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A B S T R A C T

Some fear that social bots, automated accounts on online social networks, propagate falsehoods that can harm
public opinion formation and democratic decision-making. Empirical research, however, resulted in puzzling
findings. On the one hand, the content emitted by bots tends to spread very quickly in the networks. On the
other hand, it turned out that bots’ ability to contact human users tends to be very limited. Here we analyze
an agent-based model of social influence in networks explaining this inconsistency. We show that bots may
be successful in spreading falsehoods not despite their limited direct impact on human users, but because of
this limitation. Our model suggests that bots with limited direct impact on humans may be more and not less
effective in spreading their views in the social network, because their direct contacts keep exerting influence
on users that the bot does not reach directly. Highly active and well-connected bots, in contrast, may have
a strong impact on their direct contacts, but these contacts grow too dissimilar from their network neighbors
to further spread the bot’s content. To demonstrate this effect, we included bots in Axelrod’s seminal model
of the dissemination of cultures and conducted simulation experiments demonstrating the strength of weak
bots. A series of sensitivity analyses show that the finding is robust, in particular when the model is tailored
to the context of online social networks. We discuss implications for future empirical research and developers
of approaches to detect bots and misinformation.
. Introduction

Since the 2016 US presidential election, there is growing attention
or an ancient political weapon: misinformation. Pundits and schol-
rs fear that various actors attempt to manipulate news media and,
n particular, online social media platforms. While multidisciplinary
esearch has generated much insight into attackers’ approaches to
nfluence news media, users’ perception of manipulated content, and
ts diffusion in online social networks, there is also a growing body
f seemingly contradictory findings. With a taste for irony, Ruths [1]
ecently pointed out that ‘‘the field of research on misinformation has come
o resemble the very thing it studies’’.

Social bots – automated social-media accounts programmed to influ-
nce users’ opinions and public discussions – have been identified as a
ey approach to spreading misinformation in networks. Estimates show
hat, in the months leading up to the 2016 US presidential election, over
00,000 bots were active in political discussions on Twitter, accounting
or a fifth of the total number of tweets in this period [2]. A number
f these bots focused on spreading misinformation–statements or arti-
les that contain factually incorrect information [1,3]. Platforms that
roduce misinformation often use social bot accounts to amplify the
arly spreading of content [4]. The US Senate Intelligence Committee
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concluded that the Russian government deployed social bots to spread
false information and falsehoods to influence the election outcome [5].

Responding to prominent calls for empirical research into the im-
pact of bots on opinion formation and public debate [e.g. 6,7], em-
pirical researchers found two seemingly inconsistent empirical pat-
terns [e.g. 3,4,8,9]. On the one hand, it turned out that bots tend to be
well connected to each other, but only to a few human users [e.g. 4],
and that bot’s direct influence on those human users seems limited [9,
10]. On the other hand, bots’ messages tend to propagate through social
media platforms quickly and easily [e.g. 3], reaching, and potentially
influencing a large portion of social media users. How is it possible that
bots are only weakly embedded in the social network, yet they have a
disproportionately large impact on opinion dynamics in the network?

Explanations solving this puzzle have been sought in characteristics
of social-network users, properties of misinformation, and character-
istics of the communication context. For instance, it was found that
misinformation is accepted more readily by individuals scoring low
on analytic thinking tests, suggesting that fake news spread very fast
in parts of the network where users tend to credulously accept new
information [11]. Likewise, it has been argued that fake news spreads
quickly in a network once it has entered because it tends to be negative,
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shocking, and emotional. This motivates users to engage with fake news
and share it with other users [12]. Some may even buy into an unbeliev-
able story because it fits their partisan preoccupation [13], or because
individuals communicate faster, more sloppy, and less considerate on
online social networks than in other communication contexts [14].

While these individual-level explanations certainly contribute an
important part to solving the puzzle why bot-emitted fake news seems
to have a significant impact on public discourse despite bots’ low
network embeddedness, they neglect the complexity arising from the
interaction of actors on the local-level of social networks [15]. In
a social network, the impact of a node on its neighbors may be
small, but each neighbor is exerting influence on another set of nodes,
potentially sparking chain reactions that can spiral into large effects
on the network as a whole. Counter-intuitively, modeling work on
opinion dynamics in social networks even suggests that actors exerting
relatively weak influence on their direct network neighbors can actually
have a bigger impact on the distribution of opinions in the overall
network [16,17]. This suggests that bots may not be influential despite
their low embeddedness but because of their limited influence on their
direct network neighbors.

The social mechanism generating this counter-intuitive effect is
straightforward. Consider a bot emitting content to a group of users
who consider the bot a reliable source. Influenced by the bot’s content,
these users will adjust their beliefs, growing more similar to the views
advocated by the bot. As a consequence, these users distance them-
selves from those who are not directly exposed to the bot’s extreme
beliefs. These increased opinion differences, in turn, will decrease the
influence that friends of the bot can exert on their friends. If the bot
continues to ‘‘pull’’ its connections towards its position, their friends
may refuse to be influenced any longer. Thus, while the bot had a strong
influence on its direct contacts, it failed to exert indirect influence on
its friends’ friends, their friends, and so on. Consider, in contrast, a bot
exerting only weak influence on its direct contacts and managing to pull
their opinions only slowing into its direction. These users will remain
able to influence their friends, pulling them also slowly but gradually
into the direction of the bot’s opinion. This process may take longer,
but eventually the bot will not only have manipulated the beliefs of its
direct network neighbors but also to a larger extent those of its indirect
contacts. In other words, limited influence on directly connected users
may foster the influence on indirectly connected network users.

In this study, we demonstrate the counter-intuitive effectiveness of
seemingly ineffective bots in a series of computer simulations with
an agent-based model. In an agent-based model, researchers build
an artificial world and make assumptions about the behavior of in-
dividual actors (called ‘‘agents’’) and how they interact with their
environment [18]. In particular, agent-based models make it possible
to study the complexity arising when agents respond to each other,
and chains of reaction lead to complicated phenomena that would have
remained hidden without a formal analysis of the model. In an agent-
based model of an online social network, for instance, one specifies
how users and bots create and share content, and how they adjust
their opinions after exposure to content they receive. Next, analytical
or computational methods are used to study the dynamics that these
assumptions generate. Here, we study a simple model of an online
social network of human users and a bot, building on Axelrod’s famous
model of cultural dissemination [19]. This model is particularly well
suited for the study of social bots and their effect in online social
networks, as it can capture how content emitted by an agent can diffuse
through a network.

Our analyses also revealed a surprising bot-effect. We found that
highly active bots do not only fail to influence their indirect contacts
but also influence fewer of their direct network neighbors than bots
with a low rate of activity. We argue that this effect emerges because
bot’s direct contacts may adopt bot content but likely drop it when their
friends fail to reinforce it. As strong bot’s friends fail to convince their
2

friends of the bot messages, this affirmation is missing. a
The remainder of this paper is organized as follows. In the next sec-
tion (Section 2), we reflect on the current state of the literature on the
automated spreading of misinformation. Subsequently (in Section 3),
we describe a formal model of social influence and the dissemination
of beliefs in networks [19]. We present the results from a series of
simulation experiments (in Section 4) and reflect on the main findings
and implications for science and policy (in Section 5).

This paper yields two main take-away messages for engineers of
social media platforms, policymakers, and scientists concerned with
automated spreading of misinformation: (1) The number of bots trying
to influence public debate and the number of messages they emit may
not be as important as it seems. Bots that appear to have only limited
impact on directly connected users can have a stronger impact on the
collective opinion dynamics as they exert stronger indirect influence on
the friends of their friends. (2) Detecting influential bots programmed
to manipulate opinion formation and online debate may even be harder
than researchers expect. State-of-the-art bot detection algorithms claim
to achieve impressive detection rates around 90 percent [e.g.2,20].
However, the most ingeniously engineered bots are likely the ones who
are harder to detect, and as those may have a powerful impact on the
spreading of falsehood, attempts to detect these accounts or fact check
their content could come in vain.

2. Background

Whether and how social bots are involved in the spreading of mis-
information in online social networks has received plenty of scholarly
attention in the past years [1]. Researchers consistently observe that
social bots, automated social media accounts developed to manipulate
processes of opinion formation and online debate, are omnipresent [1,
6].

Some empirical work suggests that bots form a threat to opinion
formation in online social networks. An analysis of 14 million messages
related to 400 thousand news articles on Twitter found that a dispro-
portionate amount of tweets promoting low credibility sources came
from accounts that were likely automated [4]. While bots mostly tweet
amongst themselves, it has also been observed that they play a crucial
role in the early amplification of information spreading [4]. The infor-
mation they emit appears to be very appealing to users. A randomized
field experiment showed a considerably larger reach for misinformation
on online social media [3]. Fake news proves particularly potent in the
fast media consumption environments that are social media platforms,
where users make limited cognitive capacity available when evaluating
the validity of information they encounter [14]. Users may be likely to
pass on content that is negative, shocking, and emotional [12], or fits
their currently held beliefs [13].

Other researchers concluded that the influence of bots is largely
overstated. An analysis of registered voters on Twitter showed that
a mere 0.1% accounted for 80% of sharing from fake news sources,
and 1% of individuals included in the data accounted for 80% of fake
news exposures [8]. Recently, another team of researchers was able to
assess opinion influence directly and found that the Russian Intelligence
Agency failed to exert direct influence in their sample [9].1

While the finding that bots can emit their content only to a small
number of human users is an important empirical observation, it may
be misleading to conclude that bots have only limited influence on
opinion formation in the social network. Online social networks are
complex systems with millions of users emitting, evaluating, adjusting,
and responding to vast amounts of content [e.g.15]. In such systems,
even seemingly small events can spark chain reactions that have a huge
impact on the system as a whole [e.g.21]. Predicting such chains of
reaction and their outcomes is highly challenging. For instance, it turns

1 We note that this analysis includes only 12 users linked to IRA accounts,
nd took place a year after the election these accounts aimed to disturb.
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out that no one influencer or message characteristic can be used to
predict the reach of a message [22]. In his call to action, Ruths [1]
argued that this re-sharing of ideas is a ‘‘key blind spot’’ in the field,
nd claims that ‘‘there is a serious need for a better understanding of how
ake-news stories transform into rumors and to what extent these rumors
an amplify beliefs and infiltrate other communities’’ [1].

Ruth’s proposal seems to be that beliefs can travel through a net-
ork beyond the direct influence of the account, post, or tweet that

eeded it. Ultimately, the warning for rumors expresses a fear of a rapid
ise of uncontrollable interpersonal influence between individuals that
id not even see the original post. This idea resonates with earlier
ork on the bounded-confidence model which showed that radicals
nd opinion leaders can be successful at persuading a full population
hrough indirect influence pathways [16,17]. Subtle and gentle per-
uasion through limited and well-timed interaction events persuade
maller fractions of a population at a time, allowing for more influential
nteractions between the bot’s direct and indirect contacts. Over time,
ndirect influence then allows the bot to attract larger shares of the total
opulation.

Intuitively, one would expect that more connected and more active
ots are also more successful at propagating their beliefs. Counter
his intuition, we argue that the opposite may be true, in that bots
ommunicating infrequently and only to a few human users may ac-
ually be more successful in spreading their beliefs. Here, we put these
ompeting intuitions to the test, analyzing their logical validity with an
gent-based model. In particular, we investigate the conjectures that (1)
eakly connected bots are not necessarily less effective at propagating

alsehoods and that (2) social bots are more effective when they are
mitting content infrequently. We refer to these conjectures as the
trength-of-weak-bots effects.

The name of the strength-of-weak-bots effects reminds one of Gra-
ovetter’s famous strength-of-weak-ties argument [23]. He argued that
umans often profit more from weak network-ties rather than from
heir very close, strong social relationships, because weak ties con-
ect them to more diverse individuals and, thus, provide access to
nformation that strong ties fail to provide. One the one hand, the
trength-of-weak-bots effect resembles Granovetter’s notion in that a
eemingly weak aspect turns out to actually be a strength. On the
ther hand, unlike Granovetter, who was interested in conditions under
hich individuals can acquire information, we evaluate bots in terms
f how far they manage to spread their content. A second important
ifference is that Granovetter analyzed static networks. The strength
f weak bots, in contrast, emerges because weak bots have a different
mpact on the diffusion dynamics in the network. Third, seemingly
eak bots are strong, because their contacts do not grow too dissimilar

o their friends and, thus, keep sufficiently strong ties to these friends
nd manage to spread bot content. Thus, weak bots are strong because
hey maintain strong rather than weak ties between the bot contacts
nd their friends.

. Model

In order to demonstrate the effectiveness of seemingly ineffective
ots, we build upon Axelrod’s model for the dissemination of cul-
ure [19], one of the most influential models of social influence in
etworks [24]. In this model, agents are described by a set of features
nd exert influence on the feature set of their network neighbors. In his
eminal paper, Axelrod studied the conditions under which repeated so-
ial influence leads to the emergence of consensus or polarized feature
istributions with subgroups disagreeing on all features. This model
as been widely adopted and has already been used to derive testable
ypotheses about various phenomena, including the polarization of
olitical opinions [25], mass media influence [26], or opinion dynamics
n online social networks [27]. Here, we adopt Axelrod’s model and add
bot who holds a fixed set of features and communicates them to users

onnected to the bot. We test whether the number of ties our simulated
3
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bots have to users and the activity of the bots in terms of the relative
frequency of emitted messages affect the number of agents adopting
features introduced by the bot. We keep all model assumptions that
are not related to bot behavior unchanged, as Axelrod’s model is very
well understood, an aspect that makes it easier to demonstrate why the
model generates the counter-intuitive effects of bots [28].

Our implementation of bots resembles earlier work by social-
influence modelers studying the effects of charismatic leaders and ex-
tremists on opinion dynamics with the bounded-confidence model [16,
17]. For two reasons, however, we study effects in Axelrod’s modeling
framework rather than the bounded-confidence model. First, studying
a different modeling framework allows us to explore the robustness of
earlier findings to changes in model assumptions and to test whether
earlier findings might hinge on characteristics of the modeling frame-
work. Second, we deem Axelrod’s framework more suitable for the
study of bots in online social networks. In the bounded-confidence
model, agents are described by opinions measured on a continuous
scale. When an extremist or a bot exerts influence on an agent, this
agent’s opinion shifts closer to the opinion of the bot. Subsequently,
the agent can influence other agents’ opinions. As the agent’s opinion
shifted towards the bot, the bot exerts an indirect influence on these
other agents, but this influence is moderated by the agent. In the
context of online social networks, however, bots emit content that users
can share with their contacts. As a consequence, the content sent by
the bot is diffusing in the network without mediation. In contrast to
the bounded-confidence model, this diffusion is directly represented in
Axelrod’s model where bots communicate beliefs that agents can adopt
and forward to their contacts.

Adopting Axelrod’s model, we generated 𝑁 agents who each hold 𝐹
beliefs about the world.2 These beliefs are nominal characteristics with
𝑄 possible traits per belief. For instance, one of the 𝐹 belief dimensions
could represent different theories of the origin of the coronavirus. The
traits could represent (1) that the coronavirus has a zoonotic origin,
(2) that it has been genetically engineered in a CIA weapon program,
or (3) that it has been stolen from a Canadian virus research laboratory.
At the outset of a simulation run, all agent beliefs are initialized to a
random value 𝑞 ∈ {0,… , 𝑄} drawn with equal probability (1∕𝑄). All
agent’s beliefs are stored in the matrix 𝐶:

𝐶 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑞11 𝑞12 ⋯ 𝑞1𝐹
𝑞21 𝑞22 ⋯ 𝑞2𝐹
⋮ ⋮ ⋱ ⋮

𝑞𝑁1 𝑞𝑁2 ⋯ 𝑞𝑁𝐹

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Agent-based models of social influence typically represent the be-
liefs of agents as (a set of) nominal variables, continuous variables,
or a combination of the two [24]. In many occasions, nominal and
continuous implementations do not substantively change the model
dynamics [24]. Here, we opt for a vector with nominal variables, be-
cause it makes the influence of the bot easily traceable in equilibrium.
If we observe a trait in the agent’s feature vector that had not been
considered by any agent but the bot at the outset, we know that the bot
successfully influenced this agent’s beliefs. To test whether the choice
for representing beliefs as nominal traits substantively changed model
dynamics one can compare our results, at least qualitatively, to the
results of Hegselmann and Krause, who implemented a similar model
with a continuous opinion dimension [16].

In our model, agents are represented as nodes in a network with
undirected network links.3 A link between two agents represents their
opportunity to interact and communicate beliefs. That is, connected
agents send and receive messages communicating their beliefs to each

2 Axelrod referred to these beliefs as ‘‘features’’
3 In Section 4.4.4 we investigate whether networks with directed links

roduce dynamics similar to undirected networks.
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other. In our simulations, we studied ring networks. That is, we ar-
ranged agents on a ring and created network ties between every node
and the 𝑘 closest neighboring nodes on the ring. The resulting network
is characterized by a high degree of clustering, as there are many so-
called ‘‘triplets’’, sets of three connected agents. This mimics a central
characteristic of online social networks, where friends of friends tend
to be friends.4

The model’s dynamics are broken down into a sequence of discrete
events 𝑡. At each event, an agent 𝑖 is randomly picked for emitting a
message to one of its network neighbors 𝑗. Also agent 𝑗 is picked ran-
omly from the set of network neighbors of agent 𝑖. Next, agent 𝑖 sends
message to 𝑗, communicating a belief where the two agents disagree.
ith a probability 𝑝𝑠 equal to the overall belief similarity between 𝑖 and

, agent 𝑗 adopts the belief communicated in the message. With this as-
umption, Axelrod implemented homophily, the notion that individuals
end to interact mainly with like-minded others. Homophily is a strong
orce in human behavior [29,30] and is reinforced by personalized
ecommender systems installed in online social networks [15,31,32].
hese systems rank higher incoming messages emitted by like-minded
sers and, thus, increase chances that users are reading these messages.
ormally, the probability that agent 𝑗 adopts the communicated belief
quals the normalized inverted Hamming distance:

𝑝𝑠 = 1 −
♯
{

𝑓 ∶ 𝑞𝑖𝑓 ≠ 𝑞𝑗𝑓 , 𝑓 = 1, . . . , 𝐹
}

𝐹
To model the presence of a bot in the network, we added one

dditional bot-agent to each simulated network, who held 𝐹 randomly
picked beliefs. These beliefs were fixed to implement that the bot
cannot be influenced by its contacts. What is more, one of the bots’
beliefs adopted a value outside of the [1, 𝑄] range, which represents
that the bot agent is communicating a foreign belief.5 The remaining
𝑄−1 beliefs adopted values that also other agents could have adopted.
Otherwise, the bot would be maximally different from the remaining
agents and, thus, unable to exert influence on others. The degree to
which the foreign belief is adopted by the remaining agents in the
network is the central outcome variable of our analyses. Conceptually,
the bots in this model are exactly the same as the other agents except
that their belief vector is immutable, and that the rate at which they
are activated and emit content may vary.

We connected the bot-agent to a random subset of agents, unless
specified otherwise (see Section 4.4.5). Parameter 𝑝𝐶 allows influencing
the proportion of agents who were connected to the bot and could, thus,
receive messages from the bot. This parameter controls the ‘‘connected-
ness of the bot’’. Also, we added a parameter controlling the ‘‘activity
of the bot’’, the probability 𝑝𝐴 that in a simulation event the bot was
emitting a message to one of its contacts. Experimental manipulation
of the two parameters 𝑝𝐴 and 𝑝𝐶 allow us to test whether the model
generates the counter-intuitive effect proposed above. That is, we tested
whether a larger share of agents adopted the foreign belief when the
bot agent had a low connectedness 𝑝𝐶 and a low activity 𝑝𝐴.

Algorithm 1 details the steps of a simulation run. The model was
implemented in python, using ‘defSim’, a software package specifically
designed for discrete event social influence modeling [33]. A Jupyter
notebook, and all the files used for the simulation experiments are
available in the supplementary material.

The model generates two main classes of equilibria, states where
further sending and receiving of messages cannot change agents’ be-
liefs. First, the population can develop a belief consensus in that all

4 Originally, Axelrod studied a cellular automaton. Here, we opt for ring
etworks with a higher degree of clustering, as this allowed us to also study the
ffects of network structure on the strength of weak bots (see Section 4.4.2).
he effects of this modeling choice are tested and discussed in the sensitivity
nalyses of Sections 4.4.2 and 4.4.3.

5 This affects the ex-ante average similarity between the bot and his neigh-
ors. Instead of adjusting for this difference, we chose to keep this assumption,
4

s the estimated effect sizes of bot influence remain on the conservative side. e
Algorithm 1: Pseudo-code for a simulation run of the agent-based
model.
1: initialize 𝐹 ×𝑁 matrix 𝐶 with random draws from [1, ..., 𝑄]
2: initialize ring network where each agent is connected to 𝑘 nearest

neighbors
3: create bot agent with 𝑞 = {−1, 1, 1}
4: create links between bot agent and a random set of agents of size

𝑝𝐶𝑁
5: set iteration = 0
6: while not all differences between neighbors are 0 or 1:
7: if random float < 𝑝𝐴:
8: agent 𝑖= bot
9: else:

10: agent 𝑖= one of [1, ..., 𝑁]
11: agent 𝑗 = one of neighbors of agent 𝑖
12: draw 𝑓 = one of [1, ..., 𝐹 ]
13: if random float < 𝑝𝑠:
14: agent 𝑗 copies trait 𝑞𝑓 of agent 𝑖

agents hold the exact same beliefs, a state that Axelrod referred to
as ‘‘monoculture’’. Since the bot agent’s beliefs are fixed, either all
agents in the population adopted all 𝐹 beliefs of the bot or none of the
gents considers any of the bot beliefs. Second, it is possible that the
etwork falls apart into mutually different but internally homogeneous
egments. Within a segment, belief communication does not generate
ny change because agents already hold the same beliefs. Between the
egments, there is no further communication of beliefs as connected
gents belonging to two different segments consider different beliefs
nd, therefore, fail to further communicate beliefs. Axelrod called this
state of ‘‘polarization’’. The agents in one of the segments may have

dopted all beliefs of the bot. All remaining segments containing agents
ith a network link to an agent in this segment, however, have to differ
n all 𝐹 belief dimensions. There may be segments in the network that
ave adopted only a subset of the bot’s beliefs. However, no agent in
uch a segment has a direct network link to the bot or the segment that
as adopted all bot beliefs.

. Results

.1. Equilibrium analysis

The central research question of this analysis is how social bots’
etwork connectedness and messaging activity relate to their effective-
ess in influencing the distribution of beliefs in the population. To
nswer this question, we conducted a simulation experiment, varying
ot connectedness 𝑝𝐶 and bot activity 𝑝𝐴 from 0.05 to 0.95 in steps
f 0.1. For each of the 100 experimental conditions, we conducted 25
ndependent simulation runs, assuming 𝑁 = 144, 𝑘 = 12, 𝐹 = 3, 𝑄 = 3
n all runs. The main outcome variable is the effectiveness of the bot,
easured as the share of agents having adopted the foreign bot-belief
𝑞𝑏𝑜𝑡,1) in equilibrium. In Section 4.2, we address the dynamics leading
o equilibrium.

Fig. 1 informs about the share of agents having adopted the bot-
elief in the whole population (left panel), among the bot’s direct
etwork neighbors (center panel), and among the agents who are not
irectly connected to the bot (right panel). Each cell in the heatmaps
isualizes the average share observed in the 25 simulations per experi-
ental condition. Darker shades of blue, red, and green visualize higher

verage bot effectiveness.
Panel A of Fig. 1 clearly refutes the naive intuition that more active

nd connected bots are more harmful. On average, fewer and not more
gents adopted the bot-belief when the bot was more active and more

mbedded in the network.
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Fig. 1. Effectiveness of bots depending on connectedness and activity in equilibrium. Panel A shows the share of agents who adopted the bot belief in the whole population.
Panel B depicts the share of agents directly connected the bot who adopted the bot belief and Panel C shows share of agents without a direct link to the bot who adopted the bot
belief. Colors correspond to average shares in equilibrium over 25 independent simulation runs. Darker cells identify higher shares. Exact values are reported in the supplementary
material.
The story of this seemingly counter-intuitive link between bot con-
nectedness and effectiveness is a story of indirect influence. By per-
suading its direct contacts, bots exert indirect influence on agents
connected to one or more of the bot’s direct contacts. Panels B and C
of Fig. 1 show that connectedness did make the bots more effective in
convincing its direct neighbors (e.g., moving from 5% to 73% average
share at 𝑝𝐴 = .15), but at the cost of reducing the proportion of indirect
contacts reached with the belief (from 79% to 4%). Note that bot
connectedness increases the absolute number of neighbors adopting the
belief (a simple consequence of opportunity), but decreases the share of
persuaded direct neighbors. What is more, the increase in the absolute
number of persuaded bot neighbors does not compensate for the much
stronger negative effect of connectedness on bot effectiveness among
indirect neighbors, composing a net negative effect. This finding is in
line with Conjecture 1, formulated in Section 2: highly connected bots
are not stronger than weakly connected bots.

Bot activity 𝑝𝐴 appears to have similar effects as 𝑝𝐶 (see Panel A
of Fig. 1), but its link to direct and indirect influence is somewhat less
obvious. Panels B and C of Fig. 1 do show a moderate negative effect at
most levels of bot connectedness, but the transition is less clear than in
the former case. Most notably, the effect of increasing activity on the
bot’s direct contacts is most pronounced at high levels of connectedness
(e.g. from 84% to 55% at 𝑝𝐶 = .95). Under this condition, a less active
bot is more effective at persuading its direct contacts through indirect
influence. It allows for relatively more interaction between the other
agents, leading to a higher share of dissemination of its unique trait in
equilibrium. As such, a spillover effect of indirect influence leads to the
surprising finding that more active bots are less effective at persuading
even their direct contacts. This supersedes conjecture 2, formulated in
Section 2.

In simulation runs with a highly connected and very active bot, the
population can quickly fall apart into segments consisting of agents who
are either very similar or very dissimilar to the bot. As most interaction
between non-bot agents happens inside of the segments, each segment
grows increasingly homogeneous. As a consequence, communication
between segments breaks down. When the bot, however, communicates
its beliefs less actively, these segments do not form, and there is more
communication between agents. In these communication events, bot
beliefs can diffuse in the network and can reach agents who had grown
too dissimilar to the bot already. Through indirect influence the bot
now reaches even those agents who were too dissimilar at the outset to
be influenced by the bot directly.

The variance of bot effectiveness within each experimental condi-
tion of the simulation experiment revealed another interesting pattern
(figures are provided in the supplementary materials). We observed
5

that the darker cells in all panels of Fig. 1 correspond to a more
substantial variance in the outcomes of simulation runs. This is not
trivial, since averages in those cells are closer to the maximum, and
hence one would expect variances to decrease. Higher variance means
that it is harder to predict the trajectory of a piece of (mis)information,
which resonates with the empirical pattern that the content of weakly
connected bots occasionally happens to successfully penetrate public
debate.

4.2. Analysis of model dynamics

To illustrate the model’s dynamics, we describe in this section
ideal-typical simulation runs with weak and strong bots. In Fig. 2 we
show trajectories of runs with a bot who is highly active and weakly
connected (Panels A), weakly active and highly connected (Panels B),
and one with a weakly active and weakly connected bot (Panels C).6
Panels in the top row show the share of agents who have adopted the
belief unique to the bot (Panels a), and panels in the bottom row show
the absolute number of agents who adopted the trait (Panels b) and
the cumulative distribution of belief change inflicted by the bot and
the other agents.7

Panels A.a and A.b of Fig. 2 show typical dynamics generated by
a highly active social bot with low connectedness. Since this bot was
very actively communicating to a relatively small number of direct
neighbors, the bot trait was spreading very successfully amongst the
direct neighbors. Agents indirectly connected to the bot, however,
adopted the belief at a much slower pace. Panel A.c, where the number
of successful interactions is plotted over time, shows that after the first
phase, in which the bot convinced its direct contacts, fewer interactions
were successful (see red line). This indicates that agents unconnected
to the bot refused to be influenced by bot neighbors because they had
grown too dissimilar. The remaining successful interactions happened
between agents who were not connected to the bot or direct neighbors
of the bot who had adopted bot beliefs. Dynamics reached equilibrium
when these agents developed a local consensus.

6 The combination high activity and high connectedness is presented in the
supplementary material for concision.

7 Note that the time scale is hard to compare across the three runs, as high
activity implies that a larger share of the simulation events was used by the
bot rather than for communication between agents. Furthermore, an increased
connectedness implies that it will take the bot a higher number of simulation
events to reach all of its network neighbors because only one of them can be
reached per event.
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Fig. 2. Model dynamics in three typical runs; one with a highly active and weakly connected bot (panel A), one with a moderately active and highly connected bot (panel B), and
one with a moderately active and weakly connected bot (panel C). ‘High’ 𝑝𝐶 or 𝑝𝐴 = 1∕6, ‘low’ 𝑝𝐶 or 𝑝𝐴 = 2∕3. Sub-panels a show trajectories of share agents who have adopted
the bot trait in the whole population (blue), among the bot’s direct network neighbors (red) and indirect network contacts (green). Sub-panels b show the same information, but
in absolute numbers of agents. Sub-panels c show the cumulative distribution of successful influence events (blue) by non-bot agents (red) and by the bot (green). An interaction
between two selected agents 𝑖 and 𝑗 is considered successful when 𝑗 adopted a trait from 𝑖. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Panels B of Fig. 2, describe a typical run with low bot activity and
high bot connectivity. Thus, this bot had many network neighbors but
communicated infrequently. Compared to the run shown in Panels A,
this bot did a bad job in convincing its direct network contacts, which
is not surprising as the bot was not very active. As a consequence, it
is also not surprising that this bot influenced relatively few indirectly
connected agents. The problem was that many bot neighbors did not
adopt the bot’s beliefs and, at some moment, grew too dissimilar to
interact with the bot. As a consequence, the bot did not communicate
successfully any longer (see green line in Panel B.c). The direct and
indirect neighbors of the bot who had not adopted the bot beliefs
developed a consensus on beliefs that the bot did not share.

The bot shown in Panels C was the least connected and least active
of the three, but it was most successful. This bot managed to steadily
increase the share of direct neighbors who adopted the bot trait.
However, the low bot activity made sure that the bot’s neighbors did
not adopt all bot beliefs and, thus, always kept beliefs shared with their
other neighbors. As a consequence, the bot’s direct neighbors managed
to communicate bot beliefs to their contacts.

4.3. Statistical analysis of relationships

Fig. 1 showed that both bot activity and bot connectedness made
bots less successful. The figure, however, does not reveal the precise
strength of the two effects and whether they might strengthen or
weaken each other. To explore in more detail the effects of bot activity
and bot connectedness on the share of agents who adopted the bot
belief in equilibrium, we conducted a regression analysis of the data
from the main simulation experiment described in Section 4.1 [34].8

Table 1 shows the results from three regression models, with the
share of the population that had adopted the bot belief in equilibrium
as the dependent variable. All regression coefficients are statistically

8 Agent based models do not require statistical analysis since the indicators
are not estimations underlying data generating processes, but reflect actual
realizations of an artificial process. Nevertheless, regression analysis allows
one to describe parameter’s effects and their interdependencies with great
precision [34]. In particular, a regression model can uncover the relative
effects of the parameters of interest, provide insights into model sensitivity,
and present complex relationships in a familiar, easy to interpret manner.
6

Table 1
Ordinary least squares regression model on the diffusion of the bot trait in
equilibrium.

Model 1 Model 2 Model 3

Parameters
Intercept 0.918 1.050 0.991
Connectedness −.191 −0.476 −0.357
Activity −0.234 −0.737 −0.618
Connectedness2 0.285 0.285
Activity2 0.503 0.503
Connectedness × Activity −0.238

Fit statistics
R2 0.335 0.413 0.430
AIC −3407 −3717 −3789

significant, showing that we conducted a sufficient number of repli-
cations per experimental treatment condition. Model 1 contains only
the intercept and the two main effects of the experimental treat-
ments. Model 2 adds squared terms, and Model 3, in addition, contains
an interaction effect. All regression models indeed display the neg-
ative relationship between bot connectedness, bot activity, and bot
effectiveness, supporting the strength-of-weak-bots effect again.

Furthermore, Model 2 suggests that this negative effect of both
connectedness and activation is reduced as they move closer to 1,
implying non-linear relationships. Their interaction, however, strength-
ens both effects as Model 3 shows. The AIC’s of the models suggest
that the most expansive one fits best, although the improvement from
Model 3 upon Model 2 is marginal as the small increase in explained
variance shows. Moreover, the results from all models should be taken
with a grain of salt, as we have seen that the variance between all
levels of the independent variables differs substantively, violating the
homoscedasticity assumption.

4.4. Sensitivity analyses

While Axerod’s model is a fruitful point of departure for the study
of bot effects, Axelrod made a series of assumptions that do not res-
onate with the context of online social networks. In order to test the
robustness of our results to changes in potentially important model
assumptions, we conducted a series of sensitivity analyses. However,
not every model assumption that seems to deviate from reality has the
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potential to affect model predictions about bot effectiveness. Accord-
ingly, we focused our sensitivity tests on assumptions where earlier
work with Axelrod’s model found effects on the dynamics of consensus
formation and polarization and tested whether or not these assump-
tions also affect the strength of weak bots. In particular, we explored
model assumptions about the communication regime (Section 4.4.1),
network structure (Sections 4.4.2–4.4.4), and node heterogeneity (Sec-
tion 4.4.5). All codes used and more detailed results are available in
the supplementary material.

4.4.1. One-to-one vs. one-to-many communication
So far, we adopted Axelrod’s original model of the dissemination of

culture as closely as possible. While this makes our findings directly
comparable to earlier work, a possible downside of our approach is
that some of Axelrod’s assumptions may be problematic when applied
to the context of online social networks. Our earlier work [27], for
instance, has shown that model dynamics can change drastically when
the model is tailored to the communication regime of online social net-
works. While Axelrod used one-to-one communication between agents,
communication in online social networks is better described by a
one-to-many regime, because users of these systems tend to share
messages with all of their connections at the same time. We showed that
communicating to many neighbors at once generates more cultural po-
larization [27]. We tested here whether the strength-of-weak-bots effect
is affected by changing the communication regime from a one-to-one
to a one-to-many world. To this end, we conducted a second simulation
experiment, where we compared the two communication regimes. We
kept bot connectedness constant at 𝑝𝐶 = 1∕3 (48 of 144 agents), and
varied bot activity: 𝑝𝐴 = 𝑥∕144 for 𝑥 ∈ {1, 2, 3, 6, 12, 24, 48, 96}. All
codes used and more detailed results are available in the supplementary
material.

Fig. 3 shows that we found very similar results for both communica-
tion regimes, suggesting that our findings are robust to changes in the
communication regime. If anything, the effect is even more pronounced
under one-to-many communication.

4.4.2. The effect of network clustering
So far, we conducted all analyses with networks that are character-

ized by high network clustering. In these networks, agents tend to be
connected to agents who are also directly linked, representing the no-
tion that "friends of friends tend to be friends". While empirical research
showed that online social networks tend to be highly clustered [35],
it is also known that network clustering has a strong effect on the
diffusion of traits in the network [e.g. 36,37]. When, as assumed in
Axelrod’s model, agents adopt a trait after having been exposed to it
by a single source (so-called ‘‘simple contagion’’), network clustering
hampers diffusion, as in clustered networks many ties are redundant for
the diffusion. That is, these ties create connections between nodes that
are not contributing to the diffusion because other ties have established
a connection already. This suggests that network clustering makes it
more difficult for bots to spread beliefs, ceteris paribus. However, the
redundancies present in highly clustered networks might also decrease
the weakness of strong bots, since each of them provides bots with an
additional path to the neighbors of their neighbors. As a consequence,
the strength-of-weak-bots effect may be weaker in clustered networks.

In order to test this conjecture, we conducted additional simula-
tions, experimentally manipulating the number of network ties that
were randomly rewired. That is, we generated the described ring
networks and randomly rewired a share of the ties. We rewired a share
𝑝𝑅 ∈ {0, .01, .02, .04, .08, .16, .32, .64, 1}. The lowest rewiring probability
(𝑝𝑅 = 0) generates the same ring networks as studied above. When
the highest value (𝑝𝑅 = 1) is implemented, all network ties of the ring
network are replaced by a link between two randomly picked agents.
Bot connectedness was set to 𝑝𝐶 = 1∕3 and bot activity was either low
(𝑝 = 1∕24) or high (𝑝 = 1∕3).
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𝐴 𝐴
Fig. 4 reveals two main findings. First, when more links had been
rewired (that is, clustering is decreased), more agents adopted the
bot-belief. This replicates the mentioned effect that network clustering
hampers the diffusion of traits in networks. Second, the blue lines are
consistently below the red lines, which shows that increased bot activ-
ity makes bots less effective in convincing direct and indirect network
contacts. This effect is found for all studied network structures, inde-
pendent of their degree of clustering. Thus, the strength-of-weak-bots
effect is robust to changes in network clustering.

4.4.3. Lattice networks
So far, we focused our analysis on a very simple network structure,

a ring network. While this network structure shares essential charac-
teristics with real networks (in particular, high clustering), it also has
characteristics that may affect the diffusion of beliefs in a network. On
a ring network, in particular, a belief can diffuse only in two directions
on the network, clockwise and counter-clockwise. To test whether our
findings may depend on this aspect, we tested whether results change
when a lattice network is implemented. On a lattice network, agents
are not arranged on a circle and connected to the closest 𝑘 neighbors.
Instead, agents are arranged on a grid. As a consequence, agents do not
only have ties to the right and the left, but they have connections in
all directions. As a consequence, a belief can also spread into a higher
number of directions, which could amplify the diffusion of false beliefs.
It is unclear whether this affects the effectiveness of bots.

To test whether our findings hinge on the assumption of ring net-
works, we implemented the lattice-network structure that also Axelrod
assumed in his seminal paper [19]. There were no boundary conditions.
In addition, we varied the size of agents’ neighborhood between the
typical ‘‘Moore’’ neighborhood (where each agent is connected to 8 of
its nearest neighbors in a square), and the ‘‘Von Neumann’’ neighbor-
hood (where each agent links to 4 agents on the adjacent squares). We
set 𝑝𝐶 = 1∕3, and 𝑝𝐴 = 𝑥∕144 for 𝑥 ∈ {1, 2, 3, 6, 12, 24, 48, 96}. The bots
were implemented in the same way as described above, being linked to
a random share of one third of the population.

Fig. 5 shows for both lattice networks that bot activity decreased
the bot’s effect on the whole population, its direct network neighbors,
and all agents indirectly connected to the bot. Thus, we found the same
patterns as in the ring networks, showing that these findings are ro-
bust. The effect’s difference between the two neighborhood conditions
turned out to be very small. Only in the condition with a minimal bot
activity, there is a consistent and significant difference between the two
conditions. Future research is needed to explain this observation.

4.4.4. Directed networks
While many online social media platforms were originally designed

as peer-to-peer platforms with non-directed links between users, there
are nowadays plenty of platforms where users establish directed rela-
tionships. Most notably, on Twitter and Instagram users form directed
connections when they ‘‘follow’’ another account. Such directed con-
nections are often reciprocated, but in particular nodes with high
numbers of followers fail to reciprocate. The notion that link direction-
ality could impact the dynamics of beliefs in influence networks is not
new [38], but it is hard to anticipate whether the strength-of-weak-
bots effect is affected by network directionality. One the one hand,
the social mechanism that makes weak bots strong (weak bots’ friends
remain sufficiently similar their friends to spread the bot’s message)
should not depend on whether links are directed or not. On the other
hand, directed links might weaken the effect, all other things being
equal. When a user received a bot trait from an account she follows,
she cannot communicate the trait back to the account, which increases
the chance that the person drops the trait at a later point in time.

Comparing dynamics in directed and undirected networks is chal-
lenging, as it is not possible to generate a directed and an undirected

network without changing other potentially critical characteristics of
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Fig. 3. Comparison of communication regimes in terms of bot effectiveness. Lines show share of agents who adopted the bot belief in the whole population (Panel A), amongst
agents with a direct link to the bot (Panel B), and amongst agents without a direct link to the bot (Panel C), averaged over 25 independent simulation runs per condition. Error
bars depict the 95% confidence interval. Note that the lower end of the 𝑦-axis is cut at .40 for visual clarity.
Fig. 4. Effect of network clustering on bot effectiveness measured as the share of agents who adopted the bot belief in the whole population (Panel A), amongst agents with a
direct link to the bot (Panel B), and amongst agents without a direct link to the bot (Panel C), averaged over 25 independent simulation runs per condition. Error bars depict the
95% confidence interval. Higher shares of rewired network ties translate into weaker network clustering.
Fig. 5. Replication of the strength-of-weak-bots effect on lattice networks. Lines show share of agents who adopted the bot belief in the whole population (Panel A), amongst
agents with a direct link to the bot (Panel B), and amongst agents without a direct link to the bot (Panel C), averaged over 25 independent simulation runs per condition. Error
bars depict the 95% confidence interval.
the network. One could, for instance, start from a directed network
and turn one undirected link into two directed ties. The resulting
network would be identical and dynamics would not change. Erasing
one of the directed link would imply a change in the network, but
it would also alter the degree distribution in the network. Likewise,
keeping the link and rewiring it would increase the number of incoming
ties for one other node, also changing the degree distribution. As a
consequence, it is difficult to attribute differences between bot effects
observed in directed and undirected networks to directionality, as also
other characteristics of the network have changed.
8

Thus, rather than comparing bot effects in directed and undirected
networks, we tested whether it is possible to replicate our main findings
in an undirected network. To this end, we generated a series of spatial
random graphs [39] with 144 nodes, each with an outdegree of 12 (𝑘 =
12). This network generator does allow modeling directed ties, whilst
keeping network clustering and the degree distribution comparable
to the networks studied above. Spatial random graphs are considered
realistic representations of human social networks because they share
important characteristics such as a high level of clustering, low tie
density, short average geodesic distance, and a community structure.
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The networks we created have an observed average reciprocity value of
81% and transitivity value of 61%. We conducted a simulation experi-
ment, studying four treatments with high and low bot connectedness, as
well as high and low bot activity (𝑝𝐶 and 𝑝𝐴 ∈ { 1

12 ,
1
2 }) and conducted

25 independent replications per treatment. Fig. 6 reveals that the
strength-of-weak-bots effects is also present in directed networks.

4.4.5. Unbalanced degree distributions
There is anecdotal evidence suggesting that so-called ‘‘influencers’’,

human users with a high number of followers, can amplify the spread-
ing of fake news-stories through successive posting [40]. So far, how-
ever, our analyses focused on networks where all human users have the
same degree (number of network ties). Therefore, we tested whether
our findings also obtain in networks where degree varies and whether
human influencers might interact with the strength-of-weak-bots effect.

To this end, we implemented the spatial random graphs used in
the previous Section 4.4.4, but this time we assigned each agent an
outdegree 𝑘𝑖 drawn from a Poisson distribution with an average of
12. What is more, we devised a quasi-experimental test for three
competing scenarios. That is, we connected the bot to the proportion
𝑝𝐶 of (i) those other agents who had the highest outdegree in the
network (the influencers), (ii) those other agents who had the lowest
outdegree in the network, or (iii) randomly picked agents. In this way,
we tested whether influencers have the potential to aid bots that fail
to reach larger shares of human users. For each of the three competing
scenario’s, we ran a simulation experiment with four conditions of high
and low bot connectedness and low bot activity (𝑝𝐶 and 𝑝𝐴 ∈ { 1

12 ,
1
2 }).

ll twelve distinct conditions were replicated 25 times.
Fig. 7 confirms the pattern that we observed earlier. When the

ot is connected to a random subset of the population (Panels A of
ig. 7), its activity and connectivity rates are both negatively related
o the proportion of the population that adopted the bot’s unique trait.
sing the other bot connection procedures does not seem to disturb

he strength-of-weak-bots effect at high rates of connectivity. There
in the higher panels of Fig. 7), the effect of bot activity is strikingly
imilar to the random matching procedure. Remarkably, the bot is as
ffective at persuading the population at large when it is linked to the
east well connected half of the population, as when it is linked to the
est connected half of all agents. At lower levels of bot connectivity,
owever, there is an interesting qualitative difference of the effect of
ot activity. When the bot is connected to the agents with the highest
utdegree, it seems slightly more apt to persuade all others in the
etwork than the bots in the random matching situation. Nevertheless,
he (small) negative effect of bot activity appears to remain. When the
ot is connected to the one twelfth share of agents with the lowest
utdegree, the relationship between bot activity and bot effectiveness is
lipped. A bot trying to influence a group of agents in the periphery of
he network, with only a small number of contacts, can still effectively
nfluence the population at large. What is more, the difference may be
mall, but the bot is more effective at persuading the larger population
han when it would be connected to the one twelfth share of agents
ith the highest outdegree. An explanation for this surprising finding

ould be that agents with a low outdegree, are likely to be embedded in
eripheral parts of the network with a high degree of local clustering.
he spatial random graph favors the creation of ties with agents that are
lose, to achieve clustered graphs with a community structure. Those
maller subsets may be excellent breeding grounds for ideological
imilarity because they offer more opportunity for reinforcement than
ragmented graphs.

. Summary and discussion

Social bots have been identified as a potential threat to public
pinion formation and democratic decision-making. Empirical research
n bots has led to seemingly inconsistent results, showing that, on the
9

ne hand, bots tend to have contact to a small number of human users q
nd that, on the other hand, the content that bots spread can reach
nd influence large parts of online social networks. In this paper, we
roposed a theoretical explanation reconciling these seemingly con-
radictory findings, arguing that bots do not effectively spread (false)
eliefs despite but because of their limited effectiveness in convincing
irectly connected users. Bots with direct influence on a small number
f users and limited activity can exert a stronger influence on the
hole population, because their direct contacts are influenced slowly
nd, therefore, keep communicating with their network neighbors. As
consequence, a seemingly weak bot can exert indirect influence on a

arger share of the population, and its messages reach more users.
Using an agent-based model of social influence, we showed that

eakly connected and moderately active bots are more effective in
preading beliefs in the network at large. In a series of simulation
xperiments, we observed that a higher share of agents adopted beliefs
ommunicated by a bot when the bot was exerting direct influence on
ewer agents and when the bot was emitting the belief infrequently.
s expected, we found that agents who were not directly connected to

he bot adopted the bot’s belief with a smaller likelihood when the bot
as more active. Unexpectedly, however, we found that the bots’ direct
etwork neighbors also adopted the belief with a lower probability
hen the bot was more active. We argue that this unexpected finding
lso results from the complexity of the social-influence dynamic. When
he bot’s belief is not adopted by the neighbors of a bot’s direct contact
hen these neighbors will not remind the direct neighbor of the belief
hen they drop it. We tested the sensitivity of the strength-of-weak-bots
ffect to changes in central model assumptions. It turned out that the
ffect is robust when one implements one-to-many rather than one-to-
ne communication, when networks with different degrees of clustering
re attacked by the bot, when lattice rather than ring networks are
tudied, and when networks contain unreciprocated ties. What is more,
e modeled networks with variable degree distributions and tested
hether bots would be more successful if they linked to the most

nfluential nodes. Not only does the strength-of-weak-bots effect prevail
n those situations, the bot turned out to be even less effective than bots
inked to niche communities.

This study offers two main insights for policymakers and engineers
f social media platforms. First, the strength-of-weak-bots effect sug-
ests that sparsely connected bots are not innocent and may even have
stronger effect than well-connected bots. Likewise, the seemingly

owerful effects of well-connected and active bots and other social
etwork users may be more limited than expected. To be able to
valuate the potential impact of bots on public opinion formation and
emocratic decision-making, it is important to quantify bots’ ability
o reach also indirectly connected users. Second, our findings echo a
arning of potential overconfidence in bot-detection efforts to date.
hile weak bots may be particularly effective, their detection is likely

o be more difficult as they emit fewer signals revealing that they are
utomated [41,42].

The strength-of-weak-bots effect has implications for future re-
earch. On the one hand, the effect turns out to be robust, having
een replicated under various conditions, and with both Axelrod’s
issemination-of-culture model and the bounded-confidence model
16]. This strong robustness suggests that the strength-of-weak-bots
ffect is not an artifact generated by a specific model under certain
onditions, but may also be active in real online social media. On the
ther hand, it is still a largely untested hypothesis. This study served
s an illustration of a theoretical mechanism in complex networks, and
imed to carefully assess its internal validity by means of robustness
esting. Yet, while it can explain findings of earlier empirical research
hat appeared inconsistent from the perspective of other theories, direct
ests of the effect are missing. The extent to which the strength-of-weak-
ots effect is observable and of significant impact on the dissemination
f (mis)information in online social media platforms remains an open

uestion.
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Fig. 6. Replication of the strength-of-weak-bots effects on directed networks. Dots show share of agents who adopted the bot belief in the whole population (blue dots), amongst
agents with a direct link to the bot (red dots), and amongst agents without a direct link to the bot (green dots), averaged over 25 independent simulation runs per condition.
Error bars depict the 95% confidence interval. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Replication of the strength-of-weak-bots effects on networks where nodes have different numbers of network links. Dots show share of agents who adopted the bot belief
in the whole population (blue dots), amongst agents with a direct link to the bot (red dots), and amongst agents without a direct link to the bot (green dots), averaged over 25
independent simulation runs per condition. Error bars depict the 95% confidence interval. Panel A shows scenario where the bot is connected to a random set of agents. In Panel
B, the bot is connected to influencers, agents with many followers. In Panel C, the bot is connected to the agents with the smallest number of followers. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
The strength-of-weak-bots effect, in addition, suggests that existing
empirical research may have focused too much on bots’ direct con-
texts [9]. While we did observe the effect also amongst bots’ direct
contacts, the main strength of weak bots results from their ability to
reach users who are not directly connected to them, an aspect that
deserves more empirical research.

In addition, empirical research is needed to test the unexpected
model prediction that even the bot’s direct network neighbors are
10
eventually less affected by the bot when the bot is highly active. As we
argued that a possible explanation for this finding is that the bot’s direct
neighbors may happen to drop the bot-emitted belief and may then not
be reminded by their neighbors, as the belief never reached them, we
recommend studying the sharing of bot content amongst human users
empirically.

While our paper is motivated by the debate about the effectiveness
of bots emitting false information, Hegselmann and Krause pointed
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to equally intriguing model implications for the dissemination of true
beliefs [16]. Assume that the bot in our model is not a malicious
program spreading falsehoods, but reality sending signals to agents
seeking to identify the truth. These could be scientists who conduct
studies and receive signals about the truth [43]. "However, if the truth
seekers are ’too good’ and converge too fast in the direction of the truth,
they may leave behind them – and often far distant from the truth –
major fractions of their not truth-seeking fellow citizens’’. [43, :505].
This suggests that future empirical research should not focus only on
false information emitted by bots. According to the model, the counter-
intuitive effects of communication activity and connectedness should
be present also in the context of other forms of information and human
users.

Seemingly weak bots can be strong because of the intermediate role
of the bot’s direct contacts. The model generates this effect without
specific assumptions about characteristics of bots, content, users, or the
communication context [11–14]. From a methodological perspective,
this is very insightful, as it shows that the strength-weak-bots effect
is an independent explanation. However, we do not argue that these
other aspects are not relevant in real online social networks. As a con-
sequence, when applied to real social networks, the empirical question
emerges how strong the strength-of-weak-bots effect is relative to other
factors. Empirical research answering this question is urgently needed.
Furthermore, while we have spent most effort on understanding the
mechanism and testing its robustness, there is still a lot unknown
about the ways in which the strength-of-weak-bots effect can am-
plify or weaken other concurrent mechanisms. For example, a recent
agent-based model that focused on social bot effects on the behavioral
inclinations of agents to voice their opinions found that only a small
number of bots is needed to create a spiral of silence that leads to
over-representation of a (niche) opinion in a discussion network [44].
Taking the opinion positions and willingness to express these opinions
into account at once, may amplify both the strength-of-weak-bots and
spiral of silence effects.

Since the aim of the present analysis was to demonstrate a theoreti-
cal mechanism, we abstracted from many potentially important aspects.
Bot behavior, content characteristics, network structure, or interper-
sonal influence can, of course, be formally captured in alternative ways.
While we tested the robustness of some of our assumptions already in
this paper, more work in this direction is needed. Earlier extensions of
Axelrod’s model demonstrated, for instance, that noise [e.g. 45], social
(or ’many-to-one’) influence [46], or ‘globalization’ through increased
interaction range in larger networks [47] have the potential to change
model predictions. More modeling work testing whether these aspects
increase or decrease the strength-of-weak-bots effect is needed. This
work will help develop testable hypotheses about the conditions under
which bots are weak or strong and which parts of a social network
graph are most resistant to bot attacks.
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