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Mathematics is not a deductive science—that’s a cliché. When you try
to prove a theorem, you don’t just list the hypotheses, and then start to
reason. What you do is trial and error, experimentation, guesswork.
You want to find out what the facts are, and what you do is in that
respect similar to what a laboratory technician does.

PAUL R. HALMOS, I Want to be a Mathematician

Running to him was real, the way he did it the realest thing he knew.
It was all joy and woe, hard as diamond; it made him weary beyond
comprehension. But it also made him free.
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Preface

The linear transport equation is an integro-differential equation that describes the evolution of
the angular flux ψ. Depending on time t, spatial position x, speed v, and direction of flight Ω,
the angular flux is defined as ψ(t,x,Ω) := v N(t,x,Ω) where N(t,x,Ω) dx dΩ represents the
number of particles inside the infinitesimal phase space element [x,x+ dx] × [Ω,Ω + dΩ] at
time t. Including information on the angular direction but not on each particle individually,
the transport equation models particle systems from a mesoscopic viewpoint; poised between
a microscopic description where the positions and velocities of all particles are known, and a
macroscopic description that only uses moments of the angular flux to describe the dynamics.

Even in its simplest form, the transport equation describes the evolution of a six-dimensional
quantity and, unsurprisingly, analytical solutions to non-trivial applications are scarce. One
goal of this thesis is therefore to increase the accuracy and performance of numerical algorithms
that approximate the transport equation’s solution—specifically of the discrete ordinates (SN)
method.

The SN method reduces the high dimensionality of the problem by discretizing the angular
variable and restricting transport to a finite number of ordinates. However, the resulting sys-
tem of coupled advection equations suffers from a numerical artifact called ray effects. These
undesirable oscillations of the particle density throughout the spatial domain can impact the
solution quality dramatically. In Chapter 2, this thesis presents and analyzes two variations of
the SN method, called rSN method [21] and as-SN method [37]. We will see that both methods
can mitigate ray effects significantly, once by adding a rotation-and-interpolation step to the SN
method (rSN), and once by adding artificial scattering in form of a carefully chosen scattering
operator to the transport equation’s right-hand side (as-SN).

Similar to SN , rSN and as-SN require proper angular quadrature points to produce satisfactory
results. Here, we present spherical quadrature sets that are based on triangulating Platonic
solids, resulting in a highly uniform distribution of points on the unit sphere, a low variance in
the respective quadrature weights, and an underlying connectivity that allows the interpolation
of function values at arbitrary points that are not included in the quadrature set [22].

After further discretizing the system of SN equations in both space and time in a way that
respects initial and boundary conditions, solution algorithms need to solve the fully discretized
system. Transport sweeps, for example, can be used to update the state in every spatial cell
at every time step. We provide a proof, stating that this procedure is always possible for
two-dimensional domains that are discretized by triangles.

Another significant portion of this thesis is concerned with the analysis of non-classical trans-
port. Under certain assumptions, classical transport theory fails to model the particle system’s
dynamics correctly. A new, so-called non-classical transport equation augments the phase space
of the classical transport equation by an additional variable. Quantities that were equivalent in
classical transport—e.g., the distribution of distances to the next collision and the distribution
of distances from the last collision—now need to be distinguished carefully.
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Moreover, non-classical transport in the presence of heterogeneities has only recently been inves-
tigated [20]. Heterogeneous versions of non-classical cross sections and path length distributions
are provided that model the effect of domain interfaces along particles’ trajectories.

Lastly, the notion of correlated and uncorrelated particles [33] is extended to include hetero-
geneities.

This thesis relies, partially, on work that has previously been published with coauthors in
journals or presented at conferences and included in the respective proceedings. Especially the
work on ray effect mitigation techniques is noteworthy, since it has subsequently been included
in the Ph.D. thesis of Kusch [55]. The following two paragraphs serve to clarify my contributions
to the rSN and as-SN method.

The rSN method was published in Camminady et al. [21]. I developed and implemented the
quadrature sets and implemented the rotation-and-interpolation subroutine. Additionally, I
reimplemented large parts of an explicit version of the SN algorithm in the Julia programming
language. Using this code, I analyzed the influence of the rotation magnitude (with varying
numbers of quadrature points) on the line-source and the lattice test case. The idea and
subsequent realization of the rSN method (mitigating ray effects by adding a rotation-and-
interpolation step) has been developed by all authors collaboratively.

The as-SN method was published in Frank et al. [37]. I significantly contributed to the analysis
and implementation of the artificial scattering operator and performed the related asymptotic
analysis. The code that was used to generate the numerical results is largely based on the rSN
code, except for the implicit time integration, which was added by a coauthor. I performed
numerical experiments that resulted in optimal parameter configurations for the explicit time
discretization. The core idea of the as-SN method (mitigating ray effects by adding artificial
scattering) has been initiated by a coauthor.
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Classical transport
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1. Transport equations

Imagine an infinitely large billiard table. A particle—represented by the white billiard ball—
moves frictionlessly along straight lines until undergoing elastic, instantaneous collisions with
background obstacles—the black billiard balls—that do not move due to their infinite weight
and neglectable velocity. The situation is depicted in Figure 1.1.

Figure 1.1.: The white ball undergoes elastic collisions on the billiard table while the black
balls’ positions are fixed.

This in many ways simplified microscopic description of particle interactions will serve as the
starting point for this thesis. Despite its simplicity, it allows the derivation of governing meso-
scopic and macroscopic equations, as well as the construction of one of the most prominent
numerical methods in transport theory—the Monte Carlo method. Furthermore, changing the
microscopic picture will motivate non-classical transport, discussed in the second part of this
thesis.

A magnitude of real-world phenomena and topics can be formulated in the language of kinetic
theory. These include, but are not limited to, the theory of gases; radiation therapy for cancer
treatment; modeling of nuclear reactors; or illumination in movies and computer games.

Transport equations try to achieve the following: Instead of describing a system by the behavior
of every single molecule, every single particle, or every single light-ray, they seek a description
in terms of statistical quantities that evolve in time. This is both necessary and often desirable.
Necessary, since it already becomes computationally impossible to evolve the trajectory of each
of the roughly 6.022 · 1023 particles in one mole. Desirable, since it is generally of no interest
to know each of these trajectories individually. Thus, transport equations are convenient tools
that distill complex physical systems to manageable equations.

Throughout the scope of this thesis we are going to consider uncharged particle transport; that
is, particles do not interact with another via long range interactions—like electrons do—but with
the background medium or through direct collisions with another. Given these assumptions,
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1. Transport equations

particles move through phase space according to Newton’s laws of motion
{
ẋ(t) = v(t),

v̇(t) = 1
m

F(t,x(t),v(t)),
(1.1)

with x(t),v(t) ∈ R3, t ∈ R≥0, m ∈ R>0, F : R≥0 × R3 × R3 → R3 sufficiently smooth, and
subject to initial conditions x(0) = x0 and v(0) = v0. If we again assume that particles move
with a much smaller mass and faster than background obstacles, and if we also neglect particle-
particle interactions, it is easy to track particle trajectories through the obstacle field as already
seen in Figure 1.1.

If the number of particles becomes large, tracking every single trajectory is infeasible and, more
importantly, not necessary since the distribution of particles in phase space is usually sufficient
information. Transitioning from the microscopic viewpoint to the mesoscopic viewpoint is
rigorously formalized in the Boltzmann-Grad limit [43] and will be explained in a following
section. From it follows the definition of the particle number N : R≥0×R3×R3 → R≥0. Given
an incremental volume dx and a normalized incremental angle dv, we define

N(t,x,v) dx dv := “the expected number of particles in a phase space element dx dv
about x and v at time t.”

(1.2)

With this fundamental variable, we can define the angular flux ψ : R≥0 × R3 × R3 → R≥0 by
ψ(t,x,v) = vN(t,x,v), where v is the particle’s speed and v the particle’s direction of flight.
According to Prinja and Larsen [82], we can interpret this quantity as

ψ(t,x,v) dv dS := “the absolute rate at which particles in dv about v
travel through the surface increment dS orthogonal to v
at time t.”

(1.3)

Knowing the angular flux, we can derive moments by integrating ψ against vi over the space
of possible velocities. For example, the zeroth-order moment is the scalar flux

φ(t,x) :=

∫

R3

ψ(t,x,v) dv, (1.4)

commonly referred to as the (particle) density. We are now going to discuss the governing
equations that describe how the angular flux evolves in time, given an initial distribution of
particles and varying assumptions about the underlying physical context.

Parts of the following sections are inspired by the classical books of Chandrasekhar [29] and
Lewis and Miller [64]; the lecture notes of Frank [36]; and a collection of lecture notes, edited
by Bellomo [12].

1.1. Microscopic viewpoint

Before discussing transport problems from the mesoscopic perspective, the microscopic view-
point deserves further consideration. Let Cr := {ci = (xi, yi)}i=1,...,N be the set of N circles,
centered at positions (xi, yi), each with radius r. For any prescribed initial position x0 = (x0, y0)
and unit velocity v0 = (vx, vy), the trajectory of a particle with radius r is unambiguous. Let tn

4



1.1. Microscopic viewpoint

denote the time—and therefore the distance, because the particle travels with unit speed—until
undergoing the n-th collision. Furthermore, let i(n) denote the index of the obstacle that causes
collision n. With x(t−n ) and v(t−n ) as the pre-collision position and velocity, the post-collision
position and velocity are given by

x(t+n ) = x(t−n ), (1.5a)
v(t+n ) = T(ci(n),x(t−n ),v(t−n )). (1.5b)

(xi, yi)

(xn, yn)

tn

Figure 1.2.: The collision tube for a particle that underwent a collision at (xn, yn) moving to
the right (post-collision). After a distance δtn, the next collision takes place with
the obstacle at (xi, yi).

The operator T results from geometric considerations and simply translates incoming into
outgoing velocities in compliance with Newtonian mechanics. Consequently, δtn := tn − tn−1 is
the time (or equivalently distance) between collisions. The distribution of the δtn follows from
a geometric argument, sketched in Figure 1.2: For a particle to travel distance δtn between
consecutive collisions, there can not be an obstacle with position ci that overlaps with the tube
of width 2r and length δtn (shown in Figure 1.2 with dashed lines). For a reference domain
of area A with N obstacles, the likelihood of not finding the center of an obstacle in a tube
of length δt and width 4r (i.e., we shrink the obstacles to points and double the radius of the
particle) is given by

Qr,A,N(δt) =

(
1− 4rδt

A

)N
. (1.6)

Define 4r ·N/A = σt as the total cross section—the dimensionless number that represents the
likelihood to scatter—to get

Qr,A,N(δt) =

(
1− σt δt

N

)N
. (1.7)

For a fixed domain size A we can let N →∞ and r → 0 such that σt is constant to get

Qσt(δt) = e−σt δt. (1.8)

WithQσt(δt) as the probability of particles not colliding before traveling a distance δt, 1−Qσt(δt)
is the probability of particles traveling at most a distance δt. Differentiating 1 − Qσt(δt), we
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1. Transport equations

Figure 1.3.: Trajectory of a particle with r = 0 in an obstacle field. The domain is periodic
and obstacles were allowed to overlap. The picture shows 180 obstacles with
σt = 8. The white line overlaps with the obstacles only as a result of plotting
with a non-zero linewidth.

define the path length distribution pσt(δt) as

pσt(δt) := “the probability that a particle will travel a distance δt
between consecutive collisions in a random obstacle field with
total cross section σt”

=σte
−σtδt.

(1.9)

Another physical interpretation of the total cross section σt is given by its inverse relation to
the mean free path (MFP), i.e., the mean distance that particles can travel in the obstacle
field of Figure 1.1. This can be confirmed numerically. The software PLE.jl1 allows, among
other things, to efficiently trace particles through an ensemble of obstacles, interacting with
the obstacles on the basis of Newtonian mechanics. Consider therefore a random ensemble of
obstacles with centers in [0, 1]× [0, 1]. A sample simulation of the first ten collisions of a single
particle in a periodic domain is visualized in Figure 1.3. When we increase the number of
obstacles and simultaneously shrink their radii, the theoretical results of the Boltzmann-Grad
limit can be reproduced numerically. Figure 1.4 summarizes the trajectory of a particle over
100000 collisions in a field of 10000 obstacles with σt = 4. Together with the data (green) we
show the best fit with ansatz λ exp (−λs). As predicted by (1.9), the best fit λ is reasonably
close to σt.

1PLE.jl, a path length estimator that I implemented in the Julia programming language, is available under
the MIT license at https://github.com/camminady/PLE.jl.
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1.2. Liouville equation
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Figure 1.4.: A distribution for the distances between consecutive collisions with σt = 4, 10000
obstacles, and 100000 traced trajectories. Additionally to the histogram, we have
a best fit with ansatz λ exp (−λs). The best λ is close to the expected value
σt = 4. Statistical noise becomes visible for long distances.

1.2. Liouville equation

We may ask ourselves why we would wish to describe a fully deterministic system—i.e., a
system following Newton’s laws as described in (1.1)—in a probabilistic way—i.e., using the
definition from (1.4). Clearly, the evolution of the distribution ψ(t,x,v) should follow the same
deterministic dynamics as with the microscopic viewpoint; otherwise the evolution of ψ(t,x,v)
in time would not relate to the evolution of the particle billiard at all. However, a compelling
argument for the statistical description of the otherwise deterministic processes is its inherent
uncertainty. Not only does quantum physics imply uncertainty in the initial data, but the
sheer impracticality of knowing every particle’s position and velocity prompts an argument for
a probabilistic approach.

The partial differential equation (PDE) that describes the evolution of ψ(t,x,v) in time is
called Liouville’s equation. Consider a system of particles described by (1.1). Let us define ψ
by the empirical measure as

ψ(t,x,v) := δ(x− x(t))δ(v − v(t)), (1.10)

with δ as the Dirac delta. If we now multiply with a test function u : R3 × R3 → R, integrate
over x ∈ R3 and v ∈ R3, and differentiate with respect to t, we obtain
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1. Transport equations

d

dt

∫ ∫
ψ(t,x,v)u(x,v) dx dv

=
d

dt
u(x(t),v(t))

=

〈
dx(t)

dt
,∇x(t)u(x(t),v(t))

〉
+

〈
dv(t)

dt
,∇v(t)u(x(t),v(t))

〉

=
〈
v(t),∇x(t)u(x(t),v(t))

〉
+

〈
1

m
F(t,x(t),v(t)),∇v(t)u(x(t),v(t))

〉

=

∫ ∫ (
〈v,∇xu(x,v)〉+

〈
1

m
F(t,x,v),∇vu(x,v)

〉)

· δ(x− x(t))δ(v − v(t)) dx dv

=

∫ ∫
ψ(t,x,v)

(
〈v,∇xu(x,v)〉+

〈
1

m
F (t,x,v),∇vu(x,v)

〉)
dx dv.

(1.11)

Here, 〈f, g〉 denotes the scalar product
∫ ∫

f(x,v)g(x,v) dx dv. Using the first and last term
of (1.11), integrating by parts, and making use of the fact that the test function u was chosen
arbitrarily, yields Liouville’s equation

∂tψ(t,x,v) + v · ∇xψ(t,x,v) +
1

m
F(t,x,v) · ∇vψ(t,x,v) = 0. (1.12)

Liouville’s equation describes the evolution of an initial distribution ψ0(x,v) := ψ(0,x,v) in
phase space under the presence of a non-contact force F(t,x,v). Under certain assumptions,
we can derive conservation of probability along characteristics [10].

1.3. Boltzmann-Grad limit

The idea of the Boltzmann-Grad limit that we have mentioned before was rigorously derived by
Grad [43] and formalizes the transition from the microscopic particle billiard to the mesoscopic
transport equation.

Clearly the microscopic viewpoint is reversible: At any given time t we can stop the billiard
flow, flip the velocity vector, let the process run for another time t, and return to the original
arrangement of particles and obstacles. Thus, when the positions of all obstacles Cr := {ci =
(xi, yi)}i=1,...,N , as well as the initial distribution of particles ψ0(x0,v0) are known, the time
evolution of particles ψ(t,x,v | Cr) is known, too. The expression ψ(t,x,v | Cr) simply involves
tracing back the particles’ trajectories through the obstacle field to their origin.

The Boltzmann-Grad limit is then the ensemble average 〈ψ(t,x,v | Cr)〉Cr with N → ∞ and
r → 0 such that N · r = constant. It involves geometric arguments about the trajectories of
particles and statistical arguments about the arrangement of obstacles.

Several assumptions are necessary to arrive at the ensemble-averaged distribution: (i) Obstacles
are placed independently. (ii) Situations where particles bounce forth and back between two
(or more) obstacles infinitely often are omitted. (iii) Collisions involve exactly two participants,
one particle and one obstacle.
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1.4. Linear transport equation

Assumption (i) allows for obstacles to overlap. However, the likelihood for this to happen
decreases when the obstacles’ radii shrink and the contribution of overlapping obstacles will
subsequently be dropped in the Boltzmann-Grad limit since it is of higher order (in r).

Interestingly, the resulting expression for the ensemble average is provably non-reversible, caus-
ing several controversies in the scientific community [26]. The non-reversibility follows from the
non-decrease2 in entropy, discussed in Section 1.4.2.

1.4. Linear transport equation

Modeling the evolution of the distribution function for the particle billiard shown in Figure
1.1 can be done—in a first simplified setting—via the linear transport equation. We ignore
the presence of an external force F and instead assume that particles only interact with the
background obstacles. These interactions can have two possible outcomes: (i) Particles change
their direction due to scattering, and (ii) particles are being absorbed. The probability of these
two possible scenarios is determined by the cross sections σs and σa, respectively. Together
with σt = σa + σs, the probability to scatter in the case of an event is given by σs/σt and
the probability of being absorbed is given by σa/σs. In a heterogeneous material, the cross
sections will have an additional spatial dependency. Given certain materials, there might also
be a dependency on the angle, i.e., the likelihood to undergo an event depends on a particle’s
direction of travel.

Using all the information above and assuming particles with unit speed and velocity Ω, we
obtain the linear transport equation as

∂tψ(t,x,Ω)+Ω · ∇xψ(t,x,Ω) + σaψ(t,x,Ω)

= σs

∫

S2
s(Ω ·Ω′) (ψ(t,x,Ω′)− ψ(t,x,Ω)) dΩ′ + q(t,x,Ω).

(1.13)

Let us dissect the equation above into its main parts. The left-hand side of the equation is an
advection-plus-absorption part: Particles move along straight lines while being absorbed at a
certain rate. The right-hand side of the equation describes the gain and loss due to in- and
out-scattering, as well as the contribution due to a source q(t,x,Ω). The scattering kernel
s(Ω ·Ω′) describes the probability that a particle with direction Ω changes direction to Ω′ (or
vice versa) in case of scattering. A common convention is

Ω =




Ωx

Ωy

Ωz


 =



√

1− µ2 cos(φ)√
1− µ2 sin(φ)

µ


 , (1.14)

with the azimuthal angle φ, the polar angle θ, and µ = cos(θ). With a non-negative scattering
kernel that integrates to unity, we can split the scattering operator

S(ψ)(t,x,Ω) :=

∫

S2
s(Ω ·Ω′) (ψ(t,x,Ω′)− ψ(t,x,Ω)) dΩ′ (1.15)

into in-scattering

S+(ψ)(t,x,Ω) :=

∫

S2
s(Ω ·Ω′)ψ(t,x,Ω′) dΩ′ (1.16)

2We will actually see a non-increase in mathematical entropy instead.
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1. Transport equations

and out-scattering

S−(ψ)(t,x,Ω) :=

∫

S2
s(Ω ·Ω′)dΩ′ψ(t,x,Ω) = ψ(t,x,Ω). (1.17)

The simplest choice for the scattering kernel models isotropic scattering via s(Ω ·Ω′) = 1 / 4π,
i.e., particles scatter into all directions equally likely. Another choice is the Henyey-Greenstein
kernel [46], satisfying the relation

sg(Ω
′ ·Ω) =

1− g2

4π (1− 2gΩ′ ·Ω + g2)3/2
=
∞∑

n=0

gn
n∑

m=−n

Y m
n (Ω)Y m

n (Ω′), (1.18)

where Y m
n are the spherical harmonic basis functions [74] and the over-bar is used for complex

conjugation. The Henyey-Greenstein kernel is not the correct physical model for scattering but
is commonly used for two reasons: (i) The parameter g ∈ [−1, 1] allows to tune the scattering
from purely backward (g = −1) to isotropic scattering (g = 0) and to purely forward (g = 1),
and (ii) it has the convenient aforementioned expansion in terms of spherical harmonics. The
scattering kernel is visualized in Figure 1.5 and the relation to the spherical harmonics is
discussed in Section 2.3.

1.4.1. Properties of the collision kernel and operator

Let us discuss the scattering operator from (1.15), given by

S(ψ)(t,x,Ω) :=

∫

S2
s(Ω ·Ω′) (ψ(t,x,Ω′)− ψ(t,x,Ω)) dΩ′

and its scattering kernel s(Ω ·Ω′) more thoroughly. For every (t,x) ∈ R≥0 × R3, the operator
S defined by (1.15) is self-adjoint from L2(S2) to L2(S2). Moreover, we assume the scattering
kernel to be bounded in the sense (cf. [30])

σs

∫

S2

∫

S2
s(Ω ·Ω′)2 dΩ dΩ′ ≤ K <∞. (1.19)

An additional assumptions is s(Ω · Ω′) ≥ 0. In general, the scattering kernel can depend
on Ω and Ω′ individually—as opposed to Ω · Ω′. By writing s(Ω · Ω′), scattering from Ω
into Ω′ is as likely as scattering from Ω′ into Ω. Replacing the dependency on Ω and Ω′ by
the dependency on Ω · Ω′—the cosine of the scattering angle—is a significant mathematical
simplification. Lastly, since particles have to scatter into some direction,

∫

S2
s(Ω ·Ω′) dΩ′ = 1 (1.20)

is required for any Ω ∈ S2.

Lemma 1.4.1 (Range and kernel of S). Under the above assumptions, the range and kernel of
the scattering operator S are given by

• R(S) = {ψ(t,x,Ω), such that
∫
S2 ψ(t,x,Ω) dΩ = 0}, and

• K(S) = {ψ(t,x,Ω), where ψ(t,x,Ω) is constant in Ω},
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Figure 1.5.: The Henyey-Greenstein scattering kernel log10 sg(cos(θ)) for different values of g
with cos θ = Ω ·Ω′. The radial component is the log10-probability of scattering
into the corresponding angle (relative to the pre-scattering direction). For g = 0
(orange), particles scatter isotropically. For g = 1 − ε with 0 < ε � 1, particles
mostly scatter into the pre-scattering direction (green).
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1. Transport equations

respectively. See, e.g., the lecture notes by Frank [36] for a proof of both properties.

Intuitively, this implies that:

• The scattering operator is mass-preserving. Locally (at t and x), particles are only re-
distributed (in Ω). Overall, no particles are gained or lost.

• Unless ψ is isotropic (independent of Ω), scattering will cause the pre-collision state to
be different from the post-collision state and, regardless of the scattering kernel s, the
equilibrium state of the scattering operator S is isotropic. This does not imply the absence
of scattering events; it merely implies a balance of in- and out-scattering.

1.4.2. Entropy for the linear transport equation

Let η : R → R be a differentiable, convex function, i.e., ∀x1, x2 ∈ R and ∀t ∈ [0, 1], we have
η(t x1 + (1 − t)x2) ≤ t η(x1) + (1 − t) η(x2). Since η is convex, its derivative is monotonically
non-decreasing. Furthermore, recall that the scattering component of the transport equation
(1.13) was given by

S(ψ)(t,x,Ω) :=

∫

S2
s(Ω ·Ω′) (ψ(t,x,Ω′)− ψ(t,x,Ω)) dΩ′.

It follows that
∫

S2
η′ (ψ(t,x,Ω))S(ψ)(t,x,Ω) dΩ ≤ 0, (1.21)

because
∫

S2
η′ (ψ(t,x,Ω))S(ψ)(t,x,Ω) dΩ (1.22a)

=

∫

S2

∫

S2
η′ (ψ(t,x,Ω)) s(Ω ·Ω′) (ψ(t,x,Ω′)− ψ(t,x,Ω)) dΩ′ dΩ (1.22b)

=

∫

S2

∫

S2
η′ (ψ(t,x,Ω′)) s(Ω′ ·Ω) (ψ(t,x,Ω)− ψ(t,x,Ω′)) dΩ dΩ′ (1.22c)

=
1

2

∫

S2

∫

S2
(η′ (ψ(t,x,Ω))− η′ (ψ(t,x,Ω′)))︸ ︷︷ ︸

=:c1

s(Ω ·Ω′)︸ ︷︷ ︸
≥0

(ψ(t,x,Ω′)− ψ(t,x,Ω))︸ ︷︷ ︸
=:c2

dΩ dΩ′

(1.22d)
≤0, (1.22e)

since the signs of c1 and c2 are opposite due to the convexity of η. Additionally, if ψ(t,x,Ω) ≡ 0
for ||x||2 →∞, the mathematical entropy

H(ψ)(t) :=

∫

R3

∫

S2
η (ψ(t,x,Ω)) dΩ dx (1.23)

is non-increasing. The proof follows from the convexity of η and the symmetry of the scattering
kernel.

With a non-increasing entropy the process cannot be reversible. Although, on the microscopic
level, particles return to their initial position when we continue the billiard game for an ad-
ditional time t with reversed velocities, this cannot be the case here. Flipping the velocities

12



1.4. Linear transport equation

Figure 1.6.: Spatial domain V ( R3 with boundary ∂V and outward facing normal n.

at time t does not change the fact that the entropy will continue to decrease. Therefore, the
original state of the system can never be recovered.

An explanation for this discrepancy is provided by Spohn [91]. Due to the assumptions that
we make for the Boltzmann-Grad limit, certain states (situations where obstacles overlap or
particles bounce forth and back indefinitely) are omitted from the description with the linear
transport equation. As a result, transport described by the linear transport equation is not
exactly equivalent to that described via the microscopic perspective.

1.4.3. Initial and boundary conditions

In general, (partial) differential equations describe how a system evolves due to physical laws.
Boundary and initial conditions describe which system we are considering exactly. Thus, the
linear transport equation (1.13) needs to be equipped with suitable boundary and initial con-
ditions.

For a bounded domain V ( R3 with boundary ∂V and outward facing normal n as depicted in
Figure 1.6, we set the incoming flux

ψ(t,x,Ω) = ψbc(t,x,Ω) for all t ∈ R≥0, x ∈ ∂V, Ω ∈ S2 such that Ω · n < 0. (1.24)

However, different ways to treat the boundary exist. We can as well have periodic boundaries
or (specular) reflective boundaries, i.e., particles that hit the boundary are being (isotropically)
re-emitted into the domain.

For the initial condition, we have to prescribe the angular flux at t = 0, i.e.,

ψ(0,x,Ω) = ψ0(x,Ω) for x ∈ V,Ω ∈ S2. (1.25)

Furthermore, we require the source q(t,x,Ω) to be non-negative for all times t ∈ R≥0. Given
these conditions, the uniqueness of the angular flux follows.

1.4.4. Stationary transport

Frequently, the stationary state is of more interest than the actual evolution in time towards
that state. In the absence of time-dependent internal sources or boundary conditions, we can
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1. Transport equations

x

y Ω

µ

Figure 1.7.: Slab geometry for two-dimensional transport. Transport is projected onto the
x-axis.

reduce (1.13) to its time-independent counterpart

Ω · ∇xψ(x,Ω) + σaψ(x,Ω)

= σs

∫

S2
s(Ω ·Ω′) (ψ(x,Ω′)− ψ(x,Ω)) dΩ′ + q(x,Ω).

(1.26)

Especially when applied to nuclear engineering related problems, the resolution of the temporal
scale is often not necessary. Equipped with a positive source q(x,Ω) and positive boundary
conditions ψbc(x,Ω), there exists a non-negative solution to (1.26). In Section 1.5 we will show
that this steady state solution exists only for critical systems (and not for super- or subcritical
ones) when introducing more physics into the equations.

1.4.5. Slab geometry

A common simplification of the spatially two- or three-dimensional transport equation is slab
geometry. Consider Figure 1.7, depicting the situation for the two-dimensional case. When
exclusively interested in the transport behavior along a single axis (the x-axis in this case), we
can project onto that axis and reduce the dimension to one. Consequently, the solution is the
same for every horizontal cut through the slab. The transport equation for slab geometry is
given by

∂tψ(t, x, µ)+µ ∂xψ(t, x, µ) + σaψ(t, x, µ)

= σs

∫ 1

−1

s(µ, µ′) (ψ(t, x, µ′)− ψ(t, x, µ)) dµ′ + q(t, x, µ),
(1.27)

with µ = Ω · (1, 0, 0)T .

1.5. Neutron transport

After the Boltzmann equation had established its track record as a useful tool in the study
of the theory of gases, neutron transport became a highly researched topic with the develop-
ment of nuclear reactors and the Manhattan project in the 1940s. Different from the scenarios
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1.5. Neutron transport

considered so far, the phase space is augmented by an additional energy dependency. Conse-
quently, particles—or the respective angular flux—are no longer solely defined by their position
in space x and their direction of flight Ω at a given time t, but also by their energy E, defined
by E = 1

2
mv2. Here, m is the particle’s mass and v its speed. Additionally, scattering and

absorption are not the only possibilities when colliding: A fission event might be initiated by
the interaction of the nuclei.

The (isotropic) energy-dependent cross sections then satisfy

σa(E) + σs(E) + σf (E) = σt(E), (1.28)

where σf (E) is the fission cross section. The scattering kernel is interpreted as

s(Ω ·Ω′, E → E ′) dΩ′ dE ′ := “the probability that a neutron which
scatters and has pre-collision direction Ω

and energy E, has a post-collisions direction
in dΩ′ about Ω′ and energy in dE ′ about E ′.”

(1.29)

In the case of a fission event, the nucleus splits into two nuclei. On average, this produces
ν(E) new neutrons that can be divided into prompt neutrons and delayed neutrons, occurring
with probability 1− β(E) and β(E), respectively [82]. Here, β(E) denotes the delayed neutron
fraction and is usually small (≈ 0.001). When we assume (i) fission neutrons to be born with
uniform direction and (ii) energy distributed according to their prompt fission spectrum χp(E),
we can write the respective gain term (gain of ψ(t,x,Ω, E)) as

χp(E)

∫ ∞

0

∫

S2
(1− β(E ′))σf (E

′)ν(E ′)ψ(t,x,Ω′, E ′) dΩ′ dE ′. (1.30)

In the absence of delayed neutrons (β being small), the energy-dependent transport equation
that includes fission reads

1

v
∂tψ(t,x,Ω, E) + Ω · ∇xψ(t,x,Ω, E) + σa(E)ψ(t,x,Ω, E)

=

∫

S2

∫ ∞

0

σs(E
′)s(Ω ·Ω′, E ′ → E) (ψ(t,x,Ω′, E ′)− ψ(t,x,Ω, E)) dE ′ dΩ′

+ χp(E)

∫

S2

∫ ∞

0

(1− β(E ′))σf (E
′)ν(E ′)ψ(t,x,Ω′, E ′) dE ′ dΩ′

+ q(t,x,Ω, E),

(1.31)

with the neutron speed v =
√

2E/m. Dropping the time derivative in (1.31) results in the
time-independent, energy-dependent neutron transport equation

Ω ·∇xψ(x,Ω, E) + σa(E)ψ(x,Ω, E)

=

∫

S2

∫ ∞

0

σs(E
′)s(Ω ·Ω′, E ′ → E) (ψ(x,Ω′, E ′)− ψ(t,x,Ω, E)) dE ′ dΩ′

+ χp(E)

∫

S2

∫ ∞

0

(1− β(E ′))σf (E
′)ν(E ′)ψ(x,Ω′, E ′) dE ′ dΩ′

+ q(x,Ω, E).

(1.32)
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1. Transport equations

1.5.1. Criticality calculations

In the absence of sources and with homogeneous boundary conditions the fundamental behavior
of the time-independent neutron transport equation is determined by its criticality. Here,
criticality refers to the largest eigenvalue k of

Ω·∇xψ(x,Ω, E) + σa(E)ψ(x,Ω, E)

=

∫

S2

∫ ∞

0

σs(E
′)s(Ω ·Ω′, E ′ → E) (ψ(x,Ω′, E ′)− ψ(x,Ω, E)) dE ′ dΩ′

+
1

k
χp(E)

∫

S2

∫ ∞

0

σf (E
′)ν(E ′)ψ(x,Ω′, E ′) dE ′ dΩ′,

(1.33)

with vacuum boundary conditions ψ(x,Ω, E) = 0 for x ∈ ∂V , Ω · n(x) < 0, and all energies
E. We assume that it is possible to control the expected number of fission neutrons that are
generated and hence substituted ν(E ′) by ν(E ′)/k in the time-independent energy-dependent
neutron transport equation. Clearly, ψ ≡ 0 is a trivial solution to (1.33). However, for non-
trivial solutions the system can be in one of the following three states, depending on the largest
eigenvalue k:

1. The system is subcritical for k < 1. Fission does not generate enough particles and
absorption is dominant.

2. The system is critical for k = 1. Fission generates particles at the exact same rate that
particles are being absorbed or are leaking out of the system. A non-trivial solution to
(1.33) exists.

3. The system is supercritical for k > 1. Neutrons are being generated at a higher rate than
being lost.

This so-called k eigenvalue problem is of significant importance in the field of steady-state
reactor physics. There, the goal is to operate a reactor at a critical state, controlling the rate
of generated fission neutrons such that the reactor neither becomes supercritical (too many
neutrons being generated), nor subcritical (too few neutrons being generated).

1.6. Asymptotic limits

Let us, once again, consider the velocity-dependent, linear transport equation, expressed in
terms of the total cross section σt and the probability that a colliding particle will scatter c,
given by

1

v
∂tψ(t,x,Ω)+ Ω · ∇xψ(t,x,Ω) + σtψ(t,x,Ω)

= c σt

∫

S2
s(Ω ·Ω′)ψ(t,x,Ω′) dΩ′ + q(t,x,Ω).

To obtain a dimensionless equation, we set

t = t̄ T, (1.34a)
x = x̄L, (1.34b)
v = v̄ V, (1.34c)
σt = σ̄t Σt, (1.34d)
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1.6. Asymptotic limits

where variables with a superscript bar denote dimensionless variables and capitalized variables
denote the reference time, length, velocity, and cross section, respectively. We further assume
the scattering kernel to already be dimensionless. Substituting (1.34) in the linear transport
equation and omitting the source yields

1

v̄V
∂t̄ Tψ(t̄ T, x̄L,Ω) + Ω · ∇x̄Lψ(t̄ T, x̄L,Ω) + σ̄t Σtψ(t̄ T, x̄L,Ω)

= c σ̄t Σt

∫

S2
s(Ω ·Ω′)ψ(t̄ T, x̄L,Ω) dΩ.

(1.35)

We define3 ψ(t̄ T, x̄L,Ω) = ψ̄(t̄, x̄,Ω)Ψ and directly omit the superscript bar everywhere to
get

Ψ

T V

1

v̄
∂tψ(t,x,Ω)+

Ψ

L
Ω · ∇xψ(t,x,Ω) + Ψ Σt σtψ(t,x,Ω)

= cΨ Σt σt

∫

S2
s(Ω ·Ω′)ψ(t,x,Ω′) dΩ′,

(1.36)

or equivalently

L

V T

1

v
∂tψ(t,x,Ω)+ Ω · ∇xψ(t,x,Ω) + Σt Lσtψ(t,x,Ω)

= cΣt Lσt

∫

S2
s(Ω ·Ω′)ψ(t,x,Ω′) dΩ′.

(1.37)

Equation (1.37) can be rewritten in terms of the Strouhal number (St := L/(V T )) and the
Knudsen number (Kn := 1/(Σt L)). We additionally set v = 1 since the velocity can be controlled
by V , and v does not occur in the equation without being multiplied by V . The transport
equation in dimensionless form then reads

St ∂tψ(t,x,Ω)+ Ω · ∇xψ(t,x,Ω) +
1

Kn
σt ψ(t,x,Ω)

=
c

Kn
σt

∫

S2
s(Ω ·Ω′)ψ(t,x,Ω′) dΩ′.

(1.38)

The inverse Knudsen number Σt L is a measure for thickness of the system in units of mean
free paths. The Strouhal number is interpreted as the ratio between the time needed to cross
the domain by the characteristic velocity and the characteristic time scale [36].

Under different assumptions on the order of the Knudsen and Strouhal number, we are now able
to obtain different asymptotic limits to the standard transport equation. Due to its importance
in theoretical considerations, as well as its implications for numerical methods, we will discuss
the diffusive scaling in more detail. Diffusive scaling uses the following assumptions:

1. The mean free path is much smaller than the reference length (Kn = ε).

2. Interactions happen on a much smaller time-scale than the reference time (St = ε).

3. The likelihood to scatter is much, much larger than the likelihood to be absorbed in case
of a collision (c = 1− ε2).

3It is the velocity v, not the direction Ω that has to be scaled since Ω is, by definition, a unit-vector.
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1. Transport equations

First we rewrite (1.38) by moving out-scattering back on the right-hand side.

St ∂tψ(t,x,Ω)+ Ω · ∇xψ(t,x,Ω) +
1− c
Kn

σt ψ(t,x,Ω)

=
c

Kn
σt

∫

S2
s(Ω ·Ω′) (ψ(t,x,Ω′)− ψ(t,x,Ω)) dΩ′.

(1.39)

We now substitute Kn = ε and St = ε. Next, (1− c)σt and cσt can be expressed in terms of ε
and dimensionless quantities as ε2σa and σs, respectively. A final multiplication with ε results
in

ε2 ∂tψ(ε)(t,x,Ω)+ εΩ · ∇xψ(ε)(t,x,Ω) + ε2σa ψ(ε)(t,x,Ω)

= σs

∫

S2
s(Ω ·Ω′)

(
ψ(ε)(t,x,Ω

′)− ψ(ε)(t,x,Ω)
)
dΩ′.

(1.40)

The diffusion limit lets ε→ 0. To compute ψ(ε) for ε→ 0, we assume the existence of a Hilbert
expansion for ψε, that is

ψ(ε)(t,x,Ω) =
∞∑

n=0

εn ψi(t,x,Ω). (1.41)

The ψi in the Hilbert expansion are independent of ε. We substitute (1.41) into (1.40) and
collect matching orders of ε (up to second order) to get

O
(
ε0
)

: 0 = σsS(ψ0), (1.42a)
O
(
ε1
)

: Ω · ∇xψ0 = σsS(ψ1), (1.42b)
O
(
ε2
)

: ∂tψ0 + Ω · ∇xψ1 + σaψ0 = σsS(ψ2), (1.42c)

where we omit the dependency on t, x, and Ω in the ψi and the collision operator S(ψi) .
Section 1.4.1 tells us that the kernel of S consists of functions that are independent of Ω; this
implies ψ0(t,x,Ω) = ψ0(t,x).

Since S is linear, we can rewrite (1.42b) as

ψ1(t,x,Ω) = − 1

σs

3∑

i=1

ei(Ω)∂xiψ0(t,x), (1.43)

for some ei ∈ R(S) with S(ei) = −Ωi for i = 1, 2, 3 [36]. Inserting this into (1.42c), we get

∂tψ0(t,x)−Ω · ∇x
1

σs

3∑

i=1

ei(Ω)∂xiψ0(t,x) + σaψ0(t,x) = σsS(ψ2). (1.44)

For the left-hand side to be in the range of S, ψ0 has to be chosen such that
∫

S2
1 ·
(
∂tψ0(t,x)−Ω · ∇x

1

σs

3∑

i=1

ei(Ω)∂xiψ0(t,x) + σaψ0(t,x)

)
dΩ = 0. (1.45)

Changing the order of differentiation and integration in the second term, we obtain

∂tψ0(t,x)−∇x
1

σs
A∇xψ0(t,x) + σaψ0(t,x) = 0, (1.46)

with a positive definite matrix A ∈ R3×3 that has entries Ai,j =
∫
S2 Ωi ej(Ω) dΩ.

We assumed constant cross sections independent of x, but (1.46) can analogously be written
for spatially varying cross sections.
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1.7. Hyperbolic conservation laws

1.7. Hyperbolic conservation laws

Conservation laws are building blocks for the mathematical description of physical reality.
They describe the evolution of one or several conserved quantities through space-time; common
conserved quantities are mass, momentum, or energy. We adapt the notation of the classical
book by LeVeque [62]. A scalar hyperbolic conservation law has the form

∂tu(t, x) + ∂xf (u(t, x)) = 0. (1.47)

The conserved quantity is u : R≥0×V → R. Time is denoted by t ∈ R≥0 and space by x ∈ V ⊆
R. For a spatially infinite domain, conservation means that

∫∞
−∞ u(t, x) dx is constant in time.

The flux function of the system is given by f : R → R and can be interpreted as the flux of a
conserved quantity across a surface. For n conserved quantities u(t, x) = (u1(t, x), . . . , un(t, x))T

in one space dimension with fluxes f(u(t, x)) = (f1(u(t, x)), . . . , fn(u(t, x)))T ,

∂tu(t, x) + ∂xf(u(t, x)) = 0 (1.48)

is the corresponding system of n conservation laws. The system is said to be hyperbolic if

A(u(t, x)) := f ′(u(t, x)) (1.49)

is diagonalizable with n real eigenvalues for all u(t, x). If the n real eigenvalues are also distinct,
the system is strictly hyperbolic. The quasilinear form of (1.48) is

∂tu(t, x) + A(u(t, x))∂xu(t, x) = 0. (1.50)

For problems with two spatial dimension and x = (x, y) ∈ R2, we write

∂tu(t,x) + ∂xf(u(t,x)) + ∂yg(u(t,x)) = 0, (1.51)

with f(u(t,x)) = (f1(u(t,x)), . . . , fn(u(t,x)))T and g(u(t,x)) defined analogously.

Example 1.7.1 (Linear advection equation). The simplest hyperbolic conservation law is the
one-dimensional linear advection equation with constant speed a,

∂tρ(t, x) + a ∂xρ(t, x) = 0, (1.52)

equipped with initial condition ρ(0, x) = ρ0(x) for t ∈ R≥0 and x ∈ R. The solution of (1.52)
is given by ρ(t, x) = ρ0(x − at) (that is, the initial mass is just shifted under consideration of
a), shown in Figure 1.8.
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Figure 1.8.: Linear advection equation with ρ0(x) = exp(−x2).

Example 1.7.2 (Inviscid Burgers’s equation). Let us now consider the inviscid Burgers’s equa-
tion as a toy model for non-linear hyperbolic conservation laws. The equation is given by

∂tu(t, x) + u ∂xu(t, x) = 0, (1.53)

subject to initial data u0(x) = u(0, x). Figure 1.9 illustrates the evolution of the initial condition

u0(x) =





2, x < 0,

2− x/2, 0 ≤ x < 2,

1, x ≥ 2,

(1.54)

drawn in green. Since the propagation speeds of the solution differ, a jump in the solution—
called a shock—forms in finite time. Shocks are a ubiquitous phenomena in physical applica-
tions; exemplified by the formation of traffic jams in traffic flow simulations or pressure jumps
in the flow field around airfoils.
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Figure 1.9.: Burgers’s equation with initial data u0(x) shown in green.

Since the analytical solution to non-linear hyperbolic conservation laws is known for exception-
ally few—and usually exceptionally simple—test cases, numerical methods need to be consid-
ered. Significant contributions in the field of numerical methods for these types of equations
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1.7. Hyperbolic conservation laws

Figure 1.10.: Evolution of an initial distribution ψ0(x,Ω) through space along a fixed direction
Ω with constant σa. Each bump represents the solution at a different time step.

date back to the 1950s and 1960s with work by Sergei Konstantinovich Godunov, Peter Lax,
Kurt Otto Friedrichs, and Burton Wendroff.4

Example 1.7.3 (Radiative transfer with absent scattering in two space dimensions). Recall
that the linear transport equations without scattering or sources can be written as

∂tψ(t,x,Ω)+Ω · ∇xψ(t,x,Ω) + σaψ(t,x,Ω) = 0.

With scattering being absent, the equation can easily be solved for any fixed direction Ω.
Choosing ψ(0,x,Ω) = ψ0(x,Ω), the solution becomes

ψ(t,x,Ω) = ψ0(x− tΩ,Ω)e−σat.

Thus, the initial condition is propagated along direction Ω with absorption taking place at the
same time. When considering scattering, the solution cannot be derived analytically, instead
numerical algorithms need to be used. Note that without scattering, the linear transport
equation resembles the structure of the simple linear advection equation. This is illustrated
in Figure 1.10, where we can see the solution ψ(t,x,Ω) to the linear transport equation for
different times t with a fixed direction Ω. As initial condition, we chose ψ0(x,Ω) = exp(−||x||22),
the fixed direction is Ω = (1/

√
2, 1/
√

2)T , and σa = 0.1.

4This is by no means a complete list of all contributions. The names were selected since there exist famous
numerical schemes named after all of these researchers.
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“There ain’t no such thing as a free lunch.” Popularized by Robert Heinlein’s 1966 novel
The Moon is a Harsh Mistress, this statement tends to be ubiquitous in mathematics and
the sciences as well. We have seen in the previous section that the transport equation is a
powerful tool, allowing us to describe a variety of systems in a detailed manner. Thus it
is unsurprising that solving the transport equation is costly at best and infeasible at worst.
Solution methods—analytical and numerical in nature—have been research topics for decades.
Because analytical solutions can only be derived in oversimplified scenarios, we will exclusively
investigate numerical solution methods.

Broadly speaking, numerical solution methods fall into one of the following two categories:
They either involve some degree of (pseudo-)randomness or they are purely deterministic. Both
categories have their merits and deficiencies; are both rich in mathematical theory and relevant
for applications; and tend to cause partisan debates about which of them is better.

Though this section focuses more strongly on deterministic solution methods, we will also
sketch the fundamental idea of the Monte Carlo method as a representative of non-deterministic
methods. On the deterministic side, the main focus will be on the discrete ordinates method—
also known as the SN method—but moment methods will be discussed as well. We will start with
the Monte Carlo method, because it nicely transforms the underlying physics of the transport
equation into a numerical method, allowing us to recall some of the principles and ideas that
were discussed so far. A short introduction with relevant historical context is prepended to the
mathematical description of the respective methods.

2.1. Monte Carlo method

Origins of the Monte Carlo method date back as early as 1946. Back then, Stanisław Marcin
Ulam suggested the method to John von Neumann as a way to compute the success rate for
the card game Canfield solitaire [35]. Canfield solitaire is luck based since not all configurations
allow to successfully finish the game. The fundamental idea that Ulam and von Neumann
pioneered—and that has arguably been unchanged until today—was the following: Instead of
coming up with an analytical way to predict the success rate, one could repeatedly play newly
shuffled instances of the game and keep track of the number of successful finishes; ultimately
gauging the success rate as the ratio of that number by the total number of games played.
One year later, in March 1947, Ulam, von Neumann, and Robert Davis Richtmeyer wrote a
report that outlined the applicability of the Monte Carlo method for neutron diffusion and
multiplication problems, together with tentative computing sheets [96]. In that report, von
Neumann also speculates on the computational costs:

I cannot assert this with certainty yet, but it seems to me very likely that the
instructions given on this 'computing sheet' do not exceed the 'logical' capacity of
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the ENIAC1. I doubt that the processing of 100 'neutrons' will take much longer
than the reading, punching, and (once) sorting time of 100 cards; i.e., about 3
minutes. Hence, taking 100 'neutrons' through 100 of these stages should take
about 300 minutes; i.e., 5 hours.

The Monte Carlo method, ENIAC, and it’s 1951 predecessor MANIAC—Mathematical and
Numerical Integrator and Calculator—played essential roles in the Manhattan project and the
development of the first hydrogen bomb [70, 13].

Nowadays, the Monte Carlo method is used in civil nuclear applications as well. Both radiation
therapy [99, 77, 87] and nuclear reactor design [88, 102] inherently rely on the Monte Carlo
method. But also nearly every other discipline in the sciences uses the Monte Carlo method to
compute quantities that are as diverse as the fields themselves. For example, biology [66, 72],
chemistry [44, 76], social sciences [9, 25, 45], or finance [47, 50] make use of Monte Carlo
methods. This work will focus on the Monte Carlo method as a tool to solve the transport
equation approximately.

2.1.1. Random numbers

Without random numbers, there would be no Monte Carlo method. Not only is it important to
sample random numbers fast enough, they also need to be good enough. True random number
generators are infeasible when random numbers need to be generated quickly, limiting most
applications to pseudo-random numbers instead.

A common pseudo-random number generator is the linear congruential generator, which gen-
erates a sequence of numbers

Xi+1 = aXi + b mod c, (2.1)

with a, b, and c being large, carefully chosen integers. A pseudo-random number generator does
therefore not generate random numbers in the sense that they are irreproducible. Any sequence
can be reproduced when a, b, and c are known. However, being presented with only a set of
pseudo-random numbers {X0, X1, . . . , Xi}, it is hard to predict Xi+1. The linear congruential
generator is one of the simpler generators and therefore unsuited for cryptographic applications.
More sophisticated generators are the Mersenne Twister [68], the WELL (well equidistributed
long-period linear) generator [78], or xorshift random number generators [67] to only name a
few prominent representatives. Hereinafter, we assume that we are equipped with an algorithm
that generates uniform random numbers in the interval [0, 1]. The distinction between pseudo-
random and random is omitted; pseudo-randomness is assumed implicitly from now on.

Since, for example, the distance that a particle travels between consecutive collisions is not
uniformly distributed, samples from non-uniform distributions with arbitrary probability den-
sity fX need to be generated as well. Two common methods for generating these samples are
inverse transform sampling and rejection sampling.

1The Electronic Numerical Integrator and Computer (ENIAC) was the first general-purpose Turing-complete
computer. It was completed and put to work in 1945.
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2.1. Monte Carlo method

2.1.1.1. Inverse transform sampling

Let us assume that we want to generate samples from a distribution with a Lebesgue-integrable
probability density function fX : [a, b]→ R≥0, satisfying

∫ b
a
fX(x′) dx′ = 1. The cumulative dis-

tribution function is defined as FX(x) :=
∫ x
a
fX(x′) dx′. The random variable X has probability

density function fX if

Pr[x0 ≤ X ≤ x1] =

∫ x1

x0

fX(x′) dx′. (2.2)

Here, Pr[x0 ≤ X ≤ x1] denotes the probability that a random sample falls in the interval
[x0, x1]. Denote by U a sample from the uniform distribution U(0, 1). The distribution of
F−1
X (U) is then identical to the distribution of X and we are able to generate samples from FX

by sampling U ∼ U(0, 1) and evaluating Y = F−1
X (U). See e.g., [89] for the simple proof.

This method does however require the cumulative distribution function and its inverse to be
available and cheap to evaluate. Usually, this can be achieved by precomputing F−1

X numerically
and tabulating the values to generate a lookup table.

2.1.1.2. Rejection sampling

Another method that generates samples from a density fX—requiring neither the evaluation of
FX , nor of F−1

X —is rejection sampling. What is necessary, however, is a function that serves
as an upper bound for fX from which samples can be generated efficiently. The situation is
visualized in Figure 2.1. As an example, the distribution from which we wish to sample is given
by fX(x) = c · (x− 1)2 · (x+ 1)2 · N0,1(x) with Nµ,σ2(x) as the normal distribution with mean µ
and variance σ2. The constant c normalizes fX in the sense that

∫∞
−∞ fX(x′) dx′ = 1. An upper

bound to fX(x) is 3 · fY (x), with fY (x) = N0,9(x).

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
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0.4 fX(x)

fY (x) = N0,9(x)

3 · fY (x)

Figure 2.1.: To generate samples from fX via rejection sampling, we use 3 · fY as an upper
bound. Here, fY is a normal distribution with mean µ = 0 and variance σ2 = 9.

To generalize, assume that our proposal distribution is fY (x) and M · fY (x) is an upper bound
to fX(x). Clearly, there exist multiple choices for M . In applications it is important to choose
M such that M · fY is a tight upper bound to fX (i.e., the situation in Figure 2.1 could be
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2. Numerical solution methods

optimized by choosing a constant slightly smaller thanM = 3). An implementation2 of rejection
sampling is then given in Algorithm 2.1.

Algorithm 2.1 Rejection sampling.
1: function rejectionsampling(fX , fY , Y,M)
2: while True do
3: y ← Y ( ) Variable y is a sample from distribution Y .
4: u← U( ) Variable u is a sample from U(0, 1).
5: if u ·M · fY (y) < fX(y) then
6: return y Variable y is also a sample from distribution X.

In Figure 2.2, we see the output of the rejection sampling algorithm. As indicated by the orange
dashes at the bottom, the x values of the accepted points (in orange) are obeying the density
fX . However, the high number of rejected samples (in purple) means that it might potentially
take a long time to generate the required number of samples. The number of rejected points
equals 657, the number of accepted points is 343; this approximately agrees with the predicted
acceptance rate of 1/M .

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0.0

0.1

0.2

0.3

0.4 fX(x)

3 · fY (x)

Rejected
Accepted

Figure 2.2.: Output of the rejection sampling algorithm. Purple points are being rejected.
For the orange points, the corresponding x values are distributed according to
fX , illustrated by the orange dashes at the bottom. We observe that many points
are being rejected, indicating that fY is no optimal choice.

It remains to show that Algorithm 2.1 does indeed generate samples that are distributed as
prescribed by the density fX .

Proof. We have to prove that the distribution of Y given that u ·M · fY (y) < fX(y) is the
distribution of X, i.e., Pr[y ≤ y′ |u ·M · fY (y) < fX(y)] = FX(y′). Note that

Pr[u ·M · fY (y) < fX(y) | y = y′] =
fX(y′)

M · fY (y′)
(2.3)

and thus

Pr[u ·M · fY (y) < fX(y)] =

∫ ∞

−∞

fX(y′)

M · fY (y′)
fY (y′) dy′ =

1

M
. (2.4)

2Algorithms presented in this thesis will obey a Python-ish style; instead of curly parentheses or closing end
statements, we use indentations. Comments are right-aligned in gray.
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A simple computation then completes the proof:

Pr[y ≤ y′ |u ·M · fY (y) < fX(y)] (2.5a)

= Pr[u ·M · fY (y) < fX(y) | y ≤ y′] · Pr[y ≤ y′]

Pr[u ·M · fY (y) < fX(y)]
(2.5b)

= Pr[u ·M · fY (y) < fX(y) | y ≤ y′] · FY (y′)

1/M
(2.5c)

=
Pr[u ·M · fY (y) < fX(y), y ≤ y′]

FY (y′)
· FY (y′)

1/M
(2.5d)

=

∫ y′

−∞
Pr[u ·M · fY (z) < fX(z) | z ≤ y′]fY (z) dz ·M (2.5e)

=

∫ y′

−∞

fX(z)

M · fY (z)
fY (z) dz ·M (2.5f)

= FX(y′). (2.5g)

Having discussed the main ingredients of the Monte Carlo method, we are now going to demon-
strate how it can be used as a numerical integrator and a solution method for the transport
equation.

2.1.1.3. Monte Carlo as a numerical integrator

Let f : V ( Rd → R be a Lebesgue-integrable function. The finite volume of V is given by
|V | =

∫
V

1 dx. With I we denote the linear integral operator

I(f) :=

∫

V

f(x) dx. (2.6)

We wish to approximate I(f) via Monte Carlo. For a random process, where x has density
ρ(x), we define the expected value of f(x) as

E[f ] =

∫

V

f(x)ρ(x) dx (2.7)

and the variance of f(x) as

Var[f ] =

∫

V

(f(x)− E[f ])2 ρ(x) dx. (2.8)

Let x(1), . . . ,x(N) be independent and identically distributed (iid) samples from U(V ) and define

IN(f) :=
|V |
N

N∑

i=1

f(x(i)) (2.9)

as the numerical approximation of I(f) via Monte Carlo. The expected value of IN(f) is exactly
I(f) since E[IN(f)] = |V |

N

∑N
i=1E[f

(
x(i)
)
] = |V |

N

∑N
i=1

∫
V
f
(
x(i)
)

1
|V | dx

(i) = I(f). Likewise, the
resulting error εN(f) := I(f)− IN(f) is itself a random variable.
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2. Numerical solution methods

Using both the law of large numbers and the central limit theorem, the well known convergence
result for Monte Carlo can be derived, i.e.,

√
E[(εN(f))2] =

√
Var[f ]

N
. (2.10)

We can draw several conclusions from (2.10):

• The expected error decreases with order N−1/2 as the number of samples N increases.

• The expected order of convergence is independent of the dimension.

• The expected error itself, however, might depend on f via Var[f ].

There exists a vast body of literature discussing the Monte Carlo method in great detail and
several important aspects of Monte Carlo have been omitted so far (e.g., Quasi Monte Carlo
[75], Markov Chain Monte Carlo [40], Zero-Variance Monte Carlo [7]). However, that is not
to say we are not equipped with the necessary tools to finally discuss how the Monte Carlo
method can be used to solve transport equations.

2.1.2. Monte Carlo for transport equations

The complexity of Monte Carlo simulations can increase almost arbitrarily, based upon the
physical processes that should be incorporated into the model. These include, but are not lim-
ited to, the pair production in photon transport or the long-range interactions when simulating
plasma.

Here, we will restrict ourselves to the description of time-independent, energy-dependent trans-
port of uncharged particles, focusing on the important building blocks of the Monte Carlo
method without including too much physical complexity (which ultimately differs from appli-
cation to application).

Assume a domain V ⊂ Rd with d ∈ {2, 3}, boundary ∂V , and known cross sections σs(x, E)
and σa(x, E) for every point x ∈ V and positive energies E. Particles enter the domain through
boundary conditions ψbc(x,Ω, E) for x ∈ ∂V and Ω · n(x) < 0. Here, n(x) is the outward-
pointing normal vector at x. For every (x0,Ω0), the cross sections along x0+sΩ0 are computed
with a ray-tracing algorithm up to the point x0+s̃Ω0 where the particle would leave the domain
again. Particles lose energy in two ways: (i) Via soft stopping interaction where particles lose
energy based upon the distance that they travel through a given material [11]. Randomness is
included in this process as well since the amount of energy that particles lose is sampled from a
distribution. (ii) In case of a interactions, particles lose energy again (sampled from a different
distribution).

The setting described here could, for example, describe radiation therapy. To treat cancer,
radiation targets the cancerous tissue with the goal of damaging its DNA, leading to the cells’
death. It is obvious that an accurate estimate of the absorbed energy is necessary. Too little
energy will leave cancerous tissue intact, whereas too much energy will harm the surrounding,
healthy tissue unnecessarily. Cross sections vary as a result of the body composition—the
chance for particles to scatter in the lungs is smaller than in fat—and can be obtained via a
CT scan a priori.

If we are now interested in the energy doses D(V ) that describes the amount of energy absorbed
in voxel v ⊂ V , we can use the fact that Monte Carlo is a numerical integrator. A particle’s
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trajectory t, from birth at (xb,Ωb, Eb) to death at (xd,Ωd, Ed), is a random sample that might
increase the amount of absorbed energy in v (if the trajectory passes through v). Henceforth,
with dv(ti) denoting the amount of energy that the i-th particle with trajectory ti loses in v,
we approximate

D(v) ≈ DN(v) :=
1

N

N∑

i=1

dv(ti). (2.11)

The computational complexity lies in the computation of samples ti. A particle has to be traced
through the computational domain, path lengths and new directions need to be sampled at
every collision, and energy needs to be tallied. For complicated distributions, inverse sampling
(Section 2.1.1.1) might not be possible and samples need to be generated via rejection sampling
(Section 2.1.1.2), rendering the process significantly more expensive.

2.1.3. Advantages and disadvantages of the Monte Carlo method

Let us summarize the advantages and disadvantages of the Monte Carlo method as a way to
approximately solve the transport equation.

Advantages

The Monte Carlo method is embarrassingly parallel. Trajectories can be computed simulta-
neously and independently of another with marginal communication overhead, rendering the
method predestined for parallel computers.

Since ray-tracing is not limited to a voxel-based geometry, arbitrary complex geometries can
be represented exactly, albeit at increased computational cost.

Because the variance is an exact proxy for the expected error, Monte Carlo has a built-in error
estimator. This error estimator can be used to terminate the generation of new trajectories
once a prescribed accuracy is obtained.

The convergence order of Monte Carlo is N−1/2, regardless of the dimensionality of the problem.

Disadvantages

The convergence order of Monte Carlo is only N−1/2, regardless of the dimensionality of the
problem. Listed as an advantage in the case of many dimensions, convergence order 1/2 is slow
for a small to moderate number of dimensions.

Moreover, even though the order of the error is independent of the dimension, the error itself
is not. Due to subregions of the domain that particles are unlikely to reach, the variance of
the dose might be significant and is certainly not independent of the problem’s dimensionality
[95]. Almost always, variance reduction techniques need to be used to reduce the variance in
domains with strong material heterogeneities.

2.2. Discrete ordinates method

The discrete ordinates (SN) method is usually ascribed to Chandrasekhar [28] and work by
Wick [100], dating back to the mid 1940s. Carlson and Lee discussed numerical quadratures for
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the transport equation in 1961 [23]. Noteworthy, too, is Chandrasekhar’s 1969 book Radiative
Transfer [29]. In the preface of this book, he writes that the motivation and historic relevance
of radiative transfer stems from astrophysics and investigations performed by Rayleigh in 1871.
Nevertheless, his work impacts nuclear engineers and mathematicians as well. Convergence
properties (under mild assumptions) were derived by Madsen in 1971 [65] and Anselone and
Gibbs in 1974 [5].

At its core, the SN method restricts the movements of particles to a fixed set of directions.
The angular-dependent transport equation reduces to a set of angular-independent transport
equations, coupled via scattering. The left-hand side of each equation is a simple advection
equation that can be solved forward in time.

Ultimately, the spherical quadrature’s job is to make the approximation

∫

S2
ψ(t,x,Ω′) dΩ′ ≈

nq∑

q′=1

wq′ ψ(t,x,Ωq′) (2.12)

as accurate as possible. For example, using isotropic scattering, this is the scattering operator on
the transport equation’s right-hand side. Henceforth, we will first discuss spherical quadratures
before analyzing how the resulting system of coupled equations can be time-integrated.

2.2.1. Angular discretization

The fundamental idea of the SN method is to approximate a high-dimensional equation by a
lower-dimensional system of equations via discretization of the angular variable. This avoids
solving the full linear transport equation (1.13) that reads

∂tψ(t,x,Ω)+Ω · ∇xψ(t,x,Ω) + σaψ(t,x,Ω)

= σs

∫

S2
s(Ω ·Ω′) (ψ(t,x,Ω′)− ψ(t,x,Ω)) dΩ′ + q(t,x,Ω).

Since we are discussing a discretization in angle, the energy dependency is omitted. A spherical
quadrature consists of a finite set of ordinates {Ω1, . . . ,Ωnq} ⊂ S2 and quadrature weights
{w1, . . . , wnq}, such that (2.12) is as accurate as possible.

The discrete ordinates method demands (1.13) to be satisfied only at the set of ordinates
{Ω1, . . . ,Ωnq} and deploys (2.12) to circumvent the spherical integral on the right-hand side.
The SN approximation to the linear transport equation is then

∂tψq(t,x)+Ωq · ∇xψq(t,x) + σaψq(t,x)

= σs

nq∑

q′=1

wq′s(Ωq ·Ωq′) (ψq′(t,x)− ψq(t,x)) + q(t,x,Ωq),
(2.13)

for q = 1, . . . , nq and with ψq(t,x) := ψ(t,x,Ωq). The left-hand side of (2.13) is a set of nq
linear advection equations that could be solved independently if it were not for the right-hand
side. The coupling is a result of the discretized scattering operator. We can rewrite (2.13) more
compactly as

Lψ(t,x) + σaψ(t,x) = σs(S
+ − S−)ψ(t,x) + q(t,x), (2.14)
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with ψ(t,x) = (ψ1(t,x), . . . , ψnq(t,x))T , the linear transport operator L : Rnq → Rnq that
satisfies Lq,q′ = δq,q′ (∂t + Ωq · ∇x), and the linear in- and out-scattering operators S+ : Rnq →
Rnq satisfying S+

q,q′ = wq′ s(Ωq ·Ωq′) and S− : Rnq → Rnq with S−q,q′ = δq,q′
∑nq

p=1 wps(Ωq ·Ωp),
respectively. The source q(t,x) is defined analogously to the angular flux vector ψ(t,x). Since
the spherical quadrature does not necessarily guarantee

∑nq
q′=1wq′s(Ωq ·Ωq′) = 1 (which is the

case for the exact spherical integration), we can move out-scattering to the left-hand side before
applying the SN discretization to obtain

Lψ(t,x) + σtψ(t,x) = σsS
+ψ(t,x) + q(t,x). (2.15)

Recalling (1.18), in the case of the Henyey-Greenstein scattering kernel, we can expand sg in
terms of spherical harmonics as

sg(Ω
′ ·Ω) =

1− g2

4π (1− 2gΩ′ ·Ω + g2)3/2
=
∞∑

n=0

gn
n∑

m=−n

Y m
n (Ω)Y m

n (Ω′).

Truncating the first sum at N , we get an approximation to the Henyey-Greenstein scattering
kernel with a finite number of expansion coefficients

sg(Ω
′ ·Ω) ≈ sNg (Ω′ ·Ω) :=

N∑

n=0

gn
n∑

m=−n

Y m
n (Ω)Y m

n (Ω′). (2.16)

For a fixed value of N , this approximation is more accurate when |g| is close to zero (scattering
is almost isotropic) and less accurate when |g| is close to one (scattering is peaked forward or
backward). If we substitute the approximation (2.16) into (2.15), the in-scattering matrix S+

has entries

S+
q,q′ = wq′

N∑

n=0

gn
n∑

m=−n

Y m
n (Ωq)Y m

n (Ωq′). (2.17)

Define the matrices

O ∈ Rnq×N2

, Oq,idx(n,m) = Y m
n (Ωq), (2.18a)

Σ ∈ RN2×N2

, Σidx(n,m),idx(n,m) = gn, (2.18b)

M ∈ RN2×nq , Midx(n,m),q′ = Y m
n (Ωq′), (2.18c)

with idx(n,m) = n · (N + 1) + m + 1, 0 ≤ n ≤ N , and −n ≤ m ≤ n. Then the approximated
in-scattering matrix S+ with entries given by (2.17) can be decomposed into S+ = OΣM .

We will discuss two methods to solve the coupled system of equations in Sections 2.2.4 and
2.2.5. Additionally, we will elaborate how the decomposition S+ = OΣM can be used to speed
up the computation. The choice of the quadrature is crucial for the SN method to work and
will be discussed in the next section.

Remark. The truncation order N has to be high when scattering is highly peaked to have an
accurate approximation. Thus, the decomposition is usually only used when the scattering is
close to isotropic, since then the expansion coefficients gn decay sufficiently fast.

Remark. The expansion S+ = OΣM can similarly be formulated for different choices of
the scattering kernel s. However, in the case of the Henyey-Greenstein phase function, the
decomposition is easy to derive analytically. This is one of the arguments for choosing the
Henyey-Greenstein phase function to model scattering.
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Weight function Interval Orthogonal polynomials

w(x) = 1 [−1, 1] Legendre

w(x) = 1/
√

1− x2 (−1, 1) Chebyshev (1st kind)

w(x) =
√

1− x2 [−1, 1] Chebyshev (2nd kind)

w(x) = e−x [0,∞) Laguerre

w(x) = e−x
2

(−∞,∞) Hermite

Table 2.1.: Table of weight functions and corresponding orthogonal polynomials.

2.2.2. Quadrature rules in one dimension

Because several quadrature rules are based upon one-dimensional quadrature rules, we will start
by summarizing some of the classical results regarding numerical integration in one spatial di-
mension before continuing with spherical integration. Additionally, one-dimensional quadrature
rules are necessary for applying the SN method to the transport equation in slab geometry.

In general, one-dimensional quadratures try to approximate the bounded integral
∫ b

a

f(x)w(x) dx, (2.19)

using a sum of nq finite terms via
nq∑

q=1

wqf(xq). (2.20)

To do this as accurately as possible, both the quadrature points and the quadrature weights
need to be chosen carefully. While it is obvious that a quadrature with nq quadrature points
can integrate (2.19) for f being a polynomial up to degree nq − 1, Gaussian quadratures are
special in the sense that they correctly integrate polynomials up to degree 2nq − 1. Gaussian
quadratures use orthogonal polynomials that, for a given weight function w, are defined by the
relation

〈Pi, Pj〉w :=

∫ b

a

Pi(x)Pj(x)w(x) dx = δi,j. (2.21)

For different weight functions w, some orthogonal polynomials are given in Table 2.1.

Definition 2.2.1 (Gaussian quadratures). A Gaussian quadrature is a quadrature rule that ap-
proximates the integral

∫ b
a
f(x)w(x) dx by the finite sum

∑nq
q=1 wqf(xq). The quadrature points

x1, . . . , xnq are the roots of the nq-th orthogonal polynomial Pnq , defined via (2.21). The corre-
sponding quadrature weights are defined by

wq =
1

F ′(xq)

∫ b

a

F (x)w(x)

x− xq
dx, (2.22)

with

F (x) =

nq∏

q=1

(x− xq). (2.23)
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Theorem 2.2.1 (Optimality of Gaussian quadratures). A Gaussian quadrature is optimal in
the sense that it approximates

∫ b
a
π(x)w(x) dx for polynomials π(x) up to including degree 2nq−1

(but generally not higher) exactly, using only nq quadrature points and nq quadrature weights.

Proof. See, e.g., Chandrasekhar [29].

Remark. Although Gaussian quadratures are optimal, other quadratures might be superior in
certain applications [94].

2.2.3. Spherical quadrature rules

All quadrature sets try to achieve (2.12) sufficiently well. However, not all of them are neces-
sarily suitable for the SN method. Several properties are desirable:

1. In the limit of nq →∞, (2.12) should become an equality.

2. Quadrature weights and nodes should be easily computable; even up to a high number.

3. Quadrature points should be spaced equidistantly on the sphere for the method to be
invariant under rotation. (At least for 90° rotations around the x-, y-, and z-axis this is
often a desirable property.)

4. Quadrature weights should have a small variance. This is a result of the quadrature points
being spaced equidistantly.

5. It is often demanded that the quadrature correctly integrates spherical harmonics or
Legendre polynomials up to a certain degree. This potentially contradicts the third point.
For example, we can use specific knowledge about the first N spherical harmonics that we
want to integrate correctly to intelligently place quadrature points, sacrificing rotational
invariance.

6. The quadrature should allow for (possibly adaptive) refinement strategies.

7. Quadrature weights should be positive. This might be in conflict with property five, but
is desirable to ensure positivity of the SN method.

The first two properties are self-evident. The third property can be explained when considering,
to name only a simple example, an anisotropic, highly forward-peaked source in an almost
void domain. In this advective setting, particles will predominantly move along straight lines
in accordance with the source. If, however, the dominant direction is unknown a priori, no
direction should be preferred by the quadrature set. The best (and sometimes only) guess is
to space quadrature points equidistantly. Point four relates to the previous point since a lack
of preference in direction immediately dictates a lack of preference in the weight associated to
that direction. The fifth point is closely related to (2.17). Finally, (adaptive) refinement in the
angular discretization allows to leverage multi-level strategies or to dynamically increase the
angular accuracy in regions of interest [90, 31].

Next, we are going to provide examples of common spherical quadrature sets and investigate
both their theoretical and practical properties.
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Figure 2.3.: For a fixed quadrature order N , the level-symmetric quadrature computes the
integral exactly (up to machine precision) if i+ k ≤ N .

Example 2.2.1 (Level-symmetric quadrature). The level-symmetric quadrature set dates back
to the early and mid 1960s [23, 60, 24]. It is a spherical quadrature set that is invariant under 90°
rotations around the x-, y-, and z-axis3. For a fixed, even number N , we pick N/2 points along
the x-axis x1, . . . , xN/2. These points are replicated along the other two axes, i.e., xi = yi = zi
for i = 1, . . . , N/2. The set of quadrature points is then {(xi, yj, zk)T | i+ j + k = N/2 + 2}. If
p1 := (xi, yj, zk)

T ∈ S2 is a point of the level-symmetric quadrature, then for p2 := (xi, yj+1, zk′)
T

to be a point of the level-symmetric quadrature as well, we have to require k′ = k − 1 due to
symmetry. From ||p1||2 = ||p2||2 = 1 follows

y2
j+1 − y2

j = z2
k+1 − z2

k (2.24a)
⇒x2

j+1 − x2
j = x2

k+1 − x2
k, (2.24b)

for all feasible values of j and k, implying x2
j+1 = x2

j +C for j = 1, ..., N/2− 1. The variable C
is determined by enforcing that x2

1 +y2
1 +z2

N/2 = 1 which follows from the fact that (x1, y1, zN/2)
is part of the quadrature set. Lastly, we choose the quadrature weights in such a way that they
correctly integrate the Legendre polynomials in each of the variables [64]. Following through
with this requirement, individual quadrature weights turn negative for N ≥ 22. Figures 2.3
and 2.4 demonstrate that

∫ π
0

∫ 2π

0
Y i
j (θ, φ)Y k

l (θ, φ) sin(φ) dθ dφ = δi=kδj=l is integrated correctly
(with machine precision) up to a certain degree.

Example 2.2.2 (Tensorized Gauss-Legendre). The tensorized (or product) Gauss-Legendre
quadrature stems from the idea of rewriting a spherical integral in spherical coordinates, i.e.,

∫

S2
f(Ω) dΩ =

∫ 2π

0

∫ π

0

f̂(θ, φ) sin(θ) dθ dφ. (2.25)

Abusing notation, we drop the superscript hat in the integrand from now onward. The integral
can then be approximated via

Qnq [f ] :=
π

nq

2nq∑

j=1

nq/2∑

i=1

wif(θi, φj), (2.26)

3This property is common and allows us to only provide quadrature points for one of the eight octants since
all other quadrature points and weights follow from symmetry.
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Figure 2.4.: The level-symmetric quadrature becomes more accurate the higher the number
of quadrature points gets. Eventually, the integral is computed exactly (up to
machine precision). The number of quadrature points grows quadratically with
the order.
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Figure 2.5.: For a fixed quadrature order N , the level-symmetric quadrature computes the
integral exactly (up to machine precision) if i+ k ≤ 2N − 1.

where the φj are spaced equidistantly along the unit circle, and the θi and wi are, respectively,
the quadrature points and weights of the one-dimensional Gauss-Legendre quadrature. The
degree of the aforementioned quadrature is 2nq − 1 [8], demonstrated in Figure 2.5. The
quadrature is tensorized in the sense that the spherical quadrature points are products of two
one-dimensional quadratures—and so are the quadrature weights. That the Gauss-Legendre
quadrature is not designed under consideration of uniform quadrature weights is exemplified in
Figure 2.6 where we see that the ratio between the maximal quadrature weight and the minimal
quadrature weight diverges. A more detailed discussion of the Gauss-Legendre quadrature can
be found in the work by Atkinson [8] and the literature therein.

Example 2.2.3 (Octahedron- and icosahedron-based quadratures with connectivity). In Cam-
minady et al. [22], we present highly uniform quadratures that are purely geometric and result
from a triangulation of an octahedron or, alternatively, an icosahedron—the Platonic solids
with eight or twenty triangular faces, respectively. Platonic solids are regular, convex polyhe-
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Figure 2.6.: The spread of the quadrature weights, i.e., the ratio between the maximal weight
and the minimal weight, diverges for the Gauss-Legendre quadrature. This also
holds true in the three-dimensional case, when using a tensorized quadrature that
is based on the Gauss-Legendre points and weights. Nevertheless, the Gauss-
Legendre quadrature’s capability to satisfy the fifth point on the list of desirable
properties makes it one of the most commonly used quadratures.

dra with identical faces, all having the same area. Projecting from these platonic solids onto the
unit sphere yields highly uniformly distributed points. This idea has been used within climate
forecasting [85] where a uniform discretization of the earth’s atmosphere is desirable.

The triangulation can be performed by linear interpolation (lerp) or spherical linear interpolation
(slerp), demonstrated for the lerp version in Fig. 2.7a for the octahedron, and in Fig. 2.7b for
the icosahedron. Linear interpolation places points with equidistant spacing in planar geome-
try, whereas spherical linear interpolation places the points equidistantly on the sphere. Given
two points p0, p1 ∈ R3, we perform spherical linear interpolation via

slerp(p0, p1, t) =
sin((1− t)Ω)

sin(Ω)
p0 +

sin(tΩ)

sin(Ω)
p1,

where cos(Ω) = p0 · p1. Consequently, we obtain a total of four quadrature sets: Ol
N , Os

N , IlN ,
and IsN . Here, O and I distinguish between the octahedron and the icosahedron version, and l
and s between the lerp and slerp version, respectively. Since the difference in the construction
between the octahedron and the icosahedron version is minor, we focus on the octahedron
version. Similar to the TN quadrature [93], the planar area is the equilateral triangle in three
dimension with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1), presented in Figure 2.8a. Refining the
triangulation in the planar setting and then projecting each vertex onto the sphere yields the
quadrature points for one of the eight octants, shown in Figure 2.8b.

The quadrature weights correspond to the area associated with each quadrature point. This
area is the hexagon that is defined by connecting the midpoints of the six triangles that every
vertex is associated with. As an example, the quadrature weight for the centered point in
Figure 2.8b is given by the area of the green hexagon on the unit sphere. In contrast, the TN

method takes the triangle midpoints as the quadrature points and the associated triangle area
as the quadrature weight. The slerp version of the quadrature can be constructed analogously
by performing the linear interpolation, i.e. the refinement of the triangulation, on the sphere
instead of in the planar geometry.
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(a) Octahedron within the unit sphere,
used to generate the Ol

N quadrature.
(b) Icosahedron within the unit sphere,

used to generate the IlN quadrature

Figure 2.7.: Generation of the quadrature sets. One face of the octahedron and icosahedron
have been further refined. Vertices will be projected onto the unit sphere and
taken as quadrature points.

To obtain the icosahedron versions of the quadratures, the planar geometry is replaced by one
face of an icosahedron.

For the aforementioned quadratures, properties of the quadrature weights are presented in
Figure 2.10. As expected, the IN versions have lower variance in the quadrature weights and
smaller ratios between the maximal and minimal quadrature weights. Additionally, the slerp
versions have smaller ratios and variance than the lerp versions. Combining these two effects,
the IlN quadrature behaves similar to the Os

N quadrature, whereas the Ol
N has the highest ratios

and variance and the IsN quadrature the lowest ratios and variance.

Finally, Figure 2.9 shows the distribution of quadrature weights on the unit sphere for all four
quadrature sets. Notably, the slerp versions are less symmetric than their lerp counterparts.
This is due to the fact that the slerp interpolation does not treat all three sides of an equilateral
triangle in the same way, resulting in a loss of perfect symmetry. Furthermore, since the
quadrature points at the vertices of the platonic solid only neighbor four (in the octahedron
case) or five (in the icosahedron case) triangles as opposed to six triangles for every other
quadrature point, their quadrature weight is significantly lower.
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x
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(a) For the lerp version, the triangulation
happens in planar geometry.

x

y

z

(b) Quadrature points result from projecting
the planar points onto the unit sphere.

Figure 2.8.: Triangulation for order = 4 with the corresponding quadrature points in the plane
and on the surface of the unit sphere, together with the connectivity and the
quadrature weight for the center point in green. Quadrature points and weights
for the seven other octants result from symmetry. Figure 2.8a demonstrates the
lerp procedure. For the slerp quadratures, the points in Figure 2.8b would have
to be spaced equally.

2.2.3.1. Comparison and source code

Various spherical quadratures are implemented in the Python package SphericalQuadpy, avail-
able at https://github.com/camminady/sphericalquadpy under the MIT license. The li-
brary provides quadrature points and weights for different orders and different quadrature
types. A comparison to other state of the art quadratures has been published [22], indicating
the octahedron and icosahedron quadratures’ high degree of uniformity (with respect to the dis-
tribution of quadrature points in the sphere). However, different from other quadratures, the
icosahedron and octahedron quadratures were not generated with the goal to integrate certain
types of functions exactly. The comparison includes quadratures that were generated with the
idea to ensure positivity of quadrature weights [93]. Other, more advanced ideas additionally
emphasize high order convergence when integrating spherical harmonics and are based on finite
elements [15] or discontinuous finite elements [49, 61].
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(a) Octahedron quadrature (lerp) with num-
ber of quadrature points nq = 326.
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(b) Octahedron quadrature (slerp) with num-
ber of quadrature points nq = 326.
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(c) Icosahedron quadrature (lerp) with num-
ber of quadrature points nq = 812.
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(d) Icosahedron quadrature (slerp) with num-
ber of quadrature points nq = 812.

Figure 2.9.: Octahedron and icosahedron quadrature. Due to the implementation of the spher-
ical linear interpolation, the slerp versions of the quadratures have less symmetry
than the lerp versions. They are, however, not as spread in their weight distri-
bution. The smallest quadrature weights are associated with the vertices of the
respective platonic solids. Since their quadrature weights are significantly lower,
they are excluded from the colorbar and highlighted in white to avoid distortion.
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Figure 2.10.: The spread of the quadrature weights, i.e., the ratio between the maximal weight
and the minimal weight, diverges for the octahedron and icosahedron quadra-
tures. Note the gap in the y-axis, inserted to make it possible to include all four
graphs.

2.2.4. Finite volume schemes

Spherical quadrature sets are used for the angular discretization of the transport equation. It
remains to discretize the space and time dimension. Let us recall the SN discretization (2.13),
given by

∂tψq(t,x)+Ωq · ∇xψq(t,x) + σaψq(t,x)

= σs

nq∑

q′=1

wq′s(Ωq ·Ωq′) (ψq′(t,x)− ψq(t,x)) + q(t,x,Ωq).

Besides the coupling term on the right-hand side, this is a simple linear advection equation
which we can solve using the finite volume method, explained in the following for order one.
For a Cartesian mesh, define Ci,j,k := [xi, xi+1] × [yj, yj+1] × [zk, zk+1] with volume |Ci,j,k| :=
∆xi ·∆yj ·∆zk, where ∆ξi := ξi+1− ξi for ξ ∈ {x, y, z}. The indices i, j, and k run from 1 to nx,
ny, and nz, respectively. Time is discretized equidistantly such that tn := ∆t ·n for some ∆t > 0
with n = 0, . . . , nt. Quintessentially, the finite volume method approximates the solution of the
transport equation by cell-averaged quantities for which an update rule is based on the fluxes
over the cell edges. These cell-averaged quantities are

ψnq;i,j,k ≈
1

|Ci,j,k|

∫

Ci,j,k

ψq(t
n,x) dx, (2.27)

and the update rule for Cartesian grids can be written as

ψn+1
q;i,j,k = ψnq;i,j,k −

∆t

|Ci,j,k|
(
fq;i+1/2,j,k − fq;i−1/2,j,k + fq;i,j+1/2,k − fq;i,j−1/2,k + fq;i,j,k+1/2 − fq;i,j,k−1/2

)

−∆t

(
σaψ

n
q;i,j,k − σs

nq∑

q′=1

wq′s(Ωq ·Ωq′)
(
ψnq′;i,j,k − ψnq;i,j,k

)
− qnq;i,j,k

)
,

(2.28)

where fq;i+1/2,j,k represents the flux between cells Ci,j,k and Ci+1,j,k, given a fixed direction Ωq.
All other terms in (2.28) can be interpreted analogously. If the outward facing normal vector
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for cell Ci,j,k at the edge touching cell Ci+1,j,k is denoted by n, the upwind flux formulation for
a fixed direction Ωq is given by

fq;i+1/2,j,k = ∆xi 〈n,Ωq〉 ·
{
ψnq;i,j,k if 〈n,Ωq〉 ≥ 0,

ψnq;i+1,j,k if 〈n,Ωq〉 < 0.
(2.29)

Since this method is explicit, the time steps can become so small that the associated computa-
tional costs render this time-stepping scheme inapplicable.

2.2.5. Source iteration and transport sweeps

Iterative methods for the numerical solution of transport processes often make use of source
iteration to solve the transport equation. To illustrate the core idea of source iteration and trans-
port sweeps, we restrict ourselves to mono-energetic, time-independent, and isotropic transport.
The equation we wish to solve—in angularly discretized form—is then

Ωq · ∇xψq(x) + σtψq(x) = σs

nq∑

q′=1

wq′
1

4π
ψq′(x) + q(x,Ωq), (2.30)

for all q = 1, ..., nq, abbreviated as

Lqψq = S+(ψ) + qq, (2.31)

with the streaming operator Lq = Ωq · ∇x + σt, in-scattering S+(ψ) = σs
∑nq

q′=1wq′
1

4π
ψq′(x),

and source qq = q(x,Ωq). We may also write Lψ = S+(ψ) + q to group the nq equations of
type (2.31) together. Source iteration then iterates on

Lψ(l+1) = S+(ψ(l)) + q, l ≥ 0, (2.32)

with some initial ψ(0). This fixed-point iteration is repeated until the solution is approximated
reasonably well, i.e., ||ψ(l) − ψexact|| ≤ ε/(1 − C) for some norm || · ||, Lipschitz-constant
C, and prescribed tolerance ε. Physically, ψ(l) represents the contributions of particles that
have scattered at most l times, which consequently outlines the problem of source iteration
in regions of marginal absorption and high scattering: Convergence will be relatively slow. A
comprehensive overview of the possible acceleration strategies is summarized in the review paper
of Adams and Larsen [2]. However, instead of discussing ways to accelerate the convergence
of (2.31), we will discuss how to actually solve one iteration of (2.31). For a fixed l, (2.31)
becomes a system of nq equations with a given right-hand side, given by

Lqψ
(l+1)
q = S+(ψ(l)) + qq =: r(l)

q . (2.33)

It remains to show how to solve this equation, which can be rewritten for the two-dimensional
case as

Ωx∂xψ(x) + Ωy∂yψ(x) + σtψ(x) = r(x). (2.34)

We omitted the direction-index q because we assume fixed values for Ωx and Ωy and follow
the analysis from Lewis and Miller [64]. Introducing a triangulation of the spatial domain that
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n1 n2

n3

Ω

(a) Two inflow edges (green) and one outflow
edge (blue) since n1 · Ω < 0 and n3 · Ω < 0.

n1 n2

n3

Ω

(b) One inflow edge (green) and two outflow
edges (blue) since only n2 ·Ω < 0.

Figure 2.11.: Two possible situations for sweeping through a domain of triangles: There are
either two inflow edges (green) and one outflow edge (blue), or one inflow edge
and two outflow edges.

consists of triangular cells Ci with boundary ∂Ci and outward pointing normal vector n, we
can integrate (2.34) over Ci and use the divergence theorem to obtain the equality

∮

∂Ci

Ω · n(s)ψ(s) ds+ σt

∫

Ci

ψ(x) dx =

∫

Ci

r(x) dx. (2.35)

Acknowledging that the normal vectors are constant along the three edges and using cell-, as
well as boundary-averaged quantities, we can rewrite the above equation as

3∑

j=1

Ω · nj
|Ci,j|
|Ci|

ψi,nj + σtψi = ri, (2.36)

where nj are the three normal vectors of cell Ci with area |Ci|. The boundary-averaged fluxes
are given by

ψi,nj :=
1

|Ci,j|

∮

Ci,j

ψ(s) ds (2.37)

for each side of the triangle Ci,j with length |Ci,j|. Lastly, ψi and ri are the respective averaged
cell integrals. There has been no spatial approximation made so far. Thus, (2.36) is exact.
As discussed by Lewis and Miller [64] and visualized in Figure 2.12, two cases need to be
distinguished: There are either two inflow edges and one outflow edge, or one inflow edge two
outflow edges. We also assume the triangles to be equilateral (Ci,j = L) since we can simply
map the equilateral triangle to an arbitrary triangle via a linear transformation (and vice versa).
In Figure 2.12a, the ansatz ψi = 1

3

∑3
j=1 ψi,nj then allows to uniquely solve (2.36) for the only

unknown ψi via elimination of ψi,n2 since values for ψi,n1 and ψi,n3 are known from the cells
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ψi,n1

ψ̃i,n3

ψ̃i,n1

ψi,n3Ω

(a) Values at the two green edges are known
and we wish to solve for values at the blue
vertices.

ψi,n1

ψ̃i,n3

ψ̃i,n1

ψi,n3Ω

(b) Values at the two green vertices are known
and we wish to solve for values at the blue
edges.

Figure 2.12.: We augment the situation by one additional variable. For triangles with two
inflow edges, we solve for flux values at the two outflow vertices. These two
outflow vertices are inflow vertices for the adjacent triangle. Known variables
are green, unknown variables blue.

that proceed cell i in the sweeping order. This is not possible for the second scenario, where,
as shown in Figure 2.12b, only ψi,n2 is known and the system is therefore underdetermined.

Counterintuitive at first, we can overcome this problem when augmenting the situation by an
additional variable, illustrated in Figure 2.11. We again distinguish two different situations. In
Figure 2.11a, two edges are inflow edges and we know the respective averaged flux values. In
this situation, the two unknowns are the flux values at the two vertices of the outflow edge,
which are taken as known inputs for the situation in Figure 2.11b. This situation’s unknowns
are the averaged flux values along the two outflow edges. Due to the way that the triangles are
connected, the two known variables are always given from a proceeding triangle.

Since we have an additional variable, we also need an additional equation. If we assume the
flux to be linear in a given triangle, we can write the averaged fluxes as

ψi,n1 =
1

2

(
ψ̃i,n2 + ψ̃i,n3

)
, (2.38a)

ψi,n2 =
1

2

(
ψ̃i,n1 + ψ̃i,n3

)
, (2.38b)

ψi,n3 =
1

2

(
ψ̃i,n1 + ψ̃i,n2

)
, (2.38c)

where the flux at the vertex opposite of edge j is denoted by ψ̃i,nj . Together with
ψi = 1

3

∑3
j=1 ψi,nj , fluxes along edges and at vertices relate to the cell average via

2ψi,nj = 3ψi − ψ̃i,nj . (2.39)
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Finally, we are able to write out the update rule for both cases. For two inflow edges and one
outflow edge we can solve (2.36) for ψn via elimination of ψi,n2 and obtain

ψi =
1

3w2 + σt
(ψi,n1(w2 − w1) + ψi,n3(w2 − w3) + ri) , (2.40)

where wj := Ω ·nj |Ci,j ||Ci| . The fluxes at the two outflow vertices ψi,n1 and ψi,n3 are then computed
by means of (2.39). Similarly, for the case of two outflow edges and one inflow edge we substitute
ψi,n1 = 3

2
ψi − 1

2
ψ̃i,n1 and ψi,n3 = 3

2
ψi − 1

2
ψ̃i,n3 in (2.40) and rearrange terms to get

ψi =
1

3(w1 + w3) + 2σt

(
ψ̃i,n1(w1 − w2) + ψ̃i,n1(w3 − w2) + 2ri

)
. (2.41)

Fluxes of outflow edges can again be computed by means of (2.39).

So far we have implicitly assumed that we can iterate through the spatial domain in a way that
obeys the dependency between cells. Phrased more precisely: If two connected cells Ci and Cj
share edge ei,j, and ei,j is an outflow edge for Ci and an inflow edge for Cj, we have to perform
computations in Ci prior to computations in Cj. It remains to prove that this ordering does
indeed exist for a regular, triangular mesh. We use the following theorem and two definitions
from graph theory.

Definition 2.2.2 (Topological sorting). A topological sorting of a directed graph G = (V,E) is a
linear ordering of vertices where Vi precedes Vj whenever there exists a directed edge (Vi, Vj) ∈ E.

Definition 2.2.3 (Directed acyclic graph). A graph G = (V,E) is called a directed acyclic
graph (DAG), if there exists no sequence of vertices V1, V2, ..., VN , V1 where all two consecutive
vertices Vi and Vi+1 are connected by a directed edge (Vi, Vi+1) ∈ E.

Theorem 2.2.2 (Topological sorting for DAGs). Every directed acyclic graph has at least one
topological sorting.

Proof. See the algorithm by Kahn [52] that creates a topological sorting with an asymptotic
runtime in O(|V |+ |E|).

Sweeping is therefore possible, if—given a fixed direction Ω—the induced dependency graph
G = (V,E) is acyclic.

Theorem 2.2.3 (Sweeping is possible for a triangular mesh). Consider a domain that is dis-
cretized by a set of cells {Ci}i=1,...,I where each cell Ci is a triangle and we do not allow for
hanging nodes, exemplified in Figure 2.13a. Furthermore, we have a fixed direction Ω that
prescribes the flow of information. Under these conditions, sweeping is possible.
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(a) A computational domain, subdivided into
spatial cells.
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(b) Given a fixed direction Ω, we can trans-
late the spatial domain into a graph.

Figure 2.13.: For a given spatial discretization, a direction Ω induces a directed dependency
graph G = (V,E). A directed edge ei,j ∈ E from Vi to Vj implies that for
computations to start in cell Cj, we must have finished computations in cell Ci.

Proof. We know that sweeping is possible, if and only if the induced dependency graph G =
(V,E) is acyclic. Now assume the dependency graph is not acyclic and provoke a contradiction.

If the dependency graph G is not acyclic, there exists an ordered sequence of cells
{Ci1 , Ci2 , . . . , CiM , Ci1}, such that two consecutive cells share an edge eij ,ij+1

and nij · Ω >
0,∀j = 1, . . . ,M . Without loss of generality, let ij = j and assume that we pass through the
cells in a counterclockwise manner as shown in Figure 2.14b for the spatial domain of Figure
2.14a.

Now label the angles between ni and ni+1 by αi, shown in Figure 2.15a. A counterclockwise
turn corresponds to αi > 0 and a clockwise turn to αi < 0. We know that −π < αi < π, because
we consider regular triangles. Since we perform a full counterclockwise turn,

∑M
i=1 αi = 2π.

Denote the angle between n1 and Ω⊥ by θ as sketched in Figure 2.15b, with 0 < θ < π and Ω⊥

the vector normal to Ω. Let Rαi be the rotation matrix that encodes rotating with magnitude
αi around the z-axis. Then

ni+1 = Rαini =
i∏

k=1

Rαkn1 = R∑i
k=1 αk

n1.

If we turn n1 (counterclockwise) by more than θ but less than θ+π, then n1 ·Ω < 0. However,
there exist i∗ such that

∑i∗−1
k=1 αk ≤ θ, but θ <

∑i∗

k=1 αk < θ + π < 2π, as −π < αi∗ < π.
Then ni∗+1 is n1 turned (counterclockwise) by more than θ, but less than θ + π. Therefore
ni∗+1 ·Ω < 0 which contradicts the assumption and finishes the proof. This proof is available
as a preprint [19].
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2. Numerical solution methods

(a) A spatial domain that is discretized by tri-
angles.

12
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6 7
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(b) A possible sequence of cells that form a
circle.

Figure 2.14.: For sweeping to work, there can not be a circular dependency in the mesh.

αi

ni+1

ni

(a) Nomenclature for inflow and outflow
edges.

eM,1

Ω

n1n1

Ω⊥

θ

(b) The normal n1, with Ω and Ω⊥, as well
as the angle θ between n1 and Ω⊥.

Figure 2.15.: Sketches for the proof of Theorem 2.2.3.
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2.2. Discrete ordinates method

In general, allowing arbitrary convex quadrilaterals for the triangulation of a computational
domain does not imply the absence of circular dependencies. This is sketched in Figure 2.16.
Quadrilaterals can be arranged in a plane, perpendicular to the z-axis such that they form a
circular dependency for a direction of flow along the z-axis.

Ω

Figure 2.16.: Quadrilaterals can be arranged in a circle such that no topological ordering can
be obtained for Ω = (0, 0,−1)T .

2.2.5.1. Source iteration for time dependent problems

It is straightforward to include time in (2.30), resulting in

∂tψq(t,x) + Ωq · ∇xψq(t,x) + σtψq(t,x) = σs

nq∑

q′=1

wq′
1

4π
ψq′(t,x) + q(t,x,Ωq), (2.42)

or—when time is discretized implicitly—in

Ωq · ∇xψ
n+1
q (x) +

(
σt +

1

∆t

)
ψn+1
q (x) = σs

nq∑

q′=1

wq′
1

4π
ψn+1
q′ (x) + qn+1(x,Ωq) +

1

∆t
ψnq (x).

(2.43)

The superscript n + 1 denotes the unknown quantities evaluated at time tn+1 = (n + 1) · ∆t
and ψnq (x) is known from the previous time step. We can again abbreviate this formulation,
this time via

L̃qψ
n+1
q = S+(ψn+1) + qn+1

q , (2.44)

where L̃q := Ωq · ∇x +
(
σt + 1

∆t

)
and qn+1

q := qn+1(x,Ωq) + 1
∆t
ψnq (x). In-scattering is again

denoted by S+. This formulation is equivalent to (2.33) with different cross section and source.
We can therefore use source iteration and transport sweeps in the exact same manner, just
repeatedly to march forward in time. Source iteration at time step n + 1 can be initialized
with the angular flux of the previous step, i.e., ψn+1 (0) := ψn (l) where l denotes the number of
transport sweeps at time step n.

2.2.6. Advantages and disadvantages of the discrete ordinates method

We start by discussing the advantages of the SN method first, followed by its disadvantages.
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2. Numerical solution methods

Advantages

Unlike the Monte Carlo method, the discrete ordinates method is deterministic and does not
suffer from statistical noise and the slow 1/

√
N convergence rate.

The SN method also preserves positivity of the angular flux, which moment methods are gen-
erally not expected to do due to Gibbs-like oscillations. However, this can only be ensured for
positive quadrature weights and Cartesian meshes.

The fact that the choice of the underlying quadrature set is up to the user can be considered
a double-edged sword: Poor choices may reinforce numerical artifacts whereas apt, problem-
dependent choices can increase the solution quality without an increase in computational cost
or memory.

Adaptivity can be used in time and space (due to its relation to advection equations), as well as
in angle [90, 31]. For example, in regions with near-vacuum properties, i.e., absent scattering,
the set of ordinates can be aligned with the particles’ initial directions of travel.

While the Monte Carlo method is embarrassingly parallel, the discrete ordinates method is
harder to parallelize. However, parallelization in angle is relatively easy since, given a precom-
puted right-hand side, source iteration has no interdependence between the different directions.

Disadvantages

On the other hand, certain disadvantages prevail. Space, time, and angle need to be discretized4

in the discrete ordinates method, whereas all three variables are continuous in the Monte Carlo
method. Different from space and time discretization, the discretization of angle introduces an
error that is not blatantly obvious. So called ray effects [60] result from restricting transport to
a finite set of angular directions, illustrated in Figure 2.17 for the line-source test case. Here,
particles are emitted isotropically in the center of a domain at t = 0 and move away from the
origin as time progresses. We will discuss this test case more thoroughly later on and it will
serve as an important benchmark when analyzing modified SN methods. In a nutshell, this test
case examines whether or not a numerical method is able to reproduce a radially symmetric
solution where the scalar flux is a function of the distance to the origin only. Clearly, this is not
the case for the discrete ordinates method since density fluctuations are undeniable. Refining
the angular resolution does resolve these fluctuations at the cost of increased run time and
memory consumption. Two methods that mitigate ray effects without adding more directions,
called rSN and as-SN , will be discussed in Sections 3.2 and 3.3, respectively.

Three further problems stem from the usage of source iteration and transport sweeps as the
solution algorithm. Parallelizing transport sweeps by domain decomposition, difficult due to
the dependency between cells, is a topic of current research and becomes especially crucial
for highly performant codes on large-scale clusters. Furthermore, in addition to the cross
sections, the isotropy of the scattering kernel influences the convergence of source iteration. A
scattering kernel that models predominantly forward-peaked scattering requires fewer transport
sweeps than an isotropic scattering kernel. This is no surprise, however, since forward-peaked
scattering means that particle mostly advect through the spatial domain without change of
direction. Lastly, source iteration might be too slow for typical reactor physics problems and
acceleration strategies need to be used to overcome the slow convergence.

4Energy, too, is being discretized. We focus on mono-energetic transport throughout this thesis and therefore
omit the consequences of discretizing energy.
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(a) Reference solution for the scalar flux of the
line-source problem. The solution solely
depends upon the distance to the origin,
not the angle. The scalar flux is bounded
from above by (approximately) 0.4.
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(b) Solution for the scalar flux of the line-
source problem using the discrete ordi-
nates method. Symmetry is clearly bro-
ken. Violations of the upper bound are
masked in gray.

Figure 2.17.: Ray effects for the line-source problem occur due to the finite set of angular
directions.

2.3. Moment methods

The PN method is a Galerkin-type method that expands the angular dependency in the trans-
port equation in terms of spherical harmonics. The spherical harmonics are a complete set
of orthogonal functions on the unit sphere. There exist different definitions of the spherical
harmonics that vary in the respective normalization constants. One possible definition is

Y m
n (θ, φ) :=

√
2n+ 1

4π

(n−m)!

(n+m)!
eimθPm

n (cos(φ)) , (2.45)

with |m| ≤ n, the azimuthal angle θ ∈ [0, 2π), the polar angle φ ∈ [0, π], and Pm
n as the

associated Legendre functions. This choice ensures

〈Y m
n , Y

m′

n′ 〉S2 :=

∫ 2π

0

∫ π

0

Y m
n (θ, φ)Y m′

n′ (θ, φ) sin(φ) dφ dθ = δn,n′δm,m′ , (2.46)

i.e., orthonormality with respect to integration over the unit sphere. Since the azimuthal
angle θ and the polar angle φ uniquely define a point Ω on the unit sphere via the relation
Ω = (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ))T , we abbreviate Y m

n (θ, φ) = Y m
n (Ω). The real and

imaginary parts of the spherical harmonics up to m = 3 are visualized in Figure 2.18 and
Figure 2.19, respectively.

The spherical harmonics relate to the Legendre polynomials via the addition theorem. For
Ω,Ω′ ∈ S2 and l ∈ N≥0 the equality

Pn(Ω ·Ω′) =
4π

2n+ 1

∑

|m|≤n

Y m
n (Ω)Y m

n (Ω′) (2.47)

49



2. Numerical solution methods

allows to express the Legendre polynomials in form of the spherical harmonics, given an ar-
gument that is the dot product of two vectors living on the unit sphere. Since the scattering
kernel is frequently evaluated at the dot product between the in- and out-scattering directions,
the addition theorem can be applied to write

s(Ω ·Ω′) =
∞∑

n=0

sn
∑

|m|≤n

Y m
n (Ω)Y m

n (Ω′), (2.48)

with expansion coefficients sn.
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Figure 2.18.: Real parts of the spherical harmonics for different orders.
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Figure 2.19.: Imaginary parts of the spherical harmonics for different orders.
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2.3. Moment methods

2.3.1. PN method

Other terms of the transport equation can be expressed similarly to the scattering kernel in
(2.48), i.e.,

ψ(t,x,Ω) =
∞∑

n=0

2n+ 1

4π

∑

|m|≤n

ψmn (t,x)Y m
n (Ω) (2.49)

for the angular flux, and

q(t,x,Ω) =
∞∑

n=0

2n+ 1

4π

∑

|m|≤n

qmn (t,x)Y m
n (Ω) (2.50)

for the source term. Time- and space-dependent moments are denoted by ψmn (t,x). The
expression for in-scattering, using orthogonality and the addition theorem, reduces to

∫

S2
s(Ω ·Ω′)ψ(t,x,Ω′) dΩ′

=

∫

S2



∞∑

n=0

sn
∑

|m|≤n

Y m
n (Ω)Y m

n (Ω′)





∞∑

n=0

2n+ 1

4π

∑

|m|≤n

ψmn (t,x)Y m
n (Ω′)


 dΩ′

=
∞∑

n=0

sn
∑

|m|≤n

∞∑

n′=0

2n′ + 1

4π

∑

|m′|≤n′
Y m
n (Ω)ψm

′

n′ (t,x)

∫

S2
Y m
n (Ω′)Y m′

n′ (Ω′) dΩ′

=
∞∑

n=0

2n+ 1

4π

∑

|m|≤n

sn ψ
m
n (t,x)Y m

n (Ω).

(2.51)

Unsurprisingly, convolving scattering kernel and angular flux corresponds to multiplication of
the respective expansion coefficients in moment space. No approximations have been made up
until now. We define σt,n := σt − sn and rewrite the transport equation as

∞∑

n=0

∑

|m|≤n

2n+ 1

4π
Y m
n (Ω) [∂tψ

m
n (t,x) + Ω · ∇xψ

m
n (t,x) + σt,nψ

m
n (t,x)− qmn (t,x)] = 0. (2.52)

If we truncate the expansions (2.48), (2.49), and (2.50) at a finite value N , the equality in (2.52)
no longer holds true. However, equality is recovered when the residual is projected onto any basis
function of the ansatz space {∑N

n=0

∑
|m|≤n c

m
n Y

m
n (Ω) | cmn ∈ R for all feasible tuples (n,m)},

i.e.,

∂tψ
m′

n′ (t,x) +
∞∑

n=0

∑

|m|≤n

2n+ 1

2n′ + 1

〈
ΩY m

n , Y
m′

n′

〉
S2
· ∇xψ

m
n (t,x) + σt,nψ

m′

n′ (t,x)− qm′n′ (t,x) = 0,

(2.53)
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2. Numerical solution methods

for all 0 ≤ n′ ≤ N and |m′| ≤ n′. At first glance, the term 〈ΩY m
n , Y

m′

n′ 〉 looks troublesome as it
implies a potentially dense tensor. However, we can use the relation

2ΩY m
n =




−cm−1
n−1 dm−1

n+1 0 0 em+1
n−1 −fm+1

n+1

icm−1
n−1 −idm−1

n+1 0 0 iem+1
n−1 −ifm+1

n+1

0 0 2amn−1 2bmn+1 0 0







Y m−1
n−1

Y m−1
n+1

Y m
n−1

Y m
n+1

Y m+1
n−1

Y m+1
n+1




, (2.54)

which ultimately reduces (2.53) to the complex-valued PN equations

∂tψ(t,x) +
3∑

i=1

Ai (∇x)iψ(t,x) + Σtψ(t,x)− q(t,x) = 0, (2.55)

where the Ai are sparse matrices, dependent on the coefficients from (2.54). These coefficients
and more details on the real-valued version of (2.55) are provided in the appendix of Küpper’s
thesis [54]. The expansion coefficients of (2.49) are stored in vector format in ψ(t,x).

2.3.2. Advantages and disadvantages of moment methods

Again, we discuss advantages and disadvantages.

Advantages

For smooth solutions, moment methods produce accurate solutions, even for a small number
of expansion coefficients. Here, smoothness especially refers to the dependency on the angular
variable Ω, since this is the dependency that we approximate through the moment expansion.

Ray effects do not occur and moment methods yield symmetrical approximate solutions when
the true solution is symmetric.

Disadvantages

A major drawback of the PN method is its tendency to produce oscillatory solutions. In
regions of low densities, these oscillations may cause the density to become negative, sometimes
resulting in a breakdown of the solution algorithm. However, ways exist to circumvent or at
least mitigate these oscillations [69].

Other moment methods, like the minimal entropy (MN) method, make a different ansatz for
the representation of the solution in terms of its moments. At each time step, a constrained
optimization problem is solved to ensure that a certain entropy η is minimized [63, 3, 4].

If the solution depends strongly on Ω, i.e., it is highly anisotropic, more and more moments
are necessary to accurately approximate the angular flux. This is true for any Galerkin-type
method and relates to the slow decay of expansion coefficients in this case.
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3. Ray e�ects and their mitigation

It was not until the SN method was applicable in two and three spatial dimensions that the
problem of ray effects became fully eminent [59]. To this day, ray effects impede the quest
for accurate and reliable, yet efficient transport calculations. The SN method’s raison d’être—
restricting the propagation of the angular flux to a finite and therefore computationally manage-
able set of directions—inevitably destroys rotational invariance and causes oscillatory solution
approximations. If undetected, these oscillations can cause the neutron flux to be significantly
over- or underestimated; especially troublesome in source-detector problems with only little to
no scattering [60]. Increasing the number of directions tends to reduce the oscillations’ magni-
tude while simultaneously increasing their frequency, but, even for a large number of directions,
ray effects remain present [58].

More sophisticated strategies to mitigate ray effects make use of biased quadrature sets, which
reflect the importance of certain ordinates [1]. Tencer computed the angular flux for several,
differently oriented quadrature sets and ray effects are then mitigated by averaging over all
solutions [92]. Moreover, a method combining SN and PN to reduce ray effects has been
introduced by Lathrop [58], with further refinements developed subsequently [51, 84, 71]. The
idea is to use a mixture of collocation points as well as basis functions to represent the solution’s
angular dependency. Consequently, a system for the angular expansion coefficients with an
increased coupling of the individual equations needs to be solved. The accuracy of these methods
has been studied in a review paper [73] and it turns out that all methods still suffer from ray
effects for a line-source inside void.

3.1. Understanding ray e�ects

Before discussing the two novel ray effect mitigation techniques in Sections 3.2 and 3.3, it is
worth discussing the origin of ray effects more thoroughly. Assuming that we can solve both
equations exactly, the transport equation

∂tψ(t,x,Ω) + Ω · ∇xψ(t,x,Ω) + σaψ(t,x,Ω) = Q(t,x,Ω) (3.1)

and its SN counterpart

∂tψq(t,x) + Ωq · ∇xψq(t,x) + σaψq(t,x) = Q(t,x,Ωq) (3.2)

will return the same values for the angular flux along directions Ω = Ωq, i.e., ψ(t,x,Ωq) =
ψq(t,x). (Note the absence of scattering in the two equations above.)

Consider now the situation depicted in Figure 3.1. A circular, isotropic source (green) is placed
at (0, 0) with radius r = 0.4. The domain is purely absorbing with σa = 1 and σs = 0
throughout the full domain. The solution will be evaluated along the black line at x = 1 for
different directions Ω = (cos(α), sin(α))T , denoted by ψ(y, α). Additionally, we pay attention
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x = 1

Figure 3.1.: Infinite medium test case with a circular source of radius r = 0.4 at (0, 0). The
domain is purely absorbing with σa = 1. We evaluate the angular and scalar flux
along the black line at x = 1 and take a closer look at the three points (1, 0.3),
(1, 0.15), and (1, 0) in orange, purple, and blue, respectively. Scene drawn to
scale.

to the angular fluxes at the points (1, 0.3), (1, 0.15), and (1, 0). Figures 3.2 and 3.3 show both
the angular and scalar flux along the line and the three points, evaluated with nq = 11 and
nq = 21 ordinates for the half-space α ∈ [−π/2, π/2]. Values for the angular flux are exact (up
to machine precision). The scalar flux, however, oscillates significantly despite the high number
of ordinates and the rather large spatial extend of the isotropic source.
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Figure 3.2.: Angular and scalar flux with nq = 11 for the test case presented in Figure 3.1.
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Figure 3.3.: Angular and scalar flux with nq = 21 for the test case presented in Figure 3.1.
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z

x

y

Figure 3.4.: For the line-source test case, particles are released isotropically at t = 0 along
every point on the z-axis (depicted here for a finite number of points).

The rightmost column in Figures 3.2 and 3.3 then spotlights the origin of ray effects in this
experiment: Though isotropic at the source, the angular flux is highly anisotropic at the mea-
surement points. As a consequence, (i) the number of ordinates with non-zero angular flux
that contribute to the scalar flux is small, and (ii) this number oscillates as we move along the
black line. In Figure 3.2, for example, the number of ordinates with non-zero flux for y = 0
and y = 0.3 is three, whereas only two ordinates are non-zero for the intermediate point at
y = 0.15, resulting in significant differences in the scalar flux as shown in the middle column.

A similar observation can be made for the line-source test case [39], which asks for the solution
to the three-dimensional, time-dependent transport equation

∂tψ(t,x,Ω) + Ω · ∇xψ(t,x,Ω) + ψ(t,x,Ω) =
1

4π

∫

S2
ψ(t,x,Ω′) dΩ′, (3.3)

subject to initial condition

ψ(0,x,Ω) = ψ0(x) := δ(x, y). (3.4)

The setup is depicted in Figure 3.4, with the isotropic initial condition illustrated as balls
centered around the z-axis. Due to the nature of the initial condition, the three-dimensional
problem yields the same results for every value of z, effectively rendering it a two-dimensional
simulation which allows to redefine x = (x, y)T . An exact (up to evaluation of a double
integral) solution for the scalar flux φ(t, r) = φ(t, ||x||2) exists and was already visualized in
the last section in Figure 2.17a for t = 1. Computed beforehand, the scalar flux can replace
the integral on the right-hand side of (3.3), yielding

∂tψ(t,x,Ω) + Ω · ∇xψ(t,x,Ω) + ψ(t,x,Ω) = Q(t,x) :=
1

4π
φ (t, ||x||2) . (3.5)

Similar to the previous experiment, we obtain the exact angular flux via integration, i.e.,

ψ(t,x,Ω) = e−t ψ0(x− tΩ) +

∫ t

0

e−(t−τ) Q(t− τ, ||x− τΩ||2) dτ. (3.6)

It is infeasible to integrate the Dirac-pulse numerically. Instead, we replace ψ0(x) with ψG0 (x),
a narrow Gaussian that is centered at the origin with variance σ2 = 0.032, similar to the

57



3. Ray effects and their mitigation

simulations by McClarren and Hauck [69]. Thus,

ψG(t,x,Ω) = e−t ψG0 (x− tΩ) +

∫ t

0

e−(t−τ) Q(t− τ, ||x− τΩ||2) dτ (3.7)

approximates ψ(t,x,Ω), which seems reasonable since the numerical SN simulations for the
line-source problem resolve the initial condition in the same manner. The two terms of the
right-hand side of (3.7) are abbreviated as A(t,x,Ω) and B(t,x,Ω), denoting the contribution
of the initial condition and the source term, respectively. For a fixed set of quadrature points
and weights, we compute

φA(t,x) =

nq∑

q′=1

wq′A(t,x,Ωq′), (3.8a)

φB(t,x) =

nq∑

q′=1

wq′B(t,x,Ωq′), (3.8b)

φG(t,x) = φA(t,x) + φB(t,x). (3.8c)

Computing φA(t,x) is trivial; computing φB(t,x) is not. It involves numerical integration of
the source term, which itself requires the numerical evaluation of a double integral. Moreover,
this process has to be repeated for nx ·ny spatial cells and nq ordinates, restricting the accuracy
with which the integral in (3.7) can be evaluated. The component of the scalar flux that is due
to the initial condition (φA) is visualized in Figure 3.5a. For an, admittedly low, accuracy of
εabs = 10−2, we see the contribution of the source (φB) in Figure 3.5b. Both images are created
using nx = ny = 200 cells in space (though the four-fold symmetry is exploited) and nq = 36
ordinates. The ordinates result from a tensorized quadrature that discretizes the azimuthal
angle equidistantly (2nq points) and uses Gauss-Legendre roots for the polar direction (nq/2
points). Numerical integrals are computed with the Cubature.jl1 package that implements
“one- and multi-dimensional adaptive integration routines for the Julia language, including
support for vector-valued integrands and facilitation of parallel evaluation of integrands, based
on the Cubature Package by Steven G. Johnson.”

Adding both terms, we obtain the scalar flux φG(1,x) that uses the exact angular flux but
performs the spherical integration with 36 ordinates. The result is shown in Figure 3.6a,
together with the scalar flux for a full S6 computation that uses the exact same ordinates in
Figure 3.6b. The two results look fairly similar, both in a quantitative and qualitative way.
The only two visually noticeable differences are (i) a larger spike in the center of the domain
for the S6 computation and (ii) a concave curvature at the outermost region of the scalar flux
for the S6 computation as opposed to a convex curvature for φG(1,x).

These findings validate the conclusions that we drew in the first experiment: Since the angular
flux is exact (up to errors due to the numerical integration) the sole origin of ray effects in the
scalar flux is the inexact spherical integration. Ray effect mitigation techniques that reduce
oscillations in the scalar flux therefore inevitably have to do so by circumventing the error that
is due to the aggregation of the scalar flux from the angular flux. We have already seen that
various methods exist that do exactly this. In the following, two new ray effect mitigation
techniques—the rSN and as-SN method—are presented.

1Source code available at https://github.com/JuliaMath/Cubature.jl and authored by Steven G. Johnson.

58

https://github.com/JuliaMath/Cubature.jl


3.2. rSN method

−1.5 1.5x [cm]
−1.5

1.5
y
[c
m
]

0.0

0.2

0.4

φ(x, y)

(a) Scalar flux contribution φA(1,x) that is
due to the initial condition.
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Figure 3.5.: The two contributions that make up the scalar flux φG(1,x) for the line-source test
case using the exact (up to numerical integration) angular flux and 36 ordinates.
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(a) Scalar flux φG(1,x), computed with 36 or-
dinates.
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(b) Scalar flux of an S6 computation that uses
the same 36 ordinates.

Figure 3.6.: Comparison between the scalar flux φG(1,x), based upon the exact angular flux,
and the scalar flux that is the result of an S6 computation.

3.2. rSN method

Section 3.2 is, at parts, based upon the results published in Camminady et al. [21]. Findings
therein have subsequently contributed to the thesis of Kusch [55], coauthor of Camminady et
al. [21].

The rotated SN (rSN) method finds a solution for the following dilemma: While we have seen
that an increase in the number of ordinates reduces the magnitude of oscillations, it inevitably
increases both runtime and memory consumption. To overcome this problem, the rSN method
only effectively increases the number of ordinates, while simultaneously adding angular diffusion
to smoothen the angular flux. It does so by rotating existing ordinates after each time step
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to obtain a new set of directions. An interpolation step then yields the angular flux at these
new ordinates. Both components—rotation and interpolation—can be implemented efficiently
(increasing the runtime by roughly five to ten percent), while the simulation results are on par
with SN simulations of much larger N . Quintessentially, the rotation-and-interpolation steps
add angular diffusion.

Recapitulating the SN method in Algorithm 3.1, the minimally invasive nature of the rSN
method becomes clear when put alongside in Algorithm 3.2—both written in pseudo-code with
differences highlighted in green. Arguably the most complex and time-consuming building
block within the SN method, the computation of the angular flux remains, unaltered. To
allow for a faster interpolation of the angular flux, we require specific quadrature points and
weights. Additionally, the rotation-and-interpolation step needs to be implemented. We will
now discuss these modifications and analyze their effect on the SN method later on, together
with the discussion of numerical experiments.

Algorithm 3.1 The SN method.

1: function SN(∆t, tend, order, nx, ny , ψ0 ) δ
2: t← 0
3: nq ← order248 New
4: P ← QPoints(nq) ∈ R3×nq New
5: W ← QWeights(nq) ∈ Rnq

6: ψ ← ψ0 ∈ Rnq×nx×ny

7: while t < tend do
8: F ← ComputeFlux(ψ, P,W )
9: ψ ← ψ + ∆t · F
10: ψ,Q← RotateInterpolate(ψ,Q, δ · δt/nq)
11: ψ,Q← RotateInterpolate(ψ,Q, δ · δt/nq)
12: t← t+ ∆t

13: return ψ

Algorithm 3.2 The rSN method.

1: function rSN(∆t, tend, order, nx, ny, ψ0, δ )
2: t← 0
3: nq ← 4 · order2 − 8 · order + 6

4: P ← NewQPoints(nq) ∈ R3×nq

5: W ← NewQWeights(nq) ∈ Rnq

6: ψ ← ψ0 ∈ Rnq×nx×ny

7: while t < tend do
8: F ← ComputeFlux(ψ, P,W )
9: ψ ← ψ + ∆t · F
10: α← δ ·∆t/nq
11: ψ, P ← RotateInterpolate(ψ, P, α)
12: t← t+ ∆t

13: return ψ

The rSN method uses variants of the octahedron- or icosahedron-based quadrature that has
been introduced in Example 2.2.3. Quadrature points result from triangulating faces of an
octahedron or icosahedron and then projecting the vertices onto the unit sphere, depicted in
Figure 2.8 for one face of an octahedron. The triangulation induces a connectivity that ensures
six neighboring triangles and quadrature points (except for the poles, there the number is four)
for every quadrature point on the unit sphere.

If we now rotate a quadrature point Ωq ∈ S2 with the rotation matrix

Rn
α =




n2
xγ + cos(α) nxnyγ − nz sin(α) nxnzγ + ny sin(α)

nynxγ + nz sin(α) n2
yγ + cos(α) nynzγ − nx sin(α)

nznxγ − ny sin(α) nznyγ + nx sin(α) n2
zγ + cos(α)


 (3.9)

around the axis n = (nx, ny, nz)
T ∈ S2 by the amount α and with γ := (1− cos(α)), we obtain

a new quadrature point Ω̃q ∈ S2. Regardless of the axis and the rotation magnitude, a rotated
quadrature point will fall into a triangle of the unrotated quadrature. Using the spherical
version of barycentric interpolation—explained for the planar case in Figure 3.7—we obtain the
angular flux at the rotated ordinates. The rotation-and-interpolation step is implemented in
Algorithm 3.3.
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Ωε

Figure 3.7.: Planar barycentric interpolation works by using the areas A0,A1, and A2 as in-
terpolation weights to obtain a new function value at P ′0 based upon the function
values at P0,P1, and P2. In this example, the point P ′0 is the result of shifting P0

by ε ·Ω. For the spherical case, the corresponding transformation would be the
application of the rotation matrix to point P0.

We make the following remarks: (i) Since the rotation magnitude is usually small, quadrature
points mostly fall into neighboring triangles, allowing to rapidly identify the interpolation nodes
for the rotated points. (ii) The procedure does not guarantee preservation of mass, which is
only achieved by scaling the angular flux for each spatial cell individually based upon the scalar
flux at the previous time step. (iii) We perform the same rotation in every spatial cell. Thus,
the interpolation nodes and weights can be precomputed before the actual interpolation is
executed in every spatial cell individually—potentially in parallel. (iv) Quadrature points keep
their quadrature weight. (v) Lastly, rotating by α = δ ·∆t/nq ensures that the user only needs
to choose the dimensionless quantity δ.

Before discussing the full transport test cases, we can see the diffusive effect that the rotation-
and-interpolation step has in a simple experiment. For forth-and-back rotations around a
random axis, and switching between δ and −δ in consecutive time steps, we have shown in
Camminady et al. [21] that we add a discrete second-order derivative in the azimuthal angle to
the right-hand side of the transport equation. Rotating by α = δ ·∆t/nq ensures a reasonable
limit: The added diffusion vanishes when the number of ordinates increases, and increasing
the number of spatial cells or time steps does not increase the amount of diffusion added to
the equation. The analysis becomes more complicated for the three-dimensional case. This is
due to several factors: (i) Not all triangles on the unit sphere have the same size. (ii) Though
quadrature points are being rotated (mostly) into neighboring triangles, finding out the exact
triangle is difficult analytically. (iii) Most importantly, we change the axis around which we
rotate after each time step randomly. Thus the process has a random nature and needs to be
interpreted from a statistical viewpoint as well. We have, however, observed that due to the
large number of time steps, simulation results look almost indistinguishable when being run
repeatedly. Figure 3.8 demonstrates the smearing out effect of an indicator function, applied to
the first octant of the quadrature set. Rotating forth and back repeatedly causes the imprint
of the indicator function to diffuse over the sphere.
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3. Ray effects and their mitigation

(a) Before rotating. (b) After 5 rotations. (c) After 10 rotations. (d) After 20 rotations.

Figure 3.8.: Each quadrature point is assigned a value of ψ = 1.0 if it is positioned in the first
octant and ψ = 0.0 otherwise. The associated area is colored accordingly. The
rotation and interpolation procedure around a random axis is then applied 5, 10,
and 20 times, respectively. In each time step, we rotate forth and back around
the same axis by the same magnitude to keep the orientation of the quadrature
points. The diffusive behavior is clearly visible.

Algorithm 3.3 The rotation-and-interpolation step.
1: function RotateInterpolate(ψ, P, α)
2: nq, nx, ny = size(ψ)
3: n = getRandomAxis() ∈ S2 The axis we are going to rotate around.
4: R = getRotationMatrix(n, α) ∈ R3 See (3.9).
5: P̂ = R · P ∈ R3×nq The rotated quadrature points.
6: W = zeros(nq, nq) ∈ Rnq×nq The matrix W will store interpolation weights.
7: ψ̂ = zeros(nq, nx, ny) ∈ Rnq×nx×ny The tensor ψ̂ will store the interpolated flux.
8:
9: for q = 1, · · · , nq do
10: p̂ = P̂ [:, q] Store in p̂ a quadrature point from the rotated quadrature.
11: i, j, k = interpolateFrom(P, p̂) Compute the three vertices of the triangle that
12: the rotated quadrature point p̂ falls into.
13: wi, wj, wk = interpolationWeights(P, p̂) The interpolation weights.
14: W [q, i] = wi, W [q, j] = wj, W [q, k] = wk Store the interpolation weights in W .
15: for i = 1, · · · , nx do
16: for j = 1, · · · , ny do
17: ψ̂[:, i, j] = W · ψ[:, i, j] Apply interpolation in each spatial cell.
18: ψ̂[:, i, j] = ψ̂[:, i, j]/sum(ψ̂[:, i, j]) · sum(ψ[:, i, j]) Preserve mass.
19: return ψ̂, P̂
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3.2. rSN method

3.2.1. rSN and the line-source test case

Since the line-source2 test case yields the same angular and scalar flux for every value z,
the problem can be evaluated in the x-y-plane, more precisely the domain [a, b] × [a, b] =
[−1.5 cm, 1.5 cm]× [−1.5 cm, 1.5 cm]. The domain is purely scattering with σa = 0 cm−1 and
σt = σs = 1 cm−1, and we evaluate the solution at a final time t = 1s. For the initial condition

ψ(0,x,Ω) =
1

4π
δ(x), (3.10)

there exists a semi-analytical solution [38]. Numerically, we resolve the initial condition as a
narrow Gaussian and offset everything from zero, i.e.,

ψ(0,x,Ω) = max
{

0.001,
1

4πσ2
exp

(
−||x||

2
2

4σ2

)}
, (3.11)

with σ2 = 0.032. We evaluate the scalar flux rather than the angular flux. Computed exactly, we
should see a radially symmetric solution with a wavefront propagating away from the domain’s
origin. Solutions are identical along cuts in the domain that pass through the origin. Moreover,
the solution is constant along circles around the domain’s origin.

Figures 3.9, 3.10, and 3.11 showcase the results. The quadrature set is the octahedron (lerp)
quadrature. Orders are taken as 4, 6, 8, or 10; resulting in 38, 102, 198, or 326 quadrature
points, respectively. The rotation magnitude δ varies between 0, 4, 8, and 10. Consequently,
rδSN denotes a solution that was computed with the discrete ordinates method of order N and
rotation magnitude δ. We used a second-order finite volume scheme with minmod-limiter to
evolve the angular flux in time. Throughout all simulations, we use a grid of 100× 100 spatial
cells and a CFL number of 0.95. The scalar flux is visualized at the final time t = 1s.

Figure 3.9 shows—in the eyeball norm—that ray effects can be mitigated in two ways; either by
an increase of quadrature points, or by an increase of the rotation magnitude. While an increase
in the number of quadrature points causes a proportional increase in both memory and runtime,
adding rotation increases the runtime by only 10%, regardless of the magnitude. We can also
identify pairs with similar ray effects. For example, the r0S10 method and the r4S8 method yield
similar results even though the number of quadrature points varies significantly. We can be more
precise with the help of Figures 3.10 and 3.11. Here we see the solution along cuts through the
domain and along concentric circles around the domain’s origin. Not only does the magnitude
of oscillations along cuts decrease when we add rotation, also the solutions for horizontal and
vertical cuts tend to converge to the solution of diagonal cuts. Present in all simulations with
rotation is the solution’s diffusive character: The reference solution has a sharp decrease in the
scalar flux at roughly x = 1, but the rδSN simulations tend to smear out that edge. Looking at
the r10S4 computation, the solution’s propagation speed has arguably decreased when compared
with the r0S4 result. This behavior is less dominant for larger numbers of quadrature points.
Looking at Figure 3.11, we see the scalar flux along concentric circles of radii 0.2, 0.6, 0.9, and
1.0 . Since the reference solution is radially symmetric, we expect a constant value along these
circles but see stark oscillations instead. Except for the r = 1.0 case, adding rotation shifts
the scalar flux closer to the reference solution’s scalar flux. For the r = 1.0 case, however, the
solution is underestimated due to the aforementioned smearing out.

2The name line-source test case is arguably suboptimal since we are dealing with an initial condition rather
than a source. We do, however, keep the name for historical reasons.
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Acknowledging that the r8S8 and r4S10 solutions are on par, the added rotation allows for
similar solutions with two thirds the number of quadrature points. This directly translates to
a reduction of both memory and runtime by a about 30%.

To demonstrate that the added rotation is useful in problems that are not radially symmetric—
the line-source test case is perhaps the most apt test case to investigate—we consider the lattice
test case next.

3.2.2. rSN and the lattice test case

Purpose of the lattice test case [16, 17] is to model—in a very simplified and idealized way—
radiation in a reactor. Depicted in Figure 3.12, the heterogeneous domain consists of a source
in the center (green), regions of pure scattering (white), and purely absorbing blocks (black).
Cross sections and source strength are given in Table 3.1. The angular flux is initially zero
as the source is the sole driver of the transport dynamics. Two versions of this test case
exist; time-dependent and steady-state. We consider the time-dependent case and evaluate the
solution after 3.2 seconds, chosen because particles are bound to reach the domain’s (vacuum)
boundary by that time. Because the scalar flux spans several orders of magnitude, we consider
the log10 scalar flux, visualized in Figure 3.13, together with three isolines for log10(φ) = −3,
log10(φ) = −4, and log10(φ) = −5. The rotation magnitude δ again varies in the different
columns as does the number of quadrature points in the different rows. Numerical parameters
match those of the line-source test case, only the spatial resolution is refined as the domain
[0 cm, 7 cm]2 is discretized with nx = ny = 280 cells.

Figure 3.12.: Layout of the lattice
test case.

Color σa in cm−1 σs in cm−1 Q in cm−2s−1

white 0 1 0
black 10 0 0
green 10 0 1

Table 3.1.: Cross sections and source for the
lattice test case.

Similar conclusions as in the line-source test case can be drawn for the lattice test case. Ray
effects, most visible along the isolines, are mitigated by an increased number of ordinates or
by added rotation. Ray effects are present, even for 326 quadrature points. Adding rotation
again yields results that are on par with those achieved by a significant increase in quadrature
points. Noticeable in the combination of high rotation and small number of ordinates is, again,
the reduced propagation speed (e.g., r10S4).

Together with Section 3.2.1, these two test cases show the benefits and versatility of the rSN
method. Adding little computational overhead, the rSN method allows for a 1.5× increase
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3.2. rSN method

in performance and memory efficiency. This holds true both for test cases that are radially
symmetric and those that are not. While the implementation of the rSN method is straight-
forward if an existing SN code is available, there is some caveat. Our implementation solves the
transport equation explicitly via means of a finite-volume scheme. It is, however, common to
use source iteration instead; especially in high-performant, many-cores implementations. Since
source iteration requires to march through the spatial cells in a specific order, and given that
this order depends on the ordinates, rotating quadrature points inevitably requires to recompute
this order after each rotation. This might be infeasible if the ordering is precomputed and serves
as a basis to load-balance the computational work by distribution spatial cells to different cores.

Another questions addresses the choice of the rotation magnitude: How to choose this parameter
if no parameter study can be performed due to the unavailability of a reference solution?
Two approaches might circumvent this problem. (i) We have not discussed the influence that
changing the spatial resolution has on the solution’s outcome. Since the amount by which we
execute the rotation scales with the spatial resolution, the effect of added rotation is mostly
independent of the number of spatial cells. A parameter study can therefore be performed
on a coarse spatial grid for the same problem and the optimal δ will be used for the fine
grid afterwards. (ii) We did observe that an optimal δ in the line-source test case was also a
reasonably good δ for the lattice test case. Thus, if possible, a simplified version of the problem
of interest can be used to perform a parameter study beforehand. The success of this approach
arguably depends on the similarity of the two problems.

Lastly, the influence of quadrature sets has been omitted from the discussion so far. Qualita-
tively, the results are similar, regardless of whether we choose the octahedron (lerp or slerp) or
icosahedron (lerp or slerp) quadrature. It is worth mentioning that the icosahedron quadrature
does not possess a 90° rotational symmetry, although the quadrature points are spaced more
evenly. We decided to use the octahedron (lerp) quadrature to exploit this symmetry, as it is
present in both test cases. It is important to note that we are not restricted to only these four
quadratures: Quadrature points from any quadrature set can be rotated around random axes.
The only fundamental requirement is an available interpolation routine. Here, the octahedron
and icosahedron quadratures benefit from the construction via triangulation in combination
with the barycentric interpolation. However, other ways to execute the interpolation steps are
possible. If the rSN is to preserve positivity of the angular flux, the interpolation routine has
to preserve positivity, too.
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r0S4, nq = 38 r4S4, nq = 38 r8S4, nq = 38 r10S4, nq = 38

r0S6, nq = 102 r4S6, nq = 102 r8S6, nq = 102 r10S6, nq = 102

r0S8, nq = 198 r4S8, nq = 198 r8S8, nq = 198 r10S8, nq = 198

r0S10, nq = 326 r4S10, nq = 326 r8S10, nq = 326 r10S10, nq = 326

Figure 3.9.: Scalar flux for the line-source test case at t = 1 second using the octahedron
(lerp) quadrature. The colorbar is omitted but identical to that in Figure 2.17a.
The spatial domain is [−1.5 cm, 1.5 cm]2 with nx = ny = 100. Rows vary in nq
and columns vary in δ, respectively.
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Figure 3.10.: Scalar flux for the line-source test case at t = 1 second using the octahedron
(lerp) quadrature. The solution is visualized along three cuts: Horizontally
(blue), vertically (purple), and diagonally (orange). The reference solution is
given in black. The spatial domain is [−1.5 cm, 1.5 cm]2 with nx = ny = 100.
Rows vary in nq and columns vary in δ, respectively. 67
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Figure 3.11.: Scalar flux for the line-source test case at t = 1 second using the octahedron
(lerp) quadrature. The solution is visualized along four concentric circles: r =
1.0 (blue), r = 0.9 (orange), r = 0.6 (purple), and r = 0.2 (green). The reference
solutions are given in black for all radii. The spatial domain is [−1.5 cm, 1.5 cm]2

with nx = ny = 100. Rows vary in nq and columns vary in δ, respectively.
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3.2. rSN method
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Figure 3.13.: Scalar flux (log10) for the lattice test case at t = 3.2 seconds using the octahedron
(lerp) quadrature. The spatial domain is [0 cm, 7 cm]2 with nx = ny = 280.
Rows vary in nq and columns vary in δ, respectively. Isolines are drawn to
highlight the values −5 (white), −4 (gray), and −3 (black). 69



3. Ray effects and their mitigation

3.2.3. rSN without change of ordinates
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(a) Scalar flux for the standard rSN method
with δ = 4.
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(b) Scalar flux for the rSN method with two
opposite rotations of δ = 2.

Figure 3.14.: Comparison of two ways to implement the rSN method.

The change of ordinates that results from the rotation step can be problematic in optimized
codes, but also for time-independent problems. Changing the ordinates during every transport
sweep potentially interferes with the method’s convergence. Additionally, to evaluate the dif-
ference of the solution before and after a transport sweep, an additional interpolation step is
necessary.

To overcome this problem, we alter the rSN method in the following way: Instead of perform-
ing one rotation and one interpolation between two transport sweeps (or at every time step),
we perform two rotation and interpolation steps. We rotate the quadrature points around a
random axis by δ/2; interpolate function values at the new quadrature points; rotate back by
−δ/2 around the same axis to obtain the exact same quadrature points as before; and we then
interpolate again, using the quadrature points and function values from the intermediate step.
As a result, transport sweeps (or time stepping) always happen with the exact same set of
quadrature points and weights. Nevertheless, we still add the same amount of angular diffu-
sion, at least qualitatively. This is depicted in Figures 3.14a and 3.14b for the scalar flux of
the line-source problem with the standard rSN method and the forth-and-back modification,
respectively.

3.3. as-SN method

Section 3.3 is, at parts, based upon the results in Frank et al. [37]. Findings therein have
subsequently contributed to the thesis of Kusch [55], coauthor of Frank et al. [37].

Section 3.1 demonstrates that ray effects are essentially due to the aggregation of the scalar
flux, i.e., the inability to compute the spherical integral reasonably well. Quintessentially,
the rSN method adds angular diffusion, facilitating to integrate the angular flux numerically.
Recomputing the sweeping order anew after each time step might ultimately be an unbearable
burden when it comes to the integration of the rSN method into existing SN codes; rendering
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3.3. as-SN method

the rSN difficult—if not impossible—to sell. Although this problem can seemingly be avoided
when rotating forth and back, this modification of rSN requires further research.

The artificial scattering SN (as-SN) method overcomes this hurdle while simultaneously miti-
gating ray effects equally well. At its core, the as-SN method adds artificial scattering to the
right-hand side of the transport equation in such a way that the following requirements are
satisfied: (i) In the limit of infinite ordinates, the added term should vanish. (ii) Artificial
scattering should be independent of the number of spatial cells and time steps. (iii) Despite
adding a nonphysical term to the right-hand side, the solution quality should increase due to the
mitigated ray effects. (iv) The ordinates remain unchanged throughout the simulation. Lastly,
(v) the effect of artificial scattering should be investigatable both numerically and theoretically.

Starting with the linear transport equation

∂tψ(t,x,Ω)+Ω · ∇xψ(t,x,Ω) + σtψ(t,x,Ω)

=σs

∫

S2
s(Ω ·Ω′)ψ(t,x,Ω′) dΩ′ + q(t,x,Ω),

(3.12)

we add artificial scattering to the right-hand side to obtain

∂tψ(t,x,Ω)+Ω · ∇xψ(t,x,Ω) + σtψ(t,x,Ω)

=σs

∫

S2
s(Ω ·Ω′)ψ(t,x,Ω′) dΩ′ + q(t,x,Ω)

+ σas

∫

S2
sε(Ω ·Ω′) (ψ(t,x,Ω′)− ψ(t,x,Ω)) dΩ′.

(3.13)

Choosing sε : [−1, 1]→ R as

sε(µ) =
2√

πεErf
(

2
ε

) exp

(
−(1− µ)2

ε2

)
(3.14)

complies with the five requirements that we imposed. The error function satisfies Erf(x) → 1
as x→∞. In general, sε can be any Dirac-like sequence, i.e.,

∫ 1

−1

sε(µ) dµ = 1 and
∫ 1

−1

sε(µ)f(µ) dµ→ f(0) (3.15)

for any sufficiently smooth function f and ε → 0. We paraphrase some of the remarks that
were initially made in Frank et al. [37]:

• In- and out-scattering cancel if ε → 0 and artificial scattering therefore vanishes. In
compliance with (i), we therefore set ε = β/nq and let the user choose β.

• Particles are neither gained nor lost because the scattering kernel sε is mass preserving.

• Similar to the PN−1-equivalent SN method [58, 86], we add a fictions term to the standard
transport equation. However, the kernel in the as-SN method is highly forward-peaked.

• The as-SN method can be solved efficiently, both via implicit or explicit schemes.

More information on the implicit implementation of the as-SN method can be found in the
original paper [37] and the thesis by Kusch [55]. Worth mentioning, however, is the fact that
the physical scattering term and the artificial scattering term are treated differently. When
physical scattering is mostly isotropic, an expansion in spherical harmonics is used. Contrary
to that, artificial scattering is highly forward-peaked and thus well-suited for sweeping methods.
If this distinction is omitted, implementing the as-SN method into existing SN codes is simply
realized by changing the scattering kernel.

71



3. Ray effects and their mitigation

3.3.1. Angular discretization

Our goal is to include artificial scattering in the SN equations in (2.13). By simply approxi-
mating the artificial scattering term in (3.13) with the chosen quadrature rule, we obtain the
as-SN equations

∂tψq(t,x) + Ωq · ∇xψq(t,x) + σt(x)ψq(t,x) + σas(x)ψq(t,x)

=σs(x)

nq∑

p=1

wp · cq · s(Ωq ·Ωp)ψp(t,x)

+ σas(x)

nq∑

p=1

wp · c(ε)
q · sε(Ωq ·Ωp)ψp(t,x)

+ qq(t,x).

(3.16)

Here, cq := 1/
∑

pwp · s(Ωq · Ωp) and c(ε)
q := 1/

∑
pwp · sε(Ωq · Ωp) are normalization factors.

While, on the continuous level, these factors are the same for every direction, we obtain a
dependency on the chosen ordinates due to the non-uniform discretization in angle. These
normalization factors are needed to obtain a simple expression for the out-scattering terms.
Moving these terms to the left-hand side of (3.16) stabilizes the source iteration that is used in
the implicit method.

It remains to pick an adequate quadrature set. When applying artificial scattering, the solution
smears out along the directions in the quadrature set. To ensure an evenly spread artificial
scattering effect, a quadrature with a highly uniform ordinate distribution should be chosen.
Here, we decide to use the icosahedron (slerp) quadrature due to the nearly uniform distribution
of quadrature points. Other quadratures were explored too, but the best results were achieved
with the icosahedron quadrature, used in all following computations.

3.3.2. Modified equation and asymptotic analysis

According to Pomraning [81], the Fokker-Planck operator can be a legitimate description of
highly peaked scattering. This is true if (i) the scattering kernel sε(µ) is a Dirac sequence,
and (ii) the transport coefficients pε,i :=

∫ +1

−1
(1− µ)isε(µ) dµ are of order O(εi). The resulting

modified equation then reads

∂tψ(t,x,Ω) + Ω · ∇xψ(t,x,Ω) + (σa + σs)ψ(t,x,Ω)

= σs · φ(t,x) + π · pε,1 · σas ·∆Ω ψ(t,x,Ω) +O
(
ε2
)
,

(3.17)

where ∆Ω is the Laplace operator in spherical coordinates. We have already shown (i). To
verify (ii), let y = (1− µ)/ε. Then

pε,i =

∫ 0

2/ε

(ε y)i
2√

π εErf
(

2
ε

)e−y2(−ε) dy (3.18a)

=
2√

π εErf
(

2
ε

) εi
∫ 2/ε

0

yie−y
2

dy (3.18b)

=
2√

π εErf
(

2
ε

) εi
[
Γ

(
1 + i

2

)
− Γ

(
1 + i

2
,

4

ε2

)]
(3.18c)

= O(εi), (3.18d)
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3.3. as-SN method

where Γ(·) and Γ(·, ·) denote the gamma function and the upper incomplete gamma function,
respectively. Since (ii) implies that pε,1 = O(ε), the operator vanishes if we let ε → 0. We set
ε = β/nq in the discrete case so that the angular diffusion vanishes if the number of ordinates
nq tends to infinity. This analysis shows that the product σas · β controls the strength of the
added angular diffusion.

The asymptotic analysis that follows is a one-to-one translation of the original analysis [81] and
substitutes the new scattering kernel. We omit the source term and shorten notation to get

∂tψ(t,x,Ω) + Ω · ∇ψ︸ ︷︷ ︸
=:Lψ

+σaψ =σs

∫

S2

1

4π
(ψ(Ω′)− ψ(Ω)) dΩ′

+ σas

∫

S2
sε(Ω ·Ω′) (ψ(Ω′)− ψ(Ω)) dΩ′,

(3.19)

which we further rewrite as

Lψ + (σa + σs)ψ = σsφ+ σas

∫

S2
sε(Ω ·Ω′) (ψ(Ω′)− ψ(Ω)) dΩ′. (3.20)

Next, define cε =
∫
S2 sε(Ω ·Ω′) dΩ′ to get

Lψ + (σa + σs + σascε)ψ = σsφ+ σas

∫

S2
sε(Ω ·Ω′)ψ(Ω′) dΩ′. (3.21)

Writing the scattering kernel in terms of Legendre polynomials with coefficients
sε,n = 2π

∫ 1

−1
sε(µ)Pn(µ)dµ , we obtain

Lψ + (σa + σs + σascε)ψ︸ ︷︷ ︸
=:LHS

= σsφ+ σas

∫

S2

∞∑

n=0

2n+ 1

4π
sε,nPn(Ω ·Ω′)ψ(Ω′) dΩ′. (3.22)

We can express Pn(Ω ·Ω′) and ψ(Ω) in terms of spherical harmonics as

Pn(Ω ·Ω′) =
n∑

l=−n

an,lYn,l(Ω)Yn,l(Ω′) (3.23)

and

ψ(Ω) =
∞∑

n=0

n∑

m=−n

2n+ 1

4π
an,mψn,mYn,m(Ω). (3.24)

Combining the last three equations yields

LHS = σsφ+ σas

∫

S2

∞∑

n=0

2n+ 1

4π
sε,n

n∑

l=−n

an,lYn,l(Ω)Yn,l(Ω′)
n∑

m=−n

2n+ 1

4π
an,mψn,mYn,m(Ω′) dΩ′.

(3.25)
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3. Ray effects and their mitigation

Using orthogonality
∫
S2 Yn,m(Ω)Yk,l(Ω) = 4π

2n+1
1

an,m
δnk,ml then yields

LHS = σsφ+ σas

∫

S2

∞∑

n=0

2n+ 1

2
sε,n

n∑

l=−n

an,lYn,l(Ω)Yn,l(Ω′)
n∑

m=−n

2n+ 1

4π
an,mψn,mYn,m(Ω′) dΩ′

(3.26a)

= σsφ+ σas

∞∑

n=0

2n+ 1

4π
sε,n

n∑

l=−n

an,lYn,l(Ω)
n∑

m=−n

2n+ 1

4π
an,mψn,m

∫

S2
Yn,m(Ω′)Yn,l(Ω′) dΩ

′

(3.26b)

= σsφ+ σas

∞∑

n=0

2n+ 1

4π
sε,n

n∑

l=−n

an,lYn,l(Ω)
n∑

m=−n

2n+ 1

4π
an,mψn,m

4π

2n+ 1

1

an,m
δnn,ml

(3.26c)

= σsφ+ σas

∞∑

n=0

2n+ 1

4π
sε,n

n∑

m=−n

an,mYn,m(Ω)
2n+ 1

4π
an,mψn,m

4π

2n+ 1

1

an,m
(3.26d)

= σsφ+ σas

∞∑

n=0

2n+ 1

4π
sε,n

n∑

m=−n

an,mψn,mYn,m(Ω) (3.26e)

= σsφ+ σas

∞∑

n=0

n∑

m=−n

2n+ 1

4π
an,mYn,m(Ω)ψn,m2π

∫ 1

−1

sε(µ)Pn(µ)dµ (3.26f)

= σsφ+ σas

∞∑

n=0

2n+ 1

2

∫ 1

−1

sε(µ)Pn(µ)dµ
n∑

m=−n

an,mYn,m(Ω)ψn,m. (3.26g)

Summarizing the above derivation, we obtain

Lψ + (σa + σs + σascε)ψ = σsφ+ σas

∞∑

n=0

2n+ 1

2

∫ 1

−1

sε(µ)Pn(µ)dµ
n∑

m=−n

an,m ψn,m Yn,m(Ω).

(3.27)

Next, we define ŝε(µ) = sε(µ)/cε, substitute it into the above equation, and drop the hat to get

Lψ + (σa + σs + σas)ψ = σsφ+ σas

∞∑

n=0

2n+ 1

2

∫ 1

−1

sε(µ)Pn(µ)dµ
n∑

m=−n

an,m ψn,m Yn,m(Ω).

(3.28)
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3.3. as-SN method

Let now σas = σ̂as/∆ with σ̂as = O(1). The fast variable y is given by y = (1−µ)/δ and ε = δ.
Here, δ,∆� 1. Then sε(µ) = ŝε(y) and we obtain

LHS = σsφ+
σ̂as
∆

∞∑

n=0

2n+ 1

2

∫ 1

−1

ŝε

(
1− µ
δ

)
Pn(µ) dµ

︸ ︷︷ ︸

= δ

∫ 2/δ

0

ŝε(y)Pn(1− δy) dy

︸ ︷︷ ︸
= δ

∫ 2/δ

0
ŝε(y) (Pn(1)− δyP ′n(1) +O(δ)2) dy

n∑

m=−n

an,m ψn,m Yn,m(Ω)

(3.29a)

= σsφ+ σ̂as
δ

∆

∞∑

n=0

2n+ 1

2

∫ 2/δ

0

ŝε(y)
(
Pn(1)− δyP ′n(1) +O(δ)2

)
dy

n∑

m=−n

an,m ψn,m Yn,m(Ω)

︸ ︷︷ ︸
C

.

(3.29b)

Together with Pn(1) = 1 and P ′n(1) = n(n+ 1)/2 and changing back according to y = (1−µ)/δ
results in

LHS =σsφ+ σ̂as
1

∆

∞∑

n=0

2n+ 1

2

∫ 1

−1

ŝε

(
1− µ
δ

)
dµ · C

− σ̂as
n(n+ 1)

2

1

∆

∞∑

n=0

2n+ 1

2

∫ 1

−1

ŝε

(
1− µ
δ

)
(1− µ) dµ · C

+O
(
δ2

∆

)
.

(3.30)

Reversing the fast-to-slow transformation yields

LHS−O
(
δ2

∆

)

= σsφ+ σas

∞∑

n=0

2n+ 1

2

=1/(2π)︷ ︸︸ ︷∫ 1

−1

sε (µ) dµ ·C − σas
n(n+ 1)

2

∞∑

n=0

2n+ 1

2

∫ 1

−1

sε (µ) (1− µ) dµ · C.

(3.31)

Here,

σas = O
(

1

∆

)
, (3.32a)

σas

∫ 1

−1

sε (µ) (1− µ) dµ = O
(
δ

∆

)
. (3.32b)

The first line is obvious. The second line follows from the fact that (1−µ) = O(δ), resulting in

Lψ + (σa + σs + σas)ψ

= σsφ+ σas

∞∑

n=0

n∑

m=−n

2n+ 1

4π
an,m ψn,m Yn,m(Ω) ·

[
1− n(n+ 1)π

∫ 1

−1

sε (µ) (1− µ) dµ

]
+O

(
δ2

∆

)
.

(3.33)

75



3. Ray effects and their mitigation

For the next step, we follow the computations (52) and (53) in Pomraning’s work [81] to obtain

Lψ + (σa + σs)ψ

= σsφ+ σasπ

∫ 1

−1

sε (µ) (1− µ) dµ

︸ ︷︷ ︸
= O (σas · ε)

·
[
∂

∂µ
(1− µ2)

∂

∂µ
+

1

1− µ2

∂2

∂φ2

]
ψ +O

(
σas · ε2

)
,

(3.34)

which are the scaling properties that we expect to see and also observe throughout the numerical
experiments.

Before discussing the results of both the line-source and lattice test case, it is worth mentioning
where and how the theoretical setting of the asymptotic analysis deviates from the actual
setting of the numerical experiments. Most importantly, the asymptotic analysis works on the
continuous level (in angle) while the as-SN implementation is already discretized (in angle).
Next, when trying to quantify the effect of artificial diffusion, we do so by proxying the L2 error
with respect to a reference solution, rather than the artificial diffusion itself. Lastly, while the
effect of angular diffusion is characterized by the product σas · ε, the O (σas · ε2) term might, for
certain parameter pairs, be non-negligible to an extend where the difference between the as-SN
and the SN method can not exclusively be attributed to the angular diffusion.

3.3.3. as-SN and the line-source test case

Comparing the as-SN method with the rSN method, an arguable drawback is the necessity two
choose two parameters (i.e., σas and β) instead of just one (i.e., δ). However, the results from
the asymptotic analysis show that (under certain assumptions) the added artificial diffusion
is controlled by the product of σas and β rather than by each parameter individually. This
is mostly in agreement with the two parameter studies that are summarized in Figures 3.16
and 3.17, computed for the coarse setting nq × nx × ny = 12 × 50 × 50 and the fine setting
nq × nx × ny = 92× 200× 200, respectively. In both settings, we (i) run as-SN simulations for
the line-source test case with different combinations of σas and β, (ii) compute the resulting L2

error with respect to the semi-analytical reference solution, and (iii) divide that error by the
error obtained from a standard SN simulation. Each cell in the resulting heatmaps in Figures
3.16 and 3.17 is then color-coded by this baseline normalized error. Values below (above) unity
indicate that the error has decreased (increased) when running the as-SN method with that
specific parameter pair. The optimal parameter pair is highlighted in yellow and all pairs close
to optimal in green.

In the coarse case, the optimal parameter choice of β = 3.5 and σas = 18 yields an error
reduction down to approximately 43%, measured in the L2 norm over the full spatial domain
at the final time t = 1s. Parameter pairs close to optimal, i.e., where the error does not exceed
the optimal error by more than 10%, mostly fall in the region 20 ≤ β · σas ≤ 80, β ≥ 3. For
120 ≤ β · σas, the baseline normalized error will be above unity. This corresponds to cases in
which too much artificial scattering was added.

It is obviously infeasible to perform a full parameter study on the same fine grid that the actual
computation takes place on. Consequently, we may ask ourselves how well the coarse setting
performs as a surrogate for the fine setting. Comparing the heatmap in Figure 3.16 with the
one in Figure 3.17, the success of this strategy is evident. While the optimal parameter pair in
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3.3. as-SN method
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Figure 3.15.: For the as-SN method, two parameters (σas and β) need to be chosen. All three
images show line-source cuts with nq×nx×ny = 92× 200× 200. Left, artificial
scattering is not used. Center, σas = 4.0 and β = 8.0, which corresponds to
the optimal parameter found in the parameter study in Figure 3.17 on the same
grid. Right, σas = 18.0 and β = 3.5, which are the optimal parameters from the
coarse parameter study (nq × nx × ny = 12× 50× 50).

the fine setting reduces the error down to 23%, the optimal parameter pair in the coarse setting
still reduces the error down to 42% when applied in the fine setting. This is also visualized in
Figure 3.15. The regions of optimal parameter configurations tend to overlap when comparing
both settings, although the fine setting has a wider valley of optimal parameter pairs.

Computing an as-SN simulation with nq × nx × ny = 92 × 200 × 200 is approximately 490
(≈ 92/12×4×4×4, since also nt = O(nx, ny)) times as costly as for nq×nx×ny = 12×50×50.
Therefore, performing all 306 simulations for the coarse heatmap, followed by one simulation in
the fine setting with the optimal parameter pair increases the runtime by 62% while the error
is decreased down to 42%. A similar return on investment would not be achieved by simply
increasing the number of ordinates in the SN method.

Lastly, the discussion of an efficient implementation of the as-SN method has been omitted
since all computations were done explicitly. Because the physical and artificial scattering can
be combined into a new scattering kernel, the as-SN method yields no increase in runtime.
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Figure 3.16.: Parameter study for σas and β on the grid nq×nx×ny = 12×50×50 in an explicit calculation. For every set of parameters,
we compute the L2 error of the scalar flux φ with respect to the semi-analytical reference solution on the same spatial grid.
The number in each field of the heatmap is then the baseline normalized error, i.e., the L2 error obtained for that specific
parameter configuration divided by the error obtained without artificial scattering. The optimal parameter configuration,
highlighted in yellow, reduces the error down to 43%. Close-to-optimal parameter pairs are highlighted in green.
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Figure 3.17.: Parameter study for σas and β on the grid nq × nx × ny = 92 × 200 × 200 in an explicit calculation. For every set of
parameters, we compute the L2 error of the scalar flux φ with respect to the semi-analytical reference solution on the same
spatial grid. The number in each field of the heatmap is then the baseline normalized error, i.e., the L2 error obtained for
that specific parameter configuration divided by the error obtained without artificial scattering. The optimal parameter
configuration, highlighted in yellow, reduces the error down to 23%. Close-to-optimal parameter pairs are highlighted in
green.
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3. Ray effects and their mitigation

3.3.4. as-SN and the lattice test case

The quantitative benefits of artificial scattering are, unsurprisingly, less pronounced in the
lattice test case. This is predominantly due to the fact that ray effects occur on neglectable
scales, orders of magnitudes smaller than the mean scalar flux. Nevertheless, we will observe
an error reduction when switching from SN to as-SN .
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Figure 3.18.: Results for the lattice test case with different amounts of artificial scattering.
From left to right: A high-order reference solution; the best-case scenario; the
baseline; and the worst-case scenario.

To derive errors, we computed a reference solution that uses nq = 1962 ordinates on a spatial
grid of nx × ny = 280 × 280 cells, visualized in Figure 3.18a. The parameter study that was
performed for the line-source test case is replicated for the lattice test case (nq = 92), with
the results summarized in Figure 3.19. The optimal parameter configuration (β = 12, σas = 1)
reduces the error down to 69% of the original error, shown with the baseline SN result in Figures
3.18b and 3.18c, respectively.

Interestingly, using a close-to-optimal parameter pair from the coarse line-source parameter
study for the lattice test case reduces the error down to 72%, indicating the possibility to use
different discretizations and test cases as surrogates.

While the worst-case error for the line-source test case was reasonably small with a baseline
normalized error of 2.23 (coarse) and 1.65 (fine), this is not the case for the lattice test case
where we observe a baseline normalized error of up to 10.8 in Figure 3.18d. The error is due
to the enormous amount of artificial diffusion that is added to the solution and smears out the
scalar flux unnecessarily.
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Figure 3.19.: Parameter study for σas and β on the grid nq × nx × ny = 42 × 280 × 280 in an explicit lattice calculation. For every set
of parameters, we compute the L2 error of the scalar flux φ with respect to a reference solution (nq = 1962) on the same
spatial grid. The number in each field of the heatmap is then the baseline normalized error, i.e., the L2 error obtained for
that specific parameter configuration divided by the error obtained without artificial scattering. The optimal parameter
configuration, highlighted in yellow, reduces the error down to 69%. Close-to-optimal parameter pairs are highlighted in
green. The colorbar ranges to a maximum value of 3.00 to avoid color distortion.
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4. Non-classical transport equations

Not all particles are created equal, for some engage in billiard games that violate Section 1’s
fundamental rule: Background obstacles ought to be uncorrelated. If they are not—and we
will go through various examples where this rule is violated—classical transport equations, i.e.,
those that we have encountered so far, model the underlying transport phenomena incorrectly.
Instead, so-called non-classical transport equations emerge, augmenting the phase space of clas-
sical transport equations by an additional variable. This extra variable can be interpreted both
as the distance to collision or the distance since collision, depending on the precise formulation
of the non-classical transport equation.

Different from classical transport in Part I, non-classical transport, to which Part II of this
thesis is devoted to, is much more novel in its application to radiative transfer. This section
motivates the necessity of non-classical transport by three applications before delving into
further modeling steps that ultimately lead to various ways to generalize classical transport,
one of which is the generalized linear Boltzmann equation (GLBE). Throughout Part II, we
will discuss and contribute to so-far unsolved questions regarding the modeling of non-classical
transport in the presence of heterogeneities.

Non-classical transport dates back to the late 2000s and early 2010s where it was independently
formalized by Caglioti and Golse [18, 41] and Larsen and Vasques [56]. Caglioti and Golse
discuss the Boltzmann-Grad limit for the periodic Lorentz gas where scatterers are arranged
on a lattice rather than at random positions. Larsen and Vasques provide an initial study of
non-classical transport, together with the derivation of the respective asymptotic diffusion limit.
Numerical test cases show the superiority of non-classical transport equations when modeling
transport in a pebble bed reactor. Davis and Xu [32] discussed linear transport in spatially
correlated stochastic media in 2014.

Noteworthy, too, are the recent advances in the computer graphics community. Non-classical
transport has been used to enhance the quality and realism of rendered images [14, 33, 48].

We postpone an extensive discussion of the relevant equations of non-classical transport for
now and start off with the first of three examples that demonstrate the violation of classical
transport. These examples are deliberately chosen to cover different applications and fields of
research to showcase the universality of non-classical transport.

Example 4.0.1 (Radiation in clouds). According to NASA1, “about 67 percent of Earth’s
surface is typically covered by clouds,” illustrated in Figure 4.1. Consequently, clouds influence
the climate in a variety of ways, one of which is through the interaction with solar radiation.
In the mid to late 1990s, however, observations of both under- and overestimation of the solar
radiation were reported in the literature [27, 83, 80, 101, 6], ranging from −10W/m2 to +30W/m2,
respectively. With the help of experimental data, Pfeilsticker [79] discovered that the geometric

1The quote is taken from https://www.nasa.gov/image-feature/cloudy-earth, which itself paraphrases
the work published by King et al. [53].

85

https://www.nasa.gov/image-feature/cloudy-earth


4. Non-classical transport equations

120°W 60°W 0° 60°E 120°E

60°S

0°

60°N

0.00

0.25

0.50

0.75

1.00

Cloud
fraction

Figure 4.1.: For the month of July 2020, the image shows the averaged cloud fraction with a
resolution of 0.25 degrees. The data was recorded with the Aqua/MODIS satellite
by NASA Earth Observations. This visualization reconstructs the image by Reto
Stockil, hosted on the NASA website [34] (together with the corresponding data).

path length distribution of photons is Lévy distributed (∼ s−γ−1 for large s) with Lévy index
1 ≤ γ ≤ 2. This is in stark contrast to Chapter 1, were the path length distribution for the
billiard game was exponentially decaying, not algebraically.

When model and data do not match, it is often a good idea to revise the model (rather than,
say, the data). Indeed, the modeling assumption that was made does not hold true in reality:
Water droplets, a photon’s scatterer, are not distributed randomly. Within clouds, droplets
cluster together in some regions while being completely absent in others. Consequently, there
is an increased (decreased) probability that a particle will scatter if it has (has not) scattered
recently, rendering the dynamics non-Markovian. As such, the process can not be described
with classical transport equations.

Example 4.0.2 (Pebble-bed reactors). “Nuclear power generated around 10% of the world’s
electricity in 2019,” reads a report by the International Atomic Energy Agency. Even though
nuclear energy is debated controversially, entirely undisputed, however, is the demand that its
mathematical modeling and related predictions be accurate.

Pebble-bed reactors (PBR) are a particular kind of graphite-moderated, gas-cooled, very-high-
temperature reactors. They get their name from the spherical pebbles that fuel the reactor.
Stacked randomly on top of another, thousands of these pebbles are placed inside a cylindrical
reactor core. With an average packing fraction of 81.7%, radiation is modeled by the diffu-
sion approximation which uses the atomic mix model to compute the diffusion coefficient as
a weighted average of a pebble’s cross section (weighted with 0.817) and the cross section of
vacuum (weighted with 0.183) [97, 56, 98].

When compared with Monte Carlo simulations, the diffusion approximation’s error is small
but non-negligible. While it might be argued that the discrepancy between both simulations is
due to the inapplicability of the diffusion approximation in that particular regime of transport,
the asymptotic diffusion limit of a non-classical transport equation reduces the error by a
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Figure 4.2.: A cloud rendered with a non-exponentially decaying path length distribution.
Light penetrates deeper than in the case of exponentially decaying path lengths.
This image was provided by Bitterli and a side-by-side comparison of classical
and non-classical renders can be found in Bitterli et al. [14]. Heterogeneity is
introduced into the simulation by assuming a statistically heterogeneous material
with identical correlation, similar to Camminady et al. [20].

factor two to five for the same setup [98]. Moreover, when allowing for angular-dependent and
non-exponential path length distributions, even asymmetries due to gravity (which, in three
dimensions, acts only in the z-direction) can be incorporated sufficiently well into non-classical
equations. Ultimately, the reason why non-classical equations predict radiation in PBRs more
accurately is that a particle’s path lengths are not exponentially distributed due to the way the
pebbles are stacked.

Example 4.0.3 (Non-classical transport in the field of computer graphics). Produced by Pixar
Animation Studios and released by Walt Disney Pictures in 1995, Toy Story was the first-ever
entirely computer-animated feature film. Its success—Toy Story was praised both by the audi-
ence and critics and achieved four Academy Awards in 1996—arguably propelled the animation
industry as a whole. The high degree of realism, albeit multifaceted, is largely contributed to
the (for its time) unparalleled sophistication of Pixar’s rendering software RenderMan. For ob-
jects to look real, not only had their movements to be modeled correctly but also every frame’s
illumination. Since light transport is described by kinetic theory’s transport equations, there
exists an inherent link between the work discussed thus far and that in the field of computer
graphics.

While renders of hard, smooth surfaces—Cars ’s cars or Toy Story ’s toys—achieve photorealism,
some notoriously difficult settings were only recently mastered. This includes, e.g., fur and hair,
rough and translucent objects, skin, and—relevant for non-classical transport—clouds. In 2018,
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4. Non-classical transport equations

Bitterli et al. [14] explored the possibility to model light transport through clouds with heavy-
tailed transmittance curves which allowed for “both deeper light penetration as well as a softer
appearance near the surface.” A resulting render is shown in Figure 4.2.

Moreover, non-classical transport increases artistic flexibility, useful to fine-tune renders to
look more realistic or appealing by freely choosing the path length distribution. Since scenes in
animation movies rarely consist of homogeneous, luminiferous aether, non-classical transport
in presence of heterogeneities needs to be understood both from a theoretical and application-
oriented viewpoint.

4.1. Particle billiard redux

The particles’ interactions with the background obstacles don’t differ in their dynamics—
particles still undergo elastic, instantaneous collisions—but in the way the scatterers are ar-
ranged.

With randomly distributed scatterers representing one end of the spectrum of correlation, scat-
ters that build a perfect lattice fall on the other end; such a situation is depicted with a single
particle’s trajectory in Figure 4.3. To quantify the distribution of path lengths, a distinction
needs to be made that was not necessary for the random billiard table: Tallying a single parti-
cle’s trajectory for n steps is different from tallying n particles’ trajectories for a single step. For
a single particle, only one path length (the very first) can be smaller than the minimal distance
between two obstacles’ boundaries. Afterwards, a particle that reflects from an obstacle will
not encounter another obstacle before having traveled this minimum distance. But the different
statistics are not only limited to the infinitesimally small region. For asymptotically large path
lengths, the two resulting distributions decay with different orders of magnitude. These findings
are summarized in Figure 4.4. This difference in behavior requires a more precise language.

Definition 4.1.1 (Distance to collision). A particle at (x,Ω) ∈ Rd × Sd−1 is said to have
distance to collision s, if it undergoes its next collision (where it scatters or gets absorbed) at
x+ s ·Ω.

Definition 4.1.2 (Distance since collision). A particle at (x,Ω) ∈ Rd × Sd−1 is said to have
distance since collision s, if it underwent its last collision (where it scattered) at x− s ·Ω.

Definition 4.1.3 (Distance since birth). A particle at (x,Ω) ∈ Rd × Sd−1 is said to have
distance since birth s, if, at x − s · Ω, it entered the domain through the boundary or was
emitted by a source.

Definition 4.1.4 (Distance between collisions). A particle is said to have distance between
collisions s, if it travels a distance s between a scattering event and the consecutive collision
(where it scatters or gets absorbed).

Consequentially, Figures 4.4a and 4.4b show the distances to collisions and the distances between
collision (except for the very first of the 106 path lengths), respectively.

Similar to the random case, we can also perform a Boltzmann-Grad limit for the periodic Lorentz
gas. The details of this procedure and the mathematical analysis, however, are beyond the scope
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4.1. Particle billiard redux

Figure 4.3.: A non-classical billiard game where scatterers’ centers are arranged according to
a lattice structure. This setup is also known under the name periodic Lorentz
gas. The (solid) white ball’s trajectory is shown.

of this work and are explained thoroughly in the work by Golse et al. [41, 42]. Moreover, non-
classical transport is not restricted to the periodic Lorentz gas but a more general phenomena.
Nevertheless, two essential properties are exemplified. Both of these can be understood without
executing the Boltzmann-Grad limit in a formal manner and instead following Terrence Tao’s
idea that “[t]here’s more to mathematics than rigor and proofs.”

First—though somewhat counterintuitive—it is worth noting that in the limit of r → 0 with
nobs · r = const., transport in the periodic Lorentz gas is isotropic since the effect of the lattice
orientation vanishes. While the lattice imposes a preference for particles to travel along hori-
zontal and vertical channels, shrinking the obstacles’ radii effectively opens up more and more
channels along all possible directions. This is illustrated in Figure 4.5, where we see trajecto-
ries for particles in a periodic Lorentz gas with radii r = 0.02, r = 0.002̄, and r ≈ 0.00025,
respectively. The higher the number of obstacles, the smaller the preference for horizontal and
vertical directions.

Second—and while this property is not surprising, its consequences are—the path length dis-
tributions (all four that were defined earlier) are non-exponential. Consider (without loss of
generality) the distance since a particle’s previous interaction. If the respective probability were
to be exponential,

Pr (S > s+ ∆s|S > s) = Pr (S > ∆s) . (4.1)

However, since this is not the case,

Pr (S > s+ ∆s|S > s) 6= Pr (S > ∆s) , (4.2)

and as a consequence particles must have a memory. This memory manifests itself in the fact
that the distance traveled by a particle influences its probability to undergo collisions in the
future. Thinking back to the example of the periodic Lorentz gas, a particle that has already
traveled a long distance might move through one of the domain’s channels and is therefore
likely to continue unhinderedly. Conversely, a particle that just underwent a collision might be
reflected towards a nearby obstacle, scattering again almost immediately. Instead of expressing
this memory in terms of the path length distribution, an equivalent formulation makes the total
cross section dependent on the distance since collision s, since

σt(s) =
p(s)

1−
∫ s

0
p(s′) ds′

. (4.3)
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(a) Path lengths of 106 particles from their birth (at a random position inside the lattice, not touching
any obstacle) to their first collision. These path lengths are the distances to collisions. Distances
smaller than the lattice gap occur frequently.

10−3 10−2 10−1 100 101

Distance s

100

10−2

10−4

Fr
eq
ue

nc
y

Data (single)
Asymptotic region

Slope ≈ −3.1

Lattice gap

(b) Path lengths of a single particle’s trajectory over the course of 106 consecutive collisions. At most
one (the first) path length is smaller than the lattice gap. Except for the first path length, these
are the distances between collisions. The result, especially the asymptotic region, looks very similar
when the experiment is repeated with other random initial positions and velocities.
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(c) Both images combined with zoom. The histogram is recomputed with matching binning.

Figure 4.4.: Path length distributions in the periodic Lorentz gas with σ = 1.0 and 106 obsta-
cles, which results in a radius of 2 · 10−6 for each obstacle. The lattice gap—the
minimal distance between obstacles’ boundaries—is 0.000996. The first two plots
use 100 log-spaced bins, the last plot uses 30.
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4.1. Particle billiard redux

(a) nobs = 100, r = 0.02. (b) nobs = 900, r = 0.002̄. (c) nobs = 8100, r ≈ 0.0002469.

Figure 4.5.: Trajectory of 2000 particles from their birth (at a random position, not touching
an obstacle) to their first collision. For all three images, nobs · r is constant. The
orientation of the lattice fades as we increase the number of obstacles, visible in
the trajectories. The domains are periodic.

It is easy to verify that this expression is constant if and only if p(s) is an exponential distri-
bution. If, for example,

p(s) = se−s, (4.4)

then

σt(s) =
s

1 + s
(4.5)

and the likelihood to scatter increases as s increases. Alternatively, we can make an algebraic
ansatz and assume that p is a Pareto distribution, i.e.,

pα,xm(s) =

{
0 if s < xm,
αxαm
xα+1 if s ≥ xm.

(4.6)

For α = 2 and xm = 1,

σt(s) =

{
0 if s < 1,
2
s

if s ≥ 1,
(4.7)

and particles are less likely to scatter the further they travel. Whether the flexibility to choose
a path length distribution is reflected in a corresponding arrangement of obstacles is unclear
and it seems more likely that certain distributions are not the result of a Boltzmann-Grad-like
limit of an arrangement of obstacles.

Finally, to tease Chapter 5, we briefly mention non-classical transport in the presence of material
heterogeneities. Here, the following question arises: How do we correctly encode the memory
of particles as they transition between the different materials? Given a lack of experimental
evidence, arguments for different models can be made—some of which will be presented here.
In this chapter, however, we restrict ourselves to the homogeneous case and are now prepared
to analyze the governing equations of homogeneous, non-classical transport.
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4. Non-classical transport equations

4.2. Generalized linear Boltzmann equations

We start out simple and add more complexity as we go along. For now, we omit the distinction
between distance since collision and distance since birth and write the generalized liner Boltz-
mann equation (GLBE) in terms of the distance since the last interaction. Similar to Larsen
and Vasques [56], we make the following definitions:

V = “the spatial domain with boundary ∂V.”
x = “the position (x, y, z) ∈ V.”

n(x) = n = “the outward pointing normal vector at x ∈ ∂V.”
Ω = “the direction of flight (Ωx,Ωy,Ωz) with unit speed.”
s = “the distance that a particle has traveled since the previous event,

be it birth or scattering.”
v = “the particle speed.”

N(s,x,Ω) ds dx dΩ = “the number of particles in ds dx dΩ about (s,x,Ω).”

ψ(s,x,Ω) = v N(s,x,Ω) = “the non-classical angular flux.”
σt(s) ds = “the probability that a particle which has traveled a distance s

since a previous event experiences a collision while traveling
a further distance ds.”

c = “the probability that a particle that experiences a collision will scatter.”
s(Ω′ ·Ω) dΩ = “the probability that a particle with pre-collision direction Ω′

scatters into a post-collision direction that lies in dΩ about Ω.”

δ(s) = “the Dirac delta function evaluated at s.”
Q(x) dx = “the rate at which particles are isotropically emitted by an internal source

in dx about x.”
l(x,Ω) = “the distance to the domain’s boundary from x in direction −Ω.”

Just like the time-dependent classical transport equation, the GLBE follows from balancing the
gain terms (in-scattering and source contributions) with the loss terms (leakage and collisions).
Since particles with any value of s can leak or scatter, but we only gain particles with s = 0,
the gain terms need to be multiplied with the Dirac delta function. The result is then

∂sψ(s,x,Ω)︸ ︷︷ ︸
rate of change

=−Ω · ∇xψ(s,x,Ω)− σt(s)ψ(s,x,Ω)︸ ︷︷ ︸
leakage and collision

+ δ(s)

∫ l(x,Ω)

0

∫

S2
c σt(s

′)s(Ω′ ·Ω)ψ(s′,x,Ω′) dΩ′ ds′ + δ(s)Q(x)

︸ ︷︷ ︸
in-scattering and source

.
(4.8)

Written more recognizable, we define the generalized linear Boltzmann equation, formulated in
terms of the distance since an interaction, as

∂sψ(s,x,Ω) + Ω · ∇xψ(s,x,Ω) + σt(s)ψ(s,x,Ω)

= δ(s)

∫ l(x,Ω)

0

∫

S2
c σt(s

′)s(Ω′ ·Ω)ψ(s′,x,Ω′) dΩ′ ds′ + δ(s)Q(x).
(4.9)

Some remarks are noteworthy.
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4.2. Generalized linear Boltzmann equations

Remark. This is the backward formulation of the GLBE. Backward in the sense that, given
any tuple (s,x,Ω), we do know where a particle originated (at x− s ·Ω), but not where it will
collide.

Remark. Equation (4.9) looks similar to the time-dependent classical transport equation, but
with a time-dependent cross section and additional delta functions on the right-hand side. In-
deed, if it weren’t for the delta functions, the backward GLBE could be solved with a standard
time-dependent transport code that allows to incorporate a dependency on s in the cross sec-
tion. But because particles have their memory reset after a collision or when they emerge
from a source, a numerical algorithm like SN that evolves transport forward in time does not
immediately work here. The Monte Carlo method, however, can be adapted easily.

Remark. When generalizing an equation, it should always reduce to its simpler form if the
assumptions are the same. This is the case in (4.9) with σt(s) = σt independent of s, followed
by operating with

∫∞
−ε · ds and letting ε→ 0, i.e.,

lim
ε→0

∫ ∞

−ε
∂sψ(s,x,Ω) + Ω · ∇xψ(s,x,Ω) + σtψ(s,x,Ω) ds

= lim
ε→0

∫ ∞

−ε
δ(s)

∫ l(x,Ω)

0

∫

S2
c σts(Ω

′ ·Ω)ψ(s′,x,Ω′) dΩ′ ds′ + δ(s)Q(x) ds.

(4.10)

Since the classical angular (and scalar) flux is agnostic to s, we have ψ(x,Ω) =
∫∞

0
ψ(s,x,Ω) ds2.

Equation 4.10 is then equivalent to

lim
ε→0

ψ(s,x,Ω)

∣∣∣∣
s=∞

s=−ε
+ Ω · ∇xψ(x,Ω) + σtψ(x,Ω)

= c σt

∫

S2
s(Ω′ ·Ω)ψ(x,Ω′) dΩ′ +Q(x),

(4.11)

which—because the first term vanishes—is exactly the classical, time-independent transport
equation.

Expressing transport in terms of the distance to the next collisions, we can alternatively derive
a forward formulation of the GLBE. Just like for the backward formulation, the phase space
of the forward formulation is augmented by one additional variable when compared to the
classical transport equation. To distinguish both formulations, we use f(s,x,Ω) for the forward
formulation, with s denoting the distance to the next interaction. Consequently, all definitions
that were made at the beginning of this section still hold true for the forward formulation when
distance since an interaction is replaced by distance to an interaction.

However, now that the memory is encoded differently, the transport equation, too, changes.
Representing the distance to the next interaction, s has to decrease as particles move through
space. Moreover, the distance to the next interaction has to be known at the beginning of a
particle’s trajectory, sampled from a probability density function. As a result, we know that
all particles represented by the infinitesimal phase space element f(s,x,Ω) ds dx dΩ are (with

2The non-classical angular flux outside the spatial domain is zero and we therefore write
∫∞
0
· ds instead of∫ l(x,Ω)

0
· ds.
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4. Non-classical transport equations

absolute certainty) undergoing an interaction inside [x+ sΩ, (x+ dx) + (s+ ds) (Ω + dΩ)].
Despite the precise knowledge of future interactions’ locations, the forward formulation is of
the same random nature as the backward formulation. Even though the location of an upcoming
interaction is deterministic, the distance to the next interaction is sampled from a probability
density function.

the backward formulation the forward formulation
additional variable s, distance since interaction s, distance to interaction
variable behavior increases, initialized as s = 0 decreases, sampled from p(s)

deterministic component value of s after collision known next collision’s location known
random component collisions possible for any value of s s is sampled randomly

(s,x,Ω) implies particles originate at x− sΩ particles interact at x+ sΩ
boundary conditions ψ(s,x,Ω) = δ(s) · g(x,Ω) f(s,x,Ω) = p(s) · g(x,Ω)

Table 4.1.: Juxtaposition of the forward and backward formulation.

The forward formulation of the generalized linear Boltzmann equation (omitting boundary
contributions) is then given by

−∂sf(s,x,Ω) + Ω · ∇xf(s,x,Ω) = p(s)c

∫

S2
s(Ω′ ·Ω)f(0,x,Ω′) dΩ′ + p(s)Q(x). (4.12)

To summarize the differences and similarities, Table 4.1 juxtaposes both formulations in a
condensed form. We also include the respective boundary conditions, prescribed for all incoming
angles at the domain’s boundary, i.e., for all x ∈ ∂V and Ω ∈ S2 where Ω · n(x) < 0.

Equivalence of both formulations has been proven in Larsen et al. [57], using the transformation

f(s,x,Ω) ≡
∫ l(x,Ω)

0

σt(s+ s′)ψ (s+ s′,x+ sΩ,Ω) ds′ (4.13)

and the relation between cross section and path length distribution

σt(s) =
p(s)∫∞

s
p(s′) ds′

or p(s) = σt(s) exp

(
−
∫ s

0

σt(s
′) ds′

)
. (4.14)

The forward formulation inserts randomness into the dynamics by sampling a particle’s distance
to the next interaction from p(s); from that point on, the particle’s trajectory is deterministic.
Conversely, the backward formulation always resets the value of s after a collision and inserts
randomness by allowing particles to scatter for any value of s, based on σt(s). It is therefore
naturally, to link p(s) to the distance to the next interaction (i.e., the forward formulation),
while σt(s) refers to the distance since the last interaction (i.e., the backward formulation). Un-
less explicitly stated otherwise, we will from now on implicitly assume that s is to be interpreted
in the forward or backward formulation, based on the choice of p(s) or σt(s), respectively.

We are not going to recapitulate the thorough analysis of Larsen et al. [57] that proofs equiv-
alence here, but rather try to provide a physical interpretation of the involved terms, demon-
strating that both sides of (4.13) indeed express the same physical quantity. The left-hand side
is easy to understand: f(s,x,Ω) quantifies the amount of particles that pass through (x,Ω) to
undergo a collision at x+sΩ. Next, ψ(s+s′,x+sΩ,Ω) represents the particles at (x+sΩ,Ω)
that have traveled a distance s + s′ from x − sΩ to reach this point, passing through (x,Ω)
along that journey. Multiplied by σt(s + s′), we obtain the fraction of those particles that do
undergo a collision at x + sΩ. Integrating over all distance s′ from x back to the domain
boundary at x − l(x,Ω) Ω, we obtain all particles that travel through (x,Ω) and collide at
x+ sΩ, i.e., the same quantity as the left-hand side.
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4.3. Correlated and uncorrelated particles

(a) Scatterers generated in a uniformly ran-
dom manner. Scatterers are allowed to
overlap.

(b) Scatterers generated via Poisson disc sam-
pling where the minimal distance between
two boundaries is equal to the radius r.

Figure 4.6.: Scatterers of radius r = 0.01 generated in the domain [0, 1]× [0, 1]. Both pictures
show 696 scatterers.

4.3. Correlated and uncorrelated particles

A thought (and numerical) experiment made by d’Eon [33] that was independently considered
in Jarabo et al. [48] made the following observation: For non-classical particle transport it
is necessary to distinguish particles that are correlated with the medium (related quantities
are denoted with a subscript c) from those particles that are uncorrelated with the medium
(denoted with a subscript u). This distinction is explained by considering particle transport
in an obstacle field generated via a Poisson disc sampling procedure. Rather than placing
scatterers randomly—as it is the assumption in classical transport theory—we place scatterers
in a way such that they obey a certain minimal distance from any other scatterer, visualized
in Figures 4.6a and 4.6b, respectively. The distributions for the distance between consecutive
collisions has to be zero for distances smaller than the minimal distance between scatterers.
However, for a particle that is placed independently of the scatters—e.g., by a source—the
distribution for the distance to the next collision does not demand this property.

Consequently, we distinguish correlated from uncorrelated particles. These two species then
behave as follows:

1) We gain correlated (or uncorrelated) particles by a correlated (or uncorrelated) source.

2) If correlated (or uncorrelated) particles get absorbed we lose correlated (or uncorrelated)
particles.

3) If correlated particles scatter they stay correlated.

4) However, if uncorrelated particles scatter, they are no longer independent of the medium
and become correlated particles.

Ignoring heterogeneity, this life cycle is depicted in Figure 4.7. We are aware that the above
distinction is similar to the one of collided and uncollided particles. In fact, for the homogeneous
case, uncorrelated particles are uncollided ones and correlated particles are collided ones. For
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Figure 4.7.: Life cycle of correlated and uncorrelated particles.

the heterogeneous case, however, correlated particles can become uncorrelated, whereas collided
particles always stay collided. We make the following definitions:

Nu(s,x,Ω) ds dx dΩ = “the number of uncorrelated particles in ds dx dΩ about (s,x,Ω).”

ψu(s,x,Ω) = v Nu(s,x,Ω) = “the non-classical, uncorrelated angular flux.”
σu,t(s) ds = “the probability that an uncorrelated particle which has traveled

a distance s since a previous event experiences a collision
while traveling a further distance ds.”

Qu(x) dx = “the rate at which uncorrelated particles are isotropically emitted by
an internal source in dx about x.”

Similarly, we obtain the quantities for correlated particles.

Nc(s,x,Ω) ds dx dΩ = “the number of correlated particles in ds dx dΩ about (s,x,Ω).”

ψc(s,x,Ω) = v Nc(s,x,Ω) = “the non-classical, correlated angular flux.”
σc,t(s) ds = “the probability that a correlated particle which has traveled

a distance s since a previous event experiences a collision
while traveling a further distance ds.”

Qc(x) dx = “the rate at which correlated particles are isotropically emitted by
an internal source in dx about x.”

Supplementing the definitions above, we remark that (i) these equations describe homogeneous
transport, (ii) we only choose isotropic sources to shorten notation, and (iii) we subsequently
assume the absence of sources that are correlated with the medium on a microscopic level.
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Following Larsen and Vasques [56], we obtain versions of the generalized linear Boltzmann
equation, provided first in a similar form by d’Eon [33]. They are given by

∂sψu(s,x,Ω) + Ω · ∇xψu(s,x,Ω) + σt,u(s)ψu(s,x,Ω) = δ(s)Qu(x) (4.15)

for the uncorrelated angular flux and

∂sψc(s,x,Ω) + Ω · ∇xψc(s,x,Ω) + σt,c(s)ψc(s,x,Ω)

= c δ(s)

∫ l(x,Ω)

0

∫

S2
s(Ω′ ·Ω) (σt,c(s

′)ψc(s
′,x,Ω′) + σt,u(s

′)ψu(s
′,x,Ω′)) dΩ′ ds′

(4.16)

for the correlated angular flux, respectively. With l(x,Ω) we denote the distance from x to ∂V
moving backward with direction −Ω. Boundary conditions are given by

ψc(0,x,Ω) = 0 for x ∈ ∂V, n(x) ·Ω < 0, (4.17a)
ψu(s,x,Ω) = δ(s)ψbcu (x,Ω) for x ∈ ∂V, n(x) ·Ω < 0, (4.17b)

with a prescribed function ψbcu (x,Ω). This means that particles entering the domain cannot be
correlated since, by definition, they have not yet interacted with the obstacles. There is only a
flux of uncorrelated particles entering the domain with s = 0.

Since (4.15) can be solved independently of (4.16), it is possible to solve (4.15) for ψu(s,x,Ω)
first and rewrite (4.16) as

∂sψc(s,x,Ω) + Ω · ∇xψc(s,x,Ω) + σt,c(s)ψc(s,x,Ω)

= c δ(s)

∫ l(x,Ω)

0

∫

S2
s(Ω′ ·Ω)σt,c(s

′)ψc(s
′,x,Ω′) dΩ′ ds′ +Qc(s,x,Ω),

(4.18)

with

Qc(s,x,Ω) = c δ(s)

∫ l(x,Ω)

0

∫

S2
s(Ω′ ·Ω)σt,u(s

′)ψu(s
′,x,Ω′) dΩ′ ds′. (4.19)

In the case of classical transport, i.e., σt,c(s) = σt,u(s) = σt independent of s, the equations
reduce to the classical linear transport equation.

Additionally, the necessity for splitting particles into correlated and uncorrelated ones vanishes
if σt,c(s) = σt,u(s) = σt(s), resulting in the generalized linear Boltzmann equation derived by
Larsen and Vasques [56] with the non-classical angular flux satisfying ψ(s,x,Ω) = ψu(s,x,Ω)+
ψc(s,x,Ω).

Jarabo et al. [48] and d’Eon [33] omitted the consideration of heterogeneous non-classical trans-
port. To extend their analysis to the heterogeneous case, we first need to introduce the concept
of heterogeneity with all its subtleties. Correlated and uncorrelated transport in heterogeneous
materials is then reconsidered in Section 5.6.
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heterogeneous materials

What happens to a particle’s memory when it crosses a material interface?

This is the main question that Chapter 5 attempts to answer. Easy to pose, we will see that
the respective answer fundamentally depends upon the underlying assumptions that are made
to model heterogeneous materials. We will discuss why this is a relevant, non-trivial question
in the context of non-classical particle transport and encounter a fundamental problem of
mathematical modeling: Lacking real-world measurements or experimental data, we are limited
to educated guesses and bona fide speculations. And while these are falsifiable guesses and
speculations, it is beyond the scope of this work to actually execute the necessary experiments
or measurements to either falsify or verify the subsequent models.

Note, again, that the problem of modeling transport in the presence of heterogeneities is exclu-
sively limited to non-classical particle transport where the governing equations have to encode
a particle’s memory. As already mentioned in Chapter 4, classical transport is memoryless in
the sense that

Pr (S > s+ ∆s|S > s) = Pr (S > ∆s) .

Consequently, the path length distribution for a particle that faces an interface a distance s∗ ≥ 0
away is simply

p(s) =

{
σ1e
−σ1s if s ≤ s∗,

σ2e
−σ1s∗−σ2(s−s∗) if s > s∗,

(5.1)

where σ1 and σ2 denote the cross sections in front of and behind the interface, respectively.

With non-classical transport dating back to the early 2000s (approximately), heterogeneous
non-classical transport has only recently become a topic of greater interest [20, 48, 14] and an
equivalent formulation of (5.1) is not proven.

5.1. The crux of particles crossing material interfaces

Using the backward formulation of the generalized linear Boltzmann equation, the total cross
section depends upon the distance that a particle has already traveled. For simplicity, we
consider the situation depicted in Figure 5.1, where there is only one interface and a particle,
moving from left to right across that interface. Considered individually, the cross sections on
the left and right side of the interface are σ1(s) and σ2(s), respectively. The key point here, is
the word individually, because it implies that we are able to model the heterogeneity by two
cross sections that are the result of an individual, homogeneous consideration.
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x0 x0 + s∗

σ2(s)σ1(s)

Figure 5.1.: Two materials with cross sections σ1(s) and σ2(s), and a particle traversing from
one side of the interface to the other. The material extends to the right indefi-
nitely.

If we for now assume that this is a valid model, several requirements seem reasonable [20]:

1. The resulting path length distribution should be a probability density function in the
sense that it integrates to unity.

2. If both cross sections are independent of s, we want to recover (5.1).

3. Up to the interface, the path length distribution should only depend on σ1(s).

The first point is merely a technicality. The second point follows from the fact that the non-
classical transport equation reduces to the classical transport equation if the cross sections are
independent of the distance that a particle has traveled. It can also be used as a way to check
any proposed candidate for the path length distribution for the non-classical, heterogeneous
case. Lastly, since we consider the backward formulation, the path length distribution should
be agnostic to future materials and obey the third point.

Now, if the cross sections of non-classical materials depend on s, and a particle crosses an
interface after having traveled a distance s∗ to reach a material with σ2(s), should it experience
σ2(s∗ + ∆s) or σ2(∆s) when traveling another distance ∆s in the new material? Per se, there
is no compelling reason to evaluate the cross section of the new material at s∗+ ∆s rather than
at ∆s. Arguing for the former implies that it is possible to relate the distance traveled in one
material to the likelihood of scattering in another material; even when we allow to choose the
materials completely independent from each other.

Things become more complicated when we consider one further requirement:

4. If σ1(s) ≡ σ2(s), we want to recover the homogeneous case.

This seems like a reasonable prerequisite since, in the case of σ1(s) ≡ σ2(s), the interface is
only artificial and the material is therefore homogeneous. As a result, the cross section should
be evaluated at s∗ + ∆s rather than at ∆s since the latter implies a memory reset for which
there is no reason since the material is homogeneous.

Summarizing, we end up with the following dilemma: For two materials with arbitrarily chosen
cross sections σ1(s) and σ2(s), the memory should be reset when crossing the interface. If,
however, the two cross sections are identical, the memory should persist.

We proposed an expression for the path length distribution that solves the dilemma in [20].
However, as we will see in Section 5.2, there are arguments against the fourth prerequisite,
ultimately rendering the memory loss inevitable. The corresponding path length distribution
is analyzed in Section 5.3.
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5.2. Defining heterogeneity

To discuss the definition of heterogeneity, we will repeatedly refer to the two situations that are
depicted in Figure 5.2. In Figure 5.2a, we see (in the upper half) a homogeneous non-classical
material from a microscopic point of view. The arrangement of obstacles is that of the periodic
Lorentz gas.1 Performing the Boltzmann-Grad limit (i.e., n → ∞ such that n · r = constant
and ensemble averaging over all possible arrangements), we end up with a material that is (on
the mesoscopic level) defined by its cross section and path length distribution.

In the heterogeneous case, illustrated in Figure 5.2b, the two materials are identical in the sense
that obstacles are arranged in a lattice structure. But—and this is shown for the green and blue
scatterers in Figure 5.2b—it is entirely possible that these two lattices do not align perfectly.
In general, we observe two arrangements of obstacles which, when considered individually, are
valid arrangements of scatterers, but do not resemble the homogeneous case. If we now perform
the Boltzmann-Grad limit individually, both of the materials are defined (on the mesoscopic
level) by the same cross section and path length distribution. But since we ensemble average
both sides independently, a particle’s memory should be reset when crossing the interface.
Ultimately, we are left with a situation that looks homogeneous on the mesoscopic level, but
does not equal the homogeneous material on the microscopic level.

A situation that exemplifies these theoretical considerations is that of two cubes being pushed
together. With their crystalline, Lorentz-like structure, both cubes have the same, correlated
ordering of atoms. At the interface, however, this two-cube-setup will look different from a
single quadrilateral of the same dimensions. If we now place a light source such that photons
move through the setup from one cube to the next, we have reproduced the conditions that we
described in Figure 5.2b.

Presented first in Camminady et al. [20], a simplified, less general scenario was considered that
nevertheless contributes to the discussion of heterogeneous materials. Depicted in Figure 5.3,
the two scenarios distinguish heterogeneities that are due to density fluctuations (Figure 5.3a)
and those that formed by combining structurally different obstacle arrangements (Figure 5.3b).
The ansatz for the first scenario that was presented in Camminady et al. [20] will proceed the
more general, fully heterogeneous case in our discussion later on.

By now it is clear that the definition of heterogeneity depends on our perspective. Whether a
heterogeneous domain with cross sections σ1(s) and σ2(s) turns homogeneous if σ1(s) ≡ σ2(s)
depends on the circumstances. If we define a material solely by its cross sections, it should be
homogeneous. If we instead consider the underlying microscopic situation, an interface remains
and a path length distribution has to account for it.

Given these circumstances, we will provide two different types of approaches to express the
distribution of path lengths in presence of (potentially) different cross sections. One formulation
preserves the particle’s memory when crossing an untrue (σ1(s) ≡ σ2(s)) interface and another
formulation where this is not the case. Both formulations, however, will satisfy the first three
requirements that we imposed.

1We only chose the periodic Lorentz gas as one instance of all possible non-classical materials because it is
immediately clear that the depicted material is non-classical. The analysis, however, is not limited to the
periodic Lorentz gas.
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Cµ pµ(s)

n→∞, r → 0, 〈·〉µ

p(s) σt(s)

(a) Ensemble averaging the whole domain yields a homogeneous material, defined by p(s) and σt(s).

CLµ pLµ(s) CRµ pRµ (s)

n→∞, r → 0, 〈·〉µ n→∞, r → 0, 〈·〉µ

pL(s) σLt (s) pR(s) σRt (s)

(b) If both halves are ensemble averaged independently, they should still yield the same distribution
and cross section when considered individually. When looking at the whole domain, however, it
is not clear that this way of executing the Boltzmann-Grad limit has to yield the same result for
the whole domain as found in Figure 5.2a.

Figure 5.2.: The path length distribution and cross section are the outcome of the Boltzmann-
Grad limit. This involves an ensemble average over all possible configurations of
obstacles Cµ, even for the periodic Lorentz gas. For example, obstacle positions
could be translated or rotated. This holds true for other arrangements as well,
e.g., Poisson disk sampling, where obstacles are at least a prescribed minimum
distance apart from another. The subscript µ denotes a singular instance out of
all possible arrangements and 〈·〉µ is the respective ensemble average.
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(a) A heterogeneous material that differs only in density as the underlying structure of obstacles is
identical.

(b) A heterogeneous material that comprises two fundamentally different types of obstacle arrange-
ments.

Figure 5.3.: Material heterogeneities can be the result of density fluctuations (Figure 5.3a),
or structural differences (Figure 5.3b).

5.3. Memory-resetting ansatz

Arguably the simpler—and maybe less exciting—case, we will start by considering the scenario
in which the memory of a particle gets reset at an interface.

Consider a particle positioned at x0 inside Material 1 which is defined by σ1(s) and p1(s). For a
fixed direction of flight, the particle crosses the interface between Material 1 and Material 2 at
x0+s1. More generally, after traveling a distance si, the particle is crossing the interface between
Material i − 1 and Material i, where the si are prescribed by the arrangement of materials;
additionally, we define s0 = 0. This situation is visualized for the direction Ω = (1, 0)T in
Figure 5.4. The individual cross sections and path length distributions for a material describe
a particle’s dynamics if it were to be placed inside an infinite, homogeneous domain of exactly
that material.

x0

σ1(s), p1(s) σ2(s), p2(s)

x0 + s1

σ3(s), p3(s)

x0 + s2

σ4(s), p4(s)

x0 + s3

Figure 5.4.: A particle traversing multiple materials with different cross sections σi(s) and
related density functions pi(s) with interfaces located distances si away from
its origin. The cross sections and density functions are to be interpreted in
the homogeneous sense, i.e., if the particle would be in a homogeneous, infinite
domain of Material i, it would experience cross section σi(s) and density function
pi(s).
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A particle’s memory is reset by either resampling the distance to the next interaction after the
crossing of an interface, or by resetting the value of s that is used to evaluate the probability
to scatter via σi(s).

Thus, the probability for a particle that has traveled a distance s from x0 to reach x0 + s to
scatter while traveling another distance ds is

σ(s)ds = σχ(x0+s)

(
s− sχ(x0+s)−1

)
ds, (5.2)

where the indicator function χ(x) returns the index of the material at position x. Likewise, we
can express the probability that a particle at x0 will undergo its next collision after traveling a
distance s to reach x0 + s via

p(s) =





p1(s) if s ∈ [0, s1),(
1−

∫ s1
0
p(s′) ds′

)
p2(s− s1) if s ∈ [s1, s2),(

1−
∫ s2

0
p(s′) ds′

)
p3(s− s2) if s ∈ [s2, s3),(

1−
∫ s3

0
p(s′) ds′

)
p4(s− s3) if s ∈ [s3, s4),

...

(5.3)

The factors involving an integral in every line but the first renormalize the probabilities to take
into account that particles might have scattered in an earlier interval. Domain-wise, the relation
(4.14) holds. That this is also true for (5.2) and (5.3) demonstrates the following analysis. First,
we compute the respective cumulative distribution function for (5.3). Assuming s ∈ [si−1, si),
this becomes

P (s) :=

∫ s

0

p(s′)ds′ (5.4a)

= P (si−1) +

∫ s

si−1

p(s′) ds′ (5.4b)

= P (si−1) +

∫ s

si−1

(1− P (si−1)) pi(s
′ − si−1) ds′ (5.4c)

= P (si−1) + (1− P (si−1))Pi(s− si−1). (5.4d)

We know from (4.14) that σ(s) = p(s)/
∫∞
s
p(s′) ds′. In our case, for s ∈ [si−1, si), this becomes

σ(s) =
(1− P (si−1)) pi(s− si−1)

1− [P (si−1) + (1− P (si−1))Pi(s− si−1)]
(5.5a)

=
pi(s− si−1)

1− Pi(s− si−1)
(5.5b)

= σi(s− si−1), (5.5c)

which is exactly the relation from (5.3). Consequently, (5.2) and (5.2) are equivalent ways to
describe the same behavior.

By design, this formulation does not reproduce the non-classical, homogeneous formulation if
the cross sections or distribution functions are identical. As an example, Figure 5.5 shows
different materials which are explained in Table 5.1. Here, the Pareto distribution has both
a finite mean and a finite variance for α ≥ 2 which is why we choose α = 3 in this case. In
Figure 5.6, we have two domains, both consistent of the same material; path lengths are gamma
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5.3. Memory-resetting ansatz

i pi(s) σi(s) Name

1 e−s 1 Exponential
2 2e−2s 2 Exponential
3 se−s s

s+1
Gamma

4

{
0 if s ≤ s0,

α
sα0
sα+1 if s > s0

{
0 if s ≤ s0,
α
s
if s > s0

Pareto (α = 3, s0 = 1)

Table 5.1.: Cross sections and distribution functions for the materials in Figure 5.5.

0 1 2 3 4 5

s

0

1

2

3

Path length distributions

p1(s)

p2(s)

p3(s)

p4(s)

0 1 2 3 4 5

s

0

1

2

3

Cross sections

σ1(s)

σ2(s)

σ3(s)

σ4(s)

Figure 5.5.: Different materials defined by their density functions and cross sections. Here,
p1 and p2 are exponential distributions, p4 is a gamma distribution, and p4 is a
Pareto distribution. Cross sections are computed with (4.14).

distributed. This is also indicated by the color coding; purple corresponds to p3(s) in Figure
5.5. The combined path length distribution is then made up of two parts: For s ≤ 2, particles
only experience the first material and the combined path length distribution p(s) is identical to
the gamma distribution. However, when particles cross the interface at s = 2, their memory is
reset. The probability to further travel a certain distance, given that the particle has already
traveled a distance s = 2 is re-sampled from the path length distribution of the new domain.
Hence, the combined (unconditional) distribution has a discontinuity at s = 2. Nevertheless,
p(s) still integrates to unity (as required for any probability density function).

If we had chosen both materials as classical materials, the combined distribution would be
equivalent to the distribution for the homogeneous case. For non-classical materials, however,
this is not the case.

Lastly, we consider a more elaborate scenario in Figure 5.7 with two interfaces and three dis-
tinctively different materials. The domains’ colors again correspond to the materials presented
in Figure 5.5. As before, the path length distribution results from the application of (5.3) and is
visualized in Figure 5.7a. Similarly, we can use (5.2) to compute the resulting s-dependent cross
section, shown in Figure 5.7b. At every interface, the particle’s distance to the next collision is
resampled from the respective distribution and the cross section ignores the distance traveled
up to the interface, i.e., the memory is reset.
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0 1 2 3 4 5

s

0.0

0.2

p
(s

) Material 1 Material 2

Path length distribution for a domain with one interface

Figure 5.6.: Combined path length distribution for a domain with two materials that are
identical; both have gamma distributed path lengths.
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Path length distribution for a domain with two interfaces

(a) Combined path length distribution.
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σ
(s

) Material 1 Material 2 Material 3

Cross sections for a domain with two interfaces

(b) Combined cross section.

Figure 5.7.: Distribution and cross section for a domain composed of three materials:
Material 1 is defined by a gamma distribution, Material 2 by an exponential
distribution, and Material 3 by a Pareto distribution.
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Name General definition pρ(s) Base density p1(s) Conversion ρ · (p1(ρ · s))
Exponential ρe−ρs e−s ρ · (e−ρs)
Gamma ρ2se−ρs se−s ρ · (ρ se−ρs)

Pareto

{
0 if s ≤ 1/ρ,

α (1/ρ)α

sα+1 if s > 1/ρ

{
0 if s ≤ 1,

α 1
sα+1 if s > 1

ρ ·
{

0 if ρ s ≤ 1,

α 1
sα+1ρα+1 if ρ s > 1

Table 5.2.: Requirement (ii) is satisfied for all probability density functions, showcased for
those functions that we have already encountered. For each one, we observe that
the general definition equals the conversion. The x-dependency of ρ was only
omitted to shorten notation.

5.4. Memory-preserving ansatz

Next, we are discussing memory-preserving ansätze. We start with the simpler scenario that
was initially considered in Camminady et al. [20] and in which heterogeneity is the result of
density fluctuations of a single type of material.

5.4.1. Heterogeneity via density fluctuations

In this scenario, the fundamental idea is similar to the conversion between the geometric and
optical path length in optics. Light that travels a distance s through a medium has a geometric
path length of s. The optical path length, however, takes the refractive index n of that material
into account and is computed as the product of s and n. Then, to sample the optical path
length, we only need to sample values from the geometric path length and divide them by n.

We make the following two assumptions for the conversion to work in our application. (i) We
are equipped with a base density function for the distance to the next collision, called p1(s).
(ii) If the material found at x were to cover the full, infinite, homogeneous domain, its density
function could be written as pρ(x)(s) := ρ(x) p1(ρ(x) · s) for some function ρ(x) that encodes
the domain’s density fluctuations. Note that (ii) is a reasonable assumption for all probability
density functions, shown in Table 5.2 for the distributions we have encountered so far. Moreover,
with Pρ(x)(s) and P1(s) as the cumulative distribution functions, Pρ(x)(s) = P1(ρ(x)·s) holds. It
is important to emphasize again that this is not the distribution for the full heterogeneous case,
but only describes the geometric-to-optical path length translation if the whole domain were to
be filled with the material found at x. However, the structure of this expression allows us to
make an ad hoc ansatz for the distribution of a heterogeneous domain—where the heterogeneity
is still the result of density fluctuations.

Conjecture 5.4.1 (Path length distribution for the heterogeneous case with density fluctua-
tions). Assume that a particle underwent its last collision at x, now facing direction Ω. Consid-
ered individually in a homogeneous setting, the material at x has a distribution for the distance
to the next collision pρ(x)(s) that satisfies pρ(x)(s) = ρ(x) p1(ρ(x) ·s) for a known p1(s) and ρ(x)
that describe a base distribution and density fluctuations, respectively. Then, the probability for
that particle to travel a distance smaller than or equal to s until its next collision is given by

P (s,x,Ω) = P1

(∫ s

0

ρ(x+ s′ ·Ω) ds′
)
. (5.6)
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5. Non-classical transport in heterogeneous materials

Consequently, the respective density function satisfies

p(s,x,Ω) = ρ(x+ s ·Ω) p1

(∫ s

0

ρ(x+ s′ ·Ω) ds′
)

(5.7)

and it follows that the cross section satisfies

σ(s,x,Ω) =

ρ(x+ s ·Ω) p1

(∫ s

0

ρ(x+ s′ ·Ω) ds′
)

1− P1

(∫ s

0

ρ(x+ s′ ·Ω) ds′
) . (5.8)

It is eminent that (5.6) and (5.7) reduce to the known results in the case of (i) a classical, but
heterogeneous material, i.e., p1(s) = e−s, and (ii) a non-classical, but homogeneous material,
i.e., ρ(x+ s ·Ω) = σ.

In Figure 5.8, we see the expression (5.7) for different densities ρ1(s) = (1 if s ≤ 2 else 2),
ρ2(s) = (2 if s ≤ 2 else 1), and ρ3(s) ≡ 1.5. The base distribution is the gamma distribution
(Figure 5.8a) or the Pareto distribution (Figure 5.8b). For ρ3(s), the respective path length
distribution equals the homogeneous one since we preserve the particles’ memory.

5.4.2. True heterogeneity

The obvious drawback of the previous approach is that its application is limited to materials
whose heterogeneity has to be explainable by density fluctuations only. Domains composed of
structurally different materials are not governed by (5.7).

To overcome this limitation, we need to be able to stitch together arbitrary path length distribu-
tions. This kind of surgery needs to be done carefully to both preserve a particle’s memory and
ensure that the resulting path length distribution still integrates to unity. The approach pre-
sented here ensures this by stitching together the materials’ cumulative distribution functions
in a way that ensures continuity of the overall, fully heterogeneous cumulative distribution.
This is done in the following way: A particle that has already traveled a certain distance s′
is bound to enter a new material at x + s′ · Ω. If we know the value of the heterogeneous
cumulative distribution function P (s,x,Ω) up to the point s = s′, we can try to find t′ such
that P (s′,x,Ω) = Px+s′·Ω(t′). Here, Px+s′·Ω(t′) is the cumulative distribution function of the
material that the particle is about to enter. Next, we stitch the part of Px+s′·Ω(t) where t ≥ t′

to the right of P (s′,x,Ω). Once the particle enters another material, the process repeats itself.

Finding the value of t′ such that P (s′,x,Ω) = Px+s′·Ω(t′) is equivalent to asking the question:
How far could a particle have traveled inside the material at x + s′ · Ω to reach the same
value of the cumulative distribution function P (s,x,Ω) that we currently observe? With this
intuitive understanding of the process, we are now ready to reformulate it in a more precise,
mathematical language.

As before, we assume that px(s) defines the probability density function for the distance to the
next collisions in an infinite, homogeneous domain that is filled with the material found at x.
Similarly, we interpret Px(s). A cumulative distribution function, Px(s) is invertible on [0, 1]
with P−1

x : [0, 1] → R≥0. Abbreviate x(s) = x + s · Ω; even tough we can assume x = 0 and
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(a) Gamma distribution as p1(s).
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(b) Pareto distribution (α = 3) as p1(s). The y-axis is log-scaled to better capture the discontinuity
at s = 2.

Figure 5.8.: Path length distributions for a heterogeneous domain with a single interface and
varying base distribution. The different lines show the distributions for different
density fluctuations.

Ω = e1 without loss of generality. The expression we are interested in is p(s,x,Ω), interpreted
as

p(s,x,Ω) = “the probability that a particle which underwent a collision at x
and faces direction Ω will travel a distance s through a
truly heterogeneous material to scatter at x+ s ·Ω.”

For a given value P (s,x,Ω), we find t such that Px(s)(t) = P (s,x,Ω) via

t = P−1
x(s) (P (s,x,Ω)) . (5.9)

Stitching the right half of Px(s)(t) to P (s,x,Ω) implies that, for an infinitesimal distance ∆s,
we update

P (s+ ∆s,x,Ω) = P (s,x,Ω) + ∆s · px(s)(t) (5.10a)
= P (s,x,Ω) + ∆s · px(s)(P

−1
x(s) (P (s,x,Ω))). (5.10b)
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Rearranging terms, letting ∆s → 0, and noting that P (0,x,Ω) = 0, we obtain an ordinary
differential equation (ODE) for P (s,x,Ω) in the form of

{
P (0,x,Ω) = 0,
d
ds
P (s,x,Ω) = px(s)(P

−1
x(s) (P (s,x,Ω))).

(5.11)

Solving the above system for P (s,x,Ω) and differentiating with respect to s we obtain

p(s,x,Ω) =
d

ds
P (s,x,Ω) = px(s)(t) = px(s)

(
P−1
x(s)

(
P (s,x,Ω)

))
, (5.12)

i.e., a distribution for traveling distance t in a material defined by the properties at x(s). Since
px(s)(t) was chosen exactly such that it represents the probability of traveling distance s in the
truly heterogeneous material, we know that we have to sample the distance to collision for a
particle at x facing direction Ω from

px(s)

(
P−1
x(s)

(
P (s,x,Ω)

))
(5.13)

with P (s,x,Ω) as the solution of (5.11). In practice this means that for every particle in a
heterogeneous domain, we have to solve (5.11) to generate a sample from the probability density
function for the distance to collision. However, there are two cases where we can avoid the high
computational costs for sampling: First in the case of generating multiple samples from one
single distribution. This would be the case when sampling the distance to collision for particles
emitted by a source, all facing the same direction. The second case deals with piecewise homo-
geneous materials. If we loosen the assumption of continuously varying material and assume
the material to be piecewise homogeneous—which is a reasonable modeling assumption—we
can avoid solving (5.11). Instead we march along the trajectory of the particle and only need
to evaluate the cumulative distribution function and its inverse for the distance to collision of
each material which we assumed to be known in the first place.

We can again validate that the generalized expression presented here reduces to the know results
for simpler cases.

Is p(s,x,Ω) a probability density function?

At every point x, we know that px(s) is a probability density function. The mapping from s
to t is one-to-one (t to P (s,x,Ω) is one-to-one and P (s,x,Ω) to s is one-to-one). Thus, with
P (s,x,Ω) = px(s)(t), also P (s,x,Ω) is a probability density function.

Is the case of a classical material treated correctly?

In the classical, possibly heterogeneous case, we have px(t)(s) = ρ(x(t))e−ρ(x(t))s, Px(t)(s) =
1− e−ρ(x(t))s, and consequently P−1

x(t)(y) = − log(1− y)/ρ(x(t)). We compute

px(s)

(
P−1
x(s)

(
P (s,x,Ω)

))
= ρ(x(s))(1− P (s,x,Ω)) (5.14)

via the inverse function theorem (IFT). The resulting ODE system is then
{
P (0,x,Ω) = 0,
d
ds
P (s,x,Ω) = ρ(x(s))(1− P (s,x,Ω)),

(5.15)
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with solution

P (s,x,Ω) = 1− e−
∫ s
0 ρ(x(s′)) ds′ .

The resulting probability density function p(s,x,Ω) is thus given by

p(s,x,Ω) = ρ(x(s))e−
∫ s
0 ρ(x(s′)) ds′ ,

which matches the known results for the classical heterogeneous case.

How is the non-classical case treated?

Next, let us consider a material that is heterogeneous because of its density fluctuations and
therefore not truly heterogeneous. For this scenario, the distribution

p(s,x,Ω) = ρ(x+ s ·Ω) p1

(∫ s

0

ρ(x+ s′ ·Ω) ds′
)

alongside the scaling

pρ(x)(s) = ρ(x) p1(ρ(x) · s) (5.16)

was introduced previously. Integrating the last expression yields Pρ(x)(s) = P1(ρ(x) · s) with
an inverse

P−1
ρ(x)(y) = P−1

1 (y)/ρ(x). (5.17)

Abusing notation, we use px(s) and pρ(x)(s) interchangeably. The ODE then satisfies

d

ds
P (s,x,Ω) = px(s)

(
P−1
x(s)

(
P (s,x,Ω)

))

= ρ(x(s)) p1

(
ρ(x(s))P−1

x(s)

(
P (s,x,Ω)

))
by (5.16)

= ρ(x(s)) p1

(
P−1

(
P (s,x,Ω)

))
by (5.17)

= ρ(x(s))
1

(P−1)′(P (s,x,Ω))
by IFT.

Rearranging terms and integrating yields

(P−1)′(P (s,x,Ω)) · d
ds
P (s,x,Ω) = ρ(x(s))

⇔ d

ds
P−1(P (s,x,Ω)) = ρ(x(s))

⇔ P−1(P (s,x,Ω)) =

∫ s

0

ρ(x(s′)) ds′

⇔ P (s,x,Ω) = P

(∫ s

0

ρ(x(s′)) ds′
)
.

Hence, for heterogeneity that results from density fluctuations, we recover the expression that
we derived previously—translating the geometric distance to the optical distance by means of
a base distribution.
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5. Non-classical transport in heterogeneous materials

Is void treated correctly?

Void regions imply a probability of zero to undergo collisions. Consequently, we have to modify
the ODE system since, for the probability density function px(t)(s) ≡ 0, there is no correspond-
ing cumulative distribution function or an inverse of it. However, because the right-hand side
of the ODE system evaluates the probability density function which maps all inputs to zero, a
natural modification of the system is given by setting

Px(s)

(
P−1
x(s)(y)

)
:= 0 (5.18)

for any void region. In this case, the value of P (s,x,Ω) will not increase within a void region,
corresponding to a zero probability of scattering events.

Another subtlety arises in the case of a particle being sourced inside a material that satisfies
px(0)(0) = 0, i.e., a zero probability of undergoing a collision immediately at the start of the
particle’s trajectory. With the previous ODE system

{
P (0,x,Ω) = 0
d
ds
P (s,x,Ω) = px(s)

(
P−1
x(s)

(
P (s,x,Ω)

)) (5.19)

and with the assumption px(0)(0) = 0 and the initial condition P (0,x,Ω) = 0 we obtain
P (s,x,Ω) ≡ 0. However, px(0)(0) = 0 has to be non-zero. Since s = 0, the last collision must
have taken place at x(0) = x. Thus, with Ω as the direction of travel away from the last
collision, −Ω points towards the obstacle that caused the collision at x, causing the particle to
collide instantaneously. Consequently, the probability to collide at s = 0 has to be nonzero.

Is the case of bounded domains treated correctly?

We restricted ourselves to unbounded domains so far. However, bounded domains can be
handled similarly. When a particle reaches the boundary ∂V of the domain V , two scenarios
are possible. Either the particle leaves the computational domain or it interacts with the
boundary ∂V . In both cases, P (s,x,Ω) is only valid for s < s∗ where s∗ is chosen such that
x + s∗ · Ω ∈ ∂V . Thus, before sampling the distance to the next collision, with probability
1−P (s∗,x,Ω), a particle is placed at the boundary (where it either interacts with the boundary
or leaves the domain) and with probability P (s∗,x,Ω) a sample s from P (s,x,Ω) for s < s∗ has
to be generated as the distance to the next collision. However, this procedure is not specifically
related to non-classical or heterogeneous transport.

5.5. Sampling path lengths

When generating samples from the distribution for the distance to the next collision, two
scenarios have to be distinguished: (i) Generating multiple samples from a single distribution,
and (ii) generating one sample per distribution for several distributions. The first scenario
corresponds to a situation where many particles are emitted at the same position, facing the
same direction (e.g., due to a source). The second, computationally more expensive scenario is
relevant when many particles face different directions. For example, these particles may have
been emitted by an isotropic source, thus the trajectories of the particles pass through different
material compositions for different directions. In both scenarios, samples will be generated via
inverse transform sampling. Here, we can again distinguish two cases. In the general case, the
material composition might be different for every point x(t) along the trajectory. The second
case, which is more reasonable in applications, assumes that a particle faces a trajectory along
which the material is piecewise homogeneous, illustrated in Figure 5.4.
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5.5. Sampling path lengths

5.5.1. The general case

In both cases we will assume that px(t)(s), Px(t)(s), and P−1
x(t)(s) are available for all materials

within the domain. To generate a single sample for the trajectory of one particle, the evolution
equation for P (s,x,Ω) has to be solved until a value u is reached which was sampled from a
uniform distribution on [0, 1] in advance. This procedure is put into pseudocode in Algorithm
5.1. Undeniably too expensive, we provide this algorithm only for completeness. More relevant
for practical applications are Algorithms 5.2 and 5.3.

Algorithm 5.1 Generating a single sample in the general case.

1: function SingleSample(x(t), px(t)(s), Px(t)(s), P
−1
x(t)(s) )

2: u ∼ U [0, 1]
3: Solve (5.11) for s∗ such that P (s∗,x,Ω) = u
4: return s∗

If we instead decide to generate multiple samples from a single distribution, we can solve the
ODE once and evaluate the inverse of P (s,x,Ω) (inverse with respect to the first argument)
arbitrarily often afterwards. Since we evaluate P−1(u,x,Ω) for u ∈ [0, 1), we have to solve
the ODE up until a final distance P (s∗,x,Ω) = 1 − ε for some 0 < ε � 1. Note that we
can not solve the ODE up until P (s∗,x0,Ω) = 1, since this would be the case for s∗ = ∞.
From the solution of the ODE, we can create a lookup table that lets us evaluate P−1(u,x,Ω).
Following this precomputation, the requested number of samples can be generated by evaluating
P−1(ui,x,Ω) for ui sampled from U [0, 1−ε] and i ranging from one to the number of requested
samples, illustrated in Algorithm 5.2.

Algorithm 5.2 Generating multiple samples in the general case.

1: function MultipleSample(ε, n,x(t), px(t)(s), Px(t)(s), P
−1
x(t)(s) )

2: Solve (5.11) up to s∗ such that P (s∗,x,Ω) ≤ 1− ε
3: T = lookup table(P−1(u,x,Ω)) for u from 0 to 1− ε
4: y = zeros(n)
5: for i = 1, · · · , n do
6: ui ∼ U [0, 1− ε]
7: y[i] = T (ui)

8: return y

5.5.2. Sampling in piecewise homogeneous materials

For piecewise homogeneous, non-classical materials, the computational costs for generating
samples reduces dramatically. In the following, we will derive a formulation for the sampling
procedure that allows to generate samples for the distance to the next collision for particles by
iteratively tracking their trajectories through the spatial domain without having to solve the
previous ODE system.

As illustrated in Figure 5.4, we assume a setting where a particle traverses different materials,
each defined by pi(s) and Pi(s). The distance from x to the i−th interface is given by si, with
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5. Non-classical transport in heterogeneous materials

Algorithm 5.3 Generating a single sample in the piecewise homogeneous case (without void).

1: function SingleSamplePiecewise(si, pi(s), Pi(s), P−1
i (s) for all materials i

along the particle’s trajectory)
2: i = 0, y = 0.0, t = 0.0
3: u ∼ U [0, 1]
4: while True do
5: Solve u = Pi+1(s− t+ P−1

i+1(y)) for s
6: if s ∈ [si, si+1) then
7: return s
8: else
9: y = Pi+1(si+1 − t+ P−1

i+1(y))
10: t = si+1

11: i = i+ 1

s0 = 0. For s ∈ [0, s1), we write




P (0,x,Ω) = 0,
d
ds
P (s,x,Ω) = px(s)(P

−1
x(s)P (s,x,Ω)))

= p1(p−1
1 (P (s,x,Ω))) = 1/(P−1

1 )′(P (s,x,Ω)).

(5.20)

The last line is equivalent to

(P−1
1 )′(P (s,x,Ω)) · d

ds
P (s,x,Ω) =

d

ds
P−1

1 (P (s,x,Ω)). (5.21)

Thus,

P−1
1 (P (s,x,Ω)) = s+ c1 (5.22a)
⇔ P (s,x,Ω) = P1(s+ c1). (5.22b)

Since P (0,x,Ω) = 0, we have c1 = 0, i.e., P (s,x,Ω) = P1(s) for s ∈ [0, s1). Next, assume a
particle to be at the interface between material i and i+ 1, having already traveled a distance
si. The value P (x,Ω, si) = yi is known. For s ∈ [si, si+1) we write

{
P (si,x,Ω) = yi,
d
ds
P (s,x,Ω) = 1/(P−1

i+1)′(P (s,x,Ω)),
(5.23)

or with P̃ (s̃,x,Ω) = P (si + s̃,x,Ω) = P (s,x,Ω)
{
P̃ (0,x,Ω) = yi,
d
ds̃
P̃ (s̃,x,Ω) = 1/(P−1

i+1)′(P̃ (s̃,x,Ω)).
(5.24)

We solve for P̃ (s̃,x,Ω) to get

P̃ (s̃,x,Ω) = Pi+1(s̃+ ci+1) (5.25)

Then, ci+1 = P−1
i+1(yi) and consequently

P (s,x,Ω) = P̃ (s̃,x,Ω) (5.26a)
= Pi+1(s̃+ P−1

i+1(yi)) (5.26b)
= Pi+1(s− si + P−1

i+1(P (si,x,Ω))), (5.26c)
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Figure 5.9.: Life cycle of correlated and uncorrelated particles in the heterogeneous case.

for s ∈ [si, si+1). With P (s) = Pi+1(s − si + P−1
i+1(P (si,x,Ω))) inverse transform sampling is

easy: Finding s∗ such that P (s∗,x,Ω) = u can be solved by iteratively evaluating the expression
in (5.26c) and checking whether the argument of Pi+1 lies within [si, si+1). The procedure is
written out as pseudocode in Algorithm 5.3.

5.6. Correlated and uncorrelated particles with
heterogeneities

Having discussed heterogeneities, we are now equipped with the necessary tools to reconsider
the notion of correlated and uncorrelated particles—this time for heterogeneous materials. A
correlated particle follows potentially different dynamics than an uncorrelated particle. Recall,
for example, the obstacle field that resulted from a Poisson disk sampling procedure, where
scatterers obey a certain minimal distance. A particle that is placed at a random position
inside the obstacle field might collide after traveling a distance smaller than the minimal distance
between scatterers; something that is not possible for a particle that just underwent a collision.

If that particle now moves from one homogeneous subdomain into another, it again behaves
like a particle that was randomly seeded at the interface between two materials, agnostic to a
minimal distance between scatterers. It became, ipso facto, an uncorrelated particle. The notion
of correlated and uncorrelated particles is therefore intertwined with the memory-resetting
ansatz. Crossing a domain interface, a particle becomes indistinguishable from a particle that
is sourced at the same position (with the same direction).

This naturally defines interface conditions for the heterogeneous case. Consider the situation
in Figure 5.10. For a domain that spans all of R2, we place an interface at x = 0. Quantities
on the left (or right) side of the interface are denoted with an additional superscript L (or R).
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x = 0

ψLu , ψ
L
c

σLu , σ
L
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Figure 5.10.: An infinite, heterogeneous domain with an interface at x = 0.

The equations for both sides of the domain are then given by

∂sψ
L
u (s,x,Ω) + Ω · ∇xψ

L
u (s,x,Ω) + σLt,u(s)ψ

L
u (s,x,Ω) = δ(s)QL

u(x), (5.27a)

∂sψ
L
c (s,x,Ω) + Ω · ∇xψ

L
c (s,x,Ω) + σLt,c(s)ψ

L
c (s,x,Ω)

= c δ(s)

∫ ∞

0

∫

4π

s(Ω′ ·Ω)
[
σLt,c(s

′)ψLc (s′,x,Ω′) + σLt,u(s
′)ψLu (s′,x,Ω′)

]
dΩ′ ds′,

(5.27b)

for x ≤ 0, and

∂sψ
R
u (s,x,Ω) + Ω · ∇xψ

R
u (s,x,Ω) + σRt,u(s)ψ

R
u (s,x,Ω) = δ(s)QR

u (x), (5.28a)

∂sψ
R
c (s,x,Ω) + Ω · ∇xψ

R
c (s,x,Ω) + σRt,c(s)ψ

R
c (s,x,Ω)

= c δ(s)

∫ ∞

0

∫

4π

s(Ω′ ·Ω)
[
σRt,c(s

′)ψRc (s′,x,Ω′) + σRt,u(s
′)ψRu (s′,x,Ω′)

]
dΩ′ ds′,

(5.28b)

for x ≥ 0. Interface conditions describe how particles—correlated and uncorrelated ones—that
leave the domain become uncorrelated particles with s = 0 for the domain they move into.
They are given by

ψLu (0,Ω, s) = δ(s)

∫ ∞

0

ψRu (0,Ω, s′) + ψRc (0,Ω, s′) ds′ for Ω · nL < 0, (5.29a)

ψLc (0,Ω, s) = 0 for Ω · nL < 0, (5.29b)

ψRu (0,Ω, s) = δ(s)

∫ ∞

0

ψLu (0,Ω, s′) + ψLc (0,Ω, s′) ds′ for Ω · nR < 0, (5.29c)

ψRc (0,Ω, s) = 0 for Ω · nR < 0. (5.29d)

This single-interface example can easily be generalized to arbitrary complex geometries. Con-
sider therefore a heterogeneous domain V̄ ⊂ Rd with d ∈ {1, 2, 3}, and assume V̄ = ∪Ni=1V̄i,
with all open Vi being homogeneous and Vi ∩ Vj = ∅ if i 6= j. Let ∂V denote the boundary
of V̄ . With ∂Vi = ∂V I

i ∪ ∂V Γ
i we divide the boundary of V̄i into interface boundaries ∂V I

i

and non-interface boundaries ∂V Γ
i . The interior indicator function χin satisfies χin(x) = i iff
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5.6. Correlated and uncorrelated particles with heterogeneities

x ∈ Vi. The outward pointing normal of V̄i is ni(x) for x ∈ ∂Vi. For x ∈ ∂V I
i ∩ ∂V I

j , the
exterior indicator function χex satisfies χex(i,x) = j if ni(x) = −nj(x), i.e. V̄j neighbors V̄i
at x. All cross sections, sources, and the angular fluxes receive a subscript for the respective
domain that they are restricted to. Abusing notation, l(x,Ω) denotes now the distance to the
next boundary or interface, whichever is closer.

The backward formulation

We start with the backward formulation where s represents the distance since the last event.
All non-interface boundaries require boundary conditions for the incoming angular flux, given
for i = 1, . . . , N by

ψic(s,x,Ω) = 0 for Ω · ni(x) < 0 and x ∈ ∂V Γ
i , (5.30a)

ψiu(s,x,Ω) = δ(s)ψbcu (x,Ω) for Ω · ni(x) < 0 and x ∈ ∂V Γ
i . (5.30b)

Interface conditions for i = 1, . . . , N are the generalization of (5.29), i.e.,

ψic(s,x,Ω) = 0 for Ω · ni(x) < 0 and x ∈ ∂V I
i , (5.31a)

ψiu(s,x,Ω) = δ(s)

∫ l(x,Ω)

0

ψχex(i,x)(s′,x,Ω) ds′ for Ω · ni(x) < 0 and x ∈ ∂V I
i , (5.31b)

with ψχex(i,x)(s′,x,Ω) = ψ
χex(i,x)
u (s′,x,Ω) +ψ

χex(i,x)
c (s′,x,Ω). Transport for the correlated and

uncorrelated flux is described cell-wise for x ∈ V̄i via

∂sψ
i
u(s,x,Ω) + Ω · ∇xψ

i
u(s,x,Ω) + σit,u(s)ψ

i
u(s,x,Ω) = δ(s)Qi

u(x), (5.32a)
∂sψ

i
c(s,x,Ω) + Ω · ∇xψ

i
c(s,x,Ω) + σit,c(s)ψ

i
c(s,x,Ω)

= c δ(s)

∫ l(x,Ω)

0

∫

S2
s(Ω′ ·Ω)

[
σit,c(s

′)ψic(s
′,x,Ω′) + σit,u(s

′)ψiu(s
′,x,Ω′)

]
dΩ′ ds′.

(5.32b)

Summarizing, we can model non-classical linear transport in heterogeneous media via the
boundary conditions (5.30), the interface conditions (5.31), and the transport equations (5.32).

The forward formulation

Recall the forward formulation of non-classical transport in its simplest form

−∂sf(s,x,Ω) + Ω · ∇xf(s,x,Ω) = c p(s)

∫

S2
s(Ω′ ·Ω)f(0,x,Ω′) dΩ′, (5.33)

equipped with the boundary condition

f(s,x,Ω) = p(s)f bc(x,Ω) for Ω · n(x) < 0 and x ∈ ∂V Γ, (5.34)

and s now interpreted as the distance to the next interaction. To model heterogeneous trans-
port, we again need to distinguish correlated from uncorrelated particles and consider interface
conditions. As with the backward formulation, we assume that the memory of particles is lost
when crossing a domain interface. Consequently, we need to re-sample the distance to colli-
sion in the forward formulation. With the same spatial domain as before, we end up with the
equations that follow next.
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5. Non-classical transport in heterogeneous materials

Since particles enter the domain uncorrelated, boundary conditions are given by

f ic(s,x,Ω) = 0 for Ω · ni(x) < 0 and x ∈ ∂V Γ
i , (5.35a)

f iu(s,x,Ω) = piu(s)f
bc
u (x,Ω) for Ω · ni(x) < 0 and x ∈ ∂V Γ

i . (5.35b)

The interface conditions for i = 1, . . . , N read

f ic(s,x,Ω) = 0 for Ω · ni(x) < 0 and x ∈ ∂V I
i , (5.36a)

f iu(s,x,Ω) = piu(s)

∫ l(x,Ω)

0

fχex(i,x)(s′,x,Ω) ds′ for Ω · ni(x) < 0 and x ∈ ∂V I
i , (5.36b)

with fχex(i,x)(s′,x,Ω) = f
χex(i,x)
u (s′,x,Ω) + f

χex(i,x)
c (s′,x,Ω). Transport for the correlated and

uncorrelated flux is then described cell-wise for x ∈ V̄i via

−∂sf iu(s,x,Ω)+Ω · ∇xf
i
u(s,x,Ω) = piu(s)Q

i
u(x), (5.37a)

−∂sf ic(s,x,Ω)+Ω · ∇xf
i
c(s,x,Ω) = c pic(s)

∫

S2
s(Ω′ ·Ω)

[
f ic(0,x,Ω

′) + f iu(0,x,Ω
′)
]
dΩ′.

(5.37b)

Cross sections and path length distributions are connected as before.

This added complexity obviously comes at a cost. Evolving two distributions in time inevitably
doubles the computational complexity. To justify this, experimental work is necessary that
quantifies the improvements that a distinction between correlated and uncorrelated particles
can achieve.
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Part III.

Concluding remarks
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6. Summary

As already hinted in this document’s name, we have covered two topics—classical and non-
classical transport—with three different perspectives—theory, modeling, and numerics.

The initial microscopic description of transport in Chapter 1 was not only crucial in under-
standing the origin of kinetic theory, it also highlighted how different modeling assumptions
lead to different governing equations. This has manifested itself throughout Part II: Changing
the scatterers’ positions from completely random to a lattice structure fundamentally changed
the dynamics of particle transport, requiring a completely new set of governing equations.

Moreover, the particle billiard game of Chapter 1 directly motivated the Monte Carlo method
as one member of the class of numerical algorithms to solve the transport equation that were
presented in Chapter 2.

We discussed the crucial role of spherical quadratures for the discrete ordinates method and
presented quadratures that are based on the triangulation of Platonic solids, resulting in a
highly uniform distribution of quadrature points on the unit sphere.

The underlying connectivity of these quadratures was imperative to the successful realization
of the rSN method. Together with as-SN , these two ray effect mitigation techniques drastically
reduced the spurious oscillations that are inherent to the discrete ordinates method.

We saw in Chapter 3 that ray effects are a result of incorrect computation of the spherical
integral. The rSN and as-SN method both circumvent this problem to an extend where it is
possible to (i) either gain a significant boost in accuracy while keeping the runtime constant,
or (ii) reduce the runtime while keeping the solution quality virtually unaltered.

The introduction of non-classical particle transport in Chapter 4 allowed us to tackle questions
around non-classical transport in heterogeneous materials. Throughout Chapter 5, we provided
different ansätze to model the behavior of particles that cross material interfaces; each obeying
different theoretical requirements. The existing notion of correlated and uncorrelated particles
was also extended to include heterogeneities.

Let us now discuss the main results of the different chapters in more detail. Acknowledging the
introductory nature of Chapter 1, we start with Chapter 2.

Numerical solution methods

Three different solution methods for transport equations, as well as their main ingredients were
presented and analyzed.

For the Monte Carlo method, we discussed ways to efficiently sample random numbers, e.g.,
via inverse transform sampling or rejection sampling. Moreover, we discussed the advantages
and disadvantages of interpreting Monte Carlo as a numerical integrator that can be used to
approximately solve the transport equation.

The main focus was on the discrete ordinates method where we started with a discussion of
quadrature sets. The octahedron- and icosahedron-based quadratures (Camminady, Frank, and
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Kusch [22]) have three desirable properties: (i) Arbitrary many quadrature points with strictly
positive quadrature weights can be generated at low costs; (ii) the ratio between the maximal
and minimal quadrature weight can be kept at around 2.0 and below 1.5 for the icosahedron
lerp and slerp versions, respectively; and (iii) the resulting triangulation can be used to easily
interpolate function values at points that are not included in the original quadrature set.

For transport sweeps as one of the ways to solve the system of SN equations, we have proven
that it is always possible to find an ordering that allows us to march through all spatial cells
while considering the involved dependencies.

Representing the class of moment methods, we have seen that the PN method can be used
to obtain symmetrical solutions, albeit at the cost of oscillations that can render the solution
negative.

Ray effects and their mitigation

With the help of a simple experiment, we have seen that ray effects are ultimately not the
result of restricting transport to a fixed set of ordinates. Even in cases where we can solve
for the angular flux ψ(t,x,Ω) exactly (or at least up to machine precision), ray effects in the
scalar flux φ(t,x) are omnipresent. Instead, the occurrence of these numerical artifacts can be
attributed to the inexact approximation

∫

S2
ψ(t,x,Ω′) dΩ′ ≈

nq∑

q′=1

wq′ ψ(t,x,Ωq′).

Both the presented rSN method (Camminady, Kusch, Frank, and Küpper [21]) and the as-SN
method (Frank, Kusch, Camminady, and Hauck [37]) mitigated this problem by making the
angular flux easier to integrate, once via additional angular diffusion and once with the help of
artificial scattering.

By adding a rotation-and-interpolation step to the standard SN method, the rSN method sig-
nificantly reduced ray effects in the line-source problem and the lattice test case. The solution
quality of the scalar flux that is computed with the rSN method is on par with that of the
SN method with up to three times the number of quadrature points. Adding the rotation-and-
interpolation step only marginally increases the runtime of the SN method (by up to approxi-
mately 10% in our implementation). A drawback of the rSN method is the change of ordinates
between two consecutive time steps. As a result, the order of transport sweeps needs to be
recomputed which might create a bottleneck in highly optimized, many-core implementations
on large-scale computers. However, forth-and-back rotations with two interpolation steps have
the potential to overcome this problem by keeping the quadrature set fixed.

The as-SN method altered the transport equation by including an additional scattering term
with scattering kernel

sε(µ) =
2√

π εErf
(

2
ε

) exp

(
−(1− µ)2

ε2

)
.

Asymptotically, this forward-peaked type of scattering effectively behaves like a Fokker-Planck
operator. Furthermore, the choice ε = β/nq ensured that the added effect vanishes in the limit
of nq →∞ as we recover the original SN equations. Together with σas, the as-SN method then
requires the user to select two parameters. For the line-source test case, we have seen an error
reduction in the scalar flux of a factor four. Transferring the same pair of optimal parameters
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to the lattice test case on a significantly finer grid (in space, angle, and time) still reduced the
error down to 72% of the original error. This indicated that both different test cases as well as
different discretizations can be used as a surrogate model with which optimal parameters can
be derived at low costs before applying them to the actual test case of interest.

Since the as-SN method does not change the initial ordinates, it is potentially better suited for
optimized codes than the rSN method.

Non-classical transport equations

This chapter introduced the non-classical transport equation in its forward and backward for-
mulation. Several examples and numerical experiments revealed discrepancies between the the
behavior predicted by classical transport and the observations that are made. A transforma-
tion between both formulations is possible (Larsen, Frank, and Camminady [57]), and we can
equivalently encode the non-classical dynamics in s-dependent cross sections or non-exponential
path length distributions.

Furthermore, the existing concept of correlated and uncorrelated particles was presented, indi-
cating the necessity to differentiate between particles that have already collided with scatterers
from those that have not.

Non-classical transport in heterogeneous materials

Different ways to model material heterogeneities were introduced and juxtaposed. Depending
on the model, we were able to argue for a preservation or a reset of the particles’ memory. For
both cases, we extended the non-classical cross sections and path length distributions to include
material heterogeneities (Camminady, Frank, and Larsen [20]). In the more complicated setting
of true heterogeneity in which the particles’ memory should be preserved, the ODE system

{
P (0,x,Ω) = 0,
d
ds
P (s,x,Ω) = px(s)(P

−1
x(s) (P (s,x,Ω)))

had to be solved in order to generate samples of the path length distribution. Since this is
costly, we provided efficient sampling strategies, applicable to (reasonably) simplified scenarios.
Additionally, we discussed a series of sanity checks to investigate the validity of the proposed
distribution.

Lastly, the notion of correlated and uncorrelated particles was extended to include material
heterogeneities as well. Particles that cross a material interface enter the new domain as
uncorrelated particles—ultimately, this was the reason to not adopt the notion of collided and
uncollided particles. As a result, two species of particles are described by two coupled non-
classical transport equations.
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7. Outlook

The presented ray effect mitigation techniques are implemented in a Julia research code that
cannot be used to make predictions about the effectiveness of both methods on large-scale
computing systems. An integration of both methods into production-ready software is therefore
necessary to investigate both methods on a more quantitative level—rather than the more
qualitative studies included in this thesis.

Complexity that arises from adding energy-dependency, unstructured meshes, or high-order
time-integration is another hurdle that needs to be tackled as a logical next step. Several
improvements, especially for the as-SN method are apparent. (i) A more granular tuning
of the amount of artificial scattering is desirable. The artificial scattering strength σas can
become space-dependent. Moreover, work that researches whether it is sufficient to only add
artificial scattering temporarily is underway. (ii) Whether it is possible to transfer optimal
parameter sets from low-cost surrogate models to the actual high-cost simulation needs to be
tested more broadly. To promote the as-SN method as a reliable ray effect mitigation technique,
it is necessary to provide guidance on how to choose the involved parameters optimally and
efficiently. (iii) For the rSN method, changing ordinates in every time-step might impact the
sweeping procedure too severely to prove useful. If this is the case, versions of the rSN method
that do not suffer from this problem need to be investigated more rigorously. For example,
instead of rotating once per time step, it is possible to perform two rotations—once forth, once
back—in every time step with half the rotation magnitude. This has already been discussed,
but not further analyzed.

For the rSN and as-SN method, certain test cases might be especially ill-suited. For example,
in settings where particles are expected to advect freely through certain parts of the domain
due to σt being small, the added diffusion and artificial scattering are problematic. For the
as-SN method, this relates to the previous point (i), i.e., the necessity to make σas space-
dependent. For the rSN method this is more difficult, because the rotation magnitude is identical
in every spatial cell—at least in the standard rSN method. For the rSN method with forth-and-
back rotations, the rotation magnitude can become space-dependent, since the set of ordinates
effectively remains unchanged. For time-dependent problems, the parameters of both rSN and
as-SN can theoretically become time-dependent, too. However, this was not investigated in this
work and future research is necessary.

Current research on angular adaptivity for the SN method has shown promising results [31].
The angular quadrature set is refined or coarsened in different areas of the spatial domain and
at different time steps. The filtered spherical harmonics method is used as an error indicator,
telling the algorithm where to refine or coarsen the angular mesh. This error indicator can, in
theory, be used for the as-SN or rSN method as well, indicating regions that require artificial
scattering or rotation, respectively.

Compared to classical transport, non-classical transport theory is still in its infancy. Here too,
quantitative studies are necessary to understand the effect that s-dependent cross sections or
non-exponential path length distributions have on real-world problems. So far, mostly the
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7. Outlook

Monte Carlo method has been explored as a way to solve the non-classical transport equation.
However, non-classical time-independent transport is structurally similar to time-dependent
classical transport. Whereas time only increases, the path length s gets reset after every
collision (in the backward formulation). Nevertheless, if we rewrite the backward formulation
as

{
∂sψ(s,x,Ω) + Ω · ∇xψ(s,x,Ω) + σt(s)ψ(s,x,Ω) = 0,

ψ(0,x,Ω) =
∫ l(x,Ω)

0

∫
S2 c σt(s

′)s(Ω′ ·Ω)ψ(s′,x,Ω′) dΩ′ ds′ +Q(x),

we can add indices l and l − 1 to the equation to obtain
{
∂sψ

l(s,x,Ω) + Ω · ∇xψ
l(s,x,Ω) + σt(s)ψ

l(s,x,Ω) = 0,

ψl(0,x,Ω) =
∫ l(x,Ω)

0

∫
S2 c σt(s

′)s(Ω′ ·Ω)ψl−1(s′,x,Ω′) dΩ′ ds′.

With ψ0(s,x,Ω) ≡ Q(x), we can solve this system repeatedly with a standard SN solver. In
this formulation, ψl+1 relates to those particles that have scattered at most l times. Assuming
convergence due to sufficient absorption, ψL(s,x,Ω) ≈ ψ(s,x,Ω) for a sufficiently large L. True
when moving from classical to non-classical transport, the added complexity of the distinction
between correlated and uncorrelated particles needs to be quantified, too.

Next is the topic of heterogeneities. Ultimately, the proposed distributions need to be validated
by means of real-world, physical experiments or computer simulations. Actually simulating
trajectories of particles throughout a heterogeneous field of non-classically arranged scatterers
and tallying those that do cross a domain interface is computationally expensive, if a sufficient
statistics is to be achieved. This procedure gets more complicated when acknowledging the
fact that we have limited knowledge about non-classical arrangements of scatterers. For ex-
ample, algebraic decay of the path length distribution for the periodic Lorentz gas is observed
only asymptotically. However, it does seem as if this is problem is conquerable by efficient
implementations of the particle billiard games mentioned throughout this thesis.

The computer graphics community has been using non-exponential transport as a tool that
enhances the artistic degree of freedom when creating renders [14, 48]. The s-dependent cross
sections are chosen freely, without considering whether they correspond to a certain arrangement
of obstacle. Understanding which cross sections (and path length distributions) are the result of
actual arrangements of scatterers might prove fruitful beyond mathematical curiosity: It enables
us to better understand the physical world around us and make simulations and renders more
accurate.
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