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Abstract
High engine efficiency, comparably low pollutant emissions, and advantageous carbon dioxide emissions make lean-burn natural
gas engines an attractive alternative compared to conventional diesel or gasoline engines. However, incomplete combustion in
natural gas engines results in emission of small amounts of methane, which has a strong global warming potential and conse-
quently makes an efficient exhaust gas aftertreatment system imperative. Palladium-based catalysts are considered as most
effective in low temperature methane conversion, but they suffer from inhibition by the combustion product water and from
poisoning by sulfur species that are typically present in the gas stream. Rational design of the catalytic converter combined with
recent advances in catalyst operation and process control, particularly short rich periods for catalyst regeneration, allow optimism
that these hurdles can be overcome. The availability of a durable and highly efficient exhaust gas aftertreatment system can
promote the widespread use of lean-burn natural gas engines, which could be a key step towards reducing mankind’s carbon
footprint.
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1 Introduction

The continuous technological progress initiated by industrial-
ization resulted in our modern globalized world with a society
whose energy supply is mainly based on carbon-containing
fossil resources like coal, oil, and natural gas. Combustion of
these resources releases energy, but also leads to considerable
pollutant emissions. While undesired side-products such as
carbon monoxide (CO), nitric oxide (NOx), or particulate mat-
ter (PM) are toxic for mankind and environment, the main
combustion product carbon dioxide (CO2) is considered a
key driver for global warming.

Since climate change is one of the most urgent issues of our
modern society, ambitious targets for the reduction of global
CO2 emissions have been formulated in recent years, which
becomes particularly obvious in the case of future CO2

requirements for light-duty vehicles. Europe, for instance, aims
at reducing its CO2 emissions compared to 2020 by 37.5% by
2030 in the light-duty sector, while the USA strives for approx-
imately 23% reduction in the same time frame [1, 2]. Overall,
the European aspirations for a climate-neutral economy, mobil-
ity and society are most ambitious, culminating in the goal to
achieve net-zero greenhouse gas emissions by 2050 [1].

However, modern combustion engines are already highly
optimized and further substantial reduction of fuel consumption
is technologically more and more challenging, hence alterna-
tive approaches are mandatory. In this regard, replacement of
conventional gasoline or diesel fuels by natural gas that consits
mainly of methane (CH4) seems an attractive solution. Since
CH4 has the highest hydrogen-to-carbon ratio of all hydrocar-
bons, natural gas has a superior carbon balance resulting in
advantageous CO2 emissions that oil-based fuels cannot out-
perform. In addition, besides small amounts of unburnt hydro-
carbons, gas engines emit comparably low levels of toxic CO
and only moderate amounts of NOx. All these aspects make gas
engines a technology with outstanding potential on the way
towards a modern and sustainable energy supply.

An upward tendency of the global natural gas production
and an all-time production record of 3937 billion cubic meters
in 2018 underscores the growing interest in natural gas as an
energy source [3]. Already today, natural gas is widely used
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for both stationary and mobile applications, i.e., in combined
heat and power (CHP) plants for energy production or as a
fuel for heavy-duty vehicles (Fig. 1). A fast transition from a
mainly diesel- and gasoline-based energy supply in the near
future, especially in the on-road and marine sector, towards a
natural gas–based system as illustrated in Fig. 1 may benefit
from the fact that many countries already have an existing
natural gas infrastructure. This is an essential prerequisite for
a widespread usage within the next years. Although fossil
sources currently represent the main feedstock for natural
gas, promising alternative concepts like biomethane and
power-to-gas technologies can open up a sustainable access
to the highly valuable energy source methane. In addition,
such carbon-neutral approaches terminate gas emissions that
typically occur during the production of fossil natural gas,
which increases the sustainability of the whole value chain
even further.

2 Engine Operation and Emissions
of Lean-Burn Gas Engines

Especially smaller gas engines are commonly operated under
stoichiometric conditions that allow an exhaust gas
aftertreatment with the well-established compact three-way
catalyst (TWC) [4]. In contrast, lean combustion is frequently
preferred for large-bore gas engines, as it maximizes the en-
gine efficiency and additionally contributes to minimizing raw
emissions. Under the assumption that a lean-burn natural gas
engine consumes 150 g fuel per kWh and CO2 is the only
greenhouse gas emitted, a greenhouse gas advantage of up
to 35% compared to a diesel engine can be achieved [5].
However, CO2 is not the only component emitted, making a
modern and highly efficient aftertreatment system capable of
meeting future ultra-low emission limits imperative.

PM, which forms in local areas in the combustion chamber
that do not exhibit an ignitable mixture, is only a minor issue. In
comparison to diesel and even gasoline engines, natural gas
engines emit less PM with overall particle emissions in the

magnitude of a diesel engine equipped with a diesel particulate
filter (DPF) [6]. Besides, the contact between combustion flame
and lube oil used in the engine typically leads to partial com-
bustion of oil, resulting in hydrocarbon and oil ash emissions.
Oil ash consists of elements like calcium, magnesium, zinc,
phosphorous, or sulfur and is emitted as particulate matter or
acts as a catalyst poison [7].

Moreover, the engine’s operational point strongly influ-
ences the pollutant emissions (Fig. 2). While considerable
amounts of CO, NOx, and hydrocarbons (HC) are emitted
during stoichiometric operation, especially NOx emissions
can be minimized by lean operation [8, 9], since NOx mainly
forms during a high temperature reaction between oxygen and
nitrogen, which is suppressed by the low combustion temper-
atures during lean operation. In this respect, at least slightly
lower NOx emissions in comparison to diesel engines, which
also exhibit low combustion temperatures, are reported [10].
However, tightening environmental legislation will make a
dedicated NOx abatement, i.e., by a system for selective cata-
lytic reduction (SCR) [11], imperative. Hence, despite the
lower engine efficiency, the call for stoichiometric operation
may grow louder in the future, as additional space-consuming
and potentially costly measures for NOx control will be redun-
dant if a TWC is used for emission control.

Furthermore, partial combustion of methane results in
formaldehyde emissions [12]. The recent classification as po-
tentially carcinogenic substance by the European Union (EU)
[13] will result in ultra-low emission standards, which can
only be met when applying noble metal catalysts, mostly on
platinum basis [14]. Since catalytic formaldehyde conversion
is a mass transport limited process, optimized catalyst geom-
etries with respect to the channel shape and a homogeneous
washcoat distribution are required to overcome low diffusion
rates due to the small concentration gradient [15, 16].

Amongst the emissions of gas engines, the most important
hurdle, however, is methane slip, typically present in the exhaust
gas in a magnitude of up to over 3000 ppm, due to incomplete
combustion. Methane has a more than 20 times stronger green-
house potential compared to carbon dioxide, which drastically

Fig. 1 Schematic value chain
from production to application for
a methane-based energy system
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reduces the benefit of using gas engines if such amounts of
methane are released into the atmosphere. The typically low
exhaust gas temperatures impede catalytic combustion of the
methane molecule with its high stability and low reactivity, ne-
cessitating a highly active catalyst that exhibits excellent stability
and durability. In this respect, palladium has been in the focus of
scientific interest for decades since it shows the highest activity
[17] for catalytic methane conversion.

3 Methane Oxidation over Palladium:
Overcoming Water Inhibition and Sulfur
Poisoning

Despite the initially high activity, palladium catalysts have to
cope with two main challenges. Firstly, the inevitable com-
bustion product water, which is also produced by the catalytic
methane oxidation reaction itself, leads to pronounced inhibi-
tion and continuous deactivation, especially at low tempera-
tures (Fig. 3a). Hydroxyl accumulation on both, the support
material and the noble metal, blocks the active sites, which are
then unavailable for methane adsorption and conversion [18].
Usage of ceria-based supports with a high oxygen mobility
reduces the negative impact of steam, however, this cannot
sufficiently redeem the inhibition [19].

Secondly, sulfur compounds (SOx) that originate either
from the natural gas itself or from deliberately added odorants
act as a strong catalyst poison. As shown in Fig. 3b, the pres-
ence of only 5 ppm of SO2 in the gas stream already leads to
severe catalyst degradation due to poisoning within very short
time frames. Poisoning of the palladium phase by Pd(SO)4
formation can lead to a complete loss of activity and support
materials such as alumina that form support-related sulfates,
hereby acting as a sulfur sink, can only partially protect the
noble metal [20, 21].

Since the development of materials and catalyst formulations
that permanently withstand the negative impact of these species
proceeds only slowly, rationally designed process control and
reaction engineering approaches pose possible alternatives to en-
sure high catalytic conversion. Any procedure for catalyst reac-
tivation needs to be an optimized process that takes engine oper-
ation and catalyst operation parameters into account, as methane
conversion over Pd-based catalysts is particularly sensitive to-
wards the feed gas composition [22]. Rich treatment, for in-
stance, can remove adsorbed surface species blocking the cata-
lyst’s active sites, which allows to regenerate catalysts that were
deactivated by water or poisoned by sulfur [20, 23, 24]. To avoid
a re-poisoning of the noble metal by the remaining support-
related sulfur species, the reductive treatment should be conduct-
ed at elevated temperatures to ensure full regeneration of both,
the noble metal and the support material [25, 26]. The feasibility
of reductive pulsing during lean operation for regenerative pur-
poses has not only been demonstrated in the lab, but also in a gas
engine operated under realistic conditions. Hereby, the introduc-
tion of short reductive phases every 30 min resulted in a stabili-
zation of methane conversion at approximately 70%, which is
considered an adequate level for moderate exhaust gas tempera-
tures of about 450 °C [27].

Besides temporary changes of the engine’s operational
point, also the upstream placement of a three-way catalyst in
front of a methane oxidation catalyst was reported to enhance
the durability [28]. Finally yet importantly, exploitation of
gas-phase chemistry, which is particularly relevant at elevated
temperatures and pressures as typically found for pre-turbo
applications, may be a step forward. NOx that is always

Fig. 3 CH4 oxidation activity of
bimetallic 2.0 wt% Pd–0.4 wt%
Pt catalysts supported on Al2O3,
CeO2, and CeO2-ZrO2 (“CZ”) in
(a) 3200 ppm CH4, 10% O2,
0/12% H2O, and balance N2

during heating with 3 °C/min; and
(b) 3200 ppm CH4, 10% O2, 12%
H2O, 5 ppm SO2, and balance N2

during steady-state operation at
450 °C. GHSV = 80,000 h−1

Fig. 2 Emissions of CO, HC, and NOx versus lambda (air-to-fuel-ratio).
Based on graphs and data from [8, 9]
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present in the exhaust of gas engines significantly promotes
the homogeneous oxidation of light alkanes like methane but
also the formation of further HCHO [29]. Therefore, suppress-
ing the formation of undesired side-products and secondary
emissions such as HCHO or N2O is another challenge in op-
timizing the aftertreatment system.

4 Conclusions and Outlook

In conclusion, based on a comprehensive fundamental under-
standing, the combination of different well-established tech-
nologies and careful process control can pave the way towards
a durable and efficient exhaust gas aftertreatment system for
lean-operated natural gas engines. Modern state-of-the-art
aftertreatment systems have substantially grown compared to
the simple oxidation catalyst originally proposed for emission
control by pioneer Eugene J. Houdry [30]. The careful com-
bination of optimally adapted and coordinated measures, i.e.
including exhaust gas recirculation, allowed meeting tight
emission limits for lean-operated diesel engines in the past
[31]. Hence, there is confidence that the remaining technical
challenges for meeting forthcoming ultra-low emission stan-
dards can similarly be solved for lean-operated natural gas
engines, possibly via a system as schematically proposed in
Fig. 4. Future exhaust gas aftertreatment systems may be
amended by implementing a state-of-the-art urea-based SCR
system for NOx control in addition to the oxidation catalyst.
This necessitates a careful choice of both, engine operation
parameters for controlling engine-out emissions and catalyst
formulation for minimizing secondary emissions, for instance
since HCHO and NH3 can form highly toxic HCN over sev-
eral SCR catalysts [32, 33]. However, as this approach is
already well-established in the context of lean-burn diesel en-
gines, the technological hurdles for extending the overall sys-
tem are expected to be moderate, allowing a fast realization
and transfer into serial production. Entirely novel approaches
as utilization of non-linear flow channels may further contrib-
ute to finding a holistic solution [34].

Looking forward, the widespread use of natural gas engines is
not only a scientific-technical issue, but also a political one.
Although many countries strive for an electrification of the on-
road sector, combustion engines will remain indispensable at
least in stationary and heavy-duty applications in the near future.
This may lead to a more diverse global energy system where

natural gas engines can play an important role. In this context,
an efficient exhaust gas aftertreatment system for lean-operated
natural gas engines is essential for ecological and economic com-
petitiveness. Particularly, the recent progress on catalyst opera-
tion, activation, and regeneration strategies is encouraging and
allows optimism that natural gas engines can significantly con-
tribute to reducing mankind’s carbon footprint.
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