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Abstract Failures of production machines are often caused
by wear and the resulting failure of components. There-
fore, condition-based monitoring of machines and their com-
ponents is becoming an increasingly important factor in in-
dustry. Due to the simple conversion of the motion of elec-
tric rotary drives into precision feed motion, the ball screw
is an inherent element of many production machines. Thus,
a failure of the ball screw often leads to costly production
stops. This paper shows the determination and extraction
of wear-describing image features, allowing an image-based
condition monitoring of ball screws using hyperparameter-
optimized machine learning classifiers. The features to train
the algorithms are derived and extracted based on the deep
domain knowledge of ball screw drive failures in combina-
tion with further developed state of the art feature extraction
algorithms.
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1 Introduction

The changes in the economic and technological environment force
companies to constantly review their positioning in relation to their
competitors and to search for innovations and competitive advan-
tages. A decisive competitive advantage is an effective and efficient
production. To avoid downtimes, the machines must be in perfect
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condition [1]. A common goal in industry is to extend the lifecycle
of production systems by early identification of defects and dam-
ages to machine parts. Such approaches are called Preventive and
Predictive Maintenance. In the past, repairs and maintenance have
been executed after machine breakdowns or a fixed period. Today,
companies try to schedule repair and maintenance activities depend-
ing on the estimation of a machine’s condition [2]. Knowing the right
time to replace a machine’s component is a desirable situation from a
technical and economic perspective. If the components are changed
too late, there will be a risk of damaging other machine elements
or manufacturing faulty products, which in both cases will result
in financial disadvantages. If the component is replaced too early,
a certain part of its lifecycle will remain unused and unnecessarily
premature financial expenses are incurred. A majority of machines
used in the manufacturing process includes rotating components.
Ball screws are the most frequently used design elements in today’s
machine tools for converting the motion of rotary electric drives into
precision feed motions. Therefore, the functionality of a machine de-
pends on the ball screw and a failure can lead to a costly production
stop [3]. Typical reasons for such defects are abrasion by foreign par-
ticles, adhesion due to cold welding and surface disruption. Surface
disruption occurs during application and results in pittings. Pittings
are a common reason for ball screw failure, so the aim of this study
is to detect this wear automatically.

In literature, the condition of a ball screw is often analyzed
through vibration. As described in [4] and [5], most mechanical
systems generate vibration signals that provide information about
the state of a system. The more relevant approaches for this work
are the image-based methods of defect analysis. Approaches from
other metallic surfaces than spindles are also considered to investi-
gate further possible solutions. A frequently applied method is the
use of deep learning algorithms. In most cases, these approaches
are based on a convolutional neural network (CNN). As described
in [6] and [7], this technique has already been successfully applied
to ball screws to detect pitting using a CNN. The classification accu-
racy of [6] is just over 90% and that of [7] is even higher at 99%. [8]
adopt the deep learning approach to analyze image data for the
identification of rail surface defects. The algorithm also classifies
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among various defect conditions (normal, weld, light squat, moder-
ate squat, heavy squat and joint). The results of the approach prove
the efficiency with a classification accuracy of almost 92%. Another
CNN-based approach is published by [9]. This method has also been
developed to monitor defects in the rail system.

Deep learning is an effective approach with the disadvantage of
lacking traceability of the decision making process. The extraction of
image features using domain knowledge and subsequent classifica-
tion increases the transparency of decision making.

2 Ball screw drive image features

The first subject is the preparation of the image data set. It is impor-
tant to create a comprehensive data set in order to be able to record
as much optical characteristics as possible. Since pittings occur in the
thread raceway, it is the region of interest (ROI). The thread ridges
have a strong optical characteristic and are therefore not included
in the data set. As a result, only the thread raceways are extracted.
Also, a suitable image size must be selected in order to be able to
analyze as much ROI information as possible. This leads to an im-
age resolution for the single images of 128x128 pixels and the data
set size is 1000 images per class (pitting and no pitting).

ey

i

No Pitting Pitting Soiling
Figure 2.1: Sample images from the data set

A main task of the paper is to extract features from the wear pat-
terns of the ball screw with image filter methods based on domain
knowledge. The challenge is the automatic detection of wear on
the spindle (Pittings) despite oil residues on the ball screw spindle.
Since soiling has a strong optical characteristic, it must be also con-
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sidered in detail and thus represents the third class in the analysis
besides pitting and no pitting (see Table 1). For classification, only
the classes pitting and no pitting are used. The elaborated character-
istics are assigned to the image feature categories color, shape and
texture. Pittings occur in the raceway, so only this area of the spindle
is considered in the analysis. Figure 2.1 shows a sample images from
the data set without pitting, an image with pitting and an image with
soiling.

Since color features are invariant to scaling, translation and ro-
tation, they have a major impact on image analysis. The spindle
surface, soiling and pittings are exclusively brown and grey shades,
which is why the share of red, green and blue (RGB) is almost equal.
A surface of a spindle raceway without pitting and without soiling
is characterized by having almost exclusively bright brown and grey
shades. A significant difference can be detected in the images with
pitting. Because of the dark pittings, the image is not composed ex-
clusively of bright colors like the image without them. The soiling
on the spindle is usually oil residues, therefore, it is typically black
or grey. In the case of heavy soiling, oil residues can cover the entire
raceway, so that the color composition consists mainly of very dark
shades. Due to the nearly identical color of pitting and soiling, an
almost similar histogram can be determined for an image without
pitting, but soiling. For this reason, texture and shape features are
determined in addition to the color features.

A spindle without pitting usually has a uniform raceway structure.
The surface has hardly any or no contrast differences. The balls of the
ball screw result in a slight vertical structure in the running direction.
To a great extent, this structure is also evident in the image with
pittings. Pittings have an uneven structure with a strong contrast
difference to the rest of the raceway. The texture in the area of the
pitting appears partially plateau-like, interspersed with dark spots.
Pittings are not uniform but have varying degrees of protrusion into
the rest of the material without pittings. Since soiling is random,
there are often many local and global contrast differences and the
surface can have a random and/or uniform texture. However, soiling
often follows the vertical running direction of the screw drive as
shown in the sample image (see Figure 2.1). Soiling is the major
unknown factor in the texture analysis due to its random occurrence.
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Considering the raceway of a spindle without pitting, no noticeable
shapes can be identified. With pitting and soiling, it is not the shape
itself that is decisive, as soiling can have similar contours to pittings,
but the location of the shape is an indication of the respective class.
Pittings always occur in the flanks of the spindle raceways, while
soiling usually spreads over the entire surface or occurs in the middle
area of the raceway. Due to the knowledge of the occurrence of
soiling and pittings, the shape features are ideally suited as spatial
features.

Table 1: Differences No Pitting/Pitting/Soiling based on domain knowledge

No Pitting Pitting Soiling Feature
Category
Light brown, grey Dark brown shades Black, grey Color
Few color shades Many different Few color shades Color
color shades
No colored line  Partly colored line No colored line Color
next to pitting
Regular surface Irregular surface Uniformity of the Texture
surface depends on
the degree of soiling
Few contrast Many global/local ~ Significant differences Texture
differences significant differences in contrast; quantity
in contrast depends on the degree
of soiling
Even texture Random texture Texture runs in the Texture

direction of the
thread balls
No plateau-like  Plateau-like/”Map” No plateau-like texture Texture
texture
Hardly any edges Many edges (Mostly) many edges  Shape
- Occurs on the flank Occurs randomly; Spatial
usually spread over
the entire surface
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3 Feature extraction

Table 1 is fundamental for the following development of the extrac-
tion methods. The methods are intended to extract a variety of char-
acteristics from this table.

3.1 Color Features

Each image contains 49152 color values (128x128 pixels x RGB val-
ues). The extraction approach for the color features focuses on sim-
plifying and clustering the data. To cluster the image colors an own
approach based on [10] is develpoed. The K-Means algorithm is ap-
plied and the pixels are assigned to a defined number of clusters.
The color of a cluster is defined by its centroid. With this method,
the color properties are displayed in a more compact form but to
capture a wide color spectrum of an image, a high number of clus-
ters must be defined. Therefore, the number of clusters is set to 20.
To describe the relationship between color and distribution of the
clusters the own approach ”Clustered Color Share (CCS)” is applied.
Since the RGB values for each cluster are almost identical due to the
predominantly grey or brown colors of the data set images, the RGB
mean value of the centroid is calculated. Afterwards, the averaged
RGB value of the centroid is multiplied with the cluster’s share. This
way the color as well as the share can be represented in one feature.
The progression of the twenty features and the feature values can be
used to identify the composition of the color in an image. The mean
value, median value, maximum value, minimum value and standard
deviation of the RGB mean values are additionally included as fea-
tures in the feature vector.

3.2 Texture Features

As a result of the high complexity of the texture, two approaches
from literature are applied and examined. The first approach com-
bines the grey-level co-occurrence matrix and the Haralick features
[11] to compute a global representation of the texture. Initially, the
four grey-level co-occurrence matrices are calculated and afterwards,
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the Haralick features are determined. The feature vector is the aver-
age of the result vectors of the individual matrices. For this purpose,
a matrix with the 13 Haralick features is created and the feature vec-
tor for the images is calculated.

The second approach uses the Local Binary Patterns (LBP) [12] to
compute a local representation of texture. The first step is to cre-
ate the LBP matrix for the image. For this purpose, a 3x3 pixels
neighbourhood is chosen for each pixel. Following the calculation
of the matrix, the first and last columns as well as rows are trun-
cated because no calculation is possible for these pixels as they have
no 3x3 neighbourhood. Afterwards, the frequency of the individual
LBP patterns can be determined and saved as feature vector. As ad-
ditional features, the statistical properties mean, median, minimum
and maximum of the feature vector are appended.

3.3 Shape/Spatial Features

The extraction of the shape features is based on the SIFT algorithm
published by [13]. The SIFT method enables the search for fea-
tures that are invariant to rotation, translation, scaling, changes in
light conditions and partially affine distortion [13]. However, the
resulting derivation of the shape/spatial feature and the extraction
of the feature vector is the own approach “KeyPoints Per Sub Re-
gion (KPPSR)”. Since pittings occur on the flanks of a spindle, the
shape features are ideally suited to describe the spatial variable of
pittings. The position and number of KeyPoints extracted from the
SIFT algorithm are used to describe this characteristics. The num-
ber and location of the KeyPoints can provide information about the
structure and shape of the object (see Figure 3.1).

As exemplarly shown in Figure 3.1 the distribution of the Key-
Points over sub regions is an important characteristic to distinguish
between pitting and no pitting images. The shape of the oil residues
leads to a strong accumulation of KeyPoints over the entire image.
To analyze the differences between the inner and the outer regions
of the image, the image is divided into 4x4 sub regions and the SIFT
algorithm is applied. After the segmentation of the image into sub
regions, the feature vector can be determined. Thereby, the sub re-
gions form a matrix. The regions are numbered (from 0 to 3) in x
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Figure 3.1: Scheme “KeyPoints per Sub Region”
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Figure 3.2: Example "KeyPoints per Sub Region”

and y direction resulting in each region having a unique index value
(see Figure 3.2).

4 Results

Overall, 28 color features, 274 texture features (261 LBP, 13 Haral-
ick) and 16 shape features are extracted. To verify the performance
of the extracted features, three-layer neural networks are applied to
the individual methods. Since the optimal number of neurons per
layer, the optimal activation function and the optimal solver can be
different for each feature, 100 randomly generated combinations are
applied to the features. Due to their stochastic nature, neural net-
works behave slightly different for each training. Therefore, each
hyperparameter combination is applied five times. This means that
a total of 500 neural networks are applied to the individual methods.
All further tests are executed with the same split data sets. In total,
the 2000 extracted feature data sets are randomly divided into 1600
training data sets (791 No Pitting and 809 Pitting) and 400 test data
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sets (209 No Pitting and 191 Pitting). Table 2 shows the average fit-
ness of the 500 neural networks, the average fitness of the ten best
neural networks and the fitness of the best model.

Table 2: Results Methods

Method | Average Fit AvgTop10 Best Fit

KPPSR 0,848 0,906 0,915
CCs 0,836 0,893 0,908

Haralick| 0,847 0,939 0,950
LBP 0,836 0,929 0,935

All methods alone achieve classification accuracies of over 90%.
The best results are achieved with texture features, followed by spa-
tial features and color features. In the next step neural networks are
applied to the combination of all features. Furthermore, the own
approaches are replaced by existing approaches to compare the per-
formance. For the analysis of the color features, a color histogram
is selected and for the analysis of the KeyPoints the total number of
KeyPoints in the image is used as feauture. Table 3 shows the aver-
age fitness of the 500 neural networks, the average fitness of the ten
best neural networks and the fitness of the best model. The best re-
sult is achieved with KPPSR without CSS (but with color histogram)
at a fitness of 98.8%.

Table 3: Results

KPPSR CCS|Average Fit AvgTop10 Best Fit
no no 0,904 0,978 0,983
yes o 0,921 0,986 0,988
no yes 0,897 0,972 0,978
yes  yes 0,914 0,980 0,983

The number of possible combinations of parameter options for
classification models are potentially infinite. For such optimization
problems, exact methods like exhaustive searches become inefficient
and heuristic methods become more suitable. One of these heuris-
tic approaches is the Genetic Algorithm (GA) [14]. Therefore, in the
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next step a genetic algorithm is applied to find the optimal hyper-
parameters for a neural network, which is applied to the extracted
features (CCS, LBP, Haralick, KPPSR). The analogy to natural evo-
lution enables genetic algorithms to overcome many of the hurdles
that traditional search and optimization algorithms encounter. Espe-
cially when problems with a large number of parameters and com-
plex mathematical representations are involved [14] [15]. Using the
GA to optimize the hyperparameters of the neural net, classification
accuracies of 98.8% can be achieved, which corresponds to the best
fitness in Table 3.

In the last attempt, the image features of a spindle area (see Fig-
ure 4.1) are extracted and classified using the best-fit neural net-
work. The individual images are recorded using the Sliding Win-
dow method. The four frames of the upper row are assigned with
the label O to the class “No Pitting” and the frames of the lower row
are assigned with the label 1 to the class “Pitting”. All images are
assigned to the correct class.

Figure 4.1: Sliding Window

314



Extraction of surface image features for wear detection

5 Conclusion

Since the ball screw is used in most machines as electromechanical
feed drive, the condition of the ball screw is critical for the operation
of the machines. Early detection of wear on the spindle, and thus
failures, helps to avoid production downtimes and reduce costs. The
present approach shows that using a combination of the developed
CSS and KPPSR methods together with methods from the literature,
features can be extracted to properly classify 98.8% of the spindle
surface images for pitting and no pitting. It can therefore be as-
sumed that the selected extraction methods adequately describe the
surface of a ball screw. This allows to react to failures at an early
stage. Based on the data set, the texture features are the most im-
portant features due to the high classification accuracies (see Table
2), followed by the spatial features and color features. The results
rely on selected methods and confirm the assumptions through do-
main knowledge. The hypothesis that texture features are the most
important characteristics has to be validated by further experiments
to make a general statement.
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