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CHAPTER 1

Introduction

1.1 Motivation

When light travels through a prism it separates in the different colors of the visible spectrum as shown in
Figure 1.1. The reason for this effect is the difference in the frequencies, or equivalently the wavelengths,
of the colors, causing them to propagate at different speeds. In reality not only a prism but every natural
material shows these dispersive effects at least for certain parameters.
Materials that recently attracted great interest are so-called metamaterials. They are artificially con-
structed as composite materials. These consist of so-called unit cells whose size is significantly smaller
than the wavelength of an incident wave. Examples for the unit cells are fishnet structures or split-ring
resonators (SRR). An example of the latter one is shown in Figure 1.2. The reason for the great attention
are extraordinary effects such as negative refractive indices, perfect lensing, electromagnetic cloaking or
subwavelength imaging. All the aforementioned effects can be described by dispersive models, which links
the topic of dispersion with the field of metamaterials. More precisely, the heterogeneity of the material
leads to new dispersion effects which are the cause for the unusual properties. In 2000 Smith et al. (2000)
were the first to construct those materials and in Shelby et al. (2001) the astonishing effect of negative

Figure 1.1: Dispersion in a prism [https://commons.wikimedia.org/wiki/File:Prism_rainbow_

schema.png].

https://commons.wikimedia.org/wiki/File:Prism_rainbow_schema.png
https://commons.wikimedia.org/wiki/File:Prism_rainbow_schema.png
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(a) (b)

Figure 1.2: Metamaterial slab consisting of split ring resonators [https://commons.wikimedia.org/

wiki/File:Split-ring_resonator_array_10K_sq_nm.jpg] (a) and a unit cell with eight SRRs (b).

refraction was first observed. Since then the interest in these artificial materials and their properties has
increased and thus mathematical questions have arisen that are strongly related to dispersion models.
In general the propagation of light, or other electromagnetic waves, such as radio or microwaves, is mod-
eled using the famous Maxwell’s equations. Heterogeneous materials that exhibit properties at different
scales such as metamaterials enter these equations by rapidly varying parameters. Thus, although ex-
periments showing the unexpected behavior of these materials are possible, the mathematical analysis of
such structures is difficult. As we are interested in the effective behavior of the material, every fine scale
must be resolved to cover the effects of the heterogeneous structure.
Likewise, if not even more, the numerical simulation has to cover the different scales. On the one hand,
the microscopic structure has to be resolved to display all effects but on the other hand the macroscopic
material slab itself has to be modeled, which is not possible simultaneously even with modern computer
capacities. Thus, the modeling of wave propagation in heterogeneous media is a multiscale problem. In
principle, however, we are only interested in effective properties of the macroscopic material.
For periodic structures such as the metamaterial consisting of split ring resonators a method to derive
these effective properties is homogenization. The idea is to actually model a different material that is
homogeneous but reflects the effective behavior of its heterogeneous counterpart. Of course, the challenge
is how to derive this homogeneous material model. Here the assumption on periodicity on the one hand
and the length of the waves compared to the size of the unit cells on the other hand are crucial. Under
these assumptions it is reasonable to consider the limit when the size of the unit cells tends to zero.
Eventually, this yields a Maxwell system with parameters that model the effective wave propagation
through the heterogeneous material. Consequently, we call these parameters effective, since they model
the behavior we are interested in. Except from special cases these parameters are not known analytically.
Instead, they are represented as averages over the unit cells and include the solutions of partial differential
equations, the so-called micro problems, posed on the unit cells. In this way microscopic effects enter the
homogeneous system.
Similar to the astonishing effects occurring in the experiments above, this is also the case in homoge-

https://commons.wikimedia.org/wiki/File:Split-ring_resonator_array_10K_sq_nm.jpg
https://commons.wikimedia.org/wiki/File:Split-ring_resonator_array_10K_sq_nm.jpg
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nization. These theoretical results are proposed in Sánchez-Palencia (1980) and especially in Wellander
(2001). Here the authors consider a classical set of Maxwell’s equations including Ohm’s law with highly
oscillatory periodic parameters. Thus, only instantaneous effects are taken into account. However, the
derived effective system shows delay effects represented as convolutions in the time-dependent equations.
The transfer of these equations to the frequency domain reveals the frequency dependence of the electric
permittivity and implies that the effective material is dispersive. These results coincide with physically
derived models for metamaterials such as the Drude (Pendry et al., 1996) or the Lorentz model (Smith
and Kroll, 2000), which include dispersion as well.
As pointed out, dispersion does not occur solely in metamaterials but is present in every material. This
is even the so-called causality principle. Therefore, in this thesis we consider a general class of Maxwell’s
equations that include dispersion already in the heterogeneous parameters. Recently, the effective system
for this type of heterogeneous structures has been derived in Bokil et al. (2018). Logically, this system
involves even more complicated dispersive models than the several composites.
From an analytical point of view, these results are simultaneously good and bad. On the one hand,
representations of the effective parameters are derived and these do not depend on the microscopic scale
anymore. On the other hand, the effective dispersion models yield a different type of system. Namely,
we changed from a (partial) differential to an integro-differential equation, which causes new problems.
Generally speaking, we exchange the heterogeneity in space with a non-local dependence in time, and
we already mentioned that this yields frequency dependent parameters. In the classical Maxwell system
these dispersion effects are contained as the polarization and magnetization. Consequently, such systems
have been studied extensively in the past, including the time discretization for various polarization and
magnetization models, such as the Debye, Drude or Lorentz models. Nevertheless, in general these results
are not applicable to the effective system since the structure of the convolution kernel depends on the
heterogeneity. More precisely, since the effective parameters are not given explicitly but as solutions
of micro problems, the convolution may be arbitrarily complicated. In principle, however, the effective
parameters only vary on the macroscopic scale.
Thus, at first glance, classical space discretizations such as finite differences or finite elements are ap-
plicable. But since we do not have an explicit representation of the effective parameters, there is no
way to assemble the required matrices. Here multiscale methods apply that either try to overcome the
above problem or directly tackle the heterogeneous system. In this thesis we focus on (locally) periodic
structures and use the Heterogeneous Multiscale Method (HMM), which belongs to the first category.
In general the HMM implements a framework that splits the multiscale problem in a macroscopic and
a microscopic part with solvers for both. The method used in this thesis is also called Finite Element
Heterogeneous Multiscale Method (FE-HMM) since we only consider the solvers on the macroscopic and
microscopic level to be finite element methods.
In this sense the representation of the effective parameters that stem from homogenization is used as
microscopic problem in the HMM. The solution of these micro problems may then be used to approximate
the effective parameters on the macroscopic level. Eventually, this yields a Maxwell system that can be
solved by a classical finite element method in space. Unfortunately, the time discretization of the HMM
system involves a convolution that covers the dispersive effects but is again a challenge for the numerical
approximation. The idea to overcome these difficulties is directly related to classical dispersion models.
At least, for various of these models the convolution kernels are exponential functions, which allow to



4 Chapter 1. Introduction

compute a convolution recursively. This observation is taken into account for the time discretization of
the HMM Maxwell system by an exponential fitting of the effective convolution kernel to an exponential
function.

1.2 Literature review

We continue this introduction with a review on the literature concerning the above mentioned topics.
The theory of Maxwell’s equations is classical and may be found in Banks et al. (2000); Jackson (1999);
Landau and Lifshitz (1960). The wellposedness of these equations may be shown using semigroup theory.
The central references for this concept are Engel and Nagel (2000); Pazy (1983). The application of this
theory to the Maxwell system is considered for example in Hochbruck et al. (2015a); Sturm (2017).
The propagation of electromagnetic waves in heterogeneous media and their unnatural effects have been
studied extensively throughout the past. In Veselago (1968) the first theoretical result concerning negative
refractive indices is provided. Finally in 2000, the construction of a metamaterial was the starting point
of an extensively growing interest in these materials Pendry (2000); Shelby et al. (2001); Smith et al.
(2000). For general overviews on the field of metamaterials and their discretization we refer to Li and
Huang (2013); Solymar and Shamonina (2009) and the references therein.
In this thesis we follow the approach of homogenization to derive the effective material behavior. An
overview of this method is found in Cioranescu and Donato (1999); Jikov et al. (1994). More specific for
Maxwell’s equations we refer to first results in Sánchez-Palencia (1980) and most importantly to Wellander
(2001) for the time-domain homogenization of linear material laws. Non-linearity is taken into account in
Wellander (2002), whereas in Wellander and Kristensson (2003) the frequency domain homogenization is
considered. Wellander uses the concept of two-scale convergence (Allaire, 1992; Nguetseng, 1989) to derive
the effective system. The approach within this thesis is based on results presented in Bokil et al. (2018)
that include linear dispersive effects. Even more complicated material laws, including time dependent
parameters, are considered in Bossavit et al. (2005). The latter references use the method of periodic
unfolding (Cioranescu et al., 2002, 2008) to derive the homogeneous system, which is a generalization of
the two-scale convergence approach.
For the numerical approximation of the homogeneous solution we use the method of finite elements.
Introductory reading may be found in Brenner and Scott (2008); Ciarlet (2002); Ern and Guermond
(2004). The finite element method (FEM) applied to the Maxwell system is covered in Monk (2003);
Nédélec (1980). Important within this thesis is the multiscale character of the wave propagation in
heterogeneous media. Thus, we briefly discuss some multiscale methods. The method used here is the
Heterogeneous Multiscale Method (HMM) introduced by E and Engquist (2003). See also Abdulle (2009);
Abdulle et al. (2012); E and Engquist (2005) for survey articles. The HMM provides a general framework
for the solution of multiscale problems. On the macroscopic scale we are concerned with a problem that
inherits microscopic information. Thus, we choose a macroscopic solver, for e.g. a finite element method,
and have to estimate the missing information from a suitable micro scale model. This problem has
again to be solved with a suitable scheme. The HMM applied to the Maxwell system in time harmonic
formulation is presented in Ciarlet et al. (2017) as well as Henning et al. (2016). An application to the
time-domain Maxwell system is considered in Hochbruck et al. (2019) but without dispersive effects.
As alternative methods to cover the multiscale character we mention the Multiscale Finite Element
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Method (MsFEM) (Efendiev and Hou, 2009; Hou and Wu, 1997) and the multiscale hybrid-mixed (MHM)
finite element method from Harder et al. (2013). The latter one has recently been applied to an instan-
taneous heterogeneous Maxwell system in Lanteri et al. (2018). Moreover, multiscale methods for the
Maxwell’s equations are presented in Zhang et al. (2010). Finally, we mention the Localized Orthogonal
Decomposition (LOD) (Henning et al., 2014; Målqvist and Peterseim, 2014; Peterseim, 2016). First intro-
duced for the Laplace operator it was shown in Gallistl et al. (2018) that this technique is also applicable
to the (stationary) Maxwell system. The aforementioned multiscale methods are especially useful for
unstructured heterogeneities. In this thesis, however, we are interested in (locally) periodic structures
and thus, the HMM seems to be the right choice.
Since we consider time dependent Maxwell’s equations, also its discretization with respect to time is a
concern. For an overview on the topic of time discretization see Hairer and Wanner (1996); Hairer et al.
(1993, 2006). Time integration schemes for Maxwell systems without dispersive effects are studied in
Hochbruck et al. (2015a, 2019). The approximation of dispersion in time-domain is either achieved using
auxiliary differential equations (ADE) (Lanteri and Scheid, 2013; Li, 2011; Li and Zhang, 2010) or via
recursive convolution as in Li (2007); Li and Chen (2008). The latter one is a technique introduced in
Luebbers et al. (1990) to approximate convolutions with exponential kernel.
In many of the above references numerical experiments were carried out. Concerning the time dependent
cell problems arising in the homogenization of Maxwell’s equations we highlight the results in Banks et al.
(2006). Here the authors perform numerical experiments on a unit cell and demonstrate the exponential
decay of the effective convolution kernel for a heterogeneous Debye medium. An implementation of a
HMM to the Maxwell’s equations is found in Hochbruck et al. (2019), where a classical system without
dispersion effects is considered.
With the above literature we are now in the position to highlight the results obtained in this thesis.

1.3 Main results

Our analysis and the numerical approach start with a reformulation of the effective system proposed in
Bokil et al. (2018) and earlier in Bossavit et al. (2005). As it turns out, the Sobolev equation plays an
important role in this new system. Thus, the analysis of these equations including wellposedness, stability
and regularity is one part of our study. In Theorem 4.4.17, we show an H2-norm estimate for the solution
of the Sobolev equation. We use these results to analyze the effective parameters. In Lemma 4.4.19, we
prove the boundedness of the parameters, especially of the convolution kernel. Most importantly this
parameter is uniformly bounded with respect to time. Moreover, in Section 4.4.7 we show that under
additional assumptions this kernel is actually exponentially decaying. The wellposedness Theorem 4.4.21
for the effective macroscopic Maxwell system includes a refined stability estimate compared to the original
result from Bokil et al. (2018).
The macroscopic Maxwell system including the effective parameters is then solved using the Heteroge-
neous Multiscale Method (HMM) in space. To our knowledge we are the first to apply this method to an
effective Maxwell system with dispersive effects. Therefore, we derive estimates on the micro errors of all
parameters, especially for the convolution kernel. The corresponding new results, that are crucial for the
error analysis, are found in Lemmas 5.3.2, 5.3.7 and 5.3.9. Here we are again concerned with the Sobolev
equation for which we propose a separate semi-discrete error estimate in Theorem 5.3.6. Subsequently,
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we show the wellposedness of the HMM system and analyze the semi-discrete error of the Heterogeneous
Multiscale Method applied to the effective Maxwell system including dispersive effects. The result, which
bounds the L2-error in terms of the macroscopic discretization size H and the microscopic mesh size h,
is found in Theorem 5.3.23.
The rigorous error analysis in space is followed by a rather standard time discretization at the end of
which an efficient, fully discrete method is proposed. This method uses a recursive approximation of
the convolution that relies on the assumption that the convolution kernel is an exponential function. In
general this assumption is of course not true. However, we highlight that there are cases, as shown in
Section 4.4.7 where this assumption is satisfied. Hence, for the general convolution kernels arising in
homogenization we apply an exponential fit, which is then used in the recursive approach. Although we
do not analyze the fully discrete error here, we provide approaches to this fully discrete analysis and
eventually show numerical experiments. Within these we again observe the exponential decay of the
convolution kernel for all our examples of heterogeneous structures.
Finally, we point out that all the numerical experiments in Chapter 7 are three-dimensional simulations.
To our knowledge we are the first to provide such an algorithm including dispersion effects resulting from
heterogeneous media.

1.4 Outline

The structure of this thesis is as follows. In the next chapter we start with some preliminaries concerning
notation and basic results. Chapter 3 is concerned with the modeling of electromagnetic waves. We
present a class of Maxwell’s equations that include dispersive effects. Moreover, we show classic results
from semi group theory, which yield the wellposedness of these equations. In Chapter 4, we investigate
the theory of homogenization and the method of periodic unfolding. Moreover, we present two results
on the homogenization of dispersive Maxwell systems. Following this, we use those results to derive a
new effective Maxwell equation in differential form and show the wellposedness of this system. This is
the starting point for the numerical approximation. Therefore, in Chapter 5 we introduce the method of
finite elements. In addition, the Heterogeneous Multiscale Method (HMM) is presented as one possibility
to handle the structure of the effective system. The wellposedness of the HMM-system and the semi
discrete error estimate for the discretization using the HMM, is found in Theorem 5.3.23. The time
discretization is then content of Chapter 6, where we present a recursive convolution approach for the
effective integro-differential system. Moreover, we present the fully discrete recursive finite element
heterogeneous multiscale method that we use for the numerical experiments. Finally, in Chapter 7, we
illustrate how the proposed scheme is efficiently implemented and furthermore, numerical experiments
both, on the microscopic and macroscopic level support our theoretical findings.
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CHAPTER 2

Preliminaries

Throughout this thesis we use the following notation and basic results.
Miscellaneous
First, we make use of the concept of a generic constant C > 0, which does not depend on the mesh sizes
or the gradient of parameters. It may, however, depend on the contrast of parameters and have different
values for various cases. We consider d, n ∈ N to be integers. Moreover, let Ω, Y ⊆ R3 be given domains,
i.e., open, bounded and simply connected. The quantity id denotes the identity operator for an infinite
dimensional space.
Vectors and Matrices
For vectors a, b ∈ Rd, we denote the Euclidean scalar product as

a · b = aT b =
d∑
i=1

aibi .

The Euclidean norm is denoted as |a|. Moreover, with e` ∈ Rd, for ` ∈ {1, . . . , d} we denote the `-th
canonical basis vector of Rd, whereas 0d ∈ Rd denotes the vector consisting only of zeros. Similarly,
Id×d ∈ Rd×d is the identity matrix while the matrix 0d×n ∈ Rd×n has just zero entries. We may omit
the indices if there are no ambiguities.
For a matrix G ∈ Rd×n we define the Frobenius norm as

‖G‖F :=

√√√√ d∑
i=1

n∑
j=1
|Gij |2 .

Differential operators
The derivative with respect to time is denoted with ∂t. Now let Ψ : Ω→ R and Φ : Ω→ R3 be sufficiently
smooth functions. We define the ∇-, curl- and div-operator as

∇Ψ(x) =


∂x1Ψ(x)
∂x2Ψ(x)
∂x3Ψ(x)

 , curl Φ(x) =


∂x2Φ3(x)− ∂x3Φ2(x)
∂x3Φ1(x)− ∂x1Φ3(x)
∂x1Φ2(x)− ∂x2Φ1(x)

 , div Φ(x) =
3∑
i=1

∂xiΦi(x) .
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If a function Θ : Ω×Y → R3 is defined on a product space, we denote for x ∈ Ω and y ∈ Y the derivatives
with respect to the corresponding space as ∂x and ∂y. This is used in the same way for ∇x, ∇y, curlx,
curly and divx, divy.
Function spaces
Throughout this thesis we denote by Ck (Ω) the space of k times continuously differentiable functions on
Ω. Moreover, the space of test functions is given as C∞0 (Ω), which is the space of smooth functions with
compact support in Ω.
For 1 ≤ p <∞ we denote with Lp (Ω;R) the standard space of measurable functions φ on Ω with values
in R that satisfy ˆ

Ω

|φ(x)|p dx <∞ .

The norm on these spaces is denoted by ‖·‖Lp(Ω;R). Most importantly, for p = 2 the space L2 (Ω;R)
equipped with the scalar product

(φ, ψ) :=(φ, ψ)L2(Ω) =
ˆ

Ω

φ(x)ψ(x) dx for all φ, ψ ∈ L2 (Ω;R) ,

is a Hilbert space. With L∞ (Ω;R) we denote the space of all essentially bounded measurable functions
on Ω. The standard Sobolev spaces (Adams and Fournier, 2003) of k-times weakly differentiable func-
tions in Lp (Ω;R) are denoted by Wk,p (Ω;R). The corresponding norms and seminorms are denoted as
‖·‖Wk,p(Ω;R) and |·|Wk,p(Ω;R). As usual, we use the identification

Hk (Ω;R) = Wk,2 (Ω;R) .

The spaces Hk (Ω;R) are Hilbert spaces with respect to the standard inner product. As we are interested
in vector valued problems, we generalize the above definitions by the use of the Euclidean inner product
and use the notation Lp

(
Ω;Rd

)
, Wk,p

(
Ω;Rd

)
for the corresponding functions with values in Rd. The

space of three-dimensional functions possessing a weak curl is denoted by

H (curl,Ω) =
{
f ∈ L2 (Ω;R3) : curl f ∈ L2 (Ω;R3)} ,

which is equipped with the norm

‖φ‖2H(curl,Ω) = ‖φ‖2L2(Ω;R3) + ‖curlφ‖L2(Ω;R3) for all φ ∈ H (curl,Ω) .

The closure of C∞0
(
Ω;R3) with respect to the H (curl,Ω)-norm is denoted as

H0 (curl,Ω) = C∞0 (Ω;R3)
‖·‖H(curl,Ω) .

Furthermore, for a Banach space (X, ‖·‖X) and a measurable space (S,Σ, ζ) we introduce the Bochner–
Lebesgue spaces Lp (S; X) (Hytönen et al., 2016). The measurable space in our case is either an interval
[0, T ] with one dimensional Lebesgue measure or the domain Ω with corresponding Lebesgue measure.
For 1 ≤ p <∞, φ ∈ Lp (S; X) and ψ ∈ L∞ (S; X) these spaces are Banach spaces equipped with the norms

‖φ‖Lp(S;X) =

ˆ
S

‖φ(s)‖pX dζ(s)

 1
p

, ‖ψ‖L∞(S;X) = ess sups∈S ‖ψ(s)‖X .
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Similarly to the above definitions we define the Banach space valued Sobolev spaces Wk,p (S; X).
Additionally, we define the mean of φ over Y with finite Lebesgue measure |Y | <∞ as

 

Y

φ(y) dy = 1
|Y |

ˆ

Y

φ(y) dy .

Analytical tools
We introduce the Fourier–Laplace transform F of an integrable function u as

û(ω) = F(u)(ω) := 1√
2π

∞̂

0

e−iωtu(t) dt .

The central property of this transform is

∂̂tu(ω) = iωû(ω)− 1√
2π
u(0) .

Moreover, the Fourier-Laplace transform of a convolution yields the product of the individual transforms

F

 tˆ

0

G(t− s)u(s) ds

 (ω) =
√

2πĜ(ω)û(ω) .

Finally, we present a result concerning the derivative of a convolution. The proof follows from arguments
using difference quotients.

Lemma 2.0.1. Let 0 ≤ t <∞. For any G ∈ C1 ([0, t]) and u ∈ L1 (0, t) we find

∂t

tˆ

0

G(t− s)u(s) ds =
tˆ

0

(∂tG)(t− s)u(s) ds+G(0)u(t) .

The preceding lemma directly extends to the case of Banach-space valued functions.
Notation
For a sum over ai, i = 0, . . . , N , N ∈ N we abbreviate ā = ai and the sum is written short as

N∑
i=0

ai =
∑
i

ā.

Finally, we use the symbol ≈ to indicate that some kind of approximation is taking place. This can either
be a quadrature formula, a finite element approximation or an exponential fitting.
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CHAPTER 3

Mathematical modeling of electromagnetic waves

In this first chapter we derive the governing equations that we intend to solve. Since we are interested
in modeling electromagnetic waves, these equations are going to be the Maxwell’s equations. We divide
this chapter into two parts. In the next section we derive the mathematical models for electromagnetic
waves. After that, in Section 3.1.1, we concentrate on the constitutive laws, which represent the material
properties, and derive an abstract Maxwell system. We show two main examples, which fit in our class
of Maxwell’s equations in Sections 3.1.2 and 3.1.3. In the second part of this chapter, in Section 3.2, we
show wellposedness for the class of Maxwell’s equations we introduced in Section 3.1 and over that in
Section 3.2.3 show some stability and energy estimates.

3.1 Maxwell’s equations

Let us start with Maxwell’s equations in time domain and differential formulation. The results of this
section are well-known and may be found in Landau and Lifshitz (1960) or Jackson (1999). These
equations couple the quantities E and H of the electric and magnetic field intensities with D and B,
the electric and magnetic displacement fields or flux densities. All four fields depend on time and space
and therefore we choose a time interval [0, T ] with a finite end time T ∈ R>0 and a bounded domain
Ω ⊆ R3 with Lipschitz boundary ∂Ω in three-dimensional space. With this notation we can give the
formulation of Maxwell’s equations in differential form. Including the electric current density J and the
electric charge density ρ we get

∂tD(t, x)− curl H(t, x) = −J(t, x) , (3.1a)

∂tB(t, x) + curl E(t, x) = 0 , (3.1b)

div D(t, x) = ρ(t, x) , (3.1c)

div B(t, x) = 0 . (3.1d)
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Equation (3.1a) is Ampère’s circuital law with Maxwell’s extension, which states how magnetic fields are
generated. Equation (3.1b) is Faraday’s law of induction, and it states that a time varying magnetic field
induces an electric field. The additional equations (3.1c) and (3.1d) are given by Gauss’s electric and
magnetic law. Gauss’s electric law relates electric charges to the electric field whereas Gauss’s magnetic
law states that there are no magnetic charges.
Observe that from Ampère’s law (3.1a) and Gauss’s electric law (3.1c) we find the continuity equation

∂tρ(t, x) + div J(t, x) = 0 ,

which relates the electric current density with the electric charge density.
The Maxwell system is endowed with initial and boundary conditions on the fields that will be specified
later on. The number of unknowns in the Maxwell system (3.1) is 12, but the system only involves eight
equations. Thus, in order to get a wellposed problem we need additional conditions: the constitutive
laws that describe how the displacement fields D and B depend on the intensities E and H. The most
general form of this dependence would be

D = D(E,H) , B = B(E,H) ,

where the relation might be arbitrarily complicated, for example non-linear. In the next section we
concentrate on the constitutive laws and derive an abstract Maxwell system that represents a class of
linear but possibly non-local materials.

3.1.1 Constitutive laws

As pointed out in the previous section, we have to take care of the constitutive laws that relate the
fields occurring in the Maxwell system (3.1). In order to do so we follow the classical approach, which
introduces two auxiliary fields, the polarization P and magnetization M, which characterize how the
material responds to an electromagnetic wave. They are defined to satisfy

D(t, x) = ε0E(t, x) + P(t, x) , (3.2a)

H(t, x) = 1
µ0

B(t, x)−M(t, x) . (3.2b)

The constants ε0 and µ0 are the electric permittivity and magnetic permeability of vacuum given by

ε0 = 8.854× 10−12 A s V−1 m−1 ,

µ0 = 4π × 10−7 V s A−1 m−1 .

In vacuum, there is no dielectric or magnetic material present. Hence, we have the simplest constitutive
relation because here the polarization and magnetization both vanish. For, so-called, linear and local in
space materials the polarization and magnetization are given as

P(t, x) = ε0χe(x)E(t, x) , (3.3a)

M(t, x) = χm(x)H(t, x) , (3.3b)

where χe and χm are the electric and magnetic susceptibility, respectively. Here the constitutive relations
become the most common ones

D(t, x) = ε0εr(x)E(t, x) , (3.4a)

B(t, x) = µ0µr(x)H(t, x) . (3.4b)
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We point out that the parameters εr and µr, the relative electric permittivity tensor and the relative
magnetic permeability tensor, respectively, are matrix-valued functions unless the material is isotropic.
A direct consequence of (3.2), (3.3) and (3.4) are the relations

εr(x) = 1 + χe(x) , µr(x) = 1 + χm(x) .

Although the constitutive relation (3.4) yields good approximations, it violates some physical principles
as shown in Landau and Lifshitz (1960). Especially dispersion effects, which are always present in matter,
are not reflected by such material laws. Thus, we consider a broader class of constitutive relations where
the dependence is still local in space but may be non-local in time. To be more precise the electric and
magnetic susceptibilities χe and χm are not only space but also time dependent. With these parameters
the polarization and magnetization are defined as convolutions

P(t, x) = ε0

tˆ

0

χe(t− s, x)E(s, x) ds , (3.5a)

M(t, s) =
tˆ

0

χm(t− s, x)H(s, x) ds . (3.5b)

Here we observe that the polarization and magnetization depend on the history of the electric and mag-
netic field. By definition, the polarization and magnetization are zero at t = 0 but we allow instantaneous
effects as well. Thus, we introduce the instantaneous polarization Pin, which we assume to be proportional
to the electric field as in (3.3)

Pin(t, x) = ε0χ
in
e (x)E(t, x) .

The total polarization is the sum of the instantaneous one and the already known polarization field in
(3.5a). We insert this in the definition (3.2) of the polarization to get

D(t, x) = ε0E(t, x) + Ptot(t, x) = ε0E(t, x) + Pin(t, x) + P(t, x)

= ε0E(t, x) + ε0χ
in
e (x)E(t, x) + P(t, x) = ε0

(
1 + χin

e (x)
)
E(t, x) + P(t, x) .

Thus, the new definition of the polarization reads

D(t, x) = ε0εin(x)E(t, x) + P(t, x) , (3.6)

where εin(x) = 1 + χin
e (x) is a permittivity that also accounts instantaneous effects and the polarization

field is still given as in (3.5a). With the same approach we get with µin = 1 + χin
m for the magnetization

B(t, x) = µ0µin(x)H(t, x) + µ0M(t, x) . (3.7)

The relations in (3.6) and (3.7) combined with (3.5) are the most general ones we consider in this thesis.
We specify the possible convolution kernels in Section 3.1.4.
The end of this section is dedicated to the transfer of the relation (3.5) into frequency domain. For this
purpose we apply the Fourier–Laplace transform to (3.5) resulting in

P̂(ω, x) = ε0χ̂e(ω, x)Ê(ω, x), M̂(ω, x) = χ̂m(ω, x)Ĥ(ω, x) . (3.8)
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This representation highlights that the susceptibilities are frequency dependent. Thus, the non-local
material law in time domain corresponds to frequency dependent laws in frequency domain. This depen-
dence on the frequency is exactly the effect of dispersion, i.e, the propagation of a wave depends on its
frequency. The constitutive relation in frequency domain including instantaneous effects becomes

D̂(ω, x) = ε0 (εin(x) + χ̂e(ω, x)) Ê(ω, x) , (3.9a)

B̂(ω, x) = µ0 (µin(x) + χ̂m(ω, x)) Ĥ(ω, x) . (3.9b)

Hence, the frequency dependent permittivity and permeability are given as

ε̂(ω, x) = ε0 (εin(x) + χ̂e(ω, x)) , µ̂(ω, x) = µ0 (µin(x) + χ̂m(ω, x)) .

As already mentioned, the frequency dependence allows incorporating dispersive effects into the Maxwell
system. Thus, the constitutive relations (3.5) or equivalently (3.9) are the right choice for modeling
dispersive effects. Before we state the most general Maxwell system in Section 3.1.4, we show two
examples that occur frequently throughout this thesis. In the next section we present the classical
Maxwell system with Ohm’s law.

3.1.2 The Maxwell system with conductivity

In this setting we consider a classic Maxwell system where we have neither polarization nor magnetization,
i.e., P ≡ 0 as well as M ≡ 0. To be more precise we only consider instantaneous effects, i.e., the
constitutive relation is given as in (3.4). Moreover, we include Ohm’s law that states that the current
density J can be split into the external current J0 and a part that is proportional to the electric field,
i.e., for x ∈ Ω we find

J(t, x) = σ(x)E(t, x) + J0(t, x).

The Maxwell system in this case is

ε0εr(x)∂tE(t, x) + σ(x)E(t, x)− curl H(t, x) = −J0(t, x) , (3.10a)

µ0µr(x)∂tH(t, x) + curl E(t, x) = 0 . (3.10b)

We introduce some short notation. For that purpose collect the solution components as

u(t, x) =
(

E(t, x)
H(t, x)

)
,

and define the matrices

M(x) =
(
ε0εr(x)

µ0µr(x)

)
, R(x) =

(
σ(x)

03×3

)
.

Thus, the Maxwell conductivity system (3.10) can be written as

M(x)∂tu(t, x) + R(x)u(t, x) +
(

− curl
curl

)
u(t, x) = g(t, x) , (3.11)

where g(t, x) =
(
−J0(t, x)

03

)
.

Besides this classic Maxwell system we give another example, which is the Maxwell–Debye system pre-
sented in the next section.
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3.1.3 The Maxwell–Debye system as a model problem

The Maxwell system with conductivity from the previous section does not cover dispersive effects. In
this section we present the Debye model for orientation polarization, which actually includes dispersion.
For this example we assume that there is no magnetization, i.e., M ≡ 0. The polarization is given by
the Debye model presented in Debye (1929), which is also discussed in the Appendix A.1. In the Debye
model the polarization is given as

P(t, x) =
tˆ

0

exp
(
−(t− s)
τ(x)

)
ε0(εs(x)− ε∞(x))

τ(x) E(s, x) ds . (3.12)

Here εs denotes the permittivity at zero frequency and ε∞ the permittivity at maximum frequency of the
material under consideration. The latter one also describes the instantaneous polarization, i.e., in (3.6)
we choose εin = ε∞. Moreover, τ is the relaxation time, which describes the time electric dipoles need to
react on the application of an electromagnetic field. We deduce from (3.5a) that

χe(t, x) = exp
(
−(t− s)
τ(x)

)
εs(x)− ε∞(x)

τ(x) .

A direct consequence of the definition (3.12) is that the polarization satisfies the ordinary differential
equation (ODE)

τ(x)∂tP(t, x) + P(t, x) = ε0 (εs(x)− ε∞(x)) E(t, x) , P(0, x) = 0 . (3.13)

We now abbreviate Mε := εs − ε∞. From (3.6) together with the definition (3.13) of the polarization the
Maxwell system (3.1) reads

ε0ε∞(x)∂tE(t, x) + ε0τ(x)−1Mε(x)E(t, x)− τ(x)−1P(t, x)− curl H(t, x) = −J(t, x) ,

τ(x)∂tP(t, x) + P(t, x)− ε0Mε(x)E(t, x) = 0 ,

µ0∂tH(t, x) + curl E(t, x) = 0 .

This system can also be represented in a structure similar to (3.11), where now the solution is given as

u(t, x) =


E(t, x)
P(t, x)
H(t, x)

 ,

and the matrices are

M(x) =


ε0ε∞(x)

τ(x)
µ0

 , R(x) =


τ(x)−1ε0Mε(x) −τ(x)−1 03×3

−ε0Mε(x) I3×3 03×3

03×3 03×3 03×3

 .

This yields the Maxwell system

M(x)∂tu(t, x) + R(x)u(t, x) +


− curl

0
curl

u(t, x) = g(t, x) , (3.15)
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where the right-hand side has the definition g(t, x) =


−J(t, x)

0
0

.

The Debye model is a prototype for more complicated models that we introduce in the next section. Here
the central property is that the polarization and magnetization may be represented as solutions of ODEs.

3.1.4 A class of dispersive materials

Most of the mathematical theory of this section is based on Cassier et al. (2017) and (Banks et al., 2000,
Section 2.1). In general the material laws are given in (3.6) and (3.7), where we allow the polarization
and magnetization to be given as convolutions with the electric and magnetic field, respectively, as seen
in (3.5). Since all the mechanisms for polarization and magnetization work in the same way, we focus
on the polarization. In the previous section we introduced the Debye model, which is one possibility to
model dispersive effects. The polarization in (3.12) is given as convolution, and it turns out that it is
equivalent to define it as solution of the first-order ODE (3.13). More complex dispersion models are
often given as higher-order ODEs. As we show in this section this is still equivalent to the definition
via convolution but with possibly more complicated kernels. These higher-order models are exactly that
kind of polarizations we consider in this thesis. For NE ∈ N we define the polarization as solution of the
NEth-order ODE

NE∑
j=0

aEj (x)∂jtP(t, x) = ε0b
E
0 (x)E(t, x) , ∂jtP(0, x) = 03 for j = 0, . . . , NE − 1 . (3.16)

The parameters are scalars, i.e., aEj , bE0 : Ω → R, j = 1, . . . , NE , which represents an isotropic material.
In this section we frequently use the identification aEj = aEj I3×3, j = 0, . . . , NE − 1 and bE0 = bE0 I3×3.

The goal of this section is to derive an abstract Maxwell system, which includes these higher-order
polarization and magnetization models. The key to this abstract system is that an nth-order ODE can
be written as a system of first-order ordinary differential equations.

Here we distinguish two cases. If NE = 1 we already have the first-order ODE

aE1 (x)∂tP(t, x) + aE0 (x)P(t, x)− ε0b
E
0 E(t, x) = 03 , P(0, x) = 03 .

The Debye polarization from the previous section fits in this setting.

If NE ≥ 2 we introduce the notation P(0) = P and P(`+1) = ∂tP(`) for ` = 0, . . . , NE − 2. Hence, with

P(t, x) =
(
P(0)(t, x)T P(1)(t, x)T . . . P(NE−1)(t, x)T

)T
∈ R3NE ,

we define a first-order ODE by

MP(x)∂tP(t, x) + RPP(x)P(t, x) + RPE(x)E(t, x) = 03NE , P(0, x) = 03NE . (3.17)
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The matrices are defined by

MP(x) :=
(

I3(NE−1)×3(NE−1) 03(NE−1)×3

03×3(NE−1) aENE (x)

)
∈ R3NE×3NE , RPE(x) :=

(
03(NE−1)×3

−ε0b
E
0 (x)

)
∈ R3NE×3 ,

RPP(x) :=



03×3 −I3×3 03×3 . . . 03×3
... 03×3

. . . . . .
...

...
...

. . . . . . 03×3

03×3 03×3 . . . 03×3 −I3×3

aE0 (x) aE1 (x) . . . aENE−2(x) aENE−1(x)


∈ R3NE×3NE ,

where we use the matrix interpretation of the parameters. With the obvious identification

MP = aE1 , RPP = aE0 , RPE = −ε0b
E
0 ,

we collect both cases NE = 1 and NE ≥ 2 as the system (3.17). For the magnetization we may derive
these auxiliary differential equations as well. We just found that we can rewrite the ODE for P and M
as a system of first-order ODEs, which was our goal. Even more, from (3.17) we get with the variation
of constants formula that the constitutive laws (3.6) and (3.7) are given as

D(t, x) = ε0

εin(x)E(t, x) +
tˆ

0

χe(t− s, x)E(s, x) ds

 ,

B(t, x) = µ0

µin(x)H(t, x) +
tˆ

0

χm(t− s, x)H(s, x) ds

 ,

where χe and χm are the electric and magnetic susceptibility, respectively.
Thanks to the structure of the polarization and magnetization models we can write the Maxwell system
(3.1) in an abstract setting. Therefor we define the solution vector

u(t, x) =


E(t, x)
P(t, x)
H(t, x)
M(t, x)

 , (3.19)

and the parameter matrices

M(x) =


ε0εin(x)

MP(x)
µ0µin(x)

MM(x)

 , R(x) =


REE(x) REP(x)
RPE(x) RPP(x)

RHH(x) RHM(x)
RMH(x) RMM(x)

 .

Here the matrices REE, RHH ∈ R3×3, REP ∈ R3×3NE and RHM ∈ R3×3NH again depend on the order of
the polarization and magnetization model. For NE , NH = 1 they are given as

REE(x) := ε0b
E
0 (x)

aE1 (x)
, REP(x) := −a

E
0 (x)
aE1 (x)

,

RHH(x) := µ0b
H
0 (x)

aH1 (x)
, RHM(x) := −a

H
0 (x)
aH1 (x)

,
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whereas for NE ≥ 2 we find

REE(x) := 03×3 , REP(x) :=
(
03×3 I3×3 03×3(NE−2)

)
,

RHH(x) := 03×3 , RHM(x) :=
(
03×3 I3×3 03×3(NE−2)

)
.

These parameter matrices result from the ODE for both the polarization and magnetization as well as
the PDE for the Maxwell system. Moreover, the curl operator and the right-hand side are represented as
A and g respectively and are defined as

Au(t, x) =


− curl H(t, x)

03NE

curl E(t, x)
03NH

 , g(t, x) =


−J(t, x)

03NE

03

03NH

 . (3.20)

With this notation we rewrite the Maxwell system (3.1) with polarization and magnetization in abstract
form as

M(x)∂tu(t, x) + R(x)u(t, x) + Au(t, x) = g(t, x), in (0, T )× Ω , (3.21a)

u(0, x) = u0(x), in Ω . (3.21b)

The dimension of the system is n := 3(2 + NE + NH). In Section 3.1.2 and 3.1.3, we already saw two
examples that fit in this framework. In both examples we have NH = 0 where in the conductivity case
also NE = 0 and in the Debye setting we find NE = 1.
At the end of this section we again transfer the formulation above to the frequency domain. Therefore,
consider (3.16) and apply the Fourier–Laplace transform. This results in

P̂(ω, x) = ε0b
E
0 (x)∑NE

j=0 a
E
j (x)(iω)j

Ê(ω, x) .

Thus, from (3.8) and (3.9), we find the frequency dependent permittivity as

ε̂(ω, x) = ε0

(
εin(x) + bE0 (x)∑NE

j=0 a
E
j (x)(iω)j

)
.

The Debye polarization model from Section 3.1.3 results in the permittivity

ε̂(ω, x) = ε0

(
ε∞(x) + Mε(x)

1 + iωτ

)
.

Having the abstract Maxwell system including high-order polarization and magnetization models at hand
we briefly turn to the topic of boundary conditions in the next section. After that, in Section 3.2 we
focus on the wellposedness of the abstract Maxwell system (3.21).

3.1.5 Boundary conditions

Since it is not possible to simulate the Maxwell system on the whole R3, we chose a bounded domain Ω.
Thus, we have to take care of the boundary ∂Ω of this domain. There is a vast theory about boundary
conditions for Maxwell’s equations, see Monk (2003). However, since in this thesis the focus lies on the
heterogeneous structure of the materials we will not go into detail, but consider only the easiest boundary



3.2. Wellposedness 19

condition, which is the one of a perfect conductor. Throughout this monograph we denote by n the unit
outward normal to ∂Ω. Then the perfectly conducting boundary conditions read

E(t, x)× n = 0 , for (t, x) ∈ (0, T )× ∂Ω .

If we use the perfectly conducting boundary conditions for the electric field we see that thanks to the
Maxwell system (3.1b) we get

∂t (n ·B(t, x)) = n · ∂tB(t, x) = −n · curl E(t, x) = div (n×E(t, x))−E(t, x) · curl n = 0 ,

and therefore

n ·B(t, x) = const , for (t, x) ∈ (0, T )× ∂Ω . (3.22)

Thus, if we make sure that the initial value of the magnetic displacement field satisfies (3.22) for t = 0, it
is satisfied for all t ∈ (0, T ). The complete Maxwell system including boundary and initial conditions is

ε(x)∂tE(t, x) + ∂tP(t, x)− curl H(t, x) = −J(t, x) , in (0, T )× Ω , (3.23a)

µ(x)∂tH(t, x) + ∂tM(t, x) + curl E(t, x) = 0 , in (0, T )× Ω , (3.23b)

div D(t, x) = ρ(t, x) , in (0, T )× Ω , (3.23c)

div B(t, x) = 0 , in (0, T )× Ω , (3.23d)

E(0, x) = E0(x) , H(0, x) = H0(x) , in Ω , (3.23e)

E(t, x)× n(x) = 0 , B(0, x) · n(x) = 0 , on (0, T )× ∂Ω . (3.23f)

The system (3.23) has to be complemented by material laws for the polarization and magnetization. In
the next section we will study the wellposedness of the system (3.23) for the materials that we introduced
in Section 3.1.4.

3.2 Wellposedness

Before we move on to the heterogeneous materials, we have to make sure that the system we consider
is wellposed. The main tool for the existence and uniqueness result is the theory of maximal monotone
operators and semigroups. First we introduce the theoretical foundation we need and after that apply
it to the Maxwell system (3.21) in Section 3.2.2. The main reference is the monograph Engel and Nagel
(2000). Moreover, we follow the lines of Sturm (2017) and refer to Monk (2003).

3.2.1 Maximal monotone operator theory and semigroups

In this section we present well known results that will enable us to study the wellposedness of the abstract
Cauchy problem

∂tu(t) = Au(t) + f(t) , u(0) = u0 . (3.24)

We first give the analytical setting for the analysis of the problem (3.24).
Let (X,(·, ·)X) be a Hilbert space with corresponding norm ‖·‖2X =(·, ·)X and L(X) the space of all bounded
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linear operators from X into X with operator norm

‖A‖X←X = sup
x∈X,x 6=0

‖Ax‖X
‖x‖X

.

The analysis of the evolution equation (3.24) is closely related to the notion of strongly continuous
semigroups.

Definition 3.2.1 (Strongly continuous semigroup). A one-parameter family (T (t))t≥0 of bounded linear
operators from X to X is called a semigroup of bounded linear operators on X if

(i) T (0) = id and

(ii) T (t+ s) = T (t)T (s) for all t, s ≥ 0.

A semigroup (T (t))t≥0 is called a strongly continuous semigroup or C0-semigroup if for all x ∈ X it holds

lim
t→0+

‖T (t)x− x‖X = 0 ,

i.e. t 7→ T (t) is strongly continuous at 0.

If we replace in Definition 3.2.1 the condition “t, s ≥ 0” by “t, s ∈ R” and “t → 0+” by “t → 0” we get
the definition of a (strongly continuous) group.

Lemma 3.2.2. A strongly continuous semigroup (T (t))t≥0 has the following properties:

(i) There exist constants C ≥ 1 and β ∈ R such that

‖T (t)‖X←X ≤ Ceβt , for all t ≥ 0 .

(ii) The mapping t 7→ T (t) is strongly continuous on [0,∞), i.e.

lim
s→0
‖T (t+ s)x− T (t)x‖X = 0 , for all t ≥ 0 .

An important special case of a C0-semigroup is the one of a contraction semigroup.

Definition 3.2.3 (Contraction semigroup). An operator generates a semigroup of contraction (T (t))t≥0

if

‖T (t)‖X ≤ 1 .

The relation between the strongly continuous semigroup and the operator A in (3.24) becomes clear by
the definition of the generator of a semigroup.

Definition 3.2.4 (Infinitesimal generator). Let (T (t))t≥0 be a C0-semigroup. We define the linear oper-
ator A : D(A)→ X by

Ax = lim
t→0+

T (t)x− x
t

, (3.25)

where the domain D(A) consists of all x ∈ X for which the limit in (3.25) exists.
We call A the infinitesimal generator of the strongly continuous semigroup (T (t))t≥0.



3.2. Wellposedness 21

The following lemma gives a statement about the differentiability and yields the relation to the evolution
equation.

Lemma 3.2.5. Let (T (t))t≥0 be a C0-semigroup with infinitesimal generator A. Then the following holds
true:

(i) For x ∈ D(A) and t ≥ 0 we have (T (t))x ∈ D(A).

(ii) For all x ∈ D(A) and all t ≥ 0 we have the relation

d

dt
(T (t)x) = AT (t)x = T (t)Ax .

(iii) The domain of A is dense in X and A is a closed operator.

The next result shows that the relation between the generator and the semigroup is in fact unique.

Corollary 3.2.6. Let (T1(t))t≥0 and (T2(t))t≥0 be two C0-semigroups with generators A1 and A2, re-
spectively. If A1 = A2, then T1(t) = T2(t) for all t ≥ 0.

Now we can state a main result for the connection between evolution equations and the strongly continuous
semigroup, first without a right-hand side.

Theorem 3.2.7 ((Engel and Nagel, 2000, Chapter III, 6.2 Proposition)). Let A be the infinitesimal
generator of the strongly continuous semigroup (T (t))t≥0. Then, for every u0 ∈ D(A) the problem

∂tu(t) = Au(t) , u(0) = u0 ,

has the unique solution u(t) = T (t)u0 ∈ C1 (R+; X) ∩ C (R+;D(A)).

Note, that for a bounded operator A the semigroup (T (t))t≥0 is given as the exponential function

eAt =
∞∑
k=0
Ak t

k

k! .

For the possibly unbounded operator we still use the notation (T (t))t≥0 =
(
eAt
)
t≥0. The next result

finally connects the semigroup theory with the Cauchy problem (3.24) and states that if we have a strongly
continuous semigroup generated by an operator A the related evolution problem has a unique solution.

Theorem 3.2.8. Let A be the infinitesimal generator of the strongly continuous semigroup (etA)t≥0 and
u0 ∈ D(A). Moreover, assume that either f ∈ C1 (0, T ; X) or f ∈ C (0, T ;D(A)). Then, there exists a
unique solution u ∈ C1 (0, T ; X) ∩ C (0, T ;D(A)) of (3.24) given by

u(t) = etAu0 +
tˆ

0

e(t−s)Af(s) ds .

The question remains whether the operator A is in fact the generator of a strongly continuous semigroup.
We give two special cases of operators and corresponding theorems that state the assumptions for the
operators to actually generate a C0-semigroup. The first concept is the one of a dissipative operator.
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Definition 3.2.9 (Dissipative operator). An operator is called dissipative if

(Ax, x)X ≤ 0. for all x ∈ X .

We call the operator monotone or accretive if −A is dissipative, i.e.,

(Ax, x)X ≥ 0 for all x ∈ X .

The Lumer-Phillips theorem by Günter Lumer and Ralph Phillips covers the case where the operator A
is dissipative and satisfies the so-called range condition.

Theorem 3.2.10 (Lumer-Phillips. (Engel and Nagel, 2000, Chapter II, Corollary 3.20)). Let A be a
linear operator with domain D(A) on a Hilbert space X. Then the following statements are equivalent:

(i) A is densely defined and generates a contraction semigroup.

(ii) A is dissipative and ran(λ−A) = X for some λ > 0.

Next to dissipative operators generating C0-semigroups the notion of skew-adjoint operators gives a
sufficient condition for the operator to generate a C0-group. We will see below that the Maxwell operator
is skew-adjoint.

Definition 3.2.11 (Adjoint operator). Let A : D(A) → X be a linear operator with D(A) = X. The
adjoint operator A∗ of A is defined as follows: The domain D(A∗) consists of all y ∈ X such that there
exists z ∈ X satisfying

(Ax, y)X =(x, z)X for all x ∈ D(A) .

For y ∈ D(A∗), the adjoint is defined as A∗y = z.

With the adjoint of an operator we now give the definition of a skew-adjoint operator.

Definition 3.2.12 (Skew-symmetric and skew-adjoint operator). Let A : D(A)→ X be densely defined.
The operator A is called skew-symmetric if Ax = −A∗x for all x ∈ D (A). It is called skew-adjoint if it
is skew-symmetric and D(A) = D(A∗), which results in A∗ = −A.

The next lemma gives a criterion to check the skew-adjointness of a skew-symmetric operator.

Lemma 3.2.13. Let A : D(A) → X be skew-symmetric. Then, A is skew-adjoint if id±A has dense
range, i.e. if

range (id±A) = X .

Stone’s Theorem 3.2.16 shows that skew-adjoint operators generate unitary C0-groups. Therefore, we
give the definition of those first.

Definition 3.2.14 (Unitary group). A C0-group (T (t))t∈R is called a unitary group if

‖T (t)x‖X = ‖x‖X for all x ∈ X ,∈ R .

It is worth noting the relation between contraction semigroups and unitary groups.
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Remark 3.2.15. If A generates a unitary C0-group (T (t))t∈R, then −A generates a contraction semi-
group (T̃ (t))t≥0.

Now we have all ingredients for the statement of Stone’s theorem.

Theorem 3.2.16 (Stone’s Theorem (Engel and Nagel, 2000, Chapter II, 3.24 Theorem)). Let A : D(A)→
X be a linear operator with dense domain D(A) = X. Then the following statements are equivalent:

(i) A generates a unitary C0-group (T (t))t∈R on X.

(ii) A is skew-adjoint.

We will see in Section 3.2.2 that, in the right analytical setting, the Maxwell operator A is a skew-adjoint
operator. If we consider the linear Maxwell system, i.e., with constitutive law (3.4) and thus without
polarization and magnetization, the results from above would be enough to study the resulting system.
But since we analyze Maxwell’s equations with polarization and magnetization we need some more results
from semigroup theory. The additional operators that occur due to the polarization and magnetization
coupling will be bounded and in some special cases even dissipative. For both cases there are results
about perturbations of operators that generate contracting semigroups, such as the Maxwell operator.
We start with the bounded perturbation.

Theorem 3.2.17 (Bounded perturbation (Engel and Nagel, 2000, Chapter III, 1.3 Bounded Pertur-
bation Theorem)). Let R be a bounded operator and A generate a C0-semigroup (T (t))t∈≥0 satisfying
‖T (t)‖X←X ≤ Ceβt for all t ≥ 0 and some constants C ≥ 1 and β ∈ R. Then, the sum A+R with
D(A+R) = D(A) generates a C0-semigroup (S(t))t∈≥0 satisfying

‖S(t)‖X←X ≤ Ce(β+C‖R‖X←X)t for all t ≥ 0 .

In our example problem, the Debye polarization model, we will see that the resulting operator is not just
bounded but dissipative. There are more cases in which this is the case and the dissipativity enables us
to get a better result for the semigroup generated by the perturbed operator.

Theorem 3.2.18 (Dissipative perturbation (Engel and Nagel, 2000, Chapter III, 2.7 Theorem)). Let A
generate the contraction semigroup (T (t))t∈≥0 and R be dissipative. Assume that R is A-bounded with a
constant a < 1, i.e., there exists b ≥ 0 such that

‖Rx‖X ≤ a ‖Ax‖X + b ‖x‖X for all x ∈ D(A) .

Then A+R with D(A+R) = D(A) generates a contraction semigroup (S(t))t∈≥0.

With this perturbation result we have everything at hand that we need for the analysis of the Maxwell
system in the next section.

3.2.2 Application to Maxwell’s equations

The purpose of this section is to apply the results from semigroup theory to the general Maxwell system
with polarization and magnetization. Thus, we have to give the right functional analytical framework.
Recall that the general Maxwell system (3.21) has size n = 3 (2 +NE +NH). The state space X is chosen
to be L2 (Ω;Rn) the space of square integrable functions on Ω with values in Rn. In order to apply the
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results from the previous section we rewrite the general Maxwell system (3.21) as an abstract Cauchy
problem (3.24). Thus, we have to define the domain of the corresponding operator A. Observe, that the
solution consists of 2 +NE +NH components that map from Ω to R3. Therefore, we introduce the weak
curl of a function in L2 (Ω;R3).
Definition 3.2.19 (Weak curl). Let f ∈ L2 (Ω;R3). If there exists a function g ∈ L2 (Ω;R3) such that

ˆ

Ω

f(x) · curlφ(x) dx =
ˆ

Ω

g(x) · φ(x) dx for all φ ∈ C∞0
(
Ω;R3) ,

holds true, we call g the weak curl of f . Moreover, we denote curl f = g.

Now the space of functions that is related to Maxwell’s equations is the space H (curl,Ω).

Definition 3.2.20 (H (curl,Ω), H0 (curl,Ω)). The space of all L2 (Ω;R3) functions with existing weak
curl in L2 (Ω;R3) is defined as

H (curl,Ω) :=
{
f ∈ L2 (Ω;R3) : curl f ∈ L2 (Ω;R3)} .

Equipped with the scalar product

(f, g)H(curl,Ω) =(f, g)L2(Ω;R3) +(curl f, curl g)L2(Ω;R3) for all f, g ∈ H (curl,Ω) ,

this space is a Hilbert space. Moreover, as usual we define

H0 (curl,Ω) := C∞0 (Ω;R3)
‖·‖H(curl,Ω) ,

which suits the boundary condition for the electric field.

As it turns out in Theorem 3.2.21 below the space H (curl,Ω) is the right space for the analysis of
the Maxwell’s equations. We rewrite the Maxwell system (3.21) in the way we introduced the Cauchy
problem (3.24) in the previous section. Then we verify the properties of the resulting operator to get the
wellposedness result.
From now on we assume that the parameter M is bounded and positive definite, i.e. M ∈ L∞ (Ω;Rn×n)
and there exist constants α, CM > 0 such that

α|φ|2 ≤M(x)φ · φ ≤ CM|φ|2 , (3.26)

for all φ ∈ Rn and almost every x ∈ Ω. Note that due to the properties of the parameter M we define a
weighted scalar product on X = L2 (Ω;Rn) as

(φ, ψ)X :=
ˆ

Ω

M(x)φ(x) · ψ(x) dx for all φ, ψ ∈ X .

This scalar product induces a norm ‖·‖X, which is equivalent to the standard L2-norm. Consider equation
(3.21) and rewrite it as

∂tu(t, x) = M(x)−1 (−Au(t, x)−R(x)u(t, x) + g(t, x)) .

Thus, with the notation from Section 3.2.1 we have

∂tu(t, x) = Bu(t, x) + f(t, x) , (3.27)
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where the operator B and the right-hand side f are defined as

B = −M−1 (A + R) , f = M−1g .

We split the operator B into the Maxwell operator and the damping operator

B = A+R ,

where, for x ∈ Ω,

A(x) = −M(x)−1A , (3.28)

R(x) = −M(x)−1R(x) . (3.29)

We first consider the Maxwell operator A. It is well known that the following holds true.

Theorem 3.2.21. The Maxwell operator A from (3.28) with domain A given as

D(A) = H0 (curl,Ω)×H (curl,Ω)NE ×H (curl,Ω)×H (curl,Ω)NH ,

or

D(A) = H0 (curl,Ω)× L2 (Ω;R3)NE ×H (curl,Ω)× L2 (Ω;R3)NH ,

generates a unitary C0-group eAt, i.e., ∥∥eAt
∥∥

X←X = 1 .

Proof. The proof relies on an application of Stone’s theorem 3.2.16. Therefore, the skew-adjointness of
the Maxwell operator has to be shown, which is done by the use of Lemma 3.2.13. Thus, we have to
ensure

range (id±A) = X ,

which is shown using Lax-Milgram, see e.g., (Brenner and Scott, 2008, Theorem 2.7.7). For the details
see (Sturm, 2017, Theorem 1.25). Further note, that the Maxwell operator only acts on the components
of the solution that represent the electric and the magnetic field. Therefore, for the polarization and
magnetization we may either choose L2 (Ω;R3)NE and L2 (Ω;R3)NH or H (curl,Ω)NE and H (curl,Ω)NH .

From Theorem 3.2.21 together with Theorem 3.2.8 we immediately get the wellposedness of the Maxwell
system without polarization or magnetization, i.e., with constitutive relations as in (3.4). We now turn
to the damping parameter R, which is a perturbation of the classic Maxwell system. We will assume
that the parameter R is bounded, i.e., R ∈ L∞ (Ω;Rn×n). Now we can apply Theorem 3.2.17 and get
a wellposed problem, but in general with an exponential growth in the stability estimates. To be more
precise, from Theorem 3.2.17 and Theorem 3.2.21 we see that the semigroup (S(t))t∈≥0 generated by
B = A+R satisfies

‖S(t)‖X←X ≤ e‖R‖X←Xt for all t ≥ 0 .

This leads to an exponential growth in the stability estimate.



26 Chapter 3. Mathematical modeling of electromagnetic waves

Theorem 3.2.22. Let M,R ∈ L∞ (Ω,Rn×n), M symmetric, uniformly positive definite and let u0(x) ∈
D(A), f ∈ C ([0, T ],D(A)) or f ∈ C1 ([0, T ],X).
Then we find a unique solution u ∈ C1 ([0, T ],X) ∩ C ([0, T ],D(A)) of (3.27), which satisfies

‖u(t)‖X ≤ et‖R‖X←X

(
‖u0‖X + t ‖f‖L∞(0,t;X)

)
. (3.30)

Proof. This is a direct consequence of Theorem 3.2.8 and Theorem 3.2.21 combined with the perturbation
Theorem 3.2.17 for bounded operators.

With more information about the parameter R we get a better estimate.
If R is at least positive semi-definite, then the associated operator R is going to be dissipative and
therefore we can apply Theorem 3.2.18, which states that the perturbed operator B = A+R generates
a contraction semigroup (S(t))t∈≥0, i.e.

‖S(t)‖X←X ≤ 1 for all t ≥ 0 .

Theorem 3.2.23. Let M,R ∈ L∞ (Ω,Rn×n), M symmetric, uniformly positive definite, R positive
semi-definite, and let u0(x) ∈ D(A), f ∈ C ([0, T ],D(A)) or f ∈ C1 ([0, T ],X).
Then we find a unique solution u ∈ C1 ([0, T ],X) ∩ C ([0, T ],D(A)) of (3.27) which satisfies

‖u(t)‖X ≤ ‖u0‖X + t ‖f‖L∞(0,t;X) . (3.31)

Proof. We use the Theorem 3.2.18 about the dissipative perturbation with a = 0 and b = ‖R‖X←X <∞
since R is bounded. The result is a direct consequence of Theorem 3.2.8 and Theorem 3.2.21. See also
with (Hipp et al., 2019, Theorem 2.4).

We point out that, although in general the parameter R does not need to be positive semi-definite, in
our examples it is always.

The Maxwell system with conductivity

Let us apply the wellposedness theory to the classic Maxwell system with conductivity (3.11). In addition
to the properties of M in (3.26) we assume that the conductivity σ is positive semi-definite and bounded.
This yields that the parameter R is positive semi-definite and bounded such that we can apply Theorem
3.2.23. This immediately yields the wellposedness of the system (3.11). Moreover, the solution satisfies

‖u(t)‖X ≤ ‖u0‖X + t ‖f‖L∞(0,t;X) .

Note that the space X in this setting is L2 (Ω;R6) since we only have the electric and magnetic field
present.

The Maxwell–Debye system

Now we consider our second example, the Maxwell–Debye system given in (3.15). As shown in Section
3.1.3 we can write it in the form

M∂tu(t) + (A + R) u(t) = g(t) .
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The parameters M and R contain the relaxation time τ , which is strictly positive as well as Mε =
εs − ε∞ > 0. Before we apply Theorem 3.2.18 we multiply the system by the following matrix

Q(x) :=


I3×3

ε−1
0 τ(x)−1Mε(x)−1

I3×3

 , (3.32)

which is positive definite. This only affects the parameter matrices M and R since the Maxwell operator
A and the right-hand side g have no entry in the component of the polarization. We thus get

Q(x)M(x) =


ε0ε(x)

ε−1
0 Mε(x)−1

µ0

 , Q(x)R(x) =


ε0τ(x)−1Mε(x) −τ(x)−1 0
−τ(x)−1 ε−1

0 τ(x)−1Mε(x)−1 0
0 0 0

 .

The matrix Q(x)M(x) still has the same properties as M, i.e., it is positive definite and bounded.
Moreover, the matrix Q(x)R(x) is symmetric and positive semi-definite. But this is exactly what we
need in order to apply the wellposedness Theorem 3.2.23 with a dissipative perturbation of the Maxwell
operator. In this setting we have X = L2 (Ω;R9), and we use the inner product

(φ, ψ)X =
ˆ

Ω

Q(x)M(x)φ(x) · ψ(x) dx for all φ, ψ ∈ X .

Thus, we immediately find that the Maxwell–Debye system is wellposed and again satisfies the stability
bound

‖u(t)‖X ≤ ‖u0‖X + t
∥∥M−1g

∥∥
L∞(0,t;X) .

In the next section we briefly comment on the effect of dissipative operators to the energy of the Maxwell
system.

3.2.3 Energy and stability

The energy of a Maxwell system is given as the quantity

E(t) := 1
2 ‖u(t)‖2X .

For a Maxwell system with vanishing right-hand side g and a positive semi-definite damping parameter
R we find

∂tE(t) =(M∂tu(t),u(t)) = −((A + R) u(t),u(t)) ≤ 0 .

Thus, the energy of such a system is bounded by the initial energy

E(T ) ≤ E(0) .

This property is also referred to as physically passive as found in Cassier et al. (2017).
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CHAPTER 4

Homogenization of Maxwell’s equations in locally periodic media

In the first chapter we introduced the Maxwell’s equations for the propagation of electromagnetic waves
in general media. Our main interest are materials that exhibit heterogeneities at very small scales. For
instance consider a mixture of two different materials that are artificially constructed. Examples of
these materials are so-called meta materials, which may have unexpected properties such as negative
refraction. This chapter is organized as follows. First we explain what the main difficulties in modeling
of heterogeneous media are and why we need to use homogenization to overcome these issues in Section
4.1. Then, in Section 4.2 we consider the linear Maxwell system without polarization and magnetization,
which has already been analyzed in many works. Since the dispersion effect will play a crucial role in the
analysis we briefly consider such effects occurring in long time homogenization in general wave equations
in Section 4.3. The main part of this chapter is collected in Section 4.4 where we finally consider the
homogenization of the Maxwell system derived in Chapter 3. In the last Section 4.5 we briefly comment
on homogenization techniques that are beyond the periodic setting considered here.

4.1 Heterogeneous materials and their restrictions in simulation

The interest of this work are materials that are periodically varying on small scales. Our understanding
of small is the following: Eventually, we apply a finite element method (FEM) to a partial differential
equation, which in our setting is a Maxwell system. To capture every aspect of the system we have
to ensure that all oscillations are resolved by the finite element discretization. When we say that the
parameters are oscillating on small scales, we mean that these scales are too small to be resolved by our
finite element scheme. Moreover, we are interested in the setting where the micro-structure is small in
comparison to the wavelength of the electromagnetic waves. The idea to overcome this problem stems
from the fact that even for the most general Maxwell system we see in Theorem 3.2.22 that the solution
uδ of the system satisfies the bound∥∥uδ(t)∥∥X ≤ et‖R‖X←X

(∥∥uδ0∥∥X + t
∥∥f δ∥∥L∞(0,t;X)

)
. (4.1)
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Now if the initial value and the right-hand side can be bounded independent of δ, there exists a bounded
sequence uδ. Since the space X is a Hilbert space there is a ueff ∈ X and a subsequence still denoted by
uδ such that

uδ ⇀ ueff weakly in X .

This gives rise to the question which limit system the quantity ueff satisfies. The aim of homogenization is
to find this limit system. As it turns out the limit system is characterized by homogeneous parameters that
do not depend on the microscopic scale anymore and this is of course favorable for a finite element method.
The literature on the field of homogenization is vast. The classical results presented here are found in
Allaire (1992); Jikov et al. (1994); Sánchez-Palencia (1980). After this motivation of homogenization, let
us now introduce some notation that will be used in the remainder. We begin with the definition of a
periodic tensor, which is the basic definition related to the heterogeneous parameters.

Definition 4.1.1 (Periodic function). Let d ∈ N and Ω ⊆ Rd. A tensor g : Ω→ Rn×n is called 1-periodic,
if

g(y + ek) = g(y) ,

for almost every y ∈ Rn and all k = 1, . . . , d. The quantity ek is the k-th canonical basis vector of Rd.

Every 1-periodic tensor is defined through its values on the unit cube Y :=
(
− 1

2 ,
1
2
)3. Thus, we may

call the tensor Y -periodic. To get highly oscillatory parameters we use the following notation. For a
parameter δ > 0 representing the microscopic scale and a 1-periodic tensor g the tensor gδ(·) := g

( ·
δ

)
is

δ-periodic, i.e.,
gδ(y + δek) = gδ(y) for all y ∈ Y .

The concept of periodicity is important in the homogenization process that follows. Nevertheless, we
consider a slightly larger class of material parameters. These parameters may at least be locally periodic,
which is equivalent to a separation of the scales as shown in the following definition.

Definition 4.1.2 (Locally periodic parameter). Let δ > 0. A tensor αδ : Ω → Rn×n is called locally
δ-periodic if there exists a tensor α : Ω × R3 → Rn×n, which is Y -periodic in its second argument and
αδ(x) = α

(
x, xδ

)
holds for almost every x ∈ Ω. We call the function α the blueprint of αδ.

Since the periodicity of the parameters is visible in many quantities in this work we next define notation
for spaces that consist of periodic functions. It will turn out that the crucial space we need is going to
be a Sobolev type space. For that purpose we define the space of smooth Y -periodic functions as

C∞# (Y ) :=
{
f ∈ C∞

(
Y
)

: f(y + ek) = f(y) for all y ∈ Y
}
.

Now the usual definition of the Sobolev space as closure of infinitely differentiable functions follows as

H1
#(Y ) := C∞# (Y )

‖·‖H1(Y ) .

Moreover, we define the quotient space consisting of the functions with vanishing zero mean

H1
# (Y ) :=

f ∈ H1
#(Y ) :

ˆ

Y

f(y) dy = 0

 .
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In general for a function space F (Y ) we denote a suitable subspace containing periodic functions as
F#(Y ).
Next to the function spaces that are related to the periodicity of the parameters we present the concept
of two-scale convergence, introduced in Nguetseng (1989), which is adjusted to the scale separation. This
is the analytic tool that has been used in the past to rigorously analyze the homogenization especially in
Wellander (2001).

Definition 4.1.3 (Two-scale convergence). A sequence of functions
(
uδ
)
δ>0 ⊆ L2 (Ω) two-scale converges

to a limit ueff ∈ L2 (Ω× Y ), if for any test function v ∈ L2 (Ω; C0
# (Y )

)
we have

lim
δ→0

ˆ

Ω

uδ(x)v
(
x,
x

δ

)
dx =

ˆ

Ω

ˆ

Y

ueff(x, y)v(x, y) dy dx .

Let us mention that in Section 4.4.2 we use the technique of periodic unfolding introduced in Cioranescu
et al. (2002), which conceptually simplifies the proofs. For this method it was shown in (Cioranescu
et al., 2008, Proposition 2.14) that the two-scale convergence is equivalent to a weak convergence of the
so-called unfolded functions.

4.2 Homogenization results for the Maxwell system with
conductivity

Before we study the general Maxwell models that we introduced in Chapter 3 we briefly give the results
for the classic linear material laws as in (3.4). This class of Maxwell’s equations has been studied starting
with Sánchez-Palencia (1980) where the classical method of asymptotic expansion is used to derive the
homogeneous model. In Wellander (2001) the author gives rigorous proofs using the notion of two-scale
convergence from Definition 4.1.3. Both of these works already considered Ohm’s law with conductivity.
This seems to be the right starting point to see the effects that occur when homogenizing Maxwell’s
equations. Let us start with the heterogeneous Maxwell system with a linear constitutive law, which is
in time domain given as

εδ(x)∂tEδ(t, x) + σδ(x)Eδ(t, x)− curl Hδ(t, x) = −J(t, x) , (4.2a)

µδ(x)∂tHδ(t, x) + curl Eδ(t, x) = 0 , (4.2b)

div
[
εδ(x)Eδ(t, x)

]
= ρ(t, x) , (4.2c)

div
[
µδ(x)Hδ(t, x)

]
= 0 . (4.2d)

Here the parameters εδ, σδ and µδ are locally δ-periodic functions that are assumed to be uniformly
elliptic or coercive and uniformly bounded. We constrain the system (4.2) with perfectly conducting
boundary conditions and with initial data

Eδ(0, x) = 0, Hδ(0, x) = 0 .

As explained before we consider the fine-scale parameter δ to be too small to be resolved by a classical
finite element scheme. Thus, we follow the idea to derive a limit system for δ → 0 whose solution is close
(in an appropriate sense) to the original heterogeneous system but where the parameters are no longer
highly oscillatory. To get an idea how the effective system looks like, we use the easy tool of asymptotic
expansion, which allows to formally derive the desired homogeneous system.
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4.2.1 Asymptotic expansion for the Maxwell system with conductivity

We derive the effective system related to (4.2) via the use of asymptotic expansion. Recall that we defined
the unit cell Y =

(
− 1

2 ,
1
2
)3. The idea is to use the following ansatz

Eδ(t, x) = Eeff(t, x) + Ē(t, x, xδ ) , Hδ(t, x) = Heff(t, x) + H̄(t, x, xδ ) . (4.3)

The quantities Ē and H̄ are Y -periodic in y and have zero mean, i.e.,
ˆ

Y

Ē(t, x, y) dy = 0 ,
ˆ

Y

H̄(t, x, y) dy = 0 for all (t, x) ∈ [0, T ]× Ω . (4.4)

Thus, substituting the ansatz (4.3) in the system (4.2) yields[
ε(xδ )∂t + σ(xδ )

] (
Eeff(t, x) + Ē(t, x, xδ )

)
− curlx

(
Heff(t, x) + H̄(t, x, xδ )

)
= −J(t, x) ,

µ(xδ )∂t
(
Heff(t, x) + H̄(t, x, xδ )

)
+ curlx

(
Eeff(t, x) + Ē(t, x, xδ )

)
= 0 ,

divx
[
ε(xδ )

(
Eeff(t, x) + Ē(t, x, xδ )

)]
= ρ(t, x) ,

divx
[
µ(xδ )

(
Heff(t, x) + H̄(t, x, xδ )

)]
= 0 .

Evaluating the curl with the chain rule yields expressions for different powers of δ. For δ−1 and y = x
δ

we find

curly H̄(t, x, y) = 0 , curly Ē(t, x, y) = 0 ,

which is equivalent to the existence of fields H̄, Ē : [0, T ]× Ω× Y → R such that

H̄(t, x, y) = ∇yH̄(t, x, y) , Ē(t, x, y) = ∇yĒ(t, x, y) for all (t, x, y) ∈ [0, T ]× Ω× Y . (4.6)

On the level of δ0 we find, using again y = x
δ , the Maxwell system

[ε(y)∂t + σ(y)]
(
Eeff(t, x) + Ē(t, x, y)

)
− curlx Heff(t, x)− curlx H̄(t, x, y) = −J(t, x) ,

µ(y)∂t
(
Heff(t, x) + H̄(t, x, y)

)
+ curlx Eeff(t, x) + curlx Ē(t, x, y) = 0 ,

divx
[
ε(y)

(
Eeff(t, x) + Ē(t, x, y)

)]
= ρ(t, x) ,

divx
[
µ(y)

(
Heff(t, x) + H̄(t, x, y)

)]
= 0 .

The final step is to take the mean value over Y and to use the vanishing mean values in (4.4) as well as
(4.6). Thus, we end up with the two-scale Maxwell system

ˆ

Y

[ε(y)∂t + σ(y)]
(
Eeff(t, x) +∇yĒ(t, x, y)

)
dy − curlx Heff(t, x) = −J(t, x) , (4.8a)

ˆ

Y

µ(y)∂t
(
Heff(t, x) +∇yH̄(t, x, y)

)
dy + curlx Eeff(t, x) = 0 , (4.8b)

divx

ˆ
Y

ε(y)
(
Eeff(t, x) +∇yĒ(t, x, y))

)
dy

 = ρ(t, x) , (4.8c)

divx

ˆ
Y

µ(y)
(
Heff(t, x) +∇yH̄(t, x, y)

)
dy

 = 0 . (4.8d)
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Next we determine representations for Ē and H̄. Therefore, we test (4.8a) and (4.8b) with ∇yv for
v ∈ H1

# (Y ). This yields after integration by parts, using div curl = 0
ˆ

Y

[ε(y)∂t + σ(y)]
(
Eeff(t, x) +∇yĒ(t, x, y)

)
· ∇yv(y) dy = 0 ,

ˆ

Y

µ(y)∂t
(
Heff(t, x) +∇yH̄(t, x, y)

)
· ∇yv(y) dy = 0 .

From these two equations we determine Ē and H̄ as

Ē(t, x, y) = wε(y) ·Eeff(t, x) +
tˆ

0

wχ(t− s, y) ·Eeff(s, x) ds , (4.9a)

H̄(t, x, y) = wµ(y) ·Heff(t, x) , (4.9b)

where the cell correctors wε, wµ, wχ(t, ·) ∈ H1
# (Y ) solve the so-called micro problems for all ` = 1, 2, 3

and all v ∈ H1
# (Y )

ˆ

Y

ε(y) (e` +∇ywε` (y)) · ∇yv(y) dy = 0 ,
ˆ

Y

µ(y) (e` +∇ywµ` (y)) · ∇yv(y) dy = 0 ,

ˆ

Y

(ε(y)∂t∇ywχ` (t, y) + σ(y)∇ywχ` (t, y)) · ∇yv(y) dy = 0 for t ∈ (0, T ] ,

ˆ

Y

(ε(y)∇ywχ` (0, y) + σ(y) (e` +∇ywε` (y))) · ∇yv(y) dy = 0 .

Now we use the definition of the correctors in (4.9) and insert it in the two-scale limit system (4.8), which
results in

εeff∂tEeff(t, x) + ∂tPeff(t, x) + σeffEeff(t, x) +
tˆ

0

ςeff(t− s)Eeff(s, x) ds− curl Heff(t, x) = −J(t, x) ,

(4.10a)

µeff∂tHeff(t, x) + curl Eeff(t, x) = 0 , (4.10b)

div
[
εeffEeff(t, x) + Peff(t, x)

]
= ρ(t, x) , (4.10c)

div
[
µeffHeff(t, x)

]
= 0 . (4.10d)

The effective polarization is defined as

Peff(t, x) =
tˆ

0

χeff(t− s)Eeff(s, x) ds .

The effective parameters are given as mean values over the unit cell as

εeff
k,` =

ˆ

Y

ε(y) (e` +∇ywε` (y)) · ek dy , χeff(t)k,` =
ˆ

Y

ε(y)∇ywχ` (t, y) · ek dy ,

σeff
k,` =

ˆ

Y

σ(y) (e` +∇ywε` (y)) · ek dy , ςeff(t)k,` =
ˆ

Y

σ(y)∇ywχ` (t, y) · ek dy ,

µeff
k,` =

ˆ

Y

µ(y) (e` +∇ywµ` (y)) · ek dy .
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What we observe here is that the homogenization process introduces a polarization in our Maxwell system.
Moreover, the quantity

σeffEeff(t, x) +
tˆ

0

ςeff(t− s)Eeff(s, x) ds ,

could be interpreted as a version of Ohm’s law, i.e., in frequency domain this reads(
σeff + ς̂eff(ω)

)
Ê(ω, x) .

Remark 4.2.1. It is worth noting that there are other possibilities to introduce cell correctors and
corresponding effective parameters. For instance, we may introduce the corrector wσ ∈ H1

# (Y ) which
is directly related to the conductivity and solves for all ` = 1, 2, 3 and all v ∈ H1

# (Y )
ˆ

Y

σ(y) (e` +∇ywσ` (y)) · ∇yv(y) dy = 0 .

Using this corrector we define slightly different effective parameters as

χ̂eff(t)k,` =
ˆ

Y

ε(y)∇ywχ` (t, y) · (ek +∇ywσk (y)) dy , σ̂eff
k,` =

ˆ

Y

σ(y) (e` +∇ywε` (y)) · (ek +∇ywσk (y)) dy ,

and a different polarization

P̂
eff

(t, x) =
tˆ

0

χ̂eff(t− s)Eeff(s, x) ds .

Thus, an equivalent way to write (4.10a) is

∂t

(
εeffEeff(t, x) + P̂

eff
(t, x)

)
+ σ̂effEeff(t, x)− curl Heff(t, x) = −J(t, x) .

We emphasize again that this is just a formal derivation without rigorous proofs. In Section 4.4, we give
the rigorous theoretical result obtained using results from Bokil et al. (2018); Bossavit et al. (2005) via
periodic unfolding, which holds true for a more general Maxwell system. In the next section we briefly
comment on other effects of homogenization that may occur.

4.3 Long time dispersive effects in homogenization of general
wave equations

In our Maxwell-Debye model the dispersion is present from the beginning but there are also dispersive
effects occurring in wave equations when one considers long time intervals. With long, we mean in the
context of homogenization times of order T = δ−2 and, since δ � 1 is assumed to be very small, this
is indeed a long time. For general wave equations these effects have been studied analytically as well as
numerically in various works. On the analytic side one observes that, due to the small oscillations in the
heterogeneous system over long time, dispersion enters, which is not covered by the effective solution.
Thus, in order to overcome this issue new homogeneous equations were derived in Abdulle and Pouchon
(2016); Dohnal et al. (2014, 2015) whose solutions are able to reflect the dispersive effects at least for
longer times. Moreover, in Abdulle et al. (2014) a numerical approach is presented that also include the
heterogeneous multiscale method over long time.
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4.4 Homogenization of the Maxwell system

This section is dedicated to the homogenization of the general Maxwell system (3.21). We first show
the system in its heterogeneous form in Section 4.4.1 and state some general assumptions. Then we
introduce the periodic unfolding method as an analytical tool in Section 4.4.2 and finally present the
homogenized Maxwell system in Section 4.4.3. The main result in Theorem 4.4.6 is taken from (Bokil
et al., 2018, Theorem 5.2). The principal contribution of this chapter follows in Section 4.4.4 where we
derive an equivalent formulation of the effective system, which we think is more suitable in the context
of finite element methods. Moreover, in Sections 4.4.6, and 4.4.7 we show symmetry and exponential
decay properties of the parameters. These properties are crucial for the error analysis in Chapter 5 and
for the time integration in Chapter 6. In addition, we use the structure of the parameters for a refined
wellposedness result in Section 4.4.8.

4.4.1 Heterogeneous Maxwell system

We assume that the material in the domain Ω has a locally periodic micro-structure characterized by the
parameters M and R with periodically varying spatial coefficients. The periodic structure is assumed
to be characterized by an elementary micro-structure with size δ > 0. This is expressed by δ dependent
parameters Mδ, Rδ, initial values uδ0 and exterior source gδ. Given δ we obtain a family of electromagnetic
fields uδ : [0, T ]→ D(A), which are solutions to the evolution problem

Mδ(x)∂tuδ(t, x) + Rδ(x)uδ(t, x) + Auδ(t, x) = gδ(t, x) , in (0, T )× Ω , (4.11a)

uδ(0, x) = uδ0(x) , in Ω , (4.11b)

n× uδ1(t, x) = 0 , on (0, T )× ∂Ω . (4.11c)

As explained in Section 4.1 we are interested in the asymptotic behavior of the solution uδ when the
periodicity length δ tends to zero. In view of the bound (4.1) we make the following assumption on the
initial data and the source

uδ0 → u0 , strongly in D(A) ,

gδ → g , strongly in H1 (0, T ; L2 (Ω;Rn)
)
.

(4.12)

With these assumptions we eventually get the desired uniform bound on the solution and thus, the
existence of a subsequence, whose limit is the candidate for the homogenized solution. We already
mentioned that we follow the approach of Bokil et al. (2018) where the periodic unfolding method is used
to derive the effective system. Thus, we briefly introduce the method used in the next section.

4.4.2 Periodic unfolding as generalization of two-scale convergence

In this section we introduce the periodic unfolding method, which was first introduced in Cioranescu
et al. (2002). A collection of many results and proofs can be found in Cioranescu et al. (2008) where
the Dirichlet problem as standard homogenization example is considered. In Bossavit et al. (2005) the
authors showed additional results for the unfolding operator that are related to Maxwell’s equations,
which where used in numerical experiments in Banks et al. (2006). For completeness, we repeat these
results here.
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Recall that we denote by Y =
(
− 1

2 ,
1
2
)3 the unit/reference cell. For a.e. z ∈ R3 let [z]Y be the unique

element belonging to Z3 such that z − [z]Y ∈ Y , so that we may write z = [z]Y + {z}Y for a.e. z ∈ R3.
Consequently, for all δ > 0 we get the unique decomposition

x = δ
([x
δ

]
Y

+
{x
δ

}
Y

)
, for a.e. x ∈ R3 . (4.13)

We assume that our parameters Mδ and Rδ are locally periodic. More precisely we assume that according
to the decomposition in (4.13) there exist two parameters M and R such that

Mδ(x) = M
(
x,
{x
δ

}
Y

)
, Rδ(x) = R

(
x,
{x
δ

}
Y

)
, for a.e. x ∈ R3 . (4.14)

Compare this definition with the one in Definition 4.1.2, which means that the parameters M and R are
the blueprints of Mδ and Rδ, respectively. See also (Cioranescu et al., 2008, Remark 2.3). As pointed
out in the Remark (2) to (Cioranescu et al., 2002, Theorem 2) there is a special structure that is allowed
for the parameters, which represents the scale separation. See also (Cioranescu et al., 2008, Remark 5.6).
We only consider the case where the domain Ω can be covered by disjunct cuboids. This is only a
simplification but no essential restriction. In fact one can do everything that follows also for general
domains Ω, see Cioranescu et al. (2008) for the details but this would complicate things unnecessarily.
Now we define the unfolding operator and give its key properties.

Definition 4.4.1 (Unfolding operator). The unfolding operator T δ : L2 (Ω;Rn) → L2 (Ω× Y ;Rn) is
defined by

T δ(Φ)(x, y) = Φ
(
δ
[x
δ

]
+ δy

)
, for a.e. (x, y) ∈ Ω× Y , and all Φ ∈ L2 (Ω;Rn) .

Let us give the central results needed for the homogenization process below. We start with the following
result (Bossavit et al., 2005, Theorem 2).

Theorem 4.4.2. (i) For all Φ ∈ L2 (Ω) we have the strong convergence

T δ(Φ)→ Φ in L2 (Ω× Y ) .

(ii) Let Φδ be a family of functions uniformly bounded in L2 (Ω). There exists Φ ∈ L2 (Ω× Y ) such
that, up to a subsequence, we have the weak convergence

T δ(Φδ) ⇀ Φ in L2 (Ω× Y ) .

(iii) Let Φδ be a family of functions uniformly bounded in H (curl,Ω). There exists three fields

Φ ∈ H (curl,Ω) , Φ ∈ L2 (Ω,H1
# (Y ;R)

)
, Φ ∈ L2 (Ω,H1

#
(
Y ;R3)) , divy Φ = 0 ,

such that up to a subsequence, we have the weak convergences

Φδ ⇀ Φ in H (curl,Ω) ,

T δ(Φδ) ⇀ Φ +∇yΦ in L2 (Ω× Y ;R3) ,
T δ(curl Φδ) ⇀ curlx Φ + curly Φ in L2 (Ω× Y ;R3) .
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Proof. The first two statements are already given in Cioranescu et al. (2002) and again in Cioranescu
et al. (2008). The proof of (iii) can be found in Bossavit et al. (2005). It relies on the decomposition

H (curl,Ω) = ∇H1
0 (Ω)⊕H (curl,div 0,Ω) ,

where H (curl,div 0,Ω) :=
{
φ ∈ H (curl,Ω) : divφ ∈ L2 (Ω) and divφ = 0

}
.

This result is comparable with the two-scale counterpart given in (Wellander, 2001, Proposition 4.3).
We now recall the result (Cioranescu et al., 2008, Proposition 2.14) about the equivalence of two-scale
convergence to weak L2 (Ω× Y )-convergences of the unfolding sequence.

Proposition 4.4.3. Let {Φδ} be a bounded sequence in L2 (Ω). The following assertions are equivalent:

(i) {T δ(Φδ)} converges weakly to Φ in L2 (Ω× Y ),

(ii) {Φδ} two-scale converges to Φ.

Recall that the solution (3.19) of the abstract Maxwell system (3.21) is split in four components, i.e., the
electric and magnetic field and possibly multiple polarization and magnetization fields. The notation we
used previously is now extended to higher dimensions fitting to this splitting.

Remark 4.4.4. The dimension of the abstract Maxwell system (3.21) is n = 3(2 + NE + NH) and

we set N := n
3 . For v =

(
vT1 vT2 vT3 vT4

)T
∈ R3+3NE+3+3NH and w =

(
w1 wT2 w3 wT4

)T
∈

R1+NE+1+NH we define

curl v := (curl v`)4
`=1 ,

div v := (div v`)4
`=1 ,

n× v := (n× v`)4
`=1 ,

∇w :=
(
∇wT1 ∇wT2 ∇wT3 ∇wT4

)T
=
(
∇wT1 , ∇wT2 , ∇wT3 , ∇wT4

)
∈ Rn .

Here the curl, divergence and cross product for v2 and v4 are defined component wise. The same holds
true for the gradient of w2 and w4.
Furthermore, we introduce the quantity y ∈ RN×n, where y` has an entry at position `−(` mod 3)

3 + 1
and zeros elsewhere. The entry is y` mod 3+ 3

2 (1−` mod 3)(2−` mod 3), which is one of the three coordinate
directions of the unit cell Y . This gives us a complicated way to write the canonical basis of Rn and the
n× n identity matrix as

e` = ∇yy` , In =
(
e1 . . . en

)
=
(
∇yy1 . . . ∇yyn

)
= DT

y y .

Next we present the limit system, see (Bokil et al., 2018, Theorem 5.1) where the actual proof is found
in (Bossavit et al., 2005, Theorem 3). The parameter Rδ in the following theorem does not need to
be symmetric or positive semi-definite, which is indeed the most general case of a coupling. In the next
theorem we use the notation Ax and Ay. This has to be understood as the Maxwell operator with respect
to the x and y variable, respectively.

Theorem 4.4.5. Let Mδ,Rδ ∈ L∞ (Ω;Rn×n) be two matrix sequences given by (4.14), with Mδ sym-
metric and uniformly positive definite. Assume for the initial condition uδ0 ∈ D(A) and the source
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gδ ∈ H1 (0, T ; L∞ (Ω;Rn)). Let uδ be the solution to the Maxwell problem (4.11).
Then there exist three fields

ueff ∈W1,∞ (0, T ; L2 (Ω;Rn)
)
∩ L∞ (0, T ;D(A)) ,

u ∈W1,∞ (0, T ; L2 (Ω; H1
#
(
Y ;RN

)))
,

u ∈ L∞
(
0, T ; L2 (Ω; H1

# (Y ;Rn)
))
, divy u = 0 ,

which are limits of the following sequences

uδ ⇀ ueff , weakly-* in L∞ (0, T ;D(A)) ,

T δ(uδ)→ ueff +∇yu , strongly in H1 (0, T ; L2 (Ω× Y ;Rn)
)
,

T δ(curlx uδj)→ curlx ueff
j + curly uj , j = 1, 3 strongly in L2 ((0, T )× Ω× Y ;Rn) .

Note that j = 1, 3 corresponds to the electric and magnetic fields as in (3.19). These limit fields solve the
Maxwell system

M(x, y)∂t
(
ueff(t, x) +∇yu(t, x, y)

)
+ R(x, y)

(
ueff(t, x) +∇yu(t, x, y)

)
+ Axueff(t, x) + Ayu(t, x, y) = g(t, x)

in (0, T )× Ω× Y ,

ueff(0) = u0, u(0) = 0 in Ω× Y ,

n× ueff
1 = 0 on (0, T )× Ω .

Proof. The proof of the theorem relies on a slightly different result given in Bossavit et al. (2005) and
the fact that the parameters ensure the scale separation. To be more precise we reformulate (4.11a) as

Mδ∂tuδ(t) + Rδuδ(t) + Auδ(t) = ∂t

Mδuδ(t) +
tˆ

0

Rδuδ(s) ds

+ Auδ(t) .

Thus, we can now apply (Bossavit et al., 2005, Theorem 3) which gives the result.

The limit system in Theorem 4.4.5 should be compared with the system in (4.8) where the similarities are
obvious. Thus, the next step is to derive the effective parameters and the corresponding cell correctors
as in Section 4.2.1, which we do in the next section.

4.4.3 The homogeneous Maxwell system and the delay effect

Computing the effective parameters and corresponding correctors is the final step in the derivation of the
homogeneous system. We show that the limit solution ueff from Theorem 4.4.5 solves a global Maxwell
problem posed in (0, T )×Ω, while the corrector u solves local diffusion problems posed in (0, T )× Y for
x ∈ Ω. The following result is again from (Bokil et al., 2018, Theorem 5.2).

Theorem 4.4.6. For δ > 0, let Mδ ∈ L∞ (Ω;Rn×n), symmetric and uniformly positive definite, and
Rδ ∈ L∞ (Ω;Rn×n), be two families of parameters given as in (4.14). Assume that the initial condition
uδ0 and the source gδ satisfy (4.12). Then there exists a unique effective field

ueff =


Eeff

Peff

Heff

Meff

 ∈W1,∞ (0, T ; L2 (Ω;Rn)
)
∩ L∞ (0, T ;D(A)) ,
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which solves the effective Maxwell system

Meff(x)∂tueff(t, x) + R̃eff(x)ueff(t, x) + ∂t

tˆ

0

G̃eff(t− s, x)ueff(s, x) ds

+ Aueff(t, x) = g(t, x)− Jeff(t, x)u0(x)

in (0, T )× Ω , (4.15a)

ueff(0) = u0 in Ω , (4.15b)

n× ueff
1 = 0 on (0, T )× ∂Ω . (4.15c)

Here the `-th column of the effective parameters and the extra source are given as

(Meff(x))` =
ˆ

Y

M(x, y)
(
e` +∇ywM

` (x, y)
)

dy , (4.16)

(R̃eff(x))` =
ˆ

Y

R(x, y)
(
e` +∇ywM

` (x, y)
)

dy , (4.17)

(G̃eff(t, x))` =
ˆ

Y

M(x, y)∇yw`(t, x, y) +
tˆ

0

R(x, y)∇yw`(s, x, y) ds

 dy , (4.18)

(Jeff(t, x))` = ∂t

ˆ

Y

M(x, y)∇yw0
` (t, x, y) +

tˆ

0

R(x, y)∇yw0
` (s, x, y) ds

 dy , (4.19)

for ` = 1, . . . , n.
The correctors wM

` (x, ·) ∈ H1
#
(
Y ;RN

)
, w` ∈ W2,1 (0, T ; H1

#
(
Y ;RN

))
, w0

` ∈ W2,1 (0, T ; H1
#
(
Y ;RN

))
solve the following cell problems.

• The corrector wM is a classic cell corrector associated to the parameter M
ˆ

Y

M(x, y)
(
e` +∇ywM

` (x, y)
)
· ∇yv(y) dy = 0, for all v ∈ H1

#
(
Y ;RN

)
. (4.20)

• The corrector w is a time dependent cell corrector the arises due to the damping parameter R and
solves for a.e. t ∈ (0, T )

ˆ

Y

M(x, y)∇yw`(t, x, y) +
tˆ

0

R(x, y)∇yw`(s, x, y) ds

 · ∇yv(y) dy

= −
ˆ

Y

R(x, y)
(
e` +∇ywM

` (x, y)
)
· ∇yv(y) dy , for all v ∈ H1

#
(
Y ;RN

)
.

(4.21)

• The cell corrector w0 is related to the initial condition and the damping parameter. It solves for
a.e. t ∈ (0, T )

ˆ

Y

M(x, y)∇yw0
` (t, x, y) +

tˆ

0

R(x, y)∇yw0
` (s, x, y) ds

 · ∇yv(y) dy

=
ˆ

Y

M(x, y)e` · ∇yv(y) dy , for all v ∈ H1
#
(
Y ;RN

)
.

(4.22)



40 Chapter 4. Homogenization of Maxwell’s equations in locally periodic media

In this theorem we used the notation given in Remark 4.4.4 for both, the correctors and the test functions.

Remark 4.4.7. Observe the following about the effective parameters from Theorem 4.4.6

1. The effective parameter Meff is symmetric since M is symmetric. For details see Lemma 4.4.8
below.

2. In the previous theorem the parameter R is again not assumed to be symmetric. In this general
case, even the effective parameters R̃eff and G̃eff will not necessarily be symmetric.

3. In special cases where the parameter R is symmetric it is still not obvious that the effective param-
eters are symmetric. Nevertheless, we show in Lemma 4.4.9 that they are in fact symmetric.

The wellposedness of the cell problems is not obvious, especially for the time-dependent problems. One
way to show the unique existence of a solution is to use Fredholm theory as in Bossavit et al. (2005), but
we use a different approach, namely methods for differential equations. In Section 4.4.4, we differentiate
the time dependent cell problems, which yields equivalent formulations for the cell correctors in a setting
of differential equations.

The key in the derivation of the effective system is again the representation of the global corrector u,
which is given as

u(t, x, y) = wM
` (x, y)ueff

` (t, x) + w0
` (t, x, y)ueff

` (0, x) +
tˆ

0

w`(t− s, x, y)ueff
` (s, x) ds .

This representation is almost the same as in (4.9) with the only difference that in Section 4.2.1 we
considered the initial value to be zero. In what follows we slightly reformulate the homogeneous system
from Theorem 4.4.6 in a way that we think is more convenient to read. Moreover, the reformulation of
the system is useful for the analysis and the subsequent numerical approximation.

4.4.4 Reformulation of parameters and cell correctors

Reformulation of parameters

Let us first show that the effective parameter Meff is symmetric.

Lemma 4.4.8. Let Meff be given as in (4.16). Then Meff is symmetric.

Proof. Note that the component Meff
k,` of the effective parameter is given by

(Meff(x))k,` =
ˆ

Y

M(x, y)
(
e` +∇ywM

` (x, y)
)
· ek dy .

Now we test the cell problem (4.20) for wM
` with wM

k ∈ H1
#
(
Y ;RN

)
yielding

0 =
ˆ

Y

M(x, y)
(
e` +∇ywM

` (x, y)
)
· ∇ywM

k (x, y) dy .
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Adding this zero to the effective parameter implies

(Meff(x))k,` =
ˆ

Y

M(x, y)
(
e` +∇ywM

` (x, y)
)
·
(
ek +∇ywM

k (x, y)
)

dy

=
ˆ

Y

(
ek +∇ywM

k (x, y)
)T M(x, y)

(
e` +∇ywM

` (x, y)
)

dy . (4.23)

The symmetry of the parameter M now immediately leads to the symmetry of the effective one.

Next we give a reformulation of the system (4.15a), which relies on the evaluation of the time derivative
of the convolution.

Lemma 4.4.9. Let ueff be the solution of (4.15a) from Theorem 4.4.6. Then

R̃eff(x)ueff(t, x) + ∂t

tˆ

0

G̃eff(t− s, x)ueff(s, x) ds

= Reff(x)ueff(t, x) +
tˆ

0

Geff(t− s, x)ueff(s, x) ds ,

(4.24)

where

(Reff(x))k,` =
ˆ

Y

R(x, y)
(
e` +∇ywM

` (x, y)
)
·
(
ek +∇ywM

k (x, y)
)

dy , (4.25)

(Geff(t, x))k,` =
ˆ

Y

R(x, y)∇yw`(t, x, y) ·
(
ek +∇ywM

k (x, y)
)

dy . (4.26)

Moreover, the extra source in (4.19) can be written as

(Jeff(t, x))k,` =
ˆ

Y

R(x, y)∇yw0
` (t, x, y) ·

(
ek +∇ywM

k (x, y)
)

dy . (4.27)

Proof. As in the proof of Lemma 4.4.8 we write the parameters component wise

(R̃eff(x))k,` =
ˆ

Y

R(x, y)
(
e` +∇ywM

` (x, y)
)
· ek dy ,

(G̃eff(t, x))k,` =
ˆ

Y

M(x, y)∇yw`(t, x, y) +
tˆ

0

R(x, y)∇yw`(s, x, y) ds

 · ek dy .

Now we use the cell problem (4.21) related to w` and test it again with wM
k . This gives

0 =
ˆ

Y

M(x, y)∇yw`(t, x, y) +
tˆ

0

R(x, y)∇yw`(s, x, y) ds

 · ∇ywM
k (x, y) dy

+
ˆ

Y

R(x, y)
(
e` +∇ywM

` (x, y)
)
· ∇ywM

k (x, y) dy ,
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which we add to the parameter G̃eff

(G̃eff(t, x))k,` =
ˆ

Y

M(x, y)∇yw`(t, x, y) ·
(
ek +∇ywM

k (x, y)
)

dy

+
ˆ

Y

tˆ

0

R(x, y)∇yw`(s, x, y) ds ·
(
ek +∇ywM

k (x, y)
)

dy

+
ˆ

Y

R(x, y)
(
e` +∇ywM

` (x, y)
)
· ∇ywM

k (x, y) dy .

(4.28)

Observe that the first expression vanishes due to (4.20) since w`(t, x, ·) ∈ H1
# (Y ) for almost every

(t, x) ∈ (0, T )× Ω.
We show the statement of the lemma component wise, i.e., we rewrite the left-hand side of (4.24) as

R̃eff(x)ueff(t, x) + ∂t

tˆ

0

G̃eff(t− s, x)ueff(s, x) ds


k

=
d∑
`=1

R̃eff
k,`(x)ueff

` (t, x) + ∂t

tˆ

0

G̃eff
k,`(t− s, x)ueff

` (s, x) ds


=

d∑
`=1

R̃eff
k,`(x)ueff

` (t, x) +
tˆ

0

∂tG̃
eff
k,`(t− s, x)ueff

` (s, x) ds+ G̃eff
k,`(0, x)ueff

` (t, x)

 ,
(4.29)

where we used Lemma 2.0.1 in the last equation. Now we use (4.20) tested with w`(0, x) and (4.21)
tested with wM

k (x), which yields

(
R̃eff
k,`(x) + G̃eff

k,`(0, x)
)

ueff
` (t, x)

=
ˆ

Y

R(x, y)
(
e` +∇ywM

` (x, y)
)
· ek dy ueff

` (t, x) +
ˆ

Y

M(x, y)∇yw`(0, x, y) · ek dy ueff
` (t, x)

=
ˆ

Y

R(x, y)
(
e` +∇ywM

` (x, y)
)
·
(
ek +∇ywM

k (x, y)
)

dy ueff
` (t, x)

= Reff
k,`(x)ueff

` (t, x) ,

(4.30)

where Reff is defined as in (4.25). It remains to evaluate the time derivative of the effective parameter.
We find from (4.28) recalling that the first expression in (4.28) equals zero

∂t(G̃eff(t, x))k,` = ∂t

ˆ

Y

tˆ

0

R(x, y)∇yw`(s, x, y) ds ·
(
ek +∇ywM

k (x, y)
)

dy

=
ˆ

Y

R(x, y)∇yw`(t, x, y) ·
(
ek +∇ywM

k (x, y)
)

dy .
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Plugging this into the convolution yields

tˆ

0

∂tG̃
eff
k,`(t− s, x)ueff

` (s, x) ds

=
tˆ

0

ˆ

Y

R(x, y)∇yw`(t− s, x, y) ·
(
ek +∇ywM

k (x, y)
)

dyueff
` (s, x) ds

=
tˆ

0

Geff
k,`(t− s, x)ueff

` (s, x) ds ,

(4.31)

where Geff is defined as in (4.26). Inserting (4.30) and (4.31) in (4.29) gives the result in (4.24).
The extra source term reformulation follows from the same ideas. First take the component-wise definition
and then test the cell problem (4.22) for w0

` with wM
k and add the resulting zero to the definition of the

extra source. We get

(Jeff(t, x))k,` = ∂t

[ˆ
Y

M(x, y)∇yw0
` (t, x, y) ·

(
ek +∇ywM

k (x, y)
)

dy

+
ˆ

Y

tˆ

0

R(x, y)∇yw0
` (s, x, y) ds ·

(
ek +∇ywM

k (x, y)
)

dy

+
ˆ

Y

M(x, y)e` · ∇ywM
k (x, y) dy

]
,

and see that the first expression again vanishes due to the cell problem (4.20) and the last expression
is constant in time and therefore the time derivative is zero. The remaining expression evaluates to the
requested form in (4.27).

Corollary 4.4.10. Let Reff be given as in (4.25). If R is symmetric, also Reff is symmetric.

Proof. The symmetry is an immediate consequence of the reformulation of the parameter Reff in (4.25).

If the parameter R is symmetric also the convolution kernel is symmetric, but this is not as obvious as
for the effective parameter Reff and we show this later in Lemma 4.4.18. Thanks to Lemma 4.4.9 we can
rewrite the system (4.15a) from Theorem 4.4.6 as

Meff(x)∂tueff(t, x) + Reff(x)ueff(t, x) +
tˆ

0

Geff(t− s, x)ueff(s, x) ds+ Aueff(t, x)

= g(t, x)− Jeff(t, x)u0(x)

in (0, T )× Ω ,

(4.32)

where the parameters are given in (4.16), (4.25), (4.26) and (4.27). The cell correctors are still the same
as is the theorem.
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Cell problems

We now give the reformulation of the cell problems as differential equations.

Lemma 4.4.11. Let t ∈ (0, T ), x ∈ Ω and ` = 1, . . . , n. The cell corrector w`(t, x, ·) ∈ H1
#
(
Y ;RN

)
solves (4.21) if and only if it is the solution of:
Find w`(t, x, ·) ∈ H1

#
(
Y ;RN

)
such that

ˆ

Y

[M(x, y)∂t∇yw`(t, x, y) + R(x, y)∇yw`(t, x, y)] · ∇yv(y) dy = 0 for t > 0 , (4.33)

and
ˆ

Y

M(x, y)∇yw`(0, x, y) · ∇yv(y) dy = −
ˆ

Y

R(x, y)
(
e` +∇ywM

` (x, y)
)
· ∇yv(y) dy , (4.34)

for all v ∈ H1
#
(
Y ;RN

)
.

Proof. Let t ∈ (0, T ), x ∈ Ω and ` = 1, . . . , n. If w`(t, x, ·) ∈ H1
#
(
Y ;RN

)
is solution of (4.21), differenti-

ating the equation with respect to time implies (4.33). The evaluation at t = 0 of (4.21) yields (4.34).
If, the other way around, w`(t, x, ·) ∈ H1

#
(
Y ;RN

)
is solution of (4.33) - (4.34) we integrate (4.33) over

(0, t) and use (4.34) which yields (4.21).

We get a very similar result for the cell corrector w0, which is only different in the initial value.

Lemma 4.4.12. Let t ∈ (0, T ), x ∈ Ω and ` = 1, . . . , n. The cell corrector w0
` (t, x, ·) ∈ H1

#
(
Y ;RN

)
is

solution of (4.22) if and only if it is solution of:
Find w0

` (t, x, ·) ∈ H1
#
(
Y ;RN

)
such that

ˆ

Y

[
M(x, y)∂t∇yw0

` (t, x, y) + R(x, y)∇yw0
` (t, x, y)

]
· ∇yv(y) dy = 0 for t > 0 , (4.35)

and
ˆ

Y

M(x, y)∇yw0
` (0, x, y) · ∇yv(y) dy =

ˆ

Y

M(x, y)e` · ∇yv(y) dy , (4.36)

for all v ∈ H1
#
(
Y ;RN

)
.

Proof. The proof is very similar to Lemma 4.4.11.

Remark 4.4.13. Observe that the negative initial value of w0 coincides with the classic corrector wM,
which is obvious due to (4.36) and (4.20), i.e.,
ˆ

Y

M(x, y)∇yw0
` (0, x, y) · ∇yv(y) dy = −

ˆ

Y

M(x, y)∇ywM
` (x, y) · ∇yv(y) dy for all v ∈ H1

#
(
Y ;RN

)
.
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Reformulated Maxwell system

Now the reformulated Maxwell system, which we discretize in the remainder, reads a follows

Meff(x)∂tueff(t, x) + Reff(x)ueff(t, x) +
tˆ

0

Geff(t− s, x)ueff(s, x) ds

+ Aueff(t, x) = g(t, x)− Jeff(t, x)u0(x)

in (0, T )× Ω , (4.37a)

ueff(0) = u0 in Ω , (4.37b)

n× ueff
1 (t, x) = 0 on (0, T )× ∂Ω , (4.37c)

where the k, `-th component of the effective parameters and the extra source are given as

(Meff(x))k,` =
ˆ

Y

M(x, y)
(
e` +∇ywM

` (x, y)
)
·
(
ek +∇ywM

k (x, y)
)

dy , (4.38a)

(Reff(x))k,` =
ˆ

Y

R(x, y)
(
e` +∇ywM

` (x, y)
)
·
(
ek +∇ywM

k (x, y)
)

dy , (4.38b)

(Geff(t, x))k,` =
ˆ

Y

R(x, y)∇yw`(t, x, y) ·
(
ek +∇ywM

k (x, y)
)

dy , (4.38c)

(Jeff(t, x))k,` =
ˆ

Y

R(x, y)∇yw0
` (t, x, y) ·

(
ek +∇ywM

k (x, y)
)

dy , (4.38d)

for k, ` = 1, . . . , n.
The correctors wM

` (x, ·) ∈ H1
#
(
Y ;RN

)
, w` ∈ W2,1 (0, T ; H1

#
(
Y ;RN

))
, w0

` ∈ W2,1 (0, T ; H1
#
(
Y ;RN

))
solve the following cell problems.

• The corrector wM is a classic cell corrector associated to the parameter M
ˆ

Y

M(x, y)
(
e` +∇ywM

` (x, y)
)
· ∇yv(y) dy = 0, for all v ∈ H1

#
(
Y ;RN

)
. (4.39)

• The corrector w is a time dependent cell corrector the arises due to the damping parameter R and
solves for a.e. t ∈ (0, T ) and all v ∈ H1

#
(
Y ;RN

)
ˆ

Y

[M(x, y)∂t∇yw`(t, x, y) + R(x, y)∇yw`(t, x, y)] · ∇yv(y) dy = 0 , (4.40)

ˆ

Y

M(x, y)∇yw`(0, x, y) · ∇yv(y) dy +
ˆ

Y

R(x, y)
(
e` +∇ywM

` (x, y)
)
· ∇yv(y) dy = 0 . (4.41)

• The cell corrector w0 is related to the initial condition and the damping parameter. It solves for
a.e. t ∈ (0, T ) and all v ∈ H1

#
(
Y ;RN

)
ˆ

Y

[
M(x, y)∂t∇yw0

` (t, x, y) + R(x, y)∇yw0
` (t, x, y)

]
· ∇yv(y) dy = 0 , (4.42)

ˆ

Y

M(x, y)
(
e` −∇yw0

` (0, x, y)
)
· ∇yv(y) dy = 0 . (4.43)
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Let us mention that the system (4.37) is equivalent to the system (4.10). This can be seen by considering
the parameters as in Section 3.1.2 and the vanishing initial value.
A consequence of the formulation as a differential equation is that we can apply the classic wellposedness
theory to the cell problems.

4.4.5 Wellposedness of cell problems

Wellposedness of stationary problems

The theory in this section is well-known theory for elliptic problems. Note that the wellposedness of
the standard, time-independent cell problem (4.20) follows from the Lax-Milgram lemma. In addition,
this result shows wellposedness of the initial value problems for the cell correctors w and w0. In this
and the following section we drop the dependence on the x variable, since it is only a parameter in
these cell problems. Thus, let x ∈ Ω be fixed. Furthermore, we abbreviate the solution space by
Vmic := H1

#
(
Y ;RN

)
, which is equipped with the inner product

(φ, ψ)Vmic =(∇yφ,∇yψ)L2(Y ;RN ) for all φ, ψ ∈ Vmic .

Let us mention that this is a scalar product due to the Poincaré–Wirtinger inequality. All the three
mentioned problems can be written as:
Find w ∈ Vmic such that

sm(w, v) = b(v) , for all v ∈ Vmic . (4.44)

Here the bilinear form m : Vmic ×Vmic → R is given as

sm(w, v) =
ˆ

Y

M(y)∇yw(y) · ∇yv(y) dy , for all w, v ∈ Vmic . (4.45)

It is bounded and coercive, since the parameter M is assumed to be bounded and positive definite, cf.
(3.26). Thus, the bilinear form is a scalar product on Vmic, and we denote its induced norm by ‖·‖sm .
Hence, we have an equivalent scalar product, which satisfies for all φ ∈ Vmic

√
α ‖φ‖Vmic ≤ ‖φ‖sm ≤

√
CM ‖φ‖Vmic . (4.46)

The parameter R is assumed to be bounded as well, and we denote the constant by

CR = ‖R‖L∞(Ω,Rn×n) . (4.47)

The functional on the right-hand side in (4.44) is different in all the three cases mentioned above. For
v ∈ Vmic we define

bM` (v) := −
ˆ

Y

M(y)e` · ∇yv(y) dy ,

b`(v) := −
ˆ

Y

R(y)
(
e` +∇ywM

` (y)
)
· ∇yv(y) dy ,

b0`(v) := −bM` (v) ,
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and all these linear forms are bounded and thus functionals on Vmic. Therefore, we can apply Lax-
Milgram to the three problems (4.20), (4.34) and (4.36), which are in the new notation equivalent to:
Find wM

` , w`(0), w0
` (0) ∈ Vmic such that

sm
(
wM
` , v

)
= bM` (v) , (4.48)

sm(w`(0), v) = b`(v) , (4.49)

sm
(
w0
` (0), v

)
= b0`(v) , (4.50)

for all v ∈ Vmic. We collect the results from above in the next lemma and extend them by some bounds
on the solutions.

Remark 4.4.14. In this chapter we always consider the unit cell Y =
(
− 1

2 ,
1
2
)3 which satisfies |Y | = 1.

Nevertheless, later in Chapter 5 we also consider other cells, which have non-trivial measures. Thus, in
the following results we keep track of the measure |Y | although in this section it is equal to one.

Lemma 4.4.15. For every ` = 1, . . . , n the cell problems (4.20), (4.34) and (4.36) are wellposed . More-
over, the solutions satisfy the bounds∥∥wM

`

∥∥
sm
≤
√
CM |Y | , ‖w`(0)‖sm ≤ 2CR

α

√
CM |Y | ,

∥∥w0
` (0)

∥∥
sm
≤
√
CM |Y | . (4.51)

Proof. We showed the wellposedness in this section. Let us briefly comment on a notation we use. As
introduced in Remark 4.4.4 we find

‖y`‖
2
sm

=
ˆ

Y

M(y)∇yy` · ∇yy` dy =
ˆ

Y

M(y)e` · e` dy .

For the bound in the sm-norm on wM
` we choose in (4.48) v = wM

` . From the bound on the parameter
M in (4.46) and the Cauchy–Schwarz inequality we find

∥∥wM
`

∥∥2
sm

= sm
(
wM
` , w

M
`

)
= bM`

(
wM
`

)
= −

ˆ

Y

M(y)e` · ∇ywM
` (y) dy ≤ ‖y`‖sm

∥∥wM
`

∥∥
sm

≤
√
CM |Y |

∥∥wM
`

∥∥
sm

.

Similarly we choose v = w`(0) in (4.49) which yields

‖w`(0)‖2sm = sm(w`(0), w`(0)) = b`(w`(0)) = −
ˆ

Y

R(y)
(
e` +∇ywM

` (y)
)
· ∇yw`(0, y) dy

≤ CR
(
‖y`‖Vmic +

∥∥wM
`

∥∥
Vmic

)
‖w`(0)‖Vmic ≤

CR

α

(
‖y`‖sm +

∥∥wM
`

∥∥
sm

)
‖w`(0)‖sm

≤ 2CR

α

√
CM |Y | ‖w`(0)‖sm .

For the last estimate we choose v = w0
` (0) in (4.50) and get with the same arguments as for wM

` the
bound∥∥w0

` (0)
∥∥2
sm

= sm
(
w0
` (0), w0

` (0)
)

= b0`
(
w0
` (0)

)
=
ˆ

Y

M(y)e` · ∇yw0
` (0) dy ≤

√
CM |Y |

∥∥w0
` (0)

∥∥
sm

.
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Before we show wellposedness of the time-dependent problems let us comment on H2-regularity results
for the stationary problem. As an example consider (4.48) and assume that its solution is H2-regular. If
the parameter is regular enough we get with integration by parts

sm
(
wM
` , v

)
=
ˆ

Y

divy (M(y)e`) · v(y) dy =(f, v)L2(Y ;RN ) .

We can now exploit the usual H2-regularity estimate from Grisvard (2011) that states∥∥wM
`

∥∥
H2(Y ) ≤ C ‖f‖L2(Y ) = C ‖divy (Me`)‖L2(Y ) ≤ C ‖M‖W1,∞(Y )

√
|Y | .

The classical assumption in homogenization on the parameters is that ‖M‖W1,∞(Y ) ≤ Cδ−1 and this
yields ∥∥wM

`

∥∥
H2(Y ) ≤ Cδ

−1
√
|Y | .

We will see these H2-regularity assumptions later in Chapter 5. Next, we show that the time-dependent
problems (4.33) and (4.35) with initial values (4.34) and (4.36) are also wellposed .

Wellposedness of the evolution problems

The two time dependent cell problems (4.33) and (4.35) are so-called Sobolev equations. Observe that
these solutions only differ in the initial value. Therefore, we consider a general Sobolev equation with
initial value w0 ∈ H1

#
(
Y ;RN

)
ˆ

Y

M(y)∇y∂tw(t, y) · ∇yv(y) dy +
ˆ

Y

R(y)∇yw(t, y)∇yv(y) dy = 0 for all v ∈ Vmic , t ∈ [0, T ] ,

(4.52a)

w(0) = w0 in Y . (4.52b)

The results in this section are similar to Bekkouche et al. (2019) and Hipp et al. (2019). As in the previous
section we rewrite this problem in a shorter way. For that purpose we introduce another bilinear form
similar to (4.45) but related to the parameter R. Again we suppress the x-dependence.

sr(w, v) :=
ˆ

Y

R(y)∇yw(y) · ∇yv(y) dy , for all w, v ∈ Vmic . (4.53)

In contrast to the bilinear form sm(·, ·) the new form sr(·, ·) is only bounded but not coercive, since the
parameter is not necessarily positive definite. With this notation we rewrite the Sobolev equation (4.52a)
as

sm(∂tw(t), v) + sr(w(t), v) = 0 for all v ∈ Vmic , t ∈ [0, T ] . (4.54)

Due to the Riesz-representation theorem we find an operator S : Vmic → Vmic such that

sr(φ, ψ) = sm(Sφ, ψ) for all φ, ψ ∈ Vmic . (4.55)

We thus get the Sobolev equation as

sm(∂tw(t), v) + sm(Sw(t), v) = 0 for all v ∈ Vmic . (4.56)
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We collect some properties of the operator S. Observe that with respect to the inner product sm(·, ·) the
operator S inherits its properties from the bilinear form sr(·, ·) by definition. Therefore, we immediately
get that S is bounded, i.e., with (4.47) and (4.46)

|sm(Sφ, ψ)| = |sr(φ, ψ)| ≤ CR ‖φ‖Vmic ‖ψ‖Vmic ≤
CR

α
‖φ‖sm ‖ψ‖sm .

Moreover, we find a constant CS ≥ 0 such that

sm(Sφ, φ) + CS ‖φ‖2sm ≥ 0 .

We call the operator S quasi-monotone and from (Hipp et al., 2019, Lemma 2.3) we see that − (S + CS)
is dissipative. In this setting the operator S also satisfies the range condition with respect to Vmic.
Choosing f ∈ Vmic and λ > CS we have to show the wellposedness of:
Find u ∈ Vmic such that

sm((λ id +S)u, v) = sm(f, v) for all v ∈ Vmic .

We denote by a(·, ·) the bilinear form given as

a(φ, ψ) = λsm(φ, ψ) + sr(φ, ψ) = sm((λ id +S)φ, ψ) ,

which is bounded (|a(φ, ψ)| ≤ (λCM + CR) ‖φ‖Vmic ‖ψ‖Vmic) and coercive on Vmic. The Lax-Milgram
Lemma applies to:
Find u ∈ Vmic such that

a(u, v) = sm(f, v) for all v ∈ Vmic .

Therefore, we have a unique solution u ∈ Vmic for every f ∈ Vmic and the operator S satisfies the range
condition with respect to Vmic.
Thus, we find that − (S + CS) is dissipative and satisfies the range condition. By the Lumer-Phillips
theorem it generates a contraction semigroup

(
e−(S+CS)t)

t≥0, i.e., in the ‖·‖sm -Norm we get∥∥e−St
∥∥
sm←sm

≤ eCSt . (4.57)

Moreover, we find that the Sobolev equation (4.54) has a unique solution

w(t) = e−Stw(0) . (4.58)

We are now in the position to show the wellposedness of the time-dependent cell problems.

Lemma 4.4.16. The cell problems (4.21) and (4.35) are wellposed for every ` = 1, . . . , n. Moreover, the
solutions have the regularity w`, w0

` ∈ C∞
(
0, T ; H1

#
(
Y ;RN

))
and satisfy the stability bound

‖w`(t)‖sm ≤
∥∥e−St

∥∥
sm←sm

‖w`(0)‖sm , (4.59)∥∥w0
` (t)

∥∥
sm
≤
∥∥e−St

∥∥
sm←sm

∥∥w0
` (0)

∥∥
sm

. (4.60)

Proof. We showed in Lemma 4.4.11 that (4.21) is equivalent to (4.33) together with (4.34). Moreover,
we showed that (4.33) is equivalent to the abstract Cauchy problem (4.56) with w = w, where the
initial value satisfies (4.34). Theorem 3.2.10 yields, that the operator − (S + CS) generates a contraction
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semigroup. Hence, due to Theorem 3.2.7 the abstract Cauchy problem is wellposed and the solution is
given by (4.58). The initial value is given as solution of (4.34) or (4.49), which are wellposed thanks to
Lemma 4.4.15.
For the regularity of the solution we use the representation of the solution given in (4.58) and the fact that
the operator is bounded. Thus, we use the representation of the exponential for bounded operators, which
we may differentiate infinitely often. The stability bounds again directly follow from the representation
of the solution in (4.58).
Exactly the same argumentation is valid for the cell problem related to w0

` .

In the case of a positive semi-definite parameter R the operator S is itself the generator of a contraction
semigroup. This is equivalent to the fact that CS = 0, and we get the improved bound∥∥e−St

∥∥
sm←sm

≤ 1 . (4.61)

If we use the contraction property (4.61) we get from Lemma 4.4.16

‖w`(t)‖sm ≤ ‖w`(0)‖sm ,
∥∥w0

` (t)
∥∥
sm
≤
∥∥w0

` (0)
∥∥
sm

,

but for other cases we require the stability result to be in the most general form. As for the stationary
case we comment on H2-regularity. The following result states, that the H2-norm is bounded by the
corresponding norm of the initial value.

Theorem 4.4.17. Let M ∈ W1,∞ (Y ) be symmetric and uniformly positive definite, R ∈ W1,∞ (Y ) be
positive semi-definite and assume that the initial value is H2-regular, i.e., w0 ∈ H2 (Y ). For a solution
w(t, ·) ∈ H2 (Y ) of (4.52a) we get the following bound

‖w(t)‖H2(Y ) ≤ C ‖w(0)‖H2(Y ) .

Proof. Let w0 ∈ H2 (Y ) be given. We rewrite the Sobolev equation (4.52a) in strong formulation as:
Find w : [0, T ]→ H2 (Y ) such that

4M∂tw(t) +4Rw(t) = 0 in Y .

The operators 4M = div (M(y)∇·) and 4R = div (R(y)∇·) are weighted Laplace operators. Note, that
the operator 4M : H2 (Y ) → L2 (Y ) is invertible due to the properties of M. The operator S defined
in (4.55) as operator on H2 (Y ) may be written as S = 4−1

M4R. Next, we consider the closely related
operator 4R4−1

M : L2 (Y ) → L2 (Y ). We show that this operator is also monotone and bounded with
respect to L2 (Y ) equipped with the weighted inner product

(Φ,Ψ)4−1
M

=
(
Φ,−4−1

M Ψ
)

L2(Y ) for all Φ,Ψ ∈ L2 (Y ) .

Note, that the weighted Laplacian has a negative spectrum, and we thus use the negative operator to
get a scalar product. For this inner product we find with integration by parts and due to the positive
semi-definiteness of R(

4R4−1
M Φ,Φ

)
4−1

M
=
ˆ

Y

4R4−1
M Φ

(
−4−1

M Φ
)

dy =
ˆ

Y

div
(
R∇

(
4−1

M Φ
)) (
−4−1

M Φ
)

dy

=
ˆ

Y

R∇
(
4−1

M Φ
)
· ∇
(
4−1

M Φ
)

dy ≥ 0 .
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Additionally, using again integration by parts, the boundedness of R from (4.47) as well as the positive
definiteness of M from (3.26) and the Cauchy–Schwarz inequality we get

∣∣∣(4R4−1
M Φ,Ψ

)
4−1

M

∣∣∣ =

∣∣∣∣∣∣
ˆ

Y

R∇
(
4−1

M Φ
)
· ∇
(
4−1

M Ψ
)

dy

∣∣∣∣∣∣ ≤ CR

α

∣∣∣∣∣∣
ˆ

Y

M∇
(
4−1

M Φ
)
· ∇
(
4−1

M Ψ
)

dy

∣∣∣∣∣∣
= CR

α

∣∣∣∣∣∣−
ˆ

Y

div
(
M∇

(
4−1

M Φ
)) (
4−1

M Ψ
)

dy

∣∣∣∣∣∣ = CR

α

∣∣∣∣∣∣
ˆ

Y

Φ
(
−4−1

M Ψ
)

dy

∣∣∣∣∣∣
= CR

α

∣∣∣(Φ,Ψ)4−1
M

∣∣∣ ≤ CR

α
‖Φ‖4−1

M
‖Ψ‖4−1

M
.

Thus, the operator −4R4−1
M is dissipative and generates a contraction semi-group e−4R4−1

M t, i.e.,∥∥∥e−4R4−1
M t
∥∥∥
4−1

M ←4
−1
M

≤ 1 .

Note that both, −4−1
M4R and −4R4−1

M are bounded operators. Thus, the idea is to use the series
representation for their generated semi-groups, which eventually yields an estimate for the H2 (Y )-norm.
For that purpose we define for n ∈ N the partial sum

sn :=
n∑
k=0

(
−4R4−1

M
)k tk
k!4Mw(0) .

Since 4Mw(0) ∈ L2 (Y ) and due to the properties of −4R4−1
M we just showed, we find the convergence

in L2 (Y ) as

sn → s = e−4R4−1
M t4Mw(0) as n→∞ .

Moreover, for zn :=
∑n
k=0

(
−4−1

M4R
)k tk

k!w(0) we have

zn → z = e−4
−1
M 4Rtw(0) as n→∞ .

Observe, that we get the equality

4Mzn = sn ,

which enables us to use the fact that 4M is closed. To be precise, we conclude from

zn → z as n→∞ ,

4Mzn = sn → s as n→∞ ,

that z ∈ D (4M) and

4M

(
e−4

−1
M 4Rtw(0)

)
= 4Mz = s = e−4R4−1

M t4Mw(0) .

Eventually, we find

‖w(t)‖H2(Y ) ≤ C ‖4Mw(t)‖L2(Y ) = C
∥∥∥4Me−4

−1
M 4Rtw(0)

∥∥∥
L2(Y )

= C
∥∥∥e−4R4−1

M t4Mw(0)
∥∥∥

L2(Y )

≤ C
∥∥∥e−4R4−1

M t4Mw(0)
∥∥∥
4−1

M

≤ C
∥∥∥e−4R4−1

M t
∥∥∥
4−1

M ←4
−1
M

‖4Mw(0)‖4−1
M
≤ C ‖w(0)‖H2(Y ) .
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We found that the cell problems are wellposed and that for a positive semi-definite parameter R the H2

norm does not grow in time. Moreover, we have already seen that if the parameter R is symmetric this
transfers to the parameter Reff . In the next section we use the representation (4.58) of the solution we
just found to show that also the convolution kernel is symmetric if the parameter R is.

4.4.6 Symmetric representation of the convolution kernel and
the extra source

The convolution kernel

Remember that the matrix M is symmetric. Let us now assume that the parameter R is symmetric as
well. For example this is the case in a Debye medium or in the conductivity case. The symmetry of R
immediately yields that the bilinear forms (4.45) and (4.53) are symmetric, i.e., for all φ, ψ ∈ Vmic

sm(φ, ψ) = sm(ψ, φ) , sr(φ, ψ) = sr(ψ, φ) .

Moreover, the operator S defined in (4.55) is self-adjoint, which is clear since it is bounded and due to

sm(Sφ, ψ) = sr(φ, ψ) = sr(ψ, φ) = sm(Sψ, φ) = sm(φ,Sψ) .

Consider the operator exponential that occurs in the solution (4.58). Since the operator S is bounded
we can write the exponential in its power series as

lim
N→∞

(
id− t

N
S
)−N

= e−St =
∞∑
j=0

(S)j(−t)j

j! : Vmic → Vmic .

We show that this is also a self-adjoint operator. For φ, ψ ∈ Vmic, it holds:

sm
(
e−Stφ, ψ

)
= sm

 ∞∑
j=0

Sj(−t)j

j! φ, ψ

 =
∞∑
j=0

(−t)j

j! sm
(
Sjφ, ψ

)
.

For j ∈ N0 we get due to the self-adjointness of the operator

sm
(
Sjφ, ψ

)
= sm

(
φ,Sjψ

)
.

Thus, we see that every summand is self-adjoint, which yields the requested self-adjointness

sm
(
e−Stφ, ψ

)
= sm

(
φ, e−Stψ

)
.

We proceed with the symmetry of the effective convolution kernel.

Lemma 4.4.18. If the parameter R is symmetric also the effective convolution kernel Geff is symmetric.

Proof. Consider the time-dependent parameter given by (4.26) and use the cell problem for the initial
value (4.34) tested with w`(t) to get

(Geff(t))k,` =
ˆ

Y

R(y)∇yw`(t, y) ·
(
ek +∇ywM

k (y)
)

dy

= −
ˆ

Y

M(y)∇yw`(t, y) · ∇ywk(0, y) dy

= −sm(w`(t), wk(0)) .
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Now we use the representation of the solution given in (4.58) and the self-adjointness of the operator
e−St and find

(Geff(t))k,` = −sm(w`(t), wk(0)) = −sm
(
e−Stw`(0), wk(0)

)
= −sm

(
w`(0), e−Stwk(0)

)
= −sm(w`(0), wk(t)) .

This shows

(Geff(t))k,` = −1
2 (sm(w`(t), wk(0)) + sm(w`(0), wk(t))) .

Here we immediately see the symmetry of the convolution kernel.

The extra source

We note that the procedure from the previous section works very similar for the extra source term given
in (4.27) with the cell corrector w0 being the solution of (4.36) and (4.35). Therefore, also the extra
source is symmetric if the parameter R is.

4.4.7 On the exponential structure of the convolution kernel

We now examine the case where the damping parameter R has a special structure. This is the case if
we consider for example the conductivity Maxwell system from Section 3.1.2. In this setting we find that
the evolution cell problem reduces to the component of the electric field. Thus, the general cell problem
from (4.33) reduces to

ˆ

Y

[ε(x, y)∂t∇yw`(t, x, y) + σ(x, y)∇yw`(t, x, y)] · ∇yv(y) dy = 0 ,

where ` = 1, 2, 3 and the other components of the corrector w vanish. Now if we assume that the
conductivity σ satisfies

σ > 0 ,

and if we redo the computations from the wellposedness analysis in Section 4.4.5, we get an operator S
that is strictly monotone. Thus, −S is strictly dissipative, i.e., we find β > 0 such that −S + β id is
dissipative. But this is equivalent to the fact that the semigroup generated by S is exponentially stable,
i.e., ∥∥e−St

∥∥
sm←sm

≤ exp(−βt) .

We use this bound in the stability estimate (4.59) and this shows that the convolution kernel is expo-
nentially decaying. The key property to show the exponential decay is the positive definiteness of the
damping parameter R. The Maxwell–Debye system from 3.1.3 is an example where the parameter R is
only positive semi-definite and thus we do not get the exponential decay in this setting.
With this note on the possibly exponential decay of the convolution kernel we now turn to the wellposed-
ness of the homogeneous Maxwell system (4.37).
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4.4.8 Wellposedness of the integro-differential homogeneous system

In this section we show that the Maxwell system (4.37) is wellposed and stable. In contrast to the
wellposedness theory from Section 3.2.2 we do not use semigroup theory here. The reason is that the
effective Maxwell system has a different structure than the Maxwell systems we considered in Section
3.2.2. The difference is the convolution integral, which occurred in the homogenization process. The
proof now relies on the Faedo–Galerkin method and Fredholm theory.
From now on we assume that the damping parameter R is positive semi-definite. The main reason for
this assumption is the structure of the micro problems. In Section 4.4.5, we showed that the solutions
are stable if the parameter generates a contraction semigroup. There is also a physical interpretation. In
the examples from Section 3.1.2 and 3.1.3 the parameter satisfies this assumption.
We start this section with a reformulation of the effective Maxwell system (4.37) in a variational form.
With (·, ·) we denote the standard L2 (Ω;Rn) scalar product, and we search for ueff(t) ∈ D(A) such that

(
Meff∂tueff(t),Φ

)
+
(
Reffueff(t),Φ

)
+

tˆ

0

(
Geff(t− s)ueff(s),Φ

)
ds+

(
Aueff(t),Φ

)
=(g(t),Φ)−

(
Jeff(t)u0,Φ

)
for all Φ ∈ D(A) ,

(4.62)

ueff(0) = u0 in Ω . (4.63)

Now we introduce bilinear forms meff , reff , a : D(A)×D(A)→ R such that for every Ψ, Φ ∈ D(A)

meff(Ψ,Φ) :=
(
MeffΨ,Φ

)
, (4.64)

reff(Ψ,Φ) :=
(
ReffΨ,Φ

)
, (4.65)

a(Ψ,Φ) :=(AΨ,Φ) . (4.66)

Moreover, for t ∈ [0, T ] define geff : [0, T ]×D(A)×D(A)→ R such that

geff(t; Ψ,Φ) :=
(
Geff(t)Ψ,Φ

)
for all Ψ,Φ ∈ D(A) . (4.67)

With these definitions we write the system (4.62) as

meff(∂tueff(t),Φ
)

+ reff(ueff(t),Φ
)

+
tˆ

0

geff(t− s; ueff(s),Φ
)

ds+ a
(
ueff(t),Φ

)
= meff(f(t),Φ)−

(
Jeff(t)u0,Φ

)
for all Φ ∈ D(A) ,

(4.68)

where

meff(f(t),Φ) =(g(t),Φ) .

Before we continue with the wellposedness result for the Maxwell system, let us give some properties of
the bilinear forms related to the effective parameters we introduced.

Lemma 4.4.19. The effective parameters Meff , Reff are bounded, i.e., Meff , Reff ∈ L∞ (Ω;Rn×n). In
addition, the parameter Meff is coercive with the same constant α as M and the parameter Reff is positive
semi-definite. Moreover, the time-dependent parameters Geff(t) and Jeff(t) are bounded for all t ∈ [0, T ],
i.e., Geff(t), Jeff(t) ∈ L∞ (Ω;Rn×n). As a direct consequence the bilinear forms meff , reff and geff(t) are
bounded.
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Proof. Let us start with the standard parameter in homogenization Meff for which the boundedness is
classical. We use the symmetric representation of the effective parameter Meff in (4.23) as in Jikov et al.
(1994). For ξ ∈ Rn we find using the cell problem (4.20)

Meff(x)ξ · ξ = sm
(
y + wM(x), y + wM(x)

)
ξ · ξ

=
(
sm(y, y) + sm

(
y, wM(x)

)
+ sm

(
wM(x), y + wM(x)

))
ξ · ξ

=
(
sm(y, y)− 2sm

(
wM(x), wM(x)

)
+ sm

(
wM(x), wM(x)

))
ξ · ξ

=
(
sm(y, y)− sm

(
wM(x), wM(x)

))
ξ · ξ

≤ CM |Y | |ξ|2 .

The coercivity also relies on the cell problems as shown in Bensoussan et al. (2011):

Meff(x)ξ · ξ = sm
(
y + wM(x), y + wM(x)

)
ξ · ξ ≥ α

(
y + wM(x), y + wM(x)

)
Vmic ξ · ξ

= α |Y | |ξ|2 + 2α
(
y, wM(x)

)
Vmic ξ · ξ .

Integration by parts shows that the last expression vanishes due to the periodicity of the corrector wM.
The positive semi-definiteness of R implies directly the one of Reff by

Reff(x)ξ · ξ = sr
(
y + wM(x), y + wM(x)

)
ξ · ξ ≥ 0 .

For the boundedness of the effective damping parameter we use a different technique. With (4.38b) we
find

∣∣Reff(x)k,`
∣∣ =

∣∣sr(y` + wM
` (x), yk + wM

k (x)
)∣∣

≤ CR

α

(
‖y`‖sm ‖yk‖sm + ‖y`‖sm

∥∥wM
k (x)

∥∥
sm

+
∥∥wM

` (x)
∥∥
sm
‖yk‖sm +

∥∥wM
` (x)

∥∥
sm

∥∥wM
k (x)

∥∥
sm

)
≤ 4CRCM

α
|Y | ,

where we again used Lemma 4.4.15 and the coercivity of M.
Let us now consider the time-dependent convolution kernel. We can actually bound this expression
independent of x and t. We use (4.38c) and Lemmas 4.4.15 and 4.4.16 which yield together with (4.61)

∣∣Geff(t, x)k,`
∣∣ =

∣∣sr(w`(t, x), yk + wM
k (x)

)∣∣ ≤ CR

α
‖w`(t, x)‖sm

(
‖yk‖sm +

∥∥wM
k (x)

∥∥
sm

)
≤ 2

CR
√
CM |Y |
α

‖w`(0, x)‖sm ≤ 4
(
CR

α

)2
CM |Y | .

Finally for the extra source term we get from (4.38d) with the same techniques as above

∣∣Jeff(t, x)k,`
∣∣ =

∣∣sr(w0
` (t, x), yk + wM

k (x)
)∣∣ ≤ CR

α

∥∥w0
` (t, x)

∥∥
sm

(
‖yk‖sm +

∥∥wM
k (x)

∥∥
sm

)
≤ 2

CR
√
CM |Y |
α

∥∥w0
` (0, x)

∥∥
sm
≤ 2CRCM

α
|Y | .

Thanks to the bounds on the parameters we immediately get the continuity of the bilinear forms since
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for all φ, ψ ∈ L2 (Ω;Rn) and t ≥ 0 we find

meff(φ,φ) ≥ α |Y | ‖φ‖2L2(Ω;Rn) , (4.69)∣∣meff(φ,ψ)
∣∣ ≤ CM |Y | ‖φ‖L2(Ω;Rn) ‖ψ‖L2(Ω;Rn) , (4.70)

reff(φ,φ) ≥ 0 , (4.71)∣∣reff(φ,ψ)
∣∣ ≤ 4CRCM

α
|Y | ‖φ‖L2(Ω;Rn) ‖ψ‖L2(Ω;Rn) , (4.72)

∣∣geff(t;φ,ψ)
∣∣ ≤ 4

(
CR

α

)2
CM |Y | ‖φ‖L2(Ω;Rn) ‖ψ‖L2(Ω;Rn) . (4.73)

Note that the bound on the time-dependent parameters is uniform. Therefore, we have that Geff , Jeff ∈
L∞ (0, T ; L∞ (Ω;Rn×n)).

As pointed out in Lemma 4.4.16, the cell correctors are C∞ in time. Thus, a direct consequence is that
the convolution kernel satisfies G ∈ C∞ (0, T ; L∞ (Ω;Rn×n)). We see that the effective parameters have
the same properties as their heterogeneous counterparts with possibly different constants. Here the most
important point for the wellposedness result below is that the parameter Meff is again bounded and
coercive. A main ingredient of the proof is the following Lemma, from (Bossavit et al., 2005, Lemma 1.1)
which is based on Fredholm theory for Volterra integral equations.

Lemma 4.4.20. Let n ∈ N and let M ∈ Rn×n be a symmetric and uniformly coercive matrix. More-
over, let G ∈ W1,1 (0, T ;Rn×n) and assume b ∈ W1,1 (0, T ;Rn). Then, there exists a unique u ∈
W1,1 (0, T ;Rn) such that

Mu(t) +
tˆ

0

G(t− s)u(s) ds = b(t) for all t ∈ (0, T ) .

We now state the wellposedness result for the effective Maxwell system (4.68).

Theorem 4.4.21. Let Meff , Reff ∈ L∞ (Ω;Rn×n) and Geff , Jeff ∈W1,1 (0, T ; L∞ (Ω;Rn×n)). Addition-
ally, let the initial value satisfy u0 ∈ D(A) and the exterior source g ∈W1,1 (0, T ; L2 (Ω;Rn)

)
. Then, the

problem (4.68) has a unique solution, which satisfies

∥∥ueff(t)
∥∥

L2(Ω;Rn) ≤ exp

 tˆ

0

∥∥Geff∥∥
L1(0,s;L∞(Ω;Rn×n)) ds

[ 1
α
t ‖g‖L∞(0,t;L2(Ω;Rn))

+
(

1 + 1
α

∥∥Jeff∥∥
L1(0,t;L∞(Ω;Rn×n))

)
‖u0‖L2(Ω;Rn)

]
.

(4.74)

Proof. The proof of the wellposedness relies on the Faedo-Galerkin method. The details can be found in
(Bossavit et al., 2005, Proposition 1). Let us comment on the procedure. First one derives a sequence
of approximate solutions ueff

m of ueff by the use of Lemma 4.4.20. The next step is to show that this
sequence is bounded, which yields the existence of a converging subsequence. Finally, we pass to the limit
and show that the limit solves the equation (4.68). Here we only show the bounds on the solution since
this is crucial for the error analysis.
Consider the system (4.68) with test function Φ = ueff(t). We already know that

a
(
ueff(t),ueff(t)

)
= 0 , reff(ueff(t),ueff(t)

)
≥ 0 .
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From the product rule we get

meff(∂tueff(t),ueff(t)
)

= 1
2
d

dt
meff(ueff(t),ueff(t)

)
≥ α

(
d

dt

∥∥ueff(t)
∥∥

L2(Ω;Rn)

)∥∥ueff(t)
∥∥

L2(Ω;Rn) .

This yields with (4.68)

α

(
d

dt

∥∥ueff(t)
∥∥

L2(Ω;Rn)

)∥∥ueff(t)
∥∥

L2(Ω;Rn) ≤
∣∣(g(t),ueff(t)

)∣∣ +
∣∣(Jeff(t)u0,ueff(t)

)∣∣
+

∣∣∣∣∣∣
tˆ

0

geff(t− s; ueff(s),ueff(t)
)

ds

∣∣∣∣∣∣ .
The application of the Cauchy-Schwarz inequality on the right-hand side in all expressions and division
by
∥∥ueff(t)

∥∥
L2(Ω;Rn) leads to

α
d

dt

∥∥ueff(t)
∥∥

L2(Ω;Rn) ≤ ‖g(t)‖L2(Ω;Rn) +
∥∥Jeff(t)u0

∥∥
L2(Ω;Rn) +

tˆ

0

∥∥Geff(t− s)ueff(s)
∥∥

L2(Ω;Rn) ds

≤ ‖g(t)‖L2(Ω;Rn) +
∥∥Jeff(t)

∥∥
L∞(Ω;Rn×n) ‖u0‖L2(Ω;Rn)

+
tˆ

0

∥∥Geff(t− s)
∥∥

L∞(Ω;Rn×n)

∥∥ueff(s)
∥∥

L2(Ω;Rn) ds

≤ ‖g(t)‖L2(Ω;Rn) +
∥∥Jeff(t)

∥∥
L∞(Ω;Rn×n) ‖u0‖L2(Ω;Rn)

+
tˆ

0

∥∥Geff(t− s)
∥∥

L∞(Ω;Rn×n) ds
∥∥ueff∥∥

L∞(0,t;L2(Ω;Rn)) .

Next we integrate over [0, t], which yields

α
∥∥ueff(t)

∥∥
L2(Ω;Rn) ≤ α

∥∥ueff(0)
∥∥

L2(Ω;Rn) +
tˆ

0

‖g(s)‖L2(Ω;Rn) ds+
tˆ

0

∥∥Jeff(s)
∥∥

L∞(Ω;Rn×n) ds ‖u0‖L2(Ω;Rn)

+
tˆ

0

sˆ

0

∥∥Geff(s− r)
∥∥

L∞(Ω;Rn×n) dr
∥∥ueff∥∥

L∞(0,s;L2(Ω;Rn)) ds .

The final step is to take the supremum over [0, t]

∥∥ueff∥∥
L∞(0,t;L2(Ω;Rn)) ≤

1 + 1
α

tˆ

0

∥∥Jeff(s)
∥∥

L∞(Ω;Rn×n) ds

 ‖u0‖L2(Ω;Rn) + 1
α

tˆ

0

‖g(s)‖L2(Ω;Rn) ds

+ 1
α

tˆ

0

sˆ

0

∥∥Geff(s− r)
∥∥

L∞(Ω;Rn×n) dr
∥∥ueff∥∥

L∞(0,s;L2(Ω;Rn)) ds

= C0(t) +
tˆ

0

C1(s)
∥∥ueff∥∥

L∞(0,s;L2(Ω;Rn)) ds ,
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where

C0(t) :=

1 + 1
α

tˆ

0

∥∥Jeff(s)
∥∥

L∞(Ω;Rn×n) ds

 ‖u0‖L2(Ω;Rn) + 1
α

tˆ

0

‖g(s)‖L2(Ω;Rn) ds

≤
(

1 + 1
α

∥∥Jeff∥∥
L1(0,t;L∞(Ω;Rn×n))

)
‖u0‖L2(Ω;Rn) + 1

α
t ‖g‖L∞(0,t;L2(Ω;Rn))

(4.75)

C1(t) := 1
α

tˆ

0

∥∥Geff(t− s)
∥∥

L∞(Ω;Rn×n) ds = 1
α

∥∥Geff∥∥
L1(0,t;L∞(Ω;Rn×n)) . (4.76)

We now apply Gronwall’s inequality, which results in

∥∥ueff∥∥
L∞(0,t;L2(Ω;Rn)) ≤ exp

 tˆ

0

C1(s) ds

C0(t) .

Since the supremum is bounded we have the same bound for all s ∈ [0, t]. This is the a priori bound in
(4.74).

Thus, we find a unique solution of the effective Maxwell system. But in the most general case where
the material parameters are given as in (3.21) without any further assumptions on R we can not expect
to show a stable solution for all times. Instead, we get an exponential growth in the stability estimate,
which is clear since the heterogeneous material already has this growth. Nevertheless, if the heterogeneous
material yields a stable solution we would expect that the homogenized solution is stable as well. For
this purpose consider the example from Section 4.4.7 where we showed that the convolution kernel is
exponentially decaying. We then refine the stability result from the previous theorem.

Corollary 4.4.22. Under the assumptions of Theorem 4.4.21 and the additional assumption that the
damping parameter R is strictly positive we get the following stability estimate

∥∥ueff(t)
∥∥

L2(Ω;Rn) ≤ e
C
αβ (t+ 1

β e−βt− 1
β )
[(

1 + C

α

1
β

(
1− e−βt

))
‖u0‖L2(Ω;Rn) + 1

α
t ‖g‖L∞(0,t;L2(Ω;Rn))

]
.

Proof. We use the fact that we have an exponentially stable semigroup, i.e.,∥∥e−St
∥∥
sm←sm

≤ exp (−βt) ,

and redo the computations from Lemma 4.4.19 to find that∥∥Geff(t)
∥∥

L∞(Ω;Rn×n) ≤ C exp (−βt) ,
∥∥Jeff(t)

∥∥
L∞(Ω;Rn×n) ≤ C exp (−βt) ,

with a constant C > 0. The proof now relies on the evaluation of the expressions (4.75) and (4.76), which
occur in Theorem 4.4.21

tˆ

0

∥∥Geff∥∥
L1(0,s;L∞(Ω;Rn×n)) ds ≤ C

β

(
t+ 1

β
e−βt − 1

β

)
,
∥∥Jeff∥∥

L1(0,t;L∞(Ω;Rn×n)) ≤ C
1
β

(
1− e−βt

)
.
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In comparison to the stability bound in Theorem 4.4.21 we lose one order of t in the leading exponential
factor, which is good but not the result we expected. The heterogeneous medium which we homogenize
satisfies the stability bound from (3.31), which is without any exponential growth. Hence, we expect
that the homogeneous system satisfies a similar bound without the exponential growth in time. This can
be achieved in special situations and with further knowledge on the convolution kernel and thus on the
heterogeneous parameters. We will show an example in Section 7.2.
Still, we have a wellposed system, and we can proceed with its discretization in the next chapter. Before
doing so, we comment on other approaches to the problem of rapidly varying coefficients. Especially, we
address the question of parameters with less structure, i.e., without any periodicity assumption or scale
separation. This is the scope of the next section.

4.5 Homogenization beyond periodicity

For general parameters that are not (locally) periodic the method of homogenization is still applicable, i.e.,
the principle existence of a homogenization limit is provided. The drawback, however, is that in general
no representation of the effective parameters is achieved as shown in Cioranescu and Donato (1999); Jikov
et al. (1994). Methods that overcome this problem usually directly consider the heterogeneous system
without a homogenization attempt.

As already mentioned in the introduction examples are the Multiscale Finite Element Method (MsFEM),
the multiscale hybrid-mixed (MHM) finite element method and the Localized Orthogonal Decomposition
(LOD). If considered in the periodic setting it turns out that the effective coefficients of the LOD coincide
with the ones obtained in classical homogenization as shown in Gallistl and Peterseim (2017).

4.6 Application to the Maxwell–Debye system

At the end of this chapter we demonstrate how the rather abstract effective Maxwell system looks like
for the Maxwell–Debye example from Section 3.1.3, which we scaled using the matrix Q given in (3.32).
Thus, the Maxwell–Debye system reads

ε0ε∞(x)∂tE(t, x) + ε0τ(x)−1Mε(x)E(t, x)− τ(x)−1P(t, x) − curl H(t, x) = −J(t, x) ,

ε−1
0 Mε(x)−1∂tP(t, x)− τ(x)−1Mε(x)E(t, x) + ε−1

0 τ(x)−1Mε(x)−1P(t, x) = 0 ,

µ0∂tH(t, x) + curl E(t, x) = 0 .

The identification of this system with the abstract Maxwell system (3.21) is clear by using the fact that
in the Debye setting we have NE = 1 and NH = 0. Furthermore, the heterogeneous counterpart is
given in abstract form in (4.11). The homogenization results and the reformulation from this chapter
yield the effective system (4.37) with parameters (4.38). As in the example for the Maxwell system with
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conductivity considered in Section 4.2.1, we present the decoupled Maxwell–Debye system

ε0ε
eff
∞ (x)∂tEeff(t, x) + ε0Reff

EE(x)Eeff(t, x) + Reff
EP(x)Peff(t, x) +

tˆ

0

Geff
EE(t− s, x)Eeff(s, x) ds

+
tˆ

0

Geff
EP(t− s, x)Peff(s, x) ds− curl Heff(t, x) = −J(t, x)− J0

EE(t, x)E0(x)− J0
EP(t, x)P0(x) ,

(4.77a)

ε−1
0 Meff

P (x)∂tPeff(t, x) + Reff
PE(x)Eeff(t, x) + ε−1

0 Reff
PP(x)Peff(t, x) +

tˆ

0

Geff
PE(t− s, x)Eeff(s, x) ds

+
tˆ

0

Geff
PP(t− s, x)P(s, x) ds = −J0

PE(t, x)E0(x)− J0
PP(t, x)P0(x) ,

(4.77b)

µ0∂tHeff(t, x)− curl Eeff(t, x) = 0 . (4.77c)

The notation of the parameters is based on the one in Section 3.1.4. For completeness, we also show the
lengthy representation of the effective parameters. This relies on the decomposition of the cell correctors
according to the three solution components. As an example consider the time dependent corrector w(t),
solution of (4.34) together with (4.33) which is decomposed as

w(t) =


wε,E(t) wε,P(t) wε,H(t)
wMε,E(t) wMε,P(t) wMε,H(t)
wµ,E(t) wµ,P(t) wµ,H(t)

 ∈ R3×9 .

Since the permeability in this example is constant the components of w that involve µ or H vanish.
With a similar decomposition of the cell correctors wM and w0 the derivation of the cell problems and
parameters is possible. Eventually, the stationary parameters are given as

(εeff
∞ (x))k,` =

ˆ

Y

ε∞ (x, y) (e` +∇ywε` (x, y)) · (ek +∇ywεk(x, y)) dy ,

(Meff
P (x))k,` =

ˆ

Y

Mε (x, y)−1 (e` +∇ywMε
` (x, y)

)
·
(
ek +∇ywMε

k (x, y)
)

dy ,

(Reff
EE(x))k,` =

ˆ

Y

τ(x, y)−1Mε(x, y) (e` +∇ywε` (x, y)) · (ek +∇ywεk(x, y)) dy ,

(Reff
EP(x))k,` = −

ˆ

Y

τ(x, y)−1 (e` +∇ywε` (x, y)) ·
(
ek +∇ywMε

k (x, y)
)

dy ,

(Reff
PE(x))k,` = −

ˆ

Y

τ(x, y)−1 (e` +∇ywMε
` (x, y)

)
· (ek +∇ywεk(x, y)) dy ,

(Reff
PP(x))k,` =

ˆ

Y

τ(x, y)−1Mε(x, y)−1 (e` +∇ywMε
` (x, y)

)
·
(
ek +∇ywMε

k (x, y)
)

dy .
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Furthermore, the time-dependent convolution kernels and extra sources are defined as

(Geff
EE(t, x))k,` =

ˆ

Y

τ(x, y)−1Mε(x, y) (e` +∇ywε` (x, y)) · ∇ywε,Ek (t, x, y) dy

−
ˆ

Y

τ(x, y)−1 (e` +∇ywε` (x, y)) · ∇ywMε,E
k (t, x, y) dy ,

(Geff
EP(t, x))k,` =

ˆ

Y

τ−1(x, y)Mε(x, y) (e` +∇ywε` (x, y)) · ∇ywε,Pk (t, x, y) dy

−
ˆ

Y

τ(x, y)−1 (e` +∇ywε` (x, y)) · ∇ywMε,P
k (t, x, y) dy ,

(Geff
PE(t, x))k,` = −

ˆ

Y

τ(x, y)−1 (e` +∇ywMε
` (x, y)

)
· ∇ywε,Ek (t, x, y) dy

+
ˆ

Y

τ(x, y)−1Mε(x, y)−1 (e` +∇ywMε
` (x, y)

)
· ∇ywMε,E

k (t, x, y) dy ,

(Geff
PP(t, x))k,` = −

ˆ

Y

τ(x, y)−1 (e` +∇ywMε
` (x, y)

)
· ∇ywε,Pk (t, x, y) dy

+
ˆ

Y

τ(x, y)−1Mε(x, y)−1 (e` +∇ywMε
` (x, y)

)
· ∇ywMε,P

k (t, x, y) dy ,

(J0
EE(t, x))k,` =

ˆ

Y

τ(x, y)−1Mε(x, y)
(
e` +∇Ty wε` (x, y)

)
· ∇yw0,ε,E

k (t, x, y) dy

−
ˆ

Y

τ(x, y)−1 (e` +∇ywε` (x, y)) · ∇yw0,Mε,E
k (t, x, y) dy ,

(J0
EP(t, x))k,` =

ˆ

Y

τ(x, y)−1Mε(x, y) (e` +∇ywε` (x, y)) · ∇yw0,ε,P
k (t, x, y) dy

−
ˆ

Y

τ(x, y)−1 (e` +∇ywε` (x, y)) · ∇yw0,Mε,P
k (t, x, y) dy ,

(J0
PE(t, x))k,` = −

ˆ

Y

τ(x, y)−1 (e` +∇ywMε
` (x, y)

)
· ∇yw0,ε,E

k (t, x, y) dy

+
ˆ

Y

τ(x, y)−1Mε(x, y)−1 (e` +∇ywMε
` (x, y)

)
· ∇yw0,Mε,E

k (t, x, y) dy ,

(J0
PP(t, x))k,` = −

ˆ

Y

τ(x, y)−1 (e` +∇ywMε
` (x, y)

)
· ∇yw0,ε,P

k (t, x, y) dy

+
ˆ

Y

τ(x, y)−1Mε(x, y)−1 (e` +∇ywMε
` (x, y)

)
· ∇yw0,Mε,P

k (t, x, y) dy .
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CHAPTER 5

The Finite Element Heterogeneous Multiscale Method

Our ultimate goal in this thesis is to simulate the propagation of electromagnetic waves in heterogeneous
media. In the first chapters we have shown mathematical models for these waves. Then we derived
the homogeneous material parameters that allow us to simulate the propagation, as we no longer have
to resolve every fine scale. In our case the method of choice for the simulation of partial differential
equations is the finite element method, which we introduce briefly in the next section. As an example,
we use the heterogeneous Maxwell system (4.11). Within its discretization we observe why we should use
the homogeneous system (4.32) instead. One issue still present is that we only have the representation of
the effective material parameters as mean values of solutions of partial differential equations. In general,
it is not possible to give an exact solution of these equations and therefore we can not assume to get an
exact analytic representation of the effective parameters. In Section 5.2, we introduce the Heterogeneous
Multiscale Method (HMM) Abdulle et al. (2012); E and Engquist (2003) to overcome this problem.
Moreover, we show the wellposedness and analyze the spatial error of this approach in Section 5.3.

5.1 The finite element method

In this section we briefly recapture the finite element method including the finite elements we use. The
theory is mainly from Brenner and Scott (2008); Ciarlet (2002); Ern and Guermond (2004); Monk (2003).
We start with the heterogeneous Maxwell system from Section 4.4.1

Mδ(x)∂tuδ(t, x) + Rδ(x)uδ(t, x) + Auδ(t, x) = gδ(t, x) , in (0, T )× Ω , (5.1)

uδ(0, x) = uδ0(x) , in Ω , (5.2)

n× uδ1(t, x) = 0 , on (0, T )× ∂Ω . (5.3)
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Next we multiply equation (5.1) by a test function Φ. The space of test functions in our case is the
domain of the Maxwell operator, and we give it another name for the sake of clarity, i.e.,

Vmac := D(A) = H0 (curl,Ω)×H (curl,Ω)NE ×H (curl,Ω)×H (curl,Ω)NH .

The superscript mac indicates that this space is used for the macroscopic Maxwell system. We now
proceed with the variational formulation of (5.1).
Find uδ : [0, T ]→ Vmac such that(

Mδ∂tuδ(t) + Rδuδ(t) + Auδ(t),Φ
)

L2(Ω;Rn) =
(
gδ(t),Φ

)
L2(Ω;Rn) for all Φ ∈ Vmac . (5.4)

Next we choose a finite dimensional subspace VH ⊆ Vmac with dim VH = NVH . We give the definition
of the space VH in the Section 5.2. For now, it is enough that the finite dimensional space has a basis
{Φi}

NVH
i=1 . Hence, we use it to represent the approximation uδ,H : [0, T ]→ VH of the solution as

uδ,H(t, x) =
NVH∑
i=1

Uδ
i (t)Φi(x) .

Insert this representation in (5.4) to get

NVH∑
i=1

(
MδΦi,Φj

)
L2(Ω;Rn) ∂tU

δ
i (t) +

NVH∑
i=1

(
RδΦi,Φj

)
L2(Ω;Rn) Uδ

i (t) +
NVH∑
i=1

(AΦi,Φj)L2(Ω;Rn) Uδ
i (t)

=
(
gδ(t),Φj

)
L2(Ω;Rn) for all j = 1, . . . , NVH .

(5.5)

Here it is enough to test with the basis functions itself. The system of equations (5.5) is equivalent to

Mδ∂tUδ(t) + RδUδ(t) + AUδ(t) = gδ(t) ,

where the matrices and the right-hand side are defined for i, j = 1, . . . , NVH as

Mδ
i,j :=

(
MδΦj ,Φi

)
L2(Ω;Rn) , Rδ

i,j :=
(
RδΦj ,Φi

)
L2(Ω;Rn) ,

Ai,j :=(AΦj ,Φi)L2(Ω;Rn) , gδi :=
(
gδ(t),Φi

)
L2(Ω;Rn) .

(5.6)

The solution vector is given as Uδ(t) =
(
Uδ

1(t) · · · Uδ
NVH

(t)
)T

. We derived a semi-discrete system
that is an ODE and thus can in principle be solved by a time integration scheme. The matrices and
the right-hand side in (5.6) have to be computed but still depend on the micro scale δ, which we can
not resolve. To solve this resolution problem we introduced the homogeneous system (4.32), which we
considered in Section 5.2.
For now, the open question is how to choose the finite dimensional subspace VH. This is where the finite
elements actually occur.

Remark 5.1.1. Note that the subspace property VH ⊆ Vmac is one ingredient of a so-called conforming
finite element method. We point out that this is not restrictive and that it is possible to use a finite
dimensional space that is not a subspace of Vmac, e.g, a discontinuous Galerkin approach.

The method of finite elements follows the idea to choose a subdivision of the computational domain Ω.
This division is called triangulation and for its definition we follow (Ciarlet, 2002, Chapter 2).
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Definition 5.1.2 (Triangulation). A triangulation TH of the domain Ω is a subdivision of Ω in a finite
number of subsets K, the cells, such that the following conditions hold

(i) Ω =
⋃
K∈TH K,

(ii) For each K ∈ TH , the set K is closed and the interior K̊ is non-empty,

(iii) For each distinct Ki,Kj ∈ TH , one has K̊i ∩ K̊j = ∅,

(iv) For each K ∈ TH , the boundary ∂K is Lipschitz-continuous.

If every cell K ∈ TH is a polyhedron we call the triangulation adjacent if

(v) Any face of Ki in the triangulation is either a subset of the boundary ∂Ki, or a face of another Kj

in the triangulation.

For every cell we define its diameter HK := diam(K) = max
x,y∈K

|x− y|. Thus, we get the maximum
diameter of all elements K ∈ TH as H = max

K∈Th
HK , which explains the notation as TH . Moreover, denote

by %K the diameter of the largest ball that can be inscribed in K.
A family of triangulations {TH : H > 0} is called shape regular as H → 0 if there exists as constant C
independent of K such that for every H and for each K ∈ TH we find

HK

%K
≤ C .

The implementation we strive for uses hexahedral elements only. Therefore, from now on assume that we
have an adjacent and shape regular family of triangulations {TH}H>0 of the domain Ω in parallelepipeds.
We use the unit cube as reference cell K̂ = [0, 1]3. Then, for every cell K ∈ TH there exists an affine
linear map FK such that FK

(
K̂
)

= K.
Other choices of triangulations are possible, but we stick to this assumption in the remainder. Let us
now define finite elements.

Definition 5.1.3 (Finite element). A finite element is a triple {K,PK ,NK} consisting of

(i) K, a cell of the triangulation, i.e., a parallelepiped,

(ii) PK , a space of functions on K,

(iii) NK , a set of linear functionals on PK , which are called degrees of freedom.

We call a finite element (K,PK ,NK) unisolvent if specifying a value for each degree of freedom in NK
uniquely determines a function in PK .

On K ∈ TH we define the space of polynomials with maximal degree ` in the first, m in the second and
n in the third component as

Q`,m,n(K) =
{
p ∈ C∞ (K) : ∂

`+1p

∂x`+1
1
≡ ∂m+1p

∂xm+1
2

≡ ∂n+1p

∂xn+1
3
≡ 0
}
.

A polynomial p ∈ Q`,m,n(K) is of the form

p(x1, x2, x3) =
∑

r1≤`,r2≤m,r3≤n

ar1,r2,r3x
r1
1 x

r2
2 x

r3
3 for r1, r2, r3 ∈ N0, ar1,r2,r3 ∈ R.

Next we finally define two finite elements. On the macro level we use Nédélec finite elements.
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5.1.1 Nédélec finite elements

In 1980 Nédélec Nédélec (1980) introduced H(curl,Ω)-conforming elements of the first type for cubes.
For ` ∈ N we define

Q`Nédélec(K) := Q`−1,`,`(K)×Q`,`−1,`(K)×Q`,`,`−1(K) for all K ∈ TH .

We skip the lengthy definitions of the degrees of freedom NK here and refer the reader to (Nédélec, 1980,
Definition 6) and (Monk, 2003, Definition 6.4) for the details on the practical realization. Then, the
Nédélec element defined on the reference cell is given as{

K̂,Q`Nédélec(K̂),N
K̂

}
.

Using an affine transformation this defines a general Nédélec element
{
K,Q`Nédélec,NK

}
. We denote the

space of Nédélec’s elements of the first type by

V` (curl, TH) :=
{
vH ∈ H(curl,Ω) : vH |K ∈ Q`Nédélec(K) for all K ∈ TH

}
, (5.7)

and further we define

V`
0 (curl, TH) := H0(curl,Ω) ∩V` (curl, TH) .

Of course the definition (5.7) of Nédélecs elements is rather implicit, which follows from the conformity
and unisolvence of the elements defined by the degrees of freedom. Important, however, is that we obtain
the following interpolation error estimate that can be found in the original paper (Nédélec, 1980, Theorem
6) or in (Monk, 2003, Theorem 6.6).

Theorem 5.1.4. Let u ∈ H`+1 (Ω;R3). There exists a global interpolation operator IH : H`+1 (Ω;R3)→
V` (curl, TH) for Nédélec elements of the first type, such that

‖u− IHu‖H(curl,Ω) ≤ CH`|u|H`+1(Ω;R3) . (5.8)

As seen in (5.7) the space of Nédélec elements is a subspace of H (curl,Ω). We use this space for
the discretization of the macroscopic Maxwell system. All quantities that are labeled with an H are
macroscopic expressions, as the triangulation TH . For microscopic quantities we use h instead. The next
section is dedicated to Lagrange elements.

5.1.2 Lagrange finite elements

As explained in Section 5.2.1 below we use Lagrange elements on the micro scale. Since the cell problems
are posed on the unit cell Y we introduce another adjacent and shape regular triangulation with maximal
cell diameter h. Hence, we denote it as Th.
The details may be found in (Ern and Guermond, 2004, Section 1.2.4). Following (Ern and Guermond,
2004, Definition 1.27) the degrees of freedom of a Lagrange element are always associated to point or
nodal values.
Similar to the previous section we only give the characterization of the space.

Sk (Th) :=
{
vh ∈ H1 (Y ) : vh|K ∈ Qk,k,k(K) for all K ∈ Th

}
.
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To include periodic or Dirichlet boundary conditions we also define

Sk# (Th) := H1
# (Y ) ∩ Sk (Th) ,

Sk0 (Th) := H1
0 (Y ) ∩ Sk (Th) .

Similar to Theorem 5.1.4 we get an interpolation error estimate as in (Ciarlet, 2002, Theorem 3.2.1) or
(Monk, 2003, Theorem 6.11).

Theorem 5.1.5. For the triangulation Th of Y and a function u ∈ Hk+1 (Y ;R) there exists an interpo-
lation operator Πh : Hk+1 (Y ;R)→ Sk (Th) such that the following estimate holds

‖u−Πhu‖H1(Y ;R) ≤ Ch
k |u|Hk+1(Y ;R) .

Let us point out that the space Sk (Th) is a subspace of H1 (Y ;R). Thus, it is suitable for conforming
finite element methods applied to the micro problems (4.39)-(4.43).
Next we comment on quadrature rules. This is an important point in the theory of finite element methods.
Note that the definition (5.6) of the matrices involves integrals over the domain Ω. These are unlikely to
be exactly calculable. Thus, we use quadrature rules to approximate these integrals.

5.1.3 Quadrature

On every element K ∈ TH of the triangulation we choose a quadrature formula consisting of QK ∈ N
quadrature points xqK ∈ K and quadrature weights γqK ∈ R≥0, q = 1, . . . , QK . We assume that the
quadrature is exact for polynomials in Q2`,2`,2`(K), ` ∈ N. Hence, for p ∈ Q2`,2`,2`(K) we have

ˆ

K

p(x) dx =
QK∑
q=1

γqKp(x
q
K) . (5.9)

Note that we use positive weights, e.g. Gaussian rules, to ensure that the resulting bilinear forms keep,
for instance, their positivity.
In the next section we apply the finite element method with Nédélec elements to the macroscopic Maxwell
system (4.32).

5.2 The HMM framework and the application to Maxwell’s
equations

In Section 4.4.8, we already derived a variational formulation of the effective system (4.32), which is

meff(∂tueff(t),Φ
)

+ reff(ueff(t),Φ
)

+
tˆ

0

geff(t− s; ueff(s),Φ
)

ds+ a
(
ueff(t),Φ

)
= meff(f(t),Φ)−

(
Jeff(t)u0,Φ

)
for all Φ ∈ Vmac .

Recall the definition of the effective parameters in (4.38a)-(4.38d). As explained in Section 5.1, we now
choose a finite dimensional subspace of the space Vmac, which in our case will be the spaces of Nédélec
finite elements presented in Section 5.1.1. To be more precise, for the space H (curl,Ω) we choose the
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subspace V` (curl, TH) and for the space H0 (curl,Ω) we choose V`
0 (curl, TH) with suitable choices of the

degree ` ∈ N and the triangulation TH of the domain Ω. The discrete space is then defined as the product
space

VH := V`
0 (curl, TH)×V` (curl, TH)NE ×V` (curl, TH)×V` (curl, TH)NH .

Thus, we eventually get the system

M∂tU(t) + RU(t) +
tˆ

0

G(t− s)U(s) ds+ AU(t) = g(t)− J(t)U(0) , (5.10)

with an analogue definition of the matrices as in (5.6) with δ replaced by eff. Additionally, we have the
convolution kernel and the extra source, which are given as

G(t)i,j :=
(
Geff(t)Φj ,Φi

)
L2(Ω;Rn) , J(t)i,j :=

(
Jeff(t)Φj ,Φi

)
L2(Ω;Rn) .

The exact calculation of the integrals in the definition of the matrices is in general not possible. To
overcome this problem one uses quadrature formulas. Thus, on VH we use the inner product

(ΦH ,ΨH)H =
∑
K∈TH

QK∑
q=1

γqKΦH(xqK) ·ΨH(xqK) for all ΦH ,ΨH ∈ VH ,

cf. (5.9). The discrete counterparts to the bilinear forms defined in (4.64) - (4.67) are meff
H , r

eff
H , aH :

VH ×VH → R such that for every ΦH , ΨH ∈ VH

meff
H (ΦH ,ΨH) :=

(
MeffΦH ,ΨH

)
H
, (5.11)

reff
H (ΦH ,ΨH) :=

(
ReffΦH ,ΨH

)
H
, (5.12)

aH(ΦH ,ΨH) :=(AΦH ,ΨH)H . (5.13)

Moreover, for t ∈ [0, T ] define geff
H : [0, T ]×VH ×VH → R such that

geff
H (t; ΦH ,ΨH) :=

(
Geff(t)ΦH ,ΨH

)
H

for all ΦH ,ΨH ∈ VH . (5.14)

Now the spatially discrete formulation of the effective Maxwell system reads

meff
H

(
∂tueff

H (t),ΦH

)
+ reff

H

(
ueff
H (t),ΦH

)
+

tˆ

0

geff
H

(
t− s; ueff

H (s),ΦH

)
ds+ aH

(
ueff
H (t),ΦH

)
= meff

H (fH(t),ΦH)−
(
Jeff(t)u0,H ,ΦH

)
H

for all ΦH ∈ VH ,

(5.15)

where fH is defined such that for an approximation gH of g we find

meff
H (fH(t),ΦH) =(gH(t),ΦH)H for all ΦH ∈ VH .

Note that the approximation of the effective mass matrix by

Mi,j = meff(ΦH,j ,ΦH,i) ≈ meff
H (ΦH,j ,ΦH,i) , (5.16)

only has an effect on the macroscopic level, i.e., here we only introduce a quadrature error. In principle
this yields a spatially discrete system but the effective parameter itself is not known so far. The problem
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is that we have no knowledge about the matrix-valued effective parameters except that they are defined
as mean values of cell correctors. Hence, we do not know the cell correctors analytically and thus we
are not able to evaluate the parameters. This situation is exactly where the Heterogeneous Multiscale
Method (HMM) Abdulle et al. (2012) is applicable. On the macroscopic level we have a problem that can
in principle be solved, but we are lacking the information of the effective parameters. This information
can be resolved by the use of a microscopic solver. Let us mention that a straightforward approach is
to solve the cell problems with a suitable finite element method itself and then use these approximations
to get the effective parameters. This is feasible in the context of purely periodic materials and in that
setting it is probably even the best approach. However, in this work we go one step further and allow for
at least locally periodic materials. In this scenario we would have to solve infinitely many cell problems,
which is of course impossible. To overcome this problem we use the Heterogeneous Multiscale Method
(HMM) introduced in E and Engquist (2003) and exposed in Abdulle et al. (2012). We present the idea
of the HMM in the next section. After that we briefly recapture the results obtained for the vacuum
Maxwell system in Section 5.2.2 and then discuss the difficulties in our setting in Section 5.2.3. Finally, in
Section 5.3 we present the Finite Element Heterogeneous Multiscale Method (FE-HMM) for the effective
Maxwell system of passive materials and analyze the semi-discrete error of the method.

5.2.1 Approximating the effective parameters on the microscale

Consider the mass matrix components and their approximation as shown in (5.16). The question is how
we can compute these entries. With a quadrature formula such as (5.9) we get

Mi,j =
(
MeffΦj ,Φi

)
L2(Ω;Rn) =

ˆ

Ω

Meff(x)Φj(x) ·Φi(x) dx

≈
∑
K∈TH

QK∑
q=1

γqKMeff(xqK)Φj(xqK) ·Φi(xqK) .
(5.17)

Here we immediately see that we only need to know the effective parameter for every macroscopic quadra-
ture point. As we see later it is helpful to use transformed cell problems and parameters. Therefore, we
introduce for each quadrature point xqK a so-called sampling domain of size delta by Y δ(xqK) = xqK + δY .
Then the transformed cell problem (cf. (4.20)) and parameter (cf. (4.23)) are given as

ˆ

Y δ(xq
K

)

M
(
xqK ,

y

δ

) (
e` +∇ywM

` (xqK , y)
)
· ∇yv(y) dy = 0 for all v ∈ H1

#
(
Y δ (xqK)

)
, (5.18)

and

(Meff(xqK))k,` = 1
|Y δ (xqK)|

ˆ

Y δ(xqK)

M
(
xqK ,

y

δ

) (
e` +∇ywM

` (xqK , y)
)
·
(
ek +∇ywM

k (xqK , y)
)

dy . (5.19)

The details of the transformation can be found in the Appendix A.2. Let us point out that the correctors
wM
` in (4.20) and (5.18) do not coincide. Nevertheless, in what follows we only use the corrector as solution

of (5.18) and thus we drop the δ-dependence in the notation. For convenience, we write x̄ = xqK , γ̄ = γqK

and abbreviate the mean as
ffl
Y

· dy = 1
|Y |

´
Y

· dy. Moreover, we insert the transformed representation of
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the parameter into (5.17). Together with the notations from Remark 4.4.4 and the transposed Jacobian
DT
y w this yields

Mi,j ≈
∑
K∈TH

QK∑
q=1

γ̄Φi(x̄)TMeff(x̄)Φj(x̄)

=
∑
K∈TH

QK∑
q=1

γ̄Φi(x̄)T
 

Y δ(x̄)

(
I + DT

y w
M(x̄, y)

)T M
(
x̄,
y

δ

) (
I + DT

y w
M(x̄, y)

)
dyΦj(x̄)

=
∑
K∈TH

QK∑
q=1

γ̄

 

Y δ(x̄)

[(
I + DT

y w
M(x̄, y)

)
Φi(x̄)

]T M
(
x̄,
y

δ

) [(
I + DT

y w
M(x̄, y)

)
Φj(x̄)

]
dy .

The idea now is to reformulate the cell problems and to solve directly for the components of the expression
wM(x̄, y)Φi(x̄), which are the solution of

ˆ

Y δ(x̄)

M
(
x̄,
y

δ

) (
e` +∇ywM

` (x̄, y)
)
· ∇yv(y) dyΦi(x̄) = 0 for all v ∈ H1

#
(
Y δ (xqK)

)
.

In other words, if we set Ψi(x̄, y) =
(
I + DT

y w
M(x̄, y)

)
Φi(x̄) we get

Mi,j ≈
∑
K∈TH

QK∑
q=1

γ̄

 

Y δ(x̄)

Ψi(x̄, y)TM
(
x̄,
y

δ

)
Ψj(x̄, y) dy , (5.20)

where Ψi solves ˆ

Y δ(x̄)

M
(
x̄,
y

δ

)
Ψi(x̄, y) · ∇yv(y) dy = 0 for all v ∈ H1

#
(
Y δ (xqK)

)
.

Setting

Ψi,lin(x̄, y) := y ·Φi(x̄) , Ψi,#(x̄, y) := wM(x̄, y) ·Φi(x̄) , Ψi(x̄, y) := Ψi,lin(x̄, y) + Ψi,#(x̄, y) ,
(5.21)

we get

∇yΨi(x̄, y) = Ψi(x̄, y) .

With this the new formulation of the cell problem, which is advantageous for the implementation, is given
as:
Find Ψi,# ∈ H1

#
(
Y δ (xqK)

)
such that

ˆ

Y δ(x̄)

M
(
x̄,
y

δ

)
∇yΨi,#(x̄, y) · ∇yv(y) dy = −

ˆ

Y δ(x̄)

M
(
x̄,
y

δ

)
∇yΨi,lin(x̄) · ∇yv(y) dy ,

for all v ∈ H1
#
(
Y δ (xqK)

)
. Still, the problem remains that the exact solution of the described problem is

in general not available. Before we tackle this problem, let us give a central remark.

Remark 5.2.1 (Knowledge about periodicity). The definition of the parameters involves the solution
of cell problems and unit cells. So far we made the assumption that we know the period length δ of the
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heterogeneous parameters exactly. In this case we use the periodic boundary conditions imposed in the
derivation of the cell problems. In a more general setting where we have no knowledge about the period
length we can come up with a slightly different approach: We choose a parameter κ > δ and define a
new and bigger sampling domain Y κ(xqK) = xqK + κY around every macroscopic quadrature point xqK .
Since we have no knowledge about the periodicity, we simply impose Dirichlet boundary conditions in this
setting. For a detailed study on the effects of boundary conditions see Yue and E (2007).

In the view of Remark 5.2.1 we introduce a triangulation Th of the sampling domain Y κ (xqK). As function
space we choose Lagrange finite elements of degree k ∈ N with either periodic Vh = Sk# (Th) or Dirichlet
boundary conditions Vh = Sk0 (Th). Now the discrete micro problem is to find Ψh

i,#(x̄, ·) ∈ Vh such that
ˆ

Y κ(x̄)

M
(
x̄,
y

δ

)
∇yΨh

i,#(x̄, y) · ∇yvh(y) dy = −
ˆ

Y κ(x̄)

M
(
x̄,
y

δ

)
∇yΨi,lin(x̄) · ∇yvh(y) dy , (5.22)

for all vh ∈ Vh. We use the solution of problem (5.22) to set

Ψh
i (x̄, y) := ∇yΨi,lin(x̄, y) +∇yΨh

i,#(x̄, y) for i = 1, . . . , NVH ,

and define the approximation of the mass matrix by

Mi,j ≈ mHMM(Φj ,Φi) :=
∑
K∈TH

QK∑
q=1

γ̄

 

Y κ(x̄)

Ψh
i (x̄, y)TM

(
x̄,
y

δ

)
Ψh
j (x̄, y) dy . (5.23)

Note that in (5.23) besides the approximation by quadrature we also introduce an error by the introduction
of the finite element solutions of the micro problem. This error is analyzed in Section 5.3. In addition
to the definition of the bilinear form mHMM(·, ·) in (5.23) we give another possibility in the next section,
which will be useful in the error analysis later. We point out that the formulation in (5.23) is the one we
use for implementation.

HMM material parameter

For the error analysis it is useful that we can introduce an HMM parameter such that the bilinear form
from (5.23) is equivalent to

mHMM(Φj ,Φi) =
(
MHMMΦj ,Φi

)
H

=
∑
K∈TH

QK∑
q=1

γ̄MHMM(x̄)Φj(x̄) ·Φi(x̄) , for all i, j = 1, . . . , NVH .

Note that the test functions in the right-hand side changed. This parameter MHMM is given as

(MHMM(x̄))k,` :=
 

Y κ(x̄)

M
(
x̄,
y

δ

)(
e` +∇ywM,h

` (x̄, y)
)
·
(
ek +∇ywM,h

k (x̄, y)
)

dy , (5.24)

where wM,h
` (x̄, ·) ∈ Vh for ` = 1, . . . , n is solution of

ˆ

Y κ(x̄)

M
(
x̄,
y

δ

)(
e` +∇ywM,h

` (x̄, y)
)
· ∇yvh(y) dy = 0 for all vh ∈ Vh . (5.25)
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Error between the effective and the HMM parameter

In the error analysis we have to bound the expression∥∥Meff(xqK)−MHMM(xqK)
∥∥
F
, (5.26)

for every quadrature point xqK where ‖·‖F denotes the Frobenius norm and Meff and MHMM are given in
(5.19) and (5.24), respectively. The expression in (5.26) is called the HMM error. To derive an estimate,
we split it in the micro error and the modeling error. Therefore, in view of Remark 5.2.1 we set the
infinite dimensional space Vmic either as H1

# (Y κ(xqK)) and κ
δ ∈ N or as H1

0 (Y κ(xqK)) and κ > δ. Now,
we introduce another parameter, which is given by the exact solution on the sampling domain

(Meff,κ(x̄))k,` = 1
|Y κ (x̄)|

ˆ

Y κ(x̄)

M
(
x̄,
y

δ

) (
e` +∇ywM

` (x̄, y)
)
·
(
ek +∇ywM

k (x̄, y)
)

dy , (5.27)

where wM
` (x̄, ·) ∈ Vmic solves

ˆ

Y κ(xq
K

)

M
(
xqK ,

y

δ

) (
e` +∇ywM

` (xqK , y)
)
· ∇yv(y) dy = 0 for all v ∈ Vmic . (5.28)

Note that the parameter (5.27) is given by the exact solution of the micro problems that we use for the
HMM parameter and therefore its error to the HMM parameter is a standard finite element error. The
transformation to the new sampling domain Y κ (xqK) changes the corrector as shown in the Appendix
A.2. Nevertheless, we keep the notation as wM

` since we only use the corrector given in (5.28) in the
remainder. Now, we split the HMM error as follows∥∥Meff(xqK)−MHMM(xqK)

∥∥
F
≤
∥∥Meff(xqK)−Meff,κ(xqK)

∥∥
F

+
∥∥Meff,κ(xqK)−MHMM(xqK)

∥∥
F
. (5.29)

The first expression on the right-hand side of (5.29) is the modeling error, which covers the error in-
troduced by the sampling domain and, in the case of unknown period length, the Dirichlet boundary
conditions. The second term is the micro error, which measures how good the discretization of the cell
problem is. For the standard parameter Meff and its counterparts both the modeling and the micro
error have been analyzed. For the modeling error we have the following result from (Abdulle et al., 2012,
Lemma 4.8, Theorem 4.9).

Lemma 5.2.2. (i) If the local problems (5.28) are solved with periodic boundary values, i.e., Vmic =
H1

# (Y κ(xqK)), we have for κ
δ ∈ N

sup
K∈TH ,q∈{1,...,QK}

∥∥Meff(xqK)−Meff,κ(xqK)
∥∥
F

= 0 .

(ii) If the local problems (5.28) are solved with homogeneous Dirichlet boundary conditions, i.e., Vmic =
H1

0 (Y κ(xqK)), we have for κ > δ

sup
K∈TH ,q∈{1,...,QK}

∥∥Meff(xqK)−Meff,κ(xqK)
∥∥
F
≤ C

(
δ

κ
+ κ

)
,

with a constant C > 0 independent of h and δ.
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As one immediately observes the modeling error vanishes in the case where we know the period length,
because in this setting it is perfectly fine to use periodic boundary conditions. On the other hand, we
can still get good results if we have no knowledge about the period.
The next result from (Abdulle, 2012, Lemma 5.2) or (Abdulle, 2005, Lemma 3.3) bounds the micro
error. We also present the proof here because it gives ideas how we get similar bounds for the additional
parameters Reff and Geff later.

Lemma 5.2.3. Assume that for every quadrature point xqK we have wM
` (xqK , ·) ∈ H2 (Y κ(xqK)) such that

for all ` = 1, . . . , n it holds ∣∣wM
` (xqK , ·)

∣∣
H2(Y κ(xq

K
)) ≤ Cδ

−1
√
|Y κ(xqK)| .

Then, we have the following estimate

sup
K∈TH ,q∈{1,...,QK}

∥∥Meff,κ(xqK)−MHMM(xqK)
∥∥
F
≤ C

(
h

δ

)2
.

Proof. We abbreviate x̄ := xqK and use for ` = 1, . . . , N the notation ∇yϕ`(x, y) :=
(
e` +∇ywM

` (x, y)
)

and ∇yϕh` (x, y) :=
(
e` +∇ywM,h

` (x, y)
)
. Moreover, we define the bilinear form sκm such that for all

φ, ψ ∈ H1 (Y κ (x̄))

sκm(φ, ψ) :=
ˆ

Y κ(x̄)

M
(
x̄,
y

δ

)
∇yφ(y) · ∇yψ(y) dy . (5.30)

Thus, we find with a productive zero∣∣Meff,κ(x̄)k,` −MHMM(x̄)k,`
∣∣ = 1
|Y κ(x̄)|

∣∣sκm(ϕ`(x̄), ϕk(x̄))− sκm
(
ϕh` (x̄), ϕhk(x̄)

)∣∣
= 1
|Y κ(x̄)|

∣∣sκm(ϕ`(x̄), ϕk(x̄))− sκm
(
ϕ`(x̄), ϕhk(x̄)

)
+ sκm

(
ϕ`(x̄), ϕhk(x̄)

)
− sκm

(
ϕh` (x̄), ϕhk(x̄)

)∣∣
= 1
|Y κ(x̄)|

∣∣sκm(ϕ`(x̄), ϕk(x̄)− ϕhk(x̄)
)

+ sκm
(
ϕ`(x̄)− ϕh` (x̄), ϕhk(x̄)

)∣∣ .
The first expression vanishes since ϕk(x̄)−ϕhk(x̄) ∈ Vmic. Therefore, we have a test function suitable for
the cell problem for wM

` , i.e.,

sκm(ϕ`(x̄), v) = 0 for all v ∈ Vmic .

On the other hand due to the symmetry of the parameter M we also find that

sκm
(
ϕ`(x̄)− ϕh` (x̄), ϕk(x̄)

)
= 0 ,

since ϕ`(x̄)− ϕh` (x̄) ∈ Vmic. We thus subtract this zero from the equality and get∣∣Meff,κ(x̄)k,` −MHMM(x̄)k,`
∣∣ = 1
|Y κ(x̄)|

∣∣sκm(ϕ`(x̄)− ϕh` (x̄), ϕhk(x̄)− ϕk(x̄)
)∣∣

≤ CM

|Y κ(x̄)|
∥∥∇y (ϕ`(x̄)− ϕh` (x̄)

)∥∥
L2(Y κ(x̄))

∥∥∇y (ϕhk(x̄)− ϕk(x̄)
)∥∥

L2(Y κ(x̄))

= CM

|Y κ(x̄)|

∥∥∥∇y (wM
` (x̄)− wM,h

` (x̄)
)∥∥∥

L2(Y κ(x̄))

∥∥∥∇y (wM,h
k (x̄)− wM

k (x̄)
)∥∥∥

L2(Y κ(x̄))
,
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where we used the boundedness of the parameter M from (4.46). With the standard finite element error
bound from (Ciarlet, 2002, Theorem 3.2.2), i.e.,∥∥∥∇y (wM

` (x̄)− wM,h
` (x̄)

)∥∥∥
L2(Y κ(x̄))

≤ Ch
∣∣wM
` (x̄)

∣∣
H2(Y κ(x̄)) ,

we now get

∣∣Meff,κ(x̄)k,` −MHMM(x̄)k,`
∣∣ ≤ Ch2

|Y κ(x̄)|
∣∣wM
` (x̄)

∣∣
H2(Y κ(x̄))

∣∣wM
k (x̄)

∣∣
H2(Y κ(x̄)) .

The assumption on the cell corrector yields the stated bound.

If the regularity of the corrector is higher we get the following corollary.

Corollary 5.2.4. Assume that for k ∈ N we have wM
` (xqK , ·) ∈ Hk+1 (Y κ(xqK)) such that for every

` = 1, . . . , n and every quadrature point xqK it holds∣∣wM
` (xqK , ·)

∣∣
Hk+1(Y κ(xq

K
)) ≤ Cδ

−k
√
|Y κ(xqK)| .

Then, we have the following estimate

sup
K∈TH ,q∈{1,...,QK}

∥∥Meff,κ(xqK)−MHMM(xqK)
∥∥
F
≤ C

(
h

δ

)2k
.

Proof. In the proof of Lemma 5.2.3 use the higher regularity of the corrector to get the bound∥∥∥∇y(wM
` (x̄)− wM,h

` (x̄))
∥∥∥

L2(Y )
≤ Chk

∣∣wM
` (x̄)

∣∣
Hk+1(Y ) ,

and then apply the assumption on the Hk+1-norm of the corrector.

As already mentioned, this result is essential in the analysis of the Heterogeneous Multiscale Method
since it bounds the so-called micro error of the scheme. A main contribution of this work is to establish
similar results for the other parameters arising in the general Maxwell setting. Before we study the
general system, we present some results obtained for the Maxwell system in vacuum.

5.2.2 Results for the classical Maxwell system

In this section we briefly present results for the Maxwell system without any damping. For details see
Hochbruck et al. (2019). Here neither a polarization nor a magnetization is present and therefore the
dimension of the problem is n = 6. Thus, the space Vmac is given as

Vmac = H0 (curl,Ω)×H (curl,Ω) .

The effective Maxwell system then reads:
Find ueff : [0, T ]→ Vmac such that for all Φ ∈ Vmac it holds

meff(∂tueff(t),Φ
)

+ a
(
ueff(t),Φ

)
= meff(f eff(t),Φ

)
,

ueff(0) = u0 .
(5.31)
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Here, the bilinear forms are given as in (4.64) and (4.66). The right-hand side is defined as

meff(f eff(t),Φ
)

=
((
−J(t)

03

)
,Φ
)

L2(Ω;R6)

,

where J is the electric current density from (3.1a). Compare with (4.68) for the general case. The
formulation of the FE-HMM in this setting has been derived in Section 5.2.1. Here the discrete function
space reads

VH = V`
0 (curl, TH)×V` (curl, TH) .

The variational form is:
Find uHMM

H : [0, T ]→ VH such that for all ΦH ∈ VH it holds

mHMM(∂tuHMM
H (t),ΦH

)
+ aH

(
uHMM
H (t),ΦH

)
= mHMM(fHMM(t),ΦH

)
,

uHMM
H (0) = u0,H .

(5.32)

The HMM bilinear form is given as in (5.23). Moreover, for an approximation JH : [0, T ]→ V` (curl, TH)
of J we defined fHMM such that

mHMM(fHMM(t),ΦH

)
=
((
−JH(t)

03

)
,ΦH

)
.

Together with the Lemmas 5.2.2 and 5.2.3 or Corollary 5.2.4 we get the semi-discrete error bound as
in (Hochbruck et al., 2019, Theorem 4.5) for Nédélec elements of order ` ∈ N on the macro level and
Lagrange elements of order k ∈ N on the micro level.

Theorem 5.2.5. For ` ≥ 1 let ueff ∈ C1 (0, T ; H`+1 (Ω)
)
be the solution of (5.31). Moreover, let

uHMM ∈ L∞ (0, T ; VH) be the solution of (5.32) at time t ∈ (0, T ). If∣∣wM∣∣
k+1,Y κ(xq

K
) ≤ Cδ

−k
√
|Y κ(xqK)| for all xqK ,

and
Meff |K ∈W`+1,∞ (K)6×6

,
∥∥Meff∥∥

`+1,∞,K ≤ C̃ , for all K ∈ TH ,

with a constant C̃ independent of δ, h and H, we get the error estimate

∥∥uHMM(t)− ueff(t)
∥∥

0,Ω ≤ C(1 + t)
(
‖u0,H − IHu0‖0,Ω + ‖JH − J‖L∞(0,t;L2(Ω;R3))

+H`
(∥∥ueff∥∥

L∞(0,t;H`+1(Ω)) +
∥∥∂tueff∥∥

L∞(0,t;H`+1(Ω))

)
+
((

h

δ

)2k
+ emod

)∥∥∂tueff∥∥
L∞(0,t;H`+1(Ω))

)
,

with emod = 0 under the assumption of Lemma 5.2.2 (i) or emod < δ
κ + κ under the assumptions of

Lemma 5.2.2 (ii).

The main goal of the rest of this chapter is to show a similar bound for the more general Maxwell system
and its discretization. The key difference between the two is the convolution that occurs due to the
damping.



76 Chapter 5. The Finite Element Heterogeneous Multiscale Method

5.2.3 Difficulties in the approximation of time-dependent parameters

Let us briefly comment on the difficulties that occur in the error analysis of the general Maxwell case.
We already saw in Chapter 4 that the effective Maxwell system changes in comparison to the vacuum
Maxwell model. The main difference is the presence of the additional convolution and the extra source:
The convolution introduces the difficulty that the effective convolution kernel is time dependent and this
dependence leads to issues in both the analysis and the numerics. Moreover, the time dependence is
given by a time-dependent corrector, that has to be analyzed separately. Not only the time-dependent
parameter introduces a problem but already the effective damping parameter has a different structure
than the effective parameter in the vacuum case. Therefore, we have to take care in the analysis of this
parameter which is not time dependent at all. We thus have to derive results for the parameters R
and G(t) that are similar to Lemma 5.2.3 for M. Our aim is to use similar techniques as in the proof
of Theorem 5.2.5. But, since the convolution is not covered in the unified error analysis in Hipp et al.
(2019), which is used for the effective vacuum Maxwell system, we have to generalize the proof here.
This short overview shows how the introduction of damping in the Maxwell system, which is always
present in matter, complicates the effective system. Nevertheless, we already gave the plan of how to
circumvent these difficulties.

5.3 A FE-HMM algorithm for the dispersive Maxwell system

After the discussion of some general ideas and results for the classic Maxwell system in Section 5.2 we
now turn to the general Maxwell system including damping. The starting point is the effective system
we derived in Section 4.4 and which is given in (4.68). Recall that we seek ueff : [0, T ]→ Vmac such that

meff(∂tueff(t),Φ
)

+ reff(ueff(t),Φ
)

+
tˆ

0

geff(t− s; ueff(s),Φ
)

ds+ a
(
ueff(t),Φ

)
= meff(f(t),Φ)−

(
Jeff(t)u0,Φ

)
for all Φ ∈ Vmac .

(5.33)

In (5.15) we already derived the discrete version:
Find ueff

H : [0, T ]→ VH such that

meff
H

(
∂tueff

H (t),ΦH

)
+ reff

H

(
ueff
H (t),ΦH

)
+

tˆ

0

geff
H

(
t− s; ueff

H (s),ΦH

)
ds+ aH

(
ueff
H (t),ΦH

)
= meff

H (fH(t),ΦH)−
(
Jeff(t)u0,H ,ΦH

)
H

for all ΦH ∈ VH .

In Section 5.2.1 we further derived the bilinear form mHMM(·, ·) defined in (5.23) that is actually com-
putable, whereas meff

H (·, ·) still involves the exact solution of cell problems. In this section we follow the
same ideas to derive the HMM formulation for the bilinear forms reff

H (·, ·) and geff
H (t; ·, ·).

Derivation of rHMM

For the damping parameter the derivation of the HMM counterpart is very similar to that of mHMM.
This is due to the fact that the same cell correctors are involved in its computation. As in Section 5.2.1
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we start with the approximation of the matrix as

Ri,j = reff(Φj ,Φi) ≈ reff
H (Φj ,Φi) for all i, j = 1, . . . , NVH ,

where the bilinear form on the right-hand side is defined in (5.12). Let k, ` ∈ {1, . . . , n}. The components
of the effective parameter Reff are given in (4.25) as

(Reff(x))k,` =
ˆ

Y

R(x, y)
(
e` +∇ywM

` (x, y)
)
·
(
ek +∇ywM

k (x, y)
)

dy .

We transform this problem to the sampling domain Y δ (x̄), where x̄ = xqK is a macroscopic quadrature
point

(Reff(x̄))k,` =
 

Y δ(x̄)

R
(
x̄,
y

δ

) (
e` +∇ywM

` (x̄, y)
)
·
(
ek +∇ywM

k (x̄, y)
)

dy . (5.34)

Again note that the correctors have changed by transformation, but we keep the naming. In Section
5.2.1, we saw that it is beneficial to search for

Ψi(x̄, y) = ∇yΨi,lin(x̄, y) +∇yΨi,#(x̄, y) ,

which are defined in (5.21), where Ψi,#(x̄, ·) ∈ H1
#
(
Y δ (xqK)

)
solves

ˆ

Y δ(x̄)

M
(
x̄,
y

δ

)
∇yΨi,#(x̄, y) · ∇yv(y) dy = −

ˆ

Y δ(x̄)

M
(
x̄,
y

δ

)
∇yΨi,lin(x̄) · ∇yv(y) dy ,

for all v ∈ H1
#
(
Y δ (xqK)

)
. Now, the approximation of the matrix component can be computed similar to

(5.20) by

Ri,j ≈
∑
K∈TH

QK∑
q=1

γ̄

 

Y δ(x̄)

Ψi(x̄, y)TR
(
x̄,
y

δ

)
Ψj(x̄, y) dy .

Here, we have the same problem as for the matrix M that the computation still involves exact solutions
of PDEs, but we already showed how to deal with this. Following Remark 5.2.1, we introduce the solution
Ψh
i,# of (5.22), which is the approximation of Ψi,# by a finite element method on a possibly different

sampling domain. Finally, the HMM bilinear form corresponding to reff is

rHMM(Φj ,Φi) :=
∑
K∈TH

QK∑
q=1

γ̄

 

Y κ(x̄)

Ψh
i (x̄, y)TR

(
x̄,
y

δ

)
Ψh
j (x̄, y) dy . (5.35)

Derivation of gHMM

We now turn to the delay integral and its convolution kernel geff . Recall the definition of the discrete
bilinear form in (5.14). The matrix components for t ∈ [0, T ] are

G(t)i,j = geff(t; Φj ,Φi) ≈ geff
H (t; Φj ,Φi) for all i, j = 1, . . . , NVH .

Again choose k, ` ∈ {1, . . . , n}. The components of the effective and transformed parameter Geff are
given as (compare (4.26))

(Geff(t, x̄))k,` =
 

Y δ(x̄)

R
(
x̄,
y

δ

)
∇yw`(t, x̄, y) ·

(
ek +∇ywM

k (x̄, y)
)

dy ,
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where we keep the notation of the correctors, although they changed by transformation. Following the
lines of Section 5.2.1 we write

G(t)i,j ≈
∑
K∈TH

QK∑
q=1

γ̄Φi(x̄)TGeff(t, x̄)Φj(x̄)

=
∑
K∈TH

QK∑
q=1

γ̄

 

Y δ(x̄)

[(
I + DT

y w
M(x̄, y)

)
Φi(x̄)

]T R
(
x̄,
y

δ

) [
DT
y w(t, x̄, y)Φj(x̄)

]
dy .

We already explained how to deal with the first expression in the integral. This is the standard cell
corrector. The new expression we have to evaluate is w(t, x̄, y)Φj(x̄). The idea is the same as before. We
multiply the transformed cell problem for w` (compare with (4.33), (4.34)) and its initial value problem
by the macroscopic basis function. This yieldsˆ

Y δ(x̄)

[
M
(
x̄,
y

δ

)
∂t∇yw`(t, x̄, y) + R

(
x̄,
y

δ

)
∇yw`(t, x̄, y)

]
· ∇yv(y) dyΦj(x̄) = 0 ,

andˆ

Y δ(x̄)

M
(
x̄,
y

δ

)
∇yw`(0, x̄, y) · ∇yv(y) dyΦj(x̄) = −

ˆ

Y δ(x̄)

R
(
x̄,
y

δ

) (
e` +∇ywM

` (x̄, y)
)
· ∇yv(y) dyΦj(x̄) ,

for all v ∈ H1
#
(
Y ;RN

)
. Setting Θj(t, x̄, y) = DT

y w(t, x̄, y)Φj(x̄) and Ψi(x̄, y) =
(
I + DT

y w
M(x̄, y)

)
Φi(x̄)

as in (5.20) we get

G(t)i,j ≈
∑
K∈TH

QK∑
q=1

γ̄

 

Y δ(x̄)

Ψi(x̄, y)TR
(
x̄,
y

δ

)
Θj(t, x̄, y) dy .

Here, Θj solves
ˆ

Y δ(x̄)

[
M
(
x̄,
y

δ

)
∂tΘj(t, x̄, y) + R

(
x̄,
y

δ

)
Θj(t, x̄, y)

]
· ∇yv(y) dy = 0 ,

and the Θj(0) is solution of
ˆ

Y δ(x̄)

M
(
x̄,
y

δ

)
Θj(0, x̄, y) · ∇yv(y) dy = −

ˆ

Y δ(x̄)

R
(
x̄,
y

δ

)
Ψj(x̄, y) · ∇yv(y) dy .

Now we set

Θj,#(t, x̄, y) := w(t, x̄, y) ·Φj(x̄) ,

and get ∇yΘj,#(t, x̄, y) = Θj(t, x̄, y). We see that Θj,#(t, x̄, ·) ∈ H1
#
(
Y δ (xqK)

)
solves

ˆ

Y δ(x̄)

[
M
(
x̄,
y

δ

)
∂t∇yΘj,#(t, x̄, y) + R

(
x̄,
y

δ

)
∇yΘj,#(t, x̄, y)

]
· ∇yv(y) dy = 0 ,

with ˆ

Y δ(x̄)

M
(
x̄,
y

δ

)
∇yΘj,#(0, x̄, y) · ∇yv(y) dy = −

ˆ

Y δ(x̄)

R
(
x̄,
y

δ

)
∇yΨj(x̄, y) · ∇yv(y) dy ,
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for all v ∈ H1
#
(
Y δ (xqK)

)
. The right-hand side Ψj is defined in (5.21).

The final step is to use a finite element scheme to get an approximation Θh
j,#(t, x̄, ·) ∈ Vh of Θj,#(t, x̄, ·) ∈

Vmic, which solvesˆ

Y κ(x̄)

[
M
(
x̄,
y

δ

)
∂t∇yΘh

j,#(t, x̄, y) + R
(
x̄,
y

δ

)
∇yΘh

j,#(t, x̄, y)
]
· ∇yvh(y) dy = 0 ,

with ˆ

Y κ(x̄)

[
M
(
x̄,
y

δ

)
∇yΘh

j,#(0, x̄, y) + R
(
x̄,
y

δ

) (
∇yΨj,lin(x̄, y) +∇yΨh

j,#(x̄, y)
)]
· ∇yvh(y) dy = 0 ,

for all vh ∈ Vh. We set

Θh
j (t, x̄, y) := ∇yΘh

j,#(t, x̄, y) ,

and the HMM bilinear form corresponding to geff is

gHMM(t,Φj ,Φi) :=
∑
K∈TH

QK∑
q=1

γ̄

 

Y κ(x̄)

Ψh
i (x̄, y)TR

(
x̄,
y

δ

)
Θh
j (t, x̄, y) dy . (5.36)

Derivation of J0

The final expression of the system (5.10) that includes an effective parameter is

J(t)i,j :=
(
Jeff(t)Φj ,Φi

)
L2(Ω;Rn) ≈

(
Jeff(t)Φj ,Φi

)
H

for all i, j = 1, . . . , NVH .

Here the components of the effective and transformed parameter Jeff are given as (compare (4.27))

(Jeff(t, x̄))k,` =
 

Y δ(x̄)

R
(
x̄,
y

δ

)
∇yw0

` (t, x̄, y) ·
(
ek +∇ywM

k (x̄, y)
)

dy .

We proceed as for the convolution kernel with the difference to take the cell problems (4.35) and (4.36).
This results in

(
JHMM(t)Φj ,Φi

)
H

:=
∑
K∈TH

QK∑
q=1

γ̄

 

Y κ(x̄)

Ψh
i (x̄, y)TR

(
x̄,
y

δ

)
Θ0,h
j (t, x̄, y) dy ,

where as above

Θ0,h
j (t, x̄, y) := ∇yΘ0,h

j,#(t, x̄, y) ,

and Θ0,h
j,#(t, x̄, ·) ∈ Vh solves

ˆ

Y κ(x̄)

[
M
(
x̄,
y

δ

)
∂t∇yΘ0,h

j,#(t, x̄, y) + R
(
x̄,
y

δ

)
∇yΘ0,h

j,#(t, x̄, y)
]
· ∇yvh(y) dy = 0 ,

with ˆ

Y κ(x̄)

[
M
(
x̄,
y

δ

)
∇yΘ0,h

j,#(0, x̄, y) + M
(
x̄,
y

δ

)
∇yΨj,lin(x̄, y)

]
· ∇yvh(y) dy ,

for all vh ∈ Vh.
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The FE-HMM Maxwell system

Combining the results from this section we get the Finite Element Heterogeneous Multiscale Method for
the general Maxwell system as

mHMM(∂tuHMM(t),ΦH

)
+ rHMM(uHMM(t),ΦH

)
+

tˆ

0

gHMM(t− s; uHMM(s),ΦH

)
ds

+ aH
(
uHMM(t),ΦH

)
= mHMM(fHMM(t),ΦH

)
−
(
JHMM(t)u0,H ,ΦH

)
H

for all ΦH ∈ VH ,

(5.37)

where fHMM is defined such that

mHMM(fHMM(t),ΦH

)
=(gH(t),ΦH)H for all ΦH ∈ VH .

The bilinear forms are given in (5.23), (5.35) and (5.36) as well as in (5.13). The rest of this chapter is
dedicated to the error analysis of the error∥∥ueff(t)− uHMM(t)

∥∥
L2(Ω;Rn) ,

between the solution ueff of (5.33) and the solution uHMM of (5.37). The outline of this analysis is as
follows. As pointed out for the classic Maxwell system we need to bound the error in the parameters.
This is rather easy in the case of the parameter Reff with which we start in the next section. But
it is a challenge for the time-dependent parameter Geff . Especially we need an error analysis for the
corresponding cell problems, which are so-called Sobolev equations. We deal with these equations and
the parameter Geff in Section 5.3.2. After that in Section 5.3.3, we show the wellposedness of the system
(5.37). Eventually we fit the results together in Section 5.3.4 to get the requested semi-discrete error
estimate for the FE-HMM.

5.3.1 Error analysis of the damping parameter

We start the analysis of the micro error with the damping parameter. Recall the definition of the effective
transformed parameter from (5.34)(

Reff (x̄)
)
k,`

=
 

Y δ(x̄)

R
(
x̄,
y

δ

) (
e` +∇ywM

` (x̄, y)
)
·
(
ek +∇ywM

k (x̄, y)
)

dy .

For the error analysis it is again useful to reformulate the bilinear form (5.35) such that

rHMM(Φj ,Φi) :=
∑
K∈TH

QK∑
q=1

γ̄Φi(x̄)TRHMM (x̄) Φj(x̄),

with the HMM parameter(
RHMM (x̄)

)
k,`

=
 

Y κ(x̄)

R
(
x̄,
y

δ

)(
e` +∇ywM,h

` (x̄, y)
)
·
(
ek +∇ywM,h

k (x̄, y)
)

dy . (5.38)

Here the corrector wM,h
` , ` = 1, . . . , n solves the cell problem on the sampling domain given in (5.25).

Following the idea of the error analysis for the standard parameter and the Remark 5.2.1, we introduce
the parameter

(Reff,κ(x̄))k,` =
 

Y κ(x̄)

R
(
x̄,
y

δ

) (
e` +∇ywM

` (x̄, y)
)
·
(
ek +∇ywM

k (x̄, y)
)

dy , (5.39)
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where wM
` (x̄, ·) ∈ Vmic solves (5.28). Next we bound the modeling and the micro error separately. We

start with the modeling error, which behaves exactly as the one for the parameter Meff in Lemma 5.2.2
since the same cell correctors are involved.

Lemma 5.3.1. (i) If the local problems (5.28) are solved with periodic boundary values, i.e., we use
the space Vmic = H1

# (Y κ(xqK)), we have for κ
δ ∈ N

sup
K∈TH ,q∈{1,...,QK}

∥∥Reff(xqK)−Reff,κ(xqK)
∥∥
F

= 0 .

(ii) If the local problems (5.28) are solved with homogeneous Dirichlet boundary conditions, i.e., we use
the space Vmic = H1

0 (Y κ(xqK)), we have for κ > δ

sup
K∈TH ,q∈{1,...,QK}

∥∥Reff,κ(xqK)−Reff(xqK)
∥∥
F
≤ C

(
δ

κ
+ κ

)
,

with a constant C > 0 independent of h and δ.

For the micro error things change in contrast to the standard parameter. This is obvious if one looks at
the proof of Lemma 5.2.3. The proof involves the cell problems which are closely related to the parameter
M itself. In our current setting the cell problems are still valid but the parameter has changed from M
to R. The next lemma shows how the micro error can be bounded.

Lemma 5.3.2. For every quadrature point xqK we assume wM
` (xqK , ·), w`(0, x

q
K , ·) ∈ H2 (Y κ(xqK)) such

that for every ` = 1, . . . , n it holds∣∣wM
` (xqK , ·)

∣∣
H2(Y κ(xq

K
)) , |w`(0, x

q
K , ·)|H2(Y κ(xq

K
)) ≤ Cδ

−1
√
|Y κ(xqK)| . (5.40)

Then, there exists a constant C > 0 independent of h and δ such that we have a bound on the Frobenius
norm

sup
K∈TH ,q∈{1,...,QK}

∥∥Reff,κ(xqK)−RHMM(xqK)
∥∥
F
≤ C

(
h

δ

)2
.

Proof. For k = 1, . . . , N we introduce the short notation ∇yϕk(x, y) :=
(
ek +∇ywM

k (x, y)
)
as well as

∇yϕhk(x, y) :=
(
ek +∇ywM,h

k (x, y)
)
. Similar to the proof of Lemma 5.2.3 we introduce a bilinear form

sκr by

sκr (φ, ψ) :=
ˆ

Y κ(xqK)

R
(
xqK ,

y

δ

)
∇yφ(y) · ∇yψ(y) dy for all φ, ψ ∈ H1 (Y κ (xqK)) . (5.41)

We investigate the difference, suppressing the xqK variable and find

∣∣(Reff,κ)k,` − (RHMM)k,`
∣∣ = 1
|Y κ|

∣∣sκr (ϕ`, ϕk)− sκr
(
ϕh` , ϕ

h
k

)∣∣ .
We add and subtract sκr

(
ϕh` , ϕk

)
, which leads to

∣∣(Reff,κ)k,` − (RHMM)k,`
∣∣ = 1
|Y κ|

∣∣sκr (ϕ` − ϕh` , ϕk)+ sκr
(
ϕh` , ϕk − ϕhk

)∣∣ .
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Recall the definition in (5.30). Now we use the transposed cell problem for wk(0) (cf. 4.34) tested with
ϕ` − ϕh` , i.e.,

sκm
(
ϕ` − ϕh` , wk(0)

)
+ sκr

(
ϕ` − ϕh` , ϕk

)
= 0 ,

in the first expression and add the cell problem for w`(0) tested with ϕhk − ϕk, i.e.,

sκm
(
w`(0), ϕhk − ϕk

)
+ sκr

(
ϕ`, ϕ

h
k − ϕk

)
= 0 .

This yields ∣∣(Reff,κ)k,` − (RHMM)k,`
∣∣ = 1
|Y κ|

∣∣∣−sκm(ϕ` − ϕh` , wk(0)
)

+ sκr
(
ϕh` , ϕk − ϕhk

)
+ sκm

(
w`(0), ϕhk − ϕk

)
+ sκr

(
ϕ`, ϕ

h
k − ϕk

)∣∣∣
= 1
|Y κ|

∣∣∣sκr (ϕh` − ϕ`, ϕk − ϕhk)+ sκm
(
w`(0), ϕhk − ϕk

)
− sκm

(
ϕ` − ϕh` , wk(0)

)∣∣∣ .
Finally, we use the standard cell problems (5.28) and (5.25) for wM

` , w
M,h
` and the transposed ones for

wM
k , wM,h

k tested with whk(0) and wh` (0) respectively and add the resulting zeros, i.e.

sκm
(
ϕ` − ϕh` , whk(0)

)
= 0 , sκm

(
wh` (0), ϕhk − ϕk

)
= 0 ,

which leads to∣∣(Reff,κ)k,` − (RHMM)k,`
∣∣ = 1
|Y κ|

∣∣∣sκr (ϕh` − ϕ`, ϕk − ϕhk)+ sκm
(
w`(0)− wh` (0), ϕhk − ϕk

)
+ sκm

(
ϕ` − ϕh` , whk(0)− wk(0)

)∣∣∣
= 1
|Y κ|

∣∣∣sκr(wM,h
` − wM

` , w
M
k − w

M,h
k

)
+ sκm

(
w`(0)− wh` (0), wM,h

k − wM
k

)
+ sκm

(
wM
` − w

M,h
` , whk(0)− wk(0)

)∣∣∣ .
An application of the Cauchy-Schwarz inequality and the boundedness of the parameters yields∣∣(Reff,κ)k,` − (RHMM)k,`

∣∣ ≤ C 1
|Y κ|

∥∥∥∇y (wM,h
` − wM

`

)∥∥∥
L2(Y κ;RN )

∥∥∥∇y (wM
k − w

M,h
k

)∥∥∥
L2(Y κ;RN )

+ C
1
|Y κ|

∥∥∇y (w`(0)− wh` (0)
)∥∥

L2(Y κ;RN )

∥∥∥∇y (wM,h
k − wM

k

)∥∥∥
L2(Y κ;RN )

+ C
1
|Y κ|

∥∥∥∇y (wM
` − w

M,h
`

)∥∥∥
L2(Y κ;RN )

∥∥∇y (whk(0)− wk(0)
)∥∥

L2(Y κ;RN ) .

Now we apply the standard finite element error estimate (Ciarlet, 2002, Theorem 3.2.2) and obtain∣∣(Reff,κ)k,` − (RHMM)k,`
∣∣ ≤ C 1

|Y κ|
h2 ∣∣wM

`

∣∣
H2(Y κ;RN )

∣∣wM
k

∣∣
H2(Y κ;RN )

+ C
1
|Y κ|

h2 |w`(0)|H2(Y κ;RN )
∣∣wM
k

∣∣
H2(Y κ;RN )

+ C
1
|Y κ|

h2 ∣∣wM
`

∣∣
H2(Y κ;RN ) |wk(0)|H2(Y κ;RN ) .

With the assumption on the regularity of the cell correctors we end up with the asserted estimate∣∣(Reff,κ)k,` − (RHMM)k,`
∣∣ ≤ C (h

δ

)2
.
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As for the parameter Meff we again get higher order estimates if the correctors have higher regularity.

Corollary 5.3.3. Assume for k ∈ N that wM
` (xqK , ·), w`(0, x

q
K , ·) ∈ Hk+1 (Y κ(xqK)) such that for every

` = 1, . . . , n and every quadrature point xqK it holds∣∣wM
` (xqK , ·)

∣∣
Hk+1(Y κ(xq

K
)) , |w`(0, x

q
K , ·)|Hk+1(Y κ(xq

K
)) ≤ Cδ

−k
√
|Y κ(xqK)| . (5.42)

Then there exists a constant C > 0 independent of h and δ such that we have a bound on the Frobenius
norm

sup
K∈TH ,q∈{1,...,QK}

∥∥Reff,κ(xqK)−RHMM(xqK)
∥∥
F
≤ C

(
h

δ

)2k
.

Proof. Follow the lines of Lemma 5.3.2 and use higher regularity of the corrector.

After stating a short remark about the regularity assumption we continue our analysis with the time-
dependent parameter.

Remark 5.3.4. We point out that the regularity assumption (5.40) is for example satisfied if the param-
eters M and R satisfy

Mδ
∣∣
K
,Rδ

∣∣
K
∈W1,∞ (K;Rn×n

)
,
∣∣Mδ

k,`

∣∣
W1,∞(K) ,

∣∣Rδ
k,`

∣∣
W1,∞(K) ≤ Cδ

−1,

for all K ∈ TH and k, ` = 1, . . . , n. See (Abdulle, 2012, Remark 5.1) for the details. For the higher
regularity as in (5.42) we need again more regularity of the parameters.

We thus got a bound for the modeling and the micro error concerning the effective parameter Reff . In
the next section we deal with the parameter related to the convolution. Especially we have to take a
closer look at the related cell problem.

5.3.2 Error estimates for the Sobolev equation and the time-dependent
parameter

In the proofs of Lemma 5.2.3 and 5.3.2 we used the result (Ciarlet, 2002, Theorem 3.2.2) to bound
the H1-error between cell correctors and their respective finite element approximations. The result was
developed for elliptic problems and was thus directly applicable. In the forthcoming error analysis for
the convolution kernel similar expressions occur, but this time these are not solutions of elliptic problems
but of so-called Sobolev equations, which have a parabolic character. This is due to the structure of the
cell problem for the corrector w, which is in fact a Sobolev equation. Thus, before we study the micro
error related to the convolution kernel we examine the error of a finite element method for the Sobolev
equation.

Error estimate for Sobolev equation

We already analyzed the wellposedness of the homogeneous Sobolev equation in Section 4.4.5, where we
also showed a stability result for the solution in Lemma 4.4.16. For the error analysis we consider the
inhomogeneous equation. The results presented in this section are related to Bekkouche et al. (2019);
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Thomée (1984) and follow the lines of Hipp et al. (2019). Recall the definition of the bilinear forms
sm(·, ·) and sr(·, ·) in (4.45) and (4.53). Let f ∈ C

(
0, T ; Vmic) and seek w : [0, T ]→ Vmic such that

sm(∂tw(t), v) + sr(w(t), v) = sm(f(t), v) , for all v ∈ Vmic . (5.43)

With the same technique as for the homogeneous equation (4.54) we find the solution by the variation of
constants formula

w(t) = e−Stw(0) +
tˆ

0

e−S(t−s)f(s) ds ,

with S given in (4.55). Since the parameter R is assumed to be positive semi-definite the contraction
property (4.61) yields the stability bound

‖w(t)‖sm ≤
∥∥e−Stw(0)

∥∥
sm

+
tˆ

0

∥∥∥e−S(t−s)f(s)
∥∥∥
sm

ds ≤ ‖w(0)‖sm +
tˆ

0

‖f(s)‖sm ds .

As in (Thomée, 1984, Chapter 1) we introduce a finite dimensional subspace Vh ⊆ Vmic with the typical
finite element approximation property that for r ≥ 2

inf
vh∈Vh

∥∥∇y (u− vh)∥∥L2(Y ;RN ) ≤ Ch
k−1 ‖u‖Hk(Y ;RN ) 1 ≤ k ≤ r for all u ∈ Hk

(
Y ;RN

)
∩Vmic . (5.44)

We point out that the subspace Vh resulting from Lagrange elements introduced in Section 5.1.2 satisfies
the property (5.44). Next we define the semi-discrete counterpart to (5.43) on Vh with inhomogeneity:
For f ∈ C

(
0, T ; Vh

)
find wh : [0, T ]→ Vh such that

shm
(
∂tw

h(t), vh
)

+ shr
(
wh(t), vh

)
= shm

(
fh(t), vh

)
for all vh ∈ Vh . (5.45)

Similar to the continuous case we introduce the operator Sh : Vh → Vh such that

shr
(
φh, ψh

)
= shm

(
Shφh, ψh

)
for all φ, ψ ∈ Vh . (5.46)

This yields that the problem is equivalent to

shm
(
∂tw

h(t), vh
)

+ shm
(
Shwh(t), vh

)
= shm

(
fh(t), vh

)
for all vh ∈ Vh .

The operator Sh inherits all the properties of the operator S. Thus, the semi-discrete problem is also
wellposed and its solution satisfies the stability bound in the discrete norm

∥∥wh(t)
∥∥
shm
≤
∥∥wh(0)

∥∥
shm

+
tˆ

0

∥∥fh(s)
∥∥
shm

ds . (5.47)

Since we have

sm
(
φh, ψh

)
= shm

(
φh, ψh

)
, sr

(
φh, ψh

)
= shr

(
φh, ψh

)
for all φh, ψh ∈ Vh , (5.48)

the discretization is conforming. The last ingredient we need for the error analysis is the sm-orthogonal
projection on Vh denoted by Πh, i.e.,

sm
(
Πhφ, ψh

)
= sm

(
φ, ψh

)
for all φ ∈ Vmic, ψh ∈ Vh . (5.49)
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Lemma 5.3.5. The sm-orthogonal projection (5.49) satisfies for 1 ≤ k ≤ r and w ∈ Hk
(
Y ;RN

)
∩

H1
#
(
Y ;RN

)
the estimate ∥∥Πhw − w

∥∥
sm
≤ Chk−1 ‖w‖Hk(Y ;RN ) .

Proof. Due to Galerkin orthogonality, i.e,

sm
(
Πhφ− φ, ψh

)
= 0 for all φ ∈ Vmic, ψh ∈ Vh,

and for ṽ ∈ Vh with ‖∇y(w − ṽ)‖L2(Y ;RN ) = inf
vh∈Vh

∥∥∇y(w − vh)
∥∥

L2(Y ;RN ) we find

∥∥Πhw − w
∥∥2
sm

= sm
(
Πhw − w,Πhw − w

)
= sm

(
Πhw − w,Πhw

)
− sm

(
Πhw − w,w

)
= sm

(
Πhw − w, ṽh

)
− sm

(
Πhw − w,w

)
= sm

(
Πhw − w, ṽh − w

)
≤
∥∥Πhw − w

∥∥
sm

∥∥ṽh − w∥∥
sm
≤
∥∥Πhw − w

∥∥
sm

√
CM

∥∥∇y(ṽh − w)
∥∥

L2(Y ;RN ) .

From (5.44) we get the result.

We can now give the semi-discrete error estimate for the Sobolev equation. This result estimates the error
in the H1-norm, which is the right norm in the setting of Sobolev equations and the effective parameters
in homogenization.

Theorem 5.3.6. Let w be the solution of (4.54) and wh be the solution of

shm
(
∂tw

h(t), vh
)

+ shr
(
wh(t), vh

)
= 0 for all vh ∈ Vh . (5.50)

Assume that w satisfies w ∈ C1 (0, T ; Hk (Y )
)
. Then there exists a constant C > 0 independent of h and

t such that

∥∥w(t)− wh(t)
∥∥
sm
≤
∥∥eh(0)

∥∥
shm

+ Chk−1

‖w(t)‖Hk(Y ) +
tˆ

0

‖w(s)‖Hk(Y ) ds

 ,
where

eh(0) = Πhw(0)− wh(0) .

Proof. We follow ideas of (Hipp et al., 2019, Theorem 2.8) and split the error in a projection error and
a discretization error∥∥w(t)− wh(t)

∥∥
sm
≤
∥∥w(t)−Πhw(t)

∥∥
sm

+
∥∥Πhw(t)− wh(t)

∥∥
sm

.

Consider the discretization error eh(t) = Πhw(t)−wh(t). For vh ∈ Vh we find with (5.48), (4.56), (5.50),
and (5.46)

shm
(
∂te

h(t), vh
)

= sm
(
∂te

h(t), vh
)

= sm
(
∂tΠhw(t), vh

)
− sm

(
∂tw

h(t), vh
)

= sm
(
∂tw(t), vh

)
− sm

(
∂tw

h(t), vh
)

= −sm
(
Sw(t), vh

)
+ sm

(
Shwh(t), vh

)
= −sm

(
ΠhSw(t), vh

)
+ sm

(
Shwh(t), vh

)
.
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We get

sm
(
∂te

h(t), vh
)

+ sm
(
Sheh(t), vh

)
= sm

((
ShΠh −ΠhS

)
w(t), vh

)
for all vh ∈ Vh .

Thus, the error itself solves an inhomogeneous semi-discrete equation of the structure (5.45). The appli-
cation of the discrete stability bound (5.47) yields

∥∥eh(t)
∥∥
shm
≤
∥∥eh(0)

∥∥
shm

+
tˆ

0

∥∥(ShΠh −ΠhS
)
w(s)

∥∥
shm

ds .

It remains to estimate the integrand
∥∥(ShΠh −ΠhS

)
w(s)

∥∥
shm

for s ∈ [0, t]. Note that we have a discrete
function ξh(s) :=

(
ShΠh −ΠhS

)
w(s) ∈ Vh and thus using (5.46), (5.48), (5.49) and (4.55) we obtain∥∥ξh(s)

∥∥2
shm

= shm
(
ξh(s), ξh(s)

)
= shm

(
ShΠhw(s), ξh(s)

)
− shm

(
ΠhSw(s), ξh(s)

)
= shr

(
Πhw(s), ξh(s)

)
− sm

(
ΠhSw(s), ξh(s)

)
= sr

(
Πhw(s), ξh(s)

)
− sm

(
Sw(s), ξh(s)

)
= sr

(
Πhw(s), ξh(s)

)
− sr

(
w(s), ξh(s)

)
= sr

(
Πhw(s)− w(s), ξh(s)

)
≤ CR

∥∥Πhw(s)− w(s)
∥∥

Vmic

∥∥ξh(s)
∥∥

Vmic ≤
CR
α

∥∥Πhw(s)− w(s)
∥∥
sm

∥∥ξh(s)
∥∥
sm

.

Combining these results and using Lemma 5.3.5 yields

∥∥w(t)− wh(t)
∥∥
sm
≤
∥∥w(t)−Πhw(t)

∥∥
sm

+
∥∥eh(0)

∥∥
shm

+ CR
α

tˆ

0

∥∥(Πhw(s)− wh(s)
)∥∥
sm

ds

≤
∥∥eh(0)

∥∥
shm

+ Chk−1

‖w(t)‖Hk(Y ;RN ) +
tˆ

0

‖w(s)‖Hk(Y ;RN ) ds

 ,
which implies the claimed estimate.

With this crucial bound we can now proceed with the analysis of the micro and the modeling error of
the convolution kernel. The procedure is similar to that of Section 5.3.1. We first introduce an HMM
parameter and then an intermediate quantity. This splitting is exactly the differentiation in micro and
modeling error.

Error bound for the micro error of the convolution kernel

First recall that we defined the effective convolution kernel for all t ∈ [0, T ] in (4.26). The transformed
counterpart on the sampling domain is(

Geff (t, x̄)
)
k,`

=
 

Y δ(x̄)

R
(
x̄,
y

δ

)
∇yw` (t, x̄, y) ·

(
ek +∇ywM

k (x̄, y)
)

dy ,

where we again point out that the correctors changed, but we stick to the notation. The reformulation
of the HMM bilinear form (5.36) is

gHMM(t; Φj ,Φi) :=
∑
K∈TH

QK∑
q=1

γ̄Φi(x̄)TGHMM (t, x̄) Φj(x̄) ,
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where the HMM parameter is defined as(
GHMM (t, x̄)

)
k,`

=
 

Y κ(x̄)

R
(
x̄,
y

δ

)
∇ywh` (t, x̄, y) ·

(
ek +∇ywM,h

k (x̄, y)
)

dy . (5.51)

The cell corrector wM,h
k solves the cell problem (5.25) and the corrector wh` is the finite element approxi-

mation of w`, i.e., it solves:
Find wh` (·, x̄, ·) : [0, T ]→ Vh such thatˆ

Y κ(x̄)

[
M
(
x̄,
y

δ

)
∂t∇ywh` (t, x̄, y) + R

(
x̄,
y

δ

)
∇ywh` (t, x̄, y)

]
· ∇yvh(y) dy = 0 , (5.52)

and ˆ

Y κ(x̄)

M
(
x̄,
y

δ

)
∇ywh` (0, x̄, y) · ∇yvh(y) dy = −

ˆ

Y κ(x̄)

R
(
x̄,
y

δ

)(
e` +∇ywM,h

` (x̄, y)
)
· ∇yvh(y) dy ,

(5.53)

for all vh ∈ Vh. With the HMM parameter at hand we also need the intermediate parameter that is
related to Remark 5.2.1. It is defined with the continuous solution of the transformed cell problem

(Geff,κ(t, x̄))k,` =
 

Y κ(x̄)

R
(
x̄,
y

δ

)
∇yw`(t, x̄, y) ·

(
ek +∇ywM

k (x̄, y)
)

dy , (5.54)

where wM
k solves (5.28) and w` is the solution ofˆ

Y κ(x̄)

[
M
(
x̄,
y

δ

)
∂t∇yw`(t, x̄, y) + R

(
x̄,
y

δ

)
∇yw`(t, x̄, y)

]
· ∇yv(y) dy = 0 , (5.55)

with initial value w(0) solution ofˆ

Y κ(x̄)

M
(
x̄,
y

δ

)
∇yw`(0, x̄, y) · ∇yv(y) dy = −

ˆ

Y κ(x̄)

R
(
x̄,
y

δ

) (
e` +∇ywM

` (x̄, y)
)
· ∇yv(y) dy , (5.56)

for all v ∈ Vmic. Note that we again stick to the notation w` although the corrector changed due to
transformation.
To our knowledge the analysis of the modeling error for the time dependent parameters is an open
question. Since the expectation is, that this error vanishes in the periodic setting as for the stationary
parameters we concentrate on the micro error. Unfortunately in this time-dependent case we are not
able to get the expected convergence rate from the Lemmas 5.2.3 and 5.3.2. In particular, in contrast
to the other parameters we only get first-order convergence in the micro error result. After showing this
estimate we present some ideas of a possible starting point for a better convergence proof.

Lemma 5.3.7. Assume that for every quadrature point xqK we have wM
` (xqK , ·) ∈ H2 (Y κ(xqK)) and

w`(t, xqK , ·) ∈ H2 (Y κ (xqK)) for all t ∈ [0, T ] such that for every ` = 1, . . . , n it holds∣∣wM
` (xqK , ·)

∣∣
H2(Y κ(xq

K
)) ≤ Cδ

−1
√
|Y κ(xqK)|, |w`(0, xqK , ·)|H2(Y κ(xq

K
)) ≤ Cδ

−1
√
|Y κ(xqK)| ,

for a constant C > 0. Then, there exists a constant C > 0 independent of t, h and δ such that we have
a bound on the Frobenius norm

sup
K∈TH ,q∈{1,...,QK}

∥∥Geff,κ(t, xqK)−GHMM(t, xqK)
∥∥
F
≤ C(1 + t)

(
h

δ

)
.
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Proof. The proof of first-order convergence is considerably shorter than the second-order proofs in Lem-
mas 5.2.3 and 5.3.2. With the same notation as in Lemma 5.3.2, i.e., ∇yϕk(x, y) :=

(
ek +∇ywM

k (x, y)
)

and ∇yϕhk(x, y) :=
(
ek +∇ywM,h

k (x, y)
)
for k = 1, . . . , N , we investigate the difference, suppressing the

xqK variable. We use the bilinear forms sκm and sκr from (5.30) and (5.41). The error can be expressed by
(5.54) and (5.51) as∣∣(Geff,κ(t))k,` − (GHMM(t))k,`

∣∣ = 1
|Y κ|

∣∣sκr (w`(t), ϕk)− sκr
(
wh` (t), ϕhk

)∣∣ .
We add and subtract sκr

(
w`(t), ϕhk

)
and obtain

∣∣(Geff,κ(t))k,` − (GHMM(t))k,`
∣∣ = 1
|Y κ|

∣∣sκr (w`(t), ϕk − ϕhk)+ sκr
(
w`(t)− wh` (t), ϕhk

)∣∣ . (5.57)

Next, we use the boundedness of the parameter R as well as the boundedness of the solutions w`(t) and
ϕhk from Lemmas 4.4.15 and 4.4.16. This yields with a constant C > 0

∣∣(Geff,κ(t))k,` − (GHMM(t))k,`
∣∣ ≤ C

|Y κ|
‖w`(t)‖sm

∥∥∥wM
k − w

M,h
k

∥∥∥
sm

+ C

|Y κ|
∥∥w`(t)− wh` (t)

∥∥
sm

∥∥ϕhk∥∥sm
≤ C√

|Y κ|

∥∥∥wM
k − w

M,h
k

∥∥∥
sm

+ C√
|Y κ|

∥∥w`(t)− wh` (t)
∥∥
sm

.

The final step is to use the finite element error estimate from (Ciarlet, 2002, Theorem 3.2.2) in the first
expression and the error result from Theorem 5.3.6 in the second one. This gives∣∣(Geff,κ(t))k,` − (GHMM(t))k,`

∣∣
≤ C√

|Y κ|
h
∣∣wM
k

∣∣
H2(Y κ) + C√

|Y κ|

∥∥w`(0)− wh` (0)
∥∥
sm

+ Ch

|w`(t)|H2(Y κ) +
tˆ

0

|w`(s)|H2(Y κ) ds

 .

Note that the difference of the initial values is again bounded with the result from (Ciarlet, 2002, Theorem
3.2.2). With the assumption on the correctors and Theorem 4.4.17 we get the final result

∣∣(Geff,κ(t))k,` − (GHMM(t))k,`
∣∣ ≤ C(1 + t)h

δ
.

We again point out that this result could possibly be improved since the order of convergence seems to
be non-optimal. Thus, in the remainder of this section we comment on the difficulties. At least we are
able to get the requested second-order convergence for the initial value of the micro error. The starting
point of the discussion is the equation (5.57). Instead of the direct use of the boundedness of R as in
Lemma 5.3.7 we test the transposed cell problem for wk(0) (cf. (5.56)) with w`(t)− wh` (t) ∈ Vmic, i.e.,

sκm
(
w`(t)− wh` (t), wk(0)

)
+ sκr

(
w`(t)− wh` (t), ϕk

)
= 0 ,

and subtract it from (5.57) to get∣∣(Geff,κ(t))k,` − (GHMM(t))k,`
∣∣ = 1
|Y κ|

∣∣∣sκr (w`(t)− wh` (t), ϕhk − ϕk
)

+ sκr
(
w`(t), ϕk − ϕhk

)
− sκm

(
w`(t)− wh` (t), wk(0)

)∣∣∣ .
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In the second expression we use the problem for w`(t) (5.55) tested with ϕk − ϕhk ∈ Vmic, i.e.,

sκm
(
∂tw`(t), ϕk − ϕhk

)
+ sκr

(
w`(t), ϕk − ϕhk

)
= 0 ,

which yields∣∣(Geff,κ(t))k,` − (GHMM(t))k,`
∣∣ = 1
|Y κ|

∣∣∣sκr (w`(t)− wh` (t), ϕhk − ϕk
)
− sκm

(
∂tw`(t), ϕk − ϕhk

)
− sκm

(
w`(t)− wh` (t), wk(0)

)∣∣∣ . (5.58)

We further test the transposed cell problems for wM
k and wM,h

k (cf. (5.28) and (5.25)) with ∂twh` (t) ∈ Vh,
i.e.,

sκm
(
∂tw

h
` (t), ϕk

)
= 0, sκm

(
∂tw

h
` (t), ϕhk

)
= 0 ,

and subtract the two equations above. Adding the result to (5.58) leads to∣∣(Geff,κ(t))k,` − (GHMM(t))k,`
∣∣ = 1
|Y κ|

∣∣∣sκr (w`(t)− wh` (t), ϕhk − ϕk
)

+ sκm
(
∂tw

h
` (t)− ∂tw`(t), ϕk − ϕhk

)
− sκm

(
w`(t)− wh` (t), wk(0)

)∣∣∣ .
(5.59)

The remaining expression that is not in the right form with differences in both arguments is

−sκm
(
w`(t)− wh` (t), wk(0)

)
.

We proceed by using the representations of the solutions we found in Section 4.4.5 and the first part of
Section 5.3.2. Observe the following equation including the operators S and Sh from (4.55) and (5.46)
respectively

sκm
(
w`(t)− wh` (t), whk(0)

)
= sκm

(
exp (−St)w`(0)− exp

(
−Sht

)
wh` (0), whk(0)

)
= sκm

(
exp (−St)

(
w`(0)− wh` (0)

)
, whk(0)

)
+ sκm

((
exp (−St)− exp

(
−Sht

))
wh` (0), whk(0)

)
.

Moreover, we find again with the solution representation

sκm
(
exp (−St)

(
w`(0)− wh` (0)

)
, wk(0)

)
= sκm

((
w`(0)− wh` (0)

)
, exp (−St)wk(0)

)
= sκm

((
w`(0)− wh` (0)

)
, wk(t)

)
.

Additionally, we can test the cell problems for w`(0) and wh` (0) (cf. (5.56) and (5.53)) with whk(t), which
results in

sκm
((
w`(0)− wh` (0)

)
, whk(t)

)
+ sκr

(
ϕ` − ϕh` , whk(t)

)
= 0 .

Now again ϕ` − ϕh` ∈ Vmic is an admissible test function for wk(t). Thus, we get from (5.55)

sκm
(
ϕ` − ϕh` , ∂twk(t)

)
+ sκr

(
ϕ` − ϕh` , wk(t)

)
= 0 .

Moreover, ∂twh` (t) ∈ Vh is suitable for both standard cell problems (cf. (5.28) and (5.25)), i.e.,

sκm
(
ϕ`, ∂tw

h
k(t)

)
= 0, sκm

(
ϕh` , ∂tw

h
k(t)

)
= 0 .
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Using these results in (5.59) finally yields∣∣(Geff,κ(t))k,` − (GHMM(t))k,`
∣∣

= 1
|Y κ|

∣∣∣sκr (w`(t)− wh` (t), ϕhk − ϕk
)

+ sκm
(
∂tw

h
` (t)− ∂tw`(t), ϕk − ϕhk

)
− sκm

(
w`(t)− wh` (t), wk(0)

)
+ sκm

(
w`(t)− wh` (t), whk(0)

)
− sκm

(
exp (−St)

(
w`(0)− wh` (0)

)
, whk(0)

)
− sκm

((
exp (−St)− exp

(
−Sht

))
wh` (0), whk(0)

)
+ sκm

(
exp (−St)

(
w`(0)− wh` (0)

)
, wk(0)

)
− sκm

((
w`(0)− wh` (0)

)
, wk(t)

)
+ sκm

((
w`(0)− wh` (0)

)
, whk(t)

)
+ sκr

(
ϕ` − ϕh` , whk(t)

)
− sκr

(
ϕ` − ϕh` , wk(t)

)
− sκm

(
ϕ` − ϕh` , ∂twk(t)

)
+ sκm

(
ϕ`, ∂tw

h
k(t)

)
− sκm

(
ϕh` , ∂tw

h
k(t)

)∣∣∣ .
Collecting the terms results in∣∣(Geff,κ(t))k,` − (GHMM(t))k,`

∣∣
= 1
|Y κ|

∣∣∣sκr (w`(t)− wh` (t), ϕhk − ϕk
)

+ sκm
(
∂tw

h
` (t)− ∂tw`(t), ϕk − ϕhk

)
+ sκm

(
w`(t)− wh` (t), whk(0)− wk(0)

)
+ sκm

(
exp (−St)

(
w`(0)− wh` (0)

)
, wk(0)− whk(0)

)
+ sκm

((
w`(0)− wh` (0)

)
, whk(t)− wk(t)

)
+ sκr

(
ϕ` − ϕh` , whk(t)− wk(t)

)
+ sκm

(
ϕ` − ϕh` , ∂twhk(t)− ∂twk(t)

)
− sκm

((
exp (−St)− exp

(
−Sht

))
wh` (0), whk(0)

)∣∣∣ .
(5.60)

However, we have a new expression which is not in the form with differences, i.e.,

−sκm
((

exp (−St)− exp
(
−Sht

))
wh` (0), whk(0)

)
. (5.61)

Let us point out some things about the expression in (5.60). First note that if one considers the initial
time t = 0 the remaining expression in (5.61) vanishes. Thus, with the same techniques as in Lemma
5.3.7 we get the desired second-order of convergence. Nevertheless, for t > 0 we still only get first-order of
convergence. The numerical experiment in Chapter 7 suggest that, at least in the test cases considered,
the expected second-order convergence rate can be observed. It is, however, an open question whether
this is always true.
Again a direct consequence of the proof of Lemma 5.3.7 is that under higher regularity assumptions we
get better convergence.

Corollary 5.3.8. Assume for k ∈ N that wM
` (xqK , ·) ∈ Hk+1 (Y κ(xqK)) and w`(t, xqK , ·) ∈ Hk+1 (Y κ (xqK))

for all t ∈ [0, T ] such that for every ` = 1, . . . , n it holds∣∣wM
` (xqK , ·)

∣∣
Hk+1(Y κ(xq

K
)) ≤ Cδ

−k
√
|Y κ(xqK)|, |w`(0, xqK , ·)|Hk+1(Y κ(xq

K
)) ≤ Cδ

−k
√
|Y κ(xqK)| ,

for a constant C > 0. Then, there exists a constant C > 0 independent of t, h and δ such that we have
a bound on the Frobenius norm

sup
K∈TH ,q∈{1,...,QK}

∥∥Geff,κ(t, xqK)−GHMM(t, xqK)
∥∥
F
≤ C(1 + t)

(
h

δ

)k
.

Proof. Follow the lines of Lemma 5.3.7 and use the higher order results, especially from Theorem 5.3.6.
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Micro error of extra source

As already observed before the results concerning the convolution can be directly transferred to the extra
source Jeff . Thus, we define the HMM extra source(

JHMM (t, x̄)
)
k,`

=
 

Y κ(x̄)

R
(
x̄,
y

δ

)
∇yw0,h

` (t, x̄, y) ·
(
ek +∇ywM,h

k (x̄, y)
)

dy , (5.62)

and obtain the following result.

Lemma 5.3.9. Assume for k ∈ N that wM
` (xqK , ·) ∈ Hk+1 (Y κ(xqK)) and w`(t, xqK , ·), w0

` (t, x
q
K , ·) ∈

Hk+1 (Y κ (xqK)) for all t ∈ [0, T ] such that for every ` = 1, . . . , n there is a constant C > 0 with∣∣wM
` (xqK , ·)

∣∣
Hk+1(Y κ(xq

K
)) ≤ Cδ

−k
√
|Y κ(xqK)|,

∣∣w0
` (0, x

q
K , ·)

∣∣
Hk+1(Y κ(xq

K
)) ≤ Cδ

−k
√
|Y κ(xqK)| .

Then there exists a constant C > 0 independent of t, h and δ such that we have a bound on the Frobenius
norm

sup
K∈TH ,q∈{1,...,QK}

∥∥Jeff,κ(t, xqK)− JHMM(t, xqK)
∥∥
F
≤ C(1 + t)

(
h

δ

)k
.

Here we again do not get the desired second-order rate. Be aware that the initial value w0
` (0) is the

solution of (4.36). This is different compared to (4.34). Nevertheless, with the same techniques as in the
previous section we can derive a second-order result for the error in the initial value. Although we were
not able to derive the expected bounds on the micro error we now turn to the semi-discrete error analysis
of the macroscopic Maxwell HMM system. Nevertheless, let us mention that a refinement in the proofs
of the micro error in Lemmas 5.3.7 and 5.3.9 directly lead to better bounds in the space-discrete error
result below.

5.3.3 Wellposedness of the semi-discrete system

Let us first comment on the relation between the effective and the HMM system. First note that due to
the property VH ⊆ Vmac the discrete Maxwell operator inherits its properties from the continuous one.
Moreover, the HMM parameters (5.24), (5.38), (5.51) and (5.62) satisfy the same bounds as the effective
parameters as in Lemma 4.4.19.

Lemma 5.3.10. The parameters MHMM, RHMM are bounded, i.e., MHMM, RHMM ∈ L∞ (Ω;Rn×n). In
addition the parameter MHMM is coercive with the same constant α as M.
Moreover, the time-dependent parameters GHMM(t) and JHMM(t) are bounded for all t ∈ [0, T ], i.e.,
GHMM(t), JHMM(t) ∈ L∞ (Ω;Rn×n). As a direct consequence the bilinear forms mHMM, rHMM and
gHMM(t) are bounded.

Proof. The proof is as in Lemma 4.4.19 just with the use of the discrete cell problems.

We now show that the HMM system (5.37) is well posed.

Theorem 5.3.11. Assume that uδ, gδ and the parameters M and R satisfy the assumptions from
Theorem 4.4.6. Then the HMM system (5.37) has a unique solution uHMM ∈W1,1 (0, T ; VH).
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Proof. Note that the space VH is finite dimensional and has a basis {Φ1, . . . ,ΦNVH
}. Therefore, we can

represent the solution in this basis

uHMM(t, x) =
NVH∑
i=1

Ui(t)Φi(x) .

Thus, we can rewrite the system (5.37) using the techniques from finite element theory in Section 5.1.
With the matrices

MH
i,j = mHMM(Φj ,Φi) , RH

i,j = rHMM(Φj ,Φi) , GH
i,j(t) = gHMM(t; Φj ,Φi) ,

Ai,j = aH(Φj ,Φi) , gH
i (t) = mHMM(fHMM(t),Φi

)
, JH

i,j(t) =
(
JHMM(t)Φj ,Φi

)
,

we define the integro-differential matrix system as

MH∂tU(t) + RHU(t) +
tˆ

0

GH(t− s)U(s) ds+ AU(t) = gH(t)− JH(t)U(0) .

Reverting the reformulation from Section 4.4.4, i.e., from (4.37) to (4.15a) yields the equivalent system

MH∂tU(t) + R̃HU(t) + ∂t

tˆ

0

G̃H(t− s)U(s) ds+ AU(t) = gH(t)− JH(t)U(0) .

We integrate this equation over [0, t] and find

MHU(t) +
tˆ

0

(
R̃H + G̃H(t− s) + A

)
U(s) ds = MHU(0) +

tˆ

0

gH(s)− JH(s)U(0) ds ,

where we observe that we can apply Lemma 4.4.20.

In addition to the existence and uniqueness of a solution to the HMM system we also need a stability
bound for the solution. Thanks to the space discretization, which satisfies VH ⊆ Vmac, and due to the
assumptions on the quadrature, this bound follows with the same techniques as in the continuous setting
in (4.74) just with the discrete norms, i.e.,

∥∥uHMM(t)
∥∥

VH
≤ exp

 tˆ

0

∥∥GHMM∥∥
L1(0,s;L∞(Ω;Rn×n)) ds

[ 1
α
t ‖g‖L∞(0,t;VH)

+
(

1 + 1
α

∥∥JHMM∥∥
L1(0,t;L∞(Ω;Rn×n))

)
‖u0‖VH

]
.

(5.63)

After this wellposedness study of the macroscopic HMM system we will now turn to the semi-discrete
error analysis.

5.3.4 Semi-discrete a priori error analysis

We analyze the error between the solutions of the effective system (5.33) and the HMM system (5.37).
We recall the effective equation

meff(∂tueff(t),Φ
)

+ reff(ueff(t),Φ
)

+
tˆ

0

geff(t− s; ueff(s),Φ
)

ds+ a
(
ueff(t),Φ

)
= meff(f(t),Φ)−

(
Jeff(t)u0,Φ

)
for all Φ ∈ Vmac ,

(5.64)
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and the HMM system

mHMM(∂tuHMM(t),ΦH

)
+ rHMM(uHMM(t),ΦH

)
+

tˆ

0

gHMM(t− s; uHMM(s),ΦH

)
ds

+ aH
(
uHMM(t),ΦH

)
= mHMM(fHMM(t),ΦH

)
−
(
JHMM(t)u0,H ,ΦH

)
H

for all ΦH ∈ VH .

(5.65)

Recall that we have N = 2 + NE + NH , n = 3N and assume ` ≥ 1. For the error analysis we use the
following Hilbert spaces equipped with inner products or norms

X := L2 (Ω;Rn) , (φ, ψ)X = meff(φ, ψ) ,

Vmac := H0 (curl,Ω)1+NE ×H (curl,Ω)1+NH , (φ, ψ)Vmac =(φ, ψ)H(curl,Ω)N ,

VH := V`
0 (curl, TH)1+NE ×V` (curl, TH)1+NH ,

(
φH , ψH

)
VH

= mHMM(φH , ψH) ,
Z := H`+1 (Ω;Rn) , ‖φ‖Z = ‖φ‖H`+1(Ω;Rn) .

Due to the properties of M in (3.26) and the resulting properties for the bilinear forms meff in Lemma
4.4.19 and mHMM in Lemma 5.3.10 the induced norms are equivalent to the standard L2 (Ω;Rn)-norm,
i.e., for all Φ ∈ X and ΦH ∈ VH we get

√
α ‖Φ‖L2(Ω;Rn) ≤ ‖Φ‖X ≤

√
CM ‖Φ‖L2(Ω;Rn) , (5.66a)

√
α ‖ΦH‖L2(Ω;Rn) ≤ ‖ΦH‖VH

≤
√
CM ‖ΦH‖L2(Ω;Rn) . (5.66b)

An immediate consequence is

√
α√
CM
‖ΦH‖X ≤ ‖ΦH‖VH

≤
√
CM√
α
‖ΦH‖X . (5.67)

In Section 5.1.1 we introduced the standard interpolation operator for Nédélec elements IH and we extend
this to higher dimensions by component-wise application.
Since MHMM is positive definite we may introduce PH : X→ VH such that

mHMM(PHΦ,ΦH) = meff(Φ,ΦH) for all Φ ∈ X,ΦH ∈ VH . (5.68)

We are now in the position to give the first error estimate, which is the starting point for the semi-discrete
error analysis. The procedure follows Hipp et al. (2019) and Hochbruck et al. (2019), where we first derive
a general error estimate. This estimate is successively refined afterwards using estimates on conformity
errors. Observe that although VH ⊆ Vmac, the HMM method fits in the setting of a non-conforming finite
element method since the bilinear forms do not coincide. The micro and modeling errors will enter these
conformity errors. We now state the most general error estimate similar to (Hipp et al., 2019, Theorem
2.8).

Theorem 5.3.12. Let uHMM and ueff be the solutions of (5.65) and (5.64), respectively, and assume
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ueff ∈ C1 ([0, T ]; Z). Then the error of the semi-discrete HMM-solution is bounded by∥∥uHMM(t)− ueff(t)
∥∥

X

≤ exp

 tˆ

0

∥∥GHMM∥∥
L1(0,s;L∞(Ω;Rn×n)) ds

[(1 + 1
α

∥∥JHMM∥∥
L1(0,t;L∞(Ω;Rn×n))

)
‖u0,H − IHu0‖VH

+ t

α

∥∥fHMM − PHf
∥∥

L∞(0,t;VH) + t

α

∥∥(PH(Meff)−1Reff − (MHMM)−1RHMMIH)ueff∥∥
L∞(0,t;VH)

+ t

α

∥∥(PH(Meff)−1A− (MHMM)−1AHIH)ueff∥∥
L∞(0,t;VH)

+ t

α
sup
s∈[0,t]

∥∥∥∥∥∥
sˆ

0

(PH(Meff)−1Geff(s− r)− (MHMM)−1GHMM(s− r)IH)ueff(r) dr

∥∥∥∥∥∥
VH

+ t

α
sup
s∈[0,t]

∥∥PH(Meff)−1Jeff(s)u0 − (MHMM)−1JHMM(s)IHu0
∥∥

VH
+ t

α

∥∥(PH − IH)∂tueff∥∥
L∞(0,t;VH)

]
+
∥∥(IH − id)ueff(t)

∥∥
X .

(5.69)

Proof. In the proof we abbreviate u = ueff and uH = uHMM and do the same for the other expressions
with superscript either eff or HMM. We introduce the discrete error eH(t) := uH(t) − IHu(t) ∈ VH and
denote by id the identity operator. Observe that due to (5.66), we have∥∥uH(t)− u(t)

∥∥
X ≤ ‖eH(t)‖X + ‖(IH − id)u(t)‖X ≤

√
CM√
α
‖eH(t)‖VH

+ ‖(IH − id)u(t)‖X . (5.70)

To examine the discrete error we consider its time derivative: For any ΦH ∈ VH we get

mH(∂teH(t),ΦH) = mH
(
∂tuH(t)− IH∂tu(t),ΦH

)
= mH

(
∂tuH(t)− PH∂tu(t),ΦH

)
+mH((PH − IH) ∂tu(t),ΦH) ,

(5.71)

and we rewrite the first part on the right-hand side of (5.71) using the effective and HMM systems (5.64)
and (5.65) as well as (5.68)

mH
(
∂tuH(t)− PH∂tu(t),ΦH

)
= mH

(
∂tuH(t),ΦH

)
−m(∂tu(t),ΦH)

= mH
(
fH(t),ΦH

)
− rH

(
uH(t),ΦH

)
−

tˆ

0

gH
(
t− s; uH(s),ΦH

)
ds− aH

(
uH(t),ΦH

)
−
(
JH(t)u0,H ,ΦH

)
H
−m(f(t),ΦH) + r(u(t),ΦH)

+
tˆ

0

g(t− s; u(s),ΦH) ds+ a(u(t),ΦH) +(J(t)u0,ΦH)

= −rH(eH(t),ΦH)−
tˆ

0

gH(t− s; eH(s),ΦH) ds− aH(eH(t),ΦH)−
(
JH(t)eH(0),ΦH

)
H

+mH
(
fH(t),ΦH

)
−m(f(t),ΦH) + r(u(t),ΦH)− rH(IHu(t),ΦH)

+ a(u(t),ΦH)− aH(IHu(t),ΦH) +
tˆ

0

g(t− s; u(s),ΦH) ds−
tˆ

0

gH(t− s; IHu(s),ΦH) ds

+m
(
M−1J(t)u0,ΦH

)
−mH

(
(MH)−1JH(t)IHu0,ΦH

)
.
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In the last two expressions we used the facts

(J(t)u0,ΦH) = m
(
M−1J(t)u0,ΦH

)
,
(
JH(t)IHu0,ΦH

)
H

= mH
((

MH
)−1 JH(t)IHu0,ΦH

)
.

Recall the definitions in (4.64)-(4.67) of the continuous bilinear forms and the definitions in (5.23), (5.35),
(5.13) and (5.36) of their discrete counterparts. Together with (5.71) and the property (5.68) we get a
differential equation for the error eH

mH(∂teH(t),ΦH) + rH(eH(t),ΦH) +
tˆ

0

gH(t− s; eH(s),ΦH) ds+ aH(eH(t),ΦH)

= mH
(
fH(t),ΦH

)
−
(
JH(t)eH(0),ΦH

)
H
−m(f(t),ΦH) + r(u(t),ΦH)− rH(IHu(t),ΦH)

+ a(u(t),ΦH)− aH(IHu(t),ΦH) +
tˆ

0

g(t− s; u(s),ΦH) ds−
tˆ

0

gH(t− s; IHu(s),ΦH) ds

+m
(
M−1J(t)u0,ΦH

)
−mH

(
(MH)−1JH(t)IHu0,ΦH

)
+mH((PH − IH) ∂tu(t),ΦH)

= −
(
JH(t)eH(0),ΦH

)
H

+mH
(
f̃H(t),ΦH

)
,

for the right-hand side given as

mH
(
f̃H(t),ΦH

)
= mH

(
fH(t)− PHf(t),ΦH

)
+mH

((
PHM−1R − (MH)−1RHIH

)
u(t),ΦH

)
+mH

((
PHM−1A− (MH)−1AHIH

)
u(t),ΦH

)
+mH

 tˆ

0

(
PHM−1G(t− s)− (MH)−1GH(t− s)IH

)
u(s) ds,ΦH


+mH

((
PHM−1J(t)− (MH)−1JH(t)IH

)
u0,ΦH

)
+mH((PH − IH) ∂tu(t),ΦH) .

At this point we use the stability estimate (5.63) for this discrete system. Note that we need f̃ ∈
L∞ (0, t; VH), which is the case due to the assumption on u and the properties of the parameters. Thus,
the error is bounded by

‖eH(t)‖VH
≤ exp

 tˆ

0

∥∥GH
∥∥

L1(0,s;L∞(Ω;Rn×n)) ds

[(1 + 1
α

∥∥JH∥∥L1(0,t;L∞(Ω;Rn×n))

)
‖eH(0)‖VH

+ t

α

∥∥fH − PHf
∥∥

L∞(0,t;VH) + t

α

∥∥(PHM−1R − (MH)−1RHIH)u
∥∥

L∞(0,t;VH)

+ t

α

∥∥(PHM−1A− (MH)−1AHIH)u
∥∥

L∞(0,t;VH)

+ t

α
sup
s∈[0,t]

∥∥∥∥∥∥
sˆ

0

(PHM−1G(s− r)− (MH)−1GH(s− r)IH)u(r) dr

∥∥∥∥∥∥
VH

+ t

α
sup
s∈[0,t]

∥∥PHM−1J(s)u0 − (MH)−1JH(s)IHu0
∥∥

VH
+ t

α
‖(PH − IH)∂tu‖L∞(0,t;VH)

]
.

Along with (5.70) we showed the result.

The bound in (5.69) consists of many expressions. We proceed by bounding each of those expressions
separately. The first two steps are given in Hipp et al. (2019). We start with

∥∥(PH − IH)∂tueff
∥∥

L∞(0,t;VH).
From (5.67) we can bound the expression with the following Lemma.
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Lemma 5.3.13. For all Φ ∈ Z we have with a constant C > 0

‖(PH − IH)Φ‖VH
≤ C ‖(id−IH)Φ‖X + max

‖ΨH‖VH
=1
|4m(IHΦ,ΨH)| ,

where for ΦH , ΨH we define

4m(ΦH ,ΨH) := meff(ΦH ,ΨH)−mHMM(ΦH ,ΨH) . (5.72)

Proof. For all ΦH ∈ VH we have

‖ΦH‖VH
= max
‖ΨH‖VH

=1
mHMM(ΦH ,ΨH) .

We thus get for Φ ∈ Z with the property of PH in (5.68)

‖(PH − IH)Φ‖VH
= max
‖ΨH‖VH

=1
mHMM((PH − IH)Φ,ΨH)

= max
‖ΨH‖VH

=1

[
mHMM(PHΦ,ΨH)−mHMM(IHΦ,ΨH)

]
= max
‖ΨH‖VH

=1

[
meff(Φ,ΨH)−meff(IHΦ,ΨH) +meff(IHΦ,ΨH)−mHMM(IHΦ,ΨH)

]
= max
‖ΨH‖VH

=1

[
meff((id−IH)Φ,ΨH) +4m(IHΦ,ΨH)

]
≤ max
‖ΨH‖VH

=1
‖ΨH‖X ‖(id−IH)Φ‖X + max

‖ΨH‖VH
=1
|4m(IHΦ,ΨH)|

≤
√
CM√
α
‖(id−IH)Φ‖X + max

‖ΨH‖VH
=1
|4m(IHΦ,ΨH)| .

We observe that this gives an estimate in terms of an interpolation error, which we can control, and a
conformity error of the bilinear forms meff and mHMM. We find a similar structure in the remaining
expressions. As the next step we treat the error

∥∥(PH(Meff)−1A− (MHMM)−1AHIH)ueff
∥∥

L∞(0,t;VH),
which is the error between the continuous and discrete Maxwell operator. This result is also the prototype
for the following ones.

Lemma 5.3.14. Let Φ ∈ Z. Then there exists a constant C > 0 such that∥∥(PH(Meff)−1A− (MHMM)−1AHIH)Φ
∥∥

VH
≤ C ‖(id−IH)Φ‖Vmac + max

‖ΨH‖VH
=1
|4a(IHΦ,ΨH)| ,

where for ΦH , ΨH we define

4a(ΦH ,ΨH) := a(ΦH ,ΨH)− aH(ΦH ,ΨH) . (5.73)

Proof. For ΨH ∈ VH we get with (5.68), (4.64), (5.23), (4.66), and (5.13) together with the continuity
of a(·, ·) the following estimate

mHMM((PH(Meff)−1A− (MHMM)−1AHIH)Φ,ΨH

)
= mHMM(PH(Meff)−1AΦ,ΨH

)
−mHMM((MHMM)−1AHIHΦ,ΨH

)
= a(Φ,ΨH)− aH(IHΦ,ΨH) = a((id−IH)Φ,ΨH) + a(IHΦ,ΨH)− aH(IHΦ,ΨH)

≤ C ‖(id−IH)Φ‖Vmac ‖ΨH‖X +4a(IHΦ,ΨH)

≤ C ‖(id−IH)Φ‖Vmac

√
CM√
α
‖ΨH‖VH

+4a(IHΦ,ΨH) .
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This yields ∥∥(PH(Meff)−1A− (MHMM)−1AHIH)Φ
∥∥

VH

= max
‖ΨH‖VH

=1
mHMM((PH(Meff)−1A− (MHMM)−1AHIH)Φ,ΨH

)
≤
√
CM√
α
C ‖(id−IH)Φ‖Vmac + max

‖ΨH‖VH
=1
|4a(IHΦ,ΨH)| .

For the expression
∥∥(PH(Meff)−1Reff − (MHMM)−1RHMMIH)ueff

∥∥
L∞(0,t;VH) we follow the same ap-

proach as in Lemma 5.3.14 since the structure is basically the same. We use that the parameter Reff is
bounded, i.e., Reff ∈ L∞ (Ω;Rn×n). This leads to the following lemma.

Lemma 5.3.15. Let Φ ∈ Z. Then there is a constant C > 0 such that∥∥(PH(Meff)−1Reff − (MHMM)−1RHMMIH)Φ
∥∥

VH

≤ C ‖(id−IH)Φ‖X + max
‖ΨH‖VH

=1
|4r(IHΦ,ΨH)|VH

.

Again for ΦH ,ΨH ∈ VH use the notation

4r(ΦH ,ΨH) := reff(ΦH ,ΨH)− rHMM(ΦH ,ΨH) . (5.74)

Proof. We follow the proof of Lemma 5.3.14, which yields∥∥(PH(Meff)−1Reff − (MHMM)−1RHMMIH)Φ
∥∥

VH
= max
‖ΨH‖VH

=1

[
reff((id−IH) Φ,ΨH) +4r(IHΦ,ΨH)

]
.

The bound (4.72) for Φ ∈ Z and ΨH ∈ VH∣∣reff(Φ,ΨH)
∣∣ ≤ C ‖Φ‖X ‖ΨH‖VH

,

yields the result.

Now we turn our focus to the time-dependent parameters and the corresponding forms. Let us start with
a result concerning the convolution. In (5.69) the corresponding expression is

sup
s∈[0,t]

∥∥∥∥∥∥
sˆ

0

(PH(Meff)−1Geff(s− r)− (MHMM)−1GHMM(s− r)IH)u(r) dr

∥∥∥∥∥∥
VH

.

Although this expression is time dependent we recognize again the same structure as before. Since the
convolution kernel is bounded, we again get the desired result.

Lemma 5.3.16. For all s ∈ [0, T ] and Φ ∈ C1 ([0, t]; Z) we have for a constant C > 0 the bound∥∥∥∥∥∥
sˆ

0

(PH(Meff)−1Geff(s− r)− (MHMM)−1GHMM(s− r)IH)Φ(r) dr

∥∥∥∥∥∥
VH

≤ C ‖(id−IH)Φ‖L∞(0,s;X) + max
‖ΨH‖VH

=1

∣∣∣∣∣∣
sˆ

0

4g(s− r; IHΦ(r),ΨH) dr

∣∣∣∣∣∣ ,
where for ΦH , ΨH ∈ VH we define

4g(t; ΦH ,ΨH) := geff(t; ΦH ,ΨH)− gHMM(t; ΦH ,ΨH) . (5.75)
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Proof. With the same ideas as in Lemma 5.3.14 we get from (5.68), (4.67) and (5.36)∥∥∥∥∥∥
sˆ

0

[
PH(Meff)−1Geff(s− r)− (MHMM)−1GHMM(s− r)IH

]
Φ(r) dr

∥∥∥∥∥∥
VH

= max
‖ΨH‖VH

=1
mHMM

 sˆ

0

[
PH(Meff)−1Geff(s− r)− (MHMM)−1GHMM(s− r)IH

]
Φ(r) dr,ΨH


= max
‖ΨH‖VH

=1

sˆ

0

[
geff(s− r; Φ(r),ΨH)− gHMM(s− r; IHΦ(r),ΨH)

]
dr

= max
‖ΨH‖VH

=1

sˆ

0

geff(s− r; (id−IH)Φ(r),ΨH) dr + max
‖ΨH‖VH

=1

sˆ

0

4g(s− r; IHΦ(r),ΨH) dr .

In (4.73) we saw that the bilinear form geff(t; Φ,ΨH) is bounded independent of t, i.e., there exists a
constant C > 0 with

geff(t; Φ,ΨH) ≤ C ‖Φ‖L2(Ω;Rn) ‖ΨH‖L2(Ω;Rn) .

This bound yields the final estimate.

The next lemma is an estimate for the error that stems from the extra source term. We again make use
of the structure we already know where we take advantage of the boundedness again.

Lemma 5.3.17. For all s ∈ [0, T ] and Φ ∈ Z, we have for a constant C > 0

∥∥PH(Meff)−1Jeff(s)u0 − (MHMM)−1JHMM(s)IHu0
∥∥

VH

≤ C ‖(id−IH)Φ‖X + max
‖ΨH‖VH

=1
|4j(s; IHΦ,ΨH)| ,

where for ΦH ,ΨH ∈ VH we define

4j(s; ΦH ,ΨH) :=
(
Jeff(s)ΦH ,ΨH

)
−
(
JHMM(s)ΦH ,ΨH

)
H
. (5.76)

Proof. With the boundedness of Jeff(s) independent of s from Lemma 4.4.19 we get

∥∥[PH(Meff)−1Jeff(s)− (MHMM)−1JHMM(s)IH
]
Φ
∥∥

VH

= max
‖ΨH‖VH

=1
mHMM([PH(Meff)−1Jeff(s)− (MHMM)−1JHMM(s)IH

]
Φ,ΨH

)
= max
‖ΨH‖VH

=1

[(
Jeff(s)Φ,ΨH

)
−
(
JHMM(s)IHΦ,ΨH

)
H

]
= max
‖ΨH‖VH

=1

(
Jeff(s)(id−IH)Φ,ΨH

)
+ max
‖ΨH‖VH

=1
4j(s; IHΦ,ΨH)

≤ 1√
α

∥∥Jeff(s)
∥∥

L∞(Ω) ‖(id−IH)Φ‖X + max
‖ΨH‖VH

=1
|4j(s; IHΦ,ΨH)| .
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We insert the inequalities from Lemma 5.3.13 to Lemma 5.3.17 into the result from Theorem 5.3.12.
Thus, (5.69) becomes∥∥uHMM(t)− ueff(t)

∥∥
X

≤ exp

 tˆ

0

∥∥GHMM∥∥
L1(0,s;L∞(Ω;Rn×n)) ds

[(1 + 1
α

∥∥JHMM∥∥
L1(0,t;L∞(Ω;Rn×n))

)
‖u0,H − IHu0‖VH

+ t

α

∥∥fHMM − PHf
∥∥

L∞(0,t;VH) + t

α
sup
s∈[0,t]

max
‖ΨH‖VH

=1

∣∣4r(IHueff(s),ΨH

)∣∣
+ t

α
C
∥∥(id−IH)ueff∥∥

L∞(0,t;Vmac) + t

α
sup
s∈[0,t]

max
‖ΨH‖VH

=1

∣∣4a(IHueff(s),ΨH

)∣∣
+ t

α
sup
s∈[0,t]

max
‖ΨH‖VH

=1

∣∣∣∣∣∣
sˆ

0

4g
(
s− r; IHueff(r),ΨH

)
dr

∣∣∣∣∣∣
+ t

α
sup
s∈[0,t]

C ‖(id−IH)u0‖X + sup
s∈[0,t]

max
‖ΨH‖VH

=1

∣∣4Jeff(s; IHu0,ΨH)
∣∣

+ t

α
C
∥∥(id−IH)∂tueff∥∥

L∞(0,t;X) + sup
s∈[0,t]

max
‖ΨH‖VH

=1

∣∣4m(IH∂tueff(s),ΨH

)∣∣]
+
∥∥(IH − id)ueff(t)

∥∥
X .

(5.77)

The estimate is now given in terms of interpolation and conformity errors plus errors in the data. Hence,
we have to analyze the conformity errors, where 4m

(
IH∂tueff ,ΨH

)
and 4a

(
IHueff ,ΨH

)
have already

been analyzed in (Hochbruck et al., 2019, Lemma 4.1). Note that in Hochbruck et al. (2019) the classical
Maxwell system is analyzed without polarization. The approach is nevertheless analogous in this context
for these two error contributions. We recall the result here.

Lemma 5.3.18. Assume that the corrector corresponding to the parameter M satisfies∣∣wM(xqK , ·)
∣∣
Hk+1(Y η(xq

K
)) ≤ Cδ

−k
√
|Y δ(xqK)| for all xqK ,

for a constant C > 0 and furthermore

Meff |K ∈W`+1,∞ (K;Rn×n
)
,
∥∥Meff∥∥

W`+1,∞(K) ≤ C ,

for all K ∈ TH with a different constant C > 0 independent of δ and H. Then, for all Φ ∈ Z and
ΨH ∈ VH we get

|4m(Φ,ΨH)| ≤ C
(
H` +

(
h

δ

)2k
+ emod

)
‖Φ‖H`+1(Ω;Rn) ‖ΨH‖L2(Ω;Rn) , (5.78)

with emod as in Theorem 5.2.5. Moreover, for all ΦH ,ΨH ∈ VH we find

|4a(ΦH ,ΨH)| = 0 . (5.79)

Proof. Let Φ ∈ Z and ΨH ∈ VH. Recall the definition of 4m from (5.72) and note that we can extend
meff
H and mHMM to Z×Z due to the continuous embedding of Z into C (Ω). Now split 4m into the HMM

and the quadrature error

|4m(Φ,ΨH)| ≤ |4mQuad(Φ,ΨH)|+ |4mHMM(Φ,ΨH)| ,
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where for Φ ∈ Z and Ψ ∈ VH we set

4mQuad(Φ,ΨH) = meff(Φ,ΨH)−meff
H (Φ,ΨH) ,

4mHMM(Φ,ΨH) = meff
H (Φ,ΨH)−mHMM(Φ,ΨH) .

We use the definition of the effective and HMM parameters, which gives

|4mHMM(Φ,ΨH)| =

∣∣∣∣∣ ∑
K∈TH

QK∑
q=1

γqK
[
Meff(xqK)−MHMM(xqK)

]
Φ(xqK) ·ΨH(xqK)

∣∣∣∣∣
≤ sup

K,q

∥∥Meff(xqK)−MHMM(xqK)
∥∥
F

∑
K

∣∣∣∣∣∑
q

γqKΦ(xqK) ·ΨH(xqK)

∣∣∣∣∣ .
We again use a productive zero and (Ciarlet, 2002, Theorem 4.1.5) to derive∑

K

∣∣∣∣∣∑
q

γqKΦ(xqK) ·ΨH(xqK)

∣∣∣∣∣
≤
∑
K

∣∣∣∣∣∣
∑
q

γqKΦ(xqK) ·ΨH(xqK)−
ˆ

K

Φ(x) ·ΨH(x) dx

∣∣∣∣∣∣+

∣∣∣∣∣∣
ˆ

K

Φ(x) ·ΨH(x) dx

∣∣∣∣∣∣


≤
∑
K

[
CH`+1 ‖Φ‖H`+1(K) ‖ΨH‖H1(K) + ‖Φ‖L2(K) ‖ΨH‖L2(K)

]
.

With the inverse inequality (Ciarlet, 2002, Theorem 3.2.6), and ‖Φ‖L2(K) ≤ ‖Φ‖H`+1(K) we get

∑
K

∣∣∣∣∣∑
q

γqKΦ(xqK) ·ΨH(xqK)

∣∣∣∣∣ ≤∑
K

[
CH` ‖Φ‖H`+1(K) ‖ΨH‖L2(K) + ‖Φ‖H`+1(K) ‖ΨH‖L2(K)

]
≤ (CH` + 1) ‖Φ‖H`+1(Ω) ‖ΨH‖L2(Ω) ,

where we applied the Cauchy-Schwarz inequality to the discrete product over K ∈ TH in the last step.
The final bound for 4mHMM(Φ,ΨH) now follows from (5.29) together with Lemma 5.2.2 and Corollary
5.2.4 as

|4mHMM(Φ,ΨH)| ≤ C
((

h

δ

)2k
+ emod

)
(CH` + 1) ‖Φ‖H`+1(Ω) ‖ΨH‖L2(Ω) .

For the remainder 4mQuad(Φ,ΨH) we use the same techniques as above since the structure is the same,
i.e., we have

|4mQuad(Φ,ΨH)| =

∣∣∣∣∣∣
ˆ

Ω

Meff(x)Φ(x) ·ΨH(x) dx−
∑
K

∑
q

γqKMeff(xqK)Φ(xqK) ·ΨH(xqK)

∣∣∣∣∣∣
≤ CH`+1

∑
K

‖Φ‖H`+1(K) ‖ΨH‖H1(K) ≤ CH
`
∑
K

‖Φ‖H`+1(K) ‖ΨH‖L2(K)

≤ CH` ‖Φ‖H`+1(Ω) ‖ΨH‖L2(Ω) .

Thus, we have shown (5.78). Now let ΦH , ΨH ∈ VH. It holds with (4.66) and (5.13)

|4a(ΦH ,ΨH)| =

∣∣∣∣∣∣
ˆ

Ω

AΦH(x) ·ΨH(x) dx−
∑
K∈TH

QK∑
q=1

γqKAΦH(xqK) ·ΨH(xqK)

∣∣∣∣∣∣
≤
∑
K

∣∣∣∣∣∣
ˆ

K

AΦH(x) ·ΨH(x) dx −
∑
q

γqKAΦH(xqK) ·ΨH(xqK)

∣∣∣∣∣∣ .
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The assumption on the quadrature in (5.9) to be exact for polynomials in Q2`,2`,2` yields (5.79).

As in Lemma 5.3.18 we also need bounds on 4r(·, ·), 4g(t; ·, ·) and 4j(t; ·, ·). Despite slightly different
assumptions on the correctors related to these parameters, the bounds on theses bilinear forms follow the
same idea as those in Lemma 5.3.18. For the conformity error in r we get the following result.

Lemma 5.3.19. Assume that the correctors wM and w(0) satisfy∣∣wM
` (xqK , ·)

∣∣
Hk+1(Y η(xq

K
)) , |w`(0, x

q
K , ·)|Hk+1(Y η(xq

K
)) ≤ Cδ

−k
√
|Y δ(xqK)| for all xqK ,

and furthermore

Reff |K ∈W`+1,∞ (K;Rn×n
)
,
∥∥Reff∥∥

W`+1,∞(K) ≤ C,

for all K ∈ TH with a constant C > 0 independent of δ and H. Then, for all Φ ∈ Z and ΨH ∈ VH we
get

|4r(Φ,ΨH)| ≤ C
(
H` +

(
h

δ

)2k
+ emod

)
‖Φ‖H`+1(Ω;Rn) ‖ΨH‖L2(Ω;Rn) , (5.80)

with emod as in Theorem 5.2.5.

For the time-dependent bilinear forms based on the weaker micro error estimate from Lemma 5.3.7 and
5.3.9 we get a similar result, which only gives first-order convergence. Apart from that the proofs are
identical. Although we have not analyzed the modeling error for the time dependent parameters we keep
track of it in the following results. We first give the result for the convolution kernel.

Lemma 5.3.20. Assume that the correctors wM and w(0) satisfy∣∣wM
` (xqK , ·)

∣∣
Hk+1(Y η(xq

K
)) , |w`(0, x

q
K , ·)|Hk+1(Y η(xq

K
)) ≤ Cδ

−k
√
|Y δ(xqK)| for all xqK , t ∈ [0, T ] ,

and furthermore

Meff |K ,Reff |K ∈W`+1,∞ (K;Rn×n
)
,
∥∥Meff∥∥

W`+1,∞(K) ,
∥∥Reff∥∥

W`+1,∞(K) ≤ C ,

for all K ∈ TH with a constant C > 0 independent of δ and H. Then, for all t ∈ [0, T ], Φ ∈ Z and
ΨH ∈ VH we find

|4g(t; Φ,ΨH)| ≤
(
CH` + C(1 + t)

((
h

δ

)k
+ emod

))
‖Φ‖H`+1(Ω;Rn) ‖ΨH‖L2(Ω;Rn) . (5.81)

Proof. The proof follows the proof of Lemma 5.3.18 and uses the fact that we can bound the effective
parameter independent of t as shown in Lemma 4.4.19 and the micro error estimate in Corollary 5.3.8.

As already mentioned the procedure for the extra source is the same as for the convolution kernel. We
thus get the following result.

Lemma 5.3.21. Assume that the correctors wM and w0(0) satisfy∣∣wM
` (xqK , ·)

∣∣
Hk+1(Y η(xq

K
)) , ,

∣∣w0
` (0, x

q
K , ·)

∣∣
Hk+1(Y η(xq

K
)) ≤ Cδ

−k
√
|Y δ(xqK)| for all xqK , t ∈ [0, T ] ,
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and furthermore

Meff |K ,Reff |K ∈W`+1,∞ (K;Rn×n
)
,
∥∥Meff∥∥

W`+1,∞(K) ,
∥∥Reff∥∥

W`+1,∞(K) ≤ C ,

for all K ∈ TH with a constant C > 0 independent of δ and H. Then, for all t ∈ [0, T ], Φ ∈ Z and
ΨH ∈ VH it holds

|4j(t; Φ,ΨH)| ≤
(
CH` + C(1 + t)

((
h

δ

)k
+ emod

))
‖Φ‖H`+1(Ω;Rn) ‖ΨH‖L2(Ω;Rn) . (5.82)

Proof. Again we apply the same proof as in Lemma 5.3.18 but this time with the use of Lemma 5.3.9
and the boundedness of Jeff(t).

These preliminary lemmas give us bounds for the conformity errors. We use those estimates together
with the bounds for the interpolation errors, which follow from the property of the interpolation IH from
Theorem 5.1.4, i.e.,

‖(id−IH)u‖L∞(0,t;Vmac) ≤ CH
` |u|L∞(0,t;Z) ,

‖(id−IH)∂tu‖L∞(0,t,X) ≤ CH
` |∂tu|L∞(0,t;Z) .

As it turns out we still need a result that states that the interpolation operator from Theorem 5.1.4
keeps its property also in the norm of the discrete space VH. Note that for φ ∈ Z this is not a direct
consequence of the norm equivalence (5.66) since φ−IHφ is in general not an element of VH. The result
is found in (Hochbruck et al., 2019, Lemma 4.4). As mentioned in the proof of Lemma 5.3.18 we may
extend the definition of ‖·‖VH

to Z.

Lemma 5.3.22. For φ ∈ Z the following estimate holds

‖φ− IHφ‖VH
≤ CH` |φ|H`+1(Ω;R3) .

Now we have all results at hand that we need to give the final semi-discrete error bound.

Theorem 5.3.23. Let uHMM and ueff be the solutions of (5.65) and (5.64) respectively and assume that
ueff ∈ C1 ([0, T ]; Z) and uHMM ∈ C0 (0, T ; VH). Then the error of the semi-discrete HMM-solution is
bounded by∥∥uHMM(t)− ueff(t)

∥∥
X

≤ C exp

 tˆ

0

∥∥GHMM∥∥
L1(0,s;L∞(Ω;Rn×n)) ds

 (1 + t)
[
‖u0,H − IHu0‖VH

+
∥∥fHMM − PHf

∥∥
L∞(0,t;VH)

+
(
H` +

(
h

δ

)2k
+ emod

)[∥∥ueff∥∥
L∞(0,t,Z) +

∥∥∂tueff∥∥
L∞(0,t,Z)

]
+ (1 + t)

(
H` + t

((
h

δ

)k
+ emod

))∥∥ueff∥∥
L∞(0,t;Z)

]
.

(5.83)



5.3. A FE-HMM algorithm for the dispersive Maxwell system 103

Proof. The starting point is the refined estimate (5.77). We use the interpolation error estimates in
(5.77), which yields∥∥uHMM(t)− ueff(t)

∥∥
X

≤ C exp

 tˆ

0

∥∥GHMM∥∥
L1(0,s;L∞(Ω;Rn×n)) ds

 (1 + t)
[∥∥fHMM − PHf

∥∥
L∞(0,t;VH)

+
(

1 +
∥∥JHMM∥∥

L∞(0,t;L∞(Ω;Rn×n))

)
‖u0,H − IHu0‖VH

+ sup
s∈[0,t]

max
‖ΨH‖VH

=1

∣∣4r(IHueff(s),ΨH

)∣∣
+H`

∣∣ueff∣∣
L∞(0,t;Z) + sup

s∈[0,t]
max

‖ΨH‖VH
=1

∣∣4a(IHueff(s),ΨH

)∣∣
+ sup
s∈[0,t]

max
‖ΨH‖VH

=1

∣∣∣∣∣∣
sˆ

0

4g
(
s− r; IHueff(r),ΨH

)
dr

∣∣∣∣∣∣
+H` |u0|Z + sup

s∈[0,t]
max

‖ΨH‖VH
=1

∣∣4Jeff(s; IHu0,ΨH)
∣∣

+H`
∣∣∂tueff∣∣

L∞(0,t;Z) + sup
s∈[0,t]

max
‖ΨH‖VH

=1

∣∣4m(IH∂tueff(s),ΨH

)∣∣] .

(5.84)

Next we use the Lemmas 5.3.18, 5.3.19, 5.3.20 and 5.3.21. However, this is not possible directly since
the arguments IHueff and IH∂tueff are not in the space Z. The procedure to overcome this is similar
for all the remaining expressions 4m, 4r, 4a, 4g and 4j. Therefore, we demonstrate it for the most
complicated one. Recall the definition of 4g in (5.75). We introduce a productive zero and use the
triangle inequality, to derive∣∣∣∣∣∣

sˆ

0

4g
(
s− r; IHueff(r),ΨH

)
dr

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
sˆ

0

geff(s− r; IHueff(r),ΨH

)
dr −

sˆ

0

geff(s− r; ueff(r),ΨH

)
dr

∣∣∣∣∣∣
+

∣∣∣∣∣∣
sˆ

0

geff(s− r; ueff(r),ΨH

)
dr −

sˆ

0

gHMM(s− r; ueff(r),ΨH

)
dr

∣∣∣∣∣∣
+

∣∣∣∣∣∣
sˆ

0

gHMM(s− r; IHueff(r),ΨH

)
dr −

sˆ

0

gHMM(s− r; ueff(r),ΨH

)
dr

∣∣∣∣∣∣
=

∣∣∣∣∣∣
sˆ

0

geff(s− r; (IH − id)ueff(r),ΨH

)
dr

∣∣∣∣∣∣ +

∣∣∣∣∣∣
sˆ

0

4g
(
s− r; ueff(r),ΨH

)
dr

∣∣∣∣∣∣
+

∣∣∣∣∣∣
sˆ

0

gHMM(s− r; (IH − id)ueff(r),ΨH

)
dr

∣∣∣∣∣∣ .
Now we use the boundedness of the bilinear forms geff and gHMM given in (4.73) and Lemma 5.3.10,
which yields ∣∣∣∣∣∣

sˆ

0

4g
(
s− r; IHueff(r),ΨH

)
dr

∣∣∣∣∣∣ ≤
sˆ

0

C
∥∥(IH − id)ueff(r)

∥∥
X ‖ΨH‖X dr

+
sˆ

0

∣∣4g(s− r; ueff(r),ΨH

)∣∣ dr +
sˆ

0

C
∥∥(IH − id)ueff(r)

∥∥
VH
‖ΨH‖VH

dr .
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With this, Lemma 5.3.22 and the properties of the interpolation in (5.8) we get

max
‖ΨH‖VH

=1

∣∣∣∣∣∣
sˆ

0

4g
(
s− r; IHueff(r),ΨH

)
dr

∣∣∣∣∣∣ ≤ max
‖ΨH‖VH

=1

sˆ

0

∣∣4g(s− r; ueff(r),ΨH

)∣∣ dr

+
sˆ

0

C

√
CM

α

∥∥(IH − id)ueff(r)
∥∥

X dr +
sˆ

0

C
∥∥(IH − id)ueff(r)

∥∥
VH

dr

≤ max
‖ΨH‖VH

=1

sˆ

0

∣∣4g(s− r; ueff(r),ΨH

)∣∣ dr +
sˆ

0

CH`
∣∣ueff(r)

∣∣
H`+1(Ω) dr .

Here the result from Lemma 5.3.20 is applicable for the first expression. We find

max
‖ΨH‖VH

=1

∣∣∣∣∣∣
sˆ

0

4g
(
s− r; IHueff(r),ΨH

)
dr

∣∣∣∣∣∣
≤

sˆ

0

(
CH` + C(1 + s− r)

((
h

δ

)k
+ emod

))∥∥ueff(r)
∥∥

H`+1(Ω;Rn) dr +
sˆ

0

CH`
∣∣ueff(r)

∣∣
H`+1(Ω) dr ,

and finally

sup
s∈[0,t]

max
‖ΨH‖VH

=1

∣∣∣∣∣∣
sˆ

0

4g
(
s− r; IHueff(r),ΨH

)
dr

∣∣∣∣∣∣
≤

tˆ

0

(
CH` + C(1 + t− r)

((
h

δ

)k
+ emod

))
dr
∥∥ueff∥∥

L∞(0,t;Z) .

With this bound and similar bounds for the other conformity errors we eventually get the result.

Let us comment on the semi-discrete error estimate (5.83). First as mentioned in Section 4.4.8 we can
get better bounds for the stability estimate, which improves the growth rate. If we have a bound without
exponential growth, this also transfers to the error estimate. Moreover, a refined bound on the growth
of the H2-norm of the solution of the Sobolev equation would also improve the bound.
At the end of this section let us summarize what we achieved so far. Starting from the general het-
erogeneous Maxwell system (4.11) we used the method of homogenization in Chapter 4 to derive an
effective system. After that in this chapter we derived a space discretization for this system. More-
over, we analyzed the error due to the finite element methods on the macroscopic and microscopic level.
Still, the system (5.37) is continuous in the time variable. Thus, in the next chapter we propose a time
discretization.
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CHAPTER 6

Time discretization and approximation of the convolution

In the previous chapters we derived the space discrete effective Maxwell system using the Finite Element
Heterogeneous Multiscale Method. The space discrete system resulting from this method is given in
(5.37). In the proof of Theorem 5.3.11 and in Section 5.1 we derived the integro-differential matrix
equation

MH∂tU(t) + RHU(t) +
tˆ

0

GH(t− s)U(s) ds+ AU(t) = gH(t)− JH(t)U(0) , (6.1)

which is an equivalent formulation of (5.37). The aim of this section is to derive suitable time integration
schemes that numerically solve the equation (6.1). Let us comment on results related to the FE-HMM
for Maxwell’s equations as well as the time integration of integro-differential Maxwell systems.
As presented in Section 5.2.2, the Heterogeneous Multiscale Method has been analyzed in Hochbruck
et al. (2019) where the authors also considered the time integration of the resulting Maxwell system
(5.32). Although this system does not inherit any memory effects, the fully discrete error has been
analyzed including the error of the HMM. On the other hand integro-differential Maxwell systems with
macroscopic polarization or magnetization have been analyzed. The Debye model from Section 3.1.3 is
an example of this class. In Li (2007) the authors studied the time discretization of these models and
analyzed the resulting method. To our knowledge there are no results concerning the combination of the
HMM for dispersive media and the time discretizations for the resulting integro-differential system. In
this thesis we do not close this gap but the combination of the references Hochbruck et al. (2019) and Li
(2007) should yield an error estimate for the time discretization of the FE-HMM.
The structure of this chapter is as follows. We start by briefly introducing standard time integration
schemes for first-order ordinary differential equations in the next section. The main part of this chapter
is dedicated to the approximation of the convolution integral. There are different possibilities one may
choose for this approximation. We decided to use the approach of recursive convolution first proposed
in Luebbers et al. (1990), which seems to suit the structure of the convolution kernels very well. This
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method is explained in Section 6.2 where we also discuss why we use this scheme. Finally, in Section
6.3 we present our fully discrete scheme and show some error estimates for special cases of convolution
kernels.
Throughout this chapter, in all quantities, we drop the notation indicating a dependence on the space
discretization, i.e., the macroscopic solution uHMM is denoted as u and micro solutions wM,h

` are denoted
as wM

` .

6.1 Time integration of first-order ordinary differential
equations

The theory in this section is standard and may be found in Hairer and Wanner (1996); Hairer et al. (1993,
2006). Before we start to consider the convolution integral in the next section, we give a brief overview
of time integration of ordinary differential equations of the form

M∂tu(t) + Au(t) = f(t) . (6.2)

For that purpose we introduce a uniform subdivision of [0, T ] in NT sub-intervals. Thus, the time step is
Mt = T

NT
and for n = 0, . . . , NT (not to be confused with the dimension of the Maxwell system) we use

the notation

tn = nMt , un = u(tn) .

We thus have

t0 = 0 , tNT = T .

There are many possible ways to discretize the equation (6.2) for example Runge–Kutta methods, expo-
nential integrators, Krylov subspace methods and many more. The time integrators considered in this
work all fit in the class of Runge–Kutta schemes.
In general, we are interested in successively computing solutions starting from the initial value u0 = u(0).
The schemes we use in this work are the explicit and implicit Euler method as well as the explicit Heun’s
method and the implicit Crank–Nicolson scheme. The last two are second order methods whereas the
first two have convergence order one. Let us recall how Runge–Kutta schemes are derived. We start by
the reformulation of (6.2) as

∂tu(t) = M−1 (f(t)− Au(t)) .

We find that

u(tn + Mt) = u(tn) +
Mtˆ

0

∂tu(tn + s) ds = u(tn) +
Mtˆ

0

M−1 (f(tn + s)− Au(tn + s)) ds , (6.3)

and apply a quadrature rule to the integral. Depending on the choice of the quadrature we get various
schemes, where we only recapture four classical representatives in the rest of this thesis.
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6.1.1 Explicit schemes

We start by repeating the explicit time integrators. These schemes have restricted stability regions, which
yields step size restrictions. For hyperbolic systems, as the macroscopic Maxwell system, these are known
as CFL conditions of the form

Mt ≤ CH .

This step size restriction makes the explicit methods unattractive for stiff ODEs, such as the discretization
of the Maxwell system. For parabolic problems the step size restriction is given as

Mt ≤ Ch2 ,

but we point out that the microscopic problems are not stiff and thus the application of explicit scheme
to the time dependent cell problems is a cheap and fast alternative.

Explicit Euler

The easiest method is the explicit Euler scheme, which originates from (6.3) by the use of the left
rectangular rule. The new solution un+1 is then computed by

un+1 = un + MtM−1 (fn − Aun) .

The explicit Euler scheme is of first order.

Heun’s method

The other explicit method we consider is Heun’s method. In (6.3) first use the trapezoidal rule. This
yields

un+1 = un + Mt
2 M−1 (fn+1 − Aun+1 + fn − Aun

)
,

and we use an explicit Euler step to approximate un+1. Thus, the complete 2 step scheme is given as

ũn+1 = un + MtM−1 (fn − Aun) , (6.4a)

un+1 = un + Mt
2 M−1 (fn + fn+1 − A

(
un + ũn+1)) . (6.4b)

Heun’s method is of second order with a slightly larger stability region but still we get a step size
restriction condition.
These two explicit schemes have been analyzed for the time integration of the Sobolev equation in
Bekkouche et al. (2019). As counterparts to the explicit schemes, which lack in stability, we recapture
two implicit schemes in the next section. These are used for the macroscopic time integration.

6.1.2 Implicit schemes

The explicit schemes from the previous section may have severe step size restrictions. An alternative
approach that yields stable methods are implicit time integration schemes. The drawback of these
methods is that the inversion of the stiffness matrix A is necessary, which causes higher computational
effort.
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Implicit Euler

Let us first recall the implicit Euler method, i.e.,

un+1 = un + MtM−1 (fn+1 − Aun+1) ,
which is equivalent to

un+1 = un + Mt (M + MtA)−1 (
fn+1 − Aun

)
.

This method is unconditionally stable and as the explicit Euler scheme of first order. It originates from
(6.3) by the use of a right rectangular rule.

Crank-Nicolson

We also consider the Crank–Nicolson scheme, which results from the trapezoidal rule as

un+1 = un + Mt
2 M−1 (fn − Aun + fn+1 − Aun+1) .

In contrast to the explicit Heun scheme we keep the un+1 on the right-hand side. This can be written as

un+1 = un + Mt
2

(
M + Mt

2 A

)−1 (
fn + fn+1 − 2Aun

)
.

The Crank-Nicolson schemes is a second order method which is unconditionally stable. The macroscopic
Maxwell system results in a stiff ODE. Thus, we prefer the use of an implicit scheme for its time dis-
cretization. This choice is supported by Hochbruck et al. (2015b) where the authors show that implicit
schemes can even outperform explicit methods for Maxwell’s equations.
After this short repetition of time integration, we turn our attention to the problems caused by the
convolution.

6.1.3 Problems for integro-differential equations

Let us point out that in general Runge–Kutta schemes are derived for ODEs of the form

∂tu(t) = f(t,u(t)) .

Here the right-hand side f depends on the time t and the solution u(t) at that time. Thus, the system (6.1)
does not fit in this setting since the whole history of the solution is present in the convolution integral.
This is the reason why we have to derive a suitable time integration scheme for the integro-differential
system. The starting point for this derivation is again (6.3) but now including the convolution, i.e.,

u(tn + Mt) = u(tn) +
Mtˆ

0

f(tn + s,u(tn + s)) +
tn+sˆ

0

G(tn + s− r)u(r) dr

 ds . (6.5)

The question is how to approximate the convolution integral. Therefore, the next section is concerned
with the approximation of the convolution.
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6.2 Approximating the convolution

The most challenging part in the equation (6.1) and thus in (6.5) is the convolution. The direct approach
for its approximation is to use a quadrature for the convolution integral. We briefly show this method
in the next section. Moreover, we highlight why it is not feasible to use this brute-force quadrature.
The approximation we choose relies on observations on the structure of the convolution kernel, which we
exploit. Therefore, in Section 6.2.2 we introduce the method of recursive convolution where we assume
that the convolution kernel is a decaying exponential. This method is not only reducing the amount
of solutions we have to store but also the convolution kernel itself is only required to be known for
less time steps. In Section 6.2.3, we comment on the use of memory variables, which again uses an
exponential structure of the convolution kernel. In the context of convolution approximation the method
of convolution quadrature proposed in Lubich (1988) is widely used. Nevertheless, to our knowledge it
has not been used in the context of dispersive Maxwell systems in time-domain.

6.2.1 Numerical quadrature

The easiest way to approximate a convolution integral is to use a brute-force quadrature. To be consistent
with the time discretization of the ODE we choose the same quadrature as for the respective Runge–
Kutta scheme. This is useful since the solution is then evaluated at the same steps as for the time
integration scheme. Assume that we use either the implicit Euler scheme or the Crank–Nicolson method.
A generalization to other Runge–Kutta schemes is straight forward as it relies on the respective quadrature
formula of the Runge–Kutta scheme.
We approximate the convolution integral at a time step tn by splitting it in n sub-intervals and using the
trapezoidal rule
ˆ tn

0
G(tn − s)u(s) ds =

n−1∑
k=0

ˆ tk+1

tk

G(tn − s)u(s) ds ≈
n−1∑
k=0

Mt
2 (G(tn − tk+1)u(tk+1) + G(tn − tk)u(tk)) .

The drawback of this approach is that we have to store all previous solutions to evaluate the convolution.
Moreover, the convolution kernel has to be evaluated for all tn − tk, k = 0, . . . , n. Together this yields
a tremendous amount of storage that is used for the evaluation of the convolution. Nevertheless, the
analysis of this approximation is probably straight forward since both, the Runge–Kutta schemes and
quadrature formulas, are understood very well. Over that, this method is applicable for every convolution
kernel.
Still, this approach is not feasible for implementation and therefore a different approach is considered in
the next section.

6.2.2 Recursive convolution

Instead of the brute-force quadrature we choose to use recursive quadrature. Let us first comment on the
idea why we chose to use this approach. There are basically two reasons. On the one hand one observes in
classic models such as the Drude or the Debye model that the convolution kernel is a decaying exponential.
On the other hand we have the definition (4.26) of the effective parameter and its time evolution is given
by the correctors w`(t). Thus, these solutions of the cell problems (4.33) determine the time evolution
of the convolution kernel. We saw in Section 4.4.5 that the convolution kernel is always bounded by
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its values at time t = 0. Moreover, in Section 4.4.7 we showed that there are constellations where the
convolution kernel is actually exponentially decaying. Thus, we think that the approximation by a linear
combination of exponential functions may yield a good approximation of the convolution kernel. In
Section 7.2.1 we show the decay property of some examples of micro structures and there we observe
again that the approximation via exponentials is very accurate. But here we also hit the point that we
did not yet consider, the quality of the approximation via exponential functions. The problem is that
although we showed that the general solution of the Sobolev equation is bounded we only showed the
decaying property for the special case where the damping parameter is strictly positive. This restricts us
in the error estimate since we do not have a convergence result for the approximation with exponential
functions. For the case where the convolution kernel is in fact an exponential, Li (2007) showed that
the recursive convolution leads to suitable convergence results. We now present the recursive convolution
which is found in Banks et al. (2006), Kelley and Luebbers (1996), and Luebbers et al. (1990).
The main assumption is that the convolution kernel is a matrix exponential, i.e., for full rank matrices
G0,G1 ∈ RNVH×NVH we have

G(t) = G0 exp (−G1t) . (6.6)

The key observation is that for s ∈ [0, tn] we get

G(tn − s) = G0 exp (−G1(tn − s)) = G0 exp (−G1(tn − tn−1 + tn−1 − s))

= G0 exp (−G1(tn − tn−1)) exp (−G1(tn−1 − s)) = G0 exp (−G1Mt) exp (−G1(tn−1 − s))

= G(Mt)G(0)−1G(0) exp (−G1(tn−1 − s)) = G(Mt)G(0)−1G(tn−1 − s) .
(6.7)

We denote the convolution at time tn with In and using equality (6.7) we find

In =
ˆ tn

0
G(tn − s)u(s) ds =

tn−1ˆ

0

G(tn − s)u(s) ds+
tnˆ

tn−1

G(tn − s)u(s) ds

=
tn−1ˆ

0

G(Mt)G(0)−1G(tn−1 − s)u(s) ds+
tnˆ

tn−1

G(tn − s)u(s) ds

= G(Mt)G(0)−1In−1 +
tnˆ

tn−1

G(tn − s)u(s) ds .

(6.8)

In equation (6.8) we see the recursive structure. Thus, for the convolution at time step tn we only need
the convolution at the previous time step tn−1 as well as the solution and convolution kernel that are
needed for the evaluation of the remainder integral

tnˆ

tn−1

G(tn − s)u(s) ds .

The approximation of this integral can be done by classic quadrature rules as in Section 6.2.1. At this
point there is no problem with storage since this integral is only evaluated in the time interval [tn−1, tn]. If
we choose for example the trapezoidal rule as in Siushansian and LoVetri (1997) we get the approximation
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as

tnˆ

tn−1

G(tn − s)u(s) ds ≈ Mt
2 (G(0)u(tn) + G(Mt)u(tn−1)) .

Here we see that the solution is only required for the current and previous time step whereas the convo-
lution kernel is still only necessary for t = 0 and t = Mt. This approximation yields the following second
order recursive definition of the convolution

I0 = 0 , (6.9)

In = G(Mt)G(0)−1In−1 + Mt
2
(
G(0)un + G(Mt)un−1) . (6.10)

Of course the choice of the quadrature for the remainder integral is not restricted to the trapezoidal rule.
But one should take care that the quadrature has the same order as the macroscopic time integration
scheme. In the case of a first order method the natural choice is a rectangular quadrature rule whereas
in the case of a second order scheme such as the Heun or the Crank–Nicolson method the right choice is
a quadrature rule that also is of second order, i.e., trapezoidal or midpoint rule. Thus for higher order
time integration schemes also higher order quadrature is mandatory to get the right order of convergence
for the time integration. With the recursive definition of the convolution in (6.8) and the approximation
in equation (6.10) we have a promising tool to implement an efficient time integration scheme for the
macroscopic Maxwell system.
Let us point out that the recursive convolution approach for first or second order time integration schemes
only needs knowledge of the convolution kernel for the two time points 0 and Mt. Since the time de-
pendence of the effective convolution kernel is given by the correctors w` this means that we only have
to solve the microscopic problems for the time interval [0,Mt] and not for the whole macroscopic time
interval [0, T ].
We now comment on the combination of the time integration schemes from Section 6.1 and the recursive
convolution. We consider the general system

∂tu(t) = M−1

f(t)− Au(t)−
tˆ

0

G(t− r)u(r) dr

 .

From the derivation of Runge–Kutta schemes we get

u(tn + Mt) = u(tn) +
ˆ Mt

0
M−1

(
f(tn + s)− Au(tn + s)−

ˆ tn+s

0
G(tn + s− r)u(r) dr

)
ds .

Let us demonstrate how we derive the recursive Crank–Nicolson scheme. We choose the trapezoidal rule
for the outer integral, which yields

u(tn + Mt) = u(tn) + Mt
2 M−1

(
f(tn)− Au(tn)−

ˆ tn

0
G(tn − r)u(r) dr

+f(tn + Mt)− Au(tn + Mt)−
ˆ tn+Mt

0
G(tn + Mt− r)u(r) dr

)
.

Now using the recursive definition of the convolution from (6.10) again with a trapezoidal rule yields the
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discrete scheme

un+1 = un + Mt
2 M−1 (fn + fn+1 − A

(
un + un+1)− In − In+1) , (6.11a)

In+1 = G(Mt)G(0)−1In + Mt
2
(
G(0)un+1 + G(Mt)un

)
. (6.11b)

For the implicit Euler method we proceed in the same way as for the Crank–Nicolson scheme, with the
only difference that we use the right rectangular rule. This yields

un+1 = un + MtM−1 (fn+1 − Aun+1 − In+1) , (6.12a)

In+1 = G(Mt)G(0)−1In + MtG(0)un+1 . (6.12b)

In general we suggest using the same quadrature rule for the approximation of the convolution as for the
macroscopic time integration.
In the next section we briefly comment on the use of memory variables instead of recursive convolution.
After that in Section 6.3, we present the fully discrete scheme using the recursive convolution presented
in this section.

6.2.3 Memory variables

This technique may also be known as the auxiliary differential equation (ADE) method. The assumption
(6.6) that the convolution kernel is an exponential could be used in another way. In

M∂tu(t) + Au(t) +
tˆ

0

G(t− s)u(s) ds = f(t) ,

we replace the convolution integral by a memory variable

I(t) :=
tˆ

0

G(t− s)u(s) ds .

This yields

M∂tu(t) + Au(t) + I(t) = f(t) . (6.13)

The naming is no coincidence. Evaluating the memory variable at a time tn should yield the same as the
convolution In.
Now consider the time derivative of the convolution using the exponential structure

∂tI(t) = ∂t

tˆ

0

G(t− s)u(s) ds =
tˆ

0

∂tG(t− s)u(s) ds+ G(0)u(t)

= −
tˆ

0

G0G1 exp (−G1(t− s)) u(s) ds+ G(0)u(t)

= −G0G1G
−1
0

tˆ

0

G0 exp (−G1(t− s)) u(s) ds+ G0u(t)

= −G0G1G
−1
0

tˆ

0

G(t− s)u(s) ds+ G0u(t) .
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This is a differential equation for the convolution

∂tI(t) + G0G1G
−1
0 I(t) = G0u(t) . (6.14)

Combining the equations (6.13) and (6.14) yields(
M

G−1
0

)
∂t

(
u(t)
I(t)

)
+
(

A INVH

−INVH
G1G

−1
0

)(
u(t)
I(t)

)
=
(

f(t)
0NVH

)
. (6.15)

For this system we can directly use a standard time integration scheme from Section 6.1. The implicit
Euler scheme applied to (6.15) reads

un+1 = un + MtM−1 (fn+1 − Aun+1 − In+1) , (6.16a)

In+1 = In + MtG0
(
un+1 −G1G

−1
0 In+1) . (6.16b)

In comparison to (6.12), the evolution of the memory variable or the convolution, respectively, is different.
To be more precise in the recursive convolution approach we need the value G(Mt) of the kernel. In
contrast, for the memory variable method we need to know the growth rate G1.
For this simple method one may use the Taylor expansion for the exponential (6.6) to derive

G(Mt)−1 = G−1
0 + MtG1G

−1
0 +O(Mt2) .

Inserting this representation in (6.12b) and neglecting higher order terms one can show the relation
between the two update formulas (6.12b) and (6.16b).
The next section is dedicated to the fully discrete scheme for the effective Maxwell system. We use the
recursive convolution presented in Section 6.2.2 combined with a time integration scheme from Section
6.1.

6.3 The fully discrete scheme and its error analysis

In Chapter 5 the space discretization of the system (4.32) has been derived. In the first parts of this
chapter we showed classic time integration schemes as well as some techniques for the approximation of
the convolution. In this section we combine all these methods, which eventually yields the fully discrete
scheme. The starting point is again the space discrete system (6.1). In the next section we show our
approach for the time integration and in Section 6.3.2 we present the fully discrete error analysis.

6.3.1 Recursive FE-HMM scheme for approximation of the effective solution

Consider the semi-discrete system (6.1) where we already applied our FE-HMM from Chapter 5.1 to the
macroscopic Maxwell system in space

M∂tU(t) + RU(t) +
tˆ

0

G(t− s)U(s) ds+ AU(t) = g(t)− J(t)U(0) . (6.17)

For convenience we introduce a right-hand side f as

f(t) = g(t)− J(t)U(0) .
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We comment on the evaluation of f later. Let us now focus on the convolution. As pointed out in Section
6.2 we assume that the convolution kernel is an exponential. The following procedure is similar to the one
in Chapter 5 in the sense that we first discretize on the macroscopic level and then on the microscopic
level.

Macroscopic time stepping

On the macro level we have a stiff ODE due to the Maxwell operator. Thus, we use either the recursive
implicit Euler or the recursive Crank–Nicolson scheme for time discretization. Both schemes have been
defined in Section 6.2.2.
Let us first present the implicit Euler scheme for the macroscopic Maxwell system

un+1 = un + MtM−1 (fn+1 − Aun+1 −Run+1 − In+1) , (6.18a)

In+1 = G(Mt)G(0)−1In + MtG(0)un+1 . (6.18b)

The Crank–Nicolson method is derived as in (6.11)

un+1 = un + Mt
2 M−1 (fn+1 + fn − Aun+1 − Aun −Run+1 −Run − In+1 − In

)
, (6.19a)

In+1 = G(Mt)G(0)−1In + Mt
2
(
G(0)un+1 + G(Mt)un

)
. (6.19b)

Let us highlight the properties of the algorithms (6.18) and (6.19). The matrices M, R and G(0) are
computed using the HMM. Thus, their computation relies on the solution of cell problems on sampling
domains. Those are solved a priori such that all quantities except G(Mt) are initially known for the time
integration. This only missing expression may also be computed a priori. We use a different time stepping
scheme on the micro level to evolve the cell correctors to Mt. With these solutions we then compute the
convolution kernels G(Mt).

Microscopic time stepping

For the macroscopic implicit Euler and Crank–Nicolson method we need the convolution kernel at Mt.
As pointed out, the time dependence of the convolution kernel stems from the solution of the Sobolev
equation. The space discretization in Section 5.3.2 is the starting point for our time stepping scheme.
The space discrete formulation is given in (5.50). We applied a conforming finite element method with
Lagrange elements introduced in Section 5.1.2. Thus, the system in (5.50) is equivalent to the system
(6.2) with right-hand side f ≡ 0. As discussed in Bekkouche et al. (2019) this is a non-stiff problem and
thus it is reasonable to apply explicit schemes to solve it. Therefore, we use the second order explicit Heun
scheme (6.4) for the time discretization of the micro problem. Introduce a subdivision of the interval
[0,Mt] in Nmic sub-intervals with step size Mtmic = Mt

Nmic
. Due to the vanishing right-hand side we find

for n = 0, . . . , Nmic − 1

w̃`
n+1 = wn` − Mtmic

(
Mmic)−1

Rmicwn` , (6.20a)

wn+1
` = wn` −

Mtmic

2
(
Mmic)−1

Rmic
(
wn` + w̃`

n+1
)
. (6.20b)

Here the initial value w0
` is an approximation resulting from a stationary PDE (5.53), which we again

solve with Lagrange finite elements. It is also used to compute G(0). Let us stress that the final time
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for the scheme (6.20) is Mt, the macroscopic step size. With the solution wNmic
` we approximate the

convolution kernel G(Mt), which is used in the macroscopic schemes (6.18) and (6.19), respectively.

The right-hand side and extra source

Let us comment on the evaluation of the extra source. For both macroscopic scheme we need to evaluate
the right-hand side, i.e.,

f(tn+1) = g(tn+1)− J(tn+1)u(0) .

For the recursive convolution approach we use the assumption (6.6). This transfers to the cell correctors
w` since those define the time dependence of the convolution kernel. As pointed out, the cell problems
for w` and w0

` only differ in the initial value. Thus, we assume that the structure of the cell corrector w0
`

is again given by a decaying exponential. Therefore, it is reasonable to assume for the extra source that
there exists full rank matrices J0, J1 ∈ RNVH×NVH such that

J(t)u0 = J0 exp(−J1t)u0 .

Consequently, a recursive definition of the extra source is given as

Jn+1u0 = J(Mt)J(0)−1Jnu0 . (6.21)

As for the convolution kernel we only need to compute J(0) and J(Mt). This is done before the macroscopic
time evolution.
With the evaluation of the right-hand side we have all ingredient at hand for the fully discrete scheme,
which is summarized in the next section.

The fully discrete scheme

In this section we eventually present our fully discrete scheme. In order to solve the macroscopic Maxwell
system modeling wave propagation in locally periodic structures we start on the micro level.
For each sampling domain we first solve the stationary cell problems (5.25), (5.53). The latter solution
is used as initial value for the evolution problem (5.52). We evolve using the Heun scheme (6.20) until
t = Mt, using Nmic time steps of size Mtmic. After that, all necessary solutions are available to compute
the macro finite element matrices.
Thus, we get back to the macro level where we use the recursive convolution in combination with either
the implicit Euler (6.18) or the Crank–Nicolson scheme (6.19) to compute the time evolution of the
Maxwell system. A sketch of the space discrete part of the scheme is shown in Figure 6.1.
In the next section we comment on error estimates concerning the time discretization and the fully discrete
scheme.

6.3.2 Fully discrete error analysis

In this section we comment on the fully discrete error analysis of the recursive FE-HMM scheme. In
contrast to the previous chapter we do not provide a rigorous error analysis here. In this chapter we
aim for an applicable scheme rather than its analysis. Moreover, we point out that for general cases the
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H

h

Figure 6.1: Sketch of the HMM: To solve a macroscopic problem with a (locally) periodic structure we
solve a micro problem of size δ. Here the small scale is resolvable. Thus, the information of the micro
problem is used to derive an effective parameter that has no microscopic oscillations. This effective
problem may be solved using the original mesh size H.

recursive convolution approach does not apply since the assumption (6.6) is not satisfied. Nevertheless,
let us present results for various sub problems of the recursive FE-HMM. We emphasize that this section
is a good starting point for the fully discrete error analysis of the presented scheme.
As in Chapter 5 first consider the error that occurs due to the approximation of the effective parameters.
All error estimates from that chapter are continuous in time. In Section 5.3.2, we analyzed the error of
the space discretization of the Sobolev equation. Moreover, we showed an estimate on the micro error in
Lemma 5.3.7. The first step in the direction of a fully discrete error estimate is to show an estimate for
the error between the exact effective convolution kernel at time tn denoted as G(tn) and its fully discrete
approximation GH,n. In Lemma 5.3.7, we considered the error of the exact kernel to the space discrete
approximation GH(tn). Hence, we have to estimate the error

GH,n −GH(tn) .

Here we may use the result concerning the fully discrete scheme for Sobolev equations given in (Bekkouche
et al., 2019, Corollary 3.15). The authors show that the error between the solution w`(tn) and its
approximation wh,n` by kth-order Lagrange elements and Heun’s method (6.20) is bounded by∥∥∥w`(tn)− wh,n`

∥∥∥
H1(Y ;RN )

≤ C
(
hk + Mt2mic

)
.

This result holds true if the solution has the regularity w` ∈ C3 (0, T ; Hk+1 (Y ;RN
))
.

The next step in the analysis of the recursive FE-HMM method is the quantification of the error due
to the exponential structure. To be more precise, the assumption (6.6) introduces a modeling error. To
our knowledge there is no general result about the approximation of solutions to Sobolev equations by
exponential functions. Still, we point out that the numerical experiments in Chapter 7 show that this
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approximation is accurate at least for various examples. In a nutshell there is an error of the form

min
G0,G1

∥∥GH,n −G0 exp(−G1tn)
∥∥
F
,

which has to be studied for each given microscopic structure separately.
If the convolution kernel is actually given as an exponential we may use results obtained for classic
polarization models. Here we reach the macro level and thus the final step in the error analysis is to
estimate the error of the recursive convolution approach. The main contribution to the error analysis of
integro-differential Maxwell system is found in Li (2007) and Li and Chen (2008), where in both references
the recursive convolution technique is used for time integration. The authors analyze the implicit Euler
method and the Crank–Nicolson scheme combined with recursive convolution for first and second order
Maxwell systems. For the analysis of time integration schemes with the use of memory variables in
dispersive media as in Section 6.2.3 we refer to Li (2011); Li and Zhang (2010). In the first reference
the authors analyze the Crank-Nicolson method in time, whereas in the second reference the explicit
leap-frog scheme is analyzed. Let us mention that one observes the expected convergence, i.e., second
order in time for both schemes. In Lanteri and Scheid (2013) a discontinuous Galerkin approach in space
is combined with a leap-frog scheme in time to solve a Maxwell–Debye system with the memory variable
method. Finally, we highlight Hochbruck et al. (2019) where the fully discrete error of the FE-HMM
for the vacuum Maxwell system (5.31) has been analyzed for algebraically stable Runge–Kutta schemes.
This is also a starting point for the analysis of the memory variable method since here we directly apply
classic Runge–Kutta schemes.
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CHAPTER 7

Implementation and numerical experiments

In this chapter we concentrate on the implementation of the recursive FE-HMM algorithm. We present the
approach of an efficient implementation, especially for the computation of the homogenized parameters
and the approximation of the convolution. The implementation of the program is done in the C++ library
deal.II (Arndt et al., 2020). Moreover, we present some numerical experiments to show the functionality
of the code in particular for cases that are not covered by the theory.
We start to describe the algorithmic approach in the next section where we comment on the approximation
of the parameters in Section 7.1.1 followed by a discussion of the convolution in Section 7.1.2. This
presentation of the results is followed by numerical examples related to the microscopic level in Section
7.2. In Section 7.3, we consider the macroscopic scheme and test the fully discrete scheme.

7.1 Algorithmic approach

Let us start with a short overview of the structure of deal.II programs. The solution of a PDE is
basically split in three parts. First the setup_system function is called. Here the degrees of freedom are
distributed and the memory is allocated. The second function is the assemble_system function, where
actually the finite element matrices are assembled. The last step is the solve function, which is used to
either solve a linear system of equations in the time independent case or introduces some kind of time
integration scheme for the evolution of the solution.
This division also suits the presentation from the previous chapters. More precisely, the Heterogeneous
Multiscale Method from Chapter 5 is found in the assembling process. The recursive convolution intro-
duced in Chapter 6, however, is implemented in the solve function.
The code presented here is an extension of the code provided in Hochbruck et al. (2019). We extended
this program to the use of the FESystem class. This enables an easy extension to systems with more
unknowns than the electric and magnetic field, which is important for the polarization and magnetization
we consider. Moreover, it is straight forward to use other than the curl conforming finite elements for
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the latter mentioned fields.
The code is provided [https://www.doi.org/10.5445/IR/1000129217].

7.1.1 Efficient parallel computation of the HMM parameters

The computation of the HMM parameters significantly depends on the structure of the heterogeneous
ones. More precisely, if the parameter is purely periodic it is completely independent of the macroscopic
scale. Thus, all cell problems can be solved on the unit cell Y or one chosen sampling domain Y κ (x̄).
In contrast, for a locally periodic parameter this is not true since it depends on the macroscopic scale.
For this case we use the sampling domains Y κ (x̄), which incorporate the macroscopic dependence. An
important observation is that all these transformed cell problems are independent of each other. Thus,
here is a potential for parallel computations. More exactly, a distribution of these independent problems
to different processes yields a parallel assembly of the finite element matrices.
The starting point for this parallel approach is the distribution of the cells, and thus the triangulation,
to different processes. Here we make use of the interface of deal.II to the p4est library (Burstedde
et al., 2011), which provides parallel distribution of meshes. Moreover, we use the Trilinos library
(Trilinos Project Team, 2020 (acccessed February 1, 2021) for parallel linear algebra. Details on the
distribution using p4est are found in Bangerth et al. (2012). The parallel solution of the cell problems
is the point where the HMM becomes really efficient. The distribution is part of the setup_system

function. We remark that this setup is also the point where we save allocated memory due to the use
of the recursive convolution. More precisely, if we used the brute force quadrature from Section 6.2.1
we would have to store all solutions. With the recursive approach this reduces to the solution from the
last step in time integration. Thus, we only store one solution, which is evolved through time. The same
holds true for the convolution kernel. Again with brute force quadrature we would have to store and
compute all kernels. Due to the recursive Crank–Nicolson scheme we only need two convolution kernel
finite element matrices.
After the system has been set up and the triangulation has been distributed, the next step is to call the
function assemble_system. Let us briefly comment how these matrices are assembled in the homogeneous
case, i.e., assume that Meff is know explicitly. This is classical for finite element methods. First we run
a loop over all cells of our triangulation. Within this loop we start to iterate over all quadrature points
of the present cell. Since we know the parameters, we evaluate them at the quadrature points. The
innermost loop runs over the degrees of freedom per cell and here we actually compute the element
matrix corresponding to the cell. Then leaving the loops over the degrees of freedom and the quadrature
points, the only thing that remains is to add the contribution of the cell to the global finite element
matrix. See Algorithm 1 for the pseudo code.
As explained in Chapter 5, the execution of line 3 in Algorithm 1 is in general not possible, since there is
no explicit representation of the effective parameters. Therefor we introduced the HMM in Section 5.2.1.
The application of a finite element method to the micro problem (5.22) yields a linear system for every
quadrature point x̄ and every macroscopic basis function

Mmic(x̄)ψi(x̄) = gmic
i (x̄) . (7.1)

The solution is used to compute an approximation of the finite element matrix as in (5.23). Thus, for
every macroscopic quadrature point x̄ we solve the discrete cell problem on the sampling domain Y κ (x̄).

https://www.doi.org/10.5445/IR/1000129217
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Algorithm 1 Assembly of finite element matrix
1: for K ∈ TH do
2: for q ∈ {1, . . . , QK} do
3: evaluate Meff (xqK)
4: for i, j ∈ K do
5: compute MK

i,j

6: end for
7: end for
8: M←M + MK

9: end for

In (7.1) we see that the finite element matrix on the microscopic level is independent of the macroscopic
basis function. Therefore, we first assemble the microscopic finite element matrix for a given quadrature
point and then loop over the macroscopic basis functions that are not zero on the considered cell. Here we
assemble the right-hand side, which depends on these basis functions. Finally, we solve the cell problems.
With these solutions we compute the element matrix, which is eventually added to the macroscopic finite
element matrix. The pseudo code for the above computation is shown in Algorithm 2.

Algorithm 2 Assembly of HMM finite element matrix
1: for K ∈ TH do
2: for q ∈ {1, . . . , QK} do
3: assemble Mmic(xqK)
4: for i ∈ K do
5: assemble gmic

i (xqK)
6: solve (7.1)
7: compute MK(xqK)
8: end for
9: MK ←MK + MK(xqK)
10: end for
11: M←M + MK

12: end for

In Algorithm 2, it is clearly evident that the different cell problems are independent of each other. Thus,
a distribution of the cells to different processes is suitable.
We point out that a generalization of the above algorithms to the other HMM parameters, especially
the time dependent ones, is straight forward. In addition to the matrix Mmic we have to assemble Rmic.
Moreover, the initial problem for wh` uses a different right-hand side. Of course, in the time dependent
case the solution of the cell problems iterates over all microscopic time steps, i.e., we solve (6.20).

7.1.2 Time integration and convolution approximation

The time integration procedure has been introduced in the previous chapter. Here, we comment on the
implementation of the schemes. Note, that both, the implicit Euler scheme (6.18) and the Crank–Nicolson
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method (6.19) are only implicit in the update of the new solution but not in the convolution. Thus, we
rewrite the both schemes by inserting (6.19b) and (6.18b) in (6.19a) and (6.18a), respectively. For the
implicit Euler scheme this yields

un+1 = un + Mt (M + Mt (A + R + MtG(0)))−1 (
fn+1 − (A + R + MtG(0)) un −G(Mt)G(0)−1In

)
.

(7.2)

The update for the Crank–Nicolson scheme is

un+1 = un + Mt
2

(
M + Mt

2

(
A + R + Mt

2 G(0)
))−1

(
fn+1 + fn − 2

(
A + R + Mt

4 (G(Mt) + G(0))
)

un

−
(
I + G(Mt)G(0)−1) In) .

(7.3)

The updates in (7.2) and (7.3) basically consist of two steps. First, we evaluate the expression in the
right most parenthesis. Thereafter, we evaluate the multiplication by the inverse, which is actually done
by solving the equivalent linear system. Eventually, we update the solution and perform the recursive
quadrature of the convolution as in (6.19b) and (6.18b).
In addition to the recursive FE-HMM algorithm for the macroscopic Maxwell problem we also provide a
code for solving the cell problems separately. This code is used in Section 7.2.1 where we consider four
different microscopic structures and their corresponding effective parameters. This program is based on
the step 4 tutorial from the deal.II page.

Remark 7.1.1. We remark that all linear system that occur in our algorithm are solved using either the
CG or GMRES method implemented in the library.

Exponential least squares fit

In the next section we frequently use exponential least squares fitting. This is to check how accurate the
assumption in (6.6) is. The method we use for this fitting is the lsqcurvefit function in Matlab. The
data is taken from the components of the parameters that were approximated by the solution of the cell
problems. The function also provides a residual error that is stated several times.
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7.2 Numerical examples on the microscopic level

In this section we are finally in the position to show numerical experiments of the Recursive FE-HMM
method. Before we actually consider the macroscopic Maxwell system, we show results on the micro-
scopic level. Therefore, in the next section we introduce four different microscopic structures, show the
corresponding effective parameters and demonstrate the convergence of the numerical approximation.
For all these parameters we examine how close the corresponding convolution kernel is to an exponential
function.

7.2.1 Microstructures and cell correctors in the conductivity setting

We study four different material parameters in the setting of (4.2), which can be equivalently written as
(4.11) for NE = NH = 0. Thus, for a given permittivity and conductivity we aim to solve the system
(4.37) with effective parameters as in (4.38). In all examples below the permeability µ = µ0 is assumed to
be the vacuum permeability. Therefore, we only have to compute the entries of the effective parameters
that belong to the electric field.
All the parameter definitions that follow are on the unit cell Y = (− 1

2 ,
1
2 )3. This cell is exactly what is used

to determine the effective parameters in the process of homogenization and represents the microscopic
scale. The macroscopic definition of the heterogeneous parameters is straight forward due to periodicity.

Layered material

The first parameter we study is a layered material that varies only in y1 direction. Consider the permit-
tivity and conductivity given as

ε(y) =

ε1, y1 < 0

ε2, else
, σ(y) =

σ1, y1 < 0

σ2, else
for y ∈ Y . (7.4)

This material is isotropic in both composites. As shown in the Appendix A.3, in this setting it is possible
to compute the effective parameters analytically. They are given as

εeff =


2ε1ε2
ε1+ε2 0 0

0 ε1+ε2
2 0

0 0 ε1+ε2
2

 , σeff =


2(ε21σ2+ε22σ1)

(ε1+ε2)2 0 0
0 σ1+σ2

2 0
0 0 σ1+σ2

2

 ,

Geff(t) =


− 2(ε1σ2−ε2σ1)2

(ε1+ε2)3 e−
σ1+σ2
ε1+ε2

t 0 0
0 0 0
0 0 0

 , J0(t) =


− (ε1σ2−ε2σ1)(ε1−ε2)

(ε1+ε2)2 e−
σ1+σ2
ε1+ε2

t 0 0
0 0 0
0 0 0

 .

It is reasonable that the effective material parameters are anisotropic. Observe how the direction of the
layer is visible in the effective parameters. Especially, the convolution kernel and the extra source, which
are only present due to homogenization vanish for the y2 and y3 component. Note that in this setting
the convolution kernel and the additional source are in fact exponential functions.
For the numerical experiments we choose ε1 = 1 = σ1, ε2 = 2 and σ2 = 4 as well as the final time T = 10.
In Figure 7.1 we show the only non-zero component of the stationary and time dependent corrector at
initial time and at t = 5. Note, how the jump in the parameters is covered in the correctors. They
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(a) wM
1 (b) w1(0) (c) w1(5)

Figure 7.1: Correctors for layered material. 7.1(a) shows the stationary corrector related to the permit-
tivity ε. In 7.1(b) we show the initial value of the time dependent corrector, which depends on both ε
and σ. 7.1(c) shows the time dependent corrector after 512 time steps at T = 5. Note, that we use a
logarithmic scale, which highlights the exponential decay of the corrector w1 over time.

evolve linearly in the same direction. Additionally, the stationary corrector wM and the time dependent
corrector w have a very similar shape. Finally, the decay of the corrector w is clearly evident as well.
Next we present numerical results concerning the layered parameter. In this setting we use the exact
effective parameters and compute the errors with respect to those. More precisely, we show the errors∥∥εeff − εHMM∥∥

F
,
∥∥σeff − σHMM∥∥

F
, max

t∈[0,T ]

∥∥Geff(t)−GHMM(t)
∥∥
F
,

for various values of h with fixed Mt = 10
1024 computed with the second order Heun method. Note that

this is the micro error and that the modeling error in this case vanishes due to periodicity.
Let us mention that due to the structure of the parameter, which has its discontinuity in the middle
of the domain, we get very good approximations if we hit this jump with our triangulation, i.e., for
values of h = 1

2k for k ∈ N. This explains our choice of discretization parameters. The spatial errors
for first order Lagrange elements are shown in Figure 7.2 and Table 7.1. If we consider this parameter
as a microscopic structure the theory from Chapter 5 is not valid, since the parameter has not enough
regularity. However, for the elliptic and parabolic problems on the unit cell we expect an order reduction
due to the discontinuity, which suggests first order of convergence for this parameter choice.
As next step we consider the error in time for the explicit Euler and the Heun method. We explained
in Chapter 6 that those schemes have been analyzed in Bekkouche et al. (2019) for the time integration
of Sobolev equations. Thus, we expect first order of convergence for the explicit Euler and second order
for the Heun scheme. In Figure 7.3 and Table 7.2 we show the corresponding convergence plot and rates.
We observe that both schemes match their proposed convergence rates. In this example even very coarse
time steps yield good results.
Following the convergence study we briefly comment on the exponential structure. In this example we
have the exact representation of the only non zero component of the convolution kernel as

Geff
11 (t) = − 8

27e− 5
3 t .
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Figure 7.2: Convergence in space for second order Heun method with time step Mt = 10
1024 and first order

Lagrange elements.

∥∥εeff − εHMM
∥∥
F

∥∥σeff − σHMM
∥∥
F

max
t∈[0,T ]

∥∥Geff(t)−GHMM(t)
∥∥
F

h / dofs rate rate rate
1/8 0.16667 - 0.72222 - 0.2963 -
1
3/64 0.05128 1.07 0.21039 1.12 0.05051 1.61

1
7/512 0.02151 1.03 0.08695 1.04 0.01715 1.27

1
15/4096 0.00995 1.01 0.04000 1.02 0.00723 1.13
1
31/32768 0.00480 1.01 0.01923 1.01 0.00334 1.07
1
63/262144 0.00236 1.00 0.00943 1.00 0.00160 1.03

Table 7.1: Convergence rates for layered parameter for fixed time step Mt = 10
1024 with second order Heun

method and first order Lagrange elements.
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Figure 7.3: Convergence in time for the layered material parameters for the first order explicit Euler
scheme and second order explicit Heun’s method for h = 1

63 .
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max
t∈[0,T ]

∥∥Geff(t)−GHMM(t)
∥∥
F

Explicit Euler Heun
Mt rate rate
10
8 0.57555 - 0.60788 -
10
16 0.11510 2.32 0.04316 3.82
10
32 0.03597 1.68 0.00742 2.54
10
64 0.01568 1.20 0.00166 2.16
10
128 0.00739 1.09 0.00160 0.05
10
256 0.00361 1.03 0.00160 0
10
512 0.00191 0.91 0.00160 0
10

1024 0.00160 0.26 0.00160 0

Table 7.2: Convergence of the explicit Euler scheme and the Heun method for fixed h = 1
63 and 262144

degrees of freedom

We apply an exponential least squares fitting to the data that originates from the finest resolution in space
and time, i.e., h = 1

63 and Mt = 10
1024 . The result using the default settings from Matlabs lsqcurvefit

function is the exponential function −0.294613e−1.65536t. The squared error in the `2-norm of the fitting
to our data is

1024∑
k=0

(
−0.294613e−1.65536kMt −GHMM

11 (kMt)
)2 ≈ 2.1141× 10−7 .

The maximal error between the exact kernel and the exponential fit is

max
t∈[0,T ]

∣∣∣∣− 8
27e− 5

3 t + 0.294613e−1.65536t
∣∣∣∣ =

∣∣∣∣− 8
27 + 0.294613

∣∣∣∣ ≈ 0.00168 .

Here we find precisely the error that we observe for the finest resolutions in the Tables 7.1 and 7.2. This
indicates that the error of the exponential fit is dominated by the error of our finite element method, at
least for the resolution presented here.
The layered parameter from this section shows the expected rates of convergence in time. In space,
however, we lose one order of convergence due to the discontinuity of the parameter. Nevertheless, here
we have an exact solution and even more the convolution kernel in this setting is explicitly given as an
exponential function. We exploit this fact in Section 7.3.2.

Continuous parameter

In this section we consider a microscopic structure that is given by the smooth parameter choice

ε(y) = 1
2 (a+ sin (2πy1)) (a+ sin (2πy2)) (a+ sin (2πy3)) ,

σ(y) = 1
2 (b+ sin (2πy1)) (b+ sin (2πy2)) (b+ sin (2πy3)) ,

(7.5)

and thus ε and σ are both elements of C∞# (Y ;R). Thus, if we choose this as microscopic structure, the
theoretical results in the Lemmas 5.2.3, 5.3.2 and 5.3.7 hold true. In our simulations we use the specific
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choice

a =
√

2, b = 2 .

As shown in Jikov et al. (1994) the corresponding effective permittivity is the identity, i.e., εeff = I3×3.
In Figure 7.4, we show a contour plot of this parameter and a plot of a slice for y2 = 1

4 .

(a) 3d contour plot. (b) 2d slice for y2 = 1
4 .

Figure 7.4: Smooth periodic parameter. The maximal value is (
√

2+1)3

2 for y = ( 1
4 ,

1
4 ,

1
4 ).

For the computation of the parameter we used h = 1
64 and the Heun method with Mt = 10

1024 and end time
T = 10. The first component of the correctors for this parameter are shown in Figure 7.5. Observe in
Figure 7.5(a) that the first component of the stationary corrector only varies in the y1-direction but is not
linear as for the layered parameter. The time dependent corrector has variations in all space directions.
Moreover, the change of the corrector over time is evident by comparing Figure 7.5(b) with Figure 7.5(c).
In addition to the change in the shape of the corrector we clearly see its decay over time.
We point out that this parameter choice leads to an isotropic effective parameter set, and thus we only
show the first component of the correctors since the others have the same shape with respect to the space
direction.
Before we study the convergence rates we comment on the error computation without exact solution.
We compute the error between different levels of refinement either in space or time. For errors erri and
erri+1 on neighboring levels we compute the experimental order of convergence (EOC) as

EOC = log2

(
erri

erri+1

)
.

In Figure 7.6(a) and Table 7.3 we show the convergence rates for the spatial discretization with fixed
time step Mt = 10

1024 and Heun’s method. For all parameters we observe second order of convergence for
first order elements as expected.
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(a) wM,h
1 (b) wh1 (0) (c) wh1 (5)

Figure 7.5: Contour plot of the first components of the correctors related to the continuous parameter.
7.5(a) shows the stationary corrector related to ε. 7.5(b) and 7.5(c) are the correctors at the initial value
t = 0 and after 512 time steps (Mt = 10

1024 ) with h = 1
64 . The shape of the time dependent corrector

changes. Moreover, the decay over time is evident.
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Figure 7.6: Convergence for the continuous parameter. The spatial errors are computed with fixed time
step Mt = 10

1024 , whereas the time error uses fixed mesh size h = 1
64 .
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∥∥αHMM
i − αHMM

i+1
∥∥
F

max
tn

∥∥αHMM
i (tn)−αHMM

i+1 (tn)
∥∥
F

α = ε α = σ α = G α = J
h/i EOC EOC EOC EOC
1
2/1 0.46502 - 0.54481 - 0.31914 - 0.38524 -
1
4/2 0.02983 3.96 0.03495 3.96 0.0309 3.37 0.02471 3.96
1
8/3 0.17706 -2.57 0.01086 1.69 0.65253 -4.40 0.34326 -3.8
1
16/4 0.03448 2.36 0.00014 6.26 0.18901 1.79 0.06909 2.31
1
32/5 0.00827 2.06 0.00291 -4.36 0.0293 2.69 0.01363 2.34
1
64/6 0.00208 1.99 0.00072 2.01 0.00737 1.99 0.00344 1.99

Table 7.3: Convergence rates for the continuous parameter between different levels of spatial refinement
for fixed time step Mt = 10

1024 with the second order Heun method.

max
t∈[0,T ]

∥∥GHMM
i (t)−GHMM

i+1 (t)
∥∥
F

Heun
Mt/i EOC
10
128/1 0.04450 -
10
256/2 0.00792 2.49
10
512/3 0.00166 2.25
10

1024/4 0.00038 2.12

Table 7.4: Convergence of Heun’s method for fixed h = 1
64 and different levels of refinement in time.

The convergence in time is shown in Figure 7.6(b) and Table 7.4. In the convergent region we see the
expected second order of convergence. The computation fails for time steps greater or equal Mt = 10

32 ,
which is probably due to the step size restriction for the explicit scheme.

In this example it is still possible to get exact results for the stationary effective parameters. To our
knowledge this is not true for the time dependent convolution kernel and extra source. Thus, we take a
look at the time evolution of these parameters as results of our computation. In Figure 7.7, we show the
convolution kernel and the extra source evolving in time. Moreover, we present two possible exponential
functions that are fitted to the data from our computation. The errors between the fitting with one
exponential function and the data are

1024∑
k=0

(
GHMM

11 (kMt)− 0.697425e−3.679396kMt)2 ≈ 0.0018 ,

1024∑
k=0

(
JHMM

11 (kMt)− 0.477970e−3.313265kMt)2 ≈ 6.4539× 10−4 .

An improvement is the approximation with a sum of two exponential functions. The overall error for this
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(a) Convolution kernel G11(t)

0 1 2 3 4 5 6 7 8 9 10

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

t

JHMM
11

0.477970e−3.313265t

0.283345e−2.788462t + 0.201077e−4.522874t

(b) Extra source J11(t)

Figure 7.7: Semi logarithmic plot with exponentially fitted functions of absolute value of convolution
kernel (a) and extra source (b) for the continuous parameter.

fitting is
1024∑
k=0

(
GHMM

11 (kMt)− 0.414434e−3.053332kMt − 0.294314e−5.195688kMt)2 ≈ 1.9817× 10−6 ,

1024∑
k=0

(
JHMM

11 (kMt)− 0.283345e−2.788462kMt − 0.201077e−4.522874kMt)2 ≈ 5.3744× 10−7 .

Thus, even in this complicated example we find exponential functions that are close to the data and
therefore to the effective parameters. Hence, the recursive convolution scheme is applicable. Moreover,
the use of a sum of exponential functions for the fitting yields a generalization, which is probably more
accurate.
If we use this parameter as microscopic structure in our scheme the regularity enables us to apply the
theory from Chapter 5. We show results for this setting in Section 7.3.3, but we emphasis that this
regularity is not to be expected in practice. Especially, for composite materials discontinuous parameters
are natural to occur.

Circular inclusion

The next example we consider is a circular inclusion. This could correspond to a gas that is enclosed
within some other material. Here we are more general than in the first two examples in the sense that
we allow for local periodicity. Thus, for a macroscopic x ∈ Ω we define a radius 0 ≤ r(x) ≤ 0.5. Now for
y ∈ Y consider

ε(x, y) =

ε1, ‖y‖2 < r(x)

ε2, else
, σ(x, y) =

σ1, ‖y‖2 < r(x)

σ2, else
. (7.6)

This parameter is locally periodic since the radius depends on the macroscopic variable. We highlight the
study of this parameter in Banks et al. (2006), which also covers the Debye setting and different radii.
In Figure 7.8, we show the inclusion for the radius r(x) = 0.4. For now, we fix this radius.
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Figure 7.8: The unit cell with circular inclusion with radius r = 0.4.

(a) wM,h
1 (b) wh1 (0) (c) wh1 (5)

Figure 7.9: Contour plots of correctors corresponding to the circular inclusion with radius r = 0.4.

Moreover, we choose the values ε1 = 1 = σ1, ε2 = 2 and σ2 = 4. Due to the symmetry of the circular
inclusion, the effective parameters are isotropic. This again corresponds to corrector components that are
similar with respect to their respective space direction. Hence, we only show the first components of the
cell correctors in Figure 7.9. For the computation we used h = 1

64 , final time T = 10 with 1024 steps and
the second order Heun scheme. We observe that the circular inclusion is represented in the correctors
themselves and as in the layered case the initial value of wh1 is similar to the stationary corrector wM,h

1 .
The decay of the time dependent corrector is also evident. In Figure 7.10 and Table 7.5 we show the
error between neighboring levels of spatial refinement for fixed time step Mt = 10

1024 . Although we do not
see a uniform rate, the overall decay is evident.
In Table 7.6, we show the experimental order of convergence in time for fixed h = 1

64 . The proposed
second order of convergence is reflected in the data. For the finest resolution in space and time, the
effective permittivity and conductivity are given as

εeff ≈ 1.69493 I3 , σeff ≈ 3.0421 I3 .

For the time dependent parameters we again use an exponential fitting. The result concerning the
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Figure 7.10: Convergence plots for circular inclusion with second order Heun method. Figure 7.10(a)
shows the spatial convergence for fixed time step Mt = 10

1024 . In Figure 7.10(b), we fixed h = 1
64 and used

different time steps. ∥∥αHMM
i − αHMM

i+1
∥∥
F

max
tn

∥∥αHMM
i (tn)−αHMM

i+1 (tn)
∥∥
F

α = ε α = σ α = G α = J
h/i EOC EOC EOC EOC
1
4/1 0.28785 - 0.92075 - 0.07481 - 0.05721 -
1
8/2 0.01204 4.58 0.04518 4.35 0.00404 4.21 0.00907 2.66
1
16/3 0.00756 0.67 0.02784 0.70 0.00636 -0.66 0.00515 0.82
1
32/4 0.00140 2.44 0.00568 2.29 0.00050 3.68 0.00149 1.79
1
64/5 0.00305 -1.13 0.01017 -0.84 0.00048 0.04 0.00102 0.54
1

128/6 0.00037 3.02 0.00146 2.80 - - - -

Table 7.5: Convergence between different levels of spatial refinement for circular inclusion. The time
integration scheme is Heun’s method with Mt = 10

1024 .

max
tn

∥∥GHMM
i (tn)−GHMM

i+1 (tn)
∥∥
F

Heun
Mt/i EOC
10
8 /2 209.115 -
10
16/3 1.04921 7.64
10
32/4 0.01391 6.24
10
64/5 0.00218 2.67
10
128/6 0.00042 2.39
10
256/7 0.00009 2.18
10
512/8 0.00002 2.09
10

1024/9 0.00001 2.05

Table 7.6: Convergence for circular inclusion of Heun’s method for fixed h = 1
64 .
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Figure 7.11: Semi logarithmic plot of convolution kernel (a) and extra source (b) including fitted expo-
nential functions for circular inclusion.

convolution kernel is shown in Figure 7.11. Here we see that one exponential function fits the data very
well. To be exact, the error of the approximation

GHMM
11 (t) ≈ 0.049545e−1.828981t ,

is given as

1024∑
k=0

(
GHMM

11 (kMt)− 0.049545e−1.828981kMt)2 ≈ 3.2837× 10−8 .

For the extra source we find the approximation

JHMM
11 (t) ≈ 0.042669e−1.834988t ,

which has an error that is of the same order as the one for the convolution kernel. Therefore, we are in a
situation where we expect that the use of the recursive convolution method is beneficial since the kernel
is close to an exponential.

Split ring resonator

Let us now consider a micro structure that occurs in the field of meta materials. These materials are
artificial composites that may have (electromagnetic) properties that are not observed in nature. In
Figure 7.12, we show a unit cell from which a meta material may be constructed by periodicity. This cell
consists of eight split ring resonators. Each resonator consist of two concentric rings, which have a cut at
opposite sides. The exact definition of the parameter in the unit cell is found in the microproblem.cc

program. The part in Figure 7.12 that is red has permittivity ε = 2 and conductivity σ = 4. The
permittivity in the rest of the cell is equal to ε0, i.e., ε = 1 whereas the conductivity is split further. The
ring resonators are fixed on crossing plates, which have conductivity σ = 1. All the rest of the cell has
zero conductivity.
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Figure 7.12: Split ring resonator unit cell.

(a) wM,h
1 (b) wM,h

2 (c) wM,h
3

Figure 7.13: Stationary corrector components of the split ring resonator unit cell.

In Figure 7.13, we show all components of the stationary corrector. The first and third component are
similar with respect to their space direction. The second component, however, looks different. This
observation is also valid for the initial values of the time dependent corrector wh as seen in Figure 7.14.
Again observe that the stationary corrector and the initial values of the time dependent corrector have a
similar shape. Figure 7.15 shows these components at t = 5. Here the change of the scale is important
to recognize the decay in all components.
Our computation results in the following effective anisotropic stationary parameters

εeff =


1.04896 0 0

0 1.0527 0
0 0 1.04896

 , σeff =


2.692 08× 10−1 0 0

0 3.221 16× 10−1 0
0 0 2.692 08× 10−1

 .

In Table 7.7, we show the relative error between different levels of refinement. Here it is important to
note that the thickness of the resonators in our example is 0.1. This implies that we need at least 10
refinements in each space dimension to be able to resolve the split ring resonator in our simulations.
The two components GHMM

11 (t) and GHMM
22 (t) of the convolution kernel and the extra source including
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(a) wh1 (0) (b) wh2 (0) (c) wh3 (0)

Figure 7.14: Initial value of the components of the time dependent corrector corresponding to the split
ring resonator.

(a) wh1 (5) (b) wh2 (5) (c) wh3 (5)

Figure 7.15: Value of the components of the time dependent corrector corresponding to the split ring
resonator after 512 time steps, i.e., at t = 5.

∥∥αHMM
i − αHMM

i+1
∥∥
F

max
tn

∥∥αHMM
i (tn)−αHMM

i+1 (tn)
∥∥
F

α = ε α = σ α = G α = J
h/i EOC EOC EOC EOC
1
8/1 0.07310 - 0.59439 - 0.12084 - 0.02407 -
1
16/2 0.01793 2.03 0.04039 3.88 0.10001 0.27 0.02048 0.23
1
32/3 0.00758 1.24 0.07951 -0.98 0.03394 1.56 0.00674 1.60
1
64/4 0.01130 -0.58 0.04286 0.89 0.01723 0.98 0.00693 -0.04
1

128/5 0.00599 0.92 0.03928 0.13 - - - -

Table 7.7: Convergence table for split ring resonator. We used Heun’s method with stepsize Mt = 1
168
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max
tn

∥∥GHMM
i (tn)−GHMM

i+1 (tn)
∥∥
F

Heun
Mt/i EOC
5
4/2 72.72913 -
5
8/3 0.16402 8.79
5
16/4 0.01654 3.31
5
32/5 0.00281 2.56
5
64/6 0.00057 2.31
5

128/7 0.00013 2.15
5

256/8 0.00003 2.07
5

512/9 0.00001 2.04

Table 7.8: Convergence for split ring resonator of Heun’s method for fixed h = 1
64 .
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(a) Convolution kernel
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(b) Extra source

Figure 7.16: Exponential fit for absolute value of convolution kernel (a) GHMM
11 (t), GHMM

22 (t) and extra
source (b) JHMM

11 (t), JHMM
22 (t) of SRR.

fitted exponential functions are shown in Figure 7.16. Here we observe that still for this complex pa-
rameter the approximation using at least two exponential functions is very accurate. The error is of
order 10× 10−7, which is a lot smaller than the spatial error for this resolution. Thus, in a macroscopic
Maxwell system it is feasible to use the recursive convolution or a memory variable approach.

We point out that the parameter values in this setting are not physically relevant. Nevertheless, this
example shows that our numerical method covers this kind of structures and an experiment with physically
relevant parameters should be possible.

After this study of different micro structures for the Maxwell system with conductivity we proceed to
consider an example for the Maxwell–Debye setting from Section 3.1.3.
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7.2.2 Microstructure in the Debye setting

Let us consider a more complex setting than the one from the previous examples. Here we consider the
Maxwell–Debye system discussed in Section 3.1.3 and Section 4.6. Thus, the heterogeneous parameters
are the instantaneous permittivity εδ∞ and the relaxation time τ δ. Moreover, we assume that the static
frequency εs is constant, which yields Mεδ = εs − εδ∞. The parameters are chosen to vary only in y1

direction as

ε(y) =

1, y1 < 0.1

2, else
, τ(y) =

1, y1 < 0.1

3, else
, for y ∈ Y , εs = 4 , µ = 1 .

As in the layered setting for conductivity we computed the exact effective parameters that correspond to
the effective Maxwell system (4.77). We find the effective mass parameters

εeff =


5
4

7
5

7
5

 , Meff
P =


5
13

2
5

2
5

 ,

and the effective damping

Reff
EE =


35
12

31
15

31
15

 , Reff
EP = Reff

PE =


− 145

156

− 11
15

− 11
15

 , Reff
PP =


155
507

4
15

4
15

 .

The most interesting part are the effective convolution kernels, which may be computed using the formu-
lation from Section 4.6 and the techniques from the Appendix A.3. All these kernels are given as linear
combination of two exponential functions,

Geff
EE(t) = G1

EEe−
20−3

√
43

26 t + G2
EEe−

20+3
√

43
26 t ,

Geff
EP(t) = Geff

PE(t) = G1
EPe−

20−3
√

43
26 t + G2

EPe−
20+3

√
43

26 t ,

Geff
PP(t) = G1

PPe−
20−3

√
43

26 t + G2
PPe−

20+3
√

43
26 t ,

where G1
EE,G2

EE,G1
EP,G2

EP,G1
PP,G2

PP ∈ R3×3 are constant matrices. Thus, although the damping
parameter in the Maxwell–Debye setting is only positive semi-definite we find an exponentially decaying
convolution kernel, although with two exponential functions. This example with exact solution shows
that a generalization of our scheme to more than one exponential function is mandatory.

7.3 Numerical examples for the HMM

Let us now turn to the macroscopic Maxwell and the recursive FE-HMM. We start with a reformulation
of Maxwell systems in dimensionless form. Then, in Section 7.3.2 we show a numerical experiment with
exact solution in the purely periodic setting based on the layer parameter from the previous section. The
HMM error is examined in Section 7.3.3.

7.3.1 Dimensionless Maxwell system

In our numerical experiments we consider various Maxwell systems where we always face the problem of
possibly very small or big parameter values. For example, the permittivity of free space, which enters the
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Maxwell system is of order 1× 10−12. Since these small values could lead to precision errors we derive a
rescaled system, which is also dimensionless. In our numerical examples we consider either the Maxwell
system with conductivity (3.10) with µr = 1 or the Maxwell–Debye system introduced in Section 3.1.3.
Thus, consider a general Maxwell system with polarization

ε0ε∂tE(t, x) + ∂tP(t, x) + σE(t, x)− curl H(t, x) = −J(t, x) ,

µ0∂tH(t, x) + curl E(t, x) = 0 .

Recall the definition of the vacuum speed of light and the vacuum impedance

c = 1
√
ε0µ0

≈ 3× 108 m s−1 , Z0 =
√
µ0

ε0
≈ 120πV A−1 .

For a given unit electric field strength E0 and a reference length scale L we introduce the following
unit-free variables

t̄ = ct

L
, x̄ = x

L
, σ̄ = σLZ0 ,

Ē(t̄, x̄) = 1
E0

E(t, x) , H̄(t̄, x̄) = Z0

E0
H(t, x) , P̄(t̄, x̄) = cZ0

E0
P(t, x) , J̄(t̄, x̄) = LZ0

E0
J(t, x) .

From these variables we get the dimensionless Maxwell system as

ε∂t̄Ē(t̄, x̄) + ∂t̄P̄(t̄, x̄) + σ̄Ē(t̄, x̄)− curlx̄ H̄(t̄, x̄) = −J̄(t̄, x̄) ,

∂t̄H̄(t̄, x̄) + curlx̄ Ē(t̄, x̄) = 0 .

Let us also consider the case of a Debye polarization, i.e.,

∂tP(t, x) + 1
τ

P(t, x)− ε0
Mε
τ

E(t, x) = 0 .

With the scaled variables from above we find the dimensionless counterpart as

∂t̄P̄(t̄, x̄) + 1
τ̄

P̄(t̄, x̄)− Mε
τ̄

Ē(t̄, x̄) = 0 ,

where the scaled relaxation time is defined as

τ̄ = τc

L
.

Observe that the quantities ε and Mε are already unit-free and thus no rescaling is needed for those. At
the end of this short section on scaling we present the both dimensionless Maxwell system that are used
in the remainder. Here, we write all rescaled components without the bar. On the one hand we consider
the dimensionless Maxwell system with conductivity

ε∂tE(t, x) + σE(t, x)− curl H(t, x) = −J(t, x) , (7.7a)

∂tH(t, x) + curl E(t, x) = 0 , (7.7b)

and on the other hand the unit-free Maxwell–Debye system

ε∂tE(t, x) + Mε
τ

E(t, x)− 1
τ

P(t, x) + σE(t, x)− curl H(t, x) = −J(t, x) , (7.8a)

∂tP(t, x) + 1
τ

P(t, x)− Mε
τ

E(t, x) = 0 , (7.8b)

∂tH(t, x) + curl E(t, x) = 0 . (7.8c)

These two dimensionless Maxwell systems will be used in the remaining part of this chapter.
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7.3.2 A test case with exact solution

The first macroscopic example we consider is that of a layered material, which only varies in one space
dimension. Representative for this case is the first parameter presented in Section 7.2.1. As shown, this
situation allows to compute the effective parameters analytically. Moreover, in this setting we already saw
that the convolution kernel is indeed an exponential and thus the approach via recursive convolution is
perfectly justified. A drawback of this example is that the parameter is discontinuous and thus the micro
error estimate does not hold true. Nevertheless, we still see the convergence rates on the macroscopic
level.
Let us give the configuration of the present example. We consider the domain Ω = (0, 1)3 and use
perfectly conducting boundary conditions. On the unit cell Y = (− 1

2 ,
1
2 )3 we define the parameter as

before

ε(y) =

1, y1 < 0

2, else
, σ(y) =

1, y1 < 0

4, else
, µ(y) = 1 .

We extend these parameters periodically to the whole R3 which yields 1-periodic functions. The highly
oscillatory parameters are given as usual by

εδ(x) = ε
(x
δ

)
, σδ(x) = σ

(x
δ

)
for x ∈ R3 .

With these definitions the heterogeneous Maxwell system with conductivity reads

εδ(x)∂tEδ(t, x) + σδ(x)Eδ(t, x)− curl Hδ(t, x) = −J(t, x) ,

∂tHδ(t, x) + curl Eδ(t, x) = 0 ,

div
(
εδ(x)Eδ(t, x)

)
= 0 ,

div Hδ(t, x) = 0 .

As shown in Chapter 4 the effective system becomes

εeff∂tEeff(t) + σeffEeff(t) +
tˆ

0

Geff(t− s)Eeff(s) ds− curl Heff(t) = −J(t) , (7.9a)

∂tHeff(t) + curl Eeff(t) = 0 , (7.9b)

where the parameters are given as

εeff =


4
3 0 0
0 3

2 0
0 0 3

2

 , σeff =


16
9 0 0
0 5

2 0
0 0 5

2

 , Geff(t) =


−8
27 e−5t

3 0 0
0 0 0
0 0 0

 . (7.10)

The right-hand side in (7.9) is defined as

J(t, x) = f(t, x) + Jeff(t)Eeff
0 (x) ,

with given current density f and extra source Jeff as

Jeff(t) =


2
9e−5t

3 0 0
0 0 0
0 0 0

 .
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In this case we found that the effective convolution kernel Geff is indeed an exponential function. More-
over, the only nonzero component is Geff

11 . Thus, by setting

Peff(t) =
tˆ

0

Geff(t− s)Eeff(s) ds ,

and differentiating we find an ODE for the first component of the polarization. The other components
vanish, i.e.,

∂tPeff
1 (t) = −5

3Peff
1 (t)− 8

27Eeff
1 (t) , Peff

1 (0) = 0 , Peff
2 (t) ≡ Peff

3 (t) ≡ 0 .

This definition of the polarization is similar to the one in (3.13) originating from the Debye model.
Substituting this in the homogeneous Maxwell system (7.9) yields

εeff∂tEeff(t) + σeffEeff(t) + Peff(t)− curl Heff(t) = −J(t) , (7.11a)

∂tPeff
1 (t) + 5

3Peff
1 (t) + 8

27Eeff
1 (t) = 0 , (7.11b)

∂tHeff(t) + curl Eeff(t) = 0 . (7.11c)

The two equivalent systems (7.9) and (7.11) are prototypes for the recursive FE-HMM from Section 6.3
and the memory variable approach in Section 6.2.3. Therefore, we may compare both methods. Since we
know the convolution kernel exactly, we are also able to construct an exact solution, which is given as

Eeff(t, x) =


E1(t) cos(2πx) sin(2πy) sin(2πz)
E2(t) sin(2πx) cos(2πy) sin(2πz)
E3(t) sin(2πx) sin(2πy) cos(2πz)

 , Heff(t, x) =


H1(t) sin(2πx) cos(2πy) cos(2πz)
H2(t) cos(2πx) sin(2πy) cos(2πz)
H3(t) cos(2πx) cos(2πy) sin(2πz)

 .

This is the cavity solution constructed such that the perfectly conducting boundary conditions are sat-
isfied. The exact definition of this solution is given in the Appendix A.4. As final time, we choose
T = 5.
Figure 7.17 shows the maximal L2-error on the macro scale for both, the recursive convolution approach
and the memory variable method. The proposed first convergence order is observed for both schemes.
Note that we used the effective parameters for the computation and thus, no micro error is present. In
fact this experiment is dedicated more to the recursive convolution approach than to the HMM part of
our scheme.
The time discretization is probably also fine enough as seen in Figure 7.18. Here we show the difference
in the time discretization, again for the two effective systems (7.9) and (7.11). We observe that both
methods perform similarly and show second order of convergence. For the classical Crank–Nicolson
scheme applied to system (7.11) this is expected. For the recursive Crank–Nicolson scheme applied to
the intergro-differential system (7.9) this is not obvious. As mentioned in Chapter 6 there are results for
the recursive time integration but to our knowledge the Crank–Nicolson scheme applied to a first order
integro-differential Maxwell system has not been analyzed.
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Figure 7.17: Maximal L2-error between effective solution and macro approximation for fixed time step
Mt = 5

512 and different macro discretizations H.
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Figure 7.18: Maximal L2-error for various fixed macro discretizations and varying time step size.



142 Chapter 7. Implementation and numerical experiments

7.3.3 Micro error analysis and locally periodic setting

In this section we study the micro error that is analyzed in Lemmas 5.2.3, 5.3.2, 5.3.7 and 5.3.9. The
microscopic structures considered here all result from the parameters introduced in Section 7.2.1. For
the computations we use the computational domain Ω = (0, 1)3 and δ = 2−6. The initial value is chosen
as

EHMM(0, x) = 1
2


2 cos(2πx) sin(2πy) sin(2πz)
−3 sin(2πx) cos(2πy) sin(2πz)
1 sin(2πx) sin(2πy) cos(2πz)

 , HHMM(0, x) = 03 .

The heterogeneous system in whose solution we are interested in is

εδ(x)∂tEδ(t, x) + σδ(x)Eδ(t, x)− curl Hδ(t, x) = 0 ,

∂tHδ(t, x) + curl Eδ(t, x) = 0 ,

where we point out that the current density is zero. Thus, the energy of this system decays as shown in
Section 3.2.3. As an approximation we solve for the HMM solution that is given as

εHMM∂tEHMM(t) + σHMMEHMM(t) +
tˆ

0

GHMM(t− s)EHMM(s) ds− curl HHMM(t) = −JHMM(t)E0 ,

∂tHHMM(t) + curl EHMM(t) = 0 .

This system involves an extra right-hand side due to the homogenization. Nevertheless, in the following
examples we observe that the energy of the HMM system is again decaying. Furthermore, we present
results on the actual HMM error.

Continuous micro structure

Let us consider a microscopic structure that consists of the continuous parameter from Section 7.2.1.
Thus, as in the previous section we define the heterogeneous parameters εδ and σδ as

εδ(x) = ε
(x
δ

)
, σδ(x) = σ

(x
δ

)
for x ∈ R3 ,

where ε and σ are the periodic extensions of the parameters defined in (7.5) on the unit cell Y . In this
setting the parameters are regular enough such that the results from Chapter 5 hold true. The final
computation time is T = 1 with Mt = 2−8. In Figure 7.19(a), we show the evolution of the energy over
time and observe the decay of the aforementioned.
Thus, in this example the HMM system seems to be dissipative. In Corollary 4.4.22, we did not see this
behavior and therefor the question arises how to improve the stability estimate. In Figure 7.19(b) and
Table 7.9 we show the HMM error, which behaves not as proposed, but better.
In fact, we observe second order of convergence in h

δ , which is not covered in our semi-discrete error
estimate in Theorem 5.3.23. We already discussed this gap in Section 5.3.2 where we analyzed the micro
error of the convolution kernel. In this numerical result we see why it is reasonable to expect higher order
convergence also for this time dependent parameter.



7.3. Numerical examples for the HMM 143

0 0.5 1
0

0.1

0.25

t

E(
t)

H:0.25

H:0.125

H:0.0625

H:0.03125

(a)

2−4 2−3 2−2 2−1
10−3

10−2

10−1

h
δ

∥ ∥ u
H

M
M

i
−
u

H
M

M
i+

1

∥ ∥ L
∞

(0
,T

;L
2
(Ω

))

H:0.25

H:0.125

H:0.0625

H:0.03125

O
((

h
δ

)2)

(b)

Figure 7.19: (a) Energy of the solution to the continuous microstructure. (b) The HMM error for the
continuous microstructure. We show different macroscopic discretizations and the convergence in h

δ with
fixed Mt = 2−8.

∥∥uHMM
i − uHMM

i+1
∥∥

L∞(0,T ;L2(Ω))

H = 0.25 H = 0.125 H = 0.0625 H = 0.03125
h
δ /i EOC EOC EOC EOC
1
2/1 0.09205 - 0.18232 - 0.18058 - 0.08934 -
1
4/2 0.01540 2.58 0.04778 1.93 0.02993 2.59 0.04027 1.15
1
8/3 0.00859 0.84 0.01211 1.98 0.01354 1.14 0.01324 1.60
1
16/4 0.00215 2.00 0.00325 1.90 0.00347 1.96 0.00353 1.91

Table 7.9: Estimated order of convergence for a microscopic structure consisting of the continuous pa-
rameter. The time step is Mt = 2−8. We observe second order of convergence.
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Figure 7.20: Configuration with locally periodic inclusions.

Circular inclusion

The second example we consider is a locally periodic micro structure given by the circular inclusion (7.6)
for varying radii. We divide the domain Ω in four slices in x1-direction. In every of these subsets we use
a different radius for the inclusions on the microscopic scale. To be exact, we use

r(x) =



0.1, 0 ≤ x1 <
1
4

0.2, 1
4 ≤ x1 <

1
2

0.3, 1
2 ≤ x1 <

3
4

0.4, 3
4 ≤ x1 ≤ 1

,

combined with the definition of the circular inclusion in (7.6), which we extend by periodicity to R3. A
sketch of the configuration is shown in Figure 7.20. The heterogeneous parameters are thus for every
x ∈ Ω given as

εδ(x) = ε
(
x,
x

δ

)
, σδ(x) = σ

(
x,
x

δ

)
.

Note that the effective parameters and their HMM approximations now depend on the macroscopic space
variable as well, i.e., for x ∈ Ω and t ∈ [0, T ] we find the dependencies

εHMM(x) , σHMM(x) , GHMM(t, x) , JHMM(t, x) .

In the setting of a locally periodic parameter we may use the parallel assembly of the macroscopic
matrices as explained in Section 7.1.1. In this example, however, we pre-computed the parameters for
the four different slices. The final time of computation is again chosen to be T = 1 and we used step size
Mt = 2−9. In this setting the micro error results from Chapter 5 do not hold true since the parameter is
discontinuous.
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Figure 7.21: (a) Energy of the solution to the locally periodic circular inclusion. (b) HMM error for fixed
time step Mt = 2−9 and various macroscopic discretization sizes H.∥∥uHMM

i − uHMM
i+1

∥∥
L∞(0,T ;L2(Ω))

H = 0.25 H = 0.125 H = 0.0625 H = 0.03125
h
δ /i EOC EOC EOC EOC
1
4/1 0.00416 - 0.00713 - 0.00709 - 0.00712 -
1
8/2 0.00179 1.21 0.00252 1.5 0.00262 1.43 0.00265 1.42
1
16/3 0.00036 2.33 0.00049 2.35 0.00051 2.35 0.00052 2.35
1
32/4 0.00069 -0.96 0.00094 -0.92 0.00097 -0.92 0.00098 -0.92
1
64/5 0.00010 2.78 0.00014 2.71 0.00015 2.71 0.00015 2.71

Table 7.10: Estimated order of convergence for a micro structure consisting of locally periodic circular
inclusions. The time step is Mt = 2−9.

In Figure 7.21(a), we show the energy of the solution over time for various macroscopic space discretiza-
tions and fixed h = 2−7. Again we observe the decay that is not covered in our results. The HMM error
is shown in Figure 7.21(b) and Table 7.10. These results indicate first order of convergence in h

δ . Even
with an order reduction due to the discontinuity our results do not cover this setting. This is again due
to the non-optimal first order estimate for the time dependent parameters.
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CHAPTER 8

Conclusion and Outlook

In the final chapter of this thesis we recapture our results and give an outlook for future research. We
presented and analyzed a numerical method to model electromagnetic wave propagation in heterogeneous,
(locally) periodic media. The focus within our analysis and the numerical scheme are dispersive models,
that we incorporate already in the heterogeneous structure. The main contribution of this thesis is the
semi-discrete error analysis of the Heterogeneous Multiscale Method (HMM) applied to a homogenized
time-dependent Maxwell system. For that purpose we derived central properties of the effective param-
eters, showed the wellposedness of the effective and the HMM system and proved micro error estimates.
Moreover, we proposed a fully discrete scheme to solve three-dimensional Maxwell’s equations. This
scheme incorporates effective dispersive material properties. This is, to our knowledge, the first method
to cover these effects. A central assumption for this method is the exponential structure of the convolu-
tion kernel. Although this structure is not guaranteed, we showed the special case of a positive definite
damping parameter that ensures this exponential decay. Moreover, we performed several experiments
with different heterogeneities and presented that the resulting effective kernels may be accurately ap-
proximated at least by a linear combination of exponential functions. Finally, we tested the fully discrete
scheme in several numerical examples. Thus, this thesis demonstrates that the abstract homogenization
results may indeed be efficiently implemented in a numerical scheme to simulate the effective material
behavior of heterogeneous materials with dispersive effects.

Concerning possible extensions of our results we start with the stability estimates for the integro-
differential Maxwell system in Theorem 4.4.21 and Corollary 4.4.22. Those estimates seem to be non-
optimal. At least for the examples we considered, the observed growth was much slower than predicted by
our results. From the physical point of view, a related question is whether the mixture of stable materials
may yield an unstable effective behavior. The next non-optimal result are the micro error estimate in
Lemmas 5.3.7 and 5.3.9 for the time dependent parameters. We already discussed that the first order
convergence is not satisfactory, which is also supported by our numerical experiments that suggest sec-
ond order convergence. A better understanding of the cell problems, i.e., the Sobolev equation might be
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helpful to derive a better estimate. Most importantly, the fully discrete error analysis has to be carried
out. The major challenge probably is the estimation of the error due to the exponential fitting, which is
related to the field of model error estimation. Apart from that, the analysis of either the recursive convo-
lution or the memory variable method combined with the HMM should be possible using the techniques
discussed in Section 6.3.2. Finally, the proposed scheme has to be tested on more powerful computers
for considerably larger problems. For realistic simulations physically relevant boundary conditions have
to be implemented, for e.g. the perfectly matched layers (PML) (Berenger, 1994).
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APPENDIX A

Appendix

A.1 The Debye model

We consider dielectric materials, that are insulators which can be polarized by an electric field. More
precisely, an applied electric field can effect the material in two ways, first it could induce electrical dipoles
that do not exist without the field and try to align them in field direction. Second it aligns already existing
dipoles. The combination of both effects is called the polarization of the material. In experiments it has
been observed that the underlying law between the polarization and the applied electric field can in many
cases be approximated by a linear material law, i.e.

P = ε0χE , (A.1)

with the permittivity constant of vacuum ε0 and a material parameter χ, called the dielectric susceptibil-
ity, depending on the frequency ω. In addition to the electric field strength E we have a relation between
the polarization and the electric displacement D that is given by the constitutive relation

D = ε0εrE , (A.2)

where εr is called the relative dielectric constant of the material and ε0εr is called the permittivity. The
well-known material law we need is

D = ε0E + P = ε0 (1 + χ) E . (A.3)

From (A.2) and (A.3) we find
εr = 1 + χ ,

and note here that these parameters depend on the frequency ω of the electric field and thus we call
εr(ω) the dielectric function. In order to determine the susceptibility χ we have to consider models for
polarization.
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A.1.1 Mechanisms of polarization

There are four kinds of polarization mechanisms:

1. Electronic polarization,

2. Orientation polarization,

3. Ionic polarization,

4. Interface polarization.

The first two concepts will be discussed in the following.

Electronic polarization

The electronic polarization describes the effect of an applied electric field to a single atom. It is the
displacement of the center of charges of electrons with respect to the nucleus and this polarization effect
occurs in every atom and molecule. The dipole moment pep induced in an atom where we assume for
simplicity that the charges are distributed uniformly in a sphere of radius R around the nucleus is

pep = 4πε0R
3E .

The polarizability αep is defined as the induced dipole moments per unit electric field intensity and we
thus have

αep = 4πε0R
3 . (A.4)

A central equality we need is the connection between the polarization P, the dipole moment per unit
volume, and the polarizability αep. This is obtained by observing that the dipole moment of an atom is
given by αepE and denoting with N the number of atoms per unit volume. We find the connection as

P = NαepE , (A.5)

and inserting (A.1) and (A.4) gives a first definition of the electric susceptibility and with it of the relative
permittivity

χ = 4πNR3 , εr = 1 + 4πNR3 .

The problem with this approach is, that we assume that neighboring molecules do not affect each other
but this is wrong, for example for high pressures. One has to consider the internal field Ei, also known as
Lorentz field, and the corresponding dipole moment pi = αepEi. This is shown in (Raju, 2003, Section
2.3). The result are the equations

P = NαepEi , Ei = 2 + εr
3 E .

The combination with the definition of P from (A.1) yields

εr − 1
εr + 2 = Nαep

3ε0
.

Introducing the molar volume V , given by M
% , where M is the molecular weight, % the density and the

Avogadro number NA = NV we end up with the Clausius-Mossotti equation for molar polarizability Pm
given as

Pm = εr − 1
εr + 2

M

ρ
= NAαep

3ε0
.
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This equation describes the effect of electronic polarization very well as long as we consider non-polar ma-
terials without permanent dipole moments. To handle permanent dipoles we have to consider orientation
polarization, which is done in the next section.

Orientation polarization

We consider materials which can be affected by orientation polarization and thus already have dipoles,
which get oriented by the electric field. We look at a material with existing dipoles which can rotate
freely, the main example for that is liquid water since every H2O molecule is a dipole with random
orientation with respect to the other molecules. The polarization of such a material is zero in the absence
of an electric field. The question is how an electric field changes the polarization. Let us start with the
potential energy U of a dipole in an electric field

U = −p ·E ,

where again p is the dipole moment. Denoting with θ the angle between the dipole p and the field E we
get

U = −|p||E| cos(θ) .

How does the distribution of the dipoles due to the electric field look like? For this purpose consider
a solid angle υ that is formed between θ and θ + δ. Furthermore we introduce the temperature T , the
Boltzmann constant k and a constant N0 which depends on the total number of dipoles. Now the number
of dipoles confined to the solid angle υ is given by the Boltzmann distribution as

N(θ) = N0 exp
(
|p||E| cos(θ)

kT

)
υ . (A.6)

The surface area between the angles θ and θ + δ on a sphere of radius r is

S = 2πr2 sin(θ)δ ,

and with this we define the solid angle by

υ = S

r2 = 2π sin(θ)δ .

Substituting this in (A.6) we find

N(θ) = N0 exp
(
|p||E| cos(θ)

kT

)
2π sin(θ)δ .

A dipole of permanent moment p making an angle θ with the direction of the electric field contributes a
moment pE = |p| cos(θ) and thus the contribution of all dipoles in υ is

pE(θ) = N(θ)pE = N(θ)|p| cos(θ) .

We now get the average dipole moment pE per dipole in the direction of the electric field by the ratio of
the dipole moment due to all molecules divided by the number of dipoles

pE =

π́

0
pE(θ) dθ
π́

0
N(θ) dθ

=

π́

0
N(θ)|p| cos(θ) dθ

π́

0
N(θ) dθ

=

π́

0
exp

(
|p||E| cos(θ)

kT

)
2π sin(θ)δ|p| cos(θ) dθ

π́

0
exp

(
|p||E| cos(θ)

kT

)
2π sin(θ)δ dθ

.
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We substitute |p||E|kT = x as well as y = cos(θ) and obtain

pE
|p| =

1́

−1
y exp(yx) dy

1́

−1
exp(yx) dy

=
(

coth(x)− 1
x

)
= L(x),

with the Langevin function L(x). The values of x = |p||E|
kT are usually small, i.e. x < 1 for real materials.

For these small values we use the linear part of the Taylor expansion around zero to approximate the
Langevin function

L(x) ≈ 1
3x ,

and this yields

pE = |p|L(x) ≈ |p|3 x = |p|3
|p||p|
kT

= |p|
2|E|

3kT .

We now introduce the polarizability α0 due to orientation polarization by the equality α0 = pE
|E| and find

α0 = |E|
2

3kT ,

and with this size we can define the orientation polarization of the dielectric as

P = Nα0E = N |p|2

3kT E . (A.7)

A.1.2 The model

The combination of the two previous sections, more precisely the equations (A.5) and (A.7), leads to the
Debye equation

P = N

(
αep + |P|

2

3kT

)
E .

The molar polarizability now follows as in Section A.1.1

Pm = εr − 1
εr + 2

M

%
= NA

3ε0

(
αep + |p|

2

3kT

)
.

The frequency depended permittivity

The dependence of the molar polarization on the frequency is given in Debye (1929) equation (64) as

ε̂r(ω)− 1
ε̂r(ω) + 2 ·

M

%
= Pm(ω) = NA

3ε0

[
αep + |p|

2

3kT ·
1

1 + iωτ

]
, (A.8)

and this defines the frequency dependent relative permittivity by

ε̂r(ω) =
1 + 2 %

M Pm(ω)
1− %

M Pm(ω) . (A.9)

Now we introduce two dielectric constants, namely ε∞ and εs that are the dielectric constants at very
high (ω →∞) and at zero frequency (ω = 0), respectively. These constants are determined by

ε∞ − 1
ε∞ + 2 ·

M

%
= NA

3ε0
αep

εs − 1
εs + 2 ·

M

%
= NA

3ε0

[
αep + |p|

2

3kT

]
.
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Inserting these equalities in the representation of the polarization (A.8) yields

Pm(ω) = M

%

[
ε∞ − 1
ε∞ + 2 + 1

1 + iωτ

(
εs − 1
εs + 2 −

ε∞ − 1
ε∞ + 2

)]
.

The next step is to combine the equation (A.9) with the just gained representation of the polarization.
We finally get

ε̂r(ω) = ε∞ + εs − ε∞
1 + iωτ εs+2

ε∞+2
. (A.10)

This is almost the well known equation of the Debye relative permittivity in the frequency domain.

Deriving the time domain formulation

The relative permittivity depending on the frequency in the Debye case can be expressed as

ε̂r(ω) = ε∞ + εs − ε∞
1 + iωτ . (A.11)

We start with the frequency formulation of the constitutive law for the electric density

D̂(ω) = ε0ε̂r(ω)Ê(ω) = ε0

(
ε∞ + εs − ε∞

1 + iωτ

)
Ê(ω) ,

and apply the inverse Fourier–Laplace transform to this equation, which is defined as

f(t) = F−1(f̂(ω))(t) = 1√
2π

ˆ
f̂(t) exp (iωt) dt .

This results in

D(t) =
(
F−1D̂(ω)

)
(t) = ε0F−1

((
ε∞ + εs − ε∞

τ

τ

1 + iωτ

)
Ê(ω)

)
(t)

= ε0F−1
(
ε∞Ê(ω)

)
(t) + ε0

εs − ε∞
τ

F−1
(

τ

1 + iωτ Ê(ω)
)

(t)

= ε0ε∞E(t) + ε0
εs − ε∞

τ
F−1

(
τ

1 + iωτ Ê(ω)
)

(t) .

We use the convolution theorem which states

F(f ∗ g) = F(f)F(g) ,

or equivalently
F−1(f̂) ∗ F−1(ĝ) = F−1

(
f̂ ĝ
)
,

and this gives

F−1
(

τ

1 + iωτ Ê(ω)
)

(t) = F−1
(

τ

1 + iωτ

)
(t) ∗E(t) = exp

(
− t
τ

)
Θ(t) ∗E(t)

=
tˆ

0

exp
(
− t− s

τ

)
E(s) ds .

We finally get

D(t) = ε0ε∞E(t) + ε0
εs − ε∞

τ

tˆ

0

exp
(
− t− s

τ

)
E(s) ds , (A.12)
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and add this constitutive relation to the Maxwell’s equations in a domain Ω.

∂tD = curl H , in (0, T )× Ω ,

µ∂tH = − curl E , in (0, T )× Ω ,

div D = 0 , divµH = 0 , in (0, T )× Ω ,

E(0, x) = E0(x) , H(0, x) = H0(x) , in Ω .

Here the parameter µ is the permeability of the material we consider. An alternative form of this
polarization model is to write a differential equation for the polarization P such that the constitutive
relation

D(t) = ε0ε∞E(t) + P(t) , (A.14)

corresponds to (A.12). From (A.12) and (A.14) we see that the polarization satisfies

P(t) = ε0
εs − ε∞

τ

tˆ

0

exp
(
− t− s

τ

)
E(s) ds .

We use the variation-of-constants formula to see that P solves

τ∂tP(t) + P(t) = ε0 (εs − ε∞) E(t) ,

with the starting value P(0) = 0.

A.2 Transformation of cell problems and parameters

Consider the cell problem (4.20) posed on the unit cell Y =
(
− 1

2 ,
1
2
)3: Find wM

` (x̄, ·) ∈ H1
# (Y ) such that

ˆ

Y

M(x̄, y)
(
ek +∇ywM

` (x̄, y)
)
· ∇yv(y) dy = 0 for all v ∈ H1

# (Y ) , (A.15)

and the corresponding effective parameter, cf. (4.23),

(Meff(x̄))k,` =
 

Y

M(x̄, y)
(
e` +∇ywM

` (x̄, y)
)
·
(
ek +∇ywM

k (x̄, y)
)

dy.

Lemma A.2.1. Let x̄ ∈ Ω and consider a sampling domain Y δ (x̄). The effective parameter is given as

(Meff(x̄))k,` =
 

Y δ(x̄)

M
(
x̄,
x

δ

)(
e` +∇wM,δ

` (x̄, x)
)
·
(
ek +∇wM,δ

k (x̄, x)
)

dx,

where wM,δ
` (x̄, ·) ∈ H1

#
(
Y δ (x̄)

)
solves

ˆ

Y δ(x̄)

M
(
x̄,
x

δ

)(
e` +∇wM,δ

` (x̄, x)
)
· ∇v(x) dx = 0 for all v ∈ H1

#
(
Y δ (x̄)

)
.

Proof. Extend wM
` by periodicity, such that wM

` (x̄, y) is defined for all y ∈ Rd and set

wM,δ
` (x̄, x) := δwM

`

(
x̄,
x

δ

)
.
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Thus, wM,δ
` (x̄, ·) ∈ H1

#
(
Y δ (x̄)

)
and ∇wM,δ

` (x̄, x) = ∇ywM
`

(
x̄, xδ

)
. By transformation y = x

δ we find for
all v ∈ H1

#
(
Y δ (x̄)

)
the equality

ˆ

Y δ(x̄)

M
(
x̄,
x

δ

)(
ek +∇wM,δ

` (x̄, x)
)
· ∇v(x) dx

=
ˆ

Y δ(x̄)

M
(
x̄,
x

δ

)(
ek +∇ywM

`

(
x̄,
x

δ

))
· ∇v(x) dx

= δ3
ˆ

Y 1(x̄)

M(x̄, y)
(
ek +∇ywM

` (x̄, y)
)
· ∇yv(δy) dy.

All functions are Y -periodic and therefore it does not matter over which period we integrate. Now (A.15)
yields

ˆ

Y δ(x̄)

M
(
x̄,
x

δ

)(
ek +∇wM,δ

` (x̄, x)
)
· ∇v(x) dx

= δ3
ˆ

Y

M(x̄, y)
(
ek +∇ywM

` (x̄, y)
)
· ∇yv(y) dy = 0.

To show the alternative formulation of the effective parameter we proceed in the same way and use that∣∣Y δ (x̄)
∣∣ = δ3

 

Y δ(x̄)

M
(
x̄,
x

δ

)(
e` +∇wM,δ

` (x̄, x)
)
·
(
ek +∇wM,δ

k (x̄, x)
)

dx

= 1
|Y δ (x̄)|

ˆ

Y δ(x̄)

M
(
x̄,
x

δ

)(
e` +∇wM

`

(
x̄,
x

δ

))
·
(
ek +∇wM

k

(
x̄,
x

δ

))
dx

= δ3

|Y δ (x̄)|

ˆ

Y 1(x̄)

M(x̄, y)
(
e` +∇ywM

` (x̄, y)
)
·
(
ek +∇ywM

k (x̄, y)
)

dy

=
ˆ

Y

M(x̄, y)
(
e` +∇ywM

` (x̄, y)
)
·
(
ek +∇ywM

k (x̄, y)
)

dy

= (Meff(x̄))k,`.

A.3 Effective parameters of isotropically layered material

We only give the most important steps here and skip most of the computations. To derive the exact
formulation of the effective parameters we note that due to the layered structure of the parameter the
cell problems reduce to one-dimensional problems on Y =

(
− 1

2 ,
1
2
)
. Thus, for wε ∈ H1

# (Y ;R) consider
the micro problem

ˆ

Y

ε(y) (1 + ∂yw
ε(y)) ∂yv(y) dy = 0 for all v ∈ H1

# (Y ;R) . (A.16)
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We decompose the unit cell according to the parameter in Y1 =
(
− 1

2 , 0
)
and Y2 =

(
0, 1

2
)
and do the same

for the solution wε(y) =

wε1(y), y ∈ Y1

wε2(y), y ∈ Y2

. Thus, we decompose the equation (A.16) accordingly and

after an integration by parts we find the representations

∂yw
ε
1(y) = C1

ε1
− 1 , ∂yw

ε
2(y) = C2

ε2
− 1 .

The periodicity of the test function v and the continuity of w yield C1 = C2. Using the periodicity of the
cell corrector w we find

0 =
ˆ

Y

∂yw
ε(y) dy =

ˆ

Y1

∂yw
ε
1(y) dy +

ˆ

Y2

∂yw
ε
2(y) dy = C1

ε1 + ε2

2ε1ε2
− 1 ,

from which we deduce C1 = 2ε1ε2
ε1+ε2 . The corresponding component of the effective parameter now evaluates

as

εeff
11 =

ˆ

Y

ε(y) (1 + ∂yw
ε(y)) (1 + ∂yw

ε(y)) dy = C1 = 2ε1ε2

ε1 + ε2
.

The effective conductivity in this case is given as

σeff
11 =

ˆ

Y

σ(y) (1 + ∂yw
ε(y)) (1 + ∂yw

ε(y)) dy = 2(ε2
1σ2 + ε2

2σ1)
(ε1 + ε2)2 .

For the initial value w(0, ·) ∈ H1
# (Y ;R) of the time dependent corrector the cell problem reads

ˆ

Y

(ε(y)∂yw(t, y) + σ(y) (1 + ∂yw
ε(y))) ∂yv(y) dy = 0 for all v ∈ H1

# (Y ;R) .

This is solved using the same techniques as above. The only missing part is the time dependent problem
for w(t, ·) ∈ H1

# (Y ;R), which is given as
ˆ

Y

(ε(y)∂t∂yw(t, y) + σ(y)∂yw(t, y)) ∂yv(y) dy = 0 .

We again use the decomposition of the domain and the procedure from above. Additionally, we use the
variation of constants formula to get

∂ywi(t, y) = e−
σi
εi
t
∂ywi(0, y) +

tˆ

0

e−
σi
εi

(t−s)
C(s) ds , for i = 1, 2 ,

and a time dependent parameter C(s). Now we again use the periodicity of the cell corrector

0 =
ˆ

Y

∂yw(t, y) dy ,

which results in an expression determining C(s) in an integral equation. With an application of the
Laplace transform this equation is solvable for the Laplace transform of C(s). Finally, the inverse Laplace
transform yields a representation of the time dependent parameter C(s) and thus of ∂ywi(t, y) for i = 1, 2.
This representation may then be used in the definition of the effective convolution kernel to determineˆ

Y

σ(y)∂yw(t, y) (1 + ∂yw
ε(y)) dy = −2(ε1σ2 − ε2σ1)2

(ε1 + ε2)3 e−
σ1+σ2
ε1+ε2

t .

The approach for the extra source follows the same line as for the convolution kernel.
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A.4 Exact solution for macroscopic Maxwell with layer material

The time dependent components are computed such that the equations with zero right-hand side are
satisfied, i.e., (7.9b), (7.11b), (7.11c). Finally, the right-hand side f is adjusted such that the equations
(7.9a) and (7.11a) hold true. The time dependent components for the exact solution from Section 7.3.2
are given as

E1(t) := −3e−t(48π2 cos(2πt)− 48π2 sin(2πt) + 8π sin(πt) cos(πt) + 8π cos(πt)2 − 4πe− t2 )
128π2 + 8

+ −3e−t(−2 sin(πt) cos(πt) + 2 cos(πt)2 − 4π + 3 cos(2πt)− 3 sin(2πt)− e− t2 − 1)
128π2 + 8 ,

E2(t) := cos(2πt)e−t ,

E3(t) := − sin(2πt)e−t ,

H1(t) :=
4π(−(π + 1

2 )e−t cos(2πt) + e−t(π − 1
2 ) sin(2πt) + π + 1

2 )
4π2 + 1 ,

H2(t) :=
144( 17

9 π(π3 − 21
68π

2 + 7
136π −

3
136 )e−t cos(2πt) + e−tπ(π3 + 37

36π
2 + π

24 + 5
72 ) sin(2πt))

128π4 + 40π2 + 2

+
144( (π+ 1

4 )(π2+ 1
4 )π

9 e− 3
2 t − 10

9 (π2 + 1
16 )(π2 − π

2 −
1
5 ))

128π4 + 40π2 + 2 ,

H3(t) :=
−272( 9

17π(π3 − 37
36π

2 + π
24 −

5
72 )e−t cos(2πt) + e−tπ(π3 + 21

68π
2 + 7

136π + 3
136 ) sin(2πt))

128π4 + 40π2 + 2

+
−272( (π+ 1

4 )(π2+ 1
4 )π

17 e− 3
2 t − 2

17 (π2 + 1
16 )(π2 − 9

2π − 1))
128π4 + 40π2 + 2 .
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List of symbols

PH operator such that mHMM(PHΦ,ΦH) = meff(Φ,ΦH) for all Φ ∈ X,ΦH ∈ VH

α coercivity constant of the parameter M

A unweighted Maxwell operator

A,B,R,S operators

B magnetic displacement

∂Ω boundary of the domain Ω

CM L∞
(
Ω;Rn×n

)
-norm of parameter M

CR L∞
(
Ω;Rn×n

)
-norm of parameter R

χe electric susceptibility of material

χin
e instantaneous electric susceptibility of material

χm magnetic susceptibility of material

χin
m instantaneous magnetic susceptibility of material

C generic constant independent of h, H, δ, κ and t if not stated differently

D electric displacement

δ characteristic size of micro structure. As superscript indicates dependence on micro structure

DT
y transposed jacobian matrix

eff indicating that a quantity is effective and does not depend on microscopic scale
eff,κ indicates that a quantity is related to the exact solution of a problem posed on the sampling domain Y κ

(
xqK

)
ek k-th canonical basis vector in Rd

E electric field strength

E0 initial electric field strength

E energy of Maxwell system

ε∞ permittivity at maximum frequency

εin instantaneous permittivity of material

εr relative permittivity of material

εs permittivity at zero frequency

Mε difference εs − ε∞
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ε0 permittivity of vacuum

|·| Euclidean norm of a vector or 3-dimensional Lebesgue measure

F(u), û Fourier–Laplace transform of a function u

‖·‖F Frobenius norm

g Right-hand side of Maxwell system

H magnetic field strength

H0 initial magnetic field strength
HMM indicates that a quantity is HMM approximation of an effective one

Id×d d× d identity matrix

id identity operator

IH Nédélec interpolation operator for triangulation TH

Πh Lagrange interpolation operator for triangulation Th

J current density

J0 current density that is not covered in Ohm’s law

M magnetization field

M magnetization collection
ffl

mean value integral

M,R,G,A, J, g, f macroscopic finite element matrices and vectors

MH ,RH ,GH ,AH , JH , gH , fH macroscopic finite element matrices and vectors resulting from the HMM bilinear forms

M mass parameter of Maxwell system, element of Rn×n

µin instantaneous permeability of material

µr relative permeability of material

µ0 permeability of vacuum

n dimension of Maxwell system equal to 3(2 +NE +NH)

NH number of magnetizations

NE number of polarizations

n unit outward normal to ∂Ω

Ω bounded simply connected domain in R3

ω Frequency

P polarization field

P polarization collection

Pin instantaneous polarization field

Ptot total polarization field

Q`,m,n(K) space of polynomials of degree `,m, n in the respective component on K

xqK , γ
q
K q-th quadrature point and weight on K

R damping parameter of Maxwell system, element of Rn×n

% charge density

σ conductivity

τ relaxation time

T final time

Mt time step size
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TH triangulation of the computational domain Ω

Th triangulation of the unitcell Y or the sampling domains Y κ
(
xqK

)
T (t), S(t) semigroups

T δ periodic unfolding operator

u solution of Maxwell system

u0 initial solution of Maxwell system

wM, w, w0 cell correctors

wM,h, wh, w0,h discrete cell correctors

Y κ (x̄) = x̄+ κY sampling domain

Y unit cell and periodicity domain

0d d-dimensional vector consisting of zeros

0d×n d× n matrix of zeros
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List of function spaces

a(·, ·) bilinear form associated to Maxwell operator

mHMM(·, ·), rHMM(·, ·), gHMM(·; ·, ·) the HMM macro bilinear form associated to MHMM, RHMM and GHMM

meff(·, ·) , reff(·, ·) , geff(·; ·, ·) the effective macro bilinear forms associated to Meff , Reff and Geff(·)

meff
H (·, ·) , reff

H (·, ·) , geff
H (·; ·, ·) the discrete effective macro bilinear form associated to Meff , Reff and Geff(·)

shm(·, ·) , shr (·, ·) micro bilinear forms associated to M or R

sm(·, ·) , sr(·, ·) micro bilinear forms associated to M or R

sκm(·, ·) , sκr (·, ·) micro bilinear forms associated to M or R on the sampling domain Y κ
(
xqK

)
Ck (Ω) space of k times differentiable functions

C∞0 (Ω) space of smooth functions with compact support

C∞# (Ω) space of smooth periodic functions

D(A) domain of operator A

H (curl,Ω) space of square integrable functions possessing weak curl

H0 (curl,Ω) closure of compactly supported functions with respect to the ‖·‖H(curl,Ω)-norm

Hk (Ω) the Hilbert spaces Wk,2 (Ω)

H1
# (Y ) space of periodic Sobolev functions with zero mean

H1
#(Y ) space of periodic Sobolev functions

(·, ·) inner product on L2 (Ω)

(·, ·)H discrete L2 inner product

L∞ (Ω) essentially bounded measurable functions on Ω

Lp (Ω) standard Lebesgue space of real-valued Lp (Ω) functions

‖·‖X→X operator norm of linear operator

S#
k

(Th), S0
k (Th) Lagrange elements of order k on Th with either periodic or Dirichlet boundary conditions

VH discrete macroscopic solution space, V`0 (curl, TH)×V`0 (curl, TH)NE ×V` (curl, TH)×V` (curl, TH)NH

Vh discrete microscopic solution space, either S#
k

(Th) or S0
k (Th)

(·, ·)VH
inner product induced by mHMM(·, ·)

Vmac macroscopic solution space, H0 (curl,Ω)×H0 (curl,Ω)NE ×H (curl,Ω)×H (curl,Ω)NH

Vmic microscopic solution space, either H1
#

(
Y κ
(
xqK

))
or H1

0
(
Y κ
(
xqK

))
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(·, ·)Vmic (∇y ·,∇y ·)L2(Y ;Rn)

Wk,p (Ω) standard Sobolev space of k-times weakly differentiable functions in Lp (Ω)

X state space of Maxwell system given as L2 (Ω;Rn)

(·, ·)X inner product induced by meff(·, ·)

Z high order Sobolev space H` (Ω)
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