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AN OFFLINE-ONLINE STRATEGY FOR MULTISCALE PROBLEMS WITH

RANDOM DEFECTS ∗

Axel Målqvist1 and Barbara Verfürth2

Abstract. In this paper, we propose an offline-online strategy based on the Localized Orthogonal
Decomposition (LOD) method for elliptic multiscale problems with randomly perturbed diffusion co-
efficient. We consider a periodic deterministic coefficient with local defects that occur with probability
p. The offline phase pre-computes entries to global LOD stiffness matrices on a single reference element
(exploiting the periodicity) for a selection of defect configurations. Given a sample of the perturbed
diffusion the corresponding LOD stiffness matrix is then computed by taking linear combinations of
the pre-computed entries, in the online phase. Our computable error estimates show that this yields
a good coarse-scale approximation of the solution for small p. Moreover, extensive numerical experi-
ments illustrate that relative errors of a few percent are achieved up to at least p = 0.1. This makes
the proposed technique attractive already for moderate sample sizes in a Monte Carlo simulation.
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.

1. Introduction

Many modern materials include some fine composite structure to achieve enhanced properties. Examples
include fiber reinforced structures in mechanics as well as mechanical, acoustic or optical metamaterials. The
materials are often highly structured, but mistakes in the fabrication process lead to defects. A major question is
the robustness of the desired material properties under such defects. Mathematically speaking, we are interested
in the solution of partial differential equations (PDEs) with multiscale, randomly perturbed coefficients.

In this paper, we study the following elliptic multiscale problem: Find u : D → R such that

−∇ · (A(x)∇u(x)) = f(x) in D (1.1)
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Figure 1.1. Two examples for weakly random coefficients: random checkerboard (ε = 2−7, p =
0.1, left) and periodic inclusions with random “erasure” (ε = 2−6, p = 0.1, right)

with suitable boundary conditions. Here, D is a spatial domain in Rd and f ∈ L2(D). The multiscale coefficient
A ∈ L∞(D,R) is a sample of a randomly perturbed coefficient. More precisely we assume that A is a realization
of the form

A(x, ω) = Aε(x) + bp(x, ω)Bε(x), (1.2)

where Aε, Bε are deterministic multiscale coefficients and bp(x, ·) is a Bernoulli law with probability p, cf. [3].
Detailed assumptions on the problem data and the form of A are given in Section 2 below. Two important
examples of this setup are illustrated in Figure 1.1. On the left, A is generated from a constant Aε by introducing
square spots with length ε and probability p. On the right, Aε is made of a background value and periodic
square inclusion repeating with a periodicity length ε. In this case, A is generated by randomly setting some of
the inclusions to the background value, thus “erasing” them. The considered model of so-called weakly random
coefficients, characterized by small values of p, also covers other defect possibilities of the inclusions like a change
of value, a (fixed) shift or a (fixed) change of the geometry.

In the context of materials with defects, one is interested in extracting statistical information about the
solution u. There are many different uncertainty quantification techniques for PDEs with random coefficients,
see, e.g., [4, 15, 24] for overviews. In the following, we focus on Monte Carlo (MC)-type approaches such as
Quasi Monte Carlo or Multilevel Monte Carlo (MLMC) [5,7,10,29]. Hence, we are interested in (approximate)
solutions to (1.1) for many samples (i.e., realizations) of A. Due to the multiscale nature of A, standard
discretization schemes like the finite element method would require the mesh to resolve all fine-scale features.
Consequently, already the computation of a few solutions to (1.1) becomes prohibitively costly. In contrast,
computational multiscale methods such as the Localized Orthogonal Decomposition (LOD) [1, 20, 25, 26] yield
faithful coarse-scale approximations with feasible effort after pre-computation of a generalized finite element
basis. However, these basis functions incorporate knowledge about the multiscale coefficient A and thus, need be
constructed anew for each realization in general. This makes it difficult to apply multiscale methods to stochastic
problems. Recently there have been several attempts to circumvent this difficulty, for example the combination
of the Multiscale Finite Element Method with Multilevel Monte Carlo [8] or low-rank approximation [28], the
multiscale data-driven stochastic method [30], an approach for a quasi-local homogenized coefficient [13, 14],
and a sparse compression of the expected solution operator [12]. In the context of the aforementioned LOD, the
recent works [17,18] deal with rare defects. They propose to compute the multiscale basis for the unperturbed
deterministic coefficient and to update this basis only locally for each particular sample. More precisely, given a
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sample coefficient A, a computable error indicator shows whether the pre-computed basis is sufficiently good or
if a new (improved) basis needs to be computed for that particular sample. If p is small enough this technique
becomes competitive. A pre-computed, deterministic multiscale basis is also the key idea of the Multiscale
Finite Element approach of [22]. An asymptotic expansion in the random variable is used for the numerical
analysis of [22] as well as to approximate the effective coefficient of stochastic homogenization [2,3,21,23] or to
reduce its variance [6, 21].

This contribution is an attempt to make multiscale methods useful for a wider range of random problems.
Instead of having one reference coefficient, as in [17], we build a “basis” of reference coefficients {Ai}Ni=0 and
pre-compute and store the corresponding LOD basis functions {λ− C(Ai)}Ni=0, λ being the finite element basis
function and C(B) the LOD correction based on coefficient B. This is done in the offline phase. We consider
problems with periodic structure so that the same set of precomputed basis functions can be used in the entire

domain. Given samples of the form A =
∑N
i=0 µiAi we let

∑N
i=0 µiC(Ai)λ approximate C(A)λ in the online

phase. This allows for rapid assembly of the LOD stiffness matrices and thereby solution of the problem given

samples A. We demonstrate theoretically that the error C(A)λ −
∑N
i=0 µiC(Ai)λ is small for small p in one

dimension and provide a computable error indicator of this quantity in higher dimensions. We also present
numerical experiments for a large variety of configurations of the diffusions which shows relative root mean
square errors up to 3% for defect probabilities of p = 0.1 and below. We compare with [17] and show a
substantial improvement. The strategy pays off in a Monte Carlo setting with a moderate sample size.

The paper is organized as follows. In Section 2, we formulate the model problem and detail the form of A.
In Section 3, we review the Petrov-Galerkin Localized Orthogonal Decomposition (PG-LOD) and introduce our
new offline-online strategy. A priori error estimates for the new method are presented in Section 4. We discuss
several implementation details with a focus on computational efficiency in Section 5. Extensive numerical
experiments in Section 6 showcase the attractive properties of the method and also illustrate our theoretical
findings.

2. Problem formulation

In the following, we detail the setting associated with (1.1). We first pose the problem for a fixed event ω
in a probability space Ω and then discuss the specific form of randomness in the coefficient. By slight abuse of
notation, we will omit the random variable in the following exposition for a fixed, but arbitrary sample.

2.1. Model problem

For simplicity we let D = [0, 1]d ⊂ Rd be the unit cell. We assume that f ∈ L2(D) and that the realization
A ∈ L∞(D,R) is uniformly bounded and elliptic, i.e.,

0 < α := ess inf
x∈D

A(x), ∞ > β := ess sup
x∈D

A(x). (2.1)

We introduce a function space V where we seek a solution of (1.1) in weak form. In this paper we mainly
consider a conforming finite element space

V := Vh ⊂ H1
#,0(D) = {v ∈ H1(D) | v is periodic,

ˆ
D

v = 0}

defined on a computational mesh Th which resolves the variations in A. Further, we assume Th to be a conforming
(i.e., without hanging nodes and edges) and shape regular quadrilateral mesh that can additionally be wrapped
into a mesh on the torus without hanging nodes or edges. However, it is also possible to choose V = H1

#,0(D)

and the following analysis will still go through. The weak form of (1.1) reads as follows: find u ∈ V such that

a(u, v) = F (v) for all v ∈ V, (2.2)
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where

a(u, v) :=

ˆ
D

A(x)∇u(x) · ∇v(x) dx, F (v) :=

ˆ
D

f(x)v(x) dx.

Due to the constraint
´
D
u(x, ω) dx = 0, existence and uniqueness of a solution u is guaranteed by the Lax-

Milgram lemma. We will frequently use the energy norm ‖ · ‖A := a(·, ·)1/2 and its restriction ‖ · ‖A,S to a
subdomain S ⊂ D in the following. Further, (·, ·)S denotes the usual L2-scalar product on S where we omit the
subscript if S = D.

Remark 2.1. We consider periodic boundary conditions and box-type domains in this paper to fully exploit
the underlying structure in A. However, with additional computational effort, Dirichlet or Neumann boundary
conditions as well as more general Lipschitz domains can be treated, see Remark 3.1. In particular, the error
analysis is not restricted to periodic boundary conditions or box-type domains.

2.2. Randomly perturbed coefficients

As mentioned above, we are interested in solving (2.2) for many different (random) choices of A. We now
give more details on the form (1.2) of A(x, ω), similar to the “weakly” random setting of [3]. We assume that
Aε and Bε are deterministic multiscale coefficients. More specifically, we let Aε(x) = Aper(x/ε) where Aper is
1-periodic and we assume that ε = 1/n with n ∈ N, n � 1. The same form Bε(x) = Bper(x/ε) is assumed for
Bε. The periodicity assumption – together with the box-type domain – is imposed for efficiency reasons of our
method, where we emphasize that generalizations are possible, see Remark 3.2.

The deterministic coefficients are assumed to satisfy spectral bounds similar as (2.1), i.e.,

0 < α ≤ ess inf
x∈D

Aper(x), ∞ > β ≥ ess sup
x∈D

Aper(x). (2.3)

and

0 < α ≤ ess inf
x∈D

(Aper(x) +Bper(x)), ∞ > β ≥ ess sup
x∈D

(Aper(x) +Bper(x)). (2.4)

The random character of A(x, ω) in (1.2) is encoded in bp(x, ω) for which we assume

bp(x, ω) =
∑
j∈I

χε(j+Q)(x)b̂jp(ω). (2.5)

Here, χ denotes the characteristic function, Q ⊆ [0, 1]d and I := {k ∈ Zd | ε(k + Q) ⊂ D}. Finally, b̂jp
are independent random variables adhering to a Bernoulli distribution with probability p, i.e., b̂jp = 0 with

probability 1 − p and b̂jp = 1 with probability p. Clearly, for p → 0, the defects/perturbations encoded in bp
become rare events. This choice of bp together with the assumptions (2.3)–(2.4) guarantee that each realization
A(x, ω) satisfies (2.1). We close this section by giving two examples for this setting, namely the formal definition
of the coefficients depicted in Figure 1.1 above.

Example 2.2 (Random checkerboard). Recall that the coefficient in Figure 1.1, left, is piece-wise constant on
a square mesh Tε. On each square element, the value of A is picked randomly as either α with probability 1− p
or as β with probability p. This can be described in the form (1.2) and (2.5) with Q = [0, 1]d, Aper = α and
Bper = β − α.

Example 2.3 (Periodic coefficient with random defects). Realizations as depicted in Figure 1.1, right, can be
formalized in the following way. We define Aper : [0, 1]d → R via

Aper(y) :=

{
β y ∈ [0.25, 0.75]d,

α else.
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Further, we pick Q = [0.25, 0.75]d and Bper = α − β. Note that Bper is only added in the shifted and scaled

copies of Q. Clearly, any other value β̃ ∈ [α, β] as defect can be modeled by the choice Bper = β̃ − α. Even a

value 0 < β̃ /∈ [α, β] is possible for the defects by changing the spectral bounds. If the defect changes the shape
of the inclusion, we have to define Q and Bper accordingly. For example, imagine that a defect means that the
value β is taken in (scaled and shifted copies of) [0.75, 1]d. Then, Aper is left unchanged, we set Q = [0, 1]d and
define Bper : Y → R via

Bper(y) :=


α− β y ∈ [0.25, 0.75]d,

β − α y ∈ [0.75, 1]d,

0 else.

3. Offline-online strategy for the PG-LOD

In this section, we first review the Petrov-Galerkin Localized Orthogonal Decomposition (PG-LOD) in Sec-
tions 3.1 and 3.2 and then present our new offline-online strategy in Section 3.3. Throughout this paper, we
further use the notation a . b if a ≤ cb with a generic constant c that only depends on the shape regularity of
the mesh, the domain D, or the space dimension d.

3.1. Preliminaries and notation

Let TH be a coarse, shape regular, quasi-uniform and conforming quadrilateral mesh of the domain D. We
further assume that TH can be wrapped into a conforming mesh of the torus, i.e., no hanging nodes and edges
occur over the periodic boundary. Let H = maxT∈TH diamT denote the mesh size. The standard lowest-order
finite element space on TH is given as

VH := H1
#,0(D) ∩Q1(TH),

where Q1(TH) denotes the space of TH -piecewise polynomials of coordinate degree at most 1. We further assume
that the fine mesh Th is a refinement of TH such that the finite element spaces are nested as VH ⊂ Vh.

We further introduce a notion of element patches. For an arbitrary subdomain S ⊂ D and m ∈ N0, we define
patches Um(S) ⊂ D inductively as

U0(S) = S, Um+1(D) =
⋃
{T ∈ TH |Um(S) ∩ T 6= ∅}.

In this definition, TH is interpreted as a mesh of the torus such that patches are continued over the periodic
boundary [27]. For S = T with T ∈ TH we call Um(T ) the m-layer element patch and we refer to Figure 3.1 for
a visualization. By the quasi-uniformity of TH we further note that

max
T∈TH

card{K ∈ TH |K ∈ Um(T )} . md. (3.1)

Fine-scale features are not captured in the coarse space VH , i.e., a standard FEM on the coarse scale applied
to (2.2) does not yield faithful approximations. We will characterize fine-scale parts of functions in V as the
kernel of a suitable interpolation operator. We now introduce the required properties as well as an appropriate
example. Let IH : V → VH denote a bounded local linear projection operator, i.e., IH ◦ IH = IH , with the
following stability and approximation properties for all v ∈ V

H−1 ‖v − IHv‖L2(T ) + ‖∇IHv‖L2(T ) . ‖∇v‖L2(U1(T )). (3.2)

A possible choice (which we use in our implementation of the method) is to define IH := EH ◦ ΠH , where
ΠH : V → Q1(TH) denotes the (local) L2-projection. EH is the averaging operator that maps discontinuous
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Figure 3.1. A mesh element T = U0(T ) (dark blue) and its patches U1(T ) (intermediate blue)
and U2(T ) (light blue). The light blue squares on the very right belong to U2(T ) because of
the periodic continuation.

functions in Q1(TH) to VH by assigning to each free vertex the arithmetic mean of the corresponding function
values of the neighboring cells, that is, for any v ∈ Q1(TH) and any vertex z of TH ,

(EH(v))(z) =
∑

T∈TH , z∈T

v|T (z)

/
card{K ∈ TH , z ∈ K}.

Note that again TH is understood as a mesh of the torus. For further details on suitable interpolation operators
we refer to [11].

3.2. Localized multiscale method

Denote by V f = ker IH the kernel of IH which characterizes the functions with possible fine-scale variations
in V . Further, we introduce the following straightforward restriction of V f to patches Um(S) via

V f(Um(S)) := {v ∈ V f | v|D\Um(S) = 0}.

The LOD is based on (truncated) correction operators Cm(A) defined by

Cm(A)v =
∑
T∈TH

Cm,T (A)v,

where the so-called element correction operator Cm,T (A) : V → V f(Um(T )) associated with the coefficient A
solves (

A∇(Cm,T (A)v),∇vf
)
Um(T )

=
(
A∇v,∇vf

)
T

for all vf ∈ V f(Um(S)). (3.3)

Note that these local problems are well-posed by the Lax-Milgram lemma due to the uniform ellipticity of A.
The multiscale space V ms

H,m is now constructed as

V ms
H,m := VH − Cm(A)VH .

Denoting by N the set of vertices of TH (understood as a mesh of the torus) and {λz}z∈N the nodal basis of
VH , {λz − Cm(A)λz}z∈N is a basis of V ms

H,m.

The Petrov-Galerkin LOD (PG-LOD) for (2.2) now reads as: Find ums
m ∈ V ms

H,m such that

a(ums
m , v) = F (v) for all v ∈ VH , (3.4)
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where we can write ums
m = uHm − Cm(A)uHm with uHm ∈ VH . In this Petrov-Galerkin variant only the ansatz

functions are in the multiscale space, whereas the test functions are standard finite element functions. The
advantage over the Galerkin variant is that communication between different element correction operators is
avoided. Hence, these correction operators, which are fine-scale quantities, do not need to be stored beyond
the assembly of local stiffness matrix contributions. We emphasize that in practical computations uHm ∈ VH is
first determined by solving the linear system associated with (3.4). If required, the element correction operators
using uHm can be computed to yield the full multiscale approximation ums

m . The PG-LOD (3.4) is well-posed for
sufficiently large m where no stability issues are reported in practice even for small choices m = 2, 3, cf. [9, 17].
From [9, Thm. 2] we obtain the following a priori error estimates

‖A1/2∇(u− ums
m )‖L2(D) + ‖u− uHm‖L2(D) . (H +md/2γm) ‖f‖L2(D) (3.5)

for some 0 < γ < 1 independent of H and m. Choosing m & | logH|, these estimates essentially show that
(i) ums

m converges linearly to u in the energy norm and (ii) uHm converges linearly to u in the L2(D)-norm. In
other words, uHm is a good L2-approximation to u, while the correction operators and thus ums

m are necessary to
obtain a good H1-approximation of u.

3.3. Offline-online strategy

In this section, we suggest an offline-online strategy for the fast computation of the left-hand side in (3.4)
for many different realizations A. For v, w ∈ VH , we denote b(v, w) := a(v − Cm(A)v, w) and observe that

b(v, w) =
∑
T∈TH

bT (v, w) (3.6)

with

bT (v, w) :=

ˆ
Um(T )

A(x)(χT∇v −∇(Cm,T (A)v))(x) · ∇w(x) dx, (3.7)

where χ denotes the characteristic function. We will from now on assume that the mesh size H is an integer
multiple of the periodicity length ε. This implies that bT (·, ·) for the coefficient Aε is identical for every mesh
element T ∈ TH . Hence, only bT (·, ·) for a single T ∈ TH is required in order to assemble b(·, ·) associated with
Aε.

Offline phase. Fix an element T ∈ TH . Let J := {k ∈ Zd | ε(k + Q) ⊂ Um(T )} be the index set of possible
defects in the patch Um(T ) and denote by N := cardJ its cardinality.

We introduce a bijective mapping σ : {1, . . . , N} → J . Further, we set

Ai :=

{
Aε|Um(T ), i = 0,

Aε|Um(T ) + χε(σ(i)+Q)Bε, i = 1, . . . , N
(3.8)

as our stored offline “basis” of coefficients. Intuitively, this means that Ai is constructed from Aε by introducing
a single defect. For the two examples 2.2 and 2.3 of random coefficients of Figure 1.1 in the introduction, some
corresponding Ai are depicted in Figure 3.2 left and right, respectively.

In the offline phase, we compute the local LOD stiffness matrix contributions

biT (λj , λk) =

ˆ
Um(T )

Ai(x)
(
χT∇λj −∇(Cm,T (Ai)λj)

)
(x) · ∇λk(x) dx, (3.9)

where {λj} is the set of finite element basis functions spanning VH and Cm,T (Ai) denotes the element correction
operator associated with the coefficient Ai. Note that the stiffness matrix contribution for the fixed element T
itself is a coarse-scale object and inexpensive to store. Additionally, we also assemble the load vector, i.e., the
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(a) Random checkerboard (b) Random defect inclusions

Figure 3.2. Offline coefficients A0, A1, A2, A3 (from top left to bottom right) for random
checkerboard of Example 2.2 (left) and random defect inclusions of Example 2.3 (right). Gen-
erated with α = 0.1 (white), β = 1 (black), ε = 2−6, H = 2−5, and m = 2.

right-hand side of (3.4). For this assembly, we have to consider all mesh elements, but the load vector is the
same for all coefficients.

Online phase. Given a sample coefficient A of the form (1.2) and (2.5), there are µi ∈ R, i = 0, . . . , N such

that
∑N
i=0 µi = 1 and

A|Um(T ) =

N∑
i=0

µiAi (3.10)

for any T ∈ TH . More specifically, µi for i = 1, . . . , N is determined from the value of b̂jp for a certain j. In
particular, we have µi ∈ {0, 1} for i = 1, . . . , N and µ0 = 1−Ndef where Ndef denotes the number of defects in
the patch Um(T ). Note that µi depends (implicitly) on T and that its calculation is cheap.

In the online phase, we calculate the global LOD stiffness matrix as a combination of the offline quantities
as follows. With the µi at hand, we compute the local combined LOD stiffness matrix contributions as

b̃T (λj , λk) =

N∑
i=0

µib
i
T (λj , λk). (3.11)

The global combined bilinear form b̃ is defined as usual via b̃ =
∑
T∈TH b̃T . Effectively, the sum in (3.11) only

contains Ndef + 1 nonzero terms. Roughly, only a fraction of p terms thus needs to be considered each time.
After the assembly of the global stiffness matrix, we compute ũHm ∈ VH as the solution of

b̃(ũHm, vH) = F (vH) for all vH ∈ VH . (3.12)

Note that the underlying linear system is of small dimension.

More details on the (efficient) implementation of the offline-online strategy are given in Section 5.1. As

already indicated by the notation, b̃ and ũHm are only approximations to the true PG-LOD form b and solution
uHm associated with the sample coefficient A, respectively. We analyze the error committed by the new strategy
in the next section.
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Remark 3.1. Because of the periodic boundary conditions and the box-type domain, the local LOD stiffness
matrix for Aε and the choice of offline coefficients are independent of T . In case of Neumann or Dirichlet
boundary conditions or more general domains, there are several representative configurations for the possible
patches. One can adapt the offline phase to these situations by calculating and storing the matrix contributions
for all possible patch configurations and the associated offline coefficients. If the number of possible patch
configurations is small, e.g., for a highly structured mesh and domain, the additional effort required may still
be feasible.

Remark 3.2. The assumption of periodic Aε, Bε with H and the length of the domain being integer multiples
of ε is important to guarantee that the offline and the samples coefficients all have the same structure for each
mesh element. Otherwise, we would need to perform the above described offline phase for all mesh elements.
This, in turn, increases the computational time and the storage costs. While the additional costs in run-time
might be compensated by an effective online phase if sufficiently many samples are considered, the storage may
become a bottleneck. In future work, one might therefore try to reduce the number of offline coefficients per
mesh element or consider adaptive online strategies, cf. Remark 4.3.

Remark 3.3. In this presentation we focus on the case when A =
∑N
i=0 µiAi. If A is not exactly a linear

combination of the Ai’s one would instead need to find optimal weights {µi}Ni=0 to minimize the error. In
Section 4, we present an error estimator presented that bounds the error also for this case. Exactly how to do
this optimization is outside the scope of this presentation and we leave it for future investigation.

4. A priori eror analysis

In this section, we discuss the well-posedness of (3.12) as well as error estimates for u− ũHm. To accomplish

this, we start by studying the consistency error b − b̃. We first consider the one-dimensional case where the
correction operators can be explicitly computed and then discuss the generalization to several dimensions. As
in the previous sections, A denotes the true coefficient with associated PG-LOD bilinear form b and the bilinear
form of the offline-strategy b̃ is defined via (3.11).

In the one-dimensional setting with IH chosen as the nodal interpolation operator, the corrector problems
automatically localize to single coarse elements, i.e., m = 0 is sufficient. Moreover, the correction operators can
be explicitly calculated. Hence, [19] provides the following result on bT from (3.7) in d = 1: It holds for any
v, w ∈ VH that

bT (v, w) = (Aharm|T∇v,∇w)T

with the element-wise constant coefficient Aharm defined as

Aharm|T :=
( 1

|T |

ˆ
T

A−1 dx
)−1

.

This means that b can be written as a finite element bilinear form with a modified coefficient, namely the
element-wise harmonic mean. Similarly, b̃ can be written as finite element bilinear form associated with

Aµharm|T :=

N∑
i=0

µiA
i
harm|T , (4.1)

where Aiharm denotes the harmonic mean of Ai. Let Ndef denote the number of defects in T for the given
realization. In the following, we will write Ndef = θdef,TN with N the number of possible defect locations
(in T ), cf. Section 3.3. Note that in this one-dimensional setting, we have N = H/ε. We abbreviate θdef =

maxT∈TH θdef,T . The representation of b̃ in the one-dimensional setting allows for the following a priori bound.
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Theorem 4.1. If D is one-dimensional and IH is the nodal interpolation operator, the consistency error between
b from (3.6) and b̃ defined via (3.11) fulfills for any v, w ∈ VH

|(b− b̃)(v, w)| ≤ β

α

(β − α
α

)2

|Q|2
( ε
H
θdef + 2θ2

def

)
‖v‖A‖w‖A. (4.2)

This theorem clearly underlines why the approach works for small defect probabilities and hence, for small
θdef . We emphasize that the O(θdef) error contribution is multiplied by the small factor ε/H < 1. The proof of
Theorem 4.1 is presented in Appendix A.

Extending estimate (4.2) to higher dimensions is challenging because we do not have an explicit and local

representation of b. In the following, we present an upper bound on the consistency error b−b̃ that is computable

in an a posteriori manner. We emphasize that the result does not require A|Um(T ) =
∑N
i=0 µiAi. We abbreviate

Ā =
∑N
i=0 µiAi.

Theorem 4.2. Define for any T ∈ TH

E2
T := max

v∈VH :v|T

‖(A1/2 −A−1/2Ā)χT∇v −
∑N
i=0 µi(A

1/2 −A−1/2Ai)∇(Cm,T (Ai)v)‖2L2(Um(T ))

‖v‖2A,T
. (4.3)

Then, for any v, w ∈ VH it holds that

|(b̃− b)(v, w)| . md/2
(

max
T∈TH

ET

)
‖v‖A ‖w‖A. (4.4)

In practice, ET is computed as the largest eigenvalue of an eigenvector problem of dimension 2d, which is the
dimension of the coarse scale finite element space on one element T . We only need to store Ai and Cm,T (Ai)
on a single patch Um(T ) and have access to the sampled coefficient A. We refer to Section 5.3 for details on
these implementation aspects. Note that for N = 0, i.e., a single “reference” coefficient Ai, ET coincides with
eu,T defined in [18, Lemma 3.3]. Theorem 4.2 can thus be interpreted as a generalization to the case of several
reference coefficients.

Remark 4.3. In the present contribution, we see ET as a computational tool to easily obtain an upper bound
on the actual error without the need to compute uHm and, in particular, the correction operators Cm,T (A)
associated with A. Note that the computation of ET is not necessary in the offline-online strategy if no error
control is required. Since ET can be evaluated without Cm,T (A), we will investigate its use to build up the
offline coefficients Ai or to enrich them during the online phase in future work.

Proof of Theorem 4.2. Let v, w ∈ VH be arbitrary but fixed. We will show that for any T ∈ TH it holds that

|(bT − b̃T )(v, w)| . ET ‖v‖A,T ‖w‖A,Um(T ). (4.5)

Let us first illustrate how this implies the assertion of the theorem:

|(b− b̃)(v, w)| ≤
∑
T∈TH

|(bT − b̃T )(v, w)|

.
∑
T∈TH

ET ‖v‖A,T ‖w‖A,Um(T )

. md/2
(

max
T∈TH

ET

)
‖v‖A ‖w‖A.
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Let us now prove (4.5). We abbreviate Cim,T = Cm,T (Ai) and Cm,T = Cm,T (A). We have

bT (v, w)− b̃T (v, w)

=
(
A(χT∇−∇Cm,T )v,∇w

)
Um(T )

−
N∑
i=0

µi
(
Ai(χT∇−∇Cim,T )v,∇w

)
Um(T )

=
(

(A− Ā)χT∇v −
N∑
i=0

µi(A−Ai)∇Cim,T v,∇w
)
Um(T )

−
(
A∇
(
Cm,T −

N∑
i=0

µiCim,T
)
v,∇w

)
Um(T )

≤ ET ‖v‖A,T ‖w‖A,Um(T ) +
∥∥∥(Cm,T − N∑

i=0

µiCim,T
)
v
∥∥∥
A,Um(T )

‖w‖A,Um(T ).

It remains to estimate the second term. We abbreviate z = Cm,T v −
∑N
i=0 µiCim,T v ∈ V f(Um(T )). We deduce

by the definition of Cim,T v that

‖z‖2A,Um(T ) =
(
A∇
(
Cm,T v −

N∑
i=0

µiCim,T v
)
,∇z

)
Um(T )

= (A∇v,∇z)T −
(
A

N∑
i=0

µi∇(Cim,T v),∇z
)
Um(T )

= ((A− Ā)∇v,∇z)T −
( N∑
i=0

(A−Ai)µi∇CiT v,∇z
)
Um(T )

≤
∥∥∥(A1/2 −A−1/2Ā)χT∇v −

N∑
i=0

µi(A
1/2 −A−1/2Ai)∇CiT v

∥∥∥
L2(Um(T ))

‖z‖A,Um(T )

≤ ET ‖v‖A,T ‖z‖A,Um(T ),

which finishes the proof. �

Theorems 4.1 and 4.2 provide bounds on the consistency error

η := sup
v∈VH\{0}

sup
w∈VH\{0}

|(b− b̃)(v, w)|
‖v‖A ‖w‖A

.

If the consistency error is sufficiently small, well-posedness of (3.12) is guaranteed and we also obtain an error
estimate as detailed in the next corollary.

Corollary 4.4. There exist m0 > 0 and η0 > 0 such that, if m > m0 and η < η0, (3.12) is well-posed and,
further, the error between the solution u of (2.2) and the solution ũHm ∈ VH of (3.12) satisfies

‖u− ũHm‖L2(D) . (H +md/2γm + η)‖f‖L2(D).

Proof. We proceed similar to the proof of Theorem 4.1 in [17]. To show the well-posedness of (3.12), we prove

the coercivity of b̃ if η < η0 and m > m0. We again abbreviate Cm = Cm(A) and Cm,T = Cm,T (A). By C∞,T we
denote the element correction operator Cm,T with m =∞, i.e., where the integral on the left-hand side of (3.3)
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is taken over the whole domain D. We set C∞ =
∑
T∈TH C∞,T and note that a(v − C∞v, C∞w) = 0 for all

v, w ∈ VH . Let v ∈ VH be arbitrary. We deduce

b̃(v, v) = b(v, v) + (b̃− b)(v, v) = a(v − Cmv, v) + (b̃− b)(v, v)

= a(v − C∞v, v) + a(C∞v − Cmv, v) + (b̃− b)(v, v)

≥ (c1 + c2m
d/2γm − η)‖v‖2A,

where we used

a(v − C∞v, v) = a(v − C∞v, v − C∞v) = ‖v − C∞v‖2A ≥ c1‖IH(v − C∞v)‖2A = ‖v‖2A

and
‖(C∞ − Cm)v‖A ≤ c2md/2γm‖A1/2∇v‖L2(D)

in the last step. Clearly, the are m0 and η0 such that for m > m0 and η < η0, c1−c2md/2θm−η can be bounded
from below by a positive constant. This shows the coercivity of b̃.

For the error estimate, we use the triangle inequality to get

‖u− ũHm‖L2(D) ≤ ‖u− uHm‖L2(D) + ‖uHm − ũHm‖L2(D),

where the first term is estimated in (3.5). By the coercivity of b̃ we obtain for uHm − ũHm that

‖uHm − ũHm‖2A . b̃(uHm − ũHm, uHm − ũHm) = b̃(uHm, u
H
m − ũHm)− F (uHm − ũHm)

= (b̃− b)(uHm, u
H
m − ũHm)

. η ‖f‖L2(D) ‖uHm − ũHm‖A,

where we used the stability of the PG-LOD solution uHm in the last step. Application of Friedrich’s inequality
yields the L2-bound. �

Remark 4.5. In the one-dimensional case, b̃ is coercive if and only if Aµharm in (4.1) is positive on each element.
A sufficient condition – alternative to a small consistency error – is Bε ≥ 0, i.e., the random perturbation is
always additive to Aε. In more detail, if Bε ≥ 0, we can show Aiharm|T ≥ A0

harm|T for i = 1, . . . , N . Because

of µi ≥ 0 for i = 1, . . . , N and
∑N
i=0 µi = 1, we deduce Aµharm|T ≥ α > 0. The sufficient condition Bε ≥ 0 is

satisfied for Example 2.2, but not for Example 2.3.

5. Implementation aspects

This section deals with implementation details specific to the presented offline-online strategy with a focus
on the algorithm (Section 5.1), its comparison concerning run-time to the method of [17] (Section 5.2), and the
implementation of ET from Theorem 4.2 (Section 5.3). For the general implementation of the (PG-)LOD we
refer to [11] and [26, Ch. 7].

5.1. Algorithm for the offline-online strategy and memory consumption

Algorithm 1 shows how to carry out the procedure from Section 3.3 computationally.
It starts with setting up the offline coefficients. Due to the periodicity and the weakly random structure,

only the fine-scale representations of Aε and Bε on a single coarse element T need to be stored with a cost of
order (H/h)d. biT is computed for all offline coefficients, but only for a single coarse element. The storage cost
is of order N md where the number of offline coefficients N is of the order (mH/ε)d. We especially emphasize
that, for moderate m and not too coarse H, we have N < O(ε−d) = cardI with the index set I from (2.5). This
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Algorithm 1 Offline-online strategy

1: input: Problem data Aε, Bε, Q, f (cf. Section 2)
2: Pick m
3: Fix T ∈ TH . start offline phase
4: Precompute and save offline coefficients {A0, A1, . . . AN} according to (3.8)
5: for i = 0, . . . N do
6: Precompute Cm,T (Ai)λj for all j (discard at end of iteration)
7: Precompute and save biT (λj , λk) for all j and k
8: end for
9: Precompute and save F (λj) for all j . end offline phase

10: for all sample coefficients A do . start online phase
11: for all T ∈ TH do
12: Compute µi such that A|Um(T ) =

∑N
i=0 µiAi

13: Compute and save b̃T (λj , λk) =
∑N
i=0 µib

i
T (λj , λk) for all j and k

14: end for
15: Assemble stiffness matrix K̃kj :=

∑
T∈TH b̃T (λj , λk)

16: Solve for ũHm according to (3.12)
17: end for

means that there are less possible defects in the element patch Um(T ) than in D. The pre-computations for the
offline coefficients can be executed in parallel. Finally, we also assemble and store the load vector in the offline
phase with a cost of order H−d.

In the online phase, we perform a loop over the sample coefficients (i.e., Monte-Carlo-type sampling) which
again can be executed in parallel. For each coefficient, there is a loop over the elements which is also paralleliz-
able. For each element, we extract the µi forming the representation of A in terms of the offline coefficients.
Due to the representation (2.5), this does not require extensive computations. We emphasize that many µi are

identically zero for rare perturbations so that the sum for b̃T is evaluated cheaply. Finally, the coarse-scale
linear system with b̃ is assembled and solved. The assembly of the stiffness matrix involves a reduction over
T , but only coarse-scale quantities like b̃T of amount mdH−d are needed between different elements, cf. [17].
From the coarse-scale solution ũHm for each sample coefficient, we can of course compute quantities of interest
or agglomerate statistical information.

5.2. Run-time complexity

Based on Algorithm 1, let us briefly comment on the run-time complexity in comparison to the standard LOD
and the LOD with local updates according to [17]. We consider the time taken for the stiffness matrix assembly
for Msamp sample coefficients and consider completely sequential versions of all methods. In the following, tstiff
measures the time for the assembly of a local LOD stiffness matrix contribution for a given coefficient according
to (3.7). We assume that this time does not depend on the given coefficient or the coarse element T considered.
Further, nH denotes the number of elements in TH which is of the order H−d.

For the standard LOD, the global LOD matrix is newly computed for each sample. Hence, the total time
for LOD matrix assemblies amounts to tstot := MsampnHtstiff . In the LOD with local updates of [17], the LOD
stiffness matrix for A0 = Aε is calculated on a single element. For each sample coefficient A, an error indicator
is then evaluated for each element T which requires a time of nHtind. For the fraction precomp of elements where
the error indicator is the largest, the LOD stiffness matrix is computed anew based on A. Overall, the LOD
with local updates takes a total matrix assembly time of tutot := tstiff +Msamp(nHtindic + precompnHtstiff).

In the offline-online strategy, we first compute LOD stiffness matrices for (N + 1) coefficients, yielding a
run-time of (N + 1)tstiff in the offline phase. We recall that N is of the order (mH/ε)d. In the online phase, we
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denote by tcomb the time to combine the LOD stiffness matrices. Hence, we obtain the total matrix assembly
time for the offline-online strategy as totot := (N + 1)tstiff +MsampnHtcomb.

We observe that the offline-online strategy easily outperforms the standard LOD, i.e., totot < tstot because we
can expect tcomb � tstiff : Forming the linear combination in (3.12) is much faster than computing the correction
operator Cm,T (A). The main goal thus is to outperform the LOD with local updates, i.e., to achieve totot < tutot.
This requires tcomb < tindic + precomptstiff , which is easily achievable in practice, and we can even hope for

tcomb < tindic. We then deduce that totot < tutot if and only if Msamp > Ntstiff
nH(tindic+precomptstiff−tcomb) . With the

previous comments on the relation of tcomb, tstiff and tind, the offline-online strategy will be more efficient than
the LOD with local updates already for moderate sample sizes. This holds especially in the regime H ≈

√
ε

where N/nH is small.

5.3. Computation of ET

We finally give some details on the implementation of ET from Theorem 4.2, where we only consider the case
A = Ā for simplicity. When computing ET we set up an eigenvalue problem. We denote by λj the local basis
functions of VH on T . There are d + 1 basis functions for simplicial meshes and 2d on quadrilateral meshes.
Now, ET is the square root of the largest eigenvalue to the generalized eigenvalue problem

Sv = νBv,

where

Sjk =
( N∑
i=0

µi(A
1/2 −A−1/2Ai)∇(Cm,T (Ai)λk),

N∑
i=0

µi(A
1/2 −A−1/2Ai)∇(Cm,T (Ai)λj)

)
Um(T )

Bjk = (A∇λk,∇λj)T .

To assemble S, we need to store ∇Cm,T (Ai)λj for i = 0, . . . , N and j = 1, . . . , d (since
∑
λj = 1) on each

(fine) element of the patch surrounding T (in case of a simplicial mesh). Since these gradients are piecewise
constant on the fine mesh, this amounts to (N+1)d vectors of length d per fine element. Note that the number of
fine elements in a patch is of the order (mH/h)d. Hence, additional to the cheap storage of Ai (see Section 5.1),
quantities of order Nd2(mH/h)d have to be stored for computing ET . We emphasize that ∇Cm,T (Ai)λj only

needs to be stored for a single, fixed element T due to periodicity. For each A =
∑N
i=0 µiAi we then need to

compute the component-wise products between (A1/2 − A−1/2Ai)µi and the stored ∇Cm,T (Ai)λj , sum over i
and finally compute the integrals for the combinations of 1 ≤ j, k ≤ d+ 1. Here, we can exploit symmetry and
the fact that many µi are zero. We emphasize that the computation of B is cheaper.

Remark 5.1. We note once more that ET is not required in the offline-online strategy, but serves as error con-
trol. Hence, instead of evaluating ET for each sample coefficient, one could also try to estimate the distribution
of ET by sampling (via sampling µi). This could be done for a single element T in the (extended) offline phase
so that Cm,T (Ai) can be discarded for the online phase as before.

6. Numerical experiments

In this section, we present extensive numerical examples in one and two dimensions on the unit cell D =
[0, 1]d. We choose f = 8π2 sin(2πx) in the one-dimensional experiment and f = 8π2 sin(2πx1) cos(2πx2) in two
dimensions. Our code is based on gridlod [16] and is publicly available at https://github.com/BarbaraV/

gridlod-random-perturbations.
We mainly focus on the relative L2-error

‖uHm − ũHm‖L2(D)

‖uHm‖L2(D)
(6.1)
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Figure 6.1. Root mean square errors for harmonic means in L∞(D)-norm (left) and root mean
square relative L2(D)-errors of the solution (right) versus probability for the one-dimensional
random checkerboard with ε = 2−8 and varying H.

between the PG-LOD solution uHm for the given sample coefficient and the solution ũHm of our offline-online
strategy. We additionally take the root mean square error over Msamp samples.

6.1. One-dimensional example

We set h = ε = 2−8 and randomly assign to each interval of length ε the value α = 0.1 with probability 1− p
or the value β = 1.0 with probability p. We compute the maximal error between the element-wise harmonic
means Aharm|T and Aµharm|T , cf. Section 4, as well as the relative L2(D)-errors for the solutions (with m = 0).
The root mean square errors over 500 samples in dependence on the probability p and on the mesh size H are
depicted in Figure 6.1. On the left, we see that all curves for the harmonic means show an overall quadratic
behavior as expected from Theorem 4.1. Moreover, we also see the predicted increase of the constant with
decreasing H. Figure 6.1 (right) illustrate the quadratic dependence of the root mean square errors in the
solution on p. Here, however, the curves for different H lie closer together. Moreover, we observe that the
relative L2(D)-errors (slightly) decrease with decreasing H. Overall, we clearly see that up to probabilities of
p = 0.2, our new method produces root mean square errors (in the solution) of less than 3% which is acceptable
in many applications.

6.2. Random checkerboard coefficient

We now consider a two-dimensional random checkerboard coefficient, i.e., we set d = 2 and consider Exam-
ple 2.2 with ε = 2−7, α = 0.1 and β = 1.0. For the LOD we set h = 2−8, so that all fine-scale details are
resolved, as well as H = 2−5 and m = 4. The choice of H and m ensures that uHm of the standard LOD is a good
reference solution. All the following results are obtained with Msamp = 350. First, we investigate the behavior
of the root mean square relative L2(D)-error of our new approach in dependence on the probability p. We
observe in Figure 6.2 (left) again a quadratic growth as in the one-dimensional setting. Note that the root mean
square error stays below roughly 3% for probabilities up to p = 0.1 thereby illustrating the good performance
of our new approach. In contrast, simply computing the LOD solution for Aε – which is deterministic – gives a
rather poor approximation as expected, see Figure 6.2, right. More precisely, the root mean square error grows
linearly in p and is already about 10% for p = 0.01. This also implies that the LOD with local updates from [17]
needs an increasing fraction of basis updates. For instance, for p = 0.1, we would require about 60% updates
in this example to attain an accuracy comparable to the offline-online strategy. Put differently, for p = 0.1, the
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Figure 6.2. Root mean square relative L2(D)-errors versus probability for the two-
dimensional random checkerboard. Left: offline-online strategy, right: LOD solution for deter-
ministic coefficient Aε.

LOD with 15% updates (which is a reasonable amount and considered for the timings below) leads to a root
mean square error of about 17%, in contrast to the reported 3% for the offline-online strategy.

In the spirit of Section 5.2, let us briefly comment on the run-time of our offline-online-strategy. We consider
the same setting as before and fix p = 0.1. Timings were taken without the parallelization possibilities discussed
in Section 5.1 on a standard desktop computer (Intel i5-7500 core, frequency 3.40 GHz, Ubuntu 20.04). With
the proposed strategy, the offline phase takes about 186 seconds and the assembly of the global stiffness matrix
takes less than 3 seconds for a single sample coefficient in the online phase (averaged over 350 samples). In
contrast, computing a new LOD stiffness matrix completely for each coefficient takes about 145 seconds per
sample (averaged over 350 samples). This clearly shows that a standard LOD becomes extremely costly in
many Monte Carlo settings. Computing the LOD stiffness matrix on a single element for Aε takes about 0.1
seconds. The LOD with 15% updates requires about 23 seconds as matrix assembly time – including evaluation
of the corrector and local re-computations – for a single sample (averaged over 350 samples). This indicates
that the offline-online strategy is more attractive than local updates already for moderate sample sizes – in the
considered example, after about 10 samples.

6.3. Periodic coefficient with random defects

We now consider the two-dimensional version of Example 2.3 with ε = 2−6, α = 1 and β = 10. For the PG-
LOD, we select h = 2−8, H = 2−4 and m = 3 again guaranteeing that all inclusions are resolved by the fine mesh
and that the PG-LOD solution uHm serves as a good reference. We consider the root mean square relative L2(D)-
errors for our offline-online strategy over 350 samples and for defect probabilities p ∈ {0.01, 0.05, 0.1, 0.15}. Here
we focus on the influence of the following defect possibilities on the errors:

• A defect inclusion has the new value β̃ ∈ {1, 0.5, 5} where we emphasize that β̃ = 1 means that the
inclusion vanishes;

• A defect inclusion takes the value β in the whole ε-cell (called fill);
• A defect inclusion is positioned at (scaled and shifted versions of) [0.75, 1]2 (called shift);
• A defect inclusion has a different shape of (scaled and shifted versions of) [0.25, 0.75]2\[0.5, 0.75]2 (called
Lshape).

The different considered possibilities for p = 0.1 are visualized in Figure 6.3 where we chose ε = 2−4 to better
see the (fine) inclusions. Note that the model shift does not only shift the inclusion, but even changes its size.
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Figure 6.3. Different variants of random defects in periodic multiscale coeffcients for ε = 2−4

and p = 0.1. Top row: Changes in value with β̃ ∈ {1., 0.5, 5} (from left to right). Bottom row
from left to right: fill, shift, and Lshape.

The root mean square relative L2(D)-errors of our offline-online strategy depending on p are depicted in
Figure 6.4. On the left, we see the influence of the value taken in a defect. While all root mean square errors
are very small (below 0.5%), the smaller β̃, i.e., the value in the defect, the larger the error. The dependency

of the error on the contrast between α, β, and β̃ is also indicated by our theoretical findings.
Figure 6.4 (right) shows the influence of the different geometry changes in the defects on the root mean

square errors. We emphasize that all errors of the new strategy stay below 5% up to p = 0.15. Concerning
the differences between the geometry changes, we clearly observe that the model fill is the most difficult and
produces the largest errors. This holds true not only in comparison to shift and Lshape depicted in Figure 6.4
right, but also in comparison to value depicted in Figure 6.4 (left).

6.4. Error indicator ET

The aim of our final numerical experiment is to illustrate the relation between the error uHm − ũHm locally on
an element patch Um(T ) and the indicator ET . Note that this is not exactly covered by the theoretical findings
of Theorem 4.2. We approach the question by studying the random checkerboard coefficient of Example 2.2
in d = 2 with α = 0.1 and β = 1.0. We set H = 1/5, m = 2, ε = 1/20 and h = 1/40 so that D = [0, 1]2
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Figure 6.4. Root mean square relative L2(D)-error versus probability for the two-dimensional
periodic inclusions with defects. Comparison of different defect values (left) and geometry
changes (right).

represents the element patch Um(T ). For each sample coefficient, we compute uHm and ũHm as in the previous
experiments. In this experiment, we consider both the root mean square absolute and relative L2(D)-error.
Additionally, we compute ET for the element T in the middle of D. Figure 6.5 depicts the root mean squares –
sampled over 500 realizations – of the errors and the indicator for different values of p. We see that the absolute
L2(D)-error and ET show a qualitatively and quantitatively similar behavior which underlines the validity of
ET as an indicator for the (local) error. The relative L2(D)-error is of a different magnitude since we divide
by the norm of uHm, cf. (6.1). Amplifying the relative error by a factor of 4, we observe that there seems to be
a good qualitative agreement between the relative error and the indicator (Figure 6.5, dashed line). In other
words, the ratio between ET and the absolute as well as the relative L2(D)-error seems to be almost constant
for varying probabilities p.

Conclusion

We presented an offline-online strategy based on the Localized Orthogonal Decomposition (LOD) to compute
coarse-scale solutions of elliptic equations with local random perturbations in a Monte Carlo setting. Exploiting
the periodic structure of the underlying deterministic coefficient, LOD stiffness matrices on a single reference
element for representative perturbations are computed in an offline phase. Those are efficiently combined to
yield the LOD stiffness matrix for each sample coefficient in the online phase. We showed error estimates in the
one- as well as the higher dimensional case where we derived an indicator. Theoretical algorithmic considerations
as well as numerical experiments underlined the promising performance of the offline-online strategy. Overall,
the present contribution provides interesting first results on an efficient computational multiscale approach for
PDEs with random coefficients. Future research concerns the combination with Monte Carlo-type approaches,
the extension of the construction to more general random coefficients, and the improvement of the error indicator
to reduce storage of fine-scale quantities.
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interfaces in linear elasticity. GAMM-Mitt., 43(1):e202000001, 2020.

[20] P. Henning and D. Peterseim. Oversampling for the multiscale finite element method. Multiscale Model. Simul., 11(4):1149–

1175, 2013.
[21] C. Le Bris. Homogenization theory and multiscale numerical approaches for disordered media: some recent contributions. In

Congrès SMAI 2013, volume 45 of ESAIM Proc. Surveys, pages 18–31. EDP Sci., Les Ulis, 2014.

[22] C. Le Bris, F. Legoll, and F. Thomines. Multiscale finite element approach for “weakly” random problems and related issues.
ESAIM Math. Model. Numer. Anal., 48(3):815–858, 2014.

[23] C. Le Bris and F. Thomines. A reduced basis approach for some weakly stochastic multiscale problems. Chin. Ann. Math.

Ser. B, 33(5):657–672, 2012.
[24] G. J. Lord, C. E. Powell, and T. Shardlow. An introduction to computational stochastic PDEs. Cambridge Texts in Applied

Mathematics. Cambridge University Press, New York, 2014.
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Appendix A. Proof of Theorem 4.1

For the proof of Theorem 4.1, we use the notation from Section 4 and introduce some further abbreviations.

We recall the coefficient Aµharm|T associated with b̃T for given µi with
∑N
i=0 µi = 1, see (4.1). Further, we

introduce

A :=

ˆ ε

0

1

Aε
dx (A.1)

and point out that we have ˆ
T

1

Aε
dx = NA

by the periodicity of Aε. Similarly, we denote

Adef =

ˆ
ε(k+Q)

1

Aε +Bε
− 1

Aε
dx (A.2)

and emphasize that Adef is independent of the choice of k ∈ I with the index set I from (2.5).

Proof of Theorem 4.1. We estimate the consistency error as

|(b− b̃)(v, w)| ≤
∑
T∈TH

|(bT − b̃T )(v, w)|

≤
∑
T∈TH

∣∣Aharm|T −Aµharm|T
∣∣ ‖∇v‖L2(T ) ‖∇w‖L2(T )

≤ α−1
(

max
T∈TH

∣∣Aharm|T −Aµharm|T
∣∣) ‖v‖A‖w‖A.

Hence, it suffices to estimate |Aharm|T −Aµharm|T | for any T ∈ TH .
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With the preliminary observations and notation from above, we have

Aharm|T =
|T |

NA+NdefAdef

,

A0
harm|T =

|T |
NA

, and Aiharm|T =
|T |

NA+Adef

for i = 1, . . . , N.

Recall that for i = 1, . . . , N we have µi ∈ {0, 1} and µ0 = 1−Ndef . Hence, we deduce

Aµharm|T =
∑

µiA
i
harm|T = (1−Ndef)

|T |
NA

+Ndef
|T |

NA+Adef

=
NA|T |+ (1−Ndef)Adef |T |

NA(NA+Adef)

=
|T |
NA

− NdefAdef |T |
NA(NA+Adef)

.

(A.3)

Combining (A.3) with the expression for Aharm|T , inserting Ndef = θdef,TN , and performing a Taylor expansion
around θ = 0, we obtain

|Aharm|T −Aµharm|T | = |T |
∣∣∣ 1

NA+ θdef,TN Adef

− 1

NA
+ θdef,T

Adef

A(NA+Adef)

∣∣∣
≤ |T |

(
0 + θdef,T

∣∣∣ Adef

A(NA+Adef)
− Adef

NA
2

∣∣∣+ θ2
def,T

∣∣∣ 2A
2

def

N(A+ ηAdef)3

∣∣∣)
for some η ∈ [0, θdef,T].

Before we estimate the first- and second-order term in the expansion separately, we bound A and Adef

using (2.3)–(2.4). We obtain

ε

β
≤ A ≤ ε

α
and Adef ≤ ε|Q|

( 1

α
− 1

β

)
as well as (writing Q = [q0, q1])

NA+Adef = N

ˆ ε

0

1

Aε
dx+

ˆ εq1

εq0

1

Aε +Bε
− 1

Aε
dx

= (N − 1)

ˆ ε

0

1

Aε
dx+

ˆ εq0

0

1

Aε
dx+

ˆ ε

εq1

1

Aε
dx+

ˆ εq1

εq0

1

Aε +Bε
dx

≥ 1

β
((N − 1)ε+ εq0 + ε(1− q1) + ε(q1 − q0)) =

Nε

β
.

For the first-order term in the Taylor expansion we deduce

∣∣∣ Adef

A(NA+Adef)
− Adef

NA
2

∣∣∣ =
∣∣∣Adef(NA− (NA+Adef))

NA
2
(NA+Adef)

∣∣∣ =
∣∣∣ A

2

def

NA
2
(NA+Adef)

∣∣∣
≤ ε2|Q|2

( 1

α
− 1

β

)2 β3

ε3N2
=
β3 |Q|2

εN2

( 1

α
− 1

β

)2

.
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Similarly, the second-order term in the Taylor expansion can be estimated as

∣∣∣ 2A
2

def

N(A+ ηAdef)3

∣∣∣ ≤ 2ε2|Q|2

N

( 1

α
− 1

β

)2 β3

ε3(1 + |Q|(1− η))3

≤ 2ε2|Q|2β3

Nε

( 1

α
− 1

β

)2

.

Finally, we obtain with |T | = H and N = H/ε that

|Aharm|T −Aµharm|T | ≤ |Q|
2β3
( 1

α
− 1

β

)2 ε

H
θdef,T + 2|Q|2β3

( 1

α
− 1

β

)2

θ2
def,T . �


