared 

two images. Last, symbols 𝑐1 and 𝑐2, in Equation (2) are constants used for the stability 

of the equation when 𝜇 and 𝜎 are extremely small. The range of SSIM value is between 

−1 and 1, where 1 represents perfect identicality. 

𝜇𝑅 =
1

𝑚𝑛
∑ ∑ 𝑅(𝑥, 𝑦)

𝑛−1

𝑦=0

𝑚−1

𝑥=0

 (3) 

𝜎𝑅 = √
1

𝑚𝑛 − 1
∑ ∑(𝑅(𝑥, 𝑦) − 𝜇𝑅)2

𝑛−1

𝑦=0

𝑚−1

𝑥=0

 (4) 

𝜎𝑅𝐶 = √
1

𝑚𝑛 − 1
∑ ∑(𝑅(𝑥, 𝑦) − 𝜇𝑅)(𝐶(𝑥, 𝑦) − 𝜇𝑐)

𝑛−1

𝑦=0

𝑚−1

𝑥=0

 (5) 
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5. Results and Discussion 

There were four experiments used in this study, abbreviated as “Camp1”, “Camp2”, 

“City1”, and “City2”. The evaluations were conducted on the testing datasets in the same 

experiment and between different experiments as shown in Table 1. Each row represents 

a GAN model that was built based on a training dataset in a corresponding experiment, 

and this GAN model processes a testing dataset in each column. The color in Table 1 rep-

resents the value of the number in a cell. According to the evaluation metrics, higher MSE 

values or lower SSIM values represent worse performance. Therefore, the red color rep-

resents higher MSE and lower SSIM values, namely worse performance. To represent bet-

ter performance, the green color represents lower MSE and higher SSIM values, and the 

red color represents higher MSE and lower SSIM. 

Table 1. Total average mean squared error (MSE) and structural similarity index (SSIM) values in each experiment. 

 

Total Average MSE  Total Average SSIM 

Camp1 

(Testing) 

Camp2 

(Testing) 

City1 

Testing) 

City2 

(Testing) 

Camp1 

 (Testing) 

Camp2 

(Testing) 

City1 

(Testing) 

City2 

(Testing) 

Camp1 (training) 2.5779308 60.38710 81.72707 132.63658 0.927918 0.809343 0.803144 0.789476 

Camp2 (training) 56.352844 4.675767 60.85602 138.23941 0.823244 0.914039 0.788834 0.75134 

City1 (training) 107.46189 72.40453 3.70587 159.21241 0.837777 0.838546 0.944457 0.885718 

City2 (training) 79.49741 66.63147 88.94927 2.33137 0.803554 0.800675 0.834157 0.943066 

To investigate the bad performances, we selected cases with the highest MSE and 

lowest SSIM values in each evaluation both in the same experiment and in the cross-eval-

uation, as shown in Figure 4. In the same way that the horizontal and vertical headers are 

organized in Table 1, each row in Figure 4 represents what training dataset was used to 

build a GAN model, and each column represents a testing dataset that such a GAN model 

processes. The titles “Real captured”, “Simulated”, and “RGB” in Figure 4 represent cap-

tured thermal images, rendered thermal images by a GAN model, and corresponding 

RGB images. The selected images have highest MSE and lowest SSIM in each evaluation. 
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Figure 4. Selected images with highest MSE and lowest SSIM in each evaluation. 
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5.1. Simulation Result Assessment 

As described in the method Section 4, we evaluated the GAN simulation approaches 

based on MSE and SSIM values. As shown in Table 1, if we see MSE and SSIM evaluations 

as two matrices, the color patterns for MSE and SSIM evaluation matrices are basically 

similar. First, green color is in the diagonals both for total average MSE and SSIM evalua-

tions, in other words, we can observe a good performance in a case in which training and 

testing datasets both stem from the same experiment. Second, using a GAN model that is 

built based on city training datasets to render campus testing datasets performs better 

than the inverse, since values in upper triangular entries are higher than values in lower 

triangular entries in a MSE matrix, and values in upper triangular entries are lower than 

values in lower triangular entries in a SSIM matrix. The potential explanation is that the 

building styles in city centers are more complex than on campuses, which allows a GAN 

model to learn more hidden features from building envelopes in a city center. Addition-

ally, as Figure 2a shows, buildings are sparsely located and separated by lawn and roads 

on campus. Thus, there is less building envelope information for a GAN model to learn. 

Therefore, a GAN model established by city datasets is more capable of simulating build-

ing envelope thermal information. Third, although the color patterns are similar between 

MSE and SSIM evaluation matrices, there is an outlier in an entry (city1 training dataset—

city 2 testing dataset) in MSE matrix, which is supposed to be small, but such entry in 

SSIM evaluation matrix is normal. 

Figure 4 illustrated the selected cases with bad performance in terms of MSE and 

SSIM values. As the MSE and SSIM metrics described, the simulated thermal images with 

highest MSE values have big color differences (grayscale color represents temperature in-

formation) from real captured thermal images, and the simulated images with lowest 

SSIM values have more image noise and difficulties in representing building envelope 

structures. Campus buildings’ envelopes are not complex like city buildings’ envelopes; 

therefore, campus testing datasets intuitively are simulated better than city testing da-

tasets, although simulated images shown in Figure 4 are cases with highest MSE and low-

est SSIM. Additionally, the observation that GAN models built based on city datasets per-

form better is also validated in Figure 4. 

In order to understand the relationship between MSE and SSIM in terms of all images 

in an individual evaluation, we plotted several multivariate distribution figures for both 

the same and cross-experiment evaluations. In the same way that the headers are orga-

nized in Table 1, these distribution figures are plotted in Figure 5. In each distribution 

figure, the x-axis represents MSE value, and the y-axis represents SSIM value. Each image 

in the testing dataset has a MSE and a SSIM value, and a red point with a pair of MSE-

SSIM coordinates is drawn in the distribution. The darker red area represents concen-

trated red points while the lighter red area represents scattered red points. There are some 

patterns observed in Figure 5. First, most figures illustrate negative correlations between 

MSE and SSIM values. Figures in the diagonal from upper left to lower right show robust 

negative correlations that red areas are very thin like a line with a strong negative coeffi-

cient. However, red points in other figures are scattered, which means such a performance 

is not stable. Second, if we observe the distributions in terms of MSE and SSIM values, 

respectively, we find that MSE values follow a long-tail distribution while SSIM values 

follow a Gaussian distribution in most evaluations. Third, distributions for the cases using 

a GAN model built with the city training dataset to process campus testing dataset are 

more stable than the cases in an inverse way. The reason is that distributions in Figure 

5i,j,m,n are more stable than distributions in Figure 5c,d,g,h. 



Energies 2021, 14, 353 12 of 17 
 

 

 

Figure 5. Multivariate distribution figures for both the same and cross-experiment evaluations. (a) Distribution of 

Camp1(training) vs. Camp1(testing), (b) Distribution of Camp1(training) vs. Camp2(testing), (c) Distribution of 

Camp1(training) vs. City1(testing), (d) Distribution of Camp1(training) vs. City2(testing), (e) Distribution of Camp2(train-

ing) vs. Camp1(testing), (f) Distribution of Camp2(training) vs. Camp2(testing), (g) Distribution of Camp2(training) vs. 

City1(testing), (h) Distribution of Camp2(training) vs. City2(testing), (i) Distribution of City1(training) vs. Camp1(testing), 

(j) Distribution of City1(training) vs. Camp2(testing), (k) Distribution of City1(training) vs. City1(testing), (l) Distribution 

of City1(training) vs. City2(testing), (m) Distribution of City2(training) vs. Camp1(testing), (n) Distribution of City2(train-

ing) vs. Camp2(testing), (o) Distribution of City2(training) vs. City1(testing), (p) Distribution of City2(training) vs. 

City2(testing). 

5.2. Comparison between Our Results and Other Existing Methods 

There have been several simulation tools to generate synthetic thermal images for 

growing deep learning training datasets. Our approaches have some similarities com-

pared to the existing methods. First, we all can simulate the thermal information of build-

ing envelopes without limitations to the building styles. As the results showed, we simu-
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lated thermal images of building envelopes both on campuses and in city areas. Mean-

while, the existing methods also do not have difficulties in simulating building envelopes 

with different building styles. Second, we all can simulate thermal images for generating 

synthetic thermal images to some extent [15,73]. The existing methods need to simulate 

the 3D geometric model first, but the thermal images still can be rendered by a virtual 

camera in the 3D model. Our own approach has several differences from the current ap-

proaches. First, as Henon et al. [36] described in their approach, they omitted some small 

structures (appliances and chimneys) on roofs. In our study, there are many European 

traditional city buildings with appliances and chimneys on complex roofs. Since our ap-

proach is directly implemented on captured images, these features are not omitted. Sec-

ond, the evaluation metrics are different. For example, in Aguerre et al.’s [34] experiment, 

their simulations were based on building models, as such their evaluation did not include 

the surrounding environment such as trees or streets. In contrast, our approach covered 

both buildings and their surroundings. In addition, Aguerre et al. compared simulation 

results from selected areas of building envelopes with real thermal information. Such 

comparison cannot cover areas that the building model did not represent in the simula-

tion. Their evaluation failed to compare this issue. In our approach, we compared the sim-

ulated thermal errors by evaluating MSE values, on top of which, we also compared the 

building envelope structures in the simulated images by evaluating SSIM values. We ob-

serve that an image translation approach is more feasible than a physics-based approach 

for generating synthetic thermal images for segmentation datasets. Third, if a physics-

based approach is used for generating thermal images, researchers should configure a 

virtual camera that is consistent to a camera used for capturing RGB images in terms of 

camera position, focal length, and point of view (POV), but such a virtual camera is diffi-

cult to accurately configure. Our image translation approach avoids these procedures be-

cause it directly converts RGB images to thermal images. 

On the other hand, our approach also has drawbacks compared to current ap-

proaches. As Aguerre et al. [34] described, they can simulate the surface temperatures at 

different times of the day by adjusting parameters. However, our datasets were and 

should be captured during the same time span of the day. For example, datasets captured 

in the morning are not capable to simulate envelope surface temperatures in the night. 

6. Conclusions and Future Work 

Thermal information can be used to improve the segmentation of aerial images of 

outdoor scenes. We proposed an innovative image translation approach that would sim-

ulate temperature information and we analyzed and validated that such an approach is 

more feasible than a physics-based approach for generating synthetic thermal images for 

segmentation. Compared to current approaches, these are the main benefits to our ap-

proach: (1) It avoids acquisition of detailed system information like building materials and 

does not require default configurations. This is more feasible for old buildings that lack 

detailed information. (2) Our approach is not limited to the geometric models’ precision 

and LOD, since image data used in our approach are taken from drone view directly cap-

turing the as-built building envelopes. Our approach can save time compared with creat-

ing a geometric digital model. (3) Our approach can simulate buildings’ surrounding en-

vironment thermal information such as trees and streets. Those elements were simplified 

in physics-based approaches as boxes during simulation. (4) Since our approach directly 

converts RGB images to thermal images, it does not need to align a virtual camera that 

renders thermal images to a real camera that captures RGB images. 

Our approach also has some limitations. Since the simulation process is based on 

historical training datasets instead of the laws of physics, the time and season when these 

data were collected is important. For example, training datasets collected in the morning 

or summer do not allow us to simulate buildings’ envelope thermal information in the 

evening or winter, and vice versa. On the contrary, a physics-based approach is based on 
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building materials and laws of thermodynamics. It can simulate building surface temper-

ature at different times of a day and seasons by adjusting corresponding parameters. 

In this study, we only evaluated the GAN model performance of simulating thermal 

images by implementing our approach on different datasets. We designed two evaluation 

metrics, MSE and SSIM values. The former is to evaluate the ability of simulating building 

envelope thermal information, and the latter is to evaluate the ability of simulating enve-

lope appearances. As described in Section 5, we could reach some important conclusions: 

(1) Plotting all images’ pairs of MSE and SSIM values shows a negative relationship be-

tween MSE and SSIM, namely one increasing while the other decreasing. If MSE and SSIM 

are investigated separately, we found out that a long tail and a Gaussian distribution can 

respectively describe MSE and SSIM values’ distribution. (2) Using one model established 

by one building style to generate thermal images in another is not ideal. Both Table 1 and 

Figure 5 demonstrated that a case in which both training and testing datasets are in the 

same experiment (either city or campus experiment) performs better than other cases in 

which both datasets are in different experiments. It is wiser to use a training dataset that 

is similar to testing datasets for training the image translation models. (3) A GAN model 

built based on city datasets performs better than a model built based on campus datasets. 

This is because the city datasets have more complex buildings and features for the former 

model to learn. We suggest that researchers use datasets in which building information is 

richer and envelope structures are more complex as training datasets. 

As described, the performance of deep learning using simulated images was not eval-

uated in this study. In future work, we plan to further evaluate the segmentation perfor-

mance using simulated images  by our method and current existing methods . When we 

compared our method with the current method, we did not use the same dataset since 

some researchers’ methods were not open source. In the future, we will also consider in-

tegrating image generation with physics-based approaches to avoid their respective draw-

backs. 
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