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Abstract: Localization and navigation not only serve to provide positioning and route guidance
information for users, but also are important inputs for vehicle control. This paper investigates the
possibility of using odometry to estimate the position and orientation of a vehicle with a wheel
individual steering system in omnidirectional parking maneuvers. Vehicle models and sensors
have been identified for this application. Several odometry versions are designed using a modular
approach, which was developed in this paper to help users to design state estimators. Different
odometry versions have been implemented and validated both in the simulation environment and in
real driving tests. The evaluated results show that the versions using more models and using state
variables in models provide both more accurate and more robust estimation.

Keywords: localization; odometry; unscented Kalman filter (UKF); vehicle models; omnidirectional;
modular approach

1. Introduction
1.1. Background

The development towards more assistance and automation in vehicles has increased
significantly in recent years. As a preliminary stage to fully automated driving, the com-
bined use of a lane-keeping assistance system (LKAS) and a Stop&Go adaptive cruise
control (ACC) is already possible with series components. Parking assistance and highway
pilot are already permitted legally in Austria, and have been since January 2019 [1]. One of
the most important prerequisites is a highly accurate and robust localization. With increas-
ing levels of driving automation, the demand on localization and navigation also increases.
Localization and navigation not only serve to provide positioning and route guidance
information for users, but also are important inputs for vehicle control.

In addition to automation, the electrification of the automotive industry is continu-
ously progressing. The added value of electric drives over combustion engines is clearly
evident, as electric drives can be integrated directly into every wheel. Together with novel
suspensions, which allow greater steering angles, maneuverability can be significantly
improved [2,3]. In the project “OmniSteer”, which was funded by the German Federal
Ministry of Education and Research (BMBF), a demonstrator vehicle with wheel individual
steering and a ±90◦ wheel steering angle was developed [4]. The driving maneuvers in
Figure 1 can be realized. Such novel vehicle configuration and omnidirectional maneuvers
also demand new requirements for localization.

1.2. State of the Art

Localization methods in the automotive industry can generally be divided into two
categories, according to Ref. [5]: global and relative localization (Figure 2).
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Figure 1. (a) Possible driving modes using novel suspensions; (b) possible continuously driven 
parking maneuver using novel suspensions. 
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Figure 2. Classification of localization methods according to Ref. [5]. 

Global navigation satellite systems (GNSS), such as GPS, are a recognized approach 
to obtaining absolute position [6]. Real-time kinematic (RTK-GPS) can even provide a po-
sition with centimeter-level precision [7]. However, it suffers from the bad signal condi-
tion in urban areas and the stability of GNSS will be degraded strongly due to poor sky 
view, building obstructions or multi-path reflections [8]. 

With landmark-based navigation, a LiDAR or other vision sensor detects the object, 
which is a landmark in the scenery, and tries to assign it to a previously saved map. Land-
mark-based navigation provides higher localization accuracy in a known environment. 
However, it is a relatively expensive solution (especially with LiDAR), and strongly de-
pends on the environmental conditions [5]. 

Inertial navigation uses an inertial measurement unit (IMU), which records the three-
dimensional values of vehicle acceleration and rotational speed [6]. The measurement is 
integrated in time to determine the position. Its advantage is the availability of an IMU, 
which is generally independent of external factors. Typical for inertial navigation is the 
accumulation error. Such an IMU, which can limit the position error drift to less than 1500 
m in the first hour, costs around EUR 80,000. 

Visual odometry (VO) calculates the relative transformation from one image to the 
next and finds the complete trajectory of the camera based on the images [9]. VO is free of 
errors that are dependent on terrain or vehicle parameters, but it also depends on the en-
vironment. 

Wheel odometry (Abbr. odometry) is a method of estimating the position and orien-
tation of a mobile system using the data from its propulsion system [10]. In the area of 
automotive engineering, measured variables from the chassis (wheel rotation and direc-
tion), steering system (steering wheel angle or wheel angle) and yaw rate sensor are com-
monly used. Since these sensors are already available in vehicles, there is no additional 
cost. Odometry is the most widely used localization method. It offers good short-term 
accuracy, is inexpensive, and allows high sampling rates [11–13]. 
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Figure 1. (a) Possible driving modes using novel suspensions; (b) possible continuously driven
parking maneuver using novel suspensions.
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Figure 2. Classification of localization methods according to Ref. [5].

Global navigation satellite systems (GNSS), such as GPS, are a recognized approach to
obtaining absolute position [6]. Real-time kinematic (RTK-GPS) can even provide a position
with centimeter-level precision [7]. However, it suffers from the bad signal condition in
urban areas and the stability of GNSS will be degraded strongly due to poor sky view,
building obstructions or multi-path reflections [8].

With landmark-based navigation, a LiDAR or other vision sensor detects the ob-
ject, which is a landmark in the scenery, and tries to assign it to a previously saved map.
Landmark-based navigation provides higher localization accuracy in a known environ-
ment. However, it is a relatively expensive solution (especially with LiDAR), and strongly
depends on the environmental conditions [5].

Inertial navigation uses an inertial measurement unit (IMU), which records the three-
dimensional values of vehicle acceleration and rotational speed [6]. The measurement is
integrated in time to determine the position. Its advantage is the availability of an IMU,
which is generally independent of external factors. Typical for inertial navigation is the
accumulation error. Such an IMU, which can limit the position error drift to less than
1500 m in the first hour, costs around EUR 80,000.

Visual odometry (VO) calculates the relative transformation from one image to the
next and finds the complete trajectory of the camera based on the images [9]. VO is free
of errors that are dependent on terrain or vehicle parameters, but it also depends on
the environment.

Wheel odometry (Abbr. odometry) is a method of estimating the position and ori-
entation of a mobile system using the data from its propulsion system [10]. In the area
of automotive engineering, measured variables from the chassis (wheel rotation and di-
rection), steering system (steering wheel angle or wheel angle) and yaw rate sensor are
commonly used. Since these sensors are already available in vehicles, there is no additional
cost. Odometry is the most widely used localization method. It offers good short-term
accuracy, is inexpensive, and allows high sampling rates [11–13].

The same as the inertial navigation, the basic idea of odometry is the integration of the
incremental motion information over time, which inevitably leads to accumulation errors.
Orientation errors lead to large lateral position errors, which increase proportionally with
the distance travelled by the vehicle. Besides this, odometry is sensitive to unsystematic
errors, such as slip, road unevenness, side wind, etc. Therefore, odometry is always fused
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with other localization methods to increase the accuracy and ensure the robustness of the
fused localization results. Despite these limitations, most researchers [13–18] still agree
that odometry is an important part of the localization system, and the navigation tasks will
be simplified if the accuracy of the odometry can be improved [10].

In most papers, odometry is designed for vehicles with conventional front axle steering.
The most popular vehicle models to calculate the vehicle position are the kinematic two-
track model [17,19,20], the linear single-track model [21] and the kinematic yaw rate
model [22,23]. However, kinematic models have their own limitations during maneuvers
with large steering angles and high lateral acceleration. Besides, the conventional models
cannot fulfill the requirement of vehicles with wheel individual steering.

This paper introduces an odometry localization method using unscented Kalman filter
(UKF) for vehicles with wheel individual steering systems and an increased steering angle
(till ±90◦). Three vehicle models are designed to meet the new requirements of a wheel
individual steering system. In addition, a novel modular approach is introduced and imple-
mented to design a state estimator for odometry. Using this approach, different odometry
versions with a combination of the three vehicle models are designed. Different odometry
versions have been validated both in the simulation environment, with a validated vehicle
model, and in real driving tests using a demonstration vehicle. Different kinds of omnidi-
rectional parking maneuvers have been used for the validation. Three evaluation criteria
are used to evaluate the results.

The division of this work is organized as follows: In Section 2, the vehicle models
and sensors are shown. The process to design the state estimator for odometry using the
modular approach is introduced. The descriptions of the test vehicle, test maneuvers and
validation environment follow in Section 3. The evaluation results for different odometry
versions are shown and compared in Section 4. Section 5 concludes this paper.

2. Odometry Localization Method
2.1. Functionality of a State Estimator

Odometry can be classified as state estimation. The complete process of a state
estimator is illustrated in Figure 3. Model, sensor and estimation method are the three
important components of a state estimation.
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The estimation method is central to a state estimator. For linear systems, the most
popular and effective state estimator is the Kalman filter (KF) [24]. For nonlinear systems,
there are many variations based on the KF, two of the most common ones being the
extended Kalman filter (EKF) and unscented Kalman filter (UKF). Both variations operate



Sensors 2021, 21, 79 4 of 26

within the existing KF framework but use different approaches to handle nonlinearity.
EKF uses an analytical linearization approach involving Jacobian matrices, while UKF uses
a statistical approach called unscented transformation (UT) [25]. Due to the nonlinearity of
the system in this paper and its simple usability, the UKF has been used as the estimator.

The estimation process consists of two steps: the prediction step and the correction
step [26]. In the prediction step, the predicted state X̂k|k−1 and the estimate covariance Pk|k−1
are calculated from the state transition models, which describe the transitions between
the temporally successive states Xk−1 and Xk. The indexing notation k|k− 1 expresses
the period from k− 1 to k. The correction step follows the prediction step. Based on the
predicted state X̂k|k−1, a virtual measurement Ŷk|k−1 can be calculated using the observation
models, which describe the relationships between the state variable Xk and the available
measurement from the sensors Yk. At the same time, the real measurements Yk are acquired
by the sensors. The Kalman gain Kk is calculated, by means of which a weighting of the
virtual measurement and the real measurement takes place, so that a corrected state X̂k is
obtained. The sensor values used for the weighting are called observations. The sensor
values can also be used as inputs in models directly.

2.2. Sensors

The sensors available on the demonstrator vehicle were used, namely the speed
sensors and the wheel steering angle sensors of the four wheels, as well as the yaw rate
sensor in the geometric center of the vehicle (see Table 1 and Figure 4).

Table 1. List of the sensors on the demonstration vehicle.

Position Sensor Price/Unit

Wheel steering angle sensors Bosch LWS 5.6.3 80 EUR
Wheel speed sensors Integrated Speed Sensor of Traction Motor 1 -

Yaw rate sensor UM7 IMU 150 EUR
1 Heinzmann PMS 080.
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2.3. Vehicle Models

The aim of the vehicle models is to describe the vehicle position and orientation by
means of the measurable driving variables (wheel speed, yaw rate and steering angle).
Since the odometry method should be real-time-capable, the vehicle models should not be
complex. The meanings of the symbols are listed in Tables A1 and A2 in Appendix B.

2.3.1. Motion Model

The motion model describes the relationship between the vehicle position and the
orientation between time step k− 1 and k, which is shown in Figure 5a.
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The motion model can then be described at the geometry center of the vehicle by

 xk
yk
θk

 =

 xk−1
yk−1
θk−1

+


vk−1·∆t· cos

(
βk−1 + θk−1 + ωk−1·∆t

2

)
vk−1·∆t· sin

(
βk−1 + θk−1 + ωk−1·∆t

2

)
ωk−1·∆t


=

 fx(xk−1, θk−1, vk−1, βk−1, ωk−1)
fy(yk−1, θk−1, vk−1, βk−1, ωk−1)

fθ( θk−1, ωk−1)

,

(1)

where
[

x y θ
]T are the vehicle position and orientation in the global coordinate frame.

∆t is the sample time. v, β and ω represent the vehicle velocity, the side slip angle and the
yaw rate, respectively. They are unknown vehicle states and should be determined through
a suitable sensor. For non-measurable states, mathematical correlations to the available
sensors must be found, so that they can be estimated. The yaw rate can be measured by
the yaw rate sensor. The vehicle velocity and the side slip angle are only measurable by
expensive devices.

2.3.2. Complementary Models

Model-1: Model for wheel velocity vi

Normally, the vehicle velocity is calculated as the average of the wheel speeds from the
non-driven and non-steered axle (usually rear axle). However, due to the wheel individual
steering and the increased steering angle, this calculation is no longer valid. Therefore,
each wheel must be considered individually. The kinematic relationship between each
wheel velocity and the vehicle velocity is shown in Figure 5b, and can be described by vi,x

vi,y
0

 =

 v· cos(β)
v· sin(β)

0

+

 0
0
ω

×
 ri,x

ri,y
0

 =

 v· cos(β)−ω·ri,y
v· sin(β)−ω·ri,x

0

 (2)

where vi,x and vi,y are the wheel velocities decomposed in the x and y direction in the
vehicle-fixed coordinate frame. ri,x and ri,y represent the wheel contact points. i indicates
the wheel position (i = f l, f r, rl, rr).
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Equation (2) can be used to derive the relationship between each wheel’s velocity and
the vehicle’s velocity:

vi = vi,x· cos(εi) + vi,y· sin(εi)
= v· cos(εi − β) + ω·

(
rx,i· sin(εi)− ri,y cos(εi)

)
= fvi (v, β, ω, εi)

(3)

where εi is the angle between the vehicle longitudinal axis and the vector of wheel velocity,
which describes the actual moving direction of each wheel. This angle will be called wheel
velocity angle in this paper, and it can be derived using the wheel steering angle δi and the
tire slip angle αi (tire slip angle is the angle between the tire main level and the vector of
wheel velocity):

εi = δi + αi (4)

Model-2: Model for side slip angle β

The side slip angle is the angle between the vehicle’s movement direction and the
vehicle’s longitudinal axis [27]. Equation (2) can be expressed as:

β = εi − arccos

(
vi −ω

(
ri,x· sin εi − ri,y· cos εi

)
v

)
(5)

This means that four side slip angles will be calculated from four wheel velocities vi.
Using the four β from each wheel, the following equation can be constructed:

β =
1
4
·

4

∑
i=1

εi −
1
4
·

4

∑
i=1

arccos

(
vi −ω

(
ri,x· sin εi − ri,y· cos εi

)
v

)
= fβ(εi, vi, v, ω) (6)

Model-3: Model for wheel velocity angle εi

According to Equation (4), the wheel velocity angle εi can be determined with knowl-
edge of the tire slip angle αi. However, the indirect measurement of the tire slip angle is
highly dependent on the accuracy of the tire model and the accelerometer. Therefore, it is
not suitable for real-time applications. Based on Equation (2), the wheel velocity angle can
also be described as

εi = arctan
( vi,y

vi,x

)
= arctan

(
v· sin β + ri,x·ω
v· cos β− ri,y·ω

)
= fεi (v, β, ω) (7)

2.4. Design of Odometry Localization Method Using Modular Approach

The following elements can be derived from Figure 3 to design a state estimator.
They are state variables, sensor values (as observations or inputs), state transition models
and observations models with their parameters. A modular approach to designing a state
estimator is developed in this paper, which helps users to determine the essential elements
mentioned above. The process of this approach is illustrated by the flow chart in Figure 6.
The five elements to be determined are listed on the left side. This approach consists of
three steps, including the preparation step 0. In every step, the actions for a certain element
(e.g., for state variables) are described in the relevant row. Steps 1 and 2 should be repeated
until the termination condition after step 2 is fulfilled. The black arrows indicate the process
flow, the green arrows the signal flow.
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Figure 6. Flow chart of modular approach to designing state estimator.

Step 0: In this step, the resources for a state estimator will be prepared. The resources
here include, on the one hand, the models, which may be used as the state transition model
or the observation model, and on the other hand the available signals on board, which may
be used as inputs of the models or as observations to take part in the correction step in
Figure 3.

During this step, users need to be familiar with the characteristics of the target system.
The models prepared here should contain the relations between the variables to be esti-
mated and the available signals. The available signals here can be sensor measurements or
outputs of a controller.

• Round 1

Step 1: In this step, the unknown variables will be defined as state variables. Usually,
the unknown variables in Round 1 are the variables to be estimated.

Step 2.1: After defining the first state variables, state transition models will be selected
among the prepared models in step 0 to describe the state variables. Models with outputs
of the defined state variables can be used. These models are often differential equations.
If there is no suitable one among the prepared models, users have to design a suitable
model or use a random walk model instead. A random walk model means that the state
variable will inherit its value from the last time step.

Subsequently, the unknown variables in the state transition models need to be known.
If the unknown variables can be measured by sensors, then these sensor signals will be
defined as inputs. It is also possible to use the defined state variables as the sources of the
unknown variables in the models.

Step 2.2: The second part of step 2 is to select or design observation models. Observation
models transform the state variables into a form of sensor measurements. The output of
the observation models must be a variable, which can be measured by a sensor. This sensor
measurement will be defined as an observation. In addition, observation models cannot be
differential equations.

The sources of the unknown variables in observation models can be sensor signals
or the defined state variables. It should be noted that at least one state variable must be
used as the source of the unknown variable in an observation model. Otherwise, such an
observation model does not correct the state variables and loses its function. If there is no
suitable model, this step can be skipped.

After steps 2.1 and 2.2, if some unknown variables in the state transition models and
observation models still have no sources, a second round is necessary.
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• Round 2

Step 1: Similar to step 1 in the first round, the unknown variables in the state transition
models and the observation models, which have not had their sources identified in Round
1, will be defined as new state variables.

Step 2: It is same as step 2 in Round 1.
The whole process can stop, after all unknown variables have found their sources.

2.4.1. Odometry Basic Version

Using this modular approach, several versions for odometry localization are designed.
Figure 7 shows the basic version of odometry localization.
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Step 0: The models and the available signals have already been introduced in
Sections 2.2 and 2.3.

• Round 1:

Step 1: In the case of odometry localization, the variables to be estimated are the
vehicle position and orientation. The first state variables are X =

[
x y θ

]T .
Step 2.1: After defining the first state variables, state transition models have to be

designed to describe the state variables. Equation (1)’s motion model can be used to
describe the vehicle position and orientation. The motion model is divided into two blocks,
respectively, for the position and orientation. The blocks of the motion model and the state
variables are connected by a double arrow line, because the motion model is a discrete
differential equation and needs the value from the last time step to determine the actual
time step. There are three unknown variables, v, β and ω, in Equation (1)’s motion model,
in which the variable ω can use the yaw rate sensor signal. Therefore, the yaw rate sensor
signal is defined as an input ωI (the subscript I stands for the input). However, there are no
accessible sensors to measure vehicle velocity v and side slip angle β directly. These two
variables remain temporarily unknown.

Step 2.2: The goal of this step is to design the observation models to describe the
sensor signals through at least one state variable. However, this step can be skipped if no
suitable model exists. Because GPS data are not planned to be used, there is no model to
describe the sensor signals by the defined state variables

[
x y θ

]T .
After steps 2.1 and 2.2, there are still two unknown variables in the motion model that

have no source to provide them signals. A second round is necessary.

• Round 2:

Step 1: Two remaining unknown variables v und β from the last round are defined as
new state variables. The state variable vector becomes X =

[
x y θ v β

]T .
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Step 2.1: After defining the new state variable, the existing motion model can be
completed by the newly defined v and β, which means the unknown variables in the motion
model use the newly defined state variables v and β as sources. After that, state transition
models for v and β will be designed. If the users do not want to have a complex system,
it is recommended in this round to use the defined state variables and the available sensor
signals as inputs for the state transition models, so there will not be too many new state
variables. If it is difficult to find a suitable model, a random walk model can be used instead
of a model with physical meaning. In Figure 7, the random walk model is represented by
a diamond with the letter “R”. The connection between the random walk model and the
state variable is also a double arrow line.

Step 2.2: According to model-1 (Equation (3)), wheel velocities can be expressed by the
state variables v and β. Thus, the wheel speed sensor signals are defined as an observation
vO,i (the subscript O stands for observation). Model-1 also requires the yaw rate and wheel
velocity angle as inputs. Assuming that the tire side slip angle can be ignored here, then the
wheel velocity angles are equal to the wheel steering angles. Just like the yaw rate signal
that has been already defined as an input ωI in Round 1, the wheel steering angle signals
are also defined as inputs δI,i.

This process can be finished after Round 2, because all formerly unknown variables
are now known. Based on the blocks in Figure 7, the five essential elements that make up
the state estimator can be formulated and written down in the right column.

Based on the basic version, some modifications have been made to optimize the state
estimator in the following sections.

2.4.2. Odometry Version 111

In the basic version, the yaw rate sensor was directly used in the motion model and
model-1. However, the raw signal from the yaw rate sensor always contains noise and
error. If the signal is used in models without processing, the error will be inherited by the
output of the models. Although real measurements from sensors can be directly used for
unknown variables in models, it is also possible to define the known variables (here the
yaw rate ω) as state variables. A better result for the yaw rate can be reached through a
suitable state transition model and correction by the yaw rate sensor. This also benefits
the position and orientation estimation. Figure 8 shows the modified Version 111 based
on the basic version. Dashed lines and dashed blocks denote the differences from the
basic version.
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With the new defined state variable ω, the motion model and model-1 will be updated.
Steps 2.1 and 2.2 should be executed again. To simplify the system, the random walk model
is used again in step 2.1 as the state transition model for ω. In step 2.2, the measurement
from the yaw rate sensor can be directly expressed by the state variable ω. A passage
model is inserted here and represented by a diamond with number “1”.

The right column of Figure 8 was modified according to the change. The differences
from the Figure 7 are marked in blue.

Before introducing additional versions, the meaning of the version numbers is ex-
plained in Figure 9. There are three complementary models in total. The three numbers
of the version number represent how the three complementary models have been used in
the version, respectively. There are two states to describe the usage of model-1 and three
states each for model-2 and model-3. Model-1 describes the relation between the vehicle
states and each wheel’s speed, which is important for vehicles with a wheel individual
steering system. Thus, model-1 must be used and the number for model-1 only contains
the information of which input signal or state has been used.
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For example, Version 111 means that model-1 has used wheel steering angles, signal
δI,i, as input, while model-2 and model-3 are not used. The differences between δI,i and εi
will be explained in Version 212.

The basic version is not numbered in this paper, because the yaw rate signal from an
inertial measurement unit usually is not used directly without passing a filter.

2.4.3. Odometry Version 212

Usually, assumptions are made to simplify model complexity. While using model-1
(Equation (2)) in the previous versions, we assumed that the wheel velocity angle equals the
wheel steering angle, which does not meet reality, especially when the lateral acceleration is
high. Thus, the wheel velocity angles εi should also be treated as an unknown variable and
defined as state variables, which is realized in Version 212 (see Figure 10). In this version,
a random walk model is used as the state transition model at first. For the observation
model, a passage model is used, although the wheel velocity angle does not equal the
wheel steering angle, and the difference between the two variables can be modeled as
measurement noise.

After defining the wheel velocity angles as state variables, model-1 can use either
the state variables εi or the inputs δI,i. In Version 212, the new state variables εi are used
in model-1.
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2.4.4. Odometry Version 232

There are altogether four random walk models in Version 212. The more random walk
models there are, the worse the stability of a state estimation, because the state variables can-
not be constrained in a reasonable range by physical models. Thus, model-2 (Equation (6))
was used in Version 232 to replace the random walk model for β (see Figure 11). Because
the second term of Equation (6) has less effect compared to the first, the second term is
not implemented. This model can use the inputs δI,i or the state variables εi. The state
variables εi are used in this version.
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2.4.5. Odometry Version 213

Similar to the idea in Version 232, model-3 (Equation (7)) is used in Version 213
(see Figure 12) in order to keep the state variables within a reasonable range. Unlike
Version 232, which limits β directly through model-2, model-3 uses ω, v and β to calculate
εi. εi will be corrected by the observations δO,i, so that ω, v and β will also be corrected.
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2.4.6. Odometry Version 233

Version 233 (see Figure 13) is a combination of Versions 232 and 233. All of the three
models are used in this version.
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2.4.7. Comparison of Odometry Versions

A total of 14 versions have been designed and are listed in Table 2. The different
versions are categorized according to the model they used.
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Table 2. Different odometry versions and the models they used.

Version
Model-1 Model-2 Model-3

εi or δI,i Used? Model-2 Used? εi or δI,i Used? Model-3 Used?

111 δI,i No - -
Model 1112 δI,i No - No

212 εi No - No

121 δI,i Yes δI,i -

Model 1 and 2
122 δI,i Yes δI,i No
132 δI,i Yes εi No
222 εi Yes δI,i No
232 εi Yes εi No

113 δI,i No - Yes
Model 1 and 3213 εi No - Yes

123 δI,i Yes δI,i Yes

Model 1, 2 and 3
133 δI,i Yes εi Yes
223 εi Yes δI,i Yes
233 εi Yes εi Yes

The covariance matrices of system noise and measurement noise for different versions
are determined empirically.

3. Validation
3.1. Test Vehicle

In order to test the performances of different versions, test drives were carried out with
the demonstration vehicle shown in Figure 14a. The demonstration vehicle was developed
in project “OmniSteer” and uses a novel chassis system. This novel chassis system [4] in
Figure 14b,c applies a concept of steering wishbones, so that a 90◦ steering angle can be
reached in both directions.
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Figure 14. (a) Demonstration vehicle of project “OmniSteer”; (b) novel chassis system at increased steering angle 90◦;
(c) novel chassis system at increased steering angle −90◦.

3.2. Driving Maneuvers

Omnidirectional maneuvers requiring increased steering angles usually appear dur-
ing parking, especially when the leeway is not sufficient. Odometry is also an efficient
and suitable method to estimate the vehicle position and orientation in parking maneu-
vers [21]. For these reasons, different odometry versions in this paper have been evaluated
through omnidirectional parking maneuvers. Figure 15 shows the eight driving maneuvers
considered. The red vehicles or bicycle are the obstacles.
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Conventional reversing parking method; (e) DM5: Vehicle parks in a parking lot by steering the rear wheels in opposite 
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forward into the parking lot and the rear part of the vehicle is then pulled out, to avoid the obstacle; (h) DM8: Vehicle 
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3.3. Validation Environments 
The validation of the odometry consists of two steps. Firstly, the 14 odometry ver-

sions have been tested in a simulation environment. Figure 16a shows the validation pro-
cess in the simulation environment. A validated multibody dynamic model [28], including 
the novel suspension and steering system, has been used to generate the reference values. 
Noises and errors determined from the real sensors have been added into the signals of 
the virtual sensors. The artificial sensor signals serve as inputs for the odometry algorithm. 
The vehicle position and orientation estimated by the odometry are to be compared with 

Figure 15. Driving maneuvers considered. (a) DM1: Vehicle parks in the parking lot without turning or stopping,
90◦ steering angle on each wheel can be realized; (b) DM2: Vehicle moves forward into the parking lot and the rear part of
the vehicle is then pulled out. (c) DM3: Vehicle parks directly on the opposite side of the street without stopover; (d) DM4:
Conventional reversing parking method; (e) DM5: Vehicle parks in a parking lot by steering the rear wheels in opposite
directions to the front wheels; (f) DM6: Similar to DM5, but with correction at the end position; (g) DM7: Vehicle moves
forward into the parking lot and the rear part of the vehicle is then pulled out, to avoid the obstacle; (h) DM8: Vehicle turns
on its own vertical axis.

3.3. Validation Environments

The validation of the odometry consists of two steps. Firstly, the 14 odometry versions
have been tested in a simulation environment. Figure 16a shows the validation process
in the simulation environment. A validated multibody dynamic model [28], including
the novel suspension and steering system, has been used to generate the reference values.
Noises and errors determined from the real sensors have been added into the signals of
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the virtual sensors. The artificial sensor signals serve as inputs for the odometry algo-
rithm. The vehicle position and orientation estimated by the odometry are to be compared
with the reference from the vehicle model. Figure 16b shows one of the omnidirectional
parking maneuvers.
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The second step is validation by real driving tests. To evaluate and validate the
estimated localization results, the exact determination of the reference position of the
vehicle is crucial. Since there is no centimeter-level GNSS on the test vehicle, two laser
pointers have been mounted on the longitudinal axis of the vehicle. Before and after
a test drive, the position was marked on the ground by use of the two laser pointers.
With the help of the marked points, the real position and orientation are calculated (detail
in Appendix A).

3.4. Robustness Analysis

A localization method must not only be accurate, but also robust. The 14 odometry
versions have been examined to see if they are robust against the failure of one or more
sensors. The sensor failures were generated artificially. The corresponding sensor signals
were set to zero. A total of 14 cases have been defined (see Table 3). Robustness analysis
was first carried out without detection of the failed sensor and then with detection by
switching off the corresponding observation models.

Table 3. Cases to analyze the robustness of odometry.

Case No. Failed Sensors

1 No sensor failed
2 Wheel speed sensor FL
3 Wheel speed sensor FR
4 Wheel speed sensor RL
5 Wheel speed sensor RR
6 Yaw rate sensor
7 Wheel steering sensor FL
8 Wheel steering sensor FR
9 Wheel steering sensor RL

10 Wheel steering sensor RR
11 Wheel speed sensor FL + Wheel steering sensor FL
12 Wheel speed sensor FR + Wheel steering sensor FR
13 Wheel speed sensor RL + Wheel steering sensor RL
14 Wheel speed sensor RR + Wheel steering sensor RR
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3.5. Evaluation Criteria (EC)

To evaluate the performances of the 14 odometry versions, the following errors are
considered:

• EC-1: End position and orientation error in global coordinate system (with superscript “E”):

eE
pos,end = eE

pos,t =

√(
xE

t − x̂E
t
)2

+
(
yE

t − ŷE
t
)2 (8)

eE
ang,end = eE

ang,t = θE
t − θ̂E

t (9)

• EC-2: Maximum position and orientation error in global coordinate system while driving:

eE
pos,max = max

(
eE

pos,n

)
= max

(√
(xE

n − x̂E
n )

2
+ (yE

n − ŷE
n )

2
)

(10)

eE
ang,max = max

(
θE

n − θ̂E
n

)
(11)

• EC-3: Average error of position change and orientation change:

edp =
∑t

n=1|dpn − dp̂n |
∑t

n=1 dpn
(12)

edθ =
∑t

n=1
∣∣dθn − dθ̂n

∣∣
∑t

n=1 dθn
(13)

The meaning of the symbols in Equations (8) to (13) can be found in Figure 17.
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4. Results and Discussion
4.1. Simulation Results

Figure 18 shows the trajectories of different odometry versions in two omnidirectional
parking maneuvers (DM1 and DM3 of Figure 15) in the simulation environment. Most of
the proposed odometry versions (except versions with only model-1, namely 111, 112 and
212) are able to estimate the vehicle position and orientation in the omnidirectional parking
maneuvers.



Sensors 2021, 21, 79 17 of 26
Sensors 2021, 21, x FOR PEER REVIEW 17 of 27 
 

 

 

(a) 

 

(b) 

 

(c) 

Figure 18. Simulation results of different odometry versions: (a) Trajectories in DM1; (b) Trajectories in DM3; (c) Legend. 

To compare the accuracy of different odometry versions, the simulation results have 
been evaluated according to EC-2 and EC-3. The evaluation results are shown as a boxplot 
in Figure 19. In addition to the boxplot, the data used for the boxplot have been plotted in 
grey. Different odometry versions have been grouped according to the models used (the 
motion model is not included here, because the motion model is the basic model and nec-
essary for every version). It should be noted that the ordinates (y-axis) are all logarithmic. 

Figure 19a shows that the odometry versions equipped with more models provide 
better position estimations. The improvement is significant after the odometry is 
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Figure 18. Simulation results of different odometry versions: (a) Trajectories in DM1; (b) Trajectories in DM3; (c) Legend.

To compare the accuracy of different odometry versions, the simulation results have
been evaluated according to EC-2 and EC-3. The evaluation results are shown as a box-
plot in Figure 19. In addition to the boxplot, the data used for the boxplot have been
plotted in grey. Different odometry versions have been grouped according to the mod-
els used (the motion model is not included here, because the motion model is the basic
model and necessary for every version). It should be noted that the ordinates (y-axis) are
all logarithmic.
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Figure 19. Simulations results of different odometry versions: (a) Maximum position errors; (b) Maximum orientation
errors; (c) Average errors of position change; (d) Average errors of orientation change.
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Figure 19a shows that the odometry versions equipped with more models provide
better position estimations. The improvement is significant after the odometry is equipped
with two models. The improvement does not look so obvious after using all three models.
This can be explained through the diagrams created by the modular approach.

According to the motion model in Equation (1), v, β and ω are used to estimate
the vehicle position. For the versions with only model-1, e.g., Version 111 in Figure 8,
these three variables are not constrained by the state transition models with physical
meaning. Thus, they can only be corrected by the sensors through the observation models.
Figure 20a shows the correction paths of ω, v and β of Version 111. ω will be corrected by
the yaw rate sensor and by the four wheel speed sensors through model-1, while v and
β can only be corrected by the four wheel speed sensors through model-1. Although it is
enough to determine two variables using model-1 (Equation (3)) four times, if the vehicle
moves straight with the same wheel steering angles, the four equations will be the same.
v and β cannot be determined uniquely. This leads to an unstable position estimation.

Sensors 2021, 21, x FOR PEER REVIEW 18 of 27 
 

 

 

(c)  

 

(d) 

Figure 19. Simulations results of different odometry versions: (a) Maximum position errors; (b) Maximum orientation 
errors; (c) Average errors of position change; (d) Average errors of orientation change. 

According to the motion model in Equation (1), 𝑣, 𝛽 and 𝜔 are used to estimate 
the vehicle position. For the versions with only model-1, e.g., Version 111 in Figure 8, these 
three variables are not constrained by the state transition models with physical meaning. 
Thus, they can only be corrected by the sensors through the observation models. Figure 
20a shows the correction paths of 𝜔, 𝑣 and 𝛽 of Version 111. 𝜔 will be corrected by the 
yaw rate sensor and by the four wheel speed sensors through model-1, while 𝑣 and 𝛽 
can only be corrected by the four wheel speed sensors through model-1. Although it is 
enough to determine two variables using model-1 (Equation (3)) four times, if the vehicle 
moves straight with the same wheel steering angles, the four equations will be the same. 𝑣 and 𝛽 cannot be determined uniquely. This leads to an unstable position estimation. 

 

(a) Version 111 (b) Version 232 (c) Version 213 

Figure 20. (a) Version 111: Correction paths for 𝜔 (blue), 𝑣 and 𝛽 (red). (b) Version 232: Correction paths for 𝜔 (blue), 𝑣 (red) and 𝛽(green). (c) Version 213: Correction paths for 𝜔 (blue), 𝑣 and 𝛽 (red). 

With the introduction of model-2, the state variable 𝛽 can be limited in a reasonable 
range, and the position estimation becomes stable. Figure 20b illustrates the correction 
step of Version 232. Similarly, 𝑣 and 𝛽 in the versions with model-3 (e.g., Version 213 in 
Figure 12) can be corrected by the wheel speed sensors through model-1 and by the wheel 
steering angles through model-3. The correction paths are shown in Figure 20c. The ver-
sions with model-3 have a more accurate estimation of position than the versions with 

Model-1 
for 

RR

1

Model-3 
für 

R

Model-1 
for 

RR

1

R

1
Model-1 

for 

Model-2 
for RR

1 1

R

Figure 20. (a) Version 111: Correction paths for ω (blue), v and β (red). (b) Version 232: Correction paths for ω (blue), v (red)
and β(green). (c) Version 213: Correction paths for ω (blue), v and β (red).

With the introduction of model-2, the state variable β can be limited in a reasonable
range, and the position estimation becomes stable. Figure 20b illustrates the correction
step of Version 232. Similarly, v and β in the versions with model-3 (e.g., Version 213
in Figure 12) can be corrected by the wheel speed sensors through model-1 and by the
wheel steering angles through model-3. The correction paths are shown in Figure 20c.
The versions with model-3 have a more accurate estimation of position than the versions
with model-2 because the second term of Equation (6) in model-2 is ignored. The accuracy
of this model is reduced. For this reason, the accuracy of the versions with three models
has not been improved significantly.

Compared to the position estimation, Figure 19b shows that the versions with less
models have a better orientation estimation. According to the motion model in Equation (1),
vehicle orientation is only determined by the state variable ω. In versions with model-1
and with model-1 and 2, ω is corrected by the yaw rate sensor and the wheel speed sensors
through model-1. Because model-2 does not affect the orientation estimation, they have the
same quality in orientation estimation. With the introduction of model-3, the estimation
accuracy decreases slightly. The reason may be that model-3 makes no positive contribution,
or that the covariance matrices are not optimal.

EC-3 in Figure 19c,d shows the same tendency as EC-2 in Figure 19a,b.
After the accuracy assessment, the robustness of different versions was examined.

This analysis was carried out according to Section 3.4. The results are shown in Figure 21.
It can be seen that failure detection is necessary if sensor failures occur. The most robust
Versions (213 and 233) can provide an absolute position error less than 0.3 m and an average
position change error less than 0.2 m/m. Their orientation errors are all less than 3 deg and
20 deg/rotation.



Sensors 2021, 21, 79 19 of 26

Sensors 2021, 21, x FOR PEER REVIEW 19 of 27 
 

 

model-2 because the second term of Equation (6) in model-2 is ignored. The accuracy of 
this model is reduced. For this reason, the accuracy of the versions with three models has 
not been improved significantly. 

Compared to the position estimation, Figure 19b shows that the versions with less 
models have a better orientation estimation. According to the motion model in Equation 
(1), vehicle orientation is only determined by the state variable 𝜔. In versions with model-
1 and with model-1 and 2, 𝜔 is corrected by the yaw rate sensor and the wheel speed 
sensors through model-1. Because model-2 does not affect the orientation estimation, they 
have the same quality in orientation estimation. With the introduction of model-3, the 
estimation accuracy decreases slightly. The reason may be that model-3 makes no positive 
contribution, or that the covariance matrices are not optimal.  

EC-3 in Figure 19c,d shows the same tendency as EC-2 in Figure 19a,b. 
After the accuracy assessment, the robustness of different versions was examined. 

This analysis was carried out according to Section 3.4. The results are shown in Figure 21. 
It can be seen that failure detection is necessary if sensor failures occur. The most robust 
Versions (213 and 233) can provide an absolute position error less than 0.3 m and an av-
erage position change error less than 0.2 m/m. Their orientation errors are all less than 3 
deg and 20 deg/rotation. 

Focusing on the results with error detection, the more models that are included, the 
more robust the results will be. Even in orientation estimation, although the versions with 
model-1 and with model-1 and 2 are better than the versions with model-1 and 3 and 
model-1, 2 and 3 in most cases, there are outliers, which are less accurate. 

Figure 22 describes the robustness in other aspects. The influences of failures on four 
versions are shown individually. These four versions use the state variables 𝜀  among the 
versions using the same models. They also have better robustness in their group. With 
regard to the position estimation, the versions with model-3 (213 and 233) can provide 
good estimation under all failures, while Version 212 (only with model-1) cannot with-
stand even one failure. Version 232 (with model-1 and 2) can still provide good estimation 
if one of the wheel speed sensors or the yaw rate sensor fails. However, the failure of the 
wheel steering angle sensors lets Version 232 give no more reasonable position estimation, 
because the error in the wheel steering signals will influence model-1 and model-2 directly.  

 

(a)  

 

(b) 

Sensors 2021, 21, x FOR PEER REVIEW 20 of 27 
 

 

 

(c)  

 

(d) 

Figure 21. Simulation results of different odometry versions under sensor failures: (a) Maximum position errors; (b) Max-
imum orientation errors; (c) Maximum position errors; (d) Maximum orientation errors. 

Regarding orientation estimation, although the versions with model-1 (212 and 232) 
can suppress the vehicle orientation error by less than 1 deg and 5 deg/rotation in most 
cases, these two versions cannot withstand the yaw rate sensor failure. In contrast, the 
versions with model-3 (213 and 233) can provide stable orientation estimations even if the 
yaw rate sensor fails, because model-3 also helps to correct 𝜔. 

 

(a)  

 

(b) 
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Focusing on the results with error detection, the more models that are included,
the more robust the results will be. Even in orientation estimation, although the versions
with model-1 and with model-1 and 2 are better than the versions with model-1 and 3 and
model-1, 2 and 3 in most cases, there are outliers, which are less accurate.

Figure 22 describes the robustness in other aspects. The influences of failures on four
versions are shown individually. These four versions use the state variables εi among
the versions using the same models. They also have better robustness in their group.
With regard to the position estimation, the versions with model-3 (213 and 233) can provide
good estimation under all failures, while Version 212 (only with model-1) cannot withstand
even one failure. Version 232 (with model-1 and 2) can still provide good estimation if
one of the wheel speed sensors or the yaw rate sensor fails. However, the failure of the
wheel steering angle sensors lets Version 232 give no more reasonable position estimation,
because the error in the wheel steering signals will influence model-1 and model-2 directly.
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Regarding orientation estimation, although the versions with model-1 (212 and 232)
can suppress the vehicle orientation error by less than 1 deg and 5 deg/rotation in most
cases, these two versions cannot withstand the yaw rate sensor failure. In contrast, the ver-
sions with model-3 (213 and 233) can provide stable orientation estimations even if the yaw
rate sensor fails, because model-3 also helps to correct ω.

4.2. Real Driving Results

Figure 23 shows the trajectories of different odometry versions in two omnidirectional
parking maneuvers in the real driving tests.

The figures for evaluation are structured as in Section 4.1. Instead of EC-2 and EC-3,
EC-1 has been used because a reference system is not available. Start and end positions
have been measured and used for evaluation.
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The results of position estimation from the real driving tests are basically consistent
with the simulation results. As can be seen in Figure 24a, with the use of model-2 and
model-3, the position estimation has improved significantly. However, the improvement
of using model-3 is not reflected in the real driving tests. There are two possible reasons
for this. Firstly, since EC-1 replaces EC-2 and EC-3 to evaluate the odometry, the error at
the end position cannot reflect the estimation accuracy truly. Another reason may be the
calibration error of the wheel steering angle, which affects the contribution of model-3 in
calculating εi.
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A reduction in the orientation accuracy with model-3 cannot be seen in the real driving
tests; see Figure 24b. All the versions have almost the same accuracy. Because the first-used
yaw rate sensor has a poor resolution of 0.1◦/s, the negative contribution of model-3 to
orientation estimation cannot be noticed.

For this reason, a yaw rate sensor with a resolution of 0.01◦/s has been implemented.
Figure 25 shows the results after the implementation of the new yaw rate sensor. We can
see a reduction in orientation accuracy in the versions with model-3.

Figures 26 and 27 show the results of robustness analysis in real driving tests, which match
the conclusions made in the simulation section.
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5. Conclusions

This paper investigates the possibility of using an odometry method to estimate the
position and orientation of vehicles with increased maneuverability in omnidirectional
parking maneuvers. Specific vehicle models were designed, and the sensors have been
identified. A modular approach has been developed and implemented to help determine
the essential elements for a state estimator. Different odometry versions were designed with
this approach, and validated both in the simulation environment and in real driving tests.

During the real driving tests, the position errors of Versions 213 and 233 are always
under 20 cm, and the angular error is under 0.3◦. Since there are no comparable results for
omnidirectional parking maneuvers in the literature, we have compared the results with
the results in Ref. [13] for normal parking maneuvers. Compared to the average position
error of 47 cm and to the angular error of 1.9◦ in Ref. [13], the error level of odometry in
this paper is acceptable for parking maneuvers.

In addition, the following conclusions were made regarding different odometry versions:

• The greater the number of models used to constrain state variables, the higher the
estimation accuracy, theoretically. In reality, it also depends on the quality and effective
range of a model. Sensor quality is also a factor;

• The use of the state variables εi or the sensor signals δi as inputs in model-1 and
model-2 plays no role in the estimation accuracy. If the state variables εi have state
transition model-3, the robustness of the odometry will be ensured if the sensors are
defective;

• The versions with model-1 and 2, model-1 and 3 and model-1, 2 and 3 have almost
the same accuracy. Versions 213 and 233 are the two most robust versions.

The advantages of the modular approach can be summarized as follows:

• It simplified the process of designing a state estimator. The elements for a state
estimator can be easily derived from the diagram of this method;

• The contribution of a certain model to accuracy and robustness can be predicted using
this approach;

• New models or new sensors can be easily implemented, and possible effects can
be analyzed;

• It provides a clear overview of all used models and sensors. It helps users to manage
different estimators.

6. Future Works

As mentioned in Section 1.2, odometry is not suitable to be used alone. A part of
future works is to investigate the contribution of the odometry in this paper during the
fusion with GPS. Another work in progress is the sensitivity analysis for the parameter of
the vehicle. For example, a larger wheel diameter may reduce the accuracy of odometry,
because the wheel rotation speed will be reduced under the same vehicle speed, so that the
wheel speed sensor provides a speed signal with low resolution.
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Appendix A. Reference Position of Real Driving Tests

To measure the marked points on the ground, a coordinate system can be drawn on
the ground. However, it is difficult to guarantee an exact right angel between the X- and
Y-axes. In order to get the marked points on the ground accurately, the measurement was
carried out using the method in Figure A1. The principle of this method is to measure the
distance between two points instead of measuring the distance between one point and one
line, to avoid angular error.
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Figure A1. Method to measure the reference position of the vehicle.

Before starting the measurement, two reference points (Ref 1 and Ref 2) have to be
defined. The blue points (PF and PR) are the points to be measured. Only the distances
between the blue point and reference points have to be determined; for point PF they are
dF1 and dF2. The coordinate of PF can be obtained by solving the following equations:

(PFx − 0)2 +
(

PFy − 0
)2

= d2
F1(PFx − 0)2 +

(
PFy − dR

)2
= d2

F2 (A1)

Please note that all points to be measured must lie on one side of the connecting lines
of both reference points.

Appendix B. Nomenclature

Table A1. Nomenclature for symbols.

Symbol Description

(x, y) Vehicle position in world coordinate system
θ Yaw angle of vehicle
v Vehicle velocity
vi Wheel velocity

vi,x Wheel velocity along vehicle longitudinal axis
vi,y Wheel velocity along vehicle lateral direction
vi,y Wheel velocity along vehicle lateral direction
β Side slip angle
ω Yaw rate
δi Wheel steering angle
εi Wheel velocity angle

ri,x
Distance between tire–road contact point and vehicle center of gravity

in vehicle longitudinal direction

ri,y
Distance between tire–road contact point and vehicle center of gravity

in vehicle lateral direction
∆t Sample time
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Table A2. Nomenclature for subscripts.

Subscript Description

k− 1 Last time step
k Actual time step
i Position of wheel, i = f l, f r, rl, rr

O Sensor signal used as observation
I Sensor signal used as input value
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