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Abstract

The ubiquity of ever-connected smartphones has lead to new sensing paradigms that promise environmental
monitoring in unprecedented temporal and spatial resolution. Everyday people may use low-cost sensors to
collect environmental data. However, measurement errors increase over time, especially with low-cost air
quality sensors. Therefore, regular calibration is important. On a larger scale and in participatory sensing,
this needs be done in-situ. Since for this step, personal sensor data, time and location need to be exchanged,
privacy implications arise.

This paper presents a novel privacy-preserving multi-hop sensor calibration scheme, that combines Private
Proximity Testing and an anonymizing MIX network with cross-sensor calibration based on rendezvous. Our
evaluation with simulated ozone measurements and real-world taxicab mobility traces shows that our scheme
provides privacy protection while maintaining competitive overall data quality in dense participatory sensing
networks.

Received on 30 January 2017; accepted on 08 March 2017; published on 14 April 2017
Keywords: Participatory Sensing, Location Privacy, Sensor Calibration, Mobile Sensing, Environmental 
Monitoring, Calibration Rendezvous, Citizen Science, Air Pollution
Copyright © 2017 J.-F. Markert, M. Budde et al., licensed to EAI. This is an open access article distributed under 
the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits 
unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.15-1-2018.153564

1. Introduction
Air pollutants like ozone or particulate matter pose
a danger to people, as they have been proven to
cause diseases such as asthma and lung cancer in high
concentrations, as well as damage to the environment
[1]. The awareness for these problems has increased in
societies around the world in the last years. Traditional
air pollution monitoring by governmental authorities
is mostly done with large stationary equipment and
characterized by a high accuracy, reliability and cost
and a low temporal and spatial resolution. As an
alternative, low-cost gas and particle sensors and
platforms have emerged [2, 3], that can be used in
different sensing scenarios, in which mobile wireless
sensor networks are formed [4]. As these sensors are
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not as accurate, reliable and/or stable as classical
stationary measurement units, regular calibration is a
possible strategy to compensate for systematic error
and to prevent quality loss. Among the different
calibration techniques that exist, rendezvous-based
blind calibration [5] is most suitable for so-called
Participatory Sensing scenarios, since low-cost sensors
are carried by a large number of people and calibration
against reliable, high-quality reference stations is
infeasible. However, the proximity-based data exchange
approach generally entails privacy issues: Partial traces
might be identified based on location information,
such as frequently visited places or velocity, network
characteristics (e.g. latency), or others.

This paper presents a novel privacy-protecting cal-
ibration scheme for participatory environmental sens-
ing. Collaborative blind macro-calibration is combined
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with several privacy preserving measures, such as pri-
vate proximity testing, personalized exclusion zones,
spatial generalization, pseudonymization and MIX net-
works.

2. Background and Related Work
A lot of research has been done related either to mobile
participatory sensing and its privacy implications, or
to the calibration of dynamic sensor systems. However,
there is only very limited work combining the two.
To the best of our knowledge, PPCS [6] is the only
privacy-preserving calibration mechanism presented so
far. PPCS is a MIX-network-based pseudonymization
scheme for mobile sensor systems with server-client
architecture. It uses so-called non-blind calibration, i.e.,
relies on high quality ground truth reference data.
Therefore, PPCS can not easily be applied to multi-hop
settings with rendezvous-based calibrations. It thus is
not so well-suited for end-user participatory sensing.
The same applies to a slightly different version of
PPCS, which was published under the name PRICAPS
[7]. Another system, TAPAS [8], presents approaches
to privately select participants for collection tasks – a
technique that is not applicable to calibration.

In calibration, so-called blind methods achieve
calibration gain without ground truth reference data
[9]. Hasenfratz et al. proposed a multi-hop calibration
scheme for mobile sensors, in which the sensors utilize
each others measurements from rendezvous in order
to improve the calibration “on-the-fly” [5]. This work
incorporates a similar approach.

In privacy preservation, Proximity Testing can be
used to privately and “continuously report all events
of mobile users being within the distance of each
other” [10]. This can be used for the task of finding
sensors that have measured the same phenomenon
at approximately the same time and location. While
private one-to-one matchings can reliably be done with
pairwise exchanged keys, one-to-many matchings with
proximity tests against an unknown number of strange
users fail due to the bad scalability, especially regarding
key exchange and pairwise distance calculation.
Instead, spatial generalization as proposed in [11] can
be applied. A MIX network [12] is a way to ensure that
the network traffic and the corresponding devices are
unlinkable.

Our approach combines blind multi-hop calibration
with Private Proximity Testing and a MIX network to
build a privacy preserving rendezvous-based calibra-
tion scheme for participatory sensing scenarios.

3. Preliminary Assumptions
The definition of privacy in this work is to “guarantee
that participants maintain control over the release of
their sensitive information” [13].

Attacker Model Attackers can be administrators,
participants as well as external entities. The attackers’
role is either passive or active: passive attackers may
eavesdrop on communication, while active attackers
might also compromise servers and communication.
Their motivation is assumed to be either malicious or
honest-but-curious. Attackers’ objectives can be rather
general, e.g., desiring the traces themselves, or more
specific, e.g., being interested in the location of a certain
person at a specific time. Furthermore, the attackers
can enhance their capabilities by utilizing additional
information, e.g. publicly available address information
from yellow pages or frequently visited places found on
social media.

Trust Model The participants trust the devices’ soft-
and hardware to correctly implement the scheme.
Moreover, they trust the system administrator for
choosing reasonable privacy-affecting parameters. The
network provider is also trusted, as it already knows the
nodes’ approximate location.

Further, the server is not taken as honest or
benevolent. Positioning services such as GPS are
assumed to utilize passive client applications and thus
need not to be trusted.

4. Approach
Our privacy-protecting collaborative blind macro-
calibration method can be decomposed into the
following separate parts:

1. Sensing
2. Proximity Testing
3. Calibration
4. Upload

Step 1: Sensing The first step naturally is the process
of the sensors taking measurements. Each reading
consists of essentially three data entries: location, time
and the measurement itself.

Measurements with low-cost sensors typically devi-
ate to a certain degree from the ground truth. This
measurement error is composed of two parts: (1) The
statistical error, caused by random hardware noise or
inaccuracies in the measurement apparatus, as well
as the statistical nature of the measurement process;
(2) the systematic error, depending on multiple fac-
tors such as the sensed phenomena and the environ-
ment. With low-cost sensors, the systematic error may
increase with time, e.g. due to sensor aging or other
causes [14]. Some sensors, e.g. electro-chemical gas
sensors, are more susceptible to this kind of sensor drift
than others.

In order to represent the reliability of a sensor’s
measurement, we introduce the validity (v) as a
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Figure 1. Calibration pipeline: Rendezvous are matched by the server and the sensor nodes’ respective measurements and validities
are merged to calibration tuples. The nodes estimate the calibration parameters by linear regression and recalibrate the measurements
accordingly. Finally, the measurements are uploaded to the server.

meta attribute. The validity ranges between 1 and 0,
with an initial value of 1 representing a status of
perfect calibration. As the sensors’ systematic error
increases continuously due to sensor aging, the validity
decreases monotonically. The daily decrease depends on
a global parameter dailyV alidityLoss and is calculated
as follows:

v(t + 1) = v(t) ∗ (1 − dailyV alidityLoss) (1)

Accordingly, the half-life (hl) of the validity can be
calculated as

hl(dailyV alidityLoss) = ln(2)/dailyV alidityLoss (2)

For an exemplary half-life of five days, a daily validity
loss of 0.138 would be suitable.

While the statistical error is random, calibration
is required to estimate the systematic measurement
error and subsequently minimize the measurements’
deviation from the actual values. The systematic error
approximation is based on rendezvous and uses the fact
that two spatially and temporally close sensors should
measure the same value for a phenomenon. Depending
on the homogeneity of the phenomenon different values
for the temporal and spatial closeness are required.
These so called rendezvous are determined through
Private Proximity Testing via a server.

Step 2: Proximity Testing While pairwise distance
comparison against a proximity threshold suffices
for proximity testing [15], a private implementation
requires the exchange of private keys between each pair
of nodes and pairwise operations hamper scalability.
This complexity is not manageable in a large-scale
network of mutually strange nodes. Instead, we utilize
a reduction of proximity testing to equality testing
via spatial generalization similar to [11]. The positions
are mapped to cells via a globally deterministic

function and the resulting cells are compared for
equality. Additionally, from the privacy perspective,
this coarsens the location and reduces the detail of the
released personal information.

The grid characteristics have an impact on the quality
of the proximity detection. The basic grid form is a
composition of distinct rectangular cells. In order to
better approximate a circular neighborhood, multiple
mutually offset hexagonal grids can be utilized [15].
Furthermore, the size of the grid cells impact the
neighborhood relation: the larger the cells, the greater
the rendezvous neighborhood, and the less detailed the
released personal information.

The temporal and geographic sampling position is
first discretized to the corresponding cell in the grid. As
the discretization also involves the temporal dimension,
the same geographic position will be in a different cell
regularly, preventing frequency analysis attacks to infer
population density of certain locations. The distinct
cell identifier is then mapped with a cryptographic
hash function, making it impossible to recognize the
original cell. Depending on the grid, an appropriate
hash length needs to be chosen in order to prevent
conflicting hashes. Finally, the hash value is uploaded
to the server along with a pseudonym in order to query
for rendezvous.

The rendezvous detection is done centrally on the
server. For every newly uploaded query, the server
checks for matches in the set of already uploaded
queries. If a match is found, a data exchange between
the co-located nodes represented by the pseudonyms is
established.

The exchanged data includes the measurements and
the respective validity. As the validity is sensor- and
thus person-specific, this can have privacy implications.
The probability of validities to be relatively distinct is
rising with the decrease of the measurement density
in the corresponding cells. As a countermeasure,
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the validity is discretized according to a global
discretization step before exchange. In order to protect
the participants privacy during the exchange, a secure
communication channel is established via asymmetric
encryption. The discretized validity and the calibrated
measurement are then sent to the respective rendezvous
partner.

The presence of ground truth sensors (i.e. reference
stations) in the system is not required, but can improve
the calibration performance. Reference stations act as
regular nodes, except that they do not move and exhibit
no measurement error (constant validity of 1). Their
measurements along with the respective cell hashes are
also accessed by the server. In case of rendezvous, the
server performs the data exchange on behalf of the
stations.

In order to be able to protect the participants’ privacy
also in low density areas, we added tailored sensing in
the form of personalized exclusion zones to our scheme.
The participants can set up so called sensitive locations,
for instance their home or workplace. Subsequently,
entries that are located within a given radius of
such a sensitive location are discarded. In such areas,
subsequent measurements might otherwise be linkable
to a trace utilizing prior knowledge on mobility
patterns, such as speed and frequent whereabouts.

Step 3: Calibration The computation of the calibra-
tion parameters and the calibration application is done
locally on the nodes to reduce possible privacy impli-
cations as the server could link successive characteristic
parameters to re-identify participants.

To perform a calibration, two prerequisites
have to be met: (1) At least one of the
participating sensors possesses a sufficient validity
(rendezvousV alidityT hreshold). This ensures
that a calibration actually results in an accuracy
improvement. (2) There was no recalibration based on a
rendezvous that happened later. As a result of network
latencies, the server e.g. might recognize a rendezvous
before the data on a different rendezvous that actually
happened before that one is processed. If a preceding
rendezvous is recognized later, it is therefore discarded
as outdated.

The two calibrated measurements retrieved from
the rendezvous are merged in order to estimate the
unknown ground truth. The validities representing
the measurement’s reliability are utilized as weights.
Thus, the estimation is calculated as a validity-
weighted arithmetic mean of the two measurements.
The estimation and the rendezvous time constitute the
so-called calibration tuple: {estimate, time}.

After that, the most recent calibration tuples
are merged with the sensor’s respective uncali-
brated measurements {r}. The number of chosen
calibration tuples depends on a global parameter

(calibrationW indowSize), and its choice has great
impact on the calibration performance: while a higher
value yields a more solid calculation basis for regres-
sion, the chance of considering already outdated mea-
surements increases.

For the calibration parameters’ calculation, different
regression methods can be applied depending on the
characteristics of the systematic error. For a systematic
error best described as polynomial of first order
depending on ground truth, linear regression with
the method of least squares is utilized for error
approximation. However, when the data range is below
a threshold (minimumDataRange), linear regression
can lead to poor results. In this case, we model
the systematic error as constant and disregard the
present dependency on the ground truth. In both
cases, the calibration parameters are updated after error
approximation and the following measurements are
calibrated accordingly.

In order to account for the calibration gain, the
validity is updated after the calibration. While the
sensor with the higher validity keeps his validity, the
other rendezvous partner adopts the higher value.

Additionally, a so called validity boost is applied,
slightly increasing the validity for both. The boost
accounts for the calibration gain that not results from
calibrating with more valid sensors, but from the fact
that rendezvous among uncalibrated nodes still yield
positive effects when accumulated for many sensors
with different errors. The validity boost, parameterized
by a global parameter validityBoost, is applied by the
following function:

v′ =
v + validityBoost
1 + validityBoost

(3)

This function ensures that the validity never exceeds 1.

Step 4: Upload We implemented different measures
to ensure privacy in the data upload step: The partic-
ipants’ privacy with respect to network communication
is protected through the use of a MIX network and
dynamic pseudonyms. There are different types of MIX
networks, that exhibit e.g. different latency character-
istics. We assume that a suitable implementation as in
[16] is realized.

Pseudonyms are freshly chosen for every communi-
cation, in order to prevent any linking. The pseudonym
length and the decentral generation mechanism are
chosen in a way to prevent pseudonym collusion, which
depends on the size of the area to be monitored, the
number of nodes and the communication frequency.

Additionally, to prevent attacks based on the upload
time, uploads are globally limited to certain points
in time defined by a periodic interval. Finally, the
uploaded data consists of the calibrated measurement
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and the respective time and location. There is no need
for an identifier, as the calibration is finished with the
upload.

5. Evaluation
We evaluated our scheme by combining simulated
ozone measurements with real-world taxicab mobility
traces: For the location traces of the simulated mobile
nodes we use data from the epfl/mobility dataset at
CRAWDAD [17]. The dataset contains real-world GPS
traces of 537 taxicabs tracked while serving in San
Francisco, USA. As the dataset is limited to 22 days,
so is our simulation time. The measurement frequency
results from the respective GPS logging frequency and
amounts to once per minute on average.

For the simulation of the ground truth ozone
distribution, we use data from a noise generator based
on a free implementation of the OpenSimplex noise
generation algorithm [18]. The three-dimensional noise
has a continuous gradient in all dimensions and nearly
no artifacts. We assume ozone to be homogeneous in the
order of 30 minutes in time respectively 100 meters in
space, in line with [19]. Its amplitude ranges between
0 and 140 ppb (parts per billion) as common ozone
concentrations range between 0 ppb and 70 ppb [5] and
EU regulations state 90 ppb as information threshold
and 120 ppb as alert threshold [20].

In line with e.g. [21], we model the measurement
error as the sum of two separate components:
The statistical error is modeled with a Gaussian
distribution: n ∼ N (0, σ2) ppb. Its variance is chosen at
the beginning of each day individually for each sensor:
σ ∼ N (1, 3) ppb.

The systematic error b is modeled as a function of the
measured value as well as the sensor age. Based on the
literature [5, 22] the systematic error linearly depends
on the ground truth and increases with time:

b(gt, t) = b0(t) + b1 ∗ gt (4)

where the coefficients are determined by uniform
distributions:

b0 ∼ U (−9 − d
5
, 9 +

d
5

) ppb (5)

b1 ∼ U (−0.2, 0.2) ppb (6)

By introducing a temporal dependency for b1, sensor
aging is incorporated. The coefficients are updated on
the beginning of each day, thus t denotes the past full
days since deployment. For the systematic error model
to be more realistic, the parameters are interpolated
between two subsequent days in order to obtain a
continuous function of time.

The simulation setup regarding the scheme parame-
ters is shown in Table 1.

Number of mobile nodes 50
Number of reference stations 0
Spatial grid form basic (quadratic)
Spatial cell length 100 m
Temporal cell length 30 min
Calibration window size 10
Minimum data range 35
Daily validity loss 0.13
Validity boost 0.00003
Validity discretization step 0.0003

Table 1. Scheme parameters of simulation setup.

Calibration Gain The calibration gain, a measure
for the effectiveness of a calibration, is computed as
the ratio between the difference of the normalized
mean squared error (NMSE) between uncalibrated
and calibrated measurements, normalized by the
uncalibrated NMSE:

calibrationGain =
NMSEuncalib −NMSEcalib

NMSEuncalib
(7)

The mean squared error is a standard metric to
quantify measurement errors [23]. The NMSE, the
mean squared error normalized by the ground truth, is
calculated as follows:

NMSE =
1
n

n∑
i

(mi − gti)2

gt2i
(8)

summing over all nodes at all time steps.
For the sake of representation NMSE and validity

over time in Figure 2(a) and Figure 2(b) were created by
temporally binning the data with 150 bins, hence the
angular course.

In Figure 2(a) we see a calibration course of a sin-
gle exemplary node. The NMSE of calibrated mea-
surements (solid line) in comparison to uncalibrated
measurements (dotted line) is improved at nearly every
point in time.

Figure 2(b) shows the calibration course averaged
over all nodes of the same simulation. The NMSE
of calibrated measurements increases much slower
and remains nearly constant despite sensor aging.
Generally, the quality of the calibrated measurements is
significantly better than the uncalibrated measurement.
While the calibrated NMSE ranges around 0.8, the
uncalibrated NMSE fluctuates around 1.4, yielding a
calibration gain of 65%.

The periodicity of the uncalibrated error can be
explained by the systematic error model, which inter-
polates between daily chosen parameters. Remarkably,
this periodicity vanishes in the calibrated error course,
indicating that the remaining error is for the most part
of statistical origin.
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Figure 2. NMSE with and without calibration and validity (note numerical shift). Gray bars in the background represent number of
calibrations per hour. (a) Exemplary course of a single node for 10 days. (b) Course averaged over all 50 nodes for 22 days.

System Life Time In Figure 2(a) the exponential
validity loss is best recognizable at times where no
calibrations are present, especially at day 4. This loss
is slowed when calibration processes are happening.
At areas of high calibration density, depicted by the
gray shaded bars in Figure 2(a), the validity stabilizes,
increases or even jumps due to the implemented
validity boosts.

The global validity in Figure 2(b) drops with
advancing time, as the validity boosts are not able to
handle the global loss. Still, in times with a high number
of calibrations, the validity rises again as the boosts
dominate. Figure 2(b) shows the trend that the validity
ranges between 0.65 and 0.75 from day five on, with
highs and lows. If the global validity drops under a
specific threshold, it is assumed that the system is not
able to recover itself and it stops yielding reasonable
data. This marks the end of the system’s life.

The expectable system life time without calibration
is determined by the validity threshold and half-life.
If a critical node density and subsequently a sufficient
number of calibrations is reached, the life time is
significantly prolonged. With a sufficient amount of
reference stations, this could enable a hypothetically
infinite system life time. The requirements for such
a state are highly dependent on the data set and the
validity configuration boost.

Reference Stations The impact of reference stations is
shown in Figure 3. In order to achieve reliable results,
multiple simulations are fusioned in the diagram.
The reference stations were placed strategically at
the most frequented locations. It is obvious that the

deployment of more reference stations results in better
calibration gains. However, the difference compared to
a setting without reference stations diminishes with
an increasing number of nodes, resulting from the
utilization of rendezvous among imperfect nodes. This
shows that our rendezvous-based approach performs
best when deployed in a greater scale, and that the
accuracy can compete with reference stations.

Identification via Rendezvous The risk of trace
reconstruction via rendezvous increases with low

Figure 3. Competitiveness of pure rendezvous-based calibration
is shown by impact of reference stations.
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Figure 4. K-anonymity in dependency of validity discretization,
depicting the decrease of anonymity with smaller discretization
steps.

measurement density and high validity diversity. The
validity diversity can be measured with k-anonymity
[24]. Here, k represents the number of validities that are
discretized to the same value: the lower the density and
the higher the diversity, the lower k.

Figure 4 shows the percentage of achieved k-
anonymity for different discretization steps. It can
be seen that the smaller the discretization steps,
the lower the percentage of achieved k-anonymity
and consequently the higher the potential privacy
risk. As the validity is only utilized as a weight,
even a discretization with the largest of the tested
steps is not expected to impair the calibration
performance significantly. Thus, given a reasonable
validity discretization, a successful privacy protection
with respect to trace reconstruction via rendezvous is
feasible.

6. Discussion
In the course of our evaluation we decided on certain
parameters (proximity thresholds, grid size, etc.) for our
simulation. While these assumptions were certainly not
made arbitrarily and are in line with previous research,
we would like to discuss in this section whether our
scheme generalizes to other settings or what needs to
be adjusted when applying it to different scenarios.

Our spatio-temporal parameters were chosen as
previous research suggested for ozone [19] (see
above). This choice of course is dependent on the
phenomenon (i.e. environmental parameter) that is
sensed, respectively its homogeneity and dispersion
behavior. Different pollutants or phenomena dictate a
different choice of parameters. The same is true for the

general environment: A city with street canyons may
call for other proximity thresholds than an open area
in nature.

An important prerequisite in this context is that
the sensing system somehow should ensure that the
same phenomenon is actually being measured in the
first place and that measurement takes place under
the same circumstances. If, for example, one sensor is
used to measure the temperature in open sunlight and
another in the shadow, that means they actually are
not measuring the same parameter and of course this
makes the readings incomparable. Another example
would be the usage of air quality sensors in greatly
different sampling contexts (e.g. standing vs. riding a
motorcycle), in which the difference in speed could lead
to an invalid air sample in the latter case. However,
such problems need to be addressed at a different level,
such as training of participants or outlier detection.
Co-location and proper handling of measurement
equipment could also be incentivized through the use
of game elements [25].

Finally, the actual mobility patterns that are likely to
be exhibited in the sensing scenario may differ from the
ones used in our simulation. We used taxicab traces as
basis because they reflect the movement of real people
through a real urban environment. On the other hand,
the authors are aware that if sensors were actually
deployed on the taxicabs, privacy problems would
probably be secondary. Still, the general properties of
the mobility data should be realistic for the underlying
scenario: Everyday people traversing the public spaces
they live in.

All of these are aspects that need to be taken into
account, both when designing a Participatory Environ-
mental Sensing application and when determining the
parameters for using our scheme to calibrate sensors
within them. Nevertheless, we do not see that any of
this would invalidate the general applicability of our
scheme to different environmental sensing scenarios.

7. Conclusion
In this work, we presented a novel privacy-protecting
calibration scheme for participatory environmental
sensing that combines collaborative blind macro-
calibration with Private Proximity Testing, personal-
ized exclusion zones, spatial generalization, pseudo-
nymization and MIX networks. This enables the cali-
bration of low-cost sensors based on rendezvous and
the exchange of measurements between them. We eval-
uated our scheme on 22 days of simulated data, which
combines real-world mobility traces with modeled cal-
ibration errors. The results show that our method is
capable of achieving significant calibration gain even
without reliable reference stations present and protect-
ing the users’ location privacy at the same time.
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8. Future Work
As simulation-based evaluations always have their
weaknesses, an evaluation in a real-world setting would
certainly be preferable in the future. On the down side,
such an evaluation entails significant resource costs,
which makes it a very difficult option.

Other future work could focus on the introduction
of additional measures. This could include a modified
validity definition, to e.g. incorporate sensor types
or the user’s measurement reputation. However,
such approaches could also entail additional privacy
implications that need to be considered. Further
enhancement could be achieved by the incorporation of
location tags [15] for the prevention of attacks based on
spoofed locations.
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