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Abstract. To overcome the computing challenge in High Energy Physics avail-
able resources must be utilized as efficiently as possible. This targets algorith-
mic challenges in the workflows itself but also the scheduling of jobs to compute
resources. To enable the best possible scheduling, job schedulers require accu-
rate information about resource consumption of a job before it is even executed.
It is the responsibility of the user to provide an accurate resource estimate re-
quired for jobs. However, this is quite a challenge for users as they (i) want
to ensure their jobs to run correctly, (ii) must manage to deal with heteroge-
neous compute resources and (iii) face intransparent library dependencies and
frequent updates. Users therefore tend to specify resource requests with an am-
ple buffer. This inaccuracy results in inefficient utilisation by either blocking
unused resources or exceeding reserved resources. Especially in the context of
opportunistic resource provisioning the inaccuracies have an even broader im-
pact that does not even target utilisation of resources but also composition of
the most suitable resources. The contribution of this paper is an analysis of pro-
duction and end-user workflows in HEP with regards to optimizing the various
resources types. We further propose a method to improve user estimates.

1 Introduction

Job schedulers in high energy physics require accurate information about resource consump-
tion of a job to find the most reasonable, available resources. For example, job schedulers
evaluate information about the walltime, numbers of requested cores, or size of memory, and
disk space. Jobs that use more than their requested resources are aborted or slowed down,
depending on the scheduler and its configuration. Users, therefore, specify resource requests
with an ample buffer to ensure that jobs are executed correctly and not canceled [1, 2]. This
inaccuracy results in inefficient utilisation by either blocking unused resources, or exceeding
requested and thus sometimes available resources, leading to job cancellations in the worst
case. With changes to the underlying workflows, external dependencies or even the hetero-
geneity of resources these inefficiencies can accumulate without direct user interaction.

The scheduler can also delegate jobs to other systems by temporarily integrating oppor-
tunistic resources such as private and public clouds or HPC resources [3–5]. With the increas-
ing demand for opportunistic resources to extend the available WLCG computing resources,
the accuracy of predicted resource consumption is of particular importance. By using clouds
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such as Amazon EC2 or Telekom Cloud unnecessary costs can arise due to overestimation
of resource requirements, since booked resources are billed regardless of whether they are
actually used. When using resources from the research sector, which are jointly financed
and used, other users cannot use resources blocked due to overestimated resource requests,
although they are practically unused. Only an accurate prediction of resource consumption
enables a proper selection, allocation, and integration of resources to minimise the overall
costs. We, therefore, propose to improve the indicated resource consumption of end-users
with predictions. This will on the one hand improve the resource utilisation in grid and clus-
ter systems but on the other hand also the selection of proper opportunistic resources.

In this contribution, we present our results and the impact of resource predictions for
both, end-user workflows and production workflows including pilot jobs. Our work focuses
on resource consumption of walltime, disk, and memory but presents a generic approach that
is ready for future use of other resources, such as GPUs.

2 Related Work

In [2] the authors introduce a user estimate model targeting this the issue that users tend
to supply rounded values for resource estimates [1, 6]. Their findings include that only 20
different estimates are used for 90% of jobs and that the five most used walltime estimates
describe 50% of the jobs considered. Based on these findings, the authors improve in [7]
the walltime estimate of the user by introducing a predictor based on the mean value of the
resource usage of the last two jobs of a user. They consider different window types to group
similar jobs to make better predictions. They decouple the walltime prediction from the
estimate by considering the prediction for job planning and the estimate as an upper limit
for the actual execution of a job. The authors focus on High Performance Computing (HPC),
that targets optimizing scheduling plans whereas application in HEP targets High Throughput
Computing (HTC) and therefore has different requirements.

In [8] Sonmez et al. introduce four additional predictors to the mean predictor as well as
various classifications of jobs. The approach is purely concerned with predicting the wall-
time of jobs based on measured walltime of completed jobs and, therefore, vulnerable to
heterogeneous compute resources.

In [9] Gaussier et al. present a machine learning approach to improve the prediction
of job walltimes. The approach establishes an asymmetric loss function, that penalizes an
overestimation more than an underestimation. This approach cannot directly be adapted in
the context of HTC where underestimation can lead to the re-execution of jobs and therefore
increased resource consumption.

In [10] Pumma et al. introduce a job walltime prediction based on performance char-
acteristics of short test runs of real jobs with the Linux tool perf. The measured walltime
profiles are classified into different workloads by using a decision tree. To predict walltimes
based on this approach means using even more resources to benchmark various jobs before
execution. Furthermore pilot jobs are ambiguous and each test run might result in different
walltime measurements and are therefore effectively unpredictable with this approach.

3 Use Case and Datasets

The premise of this work is that a notable portion of users overestimate the resource consump-
tion of their jobs. This is reported in literature for other domains (cf. [1, 2]) and observable
in our batch systems running HEP workflows as shown in Figure 1. An overestimation leads
to a waste of resources, as they are reserved exclusively for the job, in turn reducing the
throughput of a cluster or increasing the costs if commercial cloud resources are used.
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Figure 1. Accuracy of requested memory requirements to actual memory usage for end-user jobs.

An overestimation is still preferable to an underestimation, since aborting jobs that exceed
their requirements likely leads to them being re-submitted by the user. This means that more
than twice as many resources as required are used to execute the same job, since it is executed
twice. However, if the jobs running at the same time show a massive overestimation of the
resources required, these wasted resources can become more significant than re-execution of
a job. It is therefore necessary to weigh up the extent to which underestimation is acceptable
to avoid the double cost of aborting and re-executing the jobs.

In this paper, we consider two recorded datasets containing data about submitted jobs:
the user resource estimates for these jobs, the actual resource usage of the jobs, and auxiliary
metadata. The first dataset contains user jobs in the period of February 2018 to July 2018.
It was recorded in a Tier 3 cluster from the Institute for Experimental Particle Physics (ETP)
at KIT. The second datasets originates from the GridKa Tier 1 centre in the period from
beginning of June 2018 to end of June 2018. The users usually do not directly send their
jobs to GridKa but instead to a global batch system of their respective collaboration. The
global batch system uses so-called pilot jobs to reserve resources in a local system, such as
GridKa. The actual jobs are then executed on the resources reserved by the pilot job [11, 12].
Therefore, a direct analysis of real jobs and users is not possible for the GridKa dataset. Both
datasets, the ETP and the GridKa dataset, belong to the HTC domain.

Both datasets have been cleaned up, and incomplete and incorrect entries have been re-
moved. After the cleanup, the ETP dataset consists of 610,219 jobs and the GridKa dataset
of 320,657 pilot jobs. In the following, we refer to the pilot jobs in the GridKa dataset also
as jobs as we do not have sufficient information to differentiate between them.

4 Target Group-Specific Prediction of Resources

While the goal of matching requested to actual resources in similar for the HPC domain and
the HTC usage in HEP, the different focus on the various kinds of resources requires modified
approaches. For example, the walltime is commonly very important in HPC, as it is used to
plan when future jobs can inherit a resource; in contrast, HTC is more concerned with CPUs
and memory, as these define how tightly resources can be packed with jobs.

Additionally, the use case of pilot resources and opportunistic resources removes some
assumptions that can be made otherwise. Pilots reduce the gain from grouping jobs by user,
as a pilot represents an entire group of users. Heterogeneous resources mean that resource
estimates may be based on different environments, increasing the impact of global factors to
translate from one cluster to another.

The goal is to use the available resources more efficiently by estimating the resource
requirements of individual jobs more accurately. A more exact estimation should lead to
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Table 1. Average similarities of jobs within a cluster per clustering method and dataset. Similarity is
the difference of the minimum and maximum resource usage of jobs in each workflow. Lower number

means higher similarity.

Original User CMD CWD Resources
ETP 16.3 15.3 1.7 2.0 9.9
GridKa 17.0 8.7 - - 1.9

fewer resources remaining unused. In addition, the percentage of underestimated jobs should
be reduced to prevent potential performance problems. The challenge here is that there are
many, very different jobs from different users in a cluster and the resource requirements of
these should be predicted.

4.1 Clustering Jobs to Workflows

To optimize resource estimation based on past jobs, it is necessary to take only comparable
jobs into consideration. For jobs in HEP we can assume that jobs of the same workflow have
a similar resource usage profile. It has been shown that characteristics of HEP jobs such
as CPU utilisation, memory, or user can be used to cluster similar jobs and get information
about the originally underlying workflows [13]. We therefore derive the clustering from such
available attributes.

In total the datasets provide 23 different attributes, 13 of which are already known at the
time a job is submitted, 1 at start of the job and 9 after the job has finished.1 To ensure the
clustering can be used in a production environment, only the attributes available at submission
time are taken into account. These attributes include (i) the owner and group indicating who
submitted the job, (ii) the command line path (CMD) pointing to the job executable2, (iii) the
current working directory (CWD) containing the path the job belongs to, and (iv) the different
user’s resource requests for CPU, RAM, HDD, or walltime of a job.

Based on the frequency of values of a given attribute, different approaches are feasible to
cluster jobs into workflows. By default, we cluster all jobs using the fields user and group.
This is based on the assumption that each user has their own recurring behavior in estimating
resources and predominantly deals with the same problems. Other variants of clustering are
based on CMD, CWD as well as the resources requested by the user.

Table 1 shows the quality of the clusterings compared to the initial situation per data
set, without clustering. All clustered results are more similar than the original variant without
clustering. To evaluate the similarity of jobs in the same cluster, the used resources of jobs are
normalized and the difference between the maximum and minimum used resources summed
up. The clustering for the attributes CMD and CWD are only valid for the ETP dataset as the
attributes values for CMD and CWD are unique for each job within the GridKa dataset.

4.2 Optimizing User Estimates With Sliding Windows

In literature, the mean or median are often used as a predictor. However, as these predictors
imply a proportion of underestimated jobs, we consider the maximum predictor instead: The
maximum resource utilization of all completed jobs from the same workflow is considered

1Not all of the available attributes and results are considered in this publication. A comprehensive summary can
be found in [14].

2Even though available, we exclude the arguments of the executable. In our context, these are paths of automati-
cally generated configuration files. The relevant content is not available to use.
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for the prediction. This approach is considered to ensure that few jobs are underestimated,
thus providing an upper limit for the expected resource requirements.

Variations in the data can cause jobs of the same workflow to behave differently, and
therefore a job may require more or less resources than another job. Care should therefore be
taken to ensure that the prediction is not susceptible to individual jobs with higher resource
consumption that can be considered outliers. To reduce the influence of individual outliers,
not all completed jobs of a workflow are considered, but only recent jobs in a sliding window
of size k. Outliers then only have an influence on a limited number of jobs. In order to
automatically determine the best sliding window size per user in a data set (cf. [7]), we
iteratively evaluate accuracy of estimates, predictions, and actual walltimes.

4.3 Local and Global User Profiles

In cases where a user starts a new workflow, there are no results available for the first jobs
in this workflow with which a prediction can be inferred. This is the so-called cold start
problem, which is also known from literature [15, 16]. To be able to make predictions, we
introduce a local profile per user as well as a global profile for all users.

The assumption made for the local profile is that if a user underestimated or overestimated
the resource requirements in previous workflows, they will also do so in new workflows. To
build the local profile, the fraction of under- and overestimated jobs of the user is determined
for all of his submitted jobs that have already been completed.

If the user has not yet executed any jobs, their behavior cannot be inferred. Instead, the
global user profile of the cluster is considered. The global user profile works identical to the
local user profile, but instead of determining the percentage of under- or overestimated jobs
per user, all completed jobs of all users the cluster are analysed. The global user profile is
temporarily applied until a local user profile can be established.

4.4 Evaluating the Fitness

To evaluate the different combinations of clusterings, predictors and other parameters for the
two datasets, we introduce an asymmetric loss based on the amount of under- and overesti-
mated resources.

loss( job, walltime) =
∑
res

weight( job, res) · | jobreq
res − jobused

res | · walltime

weight( job, res) =

1 jobreq
res < jobused

res

0.5 otherwise

Since underestimating reduces performance by causing too many jobs to run on the same
server and may lead to cancelled and rerun jobs, our loss function rates overestimation as half
as significant as underestimation. The loss function is additionally weighted by the walltime
of the job to consider the integrated loss over time.

To compare the influence of different variants on the same dataset we use the formula
introduced in [7]:

accuracy(A, B) =

B/A B ≤ A
A/B A > B

(1)
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A stands for the requested value, be it the user’s estimate or the prediction. B stands for
the value used, that is, the resources actually used by the job. No distinction is made between
overestimates and underestimates. Accuracy can be used to find out for a job, a user or the
entire data set how good the predictions of the user or procedure are overall.

5 Experiment and Results

The results of different optimization schemes for resource predictions for the two datasets
are shown in Tables 2 and 3. Scenario 1 combines the maximum predictor with the orginal
dataset. Scenario 2 combines Scenario 1 with the four different clustering methods. Combin-
ing the clustering with the maximum predictor already gives some improvements in accuracy
and number of underestimated jobs. Selection by CWD yields best results, likely because it
reflects the structure imposed by users. However, every selection comes at the cost of sig-
nificantly overestimating resources in case of end-user analysis. Thus, this is not suitable
for making good predictions without further improvements due to the effect that individual
outliers can have on the result of the optimization and consequently on the evaluation.

Scenario 3 further adds a sliding window on top and therefore focuses on minimizing the
influence on outliers. The results show, that the effect of individual outliers on both data sets
could be significantly reduced by using the sliding windows. The loss for all four cluster-
ings have improved significantly for production as well as end-user jobs. At this stage, the
approach is already good enough to autonomously identify similar workflows (via resources)
as opposed to the structure imposed by users (via CWD).

Finally, in scenario 4 the local and global user profiles are applied. The effect of using
local and global user profiles depends on the type of workflow. In the ETP dataset, the
loss could not be further improved. At the cost of a higher proportion of underestimated
jobs, a higher level of accuracy was achieved. In the GridKa dataset, however, significant
improvements were achieved for two of the clusterings, but the overall loss of the improved
clusterings is still lower than the best loss for this dataset. The use of local and global user
profiles should therefore be considered on a case by case basis.

6 Conclusions and Discussion

We have shown that it is advisable to optimize the users’ resource estimates, since the pre-
vious accuracy of the estimates is on average not very high. We have shown this not only
for the walltime of a job, but also exemplary for memory and disk. This has a positive effect
on the operator of a cluster as well as on the users in particular and high energy physics in
general, as it can lead to jobs being processed faster. Specifically, to improve resource es-
timation, we have introduced clustering, maximum predictor, sliding window, and local and
global user profiles for cold start scenarios. We have compared different combinations of
these approaches and have shown that the estimates for both production and end-user jobs
can be improved. Furthermore, we have shown that as the quality of resource estimation
increases, fewer resources are left unused due to overestimation. Additionally, by reducing
underestimated jobs, potential performance problems can be avoided.

These studies form a good basis for further improving the use of opportunistic resources
based on the improved resource estimates. Although the current implementation for resource
prediction already considers various types of resources, it does not consider specific weight-
ing. This currently leads to a distortion of calculated loss as the value of memory, disk,
and walltime is equalized. Future implementations should consider a weighting based on
relevance and should further consider normalization of the different units of resources.

6

EPJ Web of Conferences 245, 07039 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507039



Table 2. Detailed statistics for original request and clustering in the ETP dataset when using the ideal
sliding window per user, determined on 80% of each user’s jobs, combined with the use of the local
and global user profile to make predictions for new users or new workflows. Lower values for the

rating and percentage of underestimated jobs and higher values for accuracy are better.

Scenario Accuracy (%) Loss Underestimated Jobs (%)
RAM HDD Walltime (1012) RAM HDD Walltime

1 Original 63.4 27.8 52.5 114.9 40.9 17.2 20.2
2 User 62.6 27.9 13.3 589.0 1.0 1.0 1.0

Resources 70.4 42.9 21.4 439.6 2.5 3.6 3.5
CMD 69.9 43.9 23.7 433.3 2.2 2.1 3.7
CWD 74.0 51.4 33.1 277.6 4.3 4.5 6.4

3 User 89.9 81.8 61.5 129.2 8.5 14.3 15.3
Resources 91.1 83.8 62.7 116.0 8.7 14.8 15.8
CMD 85.7 77.4 62.0 126.2 7.9 13.2 15.3
CWD 85.5 77.1 62.4 107.8 9.1 13.7 16.1

4 User 89.8 81.7 61.4 129.8 8.3 14.2 15.5
Resources 91.0 83.8 62.6 119.4 8.6 14.9 16.2
CMD 90.5 83.5 62.6 126.1 11.7 13.6 18.0
CWD 90.2 83.4 63.2 108.5 13.0 14.6 18.9

Table 3. Detailed statistics for original request and clustering in the GridKa dataset when using the
ideal sliding window per user, determined on 80% of each user’s jobs, combined with the use of the

local and global user profile to make predictions for new users or new workflows Lower values for the
rating and percentage of underestimated jobs and higher values for accuracy are better.

Scenario Accuracy (%) Loss Underestimated Jobs (%)
RAM HDD Walltime (1012) RAM HDD Walltime

1 Original 51.0 92.0 - 9.5 16.0 0.00 -
2 User 11.5 11.9 - 430.9 0.4 0.3 -

Resources 44.7 92.7 - 78.5 2.5 2.1 -
CMD 51.0 92.0 - 9.5 16.0 0.0 -
CWD 51.0 92.0 - 9.5 16.0 0.0 -

3 User 52.2 34.6 - 43.8 9.3 13.6 -
Resources 75.3 95.5 - 6.0 7.8 12.4 -
CMD 51.0 92.0 - 9.5 16.0 0.0 -
CWD 51.0 92.0 - 9.5 16.0 0.0 -

4 User 52.2 34.6 - 43.8 9.3 13.6 -
Resources 75.0 95.6 - 6.0 8.8 13.9 -
CMD 54.0 94.2 - 7.4 54.3 62.6 -
CWD 54.0 94.2 - 7.4 54.3 62.6 -
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