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Abstract

In many patients suffering from severely impaired gas exchange in the lungs, regional
pulmonary ventilation and perfusion are not aligned. Especially, if patients are suffering
from the acute respiratory distress syndrome, very heterogeneous distributions of ventilation
and perfusion are observed, and patients need to be artificially ventilated and monitored in
an intensive care unit, in order to ensure sufficient gas exchange. In severely injured lungs,
it is very challenging to find an optimal trade off between recruiting collapsed regions by
applying high pressures and volumes, while protecting the lung from further damage caused
by the externally applied pressure. In order to ensure lung protective ventilation and to
optimize and to support clinical decision making, a growing need for bedside monitoring of
regional lung ventilation, as well as regional perfusion, has been reported.
Electrical Impedance Tomography (EIT) is a non-invasive, radiation-free and portable
system, which has raised interest especially among physicians treating critically ill patients
in intensive care units. It provides high temporal sampling and a functional spatial resolution,
which allows to visualize and monitor dynamic (patho-) physiological processes. Medical EIT
research has mainly focused on estimating spatial ventilation distributions, and commercially
available systems have proven that EIT is a valuable extension for clinical decision making
during mechanical ventilation. Estimating pulmonary perfusion with EIT nevertheless has
not been established yet and might represent the missing link to enable the analysis of
pulmonary gas exchange at bedside. Though some publications have shown the principle
feasibility of indicator-enhanced EIT to estimate spatial distributions of pulmonary blood
flow, the methods need to be optimized and validated against gold-standards of pulmonary
perfusion monitoring. Additionally, further research is needed to understand the underlying
physiological information of EIT perfusion estimations.
The aim of this thesis is to contribute to the question, whether EIT can be applied clinically
to provide spatial information of pulmonary blood flow alongside regional ventilation to
potentially assess pulmonary gas exchange at the bedside. Spatial distributions of perfusion
were estimated by injecting a conductive saline indicator bolus, to trace the passage of the
indicator during its progression through the vascular system of the lungs. Different dynamic
EIT reconstruction methods as well as perfusion parameter estimations were developed and
compared, to be able to robustly assess pulmonary blood flow. The estimated regional EIT
perfusion distributions were validated against gold-standard lung perfusion measurement
techniques. A first validation has been conducted using data of an experimental animal
study, where multidetector Computed Tomography was used as comparative lung perfusion
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measure. On top, a comprehensive preclinical animal study has been conducted to investigate
pulmonary perfusion with indicator-enhanced EIT and Positron Emission Tomography during
multiple different experimental states. Besides a thorough method comparison, we aimed to
investigate the clinical applicability of the indicator-enhanced EIT perfusion measurement
by analyzing the minimal indicator concentration, which allows robust perfusion estimations
and presents no harm to the patient.
Besides the experimental validation studies, two in-silico investigations were conducted to
firstly evaluate the sensitivity of EIT to the passage of a conductive indicator through the
lungs in front of severely heterogeneous pulmonary backgrounds. Secondly, the physiological
contributors to the reconstructed EIT perfusion image were studied to find basic limitations
of the method.
To conclude, pulmonary perfusion estimation based on indicator-enhanced EIT shows great
potential to be applied in clinical practice, since we were able to validate it against two
established perfusion measurement techniques and provided valuable information about the
physiological contributors to the estimated EIT perfusion distributions.



Zusammenfassung

In vielen Fällen sind bei Patienten, die unter stark gestörtem Gasaustausch der Lunge leiden,
die regionale Lungenventilation und die Perfusion nicht aufeinander abgestimmt. Besonders
bei Patienten mit akutem Lungenversagen sind sehr heterogene räumliche Verteilungen von
Belüftung und Perfusion der Lunge zu beobachten. Diese Patienten müssen auf der Inten-
sivstation künstlich beatmet und überwacht werden, um einen ausreichenden Gasaustausch
sicherzustellen. Bei schweren Lungenverletzungen ist es schwierig, durch die Anwendung
hoher Beatmungsdrücke und -volumina eine optimale Balance zwischen dem Rekrutieren
kollabierter Regionen zu finden, und gleichzeitig die Lunge vor weiterem Schaden durch
die von außen angelegten Drücke zu schützen. Das Interesse für eine bettseitige Messung
und Darstellung der regionalen Belüftungs- und Perfusionsverteilung für den Einsatz auf der
Intensivstation ist in den letzten Jahren stark gestiegen, um eine lungenprotektive Beatmung
zu ermöglichen und klinische Diagnosen zu vereinfachen.
Die Elektrische-Impedanztomographie (EIT) ist ein nicht-invasives, strahlungsfreies und sehr
mobil einsetzbares System. Es bietet eine hohe zeitliche Abtastung und eine funktionelle
räumliche Auflösung, die es ermöglicht, dynamische (patho-) physiologische Prozesse zu
visualisieren und zu überwachen. Die medizinische Forschung an EIT hat sich dabei haupt-
sächlich auf die Schätzung der räumlichen Belüftung konzentriert. Kommerziell erhältliche
Systeme haben gezeigt, dass die EIT eine wertvolle Entscheidungshilfe während der mech-
anischen Beatmung darstellt. Allerdings ist die Abschätzung der pulmonalen Perfusion
mit EIT noch nicht etabliert. Dies könnte das fehlende Glied sein, um die Analyse des
pulmonalen Gasaustauschs am Krankenbett zu ermöglichen. Obwohl einige Publikationen
die prinzipielle Machbarkeit der indikatorgestützten EIT zur Schätzung der räumlichen
Verteilung des pulmonalen Blutflusses gezeigt haben, müssen diese Methoden optimiert und
durch Vergleich mit dem Goldstandard des Lungenperfusions-Monitorings validiert werden.
Darüber hinaus ist weitere Forschung notwendig, um zu verstehen welche physiologischen
Informationen der EIT-Perfusionsschätzung zugrunde liegen.
Mit der vorliegenden Arbeit soll die Frage beantwortet werden, ob bei der klinischen Anwen-
dung von EIT neben der regionalen Belüftung auch räumliche Informationen des pulmonalen
Blutflusses geschätzt werden können, um damit potenziell den pulmonalen Gasaustausch
am Krankenbett beurteilen zu können. Die räumliche Verteilung der Perfusion wurde durch
Bolusinjektion einer leitfähigen Kochsalzlösung als Indikator geschätzt, um die Verteilung
des Indikators während seines Durchgangs durch das Gefäßsystem der Lunge zu verfol-
gen. Verschiedene dynamische EIT-Rekonstruktionsmethoden und Perfusionsparameter-
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Schätzmethoden wurden entwickelt und verglichen, um den pulmonalen Blutfluss robust
beurteilen zu können. Die geschätzten regionalen EIT-Perfusionsverteilungen wurden gegen
Goldstandard Messverfahren der Lungenperfusion validiert. Eine erste Validierung wurde
anhand von Daten einer tierexperimentellen Studie durchgeführt, bei der die Multidetektor-
Computertomographie als vergleichende Lungenperfusionsmessung verwendet wurde. Darüber
hinaus wurde im Rahmen dieser Arbeit eine umfassende präklinische Tierstudie durchge-
führt, um die Lungenperfusion mit indikatorverstärkter EIT und Positronen-Emissions-
Tomographie während mehrerer verschiedener experimenteller Zustände zu untersuchen.
Neben einem gründlichen Methodenvergleich sollte die klinische Anwendbarkeit der indika-
torgestützten EIT-Perfusionsmessung untersucht werden, indem wir vor allem die minimale
Indikatorkonzentration analysierten, die eine robuste Perfusionsschätzung erlaubte und den
geringsten Einfluss für den Patienten darstellt.
Neben den experimentellen Validierungsstudien wurden zwei in-silico-Untersuchungen
durchgeführt, um erstens die Sensitivität von EIT gegenüber des Durchgangs eines leitfähi-
gen Indikators durch die Lunge vor stark heterogenem pulmonalen Hintergrund zu bewerten.
Zweitens untersuchten wir die physiologischen Einflüsse, die zu den rekonstruierten EIT-
Perfusionsbildern beitragen, um die Limitationen der Methode besser zu verstehen.
Die Analysen zeigten, dass die Schätzung der Lungenperfusion auf der Basis der indika-
torverstärkten EIT ein großes Potenzial für die Anwendung in der klinischen Praxis aufweist,
da wir sie mit zwei Goldstandard-Perfusionsmesstechniken validieren konnten. Zudem
konnten wertvolle Schlüsse über die physiologischen Einflüsse auf die geschätzten EIT-
Perfusionsverteilungen gezogen werden.
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λ regularization (weighting) factor / hyperparameter of an EIT recon-
struction
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LT tissue label matrix
m ∈ [1 M] number of voltage measurements per measurement frame
µ magnetic permittivity
n ∈ [1 N] temporal sampling points
nA tA arrival time (sample) of an indicator to a specific spatial compartment
n◦A t◦A arrival time (sample) of a global γ-interval
nE tE leaving/end time (sample) of an indicator from a specific spatial com-

partment
n◦E t◦E leaving/end time (sample) of a global γ-interval
nE number of EIT electrodes
nmax tmax maximum time (sample) of an indicator dilution curve
n normal vector
nS+ tS+ time (sample) of maximal positive slope of an indicator dilution curve
nS− tS− time (sample) of maximal negative slope of an indicator dilution curve
O right Eigenvector matrix of a SVD
ω angular frequency
P weighting matrix for the solution norm of an EIT reconstruction
p spatial coordinates
pE,m pE coordinates of EIT electrodes
φ (scalar field of the) electrical potential
q Q blood volume
q̇ Q̇ blood flow
r Pearson correlation coefficient or radius of conductive spheres
R spatial regularization matrix of an EIT reconstruction
rC rC relative contribution of simulated 3D compartment to 2D EIT recon-

struction (see chapter 8)
ρρρCT tissue density (as measured by CT)
∆ρρρ spatial intensity/ tissue density change caused by indicator dilution
ρρρmax temporal maximum intensity projection of 4D CT measurement
Rmax maximum of correlation function
S spatial forward sensitivity distribution
σk(n) σσσ(n) ΣΣΣ conductivity
σσσ0 arbitrary and spatially homogeneous background conductivity distri-

bution
σσσB (static) background conductivity distribution for an EIT measurement
t̄k t̄ mean transit time
t synthetic targets to train a GREIT reconstruction matrix
τ tortuosity
ΘΘΘ linear EIT reconstruction matrix
t time
U left Eigenvector matrix of a SVD
vm(n) v(n) V measured voltage at EIT electrodes



xvi Abbreviations and Symbols

V volume (of gas/air)
v0,m v0 measured voltage at EIT electrodes corresponding to homogeneous

conductivity distribution σσσ0

vB,m vB measured voltage at EIT electrodes corresponding to background
conductivity distribution σσσB

V̇ flow of gas/air
W weighting matrix for the residual norm of an EIT reconstruction
wPET cranial-caudal/vertical weighting of 3D PET perfusion onto 2D plane

(for comparison to EIT perfusion in chapter 12)
zE EIT electrode plane (cranial-caudal/vertical coordinate)

Indices and operators

(. . .)k in/of spatial element k
(. . .)m corresponding to EIT measurement m
(. . .)CT estimated/measured by CT
(. . .)EIT estimated/measured by EIT
(. . .)PET estimated/measured by PET
|. . .| absolute
‖. . .‖2 Euclidean norm
‖. . .‖ f ro Frobenius norm

˜(. . .) desired
ˆ(. . .) estimated
¯(. . .) mean/average

F {. . .} Fourier transform
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Chapter 1
Introduction

1.1 Motivation

The supply of oxygen to and removal of carbon dioxide from the cells of the human body
are of vital importance. The cardio-respiratory system comprising the heart and lungs plays
the central role in this gas exchange process. The heart pumps deoxygenated and carbon
dioxide rich blood from the cells to the lungs, where carbon dioxide is expired and the blood
is enriched with oxygen. The oxygenated blood can subsequently be supplied to the cells of
the body. If gas exchange is impaired, the blood is insufficiently oxygenated (hypoxemia)
and carbon dioxide is insufficiently eliminated (hypercapnia). Patients suffer from shortness
of breath and in severe cases need to be artificially ventilated and constantly monitored in an
intensive care unit (ICU).

A severe type of respiratory failure is the acute respiratory distress syndrome (ARDS), which
is characterized by a fast widespread inflammation of the lungs. Larger regions of the lungs
collapse due to diffuse injury to cells in the gas exchange barrier between the blood vessels
and the air sacks (alveoli) [1]. Approximately 200 000 patients suffer from ARDS in the
United states per year and approximately over 3 million patients world wide, which is about
10% of all ICU admissions [2]. Currently, as the world experiences a global pandemic caused
by the Covid-19 virus, these numbers might be even substantially higher. As stated in first
studies about the virus, in severe forms of the Covid-19 infection, ARDS developed within
approximately 8-9 days after the onset of the illness [3, 4]. The lethality of ARDS is around
40 % [2, 5] and patients who survive often suffer from a decreased quality of life due to
exercise limitation caused by residual pulmonary function abnormalities [6]. The cause of
death is in most cases not the acute lung injury, but an inflammation induced multiple organ
failure [7].

Patients suffering from ARDS are mechanically ventilated to recruit collapsed alveolar
regions and enable sufficient gas exchange. Typical invasive clinical artificial ventilation in
ICUs is achieved by applying positive pressure through endotracheal tubes. While controlled

3
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mechanical ventilation is essential for ARDS patients, high pressures and volumes can be
harmful to the lungs and ventilation parameters have to be chosen carefully. The concept of
lung protective ventilation is generally recommended to avoid or at least minimize ventilator
associated lung injury (VALI) [8, 9]. The guideline in [9] suggests to limit the tidal volume
(VT) and the end-inspiratory plateau pressure (Pplat) of the mechanical ventilation. At the
same time it is recommended to recruit the lung with high static positive end-expiratory
pressures (sPEEPs) for a short period of time and to subsequently reduce it to a minimal but
sufficiently high level to prevent lung regions from collapse during expiration. The cyclic
collapse of alveoli during a respiratory cycle has proven to be exceptionally harmful due
to mechanical stress. Finding an optimal PEEP has yet turned out to be a nontrivial task.
Besides its influence on the distribution of ventilation within the lung, the spatial distribution
of perfusion1 is strongly influenced by the PEEP applied. Small capillaries around the
alveoli are compressed by increased positive pressures, thus sufficient alveolar recruitment is
useless if simultaneously perfusion is restricted to the recruited lung region. Both pulmonary
ventilation and perfusion have to be considered for the choice of ventilation parameters. For
clinical practice, it might therefore be beneficial if the ventilation-perfusion ratio (V

.
/Q

.
) could

be monitored at bedside during mechanical ventilation.

Electrical Impedance Tomography (EIT) is a non-invasive method to estimate changes in
electrical conductivity distributions within a body by injecting a small alternating current
at electrodes attached to the body surface and measuring the resulting electrical potentials.
EIT has a high temporal resolution (frame rate of an EIT measurement fs up to 50Hz), is
cost-efficient and can be easily applied at bedside. Nevertheless, the spatial resolution is
relatively low (about 10% of the circumference [10] for a placement of 16 electrodes in a 2D
plane around the thorax), but provides sufficient resolution to gain regional information of
conductivity changes within the lung. EIT reconstructions are mostly calculated with respect
to a reference conductivity distribution, since an absolute reconstruction is very ill-posed. For
this reason conductivity changes are mainly measured in clinical application. Since inspired
air has a relatively low electrical conductivity compared to other biological tissue, EIT is able
to track regional changes in aeration if the electrodes are attached around the thorax of a pa-
tient. The estimation of ventilation distributions with EIT has been already validated against
other gold standard clinically established imaging methods [11–17]. At the same time, blood
is conducting electrical current very well due to its high ionic concentration. The estimation
of regional pulmonary perfusion with EIT has been investigated since decades but is still a
matter of research. During a cardiac cycle, pulsatile conductivity changes (generally known
as circulation related conductivity change (CRIC)) can be observed in perfused regions,
which are thought to originate mainly from regional blood volume changes, alignment of red

1Perfusion describes the supply of tissue by a certain volume of blood within a measurable amount
of time. It is generally measured in ml/min/g. Yet, in medical practice, perfusion is often used
interchangeably with the term blood flow and is defined as blood volume per time. Throughout this
thesis, we will consider the medical definition of perfusion. Due to its low resolution, EIT will not
be able to estimate tissue density or mass, thus we will only be able to reconstruct blood flow in
units of volume per time.
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blood cells during acceleration and movement of larger blood vessels [18]. CRIC amplitudes
are nevertheless relatively small and are not fully understood. Though it has been shown to
be very promising to non-invasively estimate cardiac output (CO), its application to estimate
regional pulmonary perfusion has underperformed compared to an indicator-enhanced EIT
approach [19, 20]. For the latter approach, a hypertonic, conductive saline bolus is injected
central-venously and followed during its passage through the lungs. From the progres-
sion of the indicator through the lungs, transfer parameters can be estimated based on the
indicator dilution theory [21]. The method has not been established for clinical practice,
since many computational and physiological aspects have yet to be optimized and understood.

This thesis contributes to the efficient and robust estimation of regional indicator-enhanced
EIT blood flow in order to allow EIT to become a regional V

.
/Q

.
monitor to support, optimize

and potentially automatize mechanical ventilation in the future. The detailed objectives are
formulated in the next section.

1.2 Objectives of the thesis

The main focus of this thesis is to optimize indicator-enhanced EIT perfusion estimation
for robust and reliable practical clinical application. Herefore, two simulation studies have
been performed to identify the main contributors of the the pulmonary circulation to EIT
perfusion images and to understand the forward and inverse sensitivity of indicator dilution
in front of substantially inhomogeneous conductivity backgrounds. To provide the physician
with reliable and robust estimations of pulmonary blood flow based on indicator-enhanced
EIT measurements, different EIT reconstruction and indicator transfer estimation algorithms
were developed and optimized. The estimated EIT perfusion distributions were compared
against established pulmonary perfusion measurements in two preclinical studies. Finally,
the optimized algorithms were applied in first clinical measurements, which will be described
in the outlook of this study.

In detail, this thesis aims to achieve the following research objectives:
1) Understand the forward and inverse sensitivity of indicator dilution in front of sub-

stantially inhomogeneous conductivity backgrounds by means of EIT bio-impedance
simulation.

2) Understand the contributions of different spatio-temporal compartments of the pul-
monary circulation to the indicator-enhanced EIT blood flow distribution image (e.g.
cardiac chambers, large pulmonary arteries, capillaries, pulmonary veins) by means of
bio-impedance simulation.

3) Identify the minimal saline indicator concentration necessary:
• to achieve similar spatial forward and inverse sensitivities independent of the

conductivity background (to ensure the comparability of pulmonary blood flow
estimations during therapy such as recruitment maneuvers);
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• to achieve a sufficient signal-to-noise ratio (SNR) to estimate pulmonary blood
flow based on preclinical measurements.

4) Develop and optimize algorithms to calculate indicator-enhanced EIT blood flow
distributions, which:
• reconstruct the spatio-temporal indicator signals,
• robustly separate the first pass indicator signal from recirculation, and
• estimate vascular transfer parameters from the indicator conductivity. curves

5) Compare the indicator-enhanced EIT blood flow estimations during respiratory hold
phases to reference perfusion imaging:
• comparison against multidetector CT perfusion in models of sublobar ARDS;
• comparison against Positron Emission Tomography (PET) perfusion in different

ventilation and perfusion experiments.

6) Develop algorithms to enable indicator dilution during ongoing mechanical ventilation.
7) Analyze temporal parameters of pulmonary indicator passage.

1.3 Organization of the thesis

Part I presents the motivation, the necessary medical and technical fundamentals and the
state of the art in order to put the research described in this thesis into its context.
• Chapter 2 gives an overview about the cardiorespiratory anatomy and physiology. The

influence of regional ventilation and perfusion on the overall gas exchange is described
and the acute respiratory distress syndrome (ARDS) is introduced. Additionally, the
modes and parameters as well as the clinical challenges of controlled mechanical
ventilation are introduced.
• Chapter 3 contains the basics of EIT. The measurement concept, the mathematical

forward problem of EIT as well as the reconstruction of electrical conductivity tomo-
grams are introduced. The state of the art and research of indicator-enhanced EIT
measurements to reconstruct regional pulmonary blood flow distributions as well as
global hemodynamic parameters are provided.
• Chapter 4 introduces the fundamental principle of the indicator dilution theory and

its application to blood flow measurements.

Part II describes the preclinical studies conducted and analyzed during the research for this
thesis.
• Chapter 5 presents the experimental concept and protocol of the preclinical study in

pigs conducted and analyzed in close cooperation with the partners of the Drägerwerk
AG & Co. KGaA and the Pulmonary Engineering Group of the Department of
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Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus
and Technical University Dresden.
• Chapter 6 introduces the preclinical porcine study data provided by the Department of

Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-
Holstein in Kiel, Germany, which was evaluated during the research for this thesis.

Part III presents the simulation studies investigating the sensitivity of indicator-enhanced
EIT in the context of pulmonary blood flow.
• Chapter 7 contains the simulation study investigating the sensitivity of indicator-

enhanced EIT in front of the inhomogeneous distribution of background conductivity
in injured and inhomogeneously ventilated lungs. The chapter introduces and describes
the investigations of forward as well as inverse or reconstruction sensitivity.
• Chapter 8 describes a dynamic indicator simulation study which evaluates the sources

of spatial EIT blood flow estimates.

Part IV describes the developed and implemented methods necessary to reconstruct spatial
pulmonary blood flow estimations from EIT voltage measurements.
• Chapter 9 describes different EIT inversion approaches to reconstruct the spatial

distribution of indicator dilution curves.
• Chapter 10 presents the necessary signal processing to extract the first-pass indicator

dilution signal and estimate the blood flow parameters.

Part V contains the evaluation and comparison of the spatial EIT blood flow reconstructions
to established reference pulmonary perfusion tomography.
• Chapter 11 describes the preclinical analysis of the Iowa study and the comparison of

spatial blood flow EIT estimates to indicator-dilution with multidetector Computed
Tomography (MDCT). The additional study related methods and the results are
described and finally discussed.
• Chapter 12 presents the comprehensive analysis of the conducted preclinical study in

Dresden. The EIT blood flow estimations are compared with PET perfusion.

Part VI summarizes the described research and the main important contribution of this thesis
and presents and outlook on possible next steps
• Chapter 13 contains the final conclusions of this work.
• Chapter 14 presents possible next steps to continue the research.

During my research work at the IBT, I published three journal papers as first author and one
as a co-author (currently under review). In total, seven peer-reviewed conference articles and
nine conference abstracts were published as either first author or co-author. Furthermore,
I supervised ten student theses, which have partly contributed to the methods and results
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of this thesis (see list of publications and supervised theses at the end of the thesis). Both,
publications and student theses are referenced in the corresponding sections of this thesis.



Chapter 2
Medical fundamentals

2.1 Cardiorespiratory anatomy and
physiology

A brief introduction into the cardiorespiratory anatomy, physiology and pathophysiology is
presented in this chapter. The chapter is meant to give an overview of the necessary medical
fundamentals for the understanding of the research described in this thesis.

2.1.1 Cardiorespiratory anatomy and physiology

Within the research for this thesis, a preclinical study in Dresden has been planned, conducted
and evaluated, and a second preclinical study has been analyzed. In both studies domestic
pigs have been investigated. For this reason, the pulmonary anatomy and physiology is
mainly described for domestic pigs, and differences to the human anatomy and physiology
are pointed out.
Regarding their lobar structure, the lungs of the pigs are very similar to human lungs. The
left lung consists of a cranial and caudal lobe, which are both ventilated by one main
airway. The cranial lobe is sometimes also described to be divided into a cranial and middle
lobe [22]. The right lung of pigs comprises four lung lobes (cranial, middle, caudal and
accessory/intermediate lobe), a difference compared to human lungs, which only have three
lobes [23]. Overall, the right porcine lung is about 25% larger than the left lung [22], which
is similar to human lungs. A graphical depiction of a porcine lung is given in Figure 2.1.

Airways, airflow and ventilation Air is inspired into the lung through the trachea, which
divides into the main left and right bronchi, supplying both lungs. The bronchi subdivide
into smaller bronchioles to provide airflow to the individual lung lobes [24], and branch
again into a series of many smaller conducting airways. According to the idealization of
Weibel [25], the conducting airways can be described by 16 generations of branchings until
the level of terminal bronchioles. The conducting airways have a smooth surface and do not

9
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accessory/intermediate lobe

cranial/apical lobeleft
right

middle/cardiac lobeleft
right

cuadal/diapragmatic lobe left
right

trachea

Figure 2.1: Pulmonary anatomy of a domestic pig. The image shows a porcine lung recorded after an

experiment of the preclinical study in Dresden (see chapter 5). In literature different names for the lung

lobes can be found. The lobe names are taken from [22, 23].

contain the small air sacks or alveoli responsible for the main amount of gas exchange and
therefore do not directly participate in gas exchange. With further penetration of the airways
into the lungs, the airways become narrower and contain alveoli. The zone of these smaller
branches are referred to as the respiratory zone. Within the respiratory zones, the airways
branch seven more times [26]. The total human volume of the conducting airways is about
150ml and is often called the anatomic dead space1, while the respiratory zones have an
overall volume of about 2.5-3 l at expiration. [26]
The term ventilation describes the transport of gas between the atmosphere and the alveoli
during inspiration and expiration. The airflow into and out of the lungs is mainly controlled
by the contraction and relaxation of the diaphragm, and the action of the intercostal muscles.
During inspiration, the diaphragm contracts and therefore descents, while the intercostal
muscles lift the rib cage to the sides and to the front. The volume of the lungs increases
and air is pulled into the lungs from the outside by negative pressure, to fill the increased
intra-pulmonary space. Through the larger airways until the respiratory zone, the inhaled air
flows downstream by bulk flow. Afterwards, due to the large cross-sectional area within the
airways and the small forward velocity of the inspired air, the main mechanism of the gas
movement is diffusion. Overall, a very small pressure gradient along the airways (between
the atmosphere and the alveoli) of approximately 1mbar is sufficient to enable a flow rate
of 1 l/s. Nevertheless, due to the surface tension of the liquid around the millions of alveoli,
strong forces that tend to collapse the alveoli, develop. To increase stability, cells around
the alveoli secrete a substance called surfactant, which reduces the surface tension. During

1Dead space: regions of the lungs which are ventilated but do not receive blood flow [26].
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Figure 2.2: Graphical description of the different important lung volumes of an adult human. The idea

for the graphic was taken from [26, 27].

expiration, the diaphragm passively relaxes and the elastic lungs return to their resting
volume, while the inspired air is forced out of the lungs. [26]
The static volumes of the lung are summarized in Figure 2.2. The tidal volume (VT) de-

scribes the volume of air inspired and expired during normal breathing. The vital capacity
(VC) describes the air volume expired between a maximal inspiration and maximal expiration.
Both of these volumes are typically measured by spirometry. After a maximal expiration,
some air volume still remains within the lungs, which is called residual respiratory volume
(RRV). The functional residual capacity (FRC) is defined as the amount of air remaining in
the lung after normal expiration. The overall volume at maximal inspiration, which is the
sum of the RRV and the VC, is called the total lung capacity (TLC). The residual volumes
and the TLC can not be measured with spirometry. They are typically measured with gas
dilution techniques. [26, 28]

Blood flow through the pulmonary circuit The vena cava inferior and superior trans-
port deoxygenated blood from the systemic circulation into the right cardiac atrium. During
the diastole, the blood enters the right ventricle, and leaves the heart during systole through
the pulmonary artery. The full cardiac output (CO) is injected into the main pulmonary
artery dividing into the right and left pulmonary artery. Initially within the conducting zone,
the pulmonary arteries are accompanied by the bronchi. The arteries branch into a dense
network of small capillaries surrounding the alveoli. This network of small capillaries of
cross sections, just large enough for red blood cells to pass, form an almost continuous sheet
of blood within the alveolar walls [25, 29, 30]. This arrangement provides an enormous
surface for potential blood to alveolar gas exchange, only separated by a very thin blood-gas
barrier. Although the thin separation between blood capillaries and alveoli is very efficient
for gas exchange, the capillaries can easily be damaged or constricted especially by large
inspired lung volumes (important to keep in mind during mechanical ventilation as explained
in section 2.2.3). The red blood cells traverse the capillary network in approximately 0.75s
(in adult humans). During this time, the equilibrium between alveolar and capillary partial
pressures of blood gases is reached. The sheet of blood carrying capillaries around the
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alveoli reunite in smaller pulmonary veins. The united larger pulmonary veins also follow
the bronchi and end in the left cardiac atrium. [26]
In comparison to the systemic circulation, the blood pressures within the pulmonary cir-
culation are lower (approximately 1-3mbar in the pulmonary artery [28]). The pressure
gradient between inflow and outflow of blood is approximately 10mbar [28, 31]. Thus, the
flow is mainly dependent on passive effects such as hydrostatics and perivascular pressures.
Larger arteries and veins, which do not belong to the alveolar caplliaries, are exposed to the
intrapleural pressure, which is smaller than the atmospheric pressure. During inspiration,
these vessels are pulled open by the elastic lung parenchym surrounding them. The pressure
around alveolar capillaries is the alveolar pressure, which is similar to atmospheric pressure.
If the alveolar pressure rises, the capillaries are compressed. [31]
In comparison to the vascular resistance of the systemic circulation, the pulmonary vascular
resistance (PVR), defined by the transpulmonary pressure gradient divided by the overall
blood flow, is also substantially smaller. The PVR is the main control of the flow and its
distribution and is mainly influenced by passive effects. On the one hand, if the blood flow
increases and the blood pressures rise, the PVR decreases either by a distension of the blood
vessels or by recruitment of previously unperfused blood vessels. On the other hand, an
increase of lung volume pulls the extra-alveolar larger vessels open and decreases PVR at
high lung volumes. At lower volumes, the muscles in the vessel walls decrease the caliber
of the larger vessels and the PVR is decreased. For the very small alveolar capillaries, high
lung volumes compress the thin walled vessels and PVR is increased. A minimal PVR can
be observed roughly at normal ventilation, where capillaries are not compressed and larger
vessels are sufficiently pulled open. Besides the passive control of PVR, the muscles in the
extra-alveolar vessels can influence blood flow actively. The main active effect is described
in the next paragraph. [26, 28]

Hypoxic pulmonary vasoconstriction While the ventilation in the pulmonary bronchi
can be altered by sympathetic or parasympathetic innervation, no such control mechanism
exists for the PVR. Besides the described passive influences on the PVR, a decrease of partial
pressure of oxygen (O2) in alveoli within a region of the lung, leads to a constriction of
its supplying blood vessels. This process is called hypoxic pulmonary vasoconstriction or
Euler-Liljestrand mechanism and was first described in 1946 [32]. Smaller arteries with
diameters of around 200− 400 µm are responsible for this effect. The tension of smooth
muscle cells within the vascular walls are directly affected by hypoxia resulting in blockade
of a potassium channel within the muscle cell membranes leading to a depolarization [33, 34].
The mechanism is a purely regional effect, and it is certain that the central nervous system
is not involved in the process, since the effect was also observed in excised isolated lungs.
The effect allows to redistribute the regional pulmonary blood flow to areas with sufficient
ventilation in pathological conditions such as collapsed lung regions. [26, 28]

Alveolar gas exchange O2 and carbon dioxide (CO2) are exchanged through the alveolar
walls by diffusion. The lung anatomy is ideal for this process, since the millions of alveoli
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with the network of capillaries around them define an enormous surface participating in
gas exchange (about 50-100m2) and the thickness of the alveolar wall is as thin as 0.3 µm.
Due to its higher solubility and a similar molecular weight, CO2 diffuses 20 times faster
than O2. In addition, the difference in partial pressures of alveolar and vascular O2 and
carbondioxide determine the transfer rate. In a healthy and rested subject, the vascular partial
pressure of a volume of blood meets the alveolar partial pressure after a third of its way
through the capillary. By exercise, alveolar hypoxia or a thickened blood-gas barrier, the
diffusion process can be impaired and the volume of blood leaving the capillary might not be
sufficiently oxygenated. [26]

2.1.2 Spatial distribution of ventilation and blood flow

The distribution of ventilation V
.

and blood flow Q
.

throughout the lung is inhomogeneous
and dependent on the posture. The spatial distribution of pulmonary blood flow is mainly
determined by gravity [35]. Gravity dependent regions2 of the lungs are perfused stronger
than independent areas. For most of our measurements, the analyses have been carried out
in supine position. In this posture, a strong gradient between ventral and dorsal regions of
the lungs exist, with large blood flows in dorsal regions. For an upright position of humans,
the gradient is even stronger. The gravity dependent imbalance of pulmonary blood flow
can be explained by differences of hydrostatic pressures. In upper regions, the arterial and
venous pressures are small and might even sometimes fall below alveolar (atmospheric)
pressure. In this case, the alveolar vessels are compressed and no or only a small blood flow
is possible. In medial regions, the arterial pressure increases, but the venous pressure does
not change substantially. Thus, blood flow in these regions is mainly driven by the pressure
difference between alveolar and arterial pressure. Towards the lowest regions, the arterial and
venous pressure substantially increase because of the hydrostatic pressure from the down- or
upstream blood above. Blood flow in lower regions is mainly determined by the pressure
difference between arterial and venous pressures. In these lower regions, more alveolar
capillaries might also be recruited due to the increased hydrostatic pressure. The gravitation
is most likely not the only determinant of pulmonary perfusion distribution. Glenny et al.
have reported, that the perfusion pattern might be predominantly defined genetically [36].
They also state, that a perfusion redistribution after posture change leads to a shifting of
lung parenchyma. This shifting might confound the interpretation, that gravity is the main
determined.[26, 28]
For the alveolar ventilation, similar distributions occur within the lungs. In supine position,
the ventilation tends to be higher in dorsal/posterior regions and lower in ventral/anterior
regions. In upright posture, ventilation to basal regions of the lungs exceed the ventilation to
apical regions. Gravity is also the main influence for the ventilation gradients. The weight of
the lower regions (e.g. dorsal regions in supine position) pulls on the upper regions, therefore
decreasing the intrapleural pressure. The alveolar walls are distended and become stiffer,

2The lowest pulmonary region in relation to gravity is referred to as (gravity) dependent region.
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which results in a decreased ventilation. The ventilation gradient (present especially in supine
position) is nevertheless substantially smaller than for the pulmonary blood flow. In addition,
the regional supply of blood vessels and airways is variable. For an overall optimal gas
exchange, the ratio of ventilation and blood flow should be in the vicinity of V

.
/Q

.
= 1 [36].

Due to the above described difference in ventilation and blood flow distribution, V
.
/Q

.
is

heterogeneously distributed across the lungs even for a normal and healthy state. [28]

In medical practices, extremes of the ratio of ventilation and blood flow V
.
/Q

.
are defined as:

• Shunt:
regions of normal/high blood flow but no ventilation → V̇/Q̇ = 0
• Hypoventilation:

regions of normal/high blood flow but small ventilation → V̇/Q̇� 1
• Hyperventilation:

regions of small blood flow but high ventilation → V̇/Q̇� 1
• Alveolar or physiological dead space:

regions of almost no blood flow and normal or high ventilation → V̇/Q̇→ ∞

These imbalances can occur regionally and always impair the gas exchange and lead to
hypoxemia3. The effect of a V

.
/Q

.
imbalance on the concentration of O2 in the blood is larger

than in CO2 elimination. This is mainly due to the different shapes of disassociation curves of
O2 and CO2. The disassociation curve of O2 is very nonlinear while the one for CO2 is almost
linear. Yet, hypoxemia can be reduced by hypoxic pulmonary vasoconstriction improving
the overall gas exchange by e.g. directing blood away from dead space or hypoventilated
regions. [26, 28]

2.1.3 Acute respiratory distress syndrome

Acute lung injury (ALI) is mainly characterized by diffuse alveolar damage associated
with pulmonary infiltrates. The patients develop respiratory distress, which often leads to
respiratory failure. The most severe form of ALI is known as acute respiratory distress
syndrome (ARDS). The abbreviation ARDS was first used in 1967 [37], describing severely
threatening reactions of the lung to inflammation processes not necessarily restricted to the
lungs. The mortality rate of patients suffering from ARDS is still very significant. In reviews
from 2005 [38] and 2009 [39], clinical studies addressing the mortality rate of ARDS patients
were summarized and mortality rates of around 30-40% were found. To overcome different
definitions of the pathology and optimizing and standardizing treatment of the syndrome,
a definition has been established during a European-American ARDS conference in 1994
[40]. In 2011, this definition was refined [41]. The respiratory symptoms are classified as

3Hypoxemia: an unhealty low concentration of O2 in the blood
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ARDS if [42]:

• bilateral pulmonary infiltrates are observed in x-ray images (not caused by cardiogenic
pulmonary edema)
• hypoxemia occurs, as defined by the ratio of partial pressure of arterial oxygen (paO2)

and fraction of inspired oxygen (FIO2):
• mild 200mmHg < paO2/FIO2 < 300mmHg
• moderate 100mmHg < paO2/FIO2 < 200mmHg
• severe paO2/FIO2 < 100mmHg

• lung edema are observed (no cardiac origin)

ARDS patients in an early stage show an increased permeability through the capillary-
alveolar barrier. Two main effects were observed due to the increased permeability. Firstly,
fluid is able to enter the alveoli, which leads to a formation of pulmonary edemas. Secondly,
the epithelial lining cells within the alveolar walls are damaged and decrease or fully cease
the production of surfactant. The compliance of the alveoli therefore decreases, and the
alveoli collapse. The overall gas exchange is therefore strongly impaired, and tidal volume is
distributed to ventilated alveoli, which overdistend and might be damaged. [42, 43]
The properties and the distribution of pulmonary blood flow are also affected by ARDS. The
PVR substantially increases due to multiple causes. By hypoxic pulmonary vasoconstriction,
blood flow is redirect to properly ventilated regions and away from collapsed areas, which
increases PVR since some arterial branches are closed or at least compressed by muscles
in the arterial walls. In addition, there is strong evidence that lung injury leads to blood
coagulation in ARDS, causing local thrombosis which again increases PVR. Finally, it has
been shown that in late and very severe ARDS, the capillary bed is more and more destructed.
[44]

In all patients suffering from ARDS, artificial or mechanical ventilation is needed. The choice
of ventilator settings has to be made very careful in order to improve gas exchange. Otherwise
the artificial ventilation might additionally harm the patient. Mechanical ventilation and
injuries resulting from a bad choice of respiratory parameters (ventilator associated lung
injury (VALI)), as well as concepts for lung protective mechanical ventilation, especially for
ARDS patients, are introduced in the next section.
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2.2 Mechanical ventilation

Mechanical or artificial ventilation describes the support or complete replacement of the
natural ventilation by an extracorporeal ventilatory machine. The ventilator acts as an
additional muscle to drive the airflow in and out of the lungs. For ARDS patients mechanical
ventilation is necessary at some point to recruit collapsed alveoli, improve gas exchange and
prevent hypoxemia. Nevertheless, high pressures can lead to overdistension in ventilated
alveoli and compress alveolar capillary. Lung protective ventilation is therefore aimed for to
prevent VALI. Typical modes of mechanical ventilation are introduced in the first section,
followed by a short description of lung injuries associated with mechanical ventilation for
ARDS patients. Finally, the concept of lung protective ventilation is described and the benefit
of an estimation of regional pulmonary blood flow.

2.2.1 Modes of mechanical ventilation

Mechanical ventilation in clinical scenarios is mainly conducted applying a positive pressure
at the airway opening. During an acute phase of ARDS, the patient is usually sedated and
does not have the possibility to trigger and perform spontaneous respiration. The ventilation
is typically performed invasively, thus the patient is intubated and a positive pressure is
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Figure 2.3: Airway pressure (A), volume (B) and air flow (C) time curves for pressure and volume con-

trolled ventilation modes. The idea for the depiction was taken from [45, 46].
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applied on the trachea. Typically, two different modes of ventilation are considered, which
only differ in the variable which is controlled.

Volume controlled ventilation For the volume controlled ventilation (VCV) mode, the
tidal volume VT and the respiratory rate (RR) are set by the physician. The VCV guarantees
the predefined volume. Yet, the maximal and the plateau pressure after inspiration are only
indirectly defined by the current mechanical respiratory properties. If the lung is very stiff
and has a small static respiratory compliance (Crs), the plateau pressure rises and might cause
overdistension of ventilated alveoli. If additionally, the static respiratory resistance (Rrs)
is high (due to e.g. atelectatic (collapsed) regions), the (maximal) peak pressure (Ppeak)
increases as well. High pulmonary pressures might additionally have a negative influence on
pulmonary blood flow, since PVR is increased and the right heart afterload is increased. The
pressure, volume and flow time curves are depicted in the right column of Figure 2.3.

Pressure controlled ventilation In comparison to the VCV, the pressure controlled venti-
lation (PCV) guarantees predefined pressures. The physician defines the driving pressure (DP)
and the RR. Peak pressures are therefore reduced, though the lung volume is not directly
controlled, and again depends on the current mechanical properties of the lungs. The flow
during inspiration is not constant but decreases exponentially (compare left column of Figure
2.3). The plateau pressure in PCV mode is reached earlier compared to the VCV mode. This
increases the possibility for ARDS patients, that collapsed regions are recruited. If more
alveoli are recruited, the volume is distributed within a larger alveolar space and the chance
of overdistention of healthy alveoli is reduced [47].
For both modes, some timing parameters can be set additionally. The inspiration:expiration
time ratio (I:E) as well as a pause time may be defined. The FIO2 has to be chosen as well.
For a long term ventilation, the choice should not exceed approximately 60% because the
free radicals of pure O2 can be toxic [47, 48]. Nevertheless, increasing the FIO2 might also
help to improve the blood oxygenation and reduce hypoxemia, though if larger shunted
regions are responsible for the low O2 saturation, increasing the FIO2 does not have any
influence.

Positive end-expiratory pressure In ARDS patients, recruiting collapsed lung regions is
one major goal of the mechanical ventilation. By applying tidal volumes or driving pressures
with VCV and PCV, collapsed alveoli can be recruited. Nevertheless, the possibility for
the alveoli to collapse again after expiration is high. For this reason, a static positive
end-expiratory pressure (PEEP) is applied to prevent the alveoli from collapse during the
expiratory pause and from cyclic re-opening and -closing, which additionally stresses the
alveolar tissue. On the offside, a high PEEP also increases the PVR and can therefore
decrease the CO. Additionally another potentially harming effect has to be taken into
account when applying PEEP values. Different regions within regionally injured lungs have
different mechanical properties and therefore substantially different alveolar inspiratory and
expiratory time constants. If the respiratory rate is high (typical for ARDS patients), the
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expiratory time might not be sufficient to remove the full inspired volume (air trapping).
Hereby, the PEEP is increased by an intrinsic positive end-expiratory pressure (iPEEP)
caused by the remaining residual volume within the alveoli.
While a broad agreement of the benefit of a PEEP exists, the choice of an optimal PEEP is
still controversially discussed [48]. Many factors have to be considered to define an optimal
PEEP. Besides analyzing the amount of collapse and overdistension, the regional analysis of
the influence on pulmonary blood flow should be taken into account as well, to be able to
assess regional V

.
/Q

.
ratios.

2.2.2 Ventilator associated lung injury

Since its introduction, mechanical ventilation has improved clinical outcome for severe
pulmonary diseases significantly. Yet, it is well known, that mechanical ventilation can
have negative effects, which need to be limited. Ventilator associated lung injury (VALI)
describes injuries or the worsening of patient health, which is associated with mechanical
ventilation. The definite source for the negative effect is often not known. If it is known and
a clear proof for mechanical ventilation being the cause is given, the term ventilator induced
lung injury (VILI) is used interchangeably [42, 49]. VALI/VILI is not limited to patients
with ARDS, but can occur in originally healthy lungs as well. It was found that, in 24% of
clinically ventilated patients, VALI develops within the first 5 days of artificial ventilation,
with a higher probability in ARDS patients [50].
The main mechanisms of VALI are damages caused by overdistension due to too high
volumes (volutrauma), or high pressures (barotrauma). In some cases, high pressures lead
to a rupture of alveoli and to pneumothoraces. In these cases, air accumulates within the
pleural cavity. The third main component is associated with a cyclic recruitment and collapse
of certain alveolar regions, which increases stress within the lungs. This injury is called
atelectotrauma. [51]
The choice of ventilation parameters has to be made very carefully. The tidal volume, the
peak pressure, the RR and the PEEP should be considered as most important ones and are
controlling mechanical power [52]. Gattinoni et al. have described, that in order to minimize
VALI, mechanical power should be decreased to reduce harmful strain, as well as lung
homogeneity should be increased [52].
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2.2.3 Lung protective ventilation

To prevent or at least minimize VALI, the parameters of controlled mechanical ventilation
need to be chosen carefully to protect the lung, while still sufficiently optimizing the gas
exchange in severely ill patients. The ventilation mode (VCV or PCV) seems to play a minor
role. In a review paper from 2015, Rittayamani summarized many studies comparing VCV
and PCV ventilation modes regarding harmfulness and clinical outcome for ARDS patients
[53], and no clear difference between both ventilation modes could be found. Independent
of the mode of ventilation, it is very important to choose the ventilation parameters such as
PEEP, driving pressure DP, VT and FIO2 carefully, to reduce the possibility for VALI. The
fundamental goals of a lung protective ventilation strategy are [8]:

• limitation of VT to avoid volutrauma
• limitation of end-inspiratory plateau (Pplat) (and peak pressure (Ppeak)) to avoid baro-

trauma
• choice of adequate PEEP to keep the lung open to avoid alveolar collapse and atelecto-

trauma
• limitation of FIO2 to prevent inflammation and toxicity

ventilated regions 

global impedance

collapsed regions

overdistended regions

Figure 2.4:Method to choose optimal PEEP using a decremental PEEP trial and the approach described

in [54]. The presented and analyzed data shows a decremental PEEP trial performed in a supine domes-

tic pig performed during the preclinical study in Dresden (see section 5). The analysis was created with

the PulmoVistaTM500 of Drägerwerk AG&Co. KGaA. The optimal PEEPwas chosen to PEEP = 10mbar

(forth image column from the left), since it was the optimal trade-off between a minimum of collapsed

and overdistended regions.
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The VT and end-inspiratory plateau pressure (Pplat) are directly interrelated. Generally, the
ARDS network (ARDSNet)4 suggests to set the tidal volume to VT= 6ml/kg and limit the
end-inspiratory plateau pressure to Pplat= 30mbar. The respiratory rate is adapted in order to
achieve a certain minute volume goal. [8]
Besides limiting the volume and pressure applied to the lung and its alveoli, it is important to
recruit the lung and keep it open to minimize the amount of collapsed regions. The concept
of keeping the lung open is generally known as open lung concept, and was described by
Lachmann [55] based on theoretical considerations in [56]. The idea is to recruit collapsed
lung regions as complete as possible, by applying high PEEPs and lowering the PEEP
afterwards to a minimal pressure that is sufficient to keep the lung permanently open. While
the idea is intuitive, finding the optimal PEEP, which is sufficient to keep the lung open
while not overdistending alveolis, is not a trivial problem and is still a matter of research and
ongoing discussion.
The spatial information of EIT reconstructions of the lung ventilation have been proposed
as a valuable additional contribution to find an optimal PEEP. In [54], two measures es-
timating regional collapse and overdistension have been proposed which are calculated
from the local impedance change caused by ventilation. The idea is to find an optimal
PEEP where the amount of collapsed and overdistended regions is minimal. Herefore, a
decremental PEEP titration is performed as depicted in Figure 2.4. The approach has been im-
plemented in the Diagnostics view of the PulmoVistaTM500 of Drägerwerk AG & Co. KGaA.

Although the spatial information about collapsed and overdistended regions might prove to
be clinically helpful, the knowledge of the spatial distribution of perfusion within the lung
might help to find abnormalities in regional V

.
/Q

.
ratios. Similar to the idea of minimizing

collapse and overdistension, reducing V
.
/Q

.
inhomogeneity as a function of the PEEP, might

represent a strategy to find an optimal PEEP not only targeting respiratory mechanics but gas
exchange. The simple depiction of the idea can be acknowledged in Figure 2.5.

Institute of Biomedical Engineering

Optimizing mechanical ventilation in an ICU 
Ventilation/Perfusion ratio

Biosignal Workshop 2020 - Michael Kircher - Nonlinear and Piecewise Fitting of indicator-enhanced EIT signals2

Mechanical ventilation with positive pressure    optimize gas exchange 

Increase PaO2 and Decrease PaCO2 
Reopen collapsed alveoli (recruitment maneuver) 
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Vilar, J. et al., European Congress of Radiology, 2011
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Figure 2.5: Visualization of PEEP optimization based on analyzing ventilation and perfusion. To recruit

atelectatic regions of the lungs, a static pressure is applied to reopen collapsed alveoli and enable gas

exchange in these regions. Yet, the PEEP needs to be chosen carefully to prevent overdistention, which

again increases PVR and reduces the blood flow into the region.

4Research network to study ARDS (http://www.ardsnet.org/)



Chapter 3
Electrical Impedance

Tomography for pulmonary
hemodynamic monitoring

Electrical impedance tomography (EIT) is a clinically available functional imaging modality,
which allows bedside monitoring of spatial changes in electrical tissue conductivity. Its
current main clinical application is the visualization of conductivity changes in the human
thorax, while other applications such as the observation of gastro-intestinal emptying [57]
or the bladder volume [58], analyzing brain function such as cortical neural activity [59],
locating internal haemorrhage [60, 61] or detecting breast cancer [62] are also investigated.
The concept of EIT has first been introduced by Henderson and Webster in 1978 [63] and
was initially applied for medical purposes during the 1980’s by Barber and Brown [64].
Since the 1990’s there has been an increasing research interest in this functional imaging
technology. The technology has received even more recognition due to the release of two
commercially available clinically certified systems in 2011 and 2013. In 2011, Drägerwerk
& Co. KGaA released the PulmoVista R© 500 followed by the Swisstom BB2 of Swisstom
AG in 2013. In this thesis, EIT will be applied to measure pulmonary blood flow and
general cardio-respiratory hemodynamic monitoring. The following chapter will provide
the necessary fundamentals to understand the technical principles of cardio-pulmonary EIT
monitoring. A thorough overview of the state of the art of this application of EIT will be
presented in the last section of this chapter.

3.1 Technical principles of EIT

3.1.1 EIT measurements

The principle of medical EIT bases on the fact, that the human body consists of many
different biological tissues with distinguishable electrical properties such as electrical con-

21
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high frequency

low frequency

Rintra

Rextra

Cmembran Rintra

Rextra

Cmembran

Figure 3.1: Microscopical illustration of the current paths through a cell compound and the resulting

equivalent circuit as introduced by [65]. The current paths at low and high frequency are depicted.

At low frequencies, the cell membranes with their capacitive behavior can not be penetrated by the

current. The current flows through the extracellular space which is modeled by the resistor Rextra in the

equivalent circuit. At high frequencies, the current is able to flow through the cells as well. The intra-

cellular space is modeled as resistor Rintra and the membrane as capcitor Cmembrane. The illustration is

created based on the idea from [66–68].

ductivity σ and dielectric permittivity ε . These tissue properties often change with (patho-)
physiological function and vary significantly with frequency. The flow of electrical currents
is mainly determined by the movement of ions within the body. At low frequencies, the
extra-cellular fluid is mainly responsible for the current propagation and can be described by
an electrical resistor. With increasing current frequency, the capacitive cell membranes allow
current to penetrate the intra-cellular space. Overall, biological tissue can be described by
an equivalent circuit with resistors for the intra- and extra-cellular space and a capacitance
for the cell membrane. This model was introduced by Cole and Cole [65] and is depicted in
Figure 3.1.
To measure the tissue properties, a small current is injected through two surface electrodes

into the body, and other electrodes placed around the thorax measure the resulting potential
field. A suitable stimulation current frequency has to be chosen, which is a compromise
between multiple considerations: The electrode-skin contact impedance decreases with
increasing frequency and reduces the errors due to impedance imbalances on the measuring
electrodes [68, 69]. With higher frequencies the maximally permitted injected current ampli-
tude considered harmless increases, which results in higher signal-to-noise ratios (sSNRs)
[70]. Nevertheless, at high frequencies the design of analog circuits becomes substantially
more complex and capacitive effects of parasitic capacitances increase [69]. For these oppos-
ing reasons, EIT injection frequencies are typically chosen between fI = 10−1000kHz [71].
Throughout the research for this thesis, only time-difference EIT has been performed with
single frequency injections. Measurements have been analyzed from two distinct systems.
Their technical properties are summarized in Table 3.1.
Both devices, deployed for measurements during the research for this thesis, use nE = 16
electrodes placed around the thorax in a 2D plane and use an adjacent stimulation as well
as measurement protocol (see Figure 3.2). A current is injected into the body D through
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EIT protocol

nE fI (kHz) fs (Hz) stimulation measurement

Care Fusion Goe MF II 16 5-500 25 adjacent adjacent

Dräger PulmoVista R© 500 16 80-130 50 adjacent adjacent

Table 3.1: Property overview of the systems used for clinical and preclinical measurements.

two neighboring electrodes and the resulting potential differences are measured at all other
neighboring electrode pairs on the surface ∂D. This type of impedance measurement is
called 4-electrode measurement, since the potential differences are measured at electrodes
which do not carry a current simultaneously [72]. Due to the electrode-skin impedance a
substantial voltage drop occurs at the stimulation electrodes, which influences the voltage
measurement at the stimulating electrodes [69, 72]. The voltage measurement at all other
electrodes is done with a very high input impedance, so that the electrode-skin impedance
can be neglected. The current injection is successively repeated at all possible electrode pairs
until a complete measurement cycle is completed. One measurement cycle will be called
measurement frame throughout this thesis and allows the reconstruction of a single axial
image of the internal tissue conductivity distribution. Although a 2D image is reconstructed,
the flow of the injected current is not restricted to the 2D plane at electrode height. Thus,
the cross-sectional image represents a projection of a 3D sensitive region around the elec-
trode level onto a 2D-plane at electrode height. The frame rate fs defines the measurement
or image repetition rate. Thus, physiological processes with frequencies f <= fs

2 can be
monitored as defined by the Nyquist-Shannon sampling theorem [73]. For both devices a
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Figure 3.2: Illustration of the EIT measurement and stimulation pattern as it is used for example in the

Dräger PulmoVista R© 500. nE electrodes are attached to the surface ∂D of the domain D and a current

is injected through the electrode pair (16,1). The resulting potential differences are measured at all re-

maining electrodes. To complete a full measurement frame, the current injection is sequentially rotated

around the body, injecting currents through the pairs (1,2);...;(15,16). The resulting equipotential lines

and current paths are additionally displayed.
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single measurement frame consists of M = nE(nE −3) = 208 measurements with M
2 = 104

being linear independent respecting Green’s reciprocity theorem [74].
The positioning of the electrodes and the type of stimulation and measurement pattern
have a substantial influence on the spatial distribution of measurement sensitivity within
the body [75]. For the Care Fusion Goe MF II device (which was used during the Iowa
study), the electrodes are placed equidistantly around the thorax with the first electrode on
the sternum and the 9th electrode close to the spine. Due to the low conductivity of bone
tissue and the concave body surface at these positions, the electrodes are rearranged for the
PulmoVista R© 500 as depicted in Figure 3.2. The adjacent stimulation and measurement
pattern is more sensitive to conductivity changes closer to the boundary compared to changes
in the center of the body [75, 76]. This is a disadvantage compared to the more homoge-
neous distribution of sensitivity for stimulation and measuring patterns between electrodes at
opposite positions of the thorax. Nevertheless, the complexity of the hardware significantly
increases for these types of patterns and the adjacent patterns are still a well working and
clinically validated compromise [69]. For a mathematical description of the measurement
sensitivity be referred to section 3.1.2.

3.1.2 Forward problem of EIT

The forward problem of EIT describes the mathematical function of calculating a resulting
potential φ of a known distribution of (complex) conductivities σ1 within a domain and
a known current injection at the surface of this domain. EIT’s governing equation for the
forward problem can be derived from Maxwell’s equations [69, 77]. We herefore assume
that a sinusoidal current with a frequency fI < 1MHz is injected into the domain D ∈ R3 at
distinct positions on the domain boundary ∂D and we can neglect indirect currents induced by
magnetic fields for this frequency range (magnetic permeability µ and the angular frequency
of the current ω are relatively small) [69]. The current injection causes an electric field E(p)
at positions p∈D, which is linked to the the current density j(p) by the complex conductivity
or admittivity σ(p) = σ(p)+ iωε(p):

J(p) =
(
σ(p)+ iωε(p)

)
·E(p) (3.1)

Additionally, we do not expect any internal current sources in the stimulation frequency
range within D, thus the divergence of j(p) is zero:

∇j(p) = 0 (3.2)

With the aforementioned negligible magnetic field, the temporal derivative of the magnetic
field vanishes and the electric field can be expressed by the spatial gradient of the scalar
potential φ(p):

E(p) =−∇φ(p) (3.3)

1Throughout this thesis only isotropic tissue conductivity is considered. In case of anisotropic
conductivity, σ describe a tensor of [3×3]
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Combining equations (3.1), (3.2) and (3.3), we finally arrive at the generalized Laplace
equation:

∇ ·
[
(σ(p))+ iωε(p) ·∇φ(p)

]
= 0 (3.4)

With EIT we try to recover the internal spatial distribution of the complex conductivity or
admittivity σ(p) for a current stimulation by measuring potential differences at the surface
∂D of D. The complex component of the admittivity in the range of stimulation frequencies
is often neglected due to its relatively small impact [71] and the Laplace equation can then
be reduced to its real valued version:

∇ ·
[
σ(p) ·∇φ(p)

]
= 0 (3.5)

The Laplace equations in (3.4) and (3.5) can be interpreted as continuum versions of Kirch-
hoff’s law [69].

Since the current injection at electrode positions pE ∈ ∂D on the boundary is known, we
have to solve the boundary value problem described by equation (3.5) and the Neumann
boundary condition defining the current density j(p) on the boundary p ∈ ∂D:

j(p) =

{
σ(p) ∂φ(p)

∂n p ∈ pE

0 p 6∈ pE
(3.6)

The vector n describes the normal vector on ∂D. This boundary condition refers to point
EIT electrodes, which were generally used throughout this thesis, except during the simula-
tion study in chapter 8. If full electrode models are considered, a more complex boundary
problem needs to be solved [78–80].

The forward problem is generally solved numerically, since an analytic solution only exists
for very simple geometries [81]. The typical approach to solve the Forward Problem of
EIT is the finite element method (FEM) [69, 81]. The two- or three-dimensional domain
D is discretized into K elements, typically triangular or tetrahedral. Within each element
a constant conductivity is assumed, thus a vector σσσ ∈ RKx1 represents the discrete spatial
distribution of conductivity. With the forward problem, we mathematically calculate the
voltage measurements vm between a pair of adjacent surface electrodes for a known spatial
distribution of tissue conductivities σσσ and a known current injection I at another pair of
electrodes. We can therefore define a discrete Forward Operator F : σσσ ∈ RKx1→ v ∈ RMx1,
therefore:

v = F (σσσ , I) (3.7)

For medical applications, EIT is mostly used to detect changes in conductivity due to dynamic
physiological processes with respect to a static background conductivity σσσB ∈ RKx1. This
special form of EIT is called time-difference EIT and has been used for all EIT measurements
in this study. By considering only conductivity changes in terms of the reconstruction, the
sensitivity of the nonlinear forward problem in equation (3.7) to modeling errors of the
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boundary and to errors in electrode position can be substantially reduced [47, 82]. We
herefore expand the nonlinear forward operator in equation 3.7) into a Taylor series:

v = F (σσσ)≈F (σσσB)+
∂F (σσσ)

∂σσσ

∣∣∣
σσσ=σσσB

(σσσ −σσσB)+ . . . (3.8)

If we assume only small changes in conductivity ∆σσσ ∈
{
RKx1|∆σσσ = σσσ −σσσB

}
, we can

neglect higher order components of the Taylor series and approximate the forward problem
with linearly, calculating the measured voltage changes ∆v ∈ RMx1 as [83]:

∆v≈ ∂F (σσσ)

∂σσσ

∣∣∣
σσσ=σσσB

∆σσσ = J ·∆σσσ (3.9)

The voltage change ∆v= v−vB is the change with respect to a background voltage vB ∈RMx1

which corresponds to the background conductivity σσσB. The linear approximation and first
order component of the Taylor series of the forward operator is expressed by the Jacobian
matrix J ∈ RMxK . It projects the conductivity change in each spatial element k onto to the
mth voltage measurement at a specific current injection.
One common method to calculate a good estimate of the Jacobian J is the perturbation
technique [84]. A small conductivity perturbation ∆σk is applied to a single element k and
the resulting measurement voltage changes ∆v are calculated with the FEM. We can therefore
calculate each element of J by

Jmk =
∆vm

∆σk
(3.10)

A more sophisticated method to calculate the Jacobian directly from the derivatives of the
FEM system matrix was introduced in [85]. This approach is more efficient computationally
and increases the accuracy for large FEM element sizes.

The linear approximation of the forward problem with the Jacobian J enables a fast calcu-
lation of the measured voltage changes by simple matrix multiplication. This is beneficial
especially for the inverse problem, which is described in the following section. Nevertheless,
the Jacobian depends on the choice of σσσB. In clinical reconstruction, the assumption, that
the background conductivity is homogeneous, has often been considered and resulted in
sufficiently good reconstructions.

3.1.3 Inverse problem of EIT

The goal of EIT is to recover the spatial distribution of conductivity or conductivity changes
within a volume by measuring voltages at the surface of this volume. We therefore try to
recover the source from its effect, which is the classical description of an inverse problem.
Thus, for time-difference EIT, we want to recover the inverse of the forward problem
relationship in equation (3.9):

∆σσσ = J−1 ·∆v (3.11)

For the reconstruction of the conductivity changes within the body, it is crucial to have a
good estimate of the forward model J. Nevertheless, the calculation of the Jacobian is also
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very sensitive to modeling errors close to the boundary and to electrode position errors [82].
Especially for clinical application, it has therefore been useful to reconstruct normalized
voltage changes based on a normalized Jacobian. The systematic errors are therefore canceled
out [47] and the influence of the modeling errors are substantially reduced. The normalized
reconstruction is described by:

∆σσσn = J−1
n ·∆vn (3.12)

with ∆vn =
v−vB

vB

∆σσσn =
σσσ −σσσB

σσσB

Jn = diag(j̄)−1 ·J

For the normalization of the Jacobian, the overall or global sensitivity of each measurement
m is calculated:

j̄m =
K

∑
k=1

Jmk (3.13)

Throughout the whole thesis, the normalized reconstruction has been applied. For a simpler
notation, the index ()n indicating the normalization will be waived in the following.

To recover ∆σσσ , the Jacobian needs to be inverted. Unfortunately, J is generally not a square
matrix and therefore not invertible. For this reason, the internal conductivity changes are
approximated by minimizing the euclidean norm of an error function:

∆σ̂σσ = argmin
∆σσσ

‖∆v−J ·∆σσσ‖2
2 (3.14)

The minimization can be performed explicitly using the generalized least squares method
and the Moore-Penrose-Pseudoinverse Θ to get an approximation of the internal conductivity
changes ∆σ̂σσ ∈ RKx1 [86]:

∆σ̂σσ =
(

J>J
)−1

J> ·∆v = Θ ·∆v (3.15)

The matrices J and J>J are ill-conditioned2. Thus, the inverse problem of EIT violates at
least one of the criteria of well-conditioned problems as defined by Hadamard [87, 88]:

Definition: Well-conditioned problem
A physical problem described by a mathematical system or model A : x → y is well-
conditioned if:
• (existence) for all measured data y, a solution x exists
• (uniqueness) for all measured data y, the solution x is unique

2The terms ill-/well-conditioned are used, since the described inverse problem is a discrete problem.
The more commonly used description ill-/well-posed refers to continuous problems.
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• (stability) the solution x depends continuously on the measured data y (small pertur-
bations in y cause small changes in x, therefore the inverse x = A−1 ·y is continuous)

The third criterion is the most crucial one for the inverse problem of EIT [69]. It can not be
assumed that a spatial distribution of ∆σσσ can be stably recovered from a boundary voltage
measurement ∆v. To enforce the solvability of the inverse problem, additional constraints
need to be imposed. Often some a-priori information about the solution is known, e.g.
spatial smoothness or a realistic interval of possible solution values. Techniques, augmenting
additional a-priori constraints to the solution, are called regularization techniques. Typical
approaches to regularize inverse problems are the Tikhonov regularization or the truncated
singular value decomposition (tSVD). Both approaches will be introduced briefly in the
following.

Tikhonov regularization

To generalize the description of a regularized inverse problem, the following simple ill-
conditioned model3 is introduced:

y = A ·x+ e (3.16)

with y ∈ RMx1 , e ∈ RMx1

and x ∈ RKx1 , A ∈ RMxK

We arrive at the EIT reconstruction problem if we replace:

y := ∆σσσ

A := J (3.17)

x := ∆v

If we want to recover the sources x from the measurement y with the superimposed mea-
surement noise e, the system matrix A needs to be inverted. Since A is a non-invertible and
ill-conditioned matrix, the inverse is approximated by minimizing the following functional
including a-priori information [88]:

x̂ = argmin
x

(
‖y−Ax‖2

2 +λ ‖Rx‖2
2

)
(3.18)

The second norm ‖Rx‖2
2 of the functional introduces the imposed constraints on the approxi-

mation of the solution x̂ with a regularization matrix R∈RKxK . The regularization parameter
λ ∈ {R |λ > 0} controls the amount or order of regularization. To minimize the functional
in equation (3.18) the Moore-Penrose-Pseudoinverse is calculated:

x̂ =
(

A>A+λ ·R>R
)−1

A> ·y (3.19)

3The symbols A, x and y, describing the exemplary model, are introduced for simplicity and are only
used within the current chapter and can not be found in the main symbol list.
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The type of imposed constraint is defined by the regularization matrix R. For the classical
Tikhonov approach, the regularization matrix is chosen to be a unit matrix R = I. The
estimates x̂ are forced to have the smallest possible amplitudes. Throughout this thesis,
different regularization matrices are used and will be introduced in chapters 9 and 10.
The choice of the regularization parameter λ has a crucial impact on the quality of inversion.
If λ is chosen too small, the solution x̂ tends to the general least squares minimization
without any regularization, yet if it is too large, the influence of the regularization dominates
and the actual inversion is neglected. A rough interval for suitable λ can be estimated by
calculating the condition c of the matrix A>A+λ ·R>R [47, 69]:

c
(

A>A+λ ·R>R
)
=

χ1 +λ

χK +λ
(3.20)

χ1,χ2, ...,χK ∈ R describe the Eigenvalues of the matrix A>A. Without a regularization
(λ = 0) the condition of the matrix to be inverted is defined by its Eigenvalues. For the
inverse problem of EIT, χ1� χK leads to a strongly ill-conditioned matrix. With λ � χK

the condition can be improved [47]. In Figure 3.3, the Eigenvalues and the condition of the
matrix without and with a Tikhonov regularization are depicted.
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Figure 3.3: Graphic visualization for the Eigenvalues of the matrix A>A+λ ·R>R for different values

of λ . R = I was chosen. The ratio between the smallest and the largest Eigenvalue, which determines

the condition of the matrix, improves for increasing λ .

Multiple systematic approaches to optimize λ have been proposed in literature. The most
well-known approaches are the L-curve method, the generalized cross validation (GCV)
[89–91] and explicitly for EIT the optimization of the noise figure [92, 93].
In this thesis the L-curve is used if not stated otherwise. The underlying idea is to system-
atically find an optimal trade-off between minimizing the regularization or solution norm
‖Rx(λ )‖2

2 and the residual norm ‖y−Ax(λ )‖2
2. If the logarithm of the solution norm is
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plotted over the logarithm of the residual norm, we expect an L-shaped curve. The value of
λ corresponding to the corner of the L-shaped curve therefore represents the optimal choice
for the regularization parameter. An implementation of the approach in [90] has been used.

Equation 3.18 can be further extended considering weighted norms [84, 94]:

x̂ = argmin
x

(
‖y−Ax‖2

W +λ ‖Rx‖2
P

)
(3.21)

The matrices W,P ∈ RKxK allow to weight the regularization and system matrix. W can
be interpreted as the inverse of the measurement noise e. If we assume uncorrelated noise
between the measurement channels, W is chosen to be a diagonal matrix. It allows to weight
the system matrix with its covariance. For the inverse problem of EIT, this means, if all
measurements at the surface electrodes can be considered as having the same quality (similar
electrode-skin impedances, gains,...), W = I is chosen. Similarly, the matrix P−1 can be
interpreted as covariance matrix of the expected image [95], though P can be chosen to
impose any a-priori information and can also be integrated in R. The final reconstruction
can be conducted with the following Moore-Penrose-Pseudoinverse:

x̂ =
(

A>WA+λ ·R>PR
)−1

A>W ·y (3.22)

Truncated singular value decomposition (tSVD)

Another approach to regularize inverse problems is the truncated singular value decomposi-
tion (tSVD). To briefly introduce the method, the simple system described in equation (3.16)
will be considered. The following introduction is a summary mostly from [96].
In order to find a regularized inverse of the ill-conditioned matrix A, the matrix is approxi-
mated as in:

A = UD/ O> (3.23)

The decomposition consists of the matrix U ∈ RKxK which contains the orthonormal Eigen-
vectors of A>A, the matrix O ∈ RKxK consisting of the orthonormal Eigenvectors of AA>

and a diagonal matrix D/ ∈ RKxK . The diagonal elements of D/ are the square roots of the
Eigenvalues χ1,χ2, ...,χK and are called singular values. Throughout this thesis, the singular
value decomposition as implemented in MATLAB R2019a was used. As described for the
Tikhonov regularization, the condition of a matrix is defined by the ratio between its largest
and smallest Eigenvalue. Thus, the idea behind the tSVD is to remove the smallest kr singular
values and to approximate the matrix A by:

A≈ Ar = UrD/ O>r (3.24)

The matrices are therefore reduced in size. The matrices Ur,Or ∈ RKxK−kr contain only the
first K− kr Eigenvectors corresponding to the first Eigenvalues χ1, ...,χK−kr . To calculate an
estimate of the solution x̂, the Moore-Penrose-Pseudoinverse is defined:

x̂ =
(

A>r Ar

)−1
A>r ·y (3.25)
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The number of neglected Eigenvalues kr can be optimized with the methods described for
the Tikhonov optimization.
By removing the smallest Eigenvalues, the condition of the matrix can be considerably
improved. Since small Eigenvalues most likely correspond to high frequencies in the
solution, the tSVD method can be considered as a sharp low-pass filter [90]. The Tikhonov
regularization is a more smooth lowpass and more adaptive, since the type of imposed
regularization can be chosen with more degrees of freedom by the matrix R.

Graz consensus reconstruction algorithm for EIT (GREIT)

Following first discussions at the International Conference of Bioimpedance (ICEBI) in 2007,
a unified 2D-EIT reconstruction algorithm has been developed and published in [93]. With
the goal to define a standard linear 2D-EIT reconstruction algorithm, the general opinion of
many experts has been consulted, in order to define a general consensus on the properties of
a robust and high-performance reconstruction algorithm.
Firstly, multiple standardized figures of merit were defined in [93], which allow to analyze
the performance of the reconstruction. These figures of merit have been applied during the
sensitivity study in chapter 7 and will be introduced in detail in section 7.2. The defined
reconstruction performance parameters comprise a measure of the amplitude response, which
describes the ratio between the reconstructed amplitude and the target amplitude, a measure
of the position error between reconstruction and the simulated target and other measures
describing shape deformation, reconstructed resolution and ringing.
All above described linear reconstruction approaches derive a linear reconstruction matrix
based on the implicit inversion of the Jacobian stabilized by some sort of regularization R.
The idea behind the GREIT reconstruction algorithm is to explicitly or directly define a
reconstruction matrix ΘΘΘG ∈ RK×M based on a training set of i = [1, ..., I] simulated conduc-
tivity target pertubations ti ∈RK×1 and their corresponding forward calculated M normalized
difference voltages ∆vi ∈ RM×1. In order to compute an optimized reconstruction matrix
ΘΘΘG, desired reconstructed EIT images ∆σ̃σσ

i ∈ RK×1 were defined. The desired images were
calculated by ∆σ̃σσ

i = ΛΛΛti with a desired image mapping matrix ΛΛΛ ∈ RK×1, which can be
interpreted as the desired point spread function of the EIT reconstruction. Utilizing ΛΛΛ the
reconstruction properties can be explicitly defined. To train ΘΘΘG, the functional defined by the
desired images of all targets ∆Σ̃ΣΣ ∈ RK×I is minimized and the simulated difference voltages
corresponding to all simulated targets ∆V ∈ RK×I [93, 97]

e(ΘΘΘG) = ‖∆Σ̃ΣΣ−ΘΘΘG ·∆V‖2
(3.26)

For the targets, a spatial distribution t∼N (0,Ct) with a covariance Ct is considered. To
additionally minimize the noise amplification of the reconstruction algorithm, J measure-
ments of voltage differences ∆Vn ∈ RK×J solely caused by measurement noise were also
considered. Measurement noise was modeled by Gaussian white noise with the covari-
ance Cn: ∆Vn ∼N (0,Cn). The target and noise measurements were simply concatenated
(indicated by [...|...]) and the extended functional was minimized:

e(ΘΘΘG) = ‖[∆Σ̃ΣΣ|0]−ΘΘΘG · [∆V|∆Vn]‖2
(3.27)
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Minimizing this functional with respect to ΘΘΘG results in:

ΘΘΘG = ΛΛΛC−1
t ∆V>

(
∆V∆V>+∆Vn

∆Vn>
)−1

(3.28)

For small targets, ∆V≈ J can be assumed, with J representing the Jacobian of the forward
problem. The final reconstruction matrix strongly resembles the Tikhonov reconstruction
matrix optimized by ΛΛΛ:

ΘΘΘG = ΛΛΛC−1
t J>

(
JCtJ>+λCn

)−1
(3.29)

λ again controls the noise suppression and is generally optimized by optimizing the noise
figure (NF) as introduced in [93]:

NF =
E
{

mean|∆Σ̃ΣΣ|
}
/E
{

std|∆Σ̃ΣΣ
n|
}

E {mean|∆V|}/E {std|∆Vn|} (3.30)

Thus, the reconstructed image SNR is compared to the voltage data SNR. A value of λ

creating a NF = 0.5 is recommended to be chosen [93].
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3.2 State of the Art - pulmonary
hemodynamic monitoring

The described EIT reconstruction algorithms have been applied in numerous studies and
published research to identify regional distributions of ventilation. Although the idea of
analyzing regional pulmonary blood flow related conductivity changes is nearly as old as
EIT itself, there have been substantially less publications. The two main topics of cardio-
pulmonary hemodynamic research focused on the estimation of stroke volume (SV) and
cardiac output (CO) estimation, as well as the reconstruction of pulmonary perfusion. The
following description of previous work will focus on regional pulmonary perfusion estima-
tion.

Two different concepts of estimating regional pulmonary perfusion with EIT have been
investigated in previous publications. Firstly, a continuous and fully noninvasive estimation
has been investigated, which analyzes the circulation related conductivity change (CRIC)
within the heart and the lungs. For the second approach, a hypertonic saline indicator was
injected central venously and tracked during its passage through the pulmonary circulation.
Both approaches have been applied in clinical studies and have also been compared to each
other.

Pulmonary perfusion estimation based on CRIC To analyze the CRIC signal, it has
to be separated from the substantially larger ventilation related conductivity or impedance
changes. The simplest method to separate ventilation and blood circulation related signals
is frequency domain filtering [20, 98]. If an electrocardiogram (ECG) is simultaneously
recorded, ECG-gated ensemble averaging has been applied [19, 20, 98, 99] or even adaptive,
more complex filters based on principle component analysis (PCA) have been proposed [100–
102]. In many preclinical and clinical studies, the need to separate CRIC from ventilation
related signal components has been circumvented by performing the EIT measurements
during respiratory hold phases [103].
Already in 1989, the CRIC has been investigated by Eyuboglu et al. [99]. They already
investigated CRIC in humans and separated it from ventilation-related signal components
by ensemble averaging. They already hypothesized, that the origin of the pulsatile cardiac
signal might be local blood volume changes of distensible blood vessels, flow characteristics
and movement of the heart. In [104], a correlation between a decrease of CRIC amplitude
and the loss of alveolar capillaries could be identified [98]. Smit et al. published similar
findings [105]. They suggested that CRIC amplitudes are mainly determined by the size
of the microvascular bed and rather little by SV. Intensive care physicians are especially
interested in perfusion of the microvascular bed, since this is the perfusion participating in
gas exchange. Yet, the origin of CRICs seem to be manifold and might be caused by multiple
simultaneously occurring effects [18]. Borges et al. showed that indicator based perfusion
estimation outperforms the CRIC approach in a small preclinical porcine study [19], while
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Stowe et al. recently suggested that pulsatility based perfusion imaging could achieve similar
results as the indicator dilution technique [20].
The CRIC most definitely contains information about pulmonary perfusion in the vascular
bed, yet it seems to be superimposed by other effects. CRIC measurements can be acquired
continuously at bedside, which is a clear advantage compared to indicator based approaches.

Indicator based perfusion estimation Initially, the use of contrast agents for the appli-
cation of perfusion measurements with EIT was suggested by Brown et al. [106]. Since then,
multiple experimental analyses using the method have been conducted while there is still
need for comprehensive (clinical) validation studies [107]. The most important publications
regarding the indicator dilution method will be summarized in the following:

• In 2002, Frerichs et al. performed a first preclinical feasibility study. Indicator-
enhanced EIT perfusion was compared against Electron Beam Computed Tomogra-
phy (EBCT) scans. The study was performed with three piglets and three different
experimental states were investigated: uni-lateral injection of EBCT and EIT indicators
through the distal port of a PAC to the left lung; proximal injection of indicators with
the left pulmonary artery blocked with a balloon at the tip of a PAC; proximal injection
of the indicator without obstruction of the pulmonary arteries. For EIT measurements,
a hypertonic saline indicator was used with a concentration of 5.85 %. While the
animals were quite small (20 kg), which simplifies the mathematical inversion, and the
study group was relatively small (n=3), the study could prove the principle feasibility
of indicator-enhanced EIT perfusion measurements.

• In 2012, a slightly larger preclinical study with n=6 piglets was conducted by Borges et
al. [19]. EIT indicator perfusion was compared to Single Photon Emission Computed
Tomography (SPECT) perfusion during seven different conditions: bi-lateral con-
trolled ventilation, uni-lateral ventilation, uni-lateral ventilation with the attenuation
of HPV by nitroprussid infusion, bi-lateral lung injury induced by lung lavage with
and without the attenuation of HPV and bi-lateral ventilation after recruitment. EIT
perfusion could follow SPECT perfusion nicely with limits of agreement of around
10 %. The saline indicator concentration was nevertheless very high (20 %). The
usage of this concentration is arguably not applicable for clinical measurements due
to its high osmolarity and its potential influence on cardiac electrophysiology [108].
The piglets were also relatively small compared to humans. The study introduced
robust methods to estimate pulmonary blood flow parameters after the removal of
recirculation using gamma variate fits. Additionally, CRIC was compared to SPECT
and indicator EIT with clinically insufficient validation results, expecially regarding
trending.

• In two PhD theses from 2011 [47] and 2015 [102], algorithms for indicator based
blood flow were analyzed and further developed. Nevertheless, both theses lacked
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gold standard validation and only show principle plausibility. Pikkemaat also com-
pared different EIT reconstruction algorithms to computed regional dynamic indicator
signals from voltage measurements, yet could not find a distinct optimal algorithm
outperforming the others.

• In 2018, Hentze et al. published another preclinical study comparing indicator per-
fusion based on EIT against SPECT [109]. The study comprised four animals and
measurements were conducted at two different PEEP levels (5 mbar and 15 mbar). A
saline indicator with a concentration of 10 % was used. EIT perfusion distributions
showed strong similarity with SPECT perfusion. The dorsal-ventral profiles of EIT
perfusion correlated with SPECT (r=0.94). Additionally, EIT ventilation was also
compared to SPECT and also showed very good accordance. The main contribution
of the paper was a novel method of calculating regional blood flow estimates based
on multi-compartment transfer functions. The method does not rely on pixelwise
estimation but represents rather a system approach. The lack of regional informa-
tion regarding transit times might be considered as a disadvantage. Additionally, the
method should be evaluated with respect to robustness in a larger study.

Besides this major contributions, which either contributed algorithmically or validated
indicator perfusion against a gold standard perfusion imaging method, there have been
additional preclinical studies without the comparison against another perfusion measurement
technique [110, 111]. In [20], indicator perfusion was compared against CRIC in lambs.
During breath hold, CRIC performed equally well compared to indicator perfusion. A recent
review [112] describes regional indicator perfusion measurements based on EIT as promising
to be able to calculate ventilation-perfusion ratio (V

.
/Q

.
) distributions. Nevertheless, more

validation studies are still essential.





Chapter 4
Indicator dilution theory

The theory of indicator dilution and previous applications of the indicator dilution in the
context of pulmonary hemodynamics shall be introduced in this chapter to give a fundamental
overview of the principle of this technique for the application to indicator-enhanced EIT.

4.1 Theoretical fundamentals

The measurement of blood flow using the indicator dilution method dates back to first mea-
surements in Stuttgart published in 1829 [113]. In 1954, over 100 years later, a fundamentally
important paper was published by Meier and Zierler [21], who proved and established the
central volume theorem (CVT). Since then the method has been developed further and
applied for different clinical measurements.
A fluid bolus cin(t) is injected into a system roughly instantaneously. With the indicator
dilution theory, the blood flow (BF) Q̇B, the blood volume (BV) QB and the mean transit
time (MTT) t̄B can be estimated by measuring the output of the system cout(t) [21, 114]. The
parameters are connected to each other by the CVT:

Q̇B =
QB

t̄B
(4.1)

In order to estimate these blood circulation related parameters in a complex network of
different sizes and number of parallel vessels, a transfer function from the input to the output
needs to be estimated. Since this transfer function is dependent on the vascular network and
its properties, it is not possible to identify such a system transfer function analytically and
therefore needs to be estimated. For this estimation, multiple assumptions are typically made
[21]:
• The blood flow Q̇B(t) = Q̇B through the system as well as the volume QB(t) = QB of

the system are constant.
• No volume of fluid is stored within the system and recirculation does not occur.
• The indicator can be described by particles and the flow of the indicator particles is

representative of the total fluid.

37
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We define an indicator transport function h(t), which can be regarded as the impulse response
of the system [21, 109, 115]:

cout(t) = cin(t)∗h(t) =
∫ t

0
cin(τ) ·h(t− τ)dτ (4.2)

The transport function h(t) can also be interpreted as probability density function of transver-
sal times [116]. If we can find a good estimate of h(t), the MTT is defined by the first
moment of this density function:

t̄B =

∫
th(t)dt∫
h(t)dt

(4.3)

To introduce the shape of a typical transport function h(t), we consider a system, which
consists of K serial compartments (tube model) [109, 116–118]. A graphical description
of such a model is given in Figure 4.1. Each compartment has a volume of QB,K = QB

K ,
therefore the overall volume of all serial compartments is QB. The blood flow Q̇B through
the compartments is assumed to be constant. An indicator with the concentration cin(t)
is injected into the first compartment of the tube and the concentration exiting the Kth

compartment cout(t) is measured. To derive the transport function of the multi-compartment
system, the approach by Hentze et al. [109] is summarized.
For a single ideally mixing compartment and the assumptions above, we can define the
following differential equation [109, 117]

dcout(t)
dt

=
K · Q̇B

QB
· (cin(t)− cout(t)) (4.4)

With the Laplace transform, the transfer function H(s) in the Laplace domain is calculated:

sCout(s) =
K · Q̇B

VB
(Cin(s)−Cout(s)) (4.5)

H(s) =
Cout(s)
Cin(s)

=
K · Q̇B

QB

1
K·Q̇B
QB

+ s
(4.6)

With the inverse Laplace transform, the transport function h(t) of a single ideally mixing
compartment results:

H(s) =
K ·QB

VB

1
K·QB

VB
+ s

s ch(t) = K ·QB

VB
e−

K·QB
VB

t
(4.7)

cin(t) cout(t) = cK(t)cK-2(t)

h1(t) h2(t) h3(t) h4(t) hK-1(t) hK(t)

QB

Figure 4.1: Graphical description of tube model with K compartments of equal volume QB/K. The

compartments are ideally mixing compartments. The indicator cin(t) is injected in the first compartment

and measured at the outflow of the Kth
compartment. The impulse responses of the kth

element is

described by hk(t). The illustration is motivated by the descriptions in [109, 116].
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The full tube system consists of K equal serially connected ideally mixing compartments.
The individual transfer functions of each compartment are multiplicatively connected in
Laplace domain and the overall transfer is described by:

H(s) =
K

∏
i=1

K · Q̇B

QB

1
K·Q̇B
QB

+ s
=

(
K · Q̇B

QB

)K 1(
K·Q̇B
QB

+ s
)K (4.8)

With the inverse Laplace transform, we finally arrive at the overall transport function:

h(t) = L −1 {H(s)}=
(

K · Q̇B

QB

)K tK−1

(K−1)!
e−

K·Q̇B
QB

t ∀ t > 0 (4.9)

The shape of the transfer function h(t) resembles for a large number of compartments K→∞

a gamma variate γ(t) with the parameters g, α, β and tA ∈ R [118–120]:

γ(t) = g · (t− tA)
α · e−β (t−tA)

(4.10)

If we compare the transport function h(t) with the gamma variate γ(t), the gamma variate
describes the transport function, if we choose the parameters of the gamma variate to:

α = K−1

β =
K · Q̇B

QB
(4.11)

g = β
K 1

α!

If the indicator is injected instantaneously cin(t) = δ (t) and transferred through the system
with a gamma variate h(t) = γ(t), the concentration at the output cout(t) also resembles
a gamma variate. Thus, the gamma-variate is an appropriate model of the concentration
outflows and the transport function.
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Chapter 5
Preclinical animal study Dresden

The study has been approved by the Institutional Animal Care and Welfare Committee and
the Government of the State Saxony, Germany (DD24-5131/354/64).
The study was planned and conducted under the lead of the cooperation partner at Drägerw-
erk AG & CO. KGaA, Birgit Stender and Christian Bozsak, and together with the Pulmonary
Engineering Group lead by Prof. Dr. med. Marcelo Gama de Abreu of the Anesthesiology
Department of Prof. Dr. med. Thea Koch. The experiments were performed at the De-
partment of Radiation Therapy and Oncology (University Hospital Carl Gustav Carus in
Dresden) of Prof. Dr. med. Jörg Kotzerke between December 2016 and June 2017.

We initially published the study and the main analyses in [121]. Besides this main journal
publication, the study was part of multiple conference publications [122–128]. The mea-
surements of the study have also been the fundamental database for multiple Bachelor and
Master theses of students under my supervision[129–134].

5.1 Study design and objective

Until the end of June 2017, 15 farm raised pigs (52.9 kg ± 4.9 kg) were included in this
study. For animal 8, 10 and 11 the experimental protocol (see section 5.4) could not be fully
completed due to premature deaths of the animals. Compared to other studies, fully grown
pigs were included in the study with similar thorax circumferences as humans.

Initially, the following main objectives have been defined:
The primary goal of the study was to compare relative pulmonary blood flow distributions
based on indicator-enhanced EIT measurements to a established lung perfusion imaging
in different conditions of regional pulmonary ventilation and perfusion. PET perfusion
imaging with 68Gallium (68Ga)-labeled microspheres was chosen as the reference method.
The comparison was carried out in clinically relevant regions of interest (ROIs) with multiple
similarity measures. The conductive saline EIT indicator (NaCl) was used in four different

43
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concentrations (2 %, 3 %, 5 % and 10 %) and applied during respiratory hold phases to be
able to neglect the influence of the ventilation on the EIT measurement.
To increase the potential for clinical application, as a secondary objective we investigated,
whether the indicator-enhanced EIT measurement could be performed during regular me-
chanical ventilation with comparable similarity to the established reference measurement.

5.2 EIT measurements

The EIT measurements (PulmoVista R© 500, Drägerwerk & Co. KGaA, Lübeck, Germany)
were conducted continuously throughout the experiment. An elastic fabric electrode belt
(prototype, Drägerwerk & Co. KGaA, Lübeck, Germany) with 16 electrodes was attached to
the thorax of the animal. The commercially available electrode belt was not used, since it
produces large CT artifacts. For each animal, the electrode belt was attached to the mid-chest
region, such that the attached electrodes comprised the caudal part of the heart near the
apex during end-inspiration and end-expiration. Correct positioning also guaranteed, that
the diaphragm of the lungs did not reach into the electrode plane. The correct positioning
of the electrode belt was verified by CT measurements in inspiratory and expiratory hold
phases and can be acknowledged in Figure 5.1. The EIT measurements were conducted with

(A) Expiratory hold (B) Inspratory hold

1

heart apex heart apex

Figure 5.1: CT images during expiratory and inspiratory hold phases to verify EIT electrode positioning.

The electrode belt (Drägerwerk AG & Co. KGaA) was attached beneath the front legs of the pig in

supine position. With the CT images, the position around the apex of the heart during inspiration and

expiration was verified in the beginning of the experiment.

the highest possible injection current frequency fI = 130kHz, if no significant noise was
present around this frequency. The frame rate of the EIT measurements was set to fs = 50Hz.
The electrode-skin contact resistance was initially checked with the tools provided by the
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PulmoVista R© 500 and generally improved during the experiment.
The continuous stream of EIT measurements was synchronized to the monitoring parameters
using wave form data from the ventilator (flow and volume curve), since the ventilator was
attached to the PulmoVista R© 500 via the MEDIBUS serial bus protocol (Drägerwerk AG &
Co. KGaA, Lübeck, Germany) and to a recording Laptop.

5.3 PET/CT imaging

As described in sections 1.1 and 2.1, physicians at the ICU would benefit from knowledge
about the potential pathological spatial distribution of alveolar blood flow or perfusion within
the lungs especially in combination with regional lung aeration. To assess the regional quality
of gas exchange in the lung parenchym, the perfusion in the vascular bed is crucial for the
clinician while the pulmonary blood flow in larger vessels is less important. Only PET and
Single Photon Emission Computed Tomography (SPECT) measurements are established and
validated to provide this information currently [135].
The experimental measurement setup including the PET/CT scanner (Biograph

TM
16 Hi-Rez

PET/CT, Siemens, Knoxville, TN, USA) is shown in Figure 5.2. The EIT device cannot be
seen in the image.

Figure 5.2: PET/CT scanner and setup during the preclinical study in Dresden

PET is a nuclear imaging method mainly for medical applications. To measure pulmonary
perfusion using this approach, a nuclear tracer is injected through the proximal port of a
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Swan-Ganz catheter. During the study in Dresden, 68Gallium was used. The radiotracer
decays and emits positrons, which when colliding with electrons, emit two gamma photons
(annihilation photons). These photons travel in exactly opposite direction and are detected
by rings of crystals around the object. By detecting coincident events, a 3D volume of tracer
concentrations can be reconstructed. The injected tracer is distributed within the lung volume

cranial

caudal

leftright ventral dorsal

CT tissue density

PET perfusion
min max

Figure 5.3: Qualitative overview of the PET/CT measurements. The CT images are superimposed by

a MIP of the reconstructed relative PET perfusion. The left image depicts a frontal/top view of the

porcine thorax. The right image shows the sagittal view.

during its first pass through the lung. An exemplary PET perfusion measurement during the
single sided ventilation experiment is depicted in Figure 5.3. These PET tracer concentration
maps are reflecting perfusion [135]. The 68Gallium was bound to macroaggregated human
serum albumin (MAA) microspheres. These microspheres have to be large enough to be
taken up by the first capillary bed they encounter. As a result, more than 90% of the tracer
was therefore extracted by the capillary bed of the lungs within the first passage of blood.
Comparing indicator-enhanced EIT to PET perfusion allowed to investigate the amount of
information about capillary perfusion, comprised in indicator-enhanced EIT measurements.
Nevertheless, indicator based blood flow measurements are expected to include the blood
flow in larger arteries, which do not participate in gas exchange.
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5.4 Experimental protocol

Animal preparation The animal was premedicated using midazolam (1 mg/kg, midazolam,
Ratiopharm, Ulm, Germany) and ketamine (ketamine, 10 mg/kg, Ratiopharm, Ulm, Ger-
many) intramusculary. Afterwards, the animals were anesthetized intravenously (ketamine,
10-15 mg/kg/h; midazolam, 0.7-1.2 mg/kg/h) and additionally paralyzed (atracurium, 3
mg/kg/h, Ratiopharm, Ulm, Germany) . The animal was mechanically ventilated in volume
controlled mode (Evita R© XL, Drägerwerk AG & Co. KGaA, Lübeck, Germany) using the
following settings: tidal volume (VT) of 8 ml/kg, fraction of inspired oxygen (FIO2) of 0.5
and inspiration:expiration time ratio (I:E) = 1:1. A central venous and arterial port were
surgically prepared to measure arterial and venous pressures and to acquire blood sam-
ples throughout the experiment. Blood gas analyses (BGAs) were acquired multiple times
throughout the experiment (ABL80

TM
FLEX Basic, SV 3.12, Radiometer, Copenhagen, Den-

mark). Additionally, a pulmonary artery catheter (PAC) (CCOmbo, Edwards Lifesciences,
Irvine, CA, USA) was used to measure the pulmonary artery pressure (PAP), the mixed
venous oxygen saturation (SvO2), the intermittent stroke volume (SV)/cardiac output (CO)
and a continuous CO estimate [136].
The animal was positioned in supine position on the CT bed and continuously monitored
(Infinity R© Delta, Drägerwerk AG & Co. KGaA, Lübeck, Germany). No repositioning was
necessary throughout the time course of all experiments.

For each animal, an extensive experimental protocol was conducted with multiple experi-
mental steps being performed. For each step, a series of perfusion measurements by means
of EIT and PET/CT were performed. These sets of measurements can be divided into two
main groups:

P1: Experiments with PET/CT measurements
At first an arterial and central venous blood gas analysis (BGA) was conducted, followed by

S1 S2 S3 S4 S5 S6 S7

Uni-lateral
ventilation

Recruitment
Decremental PEEP trial

Injured
lung

Optimal
PEEP

Recruitment
Decremental PEEP trial

Maximal
PEEP PA block

P1 sequence P1 sequence P1 sequenceP1 sequenceP2 sequences P2 sequences

Premedication & Preparation

P1 sequence

Figure 5.4: Schematic overview of the experimental protocol steps.



48 Chapter 5. Preclinical animal study Dresden

an intermittent CO measurement (thermodilution, mean of three injections).
Afterwards, the EIT perfusion measurements were performed. The EIT bolus perfusion
measurements were generally conducted during a breath hold phase at mean airway pressure
to remove the EIT component resulting from the aeration of the lungs. Electrically conductive
saline boli with four different NaCl concentrations (2%, 3%, 5% and 10%) and a volume
of 10 ml were injected through the proximal port of the PAC. In between, a respiratory
hold phase without a saline bolus injection was conducted to analyze the potential of EIT
pulsatility to monitor pulmonary perfusion based on the cardio-synchronous EIT signal com-
ponent. Additionally, the injection of a 10 ml bolus with a 5% concentrated saline solution
was performed during normal mechanical ventilation in order to evaluate the performance of
the estimation of regional perfusion without the need for a respiratory hold.
After the EIT measurements had been performed, the PET/CT measurement was conducted.

A residual scan had to be run after the first PET/CT scan in order to account for the remaining
radioactive tracer from previous tracer injections. Right before the injection of the PET tracer,
intermittent CO was measured a second time, to account for a possible change of the ani-
mal’s hemodynamic state. A schematic description of the P1 sequence is shown in Figure 5.5.

P2: Experiments without PET/CT measurements
The second measurement sequence was a shorter modification of the sequence described
above, not including a measurement of perfusion with the reference modality PET. Only
a 5% NaCl bolus was injected during a respiratory hold phase for the EIT perfusion mea-
surement. The PET/CT measurement was neglected, since the number of possible reference
measurements was limited by the necessary exponential dose increase of the nuclear tracer

∆z (a.u.)

time (min)

P1 Sequence

3  % 5  %10  % PET - Residual scan PET - Application of tracer

COBGA + CO acCT CT

2  % 5  %

∆z (a.u.)

time (min)

P2 Sequence

5  %

BGA + CO

breath hold phase with indicator measurement
mech. ventilation with indicator measurement
breath hold
PET scan
CT scan

Figure 5.5: Schematic overview of the measurement sequences. The global impedance curve ∆z is

depicted with the relevant measurement sequences highlighted. BGA: blood gas analysis; CO: cardiac

output; acCT: CT for attenuation correction of PET perfusion measurement.
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for multiple sequential PET measurements.

Overall, seven different experimental protocol steps, containing P1 and/or P2 sequences,
have been conducted and are visualized in Figure 5.4. The steps are additionally described in
the following:

(S1) - Uni-lateral ventilation
The main left bronchus was blocked by a bifurcated endobronchial blocker (EZ-BlockerTM;
Teleflex Medical Europe Ltd., Athlone, Ireland) inserted through an endotracheal tube. Since
airflow to the left lung was prevented, the alveoli within the left lung collapsed. The complete
left lung represented therefore an alveolar dead space and did not contribute to gas exchange.
The pulmonary hemodynamics were only affected indirectly during this experimental step.
Due to hypoxic pulmonary vasoconstriction (see section 2.1.1), the PVR in the left lung
substantially increased and the blood flow was redirected to ventilated regions in the right
lung, which improved gas exchange efficiency to some extent.

(S2) - First decremental PEEP trial
To recruit the left lung, which collapsed due to previous uni-lateral ventilation, the PEEP was
step-wise increased to PEEP= 25mbar (if the overall health of the pig allowed such a high
PEEP) to recruit the collapsed regions of the lungs. To find an optimal PEEP to protectively
ventilate the lung, a decremental PEEP trial was conducted to follow the approach described
in section 2.2.3 and first published in [54]. The PEEP was decreased in steps of 5 mbar from
25 mbar to 5 mbar. In each of the PEEP levels, a P2 measurement sequence was performed.
Afterwards, an optimal PEEP was chosen based on the Costa approach implemented in the
Diagnostic view [137, p.28] of the PulmoVista R© 500 as described in section 2.2.3. The
optimal trade-off between a minimum of collapse and a minimum of overdistension was
generally found between PEEP= 8-12mbar. The decremental PEEP trial is depicted in
Figure 5.6.

(S3) - Bi-lateral ventilation at an optimal PEEP
Both lungs were ventilated with the previously defined optimal PEEP (always around 8-
12 mbar). This lung state was regarded as reference for all other experimental steps. The
previously collapsed left lung could be completely recruited for all animals.

(S4) - Atelectatic/injured lung
Bi-lateral lung injury was induced in the animal by repetitive lung lavage resulting in alveolar
surfactant depletion. The surfactant washout lead to a collapse of the alveoli, since it reduces
surface tension and therefore prevents the alveoli from collapsing (see section 2.1.1). The
injury induced by repeated lung lavage was established as an experimental model of ARDS
[138, 139] . Mainly the alveoli in the gravity dependent lungs collapsed. It was expected
that pulmonary perfusion would shift towards aerated, more ventral regions of the lungs due
to vasoconstriction.
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Figure 5.6: Graph of a decremental PEEP trial. The normalized global reconstructed impedance change

( ) is depicted together with the PEEP ( ).

The lung lavage was repeated 3-4 times and the remaining saline was removed from the
lungs afterwards. To have stable experimental conditions, the recordings were started after
achieving a hemodynamically stationary state. The pig was ventilated with no additional
static pressure (PEEP = 0mbar) to prevent recruiting of alveoli during the experiment.
Based on the monitoring parameters in Table 5.1, a decrease in gas exchange capability can
be observed. The partial pressure of arterial oxygen (paO2) in arterial blood decreased from
the healthy reference (S3) state to the injured state (S4) from 29.2 kPa to 11.5 kPa and the
partial pressure of arterial carbon dioxide (paCO2) increased by 1.3 kPa. The CO increased
by approximately 2 l/min, most likely to overcome the increasing PVR and to optimize gas
exchange. Yet, another cause for the increased CO could also be the PEEP decrease from
5 mbar to 0 mbar, which decreases the afterload of the right heart.

(S5) - Second decremental PEEP trial
Similar to experiment (S2), the PEEP was stepwise increased to 25 mbar followed by a decre-
mental PEEP trial to recruit the injured lung. During the decremental PEEP trial, PEEP was
decreased in steps of 5 mbar from 25 mbar to 5 mbar. In each of the PEEP levels, a P2 mea-
surement sequence was performed to analyze the change in pulmonary blood flow with PEEP.

(S6) - Bi-lateral ventilation at maximal PEEP
After the decremental PEEP trial in (S5), the PEEP was set to a maximal tolerable PEEP
level (commonly 25 mbar), which was defined based on the hemodynamic condition of the
animal. Both lungs were ventilated.
Because of the high pressure in the lungs, the PVR increased substantially and resulted in a
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decrease of the CO.

(S7) - Uni-lateral block of the pulmonary artery
One stem (by chance either left or right) of the pulmonary artery was blocked using the
balloon at the tip of the pulmonary artery catheter. Ideally, either the left or right main PA
stem was blocked. In most cases only the lower lobe of one lung was blocked completely,
while the upper lobe was still perfused. During this state, a strong V

.
/Q

.
mismatch was created

in the shunted lung. The blood flowing through the pulmonary circuit could only participate
in gas exchange in the perfused lung, while ventilation was present in both lungs.

An overview of the ventilator settings, the monitored ventilatory parameters and the hemody-
namic parameters during the different experimental steps of the protocol is provided in Table
5.1. The parameters are only depicted for P1 sequences.

Parameter Step 1 Step 3 Step 4 Step 6 Step 7

Uni-lateral vent. Optimal PEEP Injury Max. PEEP PA block

Respiratory parameters

VT (ml/kg) 5.4±0.2 8.6±0.2 9.0±0.2 8.5±1.0 8.8±0.2
RR (1/min) 27.0±2.0 15.0±2.0 15.0±3.0 15.0±3.0 13.0±1.0
MV (l/min) 8.3±1.1 7.3±1.3 7.7±1.5 7.3±1.8 6.8±0.7
PEEP (mbar) 5.0±0.0 10.6±1.2 0.0±0.0 23.8±2.1 4.5±1.5
Ppeak (mbar) 20.6±2.3 20.7±1.9 27.5±5.5 41.6±4.5 24.0±3.9
ΔP (mbar) 10.3±6.6 9.2±1.4 24.0±3.5 16.7±3.0 17.4±3.5
FIO2 (%) 100±20 50±10 100±0 50±0 100±0
Crs (ml/mbar) 31.3±15.1 58.0±7.9 21.0±3.7 30.0±6.6 29.0±7.5
Rrs (mbar s/l) 18.8±7.2 10.2±3.1 11.2±2.0 9.9±1.5 10.5±2.4

Gas exchange parameters

paO2 (kPa) 36.0±13.1 29.2±4.4 11.5±6.7 75.7±19.2 27.2±17.3
paCO2 (kPa) 7.7±0.8 7.5±0.8 8.8±1.5 8.0±1.2 9.3±1.6
pH 7.36±0.03 7.37±0.03 7.28±0.05 7.33±0.04 7.26±0.07

Hemodynamic parameters

MAP (mmHg) 82±10 79±7 82±9 62±8 75±7
MPAP (mmHg) 22±2 20±2 28±4 28±3 75±7
HR (bpm) 96±12 101±18 120±21 120±27 125±23
CO (l/min) 5.50±0.72 5.66±0.87 7.89±1.20 3.73±0.70 7.15±1.45

Table 5.1: Overview of the most important respiratory, hemodynamic and gas exchange monitoring pa-

rameters. The values are depicted as mean± SD for all experimental steps containing P1measurement

sequences.
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Preclinical animal study Iowa

A preclinical study was conducted at the experimental research center of the Advanced Pul-
monary Physiomic Imaging Laboratory (APPIL) of the Department of Radiology, University
of Iowa Carver College of Medicine, IA, USA. The study was approved prior to the start of
the experiments by the Animal Care and Use Comittee of the University of Iowa (Permit
Number: 0902022). The study was planned and conducted under the lead of Priv.-Doz. Dr.
med. Gunnar Elke and Prof. Dr. med. Inéz Frerichs of the Department of Anesthesiology and
Intensive Care Medicine, University Medical Centre Schleswig-Holstein in Kiel, Germany.
Within the study, EIT ventilation distributions were compared to Xenon multidetector Com-
puted Tomography (MDCT) imaging and indicator-enhanced EIT blood flow estimations
were compared to indicator-enhanced MDCT blood flow estimates. The ventilation study
was published in [140]. The comparative blood flow measurements described and evaluated
in this thesis were generously made available by Priv.-Doz. Dr. med. Gunnar Elke and Prof.
Dr. med. Inéz Frerichs. This chapter provides a short overview of the experimental protocol.

We published extensive analyses of the blood flow data from this study in [141, 142]. Our
lung segmentation algorithm published in [143, 144] was also developed and tested based
on the MDCT measurements of this study.

6.1 Experimental protocol

To compare images of indicator-enhanced EIT based blood flow to indicator MDCT images,
the preclinical study comprised eight farm-raised pigs of both sex with a mean body weight
of 33.6 kg ± 2.2 kg (mean ± standard deviation (STD)). Thus, the pigs were considerably
smaller compared to the Dresden study (see chapter 5) and had smaller thorax circumferences.

Animal preparation An overview of relevant aspects will be presented in the following.
A detailed description of the animal preparation can be found in [140]. Invasive mechanical
VCV was initiated with a FIO2= 1.0, after anesthesia was established. A pigtail catheter was
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Injection of 0.5 ml/kg iodinated contrast agent over 2s via RA catheter
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Figure 6.1: Schematic overview of the experimental protocol of the study performed in Iowa. The

illustration was adapted from our publication [142] with permission.

placed into the right cardiac ventricle (RV), aside from an arterial and venous catheter. A
pulmonary artery catheter (PAC) was advanced into the main pulmonary artery. Next, the
animals were moved to the MDCT scanner. The animal was continuously ventilated in VCV
mode RR = 20 min−1, I:E = 1:2 and VT, which maintained a partial pressure of end-tidal
carbon dioxide (petCO2) of 35–45 mmHg. During the experiment, the PEEP was fixed to
5 mbar. The animals were additionally paralyzed to suppress spontaneous breathing.

Experiments The animal remained in supine position and no repositioning was necessary
throughout the experiment. Four different experimental steps were conducted and were
considered for the analysis in this thesis (see Figure 6.1):

(E1) - Healthy-Normoxia
MDCT-perfusion and indicator enhanced EIT perfusion was measured after the start of the
experiment as baseline reference state. The animal was ventilated with a normal fraction
of inspired oxygen FIO2 = 0.21. As in all other experimental steps, respiratory and hemody-
namic monitoring parameters were recorded including a CO measurement based on repeated
thermodilution through the PAC. Arterial blood gases were also acquired.

(E2) - Healthy-Hyperoxia
FIO2 was increased to 1.0. MDCT and EIT perfusion measurements were performed to ana-
lyze whether the perfusion distribution changes due to an increase in inspired oxygen. It has
been reported, that hyperoxia induces vasodilation and alters regional ventilation-perfusion
relationships [145].

(E3) - Injury-Normoxia
Two different models of lung injury were considered. Regional saline lavage induced lung
injury (n=3 pigs) was performed. Lung lavage (60 ml at 38 ◦) was repeated for five times.
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Via a bronchoscope (Olympus, Center Valley, PA, USA), lung injury was established in
two adjacent sub-lobar segments of the right lung, which were previously identified by
MDCT measurements. In all other animals (n=5), lung injury was induced in the same
lung region by bronchoscopic instillation of Endotoxin (2.5–5 mg Escherichia coli O55:H35
lipopolysaccharide: LPS; Sigma L4005, Sigma Chemical Co., St. Louis, MO, USA).
After a waiting period to assure a steady condition, EIT and MDCT perfusion imaging was
conducted with at a normal FIO2 = 0.21.

(E4) - Injury-Hyperoxia
FIO2 was increased again to 1.0 and MDCT and EIT perfusion measurements were con-
ducted.

6.2 EIT and reference imaging data
acquisition

EIT perfusion measurements EIT measurements were performed with the Goe-MF II
system (CareFusion, Höchberg, Germany). Herefore, 16 electrodes (Blue Sensor BR-50-K,
Ambu, Ølstykke, Denmark) were attached to the thorax in a transversal plane close to the
apex of the pig. The system was operated with adjacent stimulation measurement protocol
with an effective current amplitude of 5 mA.The frame rate of image acquisition was set to
fs =

1
ts
= 25Hz and measurements were conducted during the time interval of T = 60s. To

estimate the regional distribution of pulmonary blood flow, a conductive hypertonic indicator
(NaCl 10%, 0.75 ml/kg) was injected central venously during continuous inspiratory breath
hold phases.

MDCT perfusion measurements MDCT perfusion was recorded correspondingly in the
same transverse region as the EIT measurement (SOMATOM Sensation 64, Siemens AG,
Forchheim, Germany). The animals were not moved between EIT and MDCT measurements.
Electrocardiographically gated dynamic MDCT images (80 kV, 150 mAs, 0.75 mm section
thickness, 0.5-mm increments, 0.28-second rotation time, 25 time points, 4.2 mSv) was
acquired in a region of 4 cm around the level of EIT electrodes in cranio-caudal direction.
Iodinated contrast agent (0.5 mL/kg over 2 seconds; Isovue, 370 mg of iodine per milliliter,
Bracco Diagnostics, Princeton NJ) was injected into the right ventricle during continuous
breath holds.
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Chapter 7
Spatial sensitivity of EIT to saline

indicators in front of
inhomogeneous pulmonary

backgrounds

We published a preliminary pilot study based on a human geometry (recorded during the
research for a Master thesis of a student under my supervision [146]) in [76] prior to this
analysis. The algorithm to segment the injured lungs for the presented evaluation, including
the collapsed regions was published in [143, 144]. The EIT simulation approach has been
partly developed with the help of students during their research for Bachelor and Master
theses [132, 147, 148].

7.1 Motivation

In order to clinically assess and monitor pulmonary blood flow during therapeutic interven-
tions or (patho-) physiological conditions with EIT, it is important to understand and consider
which spatial three dimensional region of the thorax is sensitive to the EIT measurement and
how homogeneous the sensitivity is distributed. Normalized time-difference EIT measures
tissue conductivity changes within the thorax relative to a static background during the
measurement. For mechanically ventilated patients, the pulmonary conductivity background
is in many cases very inhomogeneous due to either collapsed or well ventilated regions. If the
perfusion of a collapsed region and of a ventilated region is equal, an indicator-enhanced EIT
perfusion measurement might still estimate different blood flows, due to the non-identical
contrast of the indicator to the background. Additionally, if the background of the same
region is changing during therapy, such as during a lung recruitment maneuver (e.g. decre-
mental PEEP trial) or before and after any other intervention, the spatial sensitivity to a
pulmonary blood flow measurement with EIT should still not vary substantially in order to
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be clinically useful. Otherwise, physiological changes in perfusion, which the physician is
interested in, would be superimposed by measurement differences originating from the local
changes of sensitivity.

From previous publications, it is known, that the sensitivity region for an EIT measurement
with electrodes attached in a two-dimensional transverse plane around the surface is bell-
or lens-shaped in the three-dimensional space [75, 112, 149–151]. These analyses have
been conducted for healthy lungs, but studies including severely heterogeneous pulmonary
backgrounds have not yet been performed. Additionally, it has at present not been determined,
which indicator contrast is necessary to limit the influence of a background heterogeneity on
regional perfusion estimation. For this reason, spatial EIT sensitivity profiles in front of three
different pulmonary conductivity backgrounds at different concentrations of a saline indicator
have been investigated. The similarity of the spatial profiles was quantitatively assessed and
compared between experimental states and concentrations. Additionally, we evaluated the
sensitivity variation within the electrode plane. Ideally, the sensitivity is constant within the
EIT electrode plane for all states.

Objectives

The presented simulation study addresses the forward and inverse sensitivity of a saline
indicator-enhanced EIT measurement to estimate distributions of pulmonary blood flow in
front of realistic lung backgrounds. The aims of this chapter refer to the first and third main
objective as stated in the introductory chapter 1.2. The following guiding theses shall be
investigated in the following chapter:

• The sensitive region around the electrode level is bell shaped but influenced by the
contrast of the indicator to the background.
• Sensitivity profiles of indicator measurements in front of realistic heterogeneous con-

ductivity backgrounds become more similar with increasing indicator concentration.
• Forward sensitivity and amplitude response (inverse sensitivity) becomes more ho-

mogeneous/constant with increasing indicator concentration within the EIT electrode
plane.

The inverse sensitivity has been investigated for three different EIT reconstruction approaches.

7.2 Methods

To investigate the sensitivity distribution of indicator-enhanced EIT measurements as well as
the inverse sensitivity or amplitude response (AR) of the image reconstruction in front of
different realistic backgrounds, a simulation study has been performed. The simulation setup
and the calculation of different sensitivity and reconstruction quality measures are introduced
in the following.
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7.2.1 Simulation setup

For each P1 experiment of the preclinical porcine study in Dresden (see chapter 5) a CT
scan during an end-inspiratory ventilation hold phase was recorded. The scans at the end
of the uni-lateral ventilation (S1), the bi-lateral ventilation at optimal PEEP (S3) and
atelectatic/injured lung (S4) experiments were used to create bio-impedance simulation
models. The background conductivity of the lungs was severely inhomogeneous during (S1)
and (S4) due to a complete collapse of the left lung in (S1) and severe atelectasis in gravity
dependent, therefore dorsal regions of the lungs in (S4). Experiment (S3) was included to
include a healthy reference state with an approximately homogeneous distribution of air
within the lungs (see histogram in Figure 7.2, lower graph).

Segmentation and tissue label map creation CT imaging scans (Biograph
TM

16 Hi-
Rez PET/CT, Siemens, Knoxville, TN, USA) were reconstructed with a resolution of 0.7×
0.7mm2 and a slice thickness of 1mm. Overall, 395 image layers with image matrices of
512× 512 voxel were reconstructed. The torso, the bones, the electrodes and the larger
airways were semi-automatically segmented from the CT data using ITKsnap [152]. The
heart was manually segmented for each state, since no automatic segmentation approach
could separate the heart from the similar contrast of thoracic muscular tissue. The lungs were
presegmented with ITKsnap and semi-automatically adapted and optimized in MATLAB
R2019a using a developed approach, which was published in [143, 144]. The segmented
volumes were smoothed using morphological operators in MATLAB R2019a and combined,
resulting in a material label map matrix of the same size as the CT image volume (512×
512×395). The label map cross-sections at the height of the electrodes for each experiment
are depicted in Figure 7.1.

Mesh generation From the final label maps, the torso surface was extracted and triangu-
lated in MATLAB R2019a and exported to MeshLab [153, 154]. In MeshLab the torso surface
mesh was further smoothed using the Taubin Smooth algorithm [155] and the normals to

(S1) Uni-lateral ventilation (S3) Optimal PEEP (S4) Injury/Atelectasis

Figure 7.1: Cross section of the tissue label map for the simulated experiments. The different tissues

are depicted with different colors: torso/muscle tissue, lungs, bones, heart and airways
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the triangular mesh elements were equally reoriented to point outwards. Finally, each torso
surface mesh was homogeneously remeshed with Instant Meshes [156] to achieve suitable
resolutions and numerically stable equally large surface mesh triangles. Finally, the volume
within the torso was meshed with tetrahedral elements with gmesh [157]. Characteristic
properties of the meshes are summarized in Table 7.1. The mesh quality η represents the
ratio of the shortest to the longest edge length of a tetrahedron.

Simulation Number of elements Edge length (mm) Mesh quality η

(S1) Uni-lateral ventilation 877753 6.59 ± 0.58 0.66 ± 0.07

(S2) Optimal PEEP 929315 6.52 ± 0.57 0.66 ± 0.07

(S3) Injury/Atelectasis 867273 6.67 ± 0.58 0.66 ± 0.07

Table 7.1: Overview of the important mesh properties. The mesh quality η represents the ratio of the

shortest to the longest edge length of a tetrahedron. The values are depicted as mean ± SD.

Conductivity and electrode mapping In the next step, the segmented tissue materials
and the electrical conductivites had to be assigned to the tetrahedral elements. Thus, the
tissue labels of the voxel based labels (depicted in Figure 7.1) were mapped to the tetrahedral
mesh. For each tetrahedral mesh element, the mode of all tissue labels belonging to voxels
fully enclosed by the tetrahedron was assigned as tissue label to the element.
A corresponding electrical conductivity was assigned to each mesh element according to its
tissue label. An overview of important tissue conductivities is given in Table 7.2. The tissue
conductivities vary with frequency of the electrical stimulation [158]. Within the range of
the possible current stimulation frequencies fI = 80−130kHz of the PulmoVista R© 500, the
tissue conductivities vary only slightly (see Table 7.2). The stimulation frequency for all
simulations was set to fI = 130kHz and the tissue conductivities were set accordingly. The
decision for the injected current frequency was made to be consistent to the measurements
described in chapter 5.
For all simulations, heart tissue was set to the conductivity of blood, bone tissue to the

Tissue fI = 80kHz fI = 100kHz fI = 130kHz

Blood 7.02 ·10−1 7.03 ·10−1 7.05 ·10−1
Myocardium 2.09 ·10−1 2.15 ·10−1 2.23 ·10−1
Muscle 3.58 ·10−1 3.62 ·10−1 3.68 ·10−1
Lung (inflated) 1.06 ·10−1 1.07 ·10−1 1.09 ·10−1
Lung (deflated) 2.68 ·10−1 2.72 ·10−1 2.76 ·10−1
Fat 4.34 ·10−2 4.34 ·10−2 4.35 ·10−2
Skin 3.69 ·10−4 4.51 ·10−4 6.00 ·10−4
Vertebrae 2.07 ·10−2 2.08 ·10−2 2.09 ·10−2

Table 7.2: Overview of tissue conductivities (S m
−1

) at different EIT current stimulation frequencies

[158, 159]
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conductivity of vertebrae and muscular conductivity was assigned to the soft tissue of the
torso. The major airways, which are air filled and therefore hardly conductive, were assigned
a relatively small conductivity of σair = 10−5 Sm−1. To account for the influence of the
spatially inhomogeneous pulmonary parenchyma, conductivities corresponding to the local
alveolar air filling were assigned to the mesh elements with the method described in the next
paragraph.
For the simulations, point electrodes were used. To assign the electrodes to surface nodes,
the coordinate centers of all nE = 16 segmented electrodes were calculated and the surface
mesh nodes with the smallest Euclidean distances were determined.

Conductivities of the lung parenchyma In order to simulate the inhomogeneous con-
ductivity distribution of the lung parenchyma, the following section describes the method to
relate parenchyma tissue density as measured with CT to electrical conductivities.
The electrical conductivity of lung parenchyma depends on the local amount of air within
a tissue volume. The model introduced by Nopp et al. was used [160–162] to relate
conductivity to the amount of air within a lung volume. The lung parenchyma consists of
about 8 ·105 alveoli filled with air and a network of many blood vessels and airways [161].
According to Nopp et al., the main proportion of lung tissue is blood. About 85 % of lung
tissue consists of blood filled vessels, 12% are made up by epi- and endothelial cells and 3%
by intercellular fluid. The effective conductivity of completely collapsed alveolar tissue with
no air within the alveoli is therefore defined by:

σalv = 0.85 ·σblood +0.12 ·σepi,endo +0.03 ·σ f luid (7.1)

In [160–162] the alveolar conductivity was calculated to be σalv = 0.7284Sm−1 at a fre-
quency of 100kHz (with assumed conductivities: σblood = 0.655Sm−1, σepi,endo = 1.0Sm−1

and σ f luid = 2.0Sm−1. For the presented simulations at a stimulation frequency of 130kHz,
a similar conductivity was assumed. A conductivity σalv = 0.7284kHz was chosen for
completely collapsed regions.
The amount of air within a volume V of the lung parenchyma can be described by the filling
factor (FF) introduced by Nopp [160]:

FF =
Vair

Vtissue
(7.2)

The FF represents the ratio between the volume of air Vair and the volume of tissue Vtissue

within a lung volume V . The relationship between the FF and the effective electrical lung
tissue resistivity has been shown to be linear [160, 163–165]. The relationship for the lung
tissue conductivity σlung(FF) was described by [162]:

σlung(FF) = σalv ·
1

τ · (FF+1)
(7.3)

The tortuosity τ describes the squared ratio between the mean length of a current path
through a porous volume of lung parenchyma and the length of the volume [166]. It changes
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Figure 7.2:Method of relate tissue densities (HU) from CTmeasurements to electrical conductivities (S

m
−1
). The histograms in the lower plot depict the frequency of different tissue densities within the lung

for the three different simulated experimental scenarios. The upper graph depicts the implemented

corresponding air filling factor F and the effective electrical lung tissue conductivity σLung.

with stress and therefore especially with the applied ventilatory pressures during mechanical
ventilation. For the analysis in the following the tortuosity is assumed to be equal for all
experimental states as previously assumed in [165].
In the final step, the tissue density measured by CT during an inspiratory hold phase has
to be related to the FF. For this reason, the tissue densities within the lungs for all three
experimental states were analyzed (depicted in the lower plot of Figure 7.2). Typical tissue
densities of healthy ventilated lung parenchyma can be found between -910HU to -500HU
[167]. Atelectatic and therefore collapsed regions of the lung typically have tissue density
values within the interval [−300HU,200HU]. In the calculated histograms in Figure 7.2,
the tissue densities are well within these typical intervals. For the healthy reference state
at optimal PEEP (S3), the number of voxels with atelectatic tissue densities were small
and increased for the uni-lateral ventilation (S1) and the atelectatic lung (S4) experiment.
For the healthy reference state (S3) we assumed that the mode tissue density (≈−850HU)
corresponds to voxels which have typical FFs at total lung capacity (TLC) or end-inspiration.
A FF of 6 has been reported as typical at end-inspiration [165]. For fully collapsed or
atelectatic lungs we assumed FF= 0.
With a mean tortuosity τ = 1.71 [165], the electrical tissue conductivities can be calculated as
depicted in the upper graph of Figure 7.2. The resulting lung parenchym tissue conductivities
are depicted in Figure 7.3.
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Figure 7.3: Volume meshes as used for the simulations with conductivity values assigned

Simulation scenarios The goal of the simulation study was to investigate the influence
of the inhomogeneous electrical lung background on the forward and backward sensitivity
of EIT measurements to injected saline indicators. A main contribution of this thesis is the
determination of the lowest possible concentration required for tracking spatial distributions
of pulmonary blood flow within the lung. Besides the experimental analysis in chapter 12,
this chapter investigates to which extent the influence of a heterogeneous lung background
conductivity distribution decreases with increasing saline contrast. For this reason, spheres

Type of inhomogeneity Blood 0.9% NaCl 2% NaCl 3% NaCl 5% NaCl 10% NaCl

Conductivity (Sm
−1
) 0.705 1.44 3.02 4.35 7.01 12.6

Table 7.3: Overview of the defined conductive sphere inhomogeneities with their corresponding elec-

trical conductivities.

of a conductive saline indicator were sequentially integrated at evenly distributed positions
within the lung. During the study in Dresden (see chapter 5) a 10ml bolus of the indicator
solution was injected central-venously. The volume of the simulated spheres was defined
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accordingly to be comparable with a corresponding radius r = 13.4mm. The electrical con-
ductivity of the sodium chloride aqueous solution is dependent on the indicator concentration.
The chosen concentrations in mass percent are listed together with their conductivities taken
from the CRC Handbook [168] in Table 7.3.
Overall 18 different simulations were carried out resulting from six different types of spheri-
cal inhomogeneities and three different experimental lung states with their corresponding
lung conductivity backgrounds. For each of those 18 simulations, i = 1, ...,kS spheres were
evenly distributed within the lungs at the positions pi ∈ R1x3. The sequentially introduced
spheres spatially overlapped by 50 %, to increase the number of simulated spheres.

7.2.2 Analysis of forward sensitivity

The forward sensitivity is a measure to describe the amount of voltage change at the mea-
suring electrodes resulting from a conductivity change within a certain region of a certain
volume. A spherical region of the volume Vi ∈ R was inserted at a position pi and increased
the background conductivity by ∆σi ∈ R resulting in a voltage change at the electrodes
of ∆vi = [∆v1i, ...,∆vmi, ...,∆vMi]

>. The forward sensitivity of the EIT measurement to a
conductivity change of the ith spherical region was evaluated as:

Si =
1
Vi
·
√

∑
M
m=1 (∆vmi)

2

(∆σi)
2 (7.4)

Comparing the sensitivity calculation with the definition of the linearized forward operator
or Jacobian J in chapter 3.1.2, the similarity is apparent. If we would investigate the
sensitivity to FEM-element pertubations, the forward sensitivity in an element k is defined
by Sk =

1
Vk
‖Jk‖ with Jk being the kth column of the Jacobian J [75]. With this approach, we

could nicely investigate different stimulation and measurement patterns of EIT. Yet, in this
study we are investigating the sensitivity of EIT to spheres with a volume of 10 ml and with
an increase of conductivity to the indicator conductivity relative to the background. Thus,
the approach was adapted.
The forward sensitivity is dependent on the stimulation and measurement pattern of an
EIT measurement and on the positioning of the electrodes. For an adjacent stimulation,
the sensitivity is larger towards the surface of the body [75]. If a physician wants to track
changes during a treatment with the same measurement setup, the spatial sensitivity should
not change, otherwise the measured conductivity changes would not only represent an
underlying physiological function, but also the altered sensitivity. The influence of the
conductivity background on the spatial forward sensitivity was therefore investigated.
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7.2.3 Analysis of inverse sensitivity

If two regions with equal forward sensitivity are exposed to the same distortion ∆σ , the
same voltage change results at the surface electrodes. This nevertheless does not mean, that
the reconstruction algorithm will project these equal voltage changes to equal reconstructed
conductivity changes ∆σ̂ [75]. For this reason, the inverse sensitivity should be investigated
additionally.
The inverse sensitivity is strongly influenced by the type of reconstruction algorithm. The per-
formance of three different normalized difference reconstruction algorithms were compared.
As first and second method, two different variants of a standard one-step Gauss-Newton
algorithm differing in Tikhonov regularization approaches (see section 3.1.3) were used. The
first applied regularization was the standard Tikhonov regularization of 0th order, penalizing
large reconstructed values. Thus, the regularization matrix R of equation (3.22) was chosen
to the identity matrix R = I. The reconstructed normalized conductivity change ∆σ̂σσ i resulting
from a simulated sphere i at position pi and of a volume Vi was reconstructed by:

∆σ̂σσ i =
(

J>J+λ I
)−1

J>∆vi (7.5)

For the second approach, a Laplacian matrix R = L (2nd-order Tikhonov) was chosen as
regularization imposing spatial smoothness on the solution:

∆σ̂σσ i =
(

J>J+λL>L
)−1

J>∆vi (7.6)

The Jacobian J and the Laplacian L were calculated with EIDORS [169]. For both ap-
proaches the Jacobian was calculated assuming a homogeneous background, since in clinical
scenarios the background conductivity is usually not known, because CT or MRT images
can not assumed to be available in a reproducible manner. The regularization parameter λ

was optimized for each experiment finding the maximal curvature of the L-curve [89, 90] for
all spheres i ∈

{
[1,kS]|pi3 ∈ [−2 · rSphere,2 · rSphere] · zE

}
located within a small vertical zone

around the electrode level zE . The mean over all optimal λ of each individual sphere with
the electrode plane was chosen for the reconstruction of all spherical inhomogeneities.
The Graz consensus reconstruction algorithm for EIT (GREIT) was chosen as third recon-
struction algorithm. The algorithm was introduced in section 3.1.3. The noise figure was
chosen to 0.5 as recommended in [93].
The 2D mesh for all reconstruction algorithms is depicted in the left image of Figure 7.4.
After reconstruction, the triangular meshes were mapped onto a pixel grid of size [128×128]
with a pixel edge length of 2 mm. The mapping was performed to minimize a potential
influence of mesh differences between states. For simplicity, the spatial pixel index will also
be called k, thus after mapping, ∆σ̂σσ i is a vector of k = [1,K = 1282] pixel, describing the
pixel image with the reconstruction of the ith simulated sphere .

As previously mentioned in section 3.1.3, Adler et al. [93] proposed figures of merit to
analyze EIT reconstruction quality for small targets with diameters below the resolution of an
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Figure 7.4: Overview of the method to analyze inverse sensitivity. The triangular reconstruction mesh

(left image) was mapped onto a pixel mesh with a pixel edge length of 2mm (right image). From the

reconstructed image, a subset mask ∆σσσ1/4,i was computed. Based on this subset, the 2D position

error ∆p and the shape deformation was calculated besides other measures. The idea for the graphical

description of the figures of merit was taken from [93].

16 electrode EIT system. These figures of merit were also used to optimize the reconstruction
matrix of the GREIT algorithm. The evaluation parameters have been further developed
in [75]. To investigate the influence of the realistic experimental lung backgrounds on the
EIT reconstruction, these standardized parameters were used, though in some cases adapted
slightly, and are introduced in the following.

At first, a subset of the reconstructed image ∆σσσ i was defined:

∆σ̂σσ1/4,i =

∆σ̂k,i if ∆σ̂k,i ≥ 1
4 ·max

k
∆σ̂k,i

0 otherwise
(7.7)

The subset ∆σ̂σσ1/4,i contained all elements with amplitudes exceeding 1
4 of the maximal recon-

structed amplitude and was otherwise zero. The area Âi of the set of amplitudes exceeding
the threshold and the amplitude weighted centroid p̂pp2D,i of this subset was calculated, as it
was done in [75]. The figures of merit were calculated as follows:

Amplitude response - inverse sensitivity The amplitude response (AR) was used as
inverse sensitivity measure and was defined by:

ARi =
1

fAR
· ∑k ∆σ̂ki

Vi
(7.8)

The sum of all amplitudes in the reconstructed image defines the amplitude response of the
reconstruction algorithm. The amplitudes were normalized to the volume of the simulated
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sphere Vi to account for potential differences in simulated sphere volumes due to discretiza-
tion. The amplitude response was normalized by a factor fAR such that a sphere at the center
of the torso within the electrode layer had an amplitude response of ARi = 1.

Position error The position error ∆p described the absolute distance between the am-
plitude weighted centroid of the reconstructed image subset p̂pp2D,i and the position of the
simulated sphere. Since only a 2D image was reconstructed, the center of the projection of
the sphere parallel to the vertical axis onto the electrode plane was calculated. Thus, only the
first two coordinates of ppp2D,i = [p1,i, p2,i]

> were considered. The position error was defined
by:

∆pi =

√(
p̂pp2D,i− ppp2D,i

)> · (p̂pp2D,i− ppp2D,i
)

(7.9)

Shape deformation Since spheres were simulated, we expected circular reconstructions in
the resulting image. Nevertheless, the shape of the torso boundary, the current paths through
the thorax (which might be altered by changing background conductivity distributions) and
by the position of the simulated sphere might lead to altered reconstruction shapes. The
shape deformation measure sD,i therefore describes the similarity of the reconstructed image
subset ∆σ̂σσ1/4,i to a circle C of area Âi with its center at p̂pp2D,i. A very intuitive measure was
introduced in [93], which was also used for the analysis in this thesis. The measure calculates
the area Âout,i of the reconstructed subset outside of C and relates it to the overall area Âi:

sD,i =
Âout,i

Âi
(7.10)

If the shape of the reconstructed subset is circular, sD,i = 0 was expected. The measure is
graphically described in Figure 7.4.

Point spread function - reconstruction resolution The point spread function (PSF)
is a well known measure from image processing. It defines the (impulse) response of an
imaging system to a point source. The parameter describes the reconstruction resolution.
The PSF was defined by the relationship of the area of the reconstructed subset Âi compared
to the overall area of the torso mesh Amesh.

PSFi =
Âi

Amesh
(7.11)

Ringing Ringing artifacts describe periodic oscillations around sharp spatial transients
or edges due to the low-pass filter effects of the reconstruction. Around the reconstructed
circular object, negative amplitudes appear if ringing is present. Ideally, these negative
artifacts vanish if an optimal reconstruction is chosen. The ringing (RNG) measure was
defined by:

RNGi =

∑
k/∈C∩∆σ̂ki<0

∆σ̂ki

∑
k∈C

∆σ̂ki
(7.12)

Without ringing present, the measure will result in RNGi = 0.
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7.3 Results

7.3.1 Analysis of forward sensitivity

The results of the forward sensitivity analysis are split in three sections. At first, the spatial
sensitivity distributions are investigated qualitatively and the profiles of spatial sensitivity
(right-left, dorsal-ventral and caudal-cranial) are compared between experiments and between
indicator concentrations. Secondly, the similarity of spatial sensitivity profiles are quanti-
tatively assessed and compared for different indicator concentrations. Similarity of spatial
sensitivity is essential to allow clinical comparison of different lung states with different
conductive backgrounds (e.g. collapsed and recruited lung). Lastly, the variation of forward
sensitivity across conductive spheres within the electrode plane was evaluated. Ideally, the
sensitivity remains constant within the electrode plane. Yet, for adjacent stimulation, we
expect sensitivity to be higher close to the boundary and lower towards the center of the torso.
Still we expect the sensitivity to be more homogeneously distributed within the electrode
plane for higher indicator concentrations, since the influence of the background conductivity
decreases.

Qualitative analysis For a qualitative assessment of the spatial forward sensitivity distri-
bution in front of realistic pulmonary conductivity backgrounds, images of the distributions
are depicted in Figures 7.5, 7.6 and 7.7. The Figures depict sagittal, frontal and transversal
cross-sectional images of the sensitivity distribution to conductive spheres of blood (top row)
and to conductive spheres of a saline indicator with a concentration of 5 % NaCl (middle row).
The sensitivities were normalized to their spatial maximum and are presented in log-scale.
The indicator concentration of 5 % NaCl was chosen as a representative concentration. The
results of the quantitative comparison of sensitivities for all concentrations are described in
the next section. The inhomogeneous background conductivity of the individual experimental
states are shown alongside (bottom row) in order to be able to interpret the influence of the
background on the EIT forward sensitivity.

Figure 7.5 depicts the distribution of forward sensitivity together with the respective back-
ground conductivity for a uni-lateral ventilation of the right lung (S1). The animal was
ventilated with a PEEP = 5mbar. Only the right lung was ventilated during this experiment,
since airflow to the left lung was prevented using a bifurcated endobronchial blocker. As a re-
sult, all alveoli within the left lung collapsed, which corresponds to an FF = 0. The electrical
tissue conductivity was thus reflected by the collapsed parenchyma tissue with a conductivity
of σalv ≈ σblood . Forward sensitivity S to spheres of blood was substantially lower within
the left collapsed lung (top row). Sensitivity between left and right lung differed by a factor
of approximately 100. Due to the collapsed left lung, the ventilated accessory/intermediate
lobe of the right lung (see section 2.1) was pushed to the region of the left lung, which can
be acknowledged in the images of the top row by the increased sensitivity in dorsal regions



7.3. Results 71

within and around the electrode plane. The maximal sensitivity for spheres of blood (top row)
as well as for spheres of a 5 % NaCl indicator (middle row) was observed at the dorsal tip of
the right middle lobe, which was the closest point within the lung to the surface electrodes.
The images in the middle row show the spatial forward sensitivity to spheres filled with a
saline indicator with a concentration of 5% NaCl. A decrease of forward sensitivity towards
the center of the torso and with increasing distance to the electrode plane was observed.
Between left and right lung, a similar sensitivity profile could be observed.
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Figure 7.5: Logarithmic and normalized forward sensitivity S for experiment: one lung ventilation (S1).

The top row depicts the normalized sensitivity to spheres of 10ml volume and the conductivity of blood

in log-scale. The middle row the normalized sensitivity to spheres with the conductivity of 5% NaCl

in log-scale. The sensitivities are normalized to the largest spatial sensitivity. In the bottom row, the

background conductivity is shown. The spatial distributions of sensitivity and background conductivity

are depicted from three perspectives.
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Figure 7.6 presents the spatial distribution of forward sensitivity as calculated for a bilateral
ventilation at an optimal PEEP = 11mbar (S3). The optimal PEEP was defined using
a decremental PEEP trial and the approach described in [54] to minimize collapse and
overdistension. The background conductivity within the lungs was homogeneous due to the
homogeneous ventilation of both lungs. The larger arteries can be seen in the transversal
image of the bottom row. Since the lung was homogeneously ventilated, no visible difference
between the spatial sensitivity distribution to spheres of blood (top row) and to spheres
filled with an 5 % NaCl indicator (bottom row) was found. The maximal sensitivity was
again found at the dorsal tip of the right middle lobe close to the electrodes. The sensitivity
decreased towards the center of the torso and for an increasing distance to the electrode belt
for both types of spheres (blood and indicator).
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Figure 7.6: Logarithmic and normalized forward sensitivity S for experiment: bilateral ventilation at

optimal PEEP (S3). The top row depicts the normalized sensitivity to spheres of 10ml volume and

the conductivity of blood in log-scale. The middle row the normalized sensitivity to spheres with the

conductivity of 5% NaCl in log-scale. The sensitivities are normalized to the largest spatial sensitivity.

In the bottom row, the background conductivity is shown. The spatial distributions of sensitivity and

background conductivity are depicted from three perspectives.
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In Figure 7.7, exemplary spatial forward sensitivity distributions for the third analyzed
experimental state are shown. An experimental model of regional lung injury was induced by
repeated lung lavage of both lungs. Alveolar surfactant was hereby washed out and regional
alveolar collapse was observed in gravity dependent (dorsal) regions of the lungs. To keep
the lung injury stable throughout the measurements and prevent the collapsed lung regions
from recruitment, the animal was ventilated at a PEEP = 0mbar. The dorsal collapse of
alveoli leads to an increase of electrical tissue conductivity, which can be acknowledged in
the images of the bottom row. The sensitivity to spheres of blood (top row) was again found
to be substantially lower in regions of collapse due to the increase of alveolar conductivity to
approximately the same as blood conductivity. The maximal sensitivity was found in the tips
of the left and right middle/cranial lobes close to the electrodes.
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Figure 7.7: Logarithmic and normalized forward sensitivity S for experiment: injury/atelectases (S4).

The top row depicts the normalized sensitivity to spheres of 10ml volume and the conductivity of blood

in log-scale. The middle row the normalized sensitivity to spheres with the conductivity of 5% NaCl

in log-scale. The sensitivities are normalized to the largest spatial sensitivity. In the bottom row, the

background conductivity is shown. The spatial distributions of sensitivity and background conductivity

are depicted from three perspectives.
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The sensitivity to spheres with a 5 % NaCl indicator showed again the typical decrease of
sensitivity towards the center of the torso and with increasing distance to the electrode belt.

Figure 7.8 presents computed forward sensitivity profiles of the spatial forward sensitivity
distributions for each experimental state. To compute the profiles, all simulated spheres
were sorted according to their position pi. For the right-left profile, the spheres were sorted
according to their first coordinate p1,i, for the dorsal-ventral profile according to their second
coordinate p2,i and for the caudal-cranial profile according to p3,i. The sorted spheres were
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Figure 7.8: Visualization of the spatial forward sensitivity profiles for all experimental states (S1), (S3)

and (S4). The right-left profile (A) and (D), the dorsal-ventral profile (B) and (E) and the caudal-cranial

(C) and (F) are depicted. The profiles of forward sensitivity to spheres of blood (top row) and to spheres

with a 5% NaCl indicator (middle row) are depicted. The bottom row visualizes the direction of the

calculated profiles with respect to the lungs. The sensitivity profiles are normalized to the maximum of

the healthy reference state (S3) for each profile direction individually.
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assigned to equidistant spatial intervals. Within each interval, the median of the sensitivity of
all assigned spheres was calculated. The median sensitivity profiles were finally interpolated
and centered around the torso center within the cross sectional plane of the EIT electrodes.
In the top row of Figure 7.8, the spatial sensitivity profiles resulting from the integration of
spheres with blood are depicted. In graph (A), the sensitivity across the right and left lung
is depicted. The profiles of the healthy reference state (S3) and of the lung injury model
(S4) were found to have a similar shape. In the torso center, the sensitivity was decreased,
while within the lungs the sensitivity was maximal. For the unilateral ventilation (S1), the
sensitivity was decreased by a factor of 100 within the left collapsed lung. The sensitivity
profile differed strongly from the other profiles, which would strongly impair a comparison
of spatial perfusion between these states during a clinical assessment. If an indicator of 5 %
NaCl was used, as depicted in image (D), the right-left profiles of all states were found to be
very similar.
In graph (B), the dorsal-ventral profiles of the forward sensitivity to blood are depicted.
Forward sensitivity was decreased in dorsal and therefore collapsed regions of the lungs
during lung injury (S4) compared to the other states. Again, with an indicator of 5 % NaCl
solution, as shown in graph (E), the dorsal-ventral sensitivity profiles strongly aligned. The
dorsal-ventral profiles uniformly showed a higher sensitivity in ventral regions than in dorsal
regions.
For the caudal-cranial profile in graphs (C) and (F), a similar result was found. In collapsed
dorsal regions the sensitivity to blood was strongly impaired during lung injury (S4), while
the profiles became very similar with an indicator of 5 % NaCl. In graphs (C) and (F), the
graphs show a bell shaped sensitivity profile in log-scale. The decrease of sensitivity with
distance from the electrode plane was nevertheless not found to be similar in caudal and
cranial direction. The sensitivity decreased faster in cranial direction than in caudal direction.
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Quantitative assessment of spatial sensitivity similarity After the qualitative compar-
ison of the spatial distribution of sensitivity to blood and to a 5 % NaCl indicator bolus, the
similarity of spatial sensitivity distributions was quantified. With this analysis, the hypothesis,
that spatial sensitivity distributions increase in similarity with increasing indicator concen-
trations, was investigated. The experimental state: bilateral ventilation at an optimal PEEP
(S3) was considered as reference. The maximum of the correlation function Rmax between
reference state and unilateral ventilation (S1) and injury/atelectases (S4) for each spatial
sensitivity profile (as depicted in Figure 7.8) was computed to assess similarity between the
profiles. The maximum of the correlation function instead of Pearson’s correlation coefficient
was used to compare the profiles. This was necessary, since the profiles could be slightly
shifted due to the different levels of PEEP during the individual experimental states. The
graphs in Figure 7.9 depict the maximal correlation of the different amounts of indicator
concentration (blood represents an indicator of 0 % NaCl).
The graphs in the left plot show an increase of the maximum of the correlation function with

increasing indicator concentration especially for the similarity between (S1) and (S3) (red
curve). In absence of an indicator was used (spheres of blood), the right-left profiles of state
(S1) and (S3) are hardly similar (Rmax = 0.67), since the sensitivity within the left lung is
substantially decreased. For an indicator concentration of 2 %, the correlation value already
increased to Rmax = 0.89. The maximal similarity value for an indicator concentration of
10 % was found to be Rmax = 0.95. Since lung lavages were performed in both lungs, the
left-right profile was not expected to be substantially different from the one of the reference
state. The similarity is constantly high for all indicator concentrations above 3 %.
For dorsal-ventral sensitivity profiles (center plot), the similarity was constantly high across
indicator concentrations and only varied slightly for both comparisons. The correlation
between (S4) and (S3) (blue curve) even decreased slightly with increasing indicator concen-

Blo
od 5 %

0.
9 % 10

 %2 % 3 %
Blo

od 5 %
0.

9 % 10
 %2 % 3 %

Blo
od 5 %

0.
9 % 10

 %2 % 3 %

Right - Left Dorsal - Ventral Caudal - Cranial

R
m

a
x

Rmax(S4,S3)

Rmax(S1,S3)

0.7

0.8

0.9

1

Figure 7.9: Similarity of forward sensitivity profiles for different indicator concentrations by correlation

analysis. The maximum of the correlation function Rmax between the profile of the reference state (S3)

and the unilateral ventilation (S1) or the injury/atelectases state (S4) is depicted. The left shows the

correlation analysis for the right-left profile, the middle plot the analysis for the dorsal-ventral profile

and the right plot the similarity for the caudal-cranial profile.



7.3. Results 77

tration (from Rmax = 0.98 to Rmax = 0.96).
The caudal-cranial profiles were also found to be very similar across all indicator concen-
trations as assessed by the maximum of the correlation function. The similarity between
the profiles of (S4) and (S3) increased slightly with increasing indicator concentration from
Rmax = 0.96 to Rmax = 0.98.

Variation of forward sensitivity within the EIT electrode plane With an adjacent
stimulation and the arrangement of EIT electrodes in one single transversal plane, a com-
pletely homogeneous forward sensitivity across the whole lung cannot be expected. With
increasing distance to the electrode plane, the sensitivity will decrease, since the current
density provoked by an injected stimulation current is low in larger distance from the elec-
trode plane. The current will always flow along the shortest path with the lowest resistance
between electrodes. Even within the electrode plane, the sensitivity cannot be assumed to be
homogeneous. Nevertheless, the variation of forward sensitivity within the electrode plane
is hypothesized to decrease in a small region around the electrode plane, if the influence
of the inhomogeneous background conductivity decreases. For this purpose, the median
and interquartile range (IQR) was assessed within the electrode plane. The median and IQR
was calculated over all spheres i ∈

{
[1,kS]|p3,i ∈ [−2 · rSphere,2 · rSphere] · zE

}
. The vertical

(cranial-caudal) level of the electrode plane is described by zE . Figure 7.10 depicts the
median alongside with the IQR. The median and IQR were normalized to the median sensi-
tivity within the electrode plane for the simulation of blood spheres. The median forward
sensitivity decreased with increasing indicator concentration by up to 87 %.
Since median sensitivity decreased, the absolute IQR will also decrease independent of

the background conductivity. To account for this effect and enable fair comparison between
different indicator concentrations, the IQR of each indicator concentration was normalized
to its respective median value. Normalized IQR (nIQR) decreased with increasing indicator
concentrations as listed in Table 7.4. nIQR decreased strongly with increasing indicator
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Figure 7.10:Median and IQR of the forward sensitivity within a small region around the electrode plane.

The sensitivities are depicted for each experimental state separately.
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Type of inhomogeneity Blood 0.9% NaCl 2% NaCl 3% NaCl 5% NaCl 10% NaCl

nIQR (n.u.) for (S1) 2.59 2.15 1.91 1.88 1.82 1.82

nIQR (n.u.) for (S2) 2.67 2.79 2.64 2.54 2.45 2.35

nIQR (n.u.) for (S3) 3.52 2.36 2.03 1.94 1.93 1.92

Table 7.4: Normalized IQR (nIQR) of the forward sensitivity within a small region around the electrode

plane. nIQR was normalized to its respective median value.

concentration for the unilateral ventilation state (S1) and the injury model state (S4). Yet, the
sensitivity variation remains twice as large as the median sensitivity due to the inhomogenous
distribution of sensitivity caused by the adjacent stimulation protocol.

7.3.2 Analysis of inverse sensitivity

In this subsection, the results of the inverse sensitivity analyses are again divided into three
parts. At first, the sensitivities are assessed qualitatively and compared between different
indicator concentrations and different reconstruction algorithms. Afterwards, spatial inverse
sensitivity (amplitude response) profiles are compared for different indicator concentrations
and for the different reconstruction algorithms. Finally, the figures of merit will be compared
for all reconstruction algorithms and indicator concentrations.

Qualitative analysis of spatial inverse sensitivity To assess the spatial distributions
of amplitude response to the spheres of different conductivity, profiles in three different
dimension have been computed, in accordance to the procedure of forward sensitivity analysis.
The profiles of inverse sensitivity are depicted in Figure 7.11. In graph (A), the right lung
profiles of amplitude response to spheres of blood during all simulated experimental states
can be observed. The amplitude response within the left lung during the unilateral ventilation
(S1) was found to be more than one decade smaller compared to the other states. This
sensitivity difference was not present any more, if the conductivity of the spheres was
increased to the conductivity of a 5 % NaCl bolus (graph (D)). The profiles became much
more similar between different experimental states.
The amplitude response to spheres of blood was also greatly decreased in caudal regions
of the lung in the lung injury mode (S4) (graph (C)). The spatial sensitivity imbalance
was minimized substantially, when the sphere conductivity was increased to the respective
conductivity of a 5 % NaCl indicator.

Quantitative assessment of spatial inverse sensitivity similarity The regional simi-
larity of amplitude response AR between the reference state (S3) and unilateral ventilation
(S1), as well as between (S2) and lung injury (S4) was again assessed by the maximum of
the correlation function Rmax between the spatial profiles, as it was similarly done for the
forward sensitivity. In Figure 7.12 the correlation values are depicted for all three spatial
profiles and reconstruction algorithms.
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Figure 7.11: Visualization of the spatial inverse sensitivity (amplitude response) profiles for all experi-

mental states (S1), (S3) and (S4). The right-left profile (A) and (D), the dorsal-ventral profile (B) and (E)

and the caudal-cranial (C) and (F) are depicted. The profiles of inverse sensitivity to spheres of blood

(top row) and to spheres with a 5%NaCl indicator (middle row) are depicted. The bottom row visualizes

the direction of the calculated profiles with respect to the lungs. The sensitivity profiles are normalized

to the maximum of the healthy reference state (S3) for each profile direction individually. The depicted

amplitude response profiles correspond to a reconstruction with a laplace regularization.

The correlation of the right-left profile between (S1) and (S3) (left graph, top row) increases
substantially for all reconstruction algorithms with increasing sphere conductivity. From
spheres of blood to spheres with a 2 % indicator the maximum of the correlation function
increases from values as low as 0.82 (Laplace reconstruction for blood spheres) to 0.98
(for all reconstruction algorithms for 2 % NaCl). Beyond this level, increasing the indicator
concentration did not further increase the similarity substantially.
The similarity between lung injury model (S4) and the healthy reference state (S3) greatly
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increases for dorsal-ventral (bottom-center graph) and caudal-cranial profiles (bottom-right
graph). For all reconstruction algorithms the increase in similarity is very comparable.
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Figure 7.12: Assessment of amplitude response AR (inverse sensitivity) similarity by correlation of

spatial profiles. The left column depicts the similarity of right-left profiles of amplitude response for all

reconstruction algorithms, the center the similarity of dorsal-ventral profiles and the right column the

similarity of caudal-cranial profiles. The upper row of graphs show the comparison of the reference

state with the unilateral ventilation state (S1) and the lower row depicts the comparison to the lung

injury model (S3).
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Analysis of reconstruction parameters within the electrode plane In [93], desired
behaviors for the reconstruction figures of merit were defined. Above all, constant amplitude
responses, position errors and shape deformations would be desirable across the imaging
plane. Since the decrease of amplitude response and the increase of shape deformation and
position error with increasing distance from the electrode plane are determined by the 2D
transversal placement of the electrodes and can not be influenced by the reconstruction algo-
rithm, the analysis of the figures of merit were conducted within a small region around the
electrode plane. All spheres i ∈

{
[1,kS]|p3,i ∈ [−2 · rSphere,2 · rSphere] · zE

}
. zE were included

in the analysis.

At first, the median of all figures or merit was calculated to compare the reconstruction quality
among reconstruction methods and indicator concentrations. The median of the amplitude
response ĀR was calculated and is depicted in the top row of Figure 7.13. The amplitude
response decreases with increasing indicator concentration. The amplitude response is very
similar for reconstruction algorithms with a slightly smaller amplitude response for the
GREIT reconstruction. The amplitude response to spheres of blood for the lung injury model
(S4) showed a very large value (ĀR≈ 7 for all reconstruction approaches and is not shown
in the top-right graph. The large value can be explained by the very large amplitude response
to spheres at the tip of the middle lobe of both lungs and the very small amplitude responses
in collapsed regions. The amplitude response values were normalized such that the most
central sphere had an AR = 1 (as explained in section 7.2). The reference sphere was located
within the collapsed region, thus scaling increased the AR values of ventral spheres even
more.
The median position error ∆ p̄ was not substantially affected by the indicator concentration
(second row of Figure 7.13). The position error was generally smaller for the GREIT
reconstruction by approximately 2 mm. The position error was largest for the Laplace
regularization.
The median of the PSF was generally larger for the GREIT reconstruction, but also not
dependent on the indicator concentration. The median of the shape deformation was found
to be smaller for GREIT reconstruction and did not depend on the indicator concentration.
Ringing was significantly decreased for the GREIT reconstruction with no dependency on
the sphere conductivity.

Besides the median of the figures of merit, the variation of these reconstruction quality pa-
rameters was assessed. The IQRs of all parameters across all sphere within the small region
around the electrode plane were calculated. The IQRs were normalized to their respective
median to allow comparison between different concentrations, reconstruction approaches
and experimental states.
Figure 7.14 depicts the normalized IQRs as a function of indicator concentration and for all
different reconstruction algorithms. The top row depicts the IQR for the amplitude response
ARiqr. With increasing indicator concentration, the variation of the amplitude response
within the area around the electrode plane decreased for all reconstruction algorithms. Thus,
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Figure 7.13: Median values of the figures of merit to assess reconstruction quality within a region

around the electrode plane. The top row shows the median of the amplitude response for all recon-

struction approaches as a function of indicator concentration. The second row depicts the median

of the position error, the third row the median of the PSF. The forth row shows the results for the

shape deformation parameter and the last row depicts the median amount of ringing present for each

reconstruction algorithm.

the inverse sensitivity became more homogeneous for increasing indicator concentrations.
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The IQR of all other parameters did not show a clear dependency on the indicator concentra-
tion.

0

0.5

1

0

0.5

1

0

0.1

0.2

0.3

0

0.5

1

0

0.2

0.4

0.6

s D
,i
q
r 
(n

. 
u
.)

A
R

iq
r 
(n

. 
u
.)

PS
F i

q
r 
(n

. 
u
.)

R
N

G
iq

r 
(n

. 
u
.)

Δ
p

iq
r 
(n

.u
)

(S1) Unilateral vent. (S3) Optimal PEEP (S4) Injury

Thikonov 0th order Laplace GREIT

Bl
oo

d
5 %

0.
9 % 10

 %2 % 3 %
Bl
oo

d
5 %

0.
9 % 10

 %2 % 3 %
Bl
oo

d
5 %

0.
9 % 10

 %2 % 3 %

Figure 7.14: IQRs of the figures ofmerit to assess reconstruction qualitywithin a region around the elec-

trode plane. The top row shows the IQR of the amplitude response for all reconstruction approaches

as a function of indicator concentration. The second row depicts the IQR of the position error, the third

row the IQR of the PSF. The forth row shows the results for the shape deformation parameter and the

last row depicts the IQR amount of ringing present for each reconstruction algorithm.
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7.4 Discussion

In this chapter, the forward and inverse sensitivity were investigated. The similarity of spatial
distributions of forward and inverse sensitivity was assessed between different experimental
states with substantially different and realistic pulmonary conductivity backgrounds.
Forward and inverse sensitivity exponentially decreased with distance from the electrode
plane in caudal-cranial direction. At a distance of approximately 10 cm, forward and inverse
sensitivity were reduced by almost 90 %. If a sufficient indicator concentration was consid-
ered, such that the background influence was reduced, forward sensitivity and amplitude
response decreased faster in cranial direction. This might be explained by the very conductive
heart region above the electrode plane. The current density is most likely higher around the
heart region, which might decrease the sensitivity to a conductivity change in this region.
Similar explanation approaches have been also made in [19, 109].
The ventral regions of the lungs were found to be more sensitive (inverse and forward) for all
states, indicator concentrations and reconstruction approaches. The distance to the surface
electrodes is much smaller in ventral regions of the lungs, compared to dorsal regions of
the lungs. This might be a possible explanation for the substantial sensitivity difference
between ventral and dorsal lung areas. This finding might also represent an explanation
for the repeatedly reported overestimation of lung perfusion in ventral regions compared
to an underestimation of perfusion in dorsal regions [19, 109, 121]. This effect might be
considerably smaller in clinical measurements, since the human anatomy does not show
large muscular and fatty areas dorsal of the lungs. The distance to the electrodes in ventral
and dorsal regions are in this case much more similar.
The similarity of the spatial profiles between experimental states increased with increasing
indicator concentrations. The conductivity contrast to the pulmonary background increases
with increasing concentration, thus the inhomogeneous distribution of background conduc-
tivity loses influence. Overall, considering forward and backward sensitivity, a 2 % NaCl
indicator seemed to be sufficient to achieve a strong similarity between different experimental
states. This does not mean, that a 2 % NaCl indicator achieves sufficiently high SNR to
allow robust perfusion estimation in noisy measurements. This analysis will be performed in
chapter 12.
The evaluated figures of merit, assessing the reconstruction quality, did not show a depen-
dency on the indicator concentration besides the amplitude response. Overall, the GREIT
algorithm seemed to perform best with respect to position error, shape deformation and
ringing. Nevertheless, the training data (conductive spheres) were very similar to the spheres
of the simulation study. Thus, an overfitting of the algorithm to the problem might have an
influence as well.

Limitations The described sensitivity simulation study has only been performed for a
single porcine anatomy. Though the findings are very comprehensive and were consistent
with our expectations, the meaningfulness might be further increased if a larger cohort
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of animals would be considered for simulation. Additionally, during the experimental
states, which were compared within the sensitivity study, PEEP levels were different. The
different levels of PEEP not only lead to a change of background conductivity, but also to
a repositioning of the heart and an enlargement or reduction of lung volume. The altered
anatomy also influences the spatial sensitivity distribution and can not be compensated by
higher indicator concentrations.
The simulated conductive spheres had a volume matching the 10 ml of the injected indicator
during the Dresden study. Nevertheless, the whole amount of indicator will never be in the
same spatial region at the same time, since it will most likely (partially) dilute fast within the
blood stream.





Chapter 8
Dynamic simulation of

indicator-enhanced EIT

María Hernández Mesa contributed to the research for her Master thesis to the following
dynamic simulation study [134].

8.1 Motivation

The method of estimating spatial pulmonary perfusion with EIT bases on the tracking of
a conductive indicator bolus during its passage through the pulmonary circulation within
multiple cardiac cycles. After central venous injection of the indicator bolus, it first passes
the right heart with the right cardiac atrium (RA) and ventricle RV and enters into the lungs
through the pulmonary artery (PA). After its passage through the larger blood vessels of
the left and right lungs, it passes the pulmonary capillary bed (PCB) around the alveoli and
flows through the pulmonary veins (PVs) into the left cardiac atrium (LA) and ventricle
LV. If EIT electrodes are attached around the thorax, all of these larger blood circulation
compartments participating in pulmonary blood flow contribute to the reconstructed EIT
image. Due to its low spatial resolution, EIT will not be able to differentiate larger blood
vessels from the capillary bed. While the conductivity change caused by the passage of the
indicator through the right heart and the pulmonary arteries is presumably large, the capillary
bed represents a widespread volume of lower regional conductivity changes. One could
argue, that for this reason the main contribution to the measured voltage change at the EIT
electrodes results from the blood flow in the larger arteries and the heart. Yet, a larger volume
of smaller conductivity changes might nevertheless lead to a similar voltage change at the
surface electrodes compared to a large conductivity change in a relatively small volume.
With the clinical goal of investigating spatial distributions of the ventilation-perfusion ratio
(V

.
/Q

.
) to assess gas exchange quality, the physician is interested in the spatial distribution of

perfusion of the PCB, since this contains the blood flow participating in gas exchange. For
this reason, it is necessary to understand, which spatio-temporal compartments (PA, PCB,...)

87
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contribute to the measurable EIT voltage changes and to the resulting reconstructed EIT
image amplitudes. It is important to understand, if EIT images mainly represent blood flow
in larger blood vessels or perfusion from areas with many smaller vessels within the PCB,
which would be clinically more relevant.
To investigate the origins of the indicator-enhanced EIT perfusion image amplitudes, a
dynamic indicator-enhanced EIT imaging has been simulated. To simulate the indicator
passage, the indicator signals have been extracted from 4D indicator-enhanced multidetec-
tor Computed Tomography (MDCT) perfusion measurements. All important participating
spatio-temporal compartments of pulmonary circulation have been segmented from the same
MDCT volumes to form the basis of EIT simulations.

Objectives

The aims of this chapter all refer to the second main objective as stated in the introduction in
section 1.2. Under this main objective the following aims are defined:
• Extract spatial compartments of the pulmonary circulation and the dynamic indicator

signals from 4D MDCT measurements.
• Create the dynamic 3D EIT bio-impedance model and solve the EIT forward problem.
• Reconstruct 2D EIT images with standard reconstruction algorithms.
• Analyze contributions of different spatio-temporal participants in pulmonary circula-

tion.

8.2 Methods

The following section describes the process of creating a dynamic simulation of an indicator-
enhanced EIT measurement based on dynamic 3D indicator-enhanced MDCT perfusion
recordings. The simulation setup and the EIT forward and inverse calculations are described.
Finally, the methods to analyze, which spatio-temporal compartments of the pulmonary
circulation contribute, are described.

8.2.1 Simulation setup

To create a dynamic simulation of the indicator passage trough the pulmonary circulation,
the 4D-MDCT images from the experimental state Healthy-Normoxia (E1) of the Iowa study
(see section 6) were used. The animal was in supine position throughout the experiment and
was normally ventilated with a PEEP = 5mbar. The pulmonary perfusion was expected to
be higher in dorsal than in ventral regions due to gravity.

MDCT Segmentation As described in chapter 6, indicator-enhanced MDCT perfusion
was acquired in a volume around the transversal plane of the attached EIT surface electrodes.
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The measurement volume extended 2cm above and below the EIT electrode plane. The
reconstructed MDCT scans had a resolution of 0.5×0.5mm2 and a slice thickness of 1.2 mm.
A temporal ECG gated series of these scans was recorded with a mean temporal sampling of
about 0.8 s. The resulting dynamic 4D-MDCT tissue density volume (in Hounsfield units of
tissue density, HU) was initially downsampled to a spatial resolution of 2 mm in all spatial
directions. The downsampled matrix ρρρCT (n) ∈ RKx×Ky×Kz had a size of [Kx×Ky×Kz] =

[105×105×12] and was dynamically sampled at 25 temporal acquisition points. Since
the temporal acquisition was ECG-gated, the dynamic sampling was not equidistant. The
temporal domain was therefore interpolated at n= [1,N] sampling points with a sampling rate
of fs = 25Hz resulting in N = 1000 sampling points of the MDCT volume. The sampling
rate was set to the frame rate of the EIT measurements recorded simultaneously during the
Iowa study.
At first, the static tissue background was segmented from the MDCT volume of the first
temporal sampling point ρCT (n = 1), right before the indicator injection and propagation
started. The heart, the lungs, the torso and the electrodes were segmented semi-automatically
with ITKsnap [152]. The resulting tissue segmentation masks were further processed in
MATLAB R2019a. The masks were smoothed using morphological operators and combined
to gain a tissue material label map of the same size as a single static MDCT volume. The
segmented and smoothed tissue labels are depicted in Figure 8.1.
In order to enable the evaluation of different contributors to the spatial amplitudes of an EIT
perfusion image, all larger blood volumes participating in the pulmonary circulation were
additionally segmented. Since iodine was injected as contrast agent for MDCT perfusion
estimation, the contrast of larger blood volumes was increased during the progression of the
indicator bolus through the pulmonary circulation in comparison to non-perfused regions. For
this reason, the larger blood volumes were segmented from a temporal maximum intensity
projection (MIP) of the dynamic MDCT tissue density measurement ρρρmax ∈ RKx×Ky×Kz :

ρρρmax = max
1≤n≤N

ρρρCT (n) (8.1)

From the tissue density matrix containing the temporal indicator maxima ρρρmax the larger
blood volumes were segmented with a region growing algorithm implemented in MATLAB
R2019a. The interval of tissue densities considered for region growing was limited to densi-
ties larger than 450 HU. The seed points for region growing for the individual blood volumes
were set manually. After segmentation, the segmented blood volumes were smoothed by
morphological operators. The segmented blood volumes are depicted in Figure 8.1.

Mesh generation The same process, as explained for the background simulation study in
the previous chapter 7, was conducted to create suitable meshes for the EIT simulations. To
give a short summary, the torso surface was initially triangulated in MATLAB R2019a and
exported to MeshLab [153, 154]. Further smoothing of the torso surface was followed by the
final surface meshing in Instant Meshes [156], which optimizes the quality of the surface
triangles. The thorax volume was finally meshed with gmsh [157]. The mesh consisted of
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Right and left ventricular blood volume

Right and left pulmonary arteries

Right and left pulmonary veins

Aorta

Segmented blood volumes

Torso (muscles and fat)

Electrodes

Lungs

Heart muscle

Segmented organ tissue

Figure 8.1: Depiction of the simulation mesh with the mapped segmented tissue and electrode labels

and blood volumes.

281 172 tetrahedral elements with a mean edge length of 3.19±0.59 mm and a mesh quality
(ratio of the shortest to the longest edge length of a tetrahedron) of η = 0.66±0.07.

Extraction of indicator signals In order to simulate a dynamic EIT measurement of the
indicator bolus propagation through the pulmonary circulation, the temporal indicator signals
had to be extracted from the measured MDCT tissue density matrices. For voxels of ρρρCT (n)
within the segmented blood volume regions or within the lung, the temporal indicator signals
were extracted. The static background tissue density was removed in order to separate the
MDCT density changes caused by the presence of the indicator. Afterwards, temporal low
pass filtering was applied (IIR-Butterworth filter, f3dB = 0.5Hz) to remove noise. The cutoff
frequency was chosen well below potential heart rates. The heart rate defined the initial
non-equidistant sampling due to the ECG-gating. Frequencies of the indicator signals can
be expected to be within f ≈ [0,0.2]Hz (compare chapter 9. Within a spatial voxel k, the
filtered indicator signal ∆ρk(n) describes the change in density caused by the presence of
indicator fluid.

The filtered MDCT indicator signals were approximated by a gamma variate model to
suppress additional noise and to analyze and compare the model parameter values of each
pulmonary circulation compartment. The gamma variate model consists of four parameters,
two shape parameters α and β , a scaling factor g and the arrival time (in samples) of the
indicator signal nA:

γ(n) = g · (n−nA)
α · exp(−β (n−nA)) (8.2)

The model parameters α , β and g can be expressed by detectable signal features of the
indicator signal ∆ρk(n). The dependency is derived in appendix A. For this purpose, five
signal features were detected from each indicator signal k within the lung or one of the
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important segmented blood volumes:

• indicator maximum ∆ρmax,k = max
n

∆ρk

• temporal sample of indicator maximum nmax,k = argmax
n

∆ρk

• maximal positive slope of indicator signal ∆ρ̇max,k = max
n

d∆ρk
dn

• temporal sample of maximal positive slope ns+,k = argmax
n

d∆ρk
dn

• temporal sample of indicator arrival 0 !
= T (nA,k)

The function T (n) describes the tangent to the point of the maximal slope of the indicator
signal. The sample of the indicator arrival was estimated by a method described in [170].
The model parameters for each spatial voxel, besides nA,k, were estimated using the identified
features. The parameter αk was estimated by:

αk =
(nmax,k−nA,k)

2

(nmax,k−ns+,k)2 (8.3)

The parameter βk was set to:

βk =
nmax,k−nA,k

(nmax,k−ns+,k)2 (8.4)
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Figure 8.2: Overview of extracted and simulated indicator conductivity changes ∆σσσ in S/m. The indica-

tor signals are depicted for each individual pulmonary circulation compartment together with its mean

TTP tmax and the number of participating elements. In the lower left image the segmented tissue and

blood volumes are depicted.
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Finally, the scaling factor gk was calculated as a function of ∆ρmax,k and the previously
identified parameters αk and βk:

gk =

(
βk

αk

)αk

eαk ·∆ρmax,k (8.5)

The resulting extracted indicator signal for each voxel k within the segmented blood volumes
or the lungs was described by its gamma variate model γk(n). Up to this point, the model
function was still a function of tissue density and had to be transformed to electrical conduc-
tivity. The indicator signal describes the amount of indicator bolus within a spatial element.
It was assumed, that the spatial element kmax contains the indicator signal with an overall
maximal amplitude, which corresponds to an element completely filled with indicator fluid.
The electrically conductive indicators ∆σk(n) were created with the following approach:

∆σk(n) = σindicator ·
γk(n)

γkmax(nmax,kmax)
(8.6)

The electrical conductivity of the injected indicator bolus was set to σindciator = 7.01S/m,
which corresponds to saline solution with a concentration of 5 % NaCl [168]. The resulting
EIT indicator signals are depicted for each compartment of the pulmonary circulation
separately in Figure 8.2. For all k outside of the segmented blood volumes or the lungs, the
dynamic indicator conductivity was set to ∆σk(n) = 0.

Conductivity and electrode mapping Based on the voxel based static background label
map containing the tissue labels of the organs or blood volumes and the corresponding tissue
conductivities in Table 8.1, the background conductivity matrix σσσB was created. This matrix
had the same size as the tissue label matrix. To simulate the dynamic scenario, the final
conductivity matrix was defined by:

σσσ(n) = σσσB +(∆σσσ(n)−σB,kmax) (8.7)

The maximal conductivity over time was therefore 7.01S/m.
The voxel based conductivites were mapped onto the tetrahedral mesh for all temporal
sampling points n. For each tetrahedral mesh element, the mode of all tissue labels belonging
to voxels fully enclosed by the tetrahedron was assigned as tissue label to the element. For
simplicity, the spatial element index k will refer to the tetrahedral mesh element index in the
following.
Besides the conductivity, the tissue label map indices were also mapped onto the tetrahedral
mesh with the same approach. The resulting tetrahedral tissue label matrix is described by

Tissue Blood Myocardium Lung (inflated) Torso/Muscle tissue

σB in S/m 7.03 ·10−1 2.15 ·10−1 1.07 ·10−1 3.62 ·10−1

Table 8.1: Overview of the chosen tissue conductivities (S m
−1

) at a stimulation frequency of

fI = 100kHz [158, 159]. For all segmented blood volumes, the conductivity of blood was chosen.
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Blood volume Right Heart Right PA Left PA Right PA Lung/PCB Veins Left Heart

Tissue label 1 2 3 4 5 6 7

Table 8.2: Overview of the tissue labels of matrix LLLT

LLLT ∈ NK×1. Each element of the matrix contained a number representing a blood volume
compartment participating in pulmonary circulation (as depicted in Table 8.2).
The segmented electrodes had to be mapped onto the surface of the simulation mesh as
well. Instead of point electrodes, a more sophisticated electrode model was used, which
introduces additional but realistic boundary conditions for the forward and inverse problem.
The complete electrode model (CEM) was simulated for this purpose [78–80]. A mixed
boundary condition (Dirichlet and Neumann) had to be solved at each electrode to consider
the current density and potential distribution on the electrode surface [171]. To map the
electrode surface of the segmented electrode voxels to the tetrahedral mesh, the inner normal
surface of the segmented electrode was computed with Matlab R2019a. All surface nodes
of the tetrahedral mesh within the normal projection of the inner electrode surface onto the
torso surface were considered as electrode node.

Forward calculation The dynamic 3D EIT simulation was performed in adjacent stim-
ulation and measurement mode, as it has been conducted with the CareFusion Goe MF
II system. The injected current amplitude was set to AI = 4.43mA and the stimulation
frequency to fI = 100kHz. As described above, a CEM was used and the contact resistance
was set to Rskin−electrode = 100Ω. The forward simulation was performed for each temporal
sampling point n with EIDORS [169]. The result of the forward simulation were the dynamic
adjacent voltage measurements VVV = [vvv(1), ...,vvv(n)] ∈ RM×N . Since 16 electrodes were used,
the number of voltage measurements results in M = 208.
For small conductivity changes, the FEM forward calculation for each temporal sample n
can be approximated by a matrix multiplication:

vvv(n) = J3D(n) ·σσσ(n) (8.8)

The matrix J3D(n) ∈ RM×K describes the first-order forward simulation matrix for the
temporal sample n.

EIT Reconstruction Normalized linear 2D EIT reconstructions were performed to com-
pute a time series of 2D images of the conductivity changes as it is currently clinically
performed. To reconstruct the 2D EIT images, a triangular mesh was created with Matlab
R2019a. The mesh consisted of H = 1598 elements and 849 nodes. The mesh is depicted in
Figure 8.3 alongside the 3D simulation mesh. The estimated spatio-temporal normalized
conductivity changes are described by the matrix ∆Σ̂ΣΣ = [∆σ̂σσ(1), ...,∆σ̂σσ(N)] ∈ RH×N . To
reconstruct three different reconstruction approaches were chosen:

• Tikhonov 0th order with reconstruction matrix ΘΘΘT 0 ∈ RH×M
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• Tikhonov 2nd order / Laplace with reconstruction matrix ΘΘΘL ∈ RH×M

• GREIT with reconstruction matrix ΘΘΘGREIT ∈ RH×M

In general, the time variant conductivity changes in ∆Σ̂ΣΣ were computed by the multiplication
of any of the above reconstruction matrices ΘΘΘ ∈ RH×M and the linearized and normalized
simulated voltage changes ∆VVV = diag(vvv(1))−1 · [vvv(1)− vvv(1), ...,vvv(N)− vvv(1)] ∈ RM×N

∆Σ̂ΣΣ = ΘΘΘ ·∆VVV (8.9)

The reference voltages for the linearization and normalization were defined by the first set of
simulated voltage measurements vvv(n = 1) just before the injection of the indicator.

8.2.2 Analysis of contributions

The goal of the described dynamic EIT simulation was to investigate the contribution of each
spatio-temporal contributing compartment of the pulmonary circulation, such as the heart
chambers, the pulmonary arteries and veins, and the PCB. For each reconstructed element
h, the relative amount of each compartment contributing to the reconstructed conductivity
change ∆σh was analyzed.
We herefore define a multidimensional function G (n) : ∆σσσ(n) ∈ RK×1→ ∆σ̂σσ(n) ∈ RH×1.
This function projects the simulated 3D indicator related conductivity change ∆σσσ(n) onto
the 2D reconstructed conductivity change image ∆σ̂σσ(n). The function G is derived in the
following.
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Figure 8.3: Joint depiction of reconstruction and forward simulation meshes. The coloring of the dif-

ferent segmented organ and blood volumes of the simulation mesh are the same as in Figure 8.1
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The reconstructed EIT image ∆σ̂σσ(n) of the nth sampling point is related to the normalized
voltage change ∆v(n) by the general reconstruction matrix ΘΘΘ:

∆σ̂σσ(n) = ΘΘΘ ·∆vvv(n) (8.10)

We can rewrite the normalized voltage difference and gain:

∆σ̂σσ(n) = ΘΘΘ ·diag
[
vvv(1)

]−1 ·
[
vvv(n)− vvv(1)

]
(8.11)

The voltages were simulated and can thus be represented by the ground truth conductivity
signal ∆σσσ(n) and the linear approximation of the FEM EIT forward simulation J3D(n):

∆σ̂σσ(n) = ΘΘΘ ·diag
[
J3D(1)σσσ(1)

]−1 ·
[
J3D(n)σσσ(n)−J3D(1)σσσ(1)

]
(8.12)

If we consider the forward simulation matrix to be time invariant J3D(n) = J3D(1) = J3D,
we can simplify the equation further to:

∆σ̂σσ(n) = ΘΘΘ ·diag
[
J3Dσσσ(1)

]−1 ·
[
J3Dσσσ(n)−J3Dσσσ(1)

]
(8.13)

= ΘΘΘ ·Fnorm ·J3D ·∆σσσ(n) (8.14)

We chose the linear time invariant forward simulation matrix J3D to the mean of all temporal
Jacobians during the passage of the indicator:

J3D =
1
N ∑

n
J3D(n) (8.15)

To simplify the equation, the voltage normalization was renamed to Fnorm = diag
[
J3Dσσσ(1)

]−1.
The usage of a time invariant approximation of the simulation matrix will introduce an error
and a spatial smearing to the reconstructed image, since the indicator will appear in different
compartments of the torso at different times and thus the spatial distribution of conductivity
within the thorax will not be time variant. Nevertheless, we assume the error to be sufficiently
small and make the assumption for simplification of the analysis.
From the final equation (8.14), we arrive at the function

G (n) = G = ΘΘΘ ·Fnorm ·J3D ∈ RH×K
(8.16)

In order to investigate the contribution of different blood volumes to the reconstructed EIT
image, binary masks B ∈ RK×1 for the different blood volumes were defined based on the
tissue label map LT . The definition of the mask is exemplary described for the right PA:

BrPA,k =

{
1 if LT,k = 2

0 otherwise
(8.17)

With the binary mask, an EIT image was reconstructed, which does only result from the
conductivity change within the right PA:

∆σ̂σσ rPA(n) = G ·diag(BrPA) ·∆σσσ(n) (8.18)
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The relative contribution rCrPA,h(n) of the right PA to element h of the reconstructed image
was calculated by:

rCrPA,h(n) =
∆σ̂rPA,h(n)

∆σ̂h(n)
(8.19)

In a variety of indicator based perfusion modalities, different features of the indicator dilution
curve are analyzed. The maximal slope ∆ ˙̂σσσmax, the area under the curve (AUC) ∆σ̂σσAUC and
the maximal amplitude ∆σ̂σσmax within a spatial element h are commonly exploited. While
the maximal slope of an indicator curve can be related to the blood flow, the AUC is linked
to the blood volume of a spatial element. For this reason, the relative contribution to the
reconstructed feature images were analyzed in the following. Since G was approximated to
be time invariant, we can calculate the features as follows:

∆σ̂max,h = Ghk ·max
n

∆σk (8.20)

∆ ˙̂σmax,h = Ghk ·
d∆σk

dn
(8.21)

∆σ̂AUC,h = Ghk ·∑
n

∆σk (8.22)
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8.3 Results

At first, the different reconstructed indicator-enhanced EIT images are qualitatively compared
to the indicator-MDCT ground truth. Afterwards, the relative contributions to the recon-
structed EIT image of the different blood volumes participating in pulmonary circulation are
investigated and compared between reconstruction approaches.

8.3.1 Comparison of EIT reconstruction approaches

In Figure 8.4 the different EIT reconstruction approaches are compared to MDCT. The
rows depict the different indicator features, which were reconstructed. Based on the visual
impression, the similarity between actual the simulated EIT reconstructions are high.
In the first row, the reconstructed AUC images for EIT and MDCT reconstructions are
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Figure 8.4: Comparison of the different EIT reconstruction approaches to MDCT. Important recon-

structed indicator features, such as the maximal slope ∆ ˙̂σσσmax, the AUC ∆σ̂σσAUC and the maximal ampli-

tude ∆σ̂σσmax are compared to indicator MDCT features.
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depicted. As defined in section 8.2.2, the AUC represents the area under curve of the indicator
dilution curve and therefore enhances areas of larger blood volumes. The left heart within
the AUC images was consistently more intense for both modalities compared to the maximal
slope and the maximal amplitude images.
The Laplace regularization was not able to distinguish between heart and lung regions and
smeared image components into the center of the image. EIT reconstruction with a Tikhonov
regularization of 0th order was able to reconstruct lung and heart regions nicely, yet showed
patchy or noisy spatial behavior. The GREIT reconstruction results seem to represent a kind
of compromise between the results from Thikonov and Laplace regularization. The heart
and lung region were still distinguishable, yet amplitudes seemed to be slightly spatially
smoothed with a stronger tendency towards the image center.
The middle row of reconstructed images depicts the maximum amplitude ∆σ̂σσmax. The relative
amplitudes within the heart region were smaller compared to the AUC images. The Laplace
regularization lead to a shift of reconstructed amplitudes to the center again. The left heart,
with a larger blood volume, seems to contribute more to the EIT images compared to the
right heart volume.
The bottom row of images presents the maximal slope of reconstructed conductivity change.
The right heart region was enhanced for all EIT reconstructions. Spatial smoothing of
the images was again strongest for Laplace regularization, in accordance with the initial
expectations. The GREIT reconstruction seemed to be a balanced solution between spatial
smoothness and reconstructed detail.
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8.3.2 Analysis of relative contributions to the
reconstructed EIT image

Figures 8.5, 8.6 and 8.7 depict the relative contribution rC of the different participating
blood volumes in pulmonary circulation on the reconstructed maximal slope image for the
three different reconstruction algorithms. We present only the results for the analysis of the
maximal slope reconstruction, since this feature is often and will be later used to estimate
pulmonary blood flow. The top left image depicts the reconstructed feature image. The top
right image shows the vertical projection of the segmented lung and heart region on the
EIT reconstruction mesh. Between the heart and the lung region, an overlap region was
considered. In very caudal regions, the overlap region defines lung regions, in very cranial
area, heart region. The six lower plots depict the relative contributions rC to the EIT feature
image of the individual blood volumes. Indicator within the lungs are responsible for the
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Figure 8.5: Relative contributions of participating blood volumes in pulmonary circulation on EIT max-

imal slope images for a Tikhonov regularization
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largest amount of EIT maximal slope amplitude. The pulmonary arteries only contribute
regionally with approximately around 10 % for all reconstruction algorithms. The blood
volumes of the heart reach contribution values of approximately 60-70 %. Between the
different reconstruction approaches, the relative contribution varied only very slightly. The
deviating influence on the shape of the cardiac blood volumes seem to be the only major
distinction between the three regarded reconstruction algorithms.
Table 8.3 depicts the contributions to the overall lung and heart region for the reconstructed

maximal slope image. The lung region was defined by the vertical projection of the segmented
lung volume on the reconstruction mesh. The heart region was equally projected. An overlap
region was defined. The defined regions are depicted in the top right image of Figures
8.5, 8.6 and 8.7. In Table 8.3 we can observe the most important result from the described
simulation study. Conductivity changes in three dimensional PCB compartments caused by
simulated indicator passage had the largest influence on the lung regions of the reconstructed
2D EIT image. For 0th Tikhonov and Laplace regularization we found a relative contribution
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rCPCB > 80% of PCB compartments to the lung regions of the reconstructed EIT image.
For the GREIT reconstruction the relative contribution was slightly less. The relative
contribution of the pulmonary arteries to the lung regions of the reconstructed EIT image
was rCrPA+lPA ≤ 10% for all reconstruction algorithms.
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Figure 8.7: Relative contributions of participating blood volumes in pulmonary circulation on EIT max-

imal slope images for a GREIT reconstruction

8.4 Discussion

A comprehensive dynamic EIT indicator simulation study has been developed and conducted.
To our knowledge, this is a novel analysis, since the relative amounts of contribution of
the different 3D spatio-temporal compartments of the pulmonary circulation to the 2D EIT
image have not yet been investigated. The approach to analyze the different contributors
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Origin: PCB Left heart Right heart Right PA Left PA Veins

Tikhonov 0th
order

Lung region 84.9 3.3 5.2 1.5 2.8 2.2

Heart region 40.0 26.6 30.3 0.6 1.1 1.4

Overlap region 60.7 18.1 16.8 1.4 1.1 1.9

Tikhonov 2nd
order (Laplace)

Lung region 81.3 4.0 5.9 1.8 3.5 3.5

Heart region 48.9 22.2 24.0 1.1 1.5 2.3

Overlap region 64.1 15.9 13.5 1.9 1.7 3.0

GREIT

Lung region 75.1 7.7 8.2 2.0 3.2 3.9

Heart region 73.9 8.2 12.7 0.4 3.0 1.8

Overlap region 64.2 15.1 14.3 1.3 2.0 3.1

Table 8.3: Contributions of different participants of the pulmonary circulation to the reconstructed

maximal slope image.

to an reconstructed EIT image or image series has been also conducted by Proenca et al.
[172]. They have investigated the different contributors to the pulsatility image by means
of dynamic bio-impedance simulations. They have shown, that a strong contributor to the
pulsatility images is the heart motion.
In a similar manner, we have simulated the dynamic propagation of an indicator through the
pulmonary circulation system. The main finding of the study is, that larger blood vessels
only contribute with very small amounts to the EIT image and to different feature images.
This finding emphasizes, that indicator-enhanced EIT might be really valuable to assess
PCB perfusion to investigate perfusion-ventilation relationships and regional gas exchange.
Nevertheless, the larger blood vessels were only segmented down to approximately the
third bifurcation. There exist multiple more vessels branching downstream, which do not
contribute to gas exchange. These vessels could not be segmented and are therefore assigned
to the PCB compartment. Yet, the information, that the main large blood vessels do not
contribute substantially to the EIT perfusion image is of high clinical importance.
The MDCT imagse representing the basis of the dynamic EIT indicator simulation, were
recorded during a PEEP of 5 mbar. At higher PEEP levels, the contribution of larger blood
vessels might increase, since the PVR is increased and the capillary blood volume decreases.
When comparing the different considered EIT reconstruction algorithms, the Laplace regu-
larization always showed a lower spatial resolution and was not able to distinguish between
lungs and heart regions robustly. The Tikhonov 0th order regularization qualitatively showed
very good results, while GREIT seemed to be a very good trade off and might improve
robustness in actual clinical measurements compared to Tikhonov regularization. We have
not seen major differences between the considered reconstruction algorithms with respect
to the contributions of different spatio-temporal compartments to the lung region. In the
heart region, GREIT images contained substantially less contributions from the left and right
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cardiac blood volume compared to the other reconstructions. We can not explain this finding
so far and further research is needed.

Limitations The simulated conductivity indicator curves are based on the identified and
extracted MDCT indicator signals. A major difference between the MDCT and the EIT
indicator curve is caused by the viscosity of the indicator. Saline solution has a viscosity
very similar to blood, while iodine has a higher viscosity. The pulmonary transit time as
estimated with MDCT is expected to be higher than the one detected with EIT. In [173],
a comparison between iodine and saline solution was conducted, which underlines this
hypothesis. This finding also implies, that the indicator propagation through the pulmonary
circulation presumably exhibits higher dispersion for MDCT than for EIT. This might also
have a small influence on the assessment of relative contributions.
The study was only performed in a bio-impedance model created from a data set of only one
porcine anatomy. To increase the statistical value, more simulations could be performed.
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Chapter 9
Indicator time series

reconstruction

Parts of the developed algorithms in this chapter have been published [124, 142]. I was sup-
ported for the development of the described algorithms by multiple students, who published
their work in Bachelor and Master theses [131, 134, 174].

9.1 Introduction

As described in chapter 3, the main challenge of EIT is to robustly reconstruct spatial conduc-
tivity changes from voltage measurements at nE electrodes attached around the body surface.
One major advantage of EIT is its potential to allow very high temporal sampling such that
frame rates of fS = 50Hz can be achieved, which enables the analysis of fast physiological
processes.

For the purpose of estimating spatial distributions of pulmonary blood flow, the image
reconstruction describes the first main processing step after preprocessing of the measured
voltages. The reconstruction approaches analyzed within this thesis and the necessary pre-
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processing will be introduced in this chapter. The conductivity signal analysis and perfusion
parameter estimation forms the second necessary algorithmic step. This step is introduced
in the next chapter. From dynamic M = nE · (nE −3) voltage measurements v(n) ∈ RM×1

between adjacent electrodes at n = [1,N] temporal sampling points, the responsible spatial
conductivity distributions σσσ(n) ∈ RK×1 within discrete elements k of the body have to be
reconstructed. As described within the fundamentals in chapter 3, for indicator-enhanced pul-
monary blood flow reconstructions, it is sufficient to estimate regional conductivity change
∆σσσ(n) ∈ RK×1 originating from the passage of a proportion of the indicator bolus in front of
an approximately static conductivity background σσσB ∈ RK×1.
The sequential voltage measurement frames can be combined to form a single spatio-temporal
voltage measurement matrix V ∈ RM×N = [v(1), ...,v(N)]. This spatio-temporal matrix was
the starting point of the described algorithm. The processing steps, with all considered alter-
natives, for the reconstruction of the conductivity changes ∆ΣΣΣ ∈RK×N = [∆σσσ(1), ...,∆σσσ(N)]

are schematically described in Figure 9.1.

The following chapter is meant to introduce the optimized EIT reconstruction approaches. A
comprehensive comparison of all reconstruction approaches will be performed in chapter 12
using the data of the preclinical study in Dresden.

9.2 Separation of the different components
comprised in EIT measurements

During the propagation of the indicator bolus through the pulmonary circulation, other
dynamic physiological processes, change the regional conductivity within the torso and
influence the voltage measurement as well. For EIT reconstruction, we need to solve a
severely ill-conditioned problem. To improve the ill-conditioned problem, unnecessary
signal components were removed, which might additionally complicate reconstruction.
Thus, voltage changes, which exclusively originate from the propagation of the indicator
bolus through the heart and lungs, were extracted prior to the EIT reconstruction (see first
processing step in Figure 9.1). For the analysis in this thesis, we considered the following
voltage signal model for the voltage measurement v(n) at time point n:

v(n) = vI(n)+vV (n)+vP(n)+vB + e(n) (9.1)

The propagation of a hypertonic indicator bolus through the pulmonary circulation causes
regional conductivity changes, which result in a measurable voltage vI(n) ∈ RM×1 between
adjacent surface electrodes during an EIT recording. To estimate regional lung perfusion
distributions with EIT, we reconstructed this voltage signal component with respect to the
temporally static voltage vB ∈ RM×1 originating from the static conductivity background
during the indicator-enhanced EIT measurement. Therefore we must identify and separate
these signal components from all other additive signal parts.
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The largest dynamic component vV (n) ∈ RM×1 of the overall signal v(n) , which super-
imposes the indicator voltage component, originates from ventilation related conductivity
changes. The periodic signal component is composed of frequencies within a narrow band
width around the respiratory rate (RR) and its harmonics. Most of the performed EIT per-
fusion measurements, as described in chapter 5 and 6, have been conducted during breath
hold phases. For these measurements, no lung aeration related voltage component existed
(vV (n) = 0 ∀ n ∈ [1,N]). Yet, during the preclinical study in Dresden, we investigated as
well if respiratory hold phases could be avoided, which represents a stressful intervention
for severely ill patients. Thus, the indicator bolus was additionally applied during ongoing
mechanical ventilation for all included states. For these measurements, it was necessary to
remove the voltage component vV (n).
Besides the ventilation signal part, a pulsatile voltage vP(n) ∈ RM×1 caused by circulation
related conductivity change (CRIC) can be observed. The origins of these pulsatile conduc-
tivity changes are manifold and a matter of research. The main contributors to the pulsatile
signal are thought to be blood volume changes in distensible pulmonary vessels, heart and
vessel movement and the reorientation of blood cells within the blood stream during a cardiac
cycle [18]. Frequencies of the CRIC are located in a narrow bandwidth around the heart rate
and its harmonics.
The final signal component e(n) describes the measurement noise, which we assumed to be
sufficiently small, such that no explicit removal has been performed.
In Figure 9.2, the different voltage signal components are depicted for exemplary indicator
injections during breath hold in plot (A) and during ongoing ventilation in plot (B). The
approaches to extract the indicator component vI(n) during breath hold and during ongoing
ventilation are described in the following paragraphs.

Extraction of vI(n) for measurements during breath hold phases For measurements
during breath hold, only the pulsatile CRIC component needed to be removed. For this
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Figure 9.2: Signal components of an EIT voltage measurement during breath hold and during ongoing

ventilation. Graph (A) shows the average voltage signal (mean over all voltages of a measurement

frame) for measurements with different indicator concentrations during breath hold. Plot (B) depicts

the averaged voltage for the injection of the indicator bolus during ongoing mechanical ventilation.

The signal components have been separated from each other. The static background vB(n) voltage has
been removed.
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Figure 9.3: Analysis of the frequency bandwidth of the indicator component vI(n). The graph in (A)

shows the power spectral density (PSD) of an exemplary signal vm(n). The cumulative sum of the PSD

is depicted in graph (B). The statistic of f95 in plot (C) was calculated for an indicator concentration of

5% NaCl and was created by including all elements k and all animals of the preclinical study in Dresden

(see chapter 5). The statistic was computed for each experimental state separately: (S1) uni-lateral

ventilation; (S3) bi-lateral ventilation at an optimal PEEP; (S4) atelectatic/injured lung; (S6) bi-lateral

ventilation at maximal PEEP; (S7) uni-lateral PA block. The graphs were created based on an analysis

conducted during the research for a supervised Bachelor thesis [131].

purpose, we applied zero phase digital low pass filtering (forward-backward filtering) [175].
The cut off frequency of the filter was chosen to f3dB = 0.5Hz, since we expected heart rates
to be well above 0.5 1

s · 60
60 = 30bpm for humans as well as for pigs [176]. At the same time,

the frequencies of the indicator signal component were found to be well below the cut off
frequency. In graph (C) of Figure 9.3, boxplots of the f95 for measurements during breath
hold phases and for the different experimental states of the Dresden study (see chapter 5)
are depicted. The frequency f95 describes the spectral border below which 95 % of the total
spectral power of vI is located. The measure is also known as spectral edge frequency [177].
It was calculated by computing the power spectral density (PSD) |F {vI(n)}|2 and creating
the cumulative sum of the PSD normalized to the total spectral power. The PSD of vI(n) is
depicted in graph (A) of Figure 9.3, the cumulative sum in plot (B). The statistic in plot (C)
shows, that for all states of the Dresden study, the f95 was well below the cut off frequency
of the low pass filter.
The filter was implemented by cascading second order infinite impulse response (IIR) filters
with an overall order of 10. To minimize transient effects at the borders of the relatively
short breath hold phase, the signal was symmetrically extended at extrema of the pulsatile
signal component before filtering (as we have published in [125, 131]).

Extraction of vI(n) for measurements during ongoing ventilation In case the indica-
tor measurement was conducted during ongoing ventilation, the ventilation component vV (n)
had to be additionally removed. The difficulty in separating the indicator component from
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the voltage originating from the cyclic aeration of the lungs during mechanical ventilation
is, that typical RRs of mechanical ventilation can be as low as approximately 12 breaths per
minute, since this is the lower limit of natural respiration rates of spoantaneous breathing in
humans [31]. This minimal rate corresponds to a frequency of 0.2 Hz, thus, the spectrum of
the ventilation component vV (n) might overlap with the spectrum of the indicator component
vI(n). In ARDS patients however, respiratory rates are often increased (up to 35 breaths per
minute) in order to prevent derecruitment during expiration by minimizing the time of the
expiration and increasing intrinsic positive end-expiratory pressure (iPEEP) [178]. At the
same time, tidal volume (VT) can be decreased if respiratory rates are increased, reducing the
risk of volutrauma [179]. If the spectra of the two voltage measurement components overlap,
a frequency filtering will not be able to extract the indicator signal without deterioration.
In these cases other more adaptive filtering techniques must be applied such as introduced
in [180]. For this technique, a volume curve, which is perfectly synchronized to the EIT
measurement must be known, which for the current ventilator and EIT devices is not always
available. At the same time, the method relies on the solution of an additional ill-conditioned
problem which might again introduce errors and instabilities.
For the described analyses within this thesis, we made the assumption, that for a future appli-
cation of the indicator-enhanced EIT measurement during ongoing ventilation, the device
might as well remind the physician to set the RR≥ 15breaths per minute ( fResp = 0.25Hz)
during the indicator application. With this assumption, standard frequency filtering can be
applied without altering the indicator component, since the spectral overlap of the signal com-
ponents is substantially reduced. During the porcine study in Dresden, only RR≥ 15breaths
per minute were used for indicator applications during ongoing ventilation.
In order to remove the ventilation component by frequency filtering, the RR was detected
from the averaged (global) voltage measurement v̄(n) ∈ R:

v̄(n) =
1
M
·

m

∑
i=1

vi(n) (9.2)

Since the ventilation component contained the largest periodic signal amplitude, the RR
could be detected by finding the frequency fResp ∈R at the spectral maximum of |F {v̄(n)}|.
The goal of the filtering was to remove the ventilation component sufficiently, while leaving
the indicator component unchanged. For this reason the cutoff frequency f3dB of the filter
was adaptively set to:

f3dB =

{
0.75 · fResp if 0.75 · fResp ≥ 0.2Hz

0.2Hz otherwise
(9.3)

The minimal cutoff frequency was therefore defined by f3dB = 0.2Hz, which allows a suf-
ficient removal of the ventilation component, while maintaining the indicator component
morphology. The filtering step was again performed by a 10th order IIR-filter. Forward-
backward filtering was applied, in order to avoid influencing the instantaneous phase of the
indicator signal. The pulsatile signal vP(n) was automatically removed as well, since the fre-
quencies of this component are substantially larger and were suppressed by the low pass filter.
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In both cases, the static background voltage vB was defined as the mean over all temporal
samples prior to the indicator injection.

9.3 Indicator reconstruction approaches

The separated voltage component vI(n), resulting from the indicator passage through the
pulmonary circulation, was subsequently reconstructed to obtain estimations of the dynamic
conductivity changes for each spatial element k. For a potential clinical application of
EIT perfusion, it is most likely, that linearized and normalized time difference (LNTD)
reconstruction will be used. The difference reconstruction as well as the normalization
improves robustness, if the exact torso shape and electrode positions are unknown exactly
and a standard reconstruction model is used. For this reason, LNTD reconstruction was
applied for all reconstructions in this thesis. We therefore normalized the spatio-temporal
voltage measurement matrix VI = [vI(1), ...,vI(N)] containing all measurement frames:

∆V = diag(vB) ·VI (9.4)

∆V∈RM×N contained the M normalized voltage differences for all N temporal measurement
frames. We reconstructed the normalized dynamic conductivity changes ∆ΣΣΣ ∈ RK×N with
on single matrix multiplication step:

∆ΣΣΣ = ΘΘΘ ·∆V (9.5)

ΘΘΘ ∈ RK×N describes the inverse reconstruction matrix. For the reconstruction of dynamic
indicator dilution related conductivity changes, the choice of the reconstruction matrix ΘΘΘ

has not yet been evaluated in any publication. In most of the publications referring to
indicator-enhanced EIT spatial pulmonary perfusion estimation, the reconstruction algorithm
has not even been described [19, 121]. Therefore, there is a lack of general understanding,
which reconstruction approach works best and robust for pulmonary perfusion reconstruction.
Four different LNTD reconstruction algorithms were therefore considered and compared
in the following. The comparison was conducted using the data of the preclinical porcine
study in Dresden and will be described in section 12.3.1. Since there is a vast amount
of publications suggesting different regularization strategies and inversion approaches for
EIT ventilation reconstruction (e.g. [78, 80, 84, 94, 181–184]), which might be suitable
for perfusion reconstruction as well, the considerations leading to the choice of inversion
strategies will be summarized in the following.

Considerations for the choice of reconstruction algorithms If we consider EIT as
an imaging technique1 with sufficient spatial resolution to distinguish between different
sublobar regions of the lungs, we have to impose additional constraints to the solution of the

1We might also consider EIT as a monitor of e.g. eight larger volumes of interest. In [185], such an
approach has been described. Their spatial resolution was limited to lobes of the lungs.
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Figure 9.4: Exemplary spatial profiles of EIT and MDCT perfusion reconstructions. Image (A) displays

the estimated perfusion distribution by MDCT q̇CT . Image (B) depicts the estimation by EIT q̇EIT . For

both perfusion estimations, the maximal slope method has been used as introduced in chapter 10. For

the EIT reconstruction, a Laplace regularization has been applied. Graph (C) shows the right-to-left

profiles of the MDCT and EIT estimations and graph (D) presents the dorsoventral profiles. The arrows

in graph (C) and (D) indicate the largest difference between both modalities.

reconstruction problem to stabilize the inverse solution. Ideally, we can find a regularization
to constrain the solution, which does not further decrease spatial resolution and incorporates
available a-priori information of the underlying spatio-temporal physiological process, in our
case the indicator propagation through the pulmonary circulation. The temporal frequency
band width of an indicator dilution curve is limited to low frequencies (see graph (C) of
Figure 9.3). Spatially, the passage of the indicator dilution, as it can be monitored by EIT,
can also be assumed to be smooth and rather a low frequency process, since the perfusion of
the capillary bed is often described as continuous sheet of blood flow [26] and neighboring
regions experience similar blood flow. In addition, EIT is limited to a rather low spatial
resolution, which will most likely not allow to differentiate between element wise differences
of blood flow. For these reasons, it seemed reasonable to impose spatial smoothness by
incorporating the discrete Laplacian as regularization into the reconstuction. In Figure 9.4,
an exemplary reconstruction of the Iowa study using the Laplace regularization is visualized
(image (B)). In comparison to the MDCT perfusion reconstruction (image (A)), the EIT
reconstruction resulted in slightly shifted spatial distributions towards the image center and
towards more ventral parts of the lungs (compare results of chapter 7). This shift can be also
observed in the profiles of the images in graphs (C) and (D). The cause for the shift might be
manifold and will be discussed in chapter 11.
One possible explanation might be the applied spatial smoothing over larger regions and
especially over organ and vessel boundaries. While in MDCT the highest perfusion in
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the most dorsal regions of the lungs was detected, an EIT reconstruction comprising a
Laplacian regularization might not be able to reconstruct this sharp transition in perfusion
amplitude at the dorsal lung boundary due to the imposed spatial smoothness. Additionally,
the differentiation between lung and pre-and post-lung phases might become more difficult,
since the smoothing is not limited to the organ boundaries and often shifts reconstructed
amplitudes into the center of the image [183]. This effect can be minimized, if a-priori
knowledge about the underlying anatomy is available [183, 186]. Since this information is
often not available or directly accessible in an ICU, we will only consider homogeneous
backgrounds in the following.
To overcome the disadvantages of spatial smoothing, we also additionally applied a standard
0th order Tikhonov regularization, which only limits large reconstructed image amplitudes.
The standard Tikhonov regularization is known to shift reconstructed noise towards the torso
boundary, since spatial EIT sensitivity is increasing with decreasing distance to the electrodes
for adjacent current stimulation [93]. This often leads to noisy or patchy images and we have
observed decreased robustness with this approach. Yet, image amplitudes are not smeared
to the center of the image and we expect to be able to better visualize pulmonary perfusion
close to the lung boundaries.
In previous publications, the Noser prior has also been recommended to improve image
quality and robustness compared to 0th order Tikhonov regularization [94]. The solution is
regularized by incorporating the sensitivity distribution. Nevertheless, this regularization also
tends to shift image amplitudes towards central regions. We introduce a similar approach,
which uses the sensitivity distribution of EIT as weighting for a combined Thikhonov-
Laplacian regularization to avoid noise sensitivity towards the torso boundary and prevent
spatial smoothing in central regions.
In order to benchmark the reconstructions with a very commonly used reconstruction method,
we also applied the GREIT reconstruction. All described approaches, including the new
method are introduced in the following.

Tikhonov regularization For the two classes of Tikhonov type EIT reconstruction ap-
proaches, we estimated the spatio-temporal conductivity changes ∆ΣΣΣ by minimizing the
following functional as introduced in chapter 3:

∆ΣΣΣ = argmin
∆ΣΣΣ

(
‖∆V−J∆ΣΣΣ‖2

W +λ ‖R∆ΣΣΣ‖2
)

(9.6)

The nonlinear EIT forward operator F (σσσ) was always approximated by its Jacobian. The
normalized Jacobian J was calculated using EIDORS [169]:

J = diag(v0)
−1 · dF (σσσ)

dσσσ

∣∣∣∣
σσσ=σσσ0

(9.7)

For the reconstruction, a homogeneous background σσσ0 = σ0
2 was assumed and the Jacobian

was normalized to the corresponding forward calculated voltages v0 ∈ RM×1.
2It shall be hypothesized, that σσσ0 6= σσσB. Since in an ICU the actual conductivity background σσσB is
usually not known, the conductivity background is assumed to be homogeneous with an arbitrary
conductivity σ0 for image reconstruction.
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Additionally, we weighted the first norm with a diagonal matrix W ∈RM×M . The matrix can
be regarded as a measurement noise compensation. If all measurements M have an identical
and uncorrelated measurement noise, the matrix can be chosen to the unit matrix W = I.
For our reconstructions, we assumed uncorrelated measurement noise, but approximated the
measurement noise by:

W = diag
(

v0

maxv0

)
(9.8)

This weighting has been proposed used in other publications before (e.g. [95, 182].

For the reconstruction with a 0th order Tikhonov regularization, the regularization matrix was
chosen to the unit matrix R = I. The final reconstruction was performed by the Pseudoinverse
or reconstruction matrix ΘΘΘT0 ∈ RK×M:

∆ΣΣΣ =

[(
J>WJ+λT0 · I

)−1
J>W

]
·∆V (9.9)

= ΘΘΘT0 ·∆V (9.10)

For the reconstruction with a 2nd order Tikhonov or Laplacian regularization, the regular-
ization matrix was chosen to unit matrix R = L. The discrete Laplacian L ∈ RK×K was
calculated by EIDORS [169]. The reconstruction matrix ΘΘΘL ∈ RK×M was finally defined as:

∆ΣΣΣ =

[(
J>WJ+λL ·L>L

)−1
J>W

]
·∆V (9.11)

= ΘΘΘL ·∆V (9.12)

For all studies and reconstructions, the parameters λT0 and λL controlled the amount of
regularization and were always chosen by maximizing the curvature of the L-curve, as
proposed by Hansen et al. [90].

Novel sensitivity weighted combination of Tikhonov 0
th
and 2

nd
order As we have

discussed above, the Laplace regularization stabilizes the EIT reconstruction and increases
robustness substantially. Nevertheless, the imposed smoothing, especially over organ
boundaries, reduces the image quality and resolution, by pushing image amplitude to central
regions of the lungs and towards the center of the thorax. This might especially complicate
the removal of pre- and post-lung phases, in order to extract pulmonary perfusion (introduced
in the next chapter). A 0th order Tikhonov regularization however pushes noise to the bound-
ary and we generally hypothesize, that equal robustness can not be achieved. Cheney et al.
[94] proposed to improve 0th order Tikhonov regularization by considering the sensitivity
distribution J and minimizing the functional:

∆ΣΣΣ =

[(
J>WJ+λ ·P

)−1
J>W

]
·∆V (9.13)

with P ∈ RM×1 being a diagonal matrix with the entries Pk,k =
[
J>J

]
k,k. This regularization

improves the noise sensitivity at the boundary compared to 0th order Tikhonov regularization.
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Figure 9.5: Graphical motivation for novel sensitivity weighted combination of different regularization

approaches. The weighting matrix F is depicted in image (A). Image (B) depicts the temporal maximum

conductivity change ∆σσσmax = max
n

∆σσσ(n) for a 0th
order Tikhonov regularization. Image (C) depicts the

maximum reconstructed image amplitude for a Laplace regularization and image (D) the reconstruction

for the combined regularization approach. The • dots represent the center of perfusion for the left lung.
The line indicates the dorsoventral position of the reconstructed perfusion center of the 0

th
order

Tikhonov regularization.

Yet, since we did not include anatomical background information, we could not improve
reconstruction quality, since the reconstructed image was again compressed towards the
center.
Yet, the idea of incorporating the sensitivity into regularization seemed valuable, since
especially in a porcine geometry, the lungs and the heart are located very centrally in the
thorax. In swine, a substantial distance between the lung volume and the (especially dorsal)
electrodes exists, and we experience a large sensitivity gradient from the boundaries to central
regions. We opted for an approach, which incorporated the sensitivity as spatial weighting of
the regularization. In a way, we implemented a spatially variant regularization parameter λ .
In very sensitive regions towards the boundaries, we wanted to allow spatial smoothing, in
order to stabilize the solution and overcome the noise sensitivity of a pure 0th order Tikhonov
regularization. Towards the center of the image, the influence of spatial smoothing should be
prevented. Thus, we combined 0th order Tikhonov and Laplace regularization by a weighting
matrix based on the local absolute sensitivity. The weighting matrix was a diagonal matrix
F ∈ RK×K , with diagonal entries [184]:

fk =

(
M

∑
m=1

J2
mk

)− 1
2

=
[
J>J

]− 1
2

k,k
(9.14)

The diagonal matrix was created from all diagonal entries f = [ f1, ..., fK ] ∈ RK×1, which
were normalized to achieve entries of the weighting matrix within the interval [0,1]:

F = diag

 f−min
k
(f)

max
k

(f)−min
k
(f)

 (9.15)

The sensitivity based weighting matrix F is shown in image (A) of Figure 9.5.
To solve the inverse problem with the introduced combined regularization approach, the



9.3. Indicator reconstruction approaches 117

following objective function was minimized:

∆ΣΣΣ = argmin
∆ΣΣΣ

(
‖∆V−J∆ΣΣΣ‖2

W +F ·λT0 ‖∆ΣΣΣ‖2 +(I−F) ·λL ‖L ·∆ΣΣΣ‖2
)

(9.16)

The matrix F weights the first 0th order Tikhonov regularization term, while the Laplace
component is weighted by I−F. Since all regularization matrices are symmetric, we can
also interpret the spatial weighting as weighted norm:

∆ΣΣΣ = argmin
∆ΣΣΣ

(
‖∆V−J∆ΣΣΣ‖2

W +λT0 ‖∆ΣΣΣ‖2
F +λL ‖L ·∆ΣΣΣ‖2

(I−F)

)
(9.17)

The objective function is minimized by the reconstruction matrix ΘΘΘT0−L ∈RK×M , describing
the mapping as:

∆ΣΣΣ =

[(
J>WJ+λT0 ·F+λL ·L> (I−F)L

)−1
J>W

]
·∆V (9.18)

= ΘΘΘT0−L ·∆V (9.19)

To finding optimal regularization parameters λL and λT0, the intuitive and most likely optimal
approach would be to maximize the curvature of a 2D L-curve as e.g. proposed in [187].
Nevertheless, we opted for a simpler approach to test the feasibility. The regularization
parameters were individually optimized by two L-curves, waiving one of the regularization
terms. More robust λ choices could be generated with this approach, though there might
be an even more ideal choice for regularization parameters. We have to mention, that the
separation of the Laplace and 0th order Tikhonov regularization parameter was only possible,
since the norms of both regularization terms were similar λL · ‖L ·∆ΣΣΣ‖fro ≈ λT0 · ‖∆ΣΣΣ‖fro.
The operator ‖·‖fro describes the Frobenius norm [188]. Otherwise, the regularization terms
would need to be additionally weighted by their respective norms or optimal regularization
parameters could be optimized by a 2D L-curve.
An comparison of reconstructions using 0th order Tikhonov (image (B)), Laplace (image (C))
and the novel combined regularization (image (D)) are depicted in Figure 9.5. The combined
approach stabilized the reconstruction, but also prevented the shift of reconstructed ampli-
tudes to more ventral and more central regions.

GREIT The final reconstruction approach was the GREIT reconstruction algorithm. The
description and motivation of the algorithm can be found in section 3.1.3. The algorithm
can be regarded as a trained normalized and linearized reconstruction as the ones described
above. Prior to the actual reconstruction, the reconstruction matrix ΘΘΘG was optimized to a
set of small training targets (≈ 0.05 of torso diameter) for each reconstruction mesh. The
desired reconstruction of these targets was set with desired reconstruction properties. The
properties were set as recommended in [93]:

• reconstructed target radius: 20 % of the torso radius (for all targets at any position).
Within this radius the amplitude was set to 1.
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• amplitude outside of this radius were set to 0 to suppress ringing.
• noise figure (NF) was set to 0.5

Based on these desired image properties, the reconstruction matrix ΘΘΘG was explicitly defined,
as described in section 3.1.3.



Chapter 10
Estimating spatial distributions of

indicator based blood flow

The algorithms described in this chapter have been partly published in journal articles and
conference contributions [125–127, 142]. The development of the described algorithms was
partly supported by students, researching for their Bachelor theses [129, 130, 133].

10.1 Introduction

Spatial perfusion parameters were estimated from the reconstructed temporal indicator time
curves of matrix ∆ΣΣΣ (as explained in the previous chapter). Multiple processing steps have
been performed to estimate a spatial perfusion surrogate from the initial indicator time curves.
An overview of the applied processing steps is depicted in Figure 10.1. Initially, a superim-
posed slow temporal drift needed to be removed to recover the pure first-pass indicator signal.
After the drift component had been removed, surrogates of regional pulmonary perfusion
were estimated by two different approaches and the indicator passage phases, which do not
correspond to pulmonary perfusion, were removed.

10.2 Methods

10.2.1 Extraction of first-pass indicator signals

The pulmonary blood circulation related parameters such as pulmonary blood flow (PBF)
were estimated from the reconstructed temporal indicator signal matrix with normalized
conductivity differences ∆ΣΣΣ ∈ RK×N . The kth row of this matrix contains the temporal
signal ∆σk(n) of the discrete spatial element k representing the local dynamic normalized
conductivity change after a central venous injection of a conductive saline indicator (see
Figure 10.2). This signal can be described by the following model:

119
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Figure 10.2: Exemplary normalized conductivity difference signal of the k-th spatial element ∆σk(n).
The signal was taken from the preclinical animal study in Dresden and depicts the conductivity change

after the injection of a 10ml bolus containing a 5% NaCl solution.
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∆σk(n) = γk(n)+dk(n)+ ek(n) (10.1)

The first signal component γk(n) models the first passage of the indicator though the pul-
monary circulation, which needs to be extracted for parameter estimation. The second
component dk(n) represents a superimposed baseline drift. This drift has been described
before by three different physiological processes: Over a long time sequence of EIT mea-
surements, the baseline of recorded voltage signals commonly slowly decreases, which leads
to a slow increase in global conductivity. This effect is most likely because of decreasing
contact resistances between the skin and the measuring electrodes due to perspiration and
transpiration [189]. Nevertheless, during a single first-pass indicator dilution measurement
of approximately 30−40s duration, this very slow conductivity increase might not have a
strong impact on the measurement. Nevertheless, a linear increase of conductivity during
the indicator measurement is often observed, if the measurement is performed during a
respiratory hold phase or apnoe phase (see Figure 10.2). It has been proposed, that this
increase in conductivity might be linked to pulmonary oxygen uptake [190]. A third and
strongest contribution to the observed baseline drift could originate from leakage or diffusion
of the conductive saline indicator into the surrounding tissue of the vasculature within the
respective spatial compartment. This explanation has been previously used in literature
for dynamic contrast agent enhanced magnetic resonance imaging (MRI) measurements
[191, 192]. We therefore assume that a proportion of the indicator passing through a mea-
surement compartment remains within this area after the injected indicator bolus continued
on downstream.
The baseline drift has to be removed in order to extract the first-pass indicator signal. In
previous publications the drift was either not accounted for or only a straight line was used
as a drift model. In this thesis, two different more sophisticated approaches were developed
making different assumptions, the nonlinear γ-fit and the piecewise fit.

Identification of the global γ-interval To simplify the extraction of the first pass signal,
the global γ-interval [n◦A,n

◦
E ]with n◦A,n

◦
E ∈ [1,N] containing the first passage of the indicator

in the spatially averaged or global signal ∆σ̄(n) = 1
K ∑

K
k=1 ∆σk(n) was identified. The left

border of the interval n◦A approximates the arrival time of the indicator globally, the right
interval limit n◦E the time when the averaged indicator has completely left the measurement
compartment. The interval borders were estimated based on the intersecting tangent method
which has been described for the detection of arrival times of pulse waves [170]. Briefly, to
estimate the arrival time n◦A, a tangent through the point with the maximal positive derivative
is calculated. The temporal sample of the intersection point nxl of the tangent with the
x-axis was calculated. For the right border n◦E of the global γ-interval, the procedure is
repeated with a tangent trough the point with the maximal negative derivative resulting in
the temporal sample nxr of the intersection point of the tangent with the x-axis. The right
border limit of the interval was finally set to n◦E = nxr +0.1 · (nxr−nxl) and the left border to
n◦A = nxl−0.1 · (nxr−nxl). It was assumed that the indicator signals in each spatial element
appear within the global γ-interval. For this reason the right border of the interval was
increased to account for regional compartments with strong dispersion. The left border was
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equally decreased to ensure that indicator signals of regional compartments with an early
indicator appearance such as the right heart are fully comprised by the defined interval. The
increase (decrease) was hereby chosen empirically to 0.1. An exemplary global signal is
shown together with the tangents and the identified global γ-interval in Figure 10.2 (A).

Nonlinear γ-fit In many previous MRT, CT, echocardiographic or optical indicator dilution
studies, a model was fitted to recorded indicator dilution curves in order to remove the
disturbing recirculation or drift signal and measurement noise. The most common and
widely used signal model in indicator dilution imaging modalities is the gamma variate γ(t)
[117, 118, 193]. The model is motivated stochastically and physically in [116]. The first
passage indicator component of the k-th spatial element γk(n) in equation 10.1 was modeled
with such a gamma variate function:

γk(n) = gk · (n−nA,k)
αk e−βk(n−nA,k)

(10.2)

The model is described by two shape parameters αk,βk ∈ {R|αk,βk > 0}, an amplitude
gk ∈ {R|gk > 0} and the arrival time sample of the indicator entering the k-th spatial element
nA,k ∈ {R|n◦A ≤ nA,k ≤ n◦E}.
In a previous indicator-enhanced EIT study [19] the gamma variate γk(n) was fitted to the
reconstructed conductivity signal ∆σk(n) within a small time window from the start of the
indicator dilution curve until its maximum. This restriction prevented misfits due to the drift
component. Afterwards features of the first pass curve were extracted to estimate pulmonary
blood circulation related parameters. Since the recirculation drift was not considered during
the fitting process, the resulting features are altered due to the influence of the superimposed
drift. We therefore propose to extend the model to integrate the drift into the fitting process.
In order to account for the simultaneously occurring superimposed drift, the model is
extended by two additional components including two additional parameters. The final
estimation of the overall signal was performed with the following model:

∆σ̃k(n) = γk(n)+κk

n

∑
τ=1

γk(τ)+mk ·n (10.3)

The first additional component models the remaining proportion of the indicator within
the measurement compartment k by the cumulative sum of the first pass indicator signal.
The integral component introduces one additional weighting parameter κk ∈ R. The steady
conductivity increase during a measurement for example due to oxygen uptake during a
respiratory hold phase was considered by a straight line with a slope of mk ∈ R.

The final model is a highly nonlinear function with six parameters. The fitting has to be
performed in each spatial element k. To increase the fitting success, suitable initial guesses
for the six parameters have to be made. All parameters could be expressed by important
signal features, while nA is already an identifiable signal feature. The parameter αk could be
expressed as a function of the arrival time sample nA,k, the sample of the maximal positive
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slope ns+,k ∈ (nA,k,n◦E) and of the sample point of the maximum nmax,k ∈ (ns+,k,n◦E) of γk(n):

αk =
(nmax,k−nA,k)

2

(nmax,k−ns+,k)2 (10.4)

The parameter βk is described by the same parameters:

βk =
nmax,k−nA,k

(nmax,k−ns+,k)2 (10.5)

Finally, the amplitude g of γk(n) can be expressed in terms of its maximum γmax,k and the
previously identified parameters αk and βk:

gk =

(
βk

αk

)αk

eαk · γmax,k (10.6)

The derivation of the model parameters as functions of important signal features is described
in appendix A.
In order to identify a suitable initialization of the model parameters in each spatial element k,
the features of the gamma variate were approximated by the same features of the reconstructed
conductivity signal ∆σk(n). Thus, an estimate of the gamma variate maximum γ̃max,k and
its sample point ñmax,k was calculated by searching for the maximum of ∆σk(n) within the
global γ-interval:

γ̃max,k = max
n◦A<n<n◦E

∆σk(n) (10.7)

ñmax,k = argmax
n◦A<n<n◦E

∆σk(n) (10.8)

An estimate of the value and position of the maximal positive slope was equally calculated:

˜̇γmax,k = max
n◦A<n<ñmax,k

d
dn

∆σk(n) (10.9)

ñs+,k = argmax
n◦A<n<ñmax,k

d
dn

∆σk(n) (10.10)

An initial guess of the arrival time sample ñA,k was again computed with the intersecting
tangent method [170] using the calculated feature estimates ˜̇γmax,k and ñs+,k. From these
features, the initial values of gk, αk and βk were calculated. The weighting factor of the
integral part was initially set to κ̃k = 0.1 ·∑n◦E

n=n◦A
∆σk(n) for all spatial elements k. The slope

of the straight line was initially set to m̃k = 0 also for each spatial element.
With the described initial estimates the nonlinear model ∆σ̃k(n) was fitted to ∆σk(n) element-
wise using a trust region reflective algorithm implemented in MATLAB R2019a [194].
To calculate the resulting estimation of the first-pass indicator signal γk(n), the estimated
parameters were inserted into equation (10.2). The final result of this processing step was
the spatio-temporal matrix with the fitted drift-free indicator signals ΓΓΓ ∈ RK×N . Each row
of ΓΓΓ represents the temporal indicator signal of a single spatial element over all time steps
n = [1,N]. As a side product, the spatio temporal matrix D ∈ RK×N of all drift signals was
estimated as D = ∆ΣΣΣ−ΓΓΓ. Exemplary fits are shown in Figure 10.2 (C) and (E) for a lung
and heart compartment.
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Piecewise linear fit The nonlinear γ-fit simultaneously adapts to the slow drift and the
gamma variate as model of the first passage of the indicator to the reconstructed conductivity
signal ∆σk with a nonlinear optimization procedure. With the piecewise fit a simplified
and potentially more robust and more flexible method was developed. The idea behind this
method was to approximate the slow drift component with piecewise linear functions. To
retrieve the first pass indicator component, the estimation of the slow drift has to be subtracted
from the original reconstructed conductivity signal ∆σk. This approach reduced the model
fitting to a linear problem. Additionally, it was assumed, that the first passage indicator
signal does not have to be fitted to reduce noise, since the signal-to-noise ratio (SNR) of
the reconstructed conductivity signal was sufficiently high. The method divides the signal
into three temporal intervals individually for each spatial element k: time interval before the
indicator signal arrives with n≤ nA,k; an interval during the passage of the indicator through
the compartment with nA,k < n≤ nE,k and a temporal interval after the indicator has left the
compartment with n > nE,k. For the first and last segment straight lines lA,k(n) and lE,k(n)
were fitted by means of linear least squares.

lk(n) =


lA,k(n) = mA,k ·n n≤ nA,k

lE,k(n) = mE,k ·n+∆σk(nE,k) n > nE,k
n−nA,k

nE,k−nA,k
· lE,k(nE,k)− n−nE,k

nE,k−nA,k
· lA,k(nA,k) otherwise

(10.11)
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Figure 10.3: Graphs of an exemplary indicator dilution curve with the superimposed drift signal d(t)
and the pure indicator dilution curves after estimation by the nonlinear and piecewise fit.
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The slope of the straight line before the arrival of the indicator lA,k is mA,k(n), the slope of
the straight line after the indicator has left the compartment lE,k(n) is described by mE,k. To
remove the sharp edges of the estimated piecewise drift signal lk(n), the signal is low-pass
filtered with a zero-phase filter [175] and a cutoff frequency of 0.1 Hz. The final drift
signal dk(n) is subtracted from the reconstructed conductivity signal ∆σk(n) to retrieve an
estimation of the first-pass indicator signal:

γ̃k(n) = ∆σk(n)−dk(n) (10.12)

The tilde in γ̃γγ which indicates, that the true first-passage indicator signal is only estimated,
we will waive the operator in the following for simplicity. All first-pass indicator curves
form a spatio-temporal matrix ΓΓΓ = [γγγ(1), ...,γγγ(N)] ∈ RK×N .
Both fitting methods have been compared using a simulation study and were presented at a
conference [125]. The comparison of both methods is summarized in appendix B.
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10.2.2 Detection and removal of the pre- and post lung
phases

To estimate the regional distribution of pulmonary perfusion, pre- and post-lung phases had
to be removed from the spatial first-pass indicator signals γγγ(n). Thus, we need to detect all
triangular elements k, which describe regions of the larger pulmonary arteries and veins or
the right and left cardiac blood volume, which participate in the pulmonary circulation, but
do not contribute to pulmonary capillary perfusion. Since the spatial resolution of 2D-EIT
reconstructions does not allow to differentiate between pulmonary arteries, veins or the heart
chambers and we can not expect to have CT or MRT images for patients in an ICU, we only
considered three compartments S1 with i ∈ [1,3]: pre-lungs, lungs and post-lungs.
In order to identify and remove pre- and post-lung phases, we assumed that the mean transit
time t̄γ and the maximal indicator amplitude γγγmax,k(n) differ between the compartments. The
mean transit time t̄γ,k of a spatial element k was described by:

t̄γ,k =
1
fs
·

N
∑

n=1
n · γk(n)

N
∑

n=1
γk(n)

(10.13)

To distinguish the three compartments, a K-means clustering algorithm was applied [195].
Prior to the clustering, a subset of spatial elements j = [1,J] ∈ {k | γmax,k ≥ 0.1 ·max(γmax,k)}
was created, containing elements with indicator amplitudes exceeding a relative threshold of
10 % of the maximal global indicator amplitude. From each element of the subset, a feature
vector xxx ∈ RJ×2 containing the normalized mean transit time and the normalized maximum
indicator amplitude. The normalization was necessary to ensure equal influence of both
parameters. Thus, the values of the feature vector xxx were limited to the interval [0,1]. Finally,
we minimized the sum of all feature distances to the centroid µµµ j of cluster or compartment
Si:

min
3

∑
i=1

∑
xxx j∈Si

∥∥xxx j−µµµ i

∥∥2
(10.14)
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10.2.3 Estimation of vascular transfer parameters

Two different approaches have been investigated to estimate regional distributions of per-
fusion with EIT. The maximal slope method estimates a perfusion surrogate based on an
element wise signal feature analysis. The second approach reconstructs a temporal vascular
transfer function (TF) to element-wise compartments of the lungs. The first approach can be
considered as computationally simple, yet might be sensitive to high frequency noise. The
latter one is more computationally expensive and includes solving an inverse problem, which
might influence its robustness. The second approach can nevertheless be considered as less
sensitive to high frequency noise.

10.2.3.1 Maximal slope method

The first method describes a simple feature analysis based approach of calculating a perfusion
surrogate. Pulmonary blood flow q̇ ∈ RK×1 in each discrete element k was estimated by the
maximal discrete derivative of the first-pass indicator signal γk(n)

q̇k = max
n
{(γk(n)− γk(n−1))} · fs (10.15)

in each spatial element k was calculated as proposed in [19, 196–198]. The mean transit
time of the indicator to the compartment k was approximated by the first temporal statistical
moment of the first-pass signal component:

t̄γ,k =
1
fs
·


N
∑

n=1
n · γk(n)

N
∑

n=1
γk(n)

−n◦A

 (10.16)

In order to allow a fair comparison of the mean transit times between different states and
animals, the transit time was always calculated with respect to the global arrival time n◦A. The
perfusion parameters q̇ and t̄γ were set to zero outside of the detected lung compartment S2.

10.2.3.2 System theoretical or deconvolution based approach

Besides the intuitive approach of estimating the blood flow to a spatial compartment by the
maximal slope of the indicator dilution curve and therefore by analyzing its indicator inflow
rate, we considered a second approach, which is inspired by a system theory perspective
of the given problem. Similar approaches have been proposed for other perfusion imaging
modalities, such as for high resolution cerebral blood flow estimations based on CT mea-
surements [115] or for myocardial blood flow estimations from MRI [199]. The proposed
methods were adapted to be applicable for spatial EIT perfusion estimation, and optimized
to improve robustness.
We consider the pulmonary circulation to be a system with one single input and multiple
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Figure 10.4: Graphical description of the deconvolution based perfusion estimation approach. A ven-

tricular input function (VIF) was estimated from the reconstructed first pass indicator time curves γγγ

within the detected pre-lung compartment S1. This signal was interpreted as input function to the

lungs. The element wise indicator time curves γγγ within all other compartments were considered as

multidimensional output of the system. Between each output and the VIF a transfer function h(n)was
estimated.

outputs. Between the input and each output k, the system is described by its impulse response
h(n) ∈ RK×1. The Laplace transform of the impulse response describes the TF between this
input and the outputs.
The inflow of the pulmonary circulation system is defined by the blood flow in the pulmonary
artery and was called arterial input function (AIF), according to the definition for the ap-
plication to cerebral blood flow estimation [115]. Nevertheless, the resolution of an EIT
reconstruction did not allow to robustly define an AIF within the main pulmonary artery
(PA) or in the main left and right PA. Additionally, in chapter 8 we have concluded, that the
contributions of the left and right PAs to perfusion image amplitudes were rather small, such
that we do not assume to be able to find the actual AIF to the left and right lungs. For these
reasons, we opted for a slightly different definition of the input function. Before the indicator
bolus within the blood reaches the PA, the indicator bolus passes through the right heart
and can be acknowledged initially in reconstructed EIT signals. The input to the considered
system was therefore detected within the pre-lung region and will be called ventricular input
function (VIF) in the following, since the input will be found most likely within the right
ventricular region. The underlying idea of the system theoretical approach of estimating
spatial pulmonary blood flow is visualized in Figure 10.4.

Definition of the VIF To define a VIF, all Kpre extracted first-pass indicator signals within
the previously detected pre-lung phase γγγ pre(n) ∈ RKpre×1 were considered. The extracted
signals of the pre-lung compartment are depicted in graph (B) of Figure 10.5. Due to the
low spatial resolution, the extracted signals γγγ pre(n) were often superimposed by a signal
component of the post-lung phase. In order to have a good approximation of the actual
input function to the lung circulation, we fitted a gamma variate model to the first passage
of the γγγ pre signals (as in [19, 130]). The gamma fits of the extracted first pass signals
γγγ pre,1(n) ∈ RKpre×1 are depicted in graph (B1) of Figure 10.5. The VIF γV IF(n) ∈ R was
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Figure 10.5: First-pass indicator signals within the different detected compartments: pre-lung, lung,

post-lung. Graph (A) shows the first-pass indicator conductivity change signals of all elements. Graph

(B) depicts the signals of the pre-lung compartment. The signals within the pre-lung compartment have

been further separated into a first (B2) and second passage signal (B2). The signals in (B1) have been

considered for the VIF definition. Graph (C) presents the indicator signals of the lung and graph (D) the

signals of the post-lung compartment.

defined by the mean over the largest 10 % of all fitted first pass signals γγγ pre,1(n) of the
pre-lung phase.

Estimation of the system impulse response h(n) We described the lung as a system
with k outputs γγγ(n) and a single input γV IF(n). The multidimensional transfer function of
the system was described by h(n). The following system description was considered for the
kth output:

γk(n) = γV IF(n)∗hk(n) (10.17)

=
1
fs
·

n

∑
τ=1

γV IF(τ) ·hk(n− τ) dτ (10.18)

Thus, the indicator dilution curve in lung compartment k was calculated by the convolution
of the input γV IF(n) and the impulse response hk(n). Equation (10.18) can be rewritten in
matrix form as:

γk(1)
γk(2)

...
γk(N)

=
1
fs
·


γV IF(1) 0 · · · 0
γV IF(2) γV IF(1) · · · 0

...
...

. . .
...

γV IF(N) γV IF(N−1) · · · γV IF(1)

 ·


hk(1)
hk(2)

...
hk(N)

 (10.19)
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We defined A ∈ RN×N to be

A =
1
fs
·


γV IF(1) 0 · · · 0
γV IF(2) γV IF(1) · · · 0

...
...

. . .
...

γV IF(N) γV IF(N−1) · · · γV IF(1)

 (10.20)

Since there exists only a single input to the pulmonary system with all compartments, the
equation was extended to include all k outputs by using the spatio-temporal first pass indicator
signal matrix ΓΓΓ and defining a multidimensional impulse response H = [h(1), ...,h(N)] ∈
RK×N :

ΓΓΓ
> = A ·H> (10.21)

The goal was to retrieve H for assessing the vascular transfer from the input to all outputs.
Therefore, the matrix A needs to be inverted. Since the condition of A is not suitable
for a direct inversion, we again need to solve this inverse problem applying some kind of
regularization. Tikhonov regularization could be used, as it has previously been done for the
EIT reconstruction problem. Since matrix A was created from the shifted VIF γV IF(n), we
assumed, that the largest singular values and their corresponding eigenvectors of the matrix A
contain most of the information. Thus, we chose to invert matrix A after a truncated singular
value decomposition to improve the condition of the matrix.
As introduced in section 3.1.3, we improved the condition of the matrix A by removing
the r smallest eigenvalues and their corresponding eigenvectors. Herefore the matrix A
was decomposed into its singular values D/ ∈ RN×N and the left an right eigenvectors
U,O ∈ RN×N :

A = UD/ O> (10.22)

After removing the eigenvectors corresponding to the r smallest singular values, an approxi-
mation Ar of matrix A was estimated as:

Ar = UrD/ O>r with Ar ∈ RN×N , Ur,Or ∈ RN×N−r
(10.23)

The number of removed singular values r was defined by maximizing the curvature of the
L-curve as defined by [90]. We performed a comprehensive study to find an optimal value
for r published in the Bachelor thesis [133].

Finally, we were able to retrieve the multidimensional impulse response:

H> = A−1
r ·ΓΓΓ> (10.24)

The pulmonary blood flow was estimated by the temporal maximum of the impulse response:

q̇k = max
n

hk(n) (10.25)

The mean transit time was estimated by the sample of the temporal maximum of the impulse
response:

t̄k =
1
fs
·
[

argmax
n

hk(n))
]

(10.26)
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Chapter 11
Analysis of the experimental

study in Iowa

A preliminary method comparison between EIT and MDCT perfusion estimations was
published as a conference contribution [141]. A main part of the comparative study, which
will be described in the following chapter, was also published as journal article in the IEEE
Transactions of Medical Imaging journal [142].

11.1 Motivation

In order to validate the spatial pulmonary blood flow estimation based on indicator-enhanced
EIT, a first comprehensive evaluation of the presented EIT perfusion estimation framework
was conducted using the data of the preclinical study performed in Iowa, which has been
introduced in chapter 6. EIT perfusion was compared to indicator-enhanced multidetector
Computed Tomography (MDCT) in healthy lungs and experimental models of regional,
sublobar lung injury at two distinct levels of fraction of inspired oxygen (FIO2) (compare
Figure 6.1 in chapter 6). The analysis was performed in eight animals in supine position.
For both imaging modalities, spatial perfusion distributions were estimated using the dy-
namic indicator dilution technique. So far, EIT has not been validated against CT perfusion
measurements and the potential of EIT to detect regional, sublobar lung injury has not been
tested. In previous studies on EIT perfusion measurements, only global lung injury has
been investigated and validated against Electron Beam Computed Tomography (EBCT)
[197] and Single Photon Emission Computed Tomography (SPECT) [19, 109]. A validation
study comparing EIT perfusion against PET will be discussed in chapter 12 and was partly
published in [121].
Additionally, since the origin of the EIT perfusion image amplitudes is not fully under-
stood, the following investigation allows to contribute to this question from an experimental
point of view, besides the findings of the simulation study in chapter 8. Herefore, pul-
monary perfusion as estimated by EIT was compared to MDCT estimation results with and

133
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without excluding major blood vessels from the analysis. If EIT reconstructions represent
mainly perfusion of the pulmonary capillary bed (PCB), similarity between EIT and MDCT
should increase, in case major blood vessels are excluded from the MDCT perfusion analysis.

Three main objectives have been investigated:

• Analyze similarity between EIT and MDCT relative spatial pulmonary blood flow
estimations using correlation and Bland-Altman analyses.
• Investigate, whether similarity between EIT and MDCT perfusion increases, if major

pulmonary blood vessels are excluded for MDCT perfusion analysis.
• Analyze, whether EIT can track temporal changes of relative spatial EIT perfusion in

accordance with changes of MDCT perfusion.

11.2 Methods

To compute the EIT and MDCT regional perfusion maps and compare their similarity,
multiple processing steps had to be performed. A schematic overview of the computational
work flow is depicted in Figure 11.1. All necessary processing steps will be introduced in
the following.

11.2.1 Image segmentation and EIT reconstruction model
creation

Image segmentation The process of segmenting the main organ tissues and blood vol-
umes has been already described in section 8.2. The segmentation process has been conducted
for each individual experimental step of each animal. In short, from the spatially downsam-
pled and temporally interpolated tissue density matrix ρρρCT (n) with a spatial resolution of
2 mm in all dimensions and at a temporal sampling of N = 1000 sampling points with a
sampling rate of fs = 25Hz, a static tissue density matrix ρρρCT (n = 1) and a temporal MIP
volume ρρρmax = max

1<n<N
ρρρCT (n) has been extracted. The electrodes, the torso surface, the heart

(heart muscle) and the lungs were segmented from the static matrix and the right and left
ventricular blood volumes, the right and left PA, the PV and the aorta were segmented from
the maximum intensity projection (MIP) volume. All segmented tissue labels formed a
tissue label matrix LT ∈ RKx×Ky×Kz which is depicted for an exemplary animal in graph (A)
of Figure 11.1 and in Figure 8.1 of section 8.2. The tissue label map contained the labels
depicted in Table 11.1

Creation of an animal specific reconstructionmodel Since repositioning of the animal
was avoided throughout all experimental steps and the animal was constantly ventilated with a
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Blood volume Right heart Right PA Left PA Right PA

Tissue label 1 2 3 4

Blood volume Lung/PCB Veins Left heart Heart muscle

Tissue label 5 6 7 8

Table 11.1: Overview of the tissue labels of matrix LLLT

PEEP of 5 mbar, an animal specific reconstruction model was created and jointly used for EIT
perfusion reconstruction of all experimental steps. Herefore, the segmented torso surface and
the electrodes of each experimental step were registered to the initial healthy normoxia state
by a singular value decomposition (SVD) based point cloud registration (PCR) algorithm
[200]. The center coordinates of all 16 electrodes were used to achieve optimal registration.
By averaging over all registered center electrode coordinates, joint electrode positions were
computed with minimal position errors for each experimental state. The registered 2D torso
boundaries within the electrode plane were extracted and averaged in the polar coordinate
space (angular resolution of 1◦). The final joint electrode positions and the 2D torso surface
were triangulated with a Delaunay triangulation algorithm implemented in MATLAB R2019a.

Creation of reconstruction model
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Figure 11.1: Schematic illustration of the computational work flow. First, the torso ( ), the electrodes

( ), the heart muslce( ), the left and right ventricular blood volume ( ), the lungs ( ) and the major

thoracic blood vessels ( ) are segmented from the MDCT volume (A). From the torso segmentation

animal specific EIT reconstruction meshes were constructed (B). EIT image reconstruction was per-

formed (C) and perfusion related parameters were estimated from the dynamic indicator signals for

both MDCT (D) and EIT (E). Finally, the similarity of MDCT and EIT perfusion was evaluated (F). The

illustration has been adapted from our publication with permission [142].



136 Chapter 11. Analysis of the experimental study in Iowa

Over all eight reconstruction meshes corresponding to the investigated animals, the meshes
had a mean edge length of 3.8 mm ± 0.3 mm and consisted of K = 1612.8±40.7 elements.

11.2.2 Estimating spatial pulmonary blood flow with EIT

As described in chapter 9, the M = (nE · (nE−3)) = 208 measured voltages v(n) ∈RM×1 of
the nE = 16 electrodes were preprocessed to extract the indicator signal component vI(n).
Since the indicator measurement was performed during breath hold, only the pulsatile CRIC
component had to be removed from the overall voltages. The voltages were normalized
by the static background voltage vB resulting in the overall normalized dynamic voltage
measurement set ∆V ∈ RM×N :

∆V = diag(vB)
−1 ·VI (11.1)

For the described study, a Tikhonov type reconstruction with a spatial Laplace regularization
was performed to receive robust results. With the reconstruction matrix ΦΦΦT2, as derived in
chapter 9, the spatio-temporal conductivity changes ∆Σ̂ΣΣ = [∆σ̂σσ(1), ...,∆σ̂σσ(N)] ∈ RK×N were
reconstructed by matrix multiplication:

∆Σ̂ΣΣ = ΦΦΦT 2 ·∆V (11.2)

The regularization parameter λ , controlling the amount of spatial smoothing was optimized
using the L-curve for each individual reconstruction.
After EIT reconstruction, the recirculation or drift component was removed within each
spatial element applying the piecewise linear fit as introduced in chapter 10. The pure
indicator passage related signal γγγ(n) ∈ RK×1 was hereby extracted. From the extracted
temporal indicator passage signals, the spatial pulmonary blood flow was estimated applying
the maximal slope method as described in chapter 10. The pulmonary blood flow surrogate
q̇EIT ∈ RK×1 and the mean transit time t̄EIT ∈ RK×1 were calculated and later compared to
the corresponding MDCT measures.
Finally, the pre- and post lung phases were detected and removed with the method introduced

in section 10.2.2. Since the animals were not repositioned throughout the experimental
workflow and PEEP and tidal volume (VT) remained constant throughout all experimental
steps, animal specific joint pre-and post-lung regions were computed from all experimental
steps. The joint heart mask ensured conservative filtering of pre- and post-lung phases. The
joint heart regions are depicted in Figure 11.2.

11.2.3 Estimating spatial pulmonary blood flow with MDCT

In order to have a fair comparison between spatial EIT and MDCT perfusion estimations, the
same indicator dilution parameter estimation approach was applied to the MDCT data. The
maximal temporal slope Q̇CT ∈ RKx×Ky×Kz within each spatial element served as pulmonary
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Animal 1 Animal 2 Animal 3 Animal 4

Animal 5 Animal 6 Animal 7 Animal 8

Before Lung Lung After Lung

Figure 11.2: Detected indicator passage phases: before, within and after lungs. To extract pulmonary

blood flow within the lungs, the pulmonary region was removed. The images depict the computed pre-

and post- lung phases in red and green, which were removed to gain pulmonary perfusion estimations.

blood flow surrogate and was calculated as follows:

Q̇CT = max
2<n<N

{ρρρCT (n)−ρρρCT (n−1)} · fs (11.3)

The mean transit time (MTT) T̄CT ∈ RKx×Ky×Kz of the indicator bolus to a spatial compart-
ment [kx,ky,kz] was approximated by calculating the first temporal moment of each spatial
dilution curve:

T̄CT,xyz =
1
fs

∑
N
n=1 n ·ρCT,xyz

∑
N
n=1 ρCT,xyz

(11.4)

From the computed MDCT perfusion parameters, two sets of 2D parameter images were
created to be compared with 2D EIT perfusion distributions. For the first set of images
q̇CT ∈ RKx×Ky and t̄CT ∈ RKx×Ky , the cardiac phase was removed by extracting regions of the
heart muscle and the left and right cardiac blood volume from the pulmonary blood flow
parameters. The three-dimensional MDCT volume was projected onto the electrode plane
by averaging equally weighted in cranial-caudal dimension. The maximal slope image was
additionally normalized to its overall absolute image pixel sum.
For the second set of parameter images q̇CT,PCB ∈ RKx×Ky and t̄CT,PCB ∈ RKx×Ky the major
pulmonary blood vessels - left and right PA, pulmonary veins - were additionally removed
from the computed parameter sets representing only PCB perfusion. The 3D parameter
volume was again projected onto the electrode plane by averaging in vertical or cranial-caudal
direction and the maximal slope image was normalized.
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11.2.4 Comparison of spatial MDCT and EIT pulmonary
blood flow

First, the EIT perfusion parameters within the triangular reconstruction mesh elements were
registered and mapped to the MDCT pixel map for each individual experimental step. The
same SVD based PCR method was used to register the animal specific electrode positions of
the EIT reconstruction mesh to the mean center electrode positions within the CT domain of
each individual experimental step [200].
The similarity of the spatial lung perfusion estimations were evaluated by correlation and

Bland-Altman analyses. A bounding box around the segmented lung within the image planes
was therefore cut out, in order to suppress the misleading effect, that regions with no expected
perfusion (outside of the heart and the lungs) potentially increase the detected similarity of
the images. To also reduce the influence of different mesh and image resolutions as well as
the influence of different fields of view of the MDCT scanner, the lung region cutout was
resampled to a pixel map of [64×64] pixels for both imaging modalities. For simplicity, we
will continue do describe the cut out lung images of EIT and MDCT parameters by q̇CT and
q̇EIT , though the pixel map had been altered.
To quantify the spatial similarity of the reconstructed relative perfusion distributions q̇CT

and q̇EIT , ROI based and pixelwise similarity measures were considered.
For the ROI based similarity measures, the lung region cutout was further divided into eight
ROIs based on the centroid of the segmented lung volume. The defined ROIs are depicted in
Figure 11.3. The relative amount of perfusion within each ROI was compared between EIT
and MDCT via correlation and Bland-Altman analysis. The same analysis was also repeated
for only four ROIs. Mid-ventral and ventral as well as mid-dorsal and dorsal ROIs were
combined.
Since experimental lung injury was established in sublobar segments of the right lung,
pixelwise similarity was assessed additionally, in order to consider a higher spatial resolution

1

64 641
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64 641
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mid-dorsal

mid-ventral

ventral

right left
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Figure 11.3: Definition of the ROIs to analyze similarity. A region containing the lungs (as defined by

CT segmentation) of MDCT and EIT perfusion images was extracted and spatially sampled to [64×64]
pixel. The resulting image was divided into eight ROIs around the centroid of the segmented lung. The

illustration has been taken from our publication, which is currently under review.
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for the comparison. Herefore, the Pearson correlation coefficient rPixel of the lung image
cutouts between MDCT and EIT was computed. Additionally, the ventro-dorsal and right-left
profiles of the cutout lung perfusion images were computed by summarizing image rows
and image columns. The Pearson correlation coefficient of these profiles between MDCT
and EIT was computed to quantify the ventro-dorsal rV D and right-to-left rRL similarity of
both perfusion imaging modalities. Exemplary profiles are depicted in graphs (C) and (F) of
Figure 11.5.
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11.3 Results

During all experiments, monitoring parameters were recorded. The mean and STD values of
the main parameters for all animals are assembled for each individual experimental step in
Table 11.2. The VT and the PEEP were kept constant throughout the experimental protocol,
while the FIO2 was adapted to the normoxia or hyperoxia condition. After lung injury, the
partial pressure of end-tidal carbon dioxide (petCO2) increased and could be decreased by
applying a higher FIO2. Blood pressures, the heart rate and the cardiac output (CO) increased
after lung injury to maintain a sufficient blood oxygenation. An increase of FIO2 lead to a
decrease of blood pressures and CO. The gas exchange parameters showed corresponding
trends. partial pressure of arterial oxygen (paO2) decreased after lung injury, while partial
pressure of arterial carbon dioxide (paCO2) increased. The increase of FIO2 compensated the
effect of the decrease of paO2 and the increase of paCO2. The oxygen saturation measured
by the peripheral capillary oxygen saturation (SpO2) and the mixed venous oxygen saturation
(SvO2) also decreased after lung injury and could be increased during hyperoxia.

Healthy lung Regional ARDS

Parameter Pre/post indicator FIO2 = 0.21 FIO2 = 1.0 FIO2 = 0.21 FIO2 = 1.0

Ventilatory parameters

VT (ml kg
−1) pre & post 12.3(15) 12.1(15) 12.1(14) 12.3(15)

PEEP (mbar) pre & post 5.0(00) 5.0(00) 5.0(05) 5.0(05)
FIO2 (%) pre & post 20.9(04) 94.6(70) 21.0(06) 86.8(269)

pre 39.1(34) 38.8(34) 48.4(43) 44.8(33)
etCO2 (mmHg)

post 42.6(43) 43.1(36) 51.3(41) 47.4(46)

Hemodynamic and gas exchange parameters

pre 101.0(161) 94.4(159) 109.5(211) 109.1(298)
HR (min

−1)
post 102.6(169) 102.0(177) 119.9(263) 108.4(286)
pre 87.0(273) 91.9(256) 72.6(285) 65.8(207)

MAP (mmHg)
post 96.3(288) 85.0(249) 71.3(157) 60.0(111)
pre 6.6(21) 8.0(40) 8.0(17) 8.0(21)

CVP (mmHg)
post 7.9(25) 7.6(35) 8.8(29) 8.6(19)
pre 21.1(50) 18.1(26) 28.1(76) 21.1(68)

MPAP (mmHg)
post 25.0(64) 19.9(36) 30.6(66) 22.4(56)

CO (l min
−1) pre 3.8(13) 3.5(08) 4.1(15) 3.8(09)

pre 98.6(20) 99.8(07) 85.4(169) 99.8(05)
SpO2 (%)

post 98.3(19) 100.0(00) 79.4(184) 99.6(07)
paO2 (mmHg) pre 90.6(127) 548.3(896) 59.7(123) 449.8(873)
paCO2 (mmHg) pre 42.0(28) 43.2(44) 49.6(50) 50.4(55)
SvO2 (%) pre 64.1(76) 74.3(50) 55.1(143) 75.2(72)

Table 11.2: Overview of the ventilatory, hemodynamic and gas exchange parameters. Mean values and

standard deviations over all included animals are presented for each individual experimental step. The

table has been adapted from our publication with permission [142].
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The comparison of spatial lung perfusion distributions between MDCT and EIT will be
presented in the following chapter. Afterwards, the resulting similarity measures between
MDCT and EIT of temporal perfusion changes between experimental states will be presented.
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11.3.1 Comparison of spatial distributions of lung
perfusion based on MDCT and EIT

Qualitative comparison The estimated spatial pulmonary perfusion distributions by
MDCT and EIT were visualized in Figure 11.4. The left column (A) depicts the static
CT tissue density. During lung injury, a diffuse infiltrate in the middle region of the right
lung was visible in the static CT image (left column, second image from the top). The second
column (B) depicts the same static CT tissue densities overlayed by the MDCT perfusion
estimate q̇CT,PCB. The larger blood vessel and the cardiac phase of the indicator bolus passage
through the pulmonary circulation have been removed. The right column (C) depicts the
estimated EIT perfusion q̇EIT . Within the bottom row, the spatial differences in relative
perfusion between normoxia states before and after lung injury are depicted for MDCT
∆q̇CT,PCB and EIT ∆q̇EIT . Especially the difference images presented a strong decrease
of perfusion within the injured lung region for both MDCT and EIT estimates. A strong

H
ea

lt
h

y
L

u
n

g 
In

ju
ry

D
if

fe
re

n
ce

(A) (C)(B)

CT

q0 max

Decrease IncreaseΔq

Figure 11.4: Estimated pulmonary perfusion distributions before and after sublobar lung injury. Static

CT images (A) are shown alongside of the computed MDCT blood flow q̇CT,PCB (B), the calculated EIT

blood flow q̇EIT (C) for the healthy (upper row), and the injured lung (middle row). The spatial perfusion

increase or decrease (∆q̇CT,PCB and ∆q̇EIT ) after establishing regional lung injury is depicted in the last

row. The images have been taken from our publication, which is currently under review.
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qualitative similarity was observed between imaging modalities. EIT perfusion distributions
showed a slight ventral shift of perfusion.

Quantitative comparison The statistical analyses are visualized in Figure 11.5. The
graphs depict the analyses between EIT q̇EIT and MDCT perfusion q̇CT,PCB, with all larger
pulmonary blood vessels excluded. Graph (A) presents the correlation analysis for a spatial
division into four ROIs. An overall spatial correlation was r = 0.97 over all animals and all
experiments could be achieved. There was a strong gradient present between the dorsal/de-
pendent and the ventral/independent lung. For a division of the reconstructed images into
eight ROIs, as depicted in graph (B), the overall correlation decreased to r = 0.84. A clear
gradient of the relative amount of perfusion was observed between dorsal and ventral regions.
The averaged (over all states and experiments) dorso-ventral profiles in graph (C) also indi-
cated a higher perfusion in dorsal/dependent areas of the lungs. EIT perfusion estimations
tended to be shifted to ventral regions of the lungs compared to MDCT reconstructions.
In graph (F), the averaged right-to-left profiles were depicted. For both EIT and MDCT
perfusion, less perfusion was directed to the right lung in average compared to the left lung.
Sublobar lung injury was also established within the right lung. EIT and MDCT perfusion
right-to-left profiles showed a clear visual similarity, while EIT seemed to overestimate
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Figure 11.5: Statistical comparison of MDCT q̇CT,PCB and EIT q̇EIT pulmonary blood flow distribution.

The correlation analysis in four ROIs between MDCT and EIT perfusion is depicted in graph (A). Graph

(D) shows the corresponding Bland-Altman plot. The same analysis in eight ROIs is shown in graphs (B)

and (E). Mean Dorsal-ventral and right-to-left profiles for both MDCT and EIT are shown in graps (C)

and (F). LoA: limit of agreement. The illustration has been adapted from our publication with permission

[142].
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perfusion within medial regions of the lungs, presumably within the mediastinum. Finally,
graphs (D) and (E) include the Bland-Altman analysis results based on four and eight ROIs.
The limits of agreement (LoA) were found to be LoA = 7.4% for an analysis in four ROIs
and LoA = 8.8% for eight ROIs.

All resulting similarity measures are assembled in Table 11.3. The similarity between
EIT and MDCT perfusion has been analyzed with and without excluding large pulmonary
arteries from the MDCT estimations. The left half of the table describes the computed
similarity measures of the comparison, if larger pulmonary vessels have previously been
excluded from the MDCT analysis q̇CT,PCB. The right half of the table describes the same
comparative measures without excluding the larger blood vessels from MDCT estimations
q̇CT . When larger pulmonary blood vessels were considered for MDCT perfusion estimations,
the similarity in four ROIs slightly decreased (e.g. LoA increases from 7.4 % to 8.59 %).
Nevertheless, the similarity slightly increased in eight ROIs, when larger blood vessels were
included (e.g. Pearson correlation coefficient increased from r = 0.85 to r = 0.90). The
pixelwise similarity measures did not change significantly.

Comparison of q̇CT,PCB and q̇EIT Comparison of q̇CT and q̇EIT

r LoA (%) RMSE (%) r LoA (%) RMSE (%)

4 ROIs 0.97 7.4 3.7 0.97 8.59 3.8

8 ROIs 0.85 8.76 4.33 0.9 7.57 3.64

r rRL rVD r rRL rVD
Pixel 0.83 ± 0.06 0.85 ± 0.12 0.92 ± 0.05 0.82 ± 0.06 0.82 ± 0.11 0.92 ± 0.05

Table 11.3: Assembled results of the statistical comparison between perfusion estimated from MDCT

and EIT measurements. Mean ± standard deviation over all analyzed animals are depicted. The left

half of the table includes the results of the comparison between estimated EIT blood flow q̇EIT and

MDCT estimations without considering larger pulmonary vessels q̇CT,PCB. In the right part of the table

the results for the same analysis are shown, but without the removal of larger blood vessels q̇CT. r:

Pearson’s correlation coefficient; LoA: limits of agreement of a Bland-Altman analysis; RMSE: rootmean

square error; ROI: region of interest
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Figure 11.6: Concordance analysis of spatial perfusion changes between MDCT and EIT depicted as

polar plot. Spatial increases and decreases in regional blood flow between healthy and injured lung (A)

and between normoxia and hyperoxia (B) compared. EIT ∆q̇EIT and MDCT differences ∆q̇CT showed

concordant changes, if the sign of the estimated changewas the same (the concordant area is limited by

the dashed lines). • points represent concordant differences and • points visualize discordant changes
between MDCT and EIT within an ROI. Perfusion changes below 1% of the maximal detected differ-

ence for EIT and MDCT estimations were not considered. The illustration has been adapted from our

publication with permission [142].

11.3.2 Tracking temporal changes of relative spatial
distribution

During clinical therapy, it might be often more relevant to track changes of spatial perfusion
in order to analyze whether the patient responded to the treatment. For example during
lung recruitment maneuvers, the anesthetist is interested, whether regions with insufficient
pulmonary blood flow (dead space) are reperfused again and matched with ventilation.
For this reason, we calculated spatial maps of perfusion changes between injured and
healthy lungs with both MDCT and EIT methods ∆q̇ = q̇In jury− q̇Healthy. We investigated
the concordance between EIT and MDCT changes in eight ROIs (as described in 11.3).
Concordance between MDCT and EIT was found, if perfusion within the ROI changed into
the same direction for both methods. Changes below 1 % were excluded from the analysis.
The corresponding polar concordance plot is depicted in graph (A) of Figure 11.6. We
observed concordant blood flow changes by EIT and MDCT in CInjury = 75% of all ROIs
and for all animals.
The concordance analysis was repeated to investigate, whether spatial perfusion changes,

as measured with EIT, were in concordance with MDCT estimations after increasing FIO2

to 1.0 in healthy or injured lungs. We found a high level of concordance between EIT and
MDCT estimations (CO2 = 85%). In general we found an increase of perfusion in dorsal
regions and a decrease of perfusion in ventral areas of the lungs, after an increase of FIO2 to
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Figure 11.7: Regional blood flow distribution for two different FIO2. Grayscale CT images (A) are

depicted together with computed CT blood flow q̇CT,PCB (B) and computed EIT blood flow q̇EIT (C)

for FIO2=0.21 in the injured lung (upper row) for FIO2=1.0 in the injured lung (middle row). The spatial

increases and decreases in perfusion (∆q̇CT,PCB and∆q̇EIT ) from a FIO2=0.21 to a FIO2=1.0 are depicted

in the last row. The images have been taken from our publication with permission [142].

1.0. A representative image of the redistribution of perfusion due to an increase of FIO2 is
depicted in Figure 11.7.
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11.3.3 Spatial distribution of transit times

The described MDCT and EIT reconstruction methods do not only provide estimations of
regional, relative amounts of spatial perfusion, but also enable the analysis of the temporal
transit times of an indicator to a specific compartment of the lung. The parameters t̄CT and
t̄EIT have been exploited as transit time measures. Figure 11.8 depicts an example of mean
indicator transit times estimated by MDCT and EIT. For both t̄CT and t̄EIT , a decrease of
mean temporal transit time within the injured right lung was observed. The transit time
distributions were found to be very similar between MDCT and EIT. For MDCT estimations,
larger blood vessels were excluded from the analysis. A statistical analysis was not conducted.
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Figure 11.8: Exemplary images of transit time distributions t̄. The left column depicts estimated indi-

cator transit times estimated by MDCT in the healthy and the injured lung. The right column displays

the reconstructed mean transit times by EIT for the healthy and the injured lung. MDCT: multidetector

computed tomography; EIT: electrical impedance tomography; MTT: mean transit time
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11.4 Discussion

In the presented data analysis of an experimental study comprising eight animals, a robust
variant of the indicator-enhanced EIT perfusion imaging (as introduced in chapters 9 and 10
was applied to reconstruct spatial pulmonary blood flow in healthy and regionally injured
lungs. The estimated spatial distributions were compared against iodine-enhanced MDCT
imaging, to our knowledge for the first time. We found strong similarity between MDCT
and EIT perfusion images based on ROI based and pixel wise correlation and Bland-Altman
analyses. We further evaluated the concordance of MDCT and EIT imaging to track changes
in perfusion after establishing regional lung injury of MDCT and EIT. In 75 % of the defined
ROIs and over all animals, the direction of change was consistently detected.
The EIT reconstruction algorithm was chosen and optimized to be automatic and robust.
A standard normalized and linearized reconstruction algorithm imposing spatial smooth-
ness was used. For reconstruction, we did not consider any a priori information about
the background conductivity within the thorax. We assumed a homogeneous background
distribution, which most likely will also be used in clinical routine, since for ICU patients,
CT or MRT scans are usually not available. After reconstruction, the recirculation com-
ponent was removed by a developed piecewise linear fit in contrast to previous work. In
[109], the recirculation component was not explicitly removed, which might result in an
overestimation of spatial perfusion. In [19], the recirculation component was removed by
a gamma variate fit to the pixel wise fit of a gamma variate model to the measured spatial
conductivity changes. The superimposed recirculation was not previously removed, such
that regional perfusion might be slightly overestimated. In the presented study, the gamma
variate fit was waived to improve robustness, yet the recirculation component was initially
and explicitly removed. Furthermore, the regions within the thorax participating in the
pulmonary circulation before and after the lungs (left and right heart as well as main PA and
PV) were detected with an intuitive, yet robust, method based on K-means clustering. In
[109] and [201], the pre- and post lung phases are removed in a very elegant way, based on
modeled temporal transfer functions between pre-lung, lung, and post-lung compartments.
Yet, the method might lack robustness in clinical practice, since the initialization of the
semi-negative-matrix-factorization approach is crucial. In addition, the method suggested by
Hentze only considers one single compartment for the whole lung and therefore assumes
equal transit times within the whole lung.

Comparison of spatial MDCT and EIT perfusion estimations EIT and MDCT perfu-
sion were found to be very similar, as described by different correlation and Bland-Altman
based measures. Ventral regions were observed to be slightly overestimated by EIT in
comparison to MDCT. In previously published studies, similar results were found, when
comparing EIT to SPECT [19, 109] and to PET [121]. We hypothesize, that the origin of this
ventral overestimation is manifold. Though the removal of the non-pulmonary regions have
been robustly detected, as depicted in Figure 11.2, contributions of the left heart might be not
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removed completely in some cases. This insufficient heart region removal might lead to an
overestimation, especially in ventral regions of the left lung, and a potential misinterpretation
of pulmonary blood flow. Hentze et al. [109] also came to a similar conclusion. In addition,
the anatomical distance of ventral lung regions to the voltage measuring electrodes is substan-
tially smaller compared to distances between electrodes and dorsal lung regions. For adjacent
EIT stimulation, the sensitivity to conductivity changes is decreasing with increasing distance
to the surface and the measuring electrodes. Thus, a sensitivity gradient between ventral and
dorsal regions of the lungs can be expected. This effect might additionally be emphasized by
the anatomical position of the heart in anterior position within the thorax. Due to its high
electrical conductivity, the current density around the heart is most likely higher than in
posterior regions of the body, which hereby further increases sensitivity in ventral regions
further.
Additionally, we investigated similarity between EIT and MDCT perfusion with and without
the exclusion of the larger PAs and PVs from the MDCT estimations. We did not observe a
particular similarity difference after including larger pulmonary vessels. Thus, we did not
reach a clear conclusion, whether EIT perfusion represents mainly the perfusion of the PCB,
as the simulation study in chapter 8 indicated. Yet, we can state, that EIT perfusion does
contain a considerably strong component of capillary perfusion, and consistently follows
MDCT perfusion change. In the next chapter, we validated indicator-enhanced EIT perfusion
against PET, which purely represents capillary perfusion.
We observed a clear imbalance between perfusion to different ROIs for the similarity analysis
in four ROIs. The ROIs were chosen based on MDCT anatomy. Yet, the systematically
different amounts of perfusion to the different ROIs leads to an increase in correlation, which
is independent of MDCT and EIT perfusion estimation similarity. Thus, the similarity in
four ROIs should always be interpreted in conjunction with the eight ROI and pixel wise
similarity measures.

Tracking temporal changes of spatial perfusion We found concordant changes of per-
fusion in 75 % of ROIs between MDCT and EIT perfusion estimations after the induction of
regional lung injury. Since a 10 % NaCl indicator was used for the measurement, we do not
expect strong differences of spatial sensitivity due to changes of background conductivity in
injured regions (compare with results of chapter 7). Two distinctly different experimental
lung injury models were used. In three animals, experimental lung injury was induced by
repeated saline lavage, which most likely leads to a surfactant washout [202]. We observed
a decrease in dorsal perfusion and a shift of perfusion to more ventral regions of the lungs,
which is most likely due to hypoxic pulmonary vasoconstriction (HPV) [203, 204]. In the
injured region we observed an increase of regional perfusion with both MDCT and EIT
measurements. We expected a decrease of perfusion also due to HPV, yet it might be super-
imposed by the redirection of perfusion from dorsal regions, since the injury was located in
the medial lobe of the right lung.
For animals with lung injury induced by Endotoxin, we observed a decrease of perfusion in
injured regions. This might be due to the fact, that Endotoxin leads to inflammatory response
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and has been associated with the formation of edemas and regional perfusion blocks as well
as the reduction of the effect of HPV [205].
When FIO2 was increased from 0.21 to 1.0, we found concordant perfusion changes within
85 % of the ROIs across all animals. In almost all cases, a decrease of perfusion in ventral
regions of the lungs and an increase of relative perfusion in dorsal regions was observed.
This finding is in accordance with the results from Li et al.[206]. They found also found
an increase of dorsal perfusion with an increase of FIO2 and concluded, that hyperoxic
vasodilation might be responsible for this effect.

Investigation of temporal transit times Mean temporal transit times to different regions
of the lungs might contain additional clinical information about the PVR in different regions
of the lungs. Besides PVR, the transit times are mainly influenced by the pulmonary artery
pressure (PAP) and the CO. We visually investigated indicator transit times for EIT and
MDCT perfusion estimations. Though we did not statistically investigate similarity between
MDCT and EIT transit times, we found MDCT transit times to be generally larger than
EIT transit times. This finding might be due to the difference in viscosity of the indicators
used for MDCT and EIT. Iodine indicators have a higher viscosity in comparison to saline
solutions and presumably need longer propagation times through the pulmonary circulation
at the same flow rate, if it is not completely encapsulated by blood. This hypothesis was also
investigated in [173]. They found different pulmonary transit times between saline indicators
for thermal measurements and indocyanine green for optical measurements [173].

Limitations The study comprised eight animals, which did not allow to test for statistical
power. Yet, the study population was still considerably larger compared to previously
published EIT perfusion studies [19, 109, 197].
Relatively small pigs were included in this study, which had considerably smaller thorax
diameters and circumferences than human thoraxes. Thus, the inverse problem might be
slightly less ill posed, since areas within the center of the thorax might be more sensitive to
conductivity changes.
Only one EIT indicator perfusion reconstruction algorithm was considered for the described
study. A comparison between different reconstruction algorithms has not been performed
throughout this study. A very robust algorithm has been chosen, which imposes spatial
smoothness on the EIT reconstruction. To improve reconstruction resolution, different
reconstruction algorithms such as the Graz consensus reconstruction algorithm for EIT
(GREIT) algorithm [93] should be applied and compared, as it has been done for ventilation
[183]. A thorough comparison between different reconstruction approaches will be conducted
in the next study of chapter 12.
Additionally, a rather large saline indicator concentration of 10 % was used, though it is
yet considerably smaller compared to the first published indicator-enhanced EIT perfusion
study [19]. The study presented in the next chapter addresses the question on how far we can
reduce indicator concentration to maintain sufficient imaging quality.



Chapter 12
Analysis of the preclinical study

in Dresden

The study and the EIT-PET method comparison was initially published as journal article
[121]. Additionally, we published different aspects of the study analysis in multiple confer-
ence contributions [122–124]. The following analysis exceeds the scope of all described
publications.

12.1 Motivation

To finally evaluate all variants of the developed EIT perfusion estimation methods, the
estimated spatial distributions of pulmonary perfusion have been compared against PET/CT
perfusion. In comparison to the comparative perfusion estimation method of the study
described in the previous chapter, where EIT perfusion was compared against MDCT
perfusion, estimations of perfusion by PET/CT can be regarded as actual ground truth of
capillary perfusion. Pulmonary blood flow in larger vessels is not measured with PET, since
the injected 68Ga labeled albumin particles of the injected microspheres distribute within the
small capillaries during first passage through the lungs [135]. During the following study,
we compared the spatial perfusion distributions as estimated by EIT, to PET/CT perfusion
estimations for five different experimental states of ventilation and perfusion. The study
design and the comprehensive experimental protocol has already been described in chapter 5.
Briefly, five different experimental protocol steps have been conducted in 13 animals: uni-
lateral ventilation of the lung (S1); bi-lateral ventilation at an optimal PEEP (S3) (as defined
by the Costa approach, see section 2.2.3); experimental surfactant washout lung injury model
by repeated lung lavage (S4); bi-lateral ventilation at a very high (maximal) PEEP (S6);
uni-lateral PA block (S7). To recruit collapsed lung regions after uni-lateral ventilation and
experimental lung injury, recruitment maneuvers have been conducted including decremental
PEEP trials.
The study was mainly designed to investigate the clinical feasibility of an EIT perfusion
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estimation method. Multiple research questions were investigated, in order to assess its
clinical potential:

Comparison of EIT perfusion estimationmethods For ventilation reconstruction it has
been shown, that different EIT reconstruction algorithms produce substantially different
images (e.g. [183]). In order to investigate whether different EIT perfusion estimation
approaches also produce different reconstructed pulmonary blood flow distributions, we
compared the four different reconstruction approaches introduced in chapter 9 against PET
perfusion. Additionally, we compared two different types of perfusion parameter estimations.

Necessary saline indicator concentration As described in the state of the art section,
there have been a handful of published studies, which validated indicator-enhanced EIT
perfusion against other perfusion measurement techniques. Borges et al. [19] have used
a saline indicator bolus with a concentration of 20 % sodium chloride (NaCl). The very
high sodium concentration and osmolarity of such a solution will lead to substantial changes
in pulmonary vascular resistance (PVR) and cause shifts of water. It might even have an
influence on cardiac electrophysiology upon indicator arrival in the coronary circulation
[108]. In the study published by Hentze et al. [109] and in the study presented in the previous
chapter, an indicator bolus with a 10 % NaCl concentrated solution has been injected. While
this lower concentration might be a step towards a clinical application, an even lower
concentration would most definitely lead to an even larger clinical acceptance. For this
purpose, we compared spatial EIT perfusion estimations with PET using different saline
indicator concentrations between 2 % and 10 % NaCl.

Tracking temporal perfusion changes Besides the information of the perfusion distri-
bution at a certain time point during therapy or diagnosis, tracking perfusion changes over
time might allow the clinical staff to analyze the redistribution of lung perfusion during
therapy or lung injury development. Since we have seen in chapter 7, that the comparability
of EIT estimates of different perfusion states depend on the background conductivity and the
indicator concentration, we also investigated the ability of EIT to track regional perfusion
changes for different NaCl concentrations in experimental instead of simulated measurements
by comparing them to the changes estimated by PET.

Other secondary research questions Additionally, we have investigated, whether a
breath hold phase could be avoided, by injecting the indicator during ongoing ventilation.
This would increase clinical acceptance, since a breath hold phase introduces avoidable
additional stress for severely ill patients.
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12.2 Methods

Besides the main EIT processing methods to estimate spatial perfusion, which have been
introduced in chapters 9 and 10, all necessary processing steps needed to compare EIT and
PET perfusion are introduced in this section.

12.2.1 Creation of animal specific reconstruction model

In order to reduce EIT reconstruction artifacts due to shape and electrode positioning
errors, animal specific reconstruction models have been created. Since the animals were
not repositioned during all experiments and the attached electrode belt remained in its
initial position, a joint reconstruction model was used for all experimental steps. For each
experimental step, the tissue density and hereby the 3D anatomy was recorded by CT
measurements. The CT measurements were reconstructed with a slice thickness of 2 mm
and matrices of 512× 512 pixels (1.37× 1.37mm2). The CT volume was downsampled
to the resolution of the PET measurements, resulting in a 3D matrix with 168×168×198
voxels and a resolution of 2 mm in all spatial dimensions. This downsampled matrix was also
used for attenuation correction of the PET measurements. The 16 electrodes and the torso
surface were automatically segmented from this CT matrix using image thresholding and
region-growing in MATLAB R2017a. From the segmented electrodes, the central coordinate
for each electrode on the torso surface was calculated and defined as electrode position.
In order to optimally register the segmented torsos of the individual experiments, point
cloud registration (PCR) was performed [200] and all the center electrode positions were
hereby aligned to the positions of the reference state (optimal PEEP (S3)). Joint electrode

mean 
electrode position

individual  
electrode position

triangular mesh

(A) (B)

Figure 12.1: Exemplary created reconstruction models used for EIT reconstruction during the analysis

of the Dresden study. Image (A) depicts the CT image within the electrode belt level. The individual

electrode and joint electrode positions as well as the triangulated 2D reconstruction mesh is shown.

The 2D reconstruction model was used for all algorithms. Besides the GREIT reconstruction, the 2D-

mesh was also used for the forward calculation. For the GREIT reconstruction, a 2.5D mesh was used

for forward calculation as depicted in image (B). The 2D torso surface was herefore extruded.
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positions were calculated from the registered electrode positions by averaging. The registered
experiment specific electrode positions are depicted together with the mean positions in
Figure 12.1. A mean 2D-torso boundary within the electrode plane was computed from all
registered boundaries and was additionally smoothed in the polar coordinate space. The 2D
torso was triangulated with a Delaunay triangulation algorithm implemented in MATLAB
R2019a. The two-dimensional reconstruction meshes had a mean edge length of 5.2 mm
± 0.5 mm and comprised K = 1624.5±36.8 elements. For the GREIT reconstruction, the
forward calculation was performed in a 2.5D space. The 2D surface was therefore extruded
in the vertical (cranial-caudal) direction using functions provided by EIDORS [169] and
NETGEN [207]. The GREIT forward model consisted of K = 12345.3± 208.4 elements
and had an average edge length of 4.7 mm ± 0.81 mm.

12.2.2 EIT reconstruction

One of the main goals of this study was to compare different EIT reconstruction approaches
for estimating regional pulmonary perfusion distributions. The four underlying algorithms
have been introduced in chapter 9. We compare the standard 0th order Tikhonov and Laplace
regularization approaches, the combination of both regularizations and the GREIT algorithm
against the ground truth PET perfusion measurement. The performance of the algorithms
was evaluated based on the similarity between spatial EIT and PET perfusion. Except for the
GREIT approach, the reconstruction algorithms solved the inverse and forward problem for
a triangular 2D mesh within the electrode plane, as depicted in graph (A) of Figure 12.1. To
simulate the clinical application, in which normally no bedside MRT or CT measurement is
available, a homogeneous background conductivity distribution σσσ0 ∈ RK×1 was assumed for
algorithms. For the GREIT approach, the forward problem of EIT was solved in the 2.5D
extruded mesh as depicted in image (B) of Figure 12.1.
For all algorithms except the GREIT reconstruction, the regularization weighting parameter
λ was calculated using the L-curve method [90]. An optimal λ was found by the L-curve
method for each experimental state, animal and indicator concentration individually and was
generally robust. Nevertheless we experienced cases were a non-optimal λ was found. To
minimize the effect on the reconstruction method comparison of these outliers, the median λ

over all animals for each state and indicator concentration was finally used. For the GREIT
algorithm however, the regularization weighting was chosen, such that an NF = 0.5 was
achieved (as recommended in [93], see section 3.1.3).
In addition we compared the two types of perfusion parameter estimation approaches as
introduced in chapter 10: maximal slope and deconvolution method. For both methods, we
had to remove the pre- and post lung phases to extract pure pulmonary blood flow and neglect
right and left heart phases as well as main PA and PV blood flow within the mediastinum.
The clustering as introduced in chapter 10 was performed for each individual reconstruction,
yet we also computed averaged phases for each experimental state and animal, to neglect
the influence of non-optimal detections on the main similarity analysis. Figure 12.2 shows
exemplary spatial perfusion estimations by indicator-enhanced EIT with and without the
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Figure 12.2: Exemplary reconstructed spatial lung perfusion estimations q̇EIT with and without the

removal of pre- and post-lung circulation phases. The images in row (A) shows estimated perfusion

without the removal of the heart and major vessels and the images in row (B) depict the lung perfusion

estimations after the removal.

removal of the pre- and post-lung phases.
The final lung perfusion estimations q̇EIT ∈ RK×1 were normalized to the overall image sum
in order to achieve relative perfusion estimations:

q̇EIT,k =
q̇EIT,k

∑
k

q̇EIT,k
(12.1)

12.2.3 PET/CT imaging

For a detailed description of the PET perfusion measurement and the CT based attenuation
correction be referred to our publication [121]. The final three-dimensional PET perfusion
distribution Q̇PET ∈ R168×168×198 was calculated by calculating the 68Ga net activity, which
was subtracted from the background 68Ga activity from previous PET measurements. To
allow a fair comparison between regional EIT and PET perfusion estimates, the three-
dimensional PET measurement Q̇PET was projected on the two-dimensional EIT electrode
plane with some vertical (cranial-caudal) weighting wPET (d) depending on the vertical
distance d to the EIT electrode plane level zE. We initially considered three different
weightings:

• rectangular weighting: wPET (d) =

{
1 d ≤ 10cm

0 otherwise

• triangular weighting: wPET (d) =

{
1− 1

10cm ·d d ≤ 10cm

0 otherwise
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• EIT sensitivity based weighting: wPET (d) = s(d)

The EIT sensitivity based weighting was proposed in [149]. The weighting was chosen to
the proposed profile s(d) ∈ [0,1], which was similar to the cranial-caudal profiles of the
healthy reference state (S3) in chapter 7. The resulting two dimensional PET perfusion
images q̇PET ∈ R168×168 were calculated by:

q̇xy = ∑
z

(
wPET (z− zE) · Q̇xyz

)
(12.2)

Images (B)-(E) of Figure 12.3 show the different two-dimensional weighted PET images.
Since the differently weighted PET images were very similar, we only considered the
EIT sensitivity weighted PET estimates for the following analyses. The PET perfusion
distributions were finally also normalized to the image sum:

q̇PET,k =
q̇PET,k

∑
k

q̇PET,k
(12.3)
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Figure 12.3: Graphical description of the PET image weighting. In order to validate EIT perfusion with

PET, the three-dimensional distribution of pulmonary blood flow was projected onto the cross sec-

tion within the electrode plane. Three different projections have been considered for this reason. The

weighting profiles are depicted in graph (A1). The distribution of PET perfusion in cranial-caudal direc-

tion is depicted in image (A2). Images (B)-(D) show the different variants of projected 2D PET images.
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12.2.4 Comparison of spatial PET and EIT perfusion
estimations

The comparison between the two imaging modalities was performed similar to the com-
parison between EIT and MDCT perfusion estimates in chapter 11. The triangular EIT
distributions q̇EIT were mapped to the [168× 168] PET pixel map for each experimental
step. The similarity of the perfusion pixel images was evaluated by different ROI and pixel
based correlation and Bland-Altman analyses. Additionally, we also calculated the root mean
square error (RMSE) within the ROIs or pixels.

ROI based similarity Both PET and EIT images were split into eight ROIs and the relative
amount of perfusion to the ROIs were compared between the modalities. We defined the
ROIs based on the segmented lung from the CT measurements of the healthy reference state
(optimal PEEP (S3)) as depicted in image (A) of Figure 12.4. The lungs were segmented
into eight equally large compartments based on the centroid of the segmented lungs and
on the bounding box around the lung segmentation. For supine position of the pigs, a
strong imbalance between dorsal and ventral lung perfusion will exist for all experimental
states. This imbalance will lead to very high correlation values and differences between
reconstruction methods will be hard to distinguish. For this reason we opted for a second
ROI definition based on the three-dimensional PET distribution of the healthy reference
state (optimal PEEP (S3)). The ROIs were therefore not chosen to have equal size but equal
relative amount of PET estimated perfusion within the ROI. The ROI definition is depicted
in image (C) of Figure 12.4. Image (B) depicts the three dimensional PET distribution of the
healthy reference state and its corresponding centroid.

CT slice in electrode plane

centroid of  
spatial PET perfusion 

PET projected on electrode plane

ventral

mid-ventral

mid-dorsal

dorsal

rightleft

ventral

mid-ventral

mid-dorsal

dorsal

rightleft

(A) (C)(B)

Definition of  
CT based ROI

Definition of  
PET weighted ROI

Figure 12.4: Definition of two different types of ROIs for similarity analysis between EIT and PET

perfusion. In image (A), the ROI based on the two-dimensional CT segmentation are shown. Image (B)

and (C) describe the definition of ROIs based on the three-dimensional PET perfusion distribution.
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Pixel based similarity Similar to the pixelwise analysis in chapter 11, we also calculated
pixel based similarity measures to especially allow the evaluation of the similarity between
perfusion profiles. Herefore, we cut out the lung region from PET and EIT perfusion images
as defined by the bounding box around the lung segmentation from the CT matrix. The
cutout image was resampled to [64×64] pixel for the same reasons as explained in chapter
11. Based on the cutout PET and EIT images, we calculated a pixelwise Pearson correlation
rPixel , and the correlation between the right-to-left profile rRL as well as for the ventrodorsal
profiles for the left rDV−L and right lung rDV−R separately.
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12.3 Results

We have considered four different EIT reconstruction approaches, two different perfusion
paramater estimation methods and overall four different indicator concentrations. Addi-
tionally, we have performed the indicator-enhanced EIT measurement during breath hold
and during ongoing mechanical ventilation. To simplify the result interpretation, we did
not compare these variants of the EIT based perfusion estimation all at once. At first, we
compared the different EIT reconstruction approaches, followed by a comparison of the max-

Figure 12.5: Exemplary images of the estimated perfusion distributions by the different EIT approaches

(saline concentration: 10% NaCl) and the PET approach. The first four columns from the left depict

the spatial EIT based blood flow distribution for each algorithm separately and after the removal of the

non-pulmonary circulation phases. The last column shows the PET based perfusion estimation. The

rows represent the different experiments.
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imal slope and deconvolution perfusion parameter estimation methods. Finally, we analyzed
similarity between PET and EIT perfusion for different concentrations of the conductive
saline indicator. All following tables, depicting the similarity measures, show mean (and
standard deviation) values over all animals and experiments.

12.3.1 Comparison of reconstruction methods

An overview of exemplary EIT and PET based perfusion distributions for an indicator
concentration of 10 % are depicted in Figure 12.5. The four left columns represent the

Figure 12.6: Exemplary images of the estimated perfusion distributions by the different EIT approaches

(saline concentration: 3% NaCl) and the PET approach. The first four columns from the left depict the

spatial EIT based blood flow distribution for each algorithm separately and after the removal of the

non-pulmonary circulation phases. The last column shows the PET based perfusion estimation. The

rows represent the different experiments.
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estimated spatial perfusion using the different EIT reconstruction approaches, the maximal
slope perfusion estimation technique and an indicator concentration of 10 % NaCl. The
non-pulmonary circulation phases have been removed and regions with a relative amount of
less than 10% of the maximal amount have been made transparent. We observe very similar
perfusion distributions for all EIT reconstruction methods. In some cases, the reconstruction
applying a 0th order Tikhonov regularization shows non-physiological perfusion amplitudes
close to the electrodes. In general, we found strong visual agreement between all EIT
reconstruction methods and PET. For EIT reconstructions we observed a slight ventral shift
of pulmonary blood flow compared to PET perfusion.
In Figure 12.6, we can see the same perfusion images as depicted in Figure 12.5, but for an
indicator concentration of 3 %. We observed stronger artifacts close to the surface especially
for the 0th order Tikhonov regularization. Overall the agreement between EIT and PET
perfusion estimations was still visually strong.
Table 12.1 summarizes the similarity analysis between EIT and PET perfusion for different
EIT reconstruction approaches. The perfusion was always estimated by the maximal slope
approach and the saline indicator was 10 % NaCl. In general, for all similarity measures,
the spatial perfusion estimations computed with the GREIT algorithm showed the strongest
agreement with PET perfusion. We found LoA as low as 7.8 % and a pixelwise correlation of
rPixel = 0.78. For all other regularization techniques, we found slightly decreased similarity
for all measures. The ROI based similarity measures showed a slightly stronger similarity
for the 0th order Tikhonov and Laplace regularization compared to the combined approach.
We observed the second best pixelwise similarities for the Laplace regularization. The

Similarity Measure Tikh. 0th
Laplace Tikh. 0th

& Laplace GREIT

Analysis in eight ROIs (CT based)

r 0.92 0.92 0.91 0.94

LoA (%) 9.25 9.31 9.99 7.78

RMSE (%) 4.41 4.53 4.98 3.74

Analysis in eight ROIs (PET weighted)

r 0.88 0.89 0.89 0.91

LoA (%) 9.44 9.55 10.45 8.02

RMSE (%) 4.82 4.79 5.12 4.08

Pixelwise analysis

RMSE (%) 1.46± 0.25 1.25± 0.27 1.38± 0.29 1.16± 0.25
rPixel 0.75± 0.09 0.78± 0.09 0.77± 0.09 0.78± 0.09
rRL 0.82± 0.18 0.86± 0.15 0.86± 0.15 0.83± 0.18
rDV−L 0.82± 0.16 0.86± 0.14 0.84± 0.13 0.90± 0.10
rDV−R 0.87± 0.16 0.92± 0.08 0.90± 0.08 0.94± 0.03

Table 12.1: Overview of the similarity analysis between PET and EIT perfusion distributions for differ-

ent EIT reconstructions, themaximal slope perfusion estimationmethod and an indicator concentration

of 10% NaCl. For the correlation based measures, a value close to one represents a good correlation,

for the limits of agreement (LoA) and root mean square error (RMSE) a smaller value indicates an in-

creasing agreement between EIT and PET.
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dorsoventral profiles between EIT and PET perfusion were always more similar in the right
lung compared to the left lung for all reconstruction algorithms.

Since the different reconstruction algorithms might respond differently to a decrease of
indicator concentration, the similarity measures of the reconstruction method comparison
were also summarized for an injection of a 3 % NaCl indicator in Table 12.2. Overall, all
similarity measures were slightly decreased compared to a 10 % NaCl indicator. The spatial
perfusion reconstructed with the GREIT method still showed stronger similarity to PET
perfusion than the other reconstruction algorithms. Interestingly, we found stronger similarity
in ROI based similarity measures for 0th order Tikhonov regularization compared to Laplace
regularization. For pixelwise similarity measures, Laplace and the combined regularization
approach showed stronger agreement with PET perfusion compared to the 0th order Tikhonov
regularization.

Similarity Measure Tikh. 0th
Laplace Tikh. 0th

& Laplace GREIT

Analysis in eight ROIs (CT based)

r 0.90 0.90 0.90 0.93

LoA (%) 10.06 10.18 10.31 8.70

RMSE (%) 4.79 4.95 5.09 4.12

Analysis in eight ROIs (PET weighted)

r 0.85 0.87 0.87 0.88

LoA (%) 9.91 10.16 10.55 8.93

RMSE (%) 5.02 5.16 5.32 4.56

Pixelwise analysis

RMSE (%) 1.48± 0.39 1.33± 0.37 1.42± 0.40 1.25± 0.31
rPixel 0.72± 0.09 0.75± 0.09 0.75± 0.09 0.75± 0.09
rRL 0.77± 0.13 0.81± 0.11 0.81± 0.11 0.79± 0.14
rDV−L 0.81± 0.16 0.85± 0.13 0.85± 0.13 0.87± 0.09
rDV−R 0.87± 0.17 0.90± 0.09 0.89± 0.09 0.93± 0.05

Table 12.2: Overview of the similarity analysis between PET and EIT perfusion distributions for differ-

ent EIT reconstructions, themaximal slope perfusion estimationmethod and an indicator concentration

of 3% NaCl. For the correlation based measures, a value close to one represents a good correlation, for

the limits of agreement (LoA) and root mean square error (RMSE) a smaller value indicates an increasing

agreement between EIT and PET.



12.3. Results 163

12.3.2 Comparison of the blood flow estimation methods

To compare the two perfusion estimation algorithms (maximal slope and deconvolution), we
have only regarded the best performing EIT reconstruction approaches, namely the Laplace
regularization and the GREIT reconstruction. Also we have compared the methods for an
indicator concentration of 3 % NaCl and 10 % NaCl. The similarity measures are shown
in Table 12.3. The perfusion estimation based on the deconvolution approach showed a
reduced similarity compared to the maximal slope approach for both applied reconstruction
algorithms. The differences between the estimation methods were substantial for an indicator
concentration of 3 % NaCl and only marginal for 10 % NaCl.

3% NaCl 10% NaCl

Similarity Measure Maximal Slope Deconvolution Maximal Slope Deconvolution

Laplace regularization

r 0.87 0.72 0.89 0.86

LoA (%) 10.16 13.80 9.55 9.67

rPixel 0.75± 0.10 0.63± 0.17 0.78± 0.09 0.73± 0.09

GREIT reconstruction

r 0.88 0.80 0.91 0.88

LoA (%) 8.93 10.99 8.02 8.76

rPixel 0.75± 0.10 0.64± 0.13 0.78± 0.09 0.74± 0.09

Table 12.3: Overview of the similarity between PET and EIT for different perfusion estimation algo-

rithms. We opted for a subset of all similarity measures. The ROI based measures (Pearson correlation

r and limits of agreement (LoA) were based on the PET weighted ROIs. The pixelwise similarity was

analyzed by the pixelwise Pearson correlation rPixel.
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12.3.3 Analysis for different concentrations of the saline
solution

In Table 12.4, the similarity measures are summarized for different indicator concentrations.
Between 5 % and 10 % NaCl, no substantial difference in similarity was observed for

Similarity Measure 2% NaCl 3% NaCl 5% NaCl 10% NaCl

sample size 232 512 512 512

Laplace regularization

r 0.85 0.87 0.89 0.89

LoA (%) 10.50 10.16 9.50 9.55

rPixel 0.73± 0.14 0.75± 0.10 0.77± 0.10 0.78± 0.09

GREIT reconstruction

r 0.85 0.88 0.90 0.91

LoA (%) 9.47 8.93 8.37 8.02

rPixel 0.72± 0.13 0.75± 0.10 0.76± 0.09 0.78± 0.09

Table 12.4: Overview of the similarity between PET and EIT for different indicator concentrations. The

spatial perfusion was estimated with the maximal slope method. We opted for a subset of all similarity

measures. The ROI based measures (Pearson correlation r and limits of agreement (LoA) were based

on the PET weighted ROIs. The pixelwise similarity was analyzed by the pixelwise Pearson correlation

rPixel.

all measures. For concentrations below 5 % NaCl we observed a decrease in similarity
with decreasing indicator concentration. The decrease of similarity for a decreasing saline
concentration was similar for GREIT reconstruction and Laplace regularization. Overall
similarity between PET and EIT perfusion was still strong for the lowest concentration of
2 % NaCl (GREIT: LoA = 9.47 %, Laplace: LoA = 10.5 %).

12.3.4 Separation of indicator dilution during controlled
mechanical ventilation

In Figure 12.7 exemplary reconstructions for the estimation of spatial perfusion by injecting
an indicator during breath hold and ongoing ventilation are shown. A strong visual similarity
can be observed between the first and second row. Only for the PA block experiment the
estimation during ongoing ventilation showed a substantially different spatial perfusion
distribution1.
In Table 12.5 the similarity measures are summarized. We found only small differences in

similarity between EIT and PET perfusion for the injection during breath hold and during

1In a few animals, the PA block was not stable throughout all perfusion measurements, which might
also have lead to the different estimation.



12.3. Results 165

Figure 12.7: Exemplary images of the EIT perfusion estimation during breath hold and ongoing ventila-

tion. In row (A) the reconstructions for the 5% NaCl indicator injection during a mean airway pressure

breath hold are depicted. Row (B) shows the reconstructions for the injection of the same indicator

conecntration during ongoing mechanical ventilation. The images in row (C) show the PET reconstruc-

tions as a comparison. EIT reconstruction has been performed with the GREIT algorithm.

ongoing ventilation. Above all, the differences were marginal for the GREIT reconstruction
approach (breath hold: r = 0.9 and ongoing ventilation: r = 0.87) .

Similarity Measure Breath hold - 5% NaCl Ongoing ventilation - 5% NaCl

sample size 512 224

Laplace regularization

r 0.89 0.84

LoA (%) 9.50 11.28

rPixel 0.77± 0.10 0.73± 0.17

GREIT reconstruction

r 0.90 0.87

LoA (%) 8.37 9.43

rPixel 0.76± 0.09 0.73± 0.14

Table 12.5: Overview of the similarity between PET and EIT for the injection of a 5% saline indicator

during breath hold and ongoing ventilation. The spatial perfusionwas estimatedwith themaximal slope

method. We opted for a subset of all similarity measures. The ROI basedmeasures (Pearson correlation

r and limits of agreement (LoA) were based on the PET weighted ROIs. The pixelwise similarity was

analyzed by the pixelwise Pearson correlation rPixel.
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12.3.5 Tracking blood flow changes

As described in chapter 11, it might be often more relevant to track temporal changes of
spatial perfusion in order to analyze whether the patient responded to the treatment. For
this reason, we calculated spatial maps of perfusion changes between different experimental
states for both PET and EIT methods, e.g. between the unilateral ventilation (S1) and
the optimal PEEP experiment (S3): ∆q̇ = q̇S1− q̇S3. Changes of relative perfusion can be
observed in Figure 12.8. From the healthy reference state (S3) to the unilateral ventilation
experiment (S1) we observed a relative increase of perfusion in the ventilated lung and a
relative decrease in the blocked lung. The same changes were observed between the PA
block (S7) experiment and the healthy reference state (S3). The unblocked lung was less
perfused. In the third column of Figure 12.8 we observed a decrease of perfusion in dorsal
regions and a increase in ventral areas, when the PEEP was increased to the maximal PEEP
(S6). The spatial distribution of perfusion was found to be decreased in dorsal regions, after
induction of a lung injury with repeated lung lavage (S4) in comparison to the maximal
PEEP experiment (S6).

We investigated the concordance between relative EIT and PET changes in eight ROIs
based on the PET distribution. Concordance between PET and EIT was found, if perfusion

Figure 12.8: Exemplary changes of perfusion between different experimental states for an indicator

concentration of 5%, a EIT reconstruction with the Laplace regularization and the maximal slope per-

fusion estimation method.
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Figure 12.9: Depiction of the concordance analysis for an indicator of 10% NaCl, the maximal slope

perfusion estimation method and a Lapalce regulatization

within the ROI changed into the same direction for both methods. Changes below 2 %
were excluded from the analysis. Figure 12.9 shows the the graphs of the concordance
analysis for an indicator of 10 % NaCl for each individual considered experiment comparison
(graphs (B)-(E)) and for all differences combined (graph (A)). The overall concordances are
summarized in Table 12.6 for all indicator concentrations. The strongest overall concordance
was found for an indicator concentration of 10 % NaCl. In 84.1 % of all perfusion changes
within an ROI, EIT was in accordance with PET. For lower concentrations of the indicator,
the concordance decreased slightly. The strongest agreement between perfusion changes as
estimated by EIT and PET were found between the unilateral ventilation experiment and the
optimal PEEP state.

NaCl concentration: 3% 5% 10%

All changes 82.5 83.0 84.1

Max. PEEP (S6) - Opt. PEEP (S3) 65.9 71.4 68.9

Max. PEEP (S6) - Injury (S4) 82.9 83.3 85.5

Opt. PEEP (S3) - PA block (S7) 77.3 79.1 79.4

Opt. PEEP (S3) - Unilateral vent. (S1) 96.1 93.4 95.9

Table 12.6: Overview of the ventilatory, hemodynamic and gas exchangemonitoring parameters. Mean

values and standard deviations over all included animals are presented for each individual experimental

step.
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12.4 Discussion

To assess the feasibility of indicator-enhanced EIT measurements, we evaluated the spatial
similarity of EIT perfusion estimates and PET perfusion for different EIT reconstruction
algorithms and perfusion estimation approaches, as well as for different concentrations of
the saline indicator. In general we found strong similarity between EIT and PET perfusion
estimations for all methods and indicator concentrations. For the GREIT reconstruction
algorithm, we found the strongest similarity to spatial PET perfusion estimation (LoA =
9.47 % for an indicator concentration of 3 % NaCl and LoA = 8.02 % for 10 % NaCl). We ob-
served a slight ventral shift of EIT perfusion compared to PET perfusion estimations, which
resulted in a correlation of the dorsoventral profiles between EIT and PET of rDV−L = 0.94
and rDV−L = 0.90 (GREIT reconstruction, maximal slope estimation, 10 % NaCl). The
dorsoventral correlation was always stronger in the right lung, which might indicate, that
the profile of the left lung is slightly compromised by an insufficient removal of especially
the post-lung circulation phase. Besides this influence, we expect the sensitivity of EIT to
be larger in ventral regions compared to dorsal areas (compare with sensitivity profiles as
calculated in chapter 7). The ventral shift of EIT perfusion was also observed for perfusion
estimations in the Iowa study in the previous chapter and was reported in multiple publica-
tions [19, 109, 121].
We found that the maximal slope perfusion parameter estimation outperformed the deconvo-
lution based approach, especially for low indicator concentrations. A possible explanation
for the lower similarity to PET perfusion might be the necessity of finding a suitable input
function, which was estimated within the pre-lung phase. If the pre-lung phase is not detected
robustly, a non-optimal input function will also be estimated. On top, the defined ventricular
input function (VIF) must also be regarded as a rough approximation of the true pulmonary
input function. Therefore, based on our results, we recommend the maximal slope approach
for clinical application due to its more robust performance.
A major strength of the described study analysis, is the consideration and comparison of
many different indicator concentrations. Borges et al. [19] have proposed to use an indicator
concentration of 20 % saline. In successive studies, the indicator concentration was reduced
to 10 % NaCl [109]. To improve clinical acceptance, the further decrease of indicator con-
centration would be beneficial. We found no substantial difference in similarity of perfusion
estimation compared to PET perfusion between a saline concentration of 5 % NaCl and
10 % NaCl. Perfusion changes were also found with similar concordance to PET perfusion
changes. Yet, one could argue, that with lower concentrations we still observed very strong
similarity. Since for lower concentrations the detection of non-pulmonary regions is also
more complicated (which we have neglected from our analyses by using averaged pre- and
post-lung phases), we would recommend the usage of 5 % NaCl solutions based on our
findings. Nevertheless, with algorithmic improvements, we feel that a additional decrease of
the indicator concentration to 3 % NaCl should also be possible. The usage of different types
of indicators besides NaCl might also improve the clinical acceptance.
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We could also show, that a spatial perfusion estimation during ongoing ventilation is possible,
since the similarity was only slightly decreased compared to the indicator injection during
breath hold. The frequency filtering method, as introduced in chapter 9 is nevertheless only
applicable if respiratory rates do not fall far below approximately 12 breaths per minute.
These respiratory rates might nevertheless be a good choice for some ARDS patients. In this
case, the separation method would need to be improved by a more adaptive filtering approach
(e.g. presented in [180]) or the physician would need to temporarily change the respiratory
rate to a higher value. The perfusion estimation in the current algorithmic implementation is
also only possible for controlled mechanical ventilation and not for spontaneous breathing or
mechanical ventilation with variations temporal variations in tidal volume (VT) or respiratory
rate (RR).

Limitations We used averaged regularization parameter λ in order to reduced the effect
of the regularization weighting on the overall method comparison. A thorough study of
the robustness of finding an optimal regularization parameter has not been conducted. Yet,
we have observed very similar parameters throughout all experimental states, therefore
indicating, that a fixed regularization parameter might be applicable in clinical practice.
The removal of pre- and post-lung phases is a crucial processing step, which is needed to
extract pure pulmonary perfusion. The clustering of the pre-and post-lung phases has been
averaged over the different reconstruction approaches and indicator concentrations in order
to minimize the effect of the heart region on the overall reconstruction method comparison.
A thorough study of the detection robustness should be performed and compared to other
published techniques such as introduced in e.g. [109, 201].
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Chapter 13
Conclusion

13.1 EIT sensitivity to indicator-enhanced
pulmonary blood flow

Two simulation studies have been conducted to investigate the forward and backward sen-
sitivity of indicator-enhanced EIT measurements in front of realistic and inhomogeneous
lung conductivity backgrounds and to evaluate the contribution of different spatio-temporal
compartments of the pulmonary circulation to the reconstructed EIT perfusion image. The
simulation studies address the first and second main thesis objective as defined in the intro-
duction.

1. Understand forward and inverse sensitivity of indicator dilution method in front

of substantially inhomogeneous and realistic conductivity backgrounds

We found decreasing forward and inverse sensitivity with increasing distance to the electrode
plane (as expected). The sensitivities were reduced by approximately 90 % at a distance of
10 cm to the electrode planes. We generally found a sensitivity imbalance for both forward
and inverse sensitivity between dorsal and ventral regions. In ventral regions the sensitivity
was higher. This finding might be an effect, which is pronounced for porcine anatomies, due
to the large distance of the elctrodes to dorsal regions of the lungs.
The different inhomogeneous distributions of pulmonary background conductivities had
a strong influence on the forward and inverse sensitivity if no indicator was used and
spheres of blood were integrated as inhomogeneities. We therefore concluded, that CRIC
based perfusion measures will tend to underestimate perfusion in collapsed regions and the
comparison between different states might not be intuitively possible, if the lung conductivity
background also changes substantially. If we integrated spheres with the conductivity of a
2 % saline bolus, the spatial profiles of forward and inverse sensitivity became very similar
and even increased for increasing indicator concentration, thus allowing the comparison for
measurements with substantially different background conductivities. Within the electrode
plane, we found a decreasing inter-quartile range of the amplitude response with increasing
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indicator concentration. A small spatial variation of inverse sensitivity is desired [93] and
was generally smallest for the GREIT algorithm.

2. Understand the contributions of different spatio-temporal compartments of the

pulmonary circulation to the indicator-enhanced EIT blood flow distribution image

We found that the main contributor to EIT perfusion images was the perfusion in smaller
blood vessels and the vascular bed and not the larger vessels and cardiac blood volumes.
This finding emphasizes that an estimation of the capillary perfusion, which is the type of
perfusion participating in gas exchange, is possible with EIT. Yet, we could not incorporate
the main stems of the pulmonary artery and pulmonary vein within the medistinum into the
analysis.

13.2 Optimization of indicator based
pulmonary blood flow parameter
estimation

3. Identify the minimal saline indicator concentration necessary to allow a suitable

regional estimation of pulmonary perfusion

We have found no substantial differences of similarity between the estimation of regional
perfusion based on 5 % NaCl boli or 10 % NaCl boli for all investigated EIT reconstruction
methods when comparing them to PET perfusion. Lower concentrations showed slightly
decreased similarity, yet we observed still strong agreement with PET perfusion.

4. Develop and optimize algorithms to calculate indicator-enhanced EIT blood flow

distributions

We have compared four different reconstruction methods and compared the resulting per-
fusion estimations against PET perfusion in a comprehensive preclinical study comprising
different experimental states. The GREIT reconstruction showed the best performance, since
we observed the strongest similarity (r=0.91 in eight ROIs, 10 % NaCl) to PET perfusion for
this type of reconstruction. The standard Laplace regularization showed a slightly decreased
similarity (r=0.89 in eight ROIs, 10 % NaCl) yet also very robust results. We observed a
ventral overestimation of perfusion with EIT, which might be resulting from a relatively
increased sensitivity in ventral regions compared to dorsal regions, and possibly due to a
insufficient removal of non-pulmonary participants of the pulmonary circulation.
We compared to different perfusion estimation techniques. The first one based on a pure
temporal feature analysis (maximal slope method), while the second one computed spatial
transfer functions between a pulmonary input function and different compartments within
the lungs (deconvolution based method). We observed superior performance of the maximal
slope method by analyzing the similarity of EIT and PET perfusion estimations.
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5. Compare the indicator-enhanced EIT blood flow estimations during respiratory

hold phases to gold standard perfusion imaging

We have compared the relative perfusion estimations based on indicator-enhanced EIT
measurements to MDCT and PET perfusion estimations. In both cases, we found strong
agreement between the ground truth and the EIT estimation (EIT-MDCT: r=0.90 and EIT-
PET: r=0.94 for 10 % NaCl). The analysis was carried out for induced regional ARDS as
well as for different PEEP levels and ventilation and perfusion blocks.

6. Develop algorithms to enable indicator dilution during ongoing mechanical ven-

tilation

We compared the estimation of regional pulmonary perfusion by injecting the indicator
during a breath hold phase to the injection during ongoing ventilation. We found a slightly
decreased similarity to PET perfusion between EIT estimations during breath hold (r=0.90)
and ongoing ventilation (r=0.87). Yet, the difference was marginal and we expect the mea-
surement during ongoing ventilation to be possible with our method, if the respiratory rate of
the ventilator does not fall below a rate of approximately 12 breaths per minute.

7. Analyze temporal parameters of pulmonary indicator passage.

We have compared distributions of perfusion MTTs between EIT and MDCT perfusion in
chapter 11. Qualitatively, we found strong concordance between spatial EIT and MDCT
transit time distributions in the lungs. MDCT showed systematically slower transit times
compared to EIT, which we hypothesized might be due to the higher viscosity of the MDCT
indicator.
The estimation of pulmonary transit times based on indicator-enhanced EIT could potentially
allow to uncover information about the CO and the PVR. We have described all necessary
methods to perform quantitative analyses, yet a thorough quantitative comparison was not
performed during the research for this thesis and should be conducted in the future.





Chapter 14
Outlook

14.1 Spatial sensitivity and information of
indicator enhanced EIT perfusion

Both simulation studies have only considered a single porcine anatomy. Though we have
observed very similar porcine anatomies among the included study animals, the meaningful-
ness of the results could be further increased by calculating statistics over multiple animals.
The investigations have so far been conducted for porcine anatomies, but should be extended
to human anatomies. We have created first human simulations and published the results in
[76, 147].
Regarding the simulation study described in chapter 8, which was conducted to analyze the
contributions of larger vessels, cardiac blood volumes and the pulmonary capillary bed on
the reconstructed spatial perfusion estimation by EIT, the field of view was limited to a 4 cm
extent around the electrode belt. The field of view did not allow to segment the main stems
of the pulmonary artery and vein, which we believe also contribute to the indicator-enhanced
EIT based perfusion reconstruction. Thus, with an indicator based CT blood flow measure-
ment covering a lager volume, these blood vessels could be included into the analysis.
The translation of CT indicator dilution curves to EIT dilution curves is also only a good
approximation, since the properties of the indicators are very different (viscosity, diffusibil-
ity,...). A dynamic three dimensional blood flow simulation of the pulmonary circulation
might be able to allow a more detailed insight into the EIT perfusion image contributors. A
similar simulation approach was described by [162] for the aeration of the lungs. A lumped
parameter model or transmission line approach could be implemented to have a simplified
approach to model the fluid dynamics.
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14.2 Optimization of perfusion estimation
methods

EIT reconstruction Though we have already compared different EIT reconstruction ap-
proaches against gold standard lung perfusion measurements, there is still potential to
optimize EIT reconstruction algorithms. Since we are reconstructing dynamic indicator
dilution curves, we could consider temporal regularization approaches as e.g. described in
[95, 182]. This approach might allow to impose boundary conditions on the reconstructed
solution, which lead to less spatial smoothing while stabilizing the solution equally well.
Nevertheless, the reconstruction could become much more computationally expensive.
Approximating the pulmonary conductivity background to improve the reconstruction might
also bear a large optimization potential. Since CT or MRI measurements are normally not
available in an ICU, approximating the background by ventilation reconstructions to find
collapsed regions, where sensitivity is decreased, might improve the reconstruction.
Extending the reconstruction to 3D might also be a very interesting step to improve clinical
acceptance and the understanding of EIT reconstructions. Yet, the ill-conditioning of the
inverse problem is further increased. Also, the applicability in clinical routine in an ICU
might be a challenge, since more electrodes over a larger region of the thorax have to be
attached. There already has been research on how to combine different sensors into one vest,
which might be a first step to a solution of attaching electrodes in multiple planes [208].
In contrast to the previous point, EIT could also be used as rather a monitoring device of
larger spatial regions of the lungs than an imaging device. This would allow to reduce the
number of spatial compartments to be reconstructed, which would improve the condition of
the matrix to be inverted. This could be done for ventilation and perfusion reconstruction
and might enable a simpler interpretation of ventilation-perfusion ratio (V

.
/Q

.
) ratios.

So far, we have only investigated relative distributions of perfusion. In a future step, it would
be interesting to evaluate quasi absolute perfusion (normalized reconstruction with some
kind of absolute weighting) or absolute perfusion (absolute EIT reconstruction). This is
much more challenging but might also lead to an improved clinical acceptance.
In order to allow spatial perfusion estimations during ongoing ventilation at low respiratory
rates, different more adaptive filtering strategies could be developed. In a conference publi-
cation from 2019 [180], a deconvolution based strategy has been introduced. The real time
volume curve of the mechanical ventilator has to be known and perfectly synchronized for
this approach. Since a non-periodic signal (indicator dilution curve) has to be removed from
a periodic signal (ventilation), different blind source separation techniques could be applied
such as the periodic component analysis [209].

Perfusion parameter estimation Above all, the detection of the pre-lung and post-lung
circulation compartment is a very crucial step during the process of estimating spatial distri-
butions of pulmonary perfusion. If non-lung phases are not removed sufficiently, especially
cardiac blood flow might be misinterpreted as lung perfusion. The methods implemented
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in this thesis should be compared to the methods described in [109, 201] and different
approaches could be combined to further improve redundancy and therefore robustness.
The deconvolution or system theoretic approach of estimating vascular transfer functions
could be further improved. We have also implemented methods, which apply Tikhonov regu-
larization to the inverse problem of the parameter estimation. We e.g. imposed a temporal
similarity constraint of the reconstructed transfer functions to gamma variate models [133].
The promising preliminary research has been published as conference paper [127].
We have investigated the spatial distribution of indicator transit times and have evaluated its
correlation with the CO. An additional evaluation should be conducted, considering the PVR,
which has propably the largest influence on the indicator transit times. We have not recorded
surrogates for the PVR, such as an estimate based on the pulmonary capillary wedge pressure
and the mean pulmonary artery pressure.
CO or stroke volume estimations based on indicator dilution should be investigated com-
prehensively. We might find a weighting to estimate absolute blood flow from normalized
conductivity changes.

14.3 Clinical measurements

Analysis of gas exchange - Global and regional V
.
/Q
.
measures In this thesis, our main

aim was to develop methods to robustly estimate regional pulmonary perfusion with EIT and
validate the EIT perfusion distributions against gold standard lung perfusion measurements.
Since the estimation of spatial lung aeration was already validated and is already applied
clinically, the next step would be to compute regional and global measures to assess venti-
lation and perfusion ratios. A challenge might be the different reconstruction artifacts and
model based shifts and smearing of ventilation and perfusion reconstruction. Hentze et al.
have reported, that ventilation tends to be shifted more dorsally and perfusion was found to
be often shifted more ventrally [109]. Thus, pixelwise measures of ventilation and perfusion
ratios might be misleading. Yet, different measures analyzing the homogeneity and similarity
of both distributions might be beneficial. Different measures should be compared against
global gas exchange measures e.g. based on blood gas analyses. More research has to be
done in this context and will be continued in next steps.

EIT based perfusion estimation in humans In two major experimental studies we have
shown feasibility of regional lung perfusion estimation with EIT based on indicator dilution.
The necessary next step is to test the perfusion estimation techniques in human measurements
to assess the clinical applicability. During the last year, we have contributed to a graphical
research tool, which now incorporates the methods developed during the research cooperation
with Drägerwerk AG & Co. KGaA. Since we were able to show, that the concentration
of the saline indicator can be reduced in order to enable the clinical application without
introducing additional risk to the patient, an ethics vote was obtained for a first larger clinical
study, enrolling 50 patients. The study has been conducted by the group of Tommaso Mauri
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(Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’Granda
Ospedale Maggiore Policlinico, Milan, Italy). Regional ventilation and perfusion (during
breath hold) were assessed and regions of V

.
/Q

.
match and mismatch were estimated. The

study has already been submitted and is currently under review. Exemplary images of a
study patient are depicted in Figure 14.1. The study results already indicate, that quasi-
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Figure 14.1: Clinical measurement of lung perfusion and ventilation of an ICU patient suffering from

ARDS. Graph (A) shows the global EIT impedance change curve with the sections of ventilation and

perfusionmeasurement sections highlighted. Image (B) depicts the estimated EIT perfusion distribution

q̇EIT alongside the estimated ventilation distribution v̇EIT in image (C). A map of the matched and

mismatched regions are depicted in image (D). A region was defined as perfused, if the image amplitude

exceeded 10% of the maximal amplitude. The same approach was used for the ventilated regions. The

heart region or pre-lung phase was removed.

simultaneous measurement of ventilation and perfusion allows to assess the severity of
ARDS by exploiting measures of regional matching of ventilation and perfusion.
In times of the Corona virus pandemic, the demand for a beside lung perfusion measurement
is additionally increasing. The same group of Tommaso Mauri has already published early
results from ten Covid-19 patients suffering from ARDS [210]. The perfusion measurement
should be conducted in many clinical studies in order to assess the potential of improving
lung injury diagnosis and lung protective ventilation. The investigation of the medical
information of bedside perfusion and ventilation measurements should be accompanied by
technical analyses and method improvements to generate trustworthy distributions also for
human anatomies in different positions and measurement scenarios. The robust removal of
the pre- and post-lung circulation phase from the image is in our opinion the most crucial
processing step, which needs to be evaluated in clinical measurements. Otherwise ventral
perfusion is overestimated.



Appendix A
Derivation of important features

of the gamma variate

As described in section 10.2.1, the first passage of an indicator fluid through a spatial com-
partment is often mathematically described by the gamma variate model γ(t) [116, 118] . In
this chapter, a description of the model parameters as functions of important signal features
shall be derived. These functions were used to calculate suitable initial estimates of the
model parameters for nonlinear fitting of the gamma variate to the reconstructed conductivity
signals in each spatial element k. The derivation will be described for a continuous time t ∈R.

The gamma variate is mathematically described by:

γ(t) = g · (t− tA)α · e−β (t−tA)
(A.1)

The shape of the function is described by its parameters α,β ∈ {R|α,β > 0}. The model
can additionally be scaled by the amplitude g ∈ {R|g > 0}. The initial rise of the function
occurs at time tA ∈ R, which will be called arrival time in the following. In the end we want
to be able describe α , β and a by signal features. In order to derive the most important
signal features of the gamma variate besides tA, the first and second temporal derivative are
calculated. Deriving the first derivative of the gamma variate δγ(t)

δ t the product rule has to be
regarded:

δγ(t)
δ t

= g ·
(

α(t− tA)α−1 · e−β (t−tA)−β (t− tA)α · e−β (t−tA)
)

= g · (t− tA)α · e−β (t−tA) ·
(

α

t− tA
−β

)
= γ(t) ·

(
α

t− tA
−β

)
(A.2)
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The second derivative is calculated again using the product rule:

δ 2γ(t)
δ t2 = γ(t) ·

(
α

t− tA
−β

)2

− γ(t) ·
(

α

(t− tA)2

)
(A.3)

δ 2γ(t)
δ t2 = γ(t) ·

[(
α

t− tA
−β

)2

− α

(t− tA)2

]
(A.4)

At first the maximum γmax and the time of the maximum tmax ∈ (tA,∞] of the gamma variate
is calculated as functions of model parameters. At tmax

δγ(t)
δ t |t=tmax

!
= 0 applies, resulting in:

0 = γ(tmax) ·
(

α

tmax− tA
−β

)
(A.5)

Within the possible parameter limits γ(tmax) 6= 0 ∀ tmax < ∞ applies. Therefore it follows:(
α

tmax− tA
−β

)
= 0

tmax =
α

β
+ tA (A.6)

Based on the second derivative it can be shown, that γ(tmax) is the global maximum, which
is trivial. The maximum value of the gamma variate is given by inserting (A.6) in (A.1) and
subsequent simplification:

γmax = a ·
(

α

β

)α

· e−α
(A.7)

To be able to describe α and β only in terms of signal features, we need an additional feature
besides the maximum. We choose the maximal positive γ̇max+ and negative slope γ̇max− at the
time points ts+ ∈ (tA,∞] and ts− ∈ (tA,∞], since these parameters will be important features
to calculate the pulmonary blood circulation parameters. At ts+ and ts− the second derivative
vanishes:

0 = γ(ts±) ·
[(

α

ts±− tA
−β

)2

− α

(ts±− tA)2

]
(A.8)

Again γ(ts±) 6= 0 ∀ ts± < ∞ applies. Therefore the following function quadratic in ts± applies:

0 =
α2−α

(ts±− tA)2 −
2αβ

ts±− tA
+β

2

= α
2−α−2αβ (ts±− tA)+β (ts±− tA)2

= β
2 · t2

s±−
(
2αβ +2β

2tA
)
· ts±+

(
α

2−α +2αβ tA +β
2t2

A
)

(A.9)

After solving the standard formula for quadratic equations, we end up with:

ts+ =
α−√α

β
+ tA = tmax−

√
α

β
(A.10)

ts− =
α +
√

α

β
+ tA = tmax +

√
α

β
(A.11)

(A.12)
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Subsequently we solve (A.6) for β and insert it in (A.10). Assuming we can identify tA, tmax,
ts+ and gmax by signal analysis, we finally express α , β and a as functions of the identified
signal features:

a =

(
β

α

)α

eα · γmax (A.13)

α =
(tmax− tA)2

(tmax− ts+)2 (A.14)

β =
(tmax− tA)
(tmax− ts+)2 (A.15)





Appendix B
Comparison of the nonlinear and

piecewise drift fit

In section 10.2.1 of chapter 10, two methods to remove the superimposed recirculation
drift component dk(n) from the temporal indicator dilution signals ∆σk(n) in all spatial
elements k have been introduced: the nonlinear γ-fit and the piecewise fit. The latter can be
interpreted as a simplified and more robust adaption of the nonlinear fit. After fitting process,
an estimation of the first-pass indicator dilution signal was recovered by either methods:
γ̃NL,k(n) or γ̃PC,k(n). We published a synthetic signal study as a conference contribution
[125], in which the accuracy of both fits were compared. A short summary of the results will
be presented in the following.

Synthetic signal model: For the method comparison study N=10000 synthetic signals were
created using the signal model:

∆σ(n) = γ(n)+d(t)+ e(t) with

γ(n) = g · (n−nA)
α · e−β (n−nA)

The parameters of the model have been introduced in section 10.2.1. All parameters were var-
ied randomly in realistic intervals. These intervals were identified from the preclinical porcine
study (see chapter 5 or [121]) during the research for the Bachelor thesis [131]. Additionally,
measurement noise e(n) was modeled as Gaussian white noise with a SNR = [40dB,60dB].

Comparative results: To compare the accuracy of both fitted/estimated indicator dilution
curves, different features p̂ of the recovered/estimated first pass indicator curve γ̂(n) have
been compared to the corresponding features p of the simulated ground truth signal γ(n):
the maximal amplitude γmax, the maximal slope γ̇max, the area under the curve

∫
γ(n)dn and

the mean transit time MT T . The comparative accuracy parameter was the normalized error:
ε(p) = (p̂− p)/p. Additionally, the Pearson correlation coefficient r between the ground
truth γ(n) and the estimated signals was calculated. The results are shown in table B.1:
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Table B.1: Synthetic study results: median and interquartile range (IQR) of different feature errors. The

table was adapted from our publication [125].

Nonlinear fit Piecewise fit

Median IQR Median IQR

ε(γmax) in % -2.12 5.26 -1.39 5.77

ε(γ̇max) in % -27.32 34.27 -31.79 35.14

ε(
∫

γ(n)dn) in % -1.35 1.32 -0.83 4.47

ε(MTT) in % -0.63 0.56 2.05 4.96

r 0.998 0.006 0.996 0.01

Application to data from the Dresden study: Both fits, nonlinear and the piecewise fit,
were also compared qualitatively using an exemplary indicator EIT measurement from
preclinical porcine study in Dresden (see chapter 5 or [121]). The maximal slope feature
γ̇max was calculated from both fitted signals. The spatial distributions within the lungs were
compared and are visualized in figure B.1. The images or spatial feature distributions were
compared by a pixel wise absolute normalized error ε(γ̇max) = |γ̇PC,max− γ̇NL,max|/γ̇max. The
median of the image error M(ε) = 7.4% and the IQR(ε) = 9.8%.

Nonlinear Piecewise

0

0.1

0.2

0.3

𝛾max

right left
dorsal

ventral

Figure B.1: Distributions of the maximal slope feature in a porcine lung; (left) the nonlinear fit; (right)
the piecewise fit. The image was adapted from our conference contribution [125].

Conclusion: The indicator dilution curve γ(n) could be estimated robustly by both fitting
methods for the synthetic and preclinical study data. Both fitting methods could recover the
pure indicator dilution curve with similar parameter error intervals. Above all, the maximal
slope of the ground truth indicator dilution signal was underestimated by around 30% for
both fitting approaches. Since both fits showed very comparable fitting results, the simpler
piecewise fit, with substantially smaller computational cost, was chosen for all analyses in
chapters 11 and 12.
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