
Model-driven�anti�cation of Correctness with
Palladio and KeY

Frederik Reiche Jonas Schi� Alexander Weigl
Robert Heinrich Bernhard Beckert Ralf Reussner

December 2020

Abstract

In this report, we present an approach for the quanti�cation of correct-
ness of service-oriented so�ware systems by combining the modeling tool
Palladio and the deductive veri�cation approach KeY.

Our approach uses Palladio for modeling the service-oriented architec-
ture, the usage scenarios of the system (called services) in particular, and
the distribution of values for the parameters provided by the users. �e
correctness of a service is modeled as a Boolean condition. We use Palladio
to compute the probability of a service being called with critical parameters,
i.e. , in a way that its correctness condition is violated. �e critical parameters
are computed by KeY, a deductive veri�cation tool for Java. �e approach is
not limited to KeY: Other techniques, such as bug �nding (testing, bounded
model checking) can be used, as well as other veri�cation tools.

We present two scenarios, which we use as examples to evaluate the
feasibility of the approach. Finally, we close with remarks on the extension
to security properties. Furthermore, we discuss a possible approach to guide
developers to locations of the code that should be veri�ed or secured.

1 Introduction

�e assessment of the safety and security of a complex so�ware system can
not be a binary decision. �ere are too many obstacles to give an informed
and de�nite decision: First, not all artifacts of deployed components may be
accessible, especially if the so�ware models and source code are provided by a
third party. Second, the so�ware sub-systems and also the complete deployed
so�ware architecturemight be too complex to test, verify and validate as a complete
system. �ird, a sub-system might be secure and safe under isolated analysis,
but this analysis is only valid under assumptions on the use and deployment
of the component. �ese assumptions need to be ensured by the component’s
environment (other components, databases, �le storage, etc.), which might be
infeasible. Fourth, so�ware is under a steady pressure to evolve. Adaptions are
needed for new use cases, or when bug �xes are necessary. �is leads to (partial)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/382463951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

changes within the deployed so�ware system, and sub-systems which might have
been safe can become vulnerable.

In this report we investigate how quantitative analysis of safety and security
properties can be carried out by using the capabilities of Palladio and KeY. Palladio
is a modelling tool for so�ware. In our approach it covers the architectural view
of the system, whereas KeY, an interactive theorem prover, covers the analysis on
the source code level. We combine both tools to achieve an inference machine
for the following query: “With which probability does a typical usage of the system
lead to an error?”. For this purpose, KeY is used to �nd under which conditions,
de�ned by parameter values or value-regions, a method provides erroneous results
or behaviour. �ese conditions are then projected into the Palladio model of the
system. Based on a usage pro�le and the system model enriched with the error
conditions, the probabilities to reach the critical methods and also provide the
parameter values to trigger an error are calculated. We also discuss, how and to
what degree this approach can be used to guide developers to parts of the system
that can be of more interest for �xing the found errors than others. Furthermore,
several enhancements are discussed to increase the capabilities of the approach.

2 Combining Architecture with Program Veri�cation

In this report we present a new approach for continuous evaluation of the current
operational risk of a (to be) deployed complex so�ware system. �e approach
combines an architectural modeling of the so�ware components and the validation
of single services.

�e single services are validated using testing techniques or formal veri�cation.
Furthermore, observations during operation, e. g., monitoring of errors, could be
used. �ese validation results can also be modeled by the so�ware engineer. For
example, approach utilizing the models of a so�ware engineer is useful when a
service is not yet implemented in an early development stage. �e results of the
validation are in the shape of a Boolean expression over the input variables of the
service. �e expression describes the set of critical parameter combinations which
have a potentiality for a system crash or the execution of erroneous behaviour. For
the analysis, we assume calling a service with an input value of a critical region
leads to an error.

�e validation results are a local assessment of services, for a global view on the
complete composed so�ware system we use structural and behavioral modeling
of Palladio’s diagrams. For a precise risk assessment, we rely on usage models
of the services. A usage model describe a usage scenario of the system from the
perspective of a user of the public API. �e usage model consists of a probabilistic
�ow chart which contains service calls, branches and loops. Probabilities are used
to describe the distribution of taking branches and the distribution of the values
of input parameters of the services.

�e approach is applicable in the early stages of so�ware development, even

2

before the testing and validation phase, as well as during the operation. In the
early stages, the usage model and critical parameters is mainly guessed by the
developers. �ese guesses are replaced by testing and veri�cation results before the
deployment, and in operation the usagemodel is updated bymonitored information
of the running system. �is makes the approach incremental: Information that
is gathered in di�erent phases, like run-time errors, new tests and veri�cation
results, lead to preciser critical regions and to a be�er risk assessment.

2.1 Modeling with Palladio

Palladio is a modeling tool coming with an own notion of service-driven archi-
tecture. In the Palladio Component Model (PCM), a so�ware consists out of
independent components, which provides services either to the user or to other
components. A service can be considered as a functionality which can be called on
a component given the service name and parameters—similar to a method invoca-
tion. �e PCM provides a greybox perspective on component where only a rough
approximation about the internal behavior of a called service can be represented.

We use four di�erent models of Palladio in our approach: (1) In the repository
model, we de�ne the available components along with their provided and required
services. (2) A system model provides the assembly of several components to one
system. �e system itself provides services to external users that are delegated
to internal components which also provide them. �e system model therefore
speci�es which components of the repository model are used in a system. Further-
more, the system model speci�es which components interact with the others by
specifying connection between their provided and required interface roles. (3) �e
usage models describe how the system is used in the sense of which public services
are called by users from the outside of the system. �e usage model therefore
captures the observation how the system were used or is expected to be used. �e
usage model describes the usage of a system as a sequence of service calls, branches
for expressing di�erent behaviour possibilities and loops for modelling repeated
calls. �e number of loop-iterations and the probabilities for taking a branch are
speci�ed by probabilities. Also, possible parameter-values that are used as an input
for a service have to be speci�ed for each service call. �e values of the parameters
of a call to the system services can be described through stochastic expressions.
�ese expressions are mathematical expressions which describe a distribution
of a variable. �ey can contain pre-de�ned probabilistic distributions, or other
variables and constants. (4) �e behavior of a service provided by a component
is described by an activity diagram, called Service E�ect Speci�cation (SEFF). A
SEFF allows basic control structures like branches and loops, where the branch- or
loop-condition can depend on the parameters of the service. �ese conditions are
stochastic expression.

�e Palladio tool provides a reasoning machine, the DependencySolver, which
determine the entry probability of branches and services calls based for a given
usagemodel. �emain task of the reasoning is to combine the usagemodel with the

3

SEFFs of the called services by propagating the probabilities of the input variables
from the usage model into the SEFFs. With this approach, the DependencySolver
calculates for each stochastic expression in a SEFF the probabilities. �is especially
includes stochastic expressions that depend on parameters.

2.2 Veri�cation result of KeY

KeY is a deductive veri�cation system for Java programs. �us, it enables us to
verify (formal) properties, speci�ed in the Java Modeling Language (JML) contracts,
of Java programs. A contract mainly consists of a pre- and post-condition.

In our approach, we exploit KeY’s reasoning capabilities to infer precise critical
regions. �ese critical regions consist of the conditions of program paths for which
the post-condition can not be established. Due to the semi-decidability of �rst
order theorem proving, these program paths might actually be correct, even though
a proof could not be found. We denote the critical region with RE = model(rE)
which we describe as a formula rE over the input parameters of the service.

rE := ¬pre ∧
∨
i

cond(pathi)

Every model of rE is a potential input parameter combination which could lead
to a potential failure of the service.

2.3 Analysis outcome

Given a usage model U , we compute the entry probability of a failure. Semi-
formally:

P (E | U) = probability that an error occurred

An error occurs if we call a service with parameters in its critical region.

3 Scenario: Maturity

In this scenario, we consider a small critical component of a web shop: the deter-
mination if the buyer is mature. �e age of maturity depends on the country and
sometimes also on the state (for U.S.). So the system provides a service, which
takes the year of birth and the current country code and decides whether a given
person is mature. Internally, this system contains two sub-components, the �rst
one computes the age given the year, the second computes the maturity given age
and country (cf. Fig. 4).

PalladioModels. �e repository view in Fig. 1 shows the structural overview of
our system: It contains three service descriptions (interfaces) and three components.
�e AgeOfMaturity is the publicly provided service, which requires the services

4

AgeCalculator

SEFF <getAge>

PassiveResourceCompartment

ComponentParameterCompartment

MaturityCalculator

SEFF <isMature>

PassiveResourceCompartment

ComponentParameterCompartment

PersonAge

int getAge(int yearOfBirth)

Maturity

bool isMature(int age, int country)

AgeOfMaturityCalculator

SEFF <isMature>

PassiveResourceCompartment

ComponentParameterCompartment

AgeOfMaturity

bool isMature(int yearOfBirth, int country)

<<Provides>><<Provides>>

<<Provides>>

<<Requires>>

<<Requires>>

Figure 1: Structural view of the components and implemented services

Figure 2: �e usage model

5

P (country = EGY) = 0.0125 P (country 6= EGY) = 0.9875

P (yearOfBirth = 1910) = 0.01 P (yearOfBirth = 1990) = 0.2145

P (yearOfBirth = 2000) = 0.187 P (yearOfBirth = 2001) = 0.187

P (yearOfBirth = 2002) = 0.187 P (yearOfBirth = 2010) = 0.2145

Figure 3: �e propability distribution for yearOfBirth and country

PersonAge and Maturity. AgeOfMaturity is implemented in the component
AgeOfMaturityCalculator.

In Fig. 2, we present the usage model of our scenario. �e usage model contains
a simple sequential work�ow, describing a single call of the public provided service
AgeOfMaturity. Moreover, it describes the expected distribution of the parameters.
For the analysis we assume following probabilities for the parameter country and
yearOfBirth. Due to limitations of Palladio, it is not possible to de�ne probabilities
of value ranges or over any distribution. �e probability distribution is a mixture
of dirac impulses as seen in Fig. 3.

For any other birth year the probability is zero.

�eprogram code of the service. �e implementation of the component Matu-
rityCalculator is given in Fig. 4. It is not immediately obvious whether this
program is correct.

�e veri�cation with KeY reveals the condition for the critical region of this
service. �e service is incorrectly implemented for Egypt, and it is not able to
handle an age over or equal to 100:

rE(MaturityCalc.) := age ≥ 100∨(country = EGY ∧(18 ≤ age ≤ 20)) (1)

�e critical region for the AgeCalculator is empty: rE(AgeCalculator) = false .
�e method contract in Fig. 4 expresses that country must be a valid country

code (integer) and age is greater than 0. And should compute the valid maturity
given as the predicate isMature. �e assignable directive forbids a change on the
heap.

Modeling the Critical Regions. We need to bring the critical regions of each
service into the PCM. For this we modify the SEFFs of the services by adding
new branches with guards matching the the critical region. An example for this
modi�cation is depicted in Fig. 5. �e whole behavior of the SEFF is duplicated in
the “error branch” and in the “non error branch”. �e “error branch” has the exact
condition (1), where the “non error branch” contains the negated expression to
generate a clear separation. �e bene�t of encapsulating the whole behavior is,
that the probabilities for successive and nesting branches or calls can be calculated

6

1 /*@ requires AFG <= country && country <= CYP;
2 @ requires 0 <= age;
3 @ ensures \result <==> isMature(country,age);
4 @ assignable \strictly_nothing; */
5 public boolean isMatureWrong(int country, int age) {
6 if(age > 100) assert false;
7 if(age == 100) throw IllegalArgumentException();
8 switch(country) {
9 case IRN: return age >= 15;
10 case YEM, KGZ, NP, TKM, UZB, VNM:
11 return age >= 16;
12 case DZA, KOR: return age >= 19;
13 case THA, TWN, ARE, NZL,
14 JPN:
15 return age >= 20;
16 case BHR, BDI, CIV, GIN, HND, CMR, LSO,
17 NAM, SLE, SGP, SWZ:
18 return age >= 21;
19 default:
20 return age >= 18; } }

Figure 4: A wrong program code to compute the maturity given in a compressed
Java form.

on this branches with the existing tooling. �erefore, a more exact evaluation of
the impact of the error on the basis of the occurring probability can be made.

3.1 Results

We successfully applied the DependencySolver to compute the probability to reach
of the error branch P (rE(AgeCalculator)). �e result is that the critical region
is hit with a probability of ca. 0.018, whereas the non-defect case occurs with ca.
0.982, respectively. In this Scenario, because of the assumption that age is equally
distributed over all countries, the DependencySolver calculated P (age >= 18) =
1− 0.7855, which is the probability independent of the prior probabilities in the
call hierarchy. �erefore, the probability of classifying a person wrongfully as
mature in this scenario is P (age >= 18)× P (rE(AgeCalculator)) = 0.014139.

4 Case Study: Cat Basket for a fair and safe trading of
kittens

Trading of animals is a critical business. In this scenario, we look into a blockchain-
based service that manages the selling of ki�ens. �e marketplace realized on the
blockchain conforms to animal rights where trading ki�ens is only allowed when

7

Fi
gu

re
5:
�

e
m
od

el
in
g
of

th
e
cr
iti
ca
lr
eg
io
ns

as
SE

FF
.

8

Figure 6: Structural view of the components and implemented services

they are two months old or older. In the meantime, they are o�ered, and the buyer
can reserve an individual ki�en. Reservation is associated with placing a large
amount of money as a deposit.

�is process can be handled by a smart contract, which o�ers the services
of reserving a ki�en and placing the deposit. It also handles withdrawal of the
deposit, and the �nal check-out procedure.

In the PCM a smart contract can be modelled with a single component where
the necessary operations are provided through interfaces. In �g. 6 the repository
view can be seen, where the three interfaces OfferManagement (functionality for
o�er or removing o�ers of items), CartManagement (functionality for reserving
o�ered items) and Checkout(functionality for checking out (paying) for items
taken by user) exist. �e smart contract itself is represented as a single compo-
nent OnlineShop that provides these interfaces. When using Ethereum as the
underlying technology, every element of the state is stored as a byte-stream on the
blockchain. As an abstraction of this behaviour, the Ledger component models
the interaction with the blockchain. It provides the interface LedgerInteraction
which contains operations to transfer ether and to place, retrieve or remove items.

9

Figure 7: System view of the Cat Basket

�e OnlineShop components requires the LedgerInteraction interface to en-
able interaction with the blockchain storage. As shown in Fig. 7, the system
is represented in the PCM as an AssemblyContext containing the OnlineShop
and Ledger components. �e system itself provides the same interfaces as the
OnlineShop component and delegates every call to OnlineShop.

�e usage model of a possible interaction with the smart contract is shown in
Fig. 8. Palladio is focused on business process interactions which involve several
interactions between a user and the system. However, in this scenario, every
action is executed on the blockchain, and every change is persisted continuously.
�us, most interactions consist only in a single call to the system (e.g. o�ering
an element). Only a�er an item is reserved for the user (addToCart), the user
can check out a single or all reserved items or end the interaction with the smart
contract. Most smart contracts are simple programs only concerned with enabling
the transfer of data when prede�ned rules hold. In a shopping example, the internal
workings of each call therefore remain fairly simple. Because no information by
other smart contracts is used, most calls consist of one internal action or, at most,
a call to the Ledger component for interaction with the blockchain.

5 �antifying security properties

Our approach is also applicable for security properties. �us far, the usage models
only describe the normal usage of the system by a normal user. For security
considerations, we need to model the a�ackers. For this, we assume that they want
to break the system, either by destroying the integrity, availability or con�dentiality.
A�acks on these goals may include a search for a malicious state of the system
and therefore require a series of service calls. All security goals can be modeled
(partially) by using critical regions of services. For a detailed analysis, we need to
de�ne the capabilities of the considered a�ackers.

10

Figure 8: Usage Model of the Cat Basket System

11

Attackermodel. We assume the a�ackers can apply man-in-the-middle (MITM)
a�acks between the system and the user. �e MITM a�ack allows the a�acker to
manipulate the service calls. �us, they are able to change the invoked service, and
the value of the parameters. �is also includes that they are able to learn critical
parameters, e. g. authentication tokens. On the downside, the a�ackers cannot
manually manipulate the service calls. �ey need to insert a piece of so�ware that
handles the MITM a�ack. �e communication inside the system is considered as
trusted and secure, thus the internal service calls can not be manipulated. �is
limitation can be easily dropped later. �e goal of the a�ackers is to reach a critical
region of a service. Hence, they try to manipulate in such a fashion that the error
probability is increased.

From usage model to attacker model. �e developers and the a�ackers have
something in common: both are not aware of the user behavior. For both the
user behavior need to be captured a-priori before the system is deployed. �e
developers express their knowledge (or guess) of the user behavior into the usage
model. �e a�ackers can mimic this procedure with one advantage: �eir MITM
a�ack has access to the concrete input values. For the security analysis, the
behavior of both (the user and the a�acker) need to be modelled. Whereas the
behavior of the user is modeled probabilistic, the behavior of the a�acker has
non-deterministic parts. �ese parts originate from the a-posteriori knowledge
of the concrete parameters. �e probabilistic parts models the lack of a�acker’s
knowledge of the system (internal state, other users and their requests) and also
origin from a non-deterministic system behavior. Our a�acker model does not
include the possibility for an a�acker to send service requests by themselves
(without a normal user request). �is implies that an a�acker can only change the
called service, but is not able to request multiple services for one service call of
the user.

Formally, let U be a usage model which describes the normal system usage,
then A(U) denotes the derived a�acker model. �e di�erence between U and
A(U) is that those service calls and parameters that might be modi�ed by the
a�ackers are tagged. �e tag states that a parameter value can be manipulated, or
the possibility of redirection to a di�erent service.

For the analysis we want to comprehend the a�acker’s choice of the manip-
ulation. In particular, the a�acker searches for a manipulation which increases
the probability of reaching an error P (E). Let A denote a strategy for applying
manipulations on given user session. �en formally, the goal of the a�acker is to
�nd the strategy A with

max
A

PA(U)(E | A) (2)

Critical regions formodelling the damage potential. To apply our previous
analysis, we need to model the damage potential as a safety speci�cation, which
should describe a system condition that should be unreachable by the a�acker. �is

12

Alice

Alice

Web

Web

Eve

Eve

System

System

1

2 RegisterUser(Alice, 2001)

3 isMature(EGY, 2001)

4 isMature(GER, 2001)

5 yes

6

Figure 9: Sequence diagram showing the Eve’s a�ack on Alice by hijacking a
service call.

means modelling our protection goals as such a safety property. For integrity or
availability, this seems easily doable: Integrity describes the validity of the current
state. �erefore, it is inherently a match for a safety property. For availability, we
may require an additional speci�cation variable to model the load of the system, e.g.
the current number of requests. Con�dentiality may be hard to describe precisely.
Typically, this property is described by a forbidden information �ow between secret
and public information. Formally, the absence of such a secure information �ow is
proved via the indistinguishability of two program runs. To cover con�dentiality,
we need to forbid the program paths that may leak information.

Note that the speci�cation for the critical regions may di�er depending on
the a�acker and its goal. For availability, the a�acker tries to provoke an early
abortion of the service’s execution for all users, typical by an exception. �us,
nobody can use the services in an appropriate fashion. For integrity, the a�acker
searches for a way to insert malicious information into the system. An abortion of
the service execution is obstructive. �e same is true for con�dentiality, where
the a�acker tries to steal information. A thrown exception would destroy the
publishing of the secret information back to the a�acker. Typically, the security
speci�cation and functional speci�cation are completely di�erent.

Example. Finally, we want to give an example of what such an analysis could
look like. Fig. 9 shows a sequence diagram of a MITM a�ack for our Maturity
example. Eve is the a�acker who hijacks the service request. �is request was sent
by the web interface in charge of the user Alice. �e manipulation of the request
by Eve leads to an incorrect answer of the system, saying that Alice is mature. �is
may lead to penalties.

In this example, we need to mark the parameter yearOfBirth in the service

13

call (in the usage model Fig. 2) as manipulatable by the a�acker Eve. Manipulatable
parameters are under in�uence of the a�acker, who will choose the most ��ing
value for the a�ack (reaching the invalid state, or staying undiscovered, etc.).

Let us consider an alternative: At 19 years, Alice is of age in Germany. But
Eve manipulates the country in the request to Egypt. Alice is now (for the system)
not mature, and probably her next actions would be declined. �is a�ack happens
outside of the system: the a�acker disturbs the communication, but does not try
to bring the system into a bad state. For our analysis, which is based on the critical
regions, this a�ack could not be modelled directly. However, such a�acks could be
modelled with usage models and do not need any insights of the running system.

6 Developer Guidance with�antitative Values

For the application of the presented approach, the veri�cation of components and
especially their provided methods is necessary. Speci�cation and veri�cation of
every method would yield all critical regions. However, this introduces additional
e�ort.

�erefore, quantitative values should be used to guide developers to locations
in the system that should be prioritized in the veri�cation. For this endeavor, the
probabilities of calling a certain method can be calculated with the Dependen-
cySolver, by calculating the probabilities of paths through the system. For each
path that includes a call to a certain method of a component, the probabilities are
multiplied to a total probability for the call to that method. �ese probabilities can
help as a �rst indicator which methods can be important to verify.

However, the probability of calling certain methods is only a weak metric
because the importance of the corresponding code is not included. For instance, in
an online-shop a method printing some welcome-text could be called more o�en
than a check-out process. However, verifying the correctness and security of a
check-out process methods is more important, due to the processing of critical
information like credit card details of the customer. �erefore, for calculating a
metric to guide developers to important parts of system that should be veri�ed �rst,
modelling the importance of assets with a quantitative value in the system (e.g. by
consulting a security expert) can be considered. For this purpose, an extension of
the PCM classi�es assets, e.g. parameters, into classes. Each of these classes then
gets a value assigned (by an expert), representing the importance of the data in the
class. A combined quantitative value could then be calculated by the probability
and the accumulated importance of the processed assets. �is approach is similar
to risk calculation in the business domain. �e developers can be guided to the
highest resulting combined value.

From a project management point of view, the e�ort for the veri�cation of
a method should also be taken into account. �erefore, when two methods are
similar or equal in the calculated importance for veri�cation, the veri�cation e�ort
can then help as a further decision factor. However, in semi-automatic or manual

14

veri�cation approaches, this e�ort depends not only on the complexity and the
size of the source code, but also on the experience and skill of the veri�cation
expert. �erefore, it is di�cult to quantify the e�ort for the veri�cation of source
code parts.

With the quantitative values of the presented analysis, the developers can
be provided values to guide them to locations in the source code that should be
prioritized for measures to secure the system. In case no further information
about the system is available, the developer can be guided to the location with the
highest calculated probability. However, taking only the probability of entering
the critical regions of a method into account can result in a bad guidance. For
example, in a banking scenario, two methods can leak information about a client
when a wrong input is made. In a given usage pro�le, the �rst method leaks the
address of the client to an employee with a probability of 20% and the other method
leaks the complete credit card data instead of only the last 4 digits of the client
with a probability of 2%. When only regarding the probabilities for the leakages,
the developer would be guided to the error that leaks the address of the client.
�erefore we suggest to use the risk as guiding values as before. Again, the risk is
de�ned as the probability of occurrence together with the impact when executing
the critical region. �e damage that is done be executing the critical region can
be de�ned by an expert or by tools that analyze if a certain security requirement
breaks. In the example of the banking scenario, when the critical region leaking
the credit card data is assigned a high value and only a small value is assigned to
the leak of the address data, the developers can be pointed to the more important
leak of the credit card data. �is process can be further re�ned when considering
a�ackers in the system as in Fig. 9. Because a�ackers select the greatest damage,
all components reachable by an a�acker should be secured �rst, beginning with
the highest risk.

7 Conclusion

�is report demonstrates the possibility of the correctness quanti�cation on the
so�ware architecture level. We show how to combine static analysis tools for
source code and analysis tools for models, to measure a degree of correctness
given a prede�ned model of usage. �e approach is applicable in all phases of
so�ware development, but with a di�erent degree of precision – depending on the
knowledge about the system usage and the critical regions of the so�ware. Also
we show how the approach can be exploited for measuring security properties.
Furthermore we described how the values obtained with the approach can be used
to guide developers to locations where veri�cation can be applied and to locations
that should be secured.

Our approach is currently incomplete, as many features of so�ware system
are not covered. �e following list gives insights on the next required steps:

Stateful services. In the current approach, our services are considered to be

15

stateless limited by the critical region that only a Boolean expression over
the input parameters. Li�ing this limitation requires more than just adding
state variables to the critical region. We also need to model the call history
of the services and the call e�ects on the states. Additionally, we also need to
consider that the services are used by multiple user simultaneously. Research
is necessary to (1) include state variables in PCM, and (2) to adapt the critical
region inference in KeY.

Generation of critical region. We considered only KeY for the generation of
critical regions. But less complex facilities could also provide them. For
example, we can include positive and also negative test cases generated by
hand or fuzzing.

Probabilistic capabilities in Palladio. �e stochastic expressions of PCM are
limited, e. g., conditional or joint probability distribution are not express-
ible. �ese expressions should be extended, and maybe a new probabilistic
reasoning machine may be required.

Multi-party Usage Models. Currently, the usage model only describes the ob-
served behaviour in the form of service calls. �is model does not include
information as to who is calling the service. For a more �ne-grained speci-
�cation of compromised users or roles, or to specify information �ow, we
consider taking external service callers into account.

Lightweight modeling of critical regions We model the critical regions into
the SEFFs in a heavyweight manner by using Branches which lead to dou-
bling in size. However, for providing a leaner model, it is possible to intro-
duce a new model element in the PCM that captures conditions for incorrect
behavior and extend the calculation rules of the DependencySolver.

Inference of SEFFS from source code Modeling of so�ware is a costly and
time-consuming process. �erefore, modeling is sometimes neglected and
only source code is produced. Furthermore, when evolving a system and
modifying the source code, changes to the models have to be adapted e.g. by
a consistency preservation tool. To support the given approach in a more
concise manner, it could be possible to use the available source code to-
gether with the provided conditions of KeY to directly generate the required
SEFF instead of adding the conditions a�erwards. When introducing the
model element to capture conditions for incorrect behaviour, the analysis
result directly relates to this element. Also, it would be possible to use a
consistency-preserving approach like the Vitruvius-Approach that keeps
the models consistent.

16

