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ABSTRACT
Many people take the same path every day, such as taking a specific

autobahn to get home from work. However, one needs to frequently

divert from this path, e.g., to visit a Point of Interest (POI) from a

category like the category of restaurants or ATMs. Usually, people

want to minimize not only their overall travel cost but also their

detour cost, i.e., one wants to return to the known path as fast

as possible. Finding such a POI minimizing both costs efficiently

is highly challenging in case one considers time-dependent road

networks which are the case in real-world scenarios. For such road

networks time decency means the time a user needs to traverse a

road, heavily depends on the user’s arrival time on that road. Prior

works have several limitations, such as assuming that travel costs

are coming from a metric space and do not change over time. Both

assumptions hardly match real-world requirements: Just think of

traffic jams at the rush hour. To overcome these limitations, we

study how to solve this problem considering time-dependent road

networks relying on linear skylines. Our main contribution is an

efficient algorithm called STACY to find all non-dominated paths.

A large-scale empirical evaluation on real-world data reveals that

STACY is accurate, efficient and effective in real-world settings.

1 INTRODUCTION
ProblemDefinition.Manymovement patterns in our lives exhibit

some regularity. Probably the most obvious one is that many people

take a fixed path from home to work. Other examples for such

regular, preferred paths 𝑃∗ are visiting friends or family members

or pursuing regular hobbies. The optimal route planning for such

paths is a well-studied problem. However, when following such a

regular pattern, it frequently happens that one needs to additionally

visit points of interest (POIs) like a shopping center or an ATM

machine not lying on the preferred path 𝑃∗. Next, it is often not

necessary to visit a specific POI, but one from a category called

the category of interest (COI), such as the category of ATMs [1].

This offers flexibility when suggesting a route optimal according to

the personal preferences of the user. In this context, some people

want to minimize their overall travel cost (𝑇𝐶)1, while others want
to minimize their detour cost (𝐷𝐶), (i.e., one wants to return to 𝑃∗

as fast as possible) or a combination of these two costs. This means

that, given the same start and end location and a COI, there may

be different optimal routes for different people. We illustrate this

with Example 1.1 in the following.

Example 1.1. Assume that Alice and Bob, by chance, have the

same 𝑃∗ and want to visit the same COI. Further suppose that there

are two possible routes 𝑅1 and 𝑅2. 𝑅1 has minimal overall travel

cost (𝑇𝐶), but high detour cost (𝐷𝐶), while 𝑅2 has higher 𝑇𝐶 , but

1
Without loss of generality, costs refer to time in the remainder of this paper.

minimal 𝐷𝐶 . This means route 𝑅1 may be optimal for Alice who

likes exploring new parts of the city but has little time. In contrast,

route 𝑅2 may be optimal for Bob who wants to follow his daily

routine as strictly as possible.

Various prior work shows that finding a pathminimizing only𝑇𝐶

is not always best for the user since users have different preferences

[7, 12, 22]. Prior work further reveals that one has to additionally

consider𝐷𝐶 , and that it is best if the user can select between options,

i.e., from the skyline [3] of all non-dominated paths considering

𝑇𝐶 and 𝐷𝐶 [12].

Regarding an approach that finds the skyline of all paths, we can

derive the following requirements.

I – Comprehensiveness and correctness of results Onewants

to find the skyline of all non-dominated paths (according to

𝑇𝐶 and 𝐷𝐶) which connect the start and end location and

visit one POI of the desired category. While this requirement

might sound trivial, work targeting at related problems has

issues finding all paths, as we explain later.

II – Generality Road costs should not be constrained tometric

spaces as others have often done in the literature so far[1, 9].

This is because users are not only interested in the length of

the path they are traversing, but also in the time they spend

on it. Since time is not metric, the triangle inequality does

not hold in this case [5]. As an example, highway routes

might be longer, but since one is allowed to drive faster it

may take less time to follow them.

III – Flexibility Route planningmust adapt to the current traf-

fic situation and consider potential better routes with respect

to traffic conditions. The time a user needs to traverse a road

heavily depends on the time of day. For instance, it may take

one hour to traverse a road in the evening when everybody

is returning home. At night time, this may take only 10 min-

utes. So we must consider time-dependent networks to handle
real-world scenarios.

IV – Near Real-time Query Performance We aim at near

real-time query response times on real-world data (By near

real-time, we mean a few seconds). This is because our so-

lution is intended to be the foundation of a (mobile) service

where users expect immediate feedback, i.e., query responses

in a few seconds even on large road networks.

The first three requirements specify the functional properties of

the query type. The last requirement asks for efficiency. We will

see in Section 2 that none of the existing approaches addresses all

of these requirements. Moreover, Generality and Flexibility are not

addressed at all in prior work. Since there is no work addressing all

the properties, this is a novel query type, which we name viSiTing
plACes on the waY (STACY) query.



In this paper, we study how to evaluate STACY queries (Require-

ments I-III) efficiently (Requirement IV).

Challenges.Aswewill discuss in detail later, the basic approach
to solve STACY queries suffers from severe time complexity issues.

This is mainly because of the fact that the basic approach needs to

look into the whole search space in order to find non-dominated

paths. This turns out to be computationally infeasible especially

when the network is large and the number of POIs is high.

The following additional challenges arise which we address in

this paper: It is unclear how to reduce the search space to reduce

query response time, ultimately targeting instant query answer-

ing. In particular, considering non-metric spaces means that we

cannot use known pruning strategies from the literature to shrink

the search space. In addition, the Flexibility requirement further

increases the computational effort, calling for even more efficient

pruning methods.

Contributions.As our first contribution, we propose two strong
pruning strategies called local and global pruning strategies. Local

pruning helps in shrinking the search space for paths that share the

same exit and entrance nodes on 𝑃∗. Global pruning is employed

to stop searching for paths when a certain condition holds. These

two pruning strategies shrink the search space significantly.

The main contribution of this paper is an efficient algorithm to

evaluate STACY queries. This algorithm employs the aforemen-

tioned pruning strategies to discard the partial paths that have no

chance to be a part of the query answer set in early stages of their

expansion. This reduces the network expansion factor significantly.

With this, our proposed algorithm is much more scalable than the

basic approach. In addition, our proposed algorithm is based on

mathematical proofs ensuring the correctness of the applied prun-

ing strategies, and to this end of the query result itself.

Since there is no prior work addressing STACY queries, and

approaches in metric spaces are not directly applicable to time-

dependent networks, we compare our approach to a baseline ap-

proach that solves STACY queries. Our results show that our pro-

posed approach is several magnitudes faster than the baseline, with

being qualitatively just as good. In addition, we show that our ap-

proach is not only faster in query processing than the baseline

approach, but faster than present-day state-of-the-art approaches

for non-time-dependent networks.

Paper Outline: In Chapter 2 we review related work. In Chap-

ter 3 we discuss preliminaries and define the problem. In Chapters

4 and 5 we present our proposed solution and the experiments.

Chapter 6 concludes our findings.

2 RELATEDWORK
Since the introduction of skylines [3], it has become a key approach

in the field of route planning [2, 11, 13, 15, 18, 21, 22].

The skyline concept is used in other areas such as finding Re-

gions of Interest (ROIs) [14] and finding routes maximizing the

probability of visiting POIs [10]. However, our settings are differ-

ent than theirs in the sense that we focus on visiting POIs under

certainty assumption.

In the following, we review work on finding optimal routes to

visit a POI close to a given path considering travel or detour cost,

i.e., approaches related to our problem. An inspection of respective

approaches (See Table 1) reveals that none of them addresses all

four requirements presented in the introduction. In the following,

we discuss the approaches listed in the table.

Table 1: Comparison with previous works

Requirements

Works I II III IV

IRNN [20] ✗ ✗ ✗ ✓

BPD [16] ✗ ✗ ✗ ✓

kPNN [4] ✓ ✗ ✗ ✓

ISR [9] ✓ ✗ ✗ ✓

BCIRNN[1] ✓ ✗ ✗ ✓

TDOSR [5] ✗ ✓ ✓ ✓

STACY ✓ ✓ ✓ ✓

In-Route Nearest Neighbor (IRNN) queries have been studied

in [20]. An IRNN query returns a path including a POI with the

minimum detour distance from the regular path. However, since it

only minimizes the detour distance, it does not address Generality
and Flexibility. It also does not cover the case where the user is inter-
ested in other costs such as total travel distance (Comprehensiveness
and correctness).

[16] proposes best point detour (BPD) queries. Given a preferred

path, a set of POIs and a detour distance threshold, BPD finds a

POI which minimizes the detour distance from the preferred path,

with the condition that the detour distance is less than a threshold.

Like IRNN queries, this work only minimizes the detour distance

and hence does not support the Correctness and comprehensiveness
requirement. They also work on weight functions of metric spaces,

so Generality and Flexibility are not covered.

While the queries have a preferred path, the work in [4] assumes

that the shortest distance connecting the source with the destina-

tion specifies the path of the user and finds K points of interest

with minimum detour distance. This query is called k-Path Nearest

Neighbor (kPNN) query. Like IRNN and BPD, it does not cover

Generality and Flexibility.
Unlike the previous approaches, [9] studied In-Route Skyline

(ISR) queries in which not only the detour distance but the total

travel distance as well is important for the user. The result of such a

query is a set of POIs (not entire paths) which are neither dominated

in terms of travel distance nor detour distance. This work addresses

the Comprehensiveness and correctness requirement, but it does not

address the case where the weights are non-metric (Generality) and
time-varying (Flexibility).

Best Compromise In Route Nearest Neighbor (BCIRNN) is the

most similar concept to our work. BCIRNN queries find the paths

which minimize the detour distance and travel distance in a skyline

manner. As with ISR queries, the restrictive assumption is that

the weights come from metric spaces, and therefore the triangle

inequality holds (i.e., no Generality), and the weights are invariant

(no Flexibility). This gives way to strong pruning methods in the

first phase of BCIRNN, eliminating a large share of candidate POIs.

In contrast, time is not metric in the STACY case, hence any existing

POI could be a potential candidate to be visited (i.e., one cannot

prune the candidate POIs even if they are far away in terms of



Visit Places on Your Way: A Skyline Approach in Time-Dependent Networks

distance). Moreover, in contrast to STACY, it is not straightforward

to extend BCIRNN to answer queries where multiple categories are

of interest.

Regarding time-dependent networks, [5] proposes TDOSR queries.

Such a query gets a sequence of COIs as input and returns a path

visiting at least one POI of each COI, minimizing the travel cost of

the path, but not the detour cost. STACY, on the other hand, aims

at minimizing the combination of the detour and travel cost. In

addition, as we will explain later, TDOSR has a correctness issue,

which has been verified by the original authors (Correctness and
comprehensiveness).

In contrast to the previous works listed here, STACY addresses

all requirements presented in the introduction.

3 PRELIMINARIES AND PROBLEM
DEFINITION

In this section, we introduce our notation and discuss preliminaries.

To improve readability, all definitions are intended to use the same

or at least a similar notation as in related work. As a reference, we

refer to [1].

3.1 Road Network Structure
In contrast to work relying on Euclidean networks (i.e., networks

where the triangle inequality holds), our underlying road network

is a Time-Dependent Network. We now formally introduce this kind

of network and explain the difference with the Euclidean network.

Definition 3.1. Time-Dependent Networks: A time-dependent

network 𝐺𝑡 (𝑉 , 𝐸,𝑊 (𝑡)) is a set of nodes 𝑉 (junctions) and edges

𝐸 (roads).𝑊 (𝑡) is a set of functions returning the time needed to

traverse each edge (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 at time instance 𝑡 .

𝑊 (𝑡) is also called the weight function. The lowest travel cost

𝑡𝑖𝑚𝑒𝐸𝑢𝑐 (𝑣𝑖 , 𝑣 𝑗 ) between two nodes 𝑣𝑖 and 𝑣 𝑗 is the time needed to

traverse the (Euclidean) distance between the nodes with maximal

speed (𝑣𝑚𝑎𝑥 ). Since we work with real-world networks there exists

a speed limit on each road. We assume that the maximal speed

of the user never exceeds the speed limit of the corresponding

road.The reason that we need new lower bounds (in comparison

to metric spaces) is that, due to the above definition, the weights

do not need to come from a metric space. This means, known

pruning strategies [1] exploit metricity, i.e., are based on the triangle

inequality and hence are not applicable here.

Regarding the road network 𝐺𝑡
, we assume that the user who

starts traversing an edge first will finish traversal first as well. This

common and realistic assumption is called first-in-first-out (FIFO)

property [5, 6]. This means that it never pays off to wait at some

node, hoping that the travel cost drops. In other words, if two partial

paths meet at a shared node, the one that has visited fewer COIs

and has a later arrival time on that node can safely be pruned.

In addition, we refer to the arrival time (𝐴𝑇 ) at node 𝑣𝑖
𝑗
on path

𝑃𝑖 departing at time 𝑡 as 𝐴𝑇 (𝑣𝑖
𝑗
, 𝑡) 2. Note that the time served in

each POI (for example spending half an hour in a restaurant) also

affects the detour cost 𝐷𝐶 and travel cost 𝑇𝐶 of the corresponding

path. This is because when a user leaves the POI, he enters the next

2
For presentation purposes, we drop the departure time 𝑡 from the equations whenever

needed assuming that the user departed at time 𝑡

road at a different point in time. Hence, we assign a serving time

to each POI, which we call ’spent time’.

A path 𝑃𝑖 = ⟨𝑣𝑖
1
, 𝑣𝑖

2
, . . . , 𝑣𝑖𝑛⟩ is a cycle-free sequence in 𝐺𝑡 3

and

any two consecutive nodes 𝑣𝑖
𝑗
, 𝑣𝑖

𝑗+1 are neighbors in𝐺
𝑡
. Similarly, a

detour path 𝑃𝑖 (𝑑𝑠, 𝑑𝑑) is defined as a cycle-free path in𝐺𝑡
with only

detour source (𝑑𝑠) and detour destination (𝑑𝑑) nodes located on the

preferred path 𝑃∗.We refer to a path that has visited at least one

POI and ends in the destination as full path. Finally, in a preferred

path 𝑃∗ = ⟨𝑣∗
1
, 𝑣∗

2
, . . . , 𝑣∗𝑛⟩, the first and last node are the source and

destination, respectively.

3.2 Costs
Definition 3.2. Travel Cost (𝑇𝐶): given a path 𝑃𝑖 = ⟨𝑣𝑖

1
, 𝑣𝑖

2
, . . . , 𝑣𝑖𝑛⟩

and a departure time 𝑡 , the travel cost is as follows:

𝑇𝐶 (𝑃𝑖 , 𝑡) =
𝑛−1∑
𝑗=1

𝑤 (𝑣𝑖𝑗 , 𝑣
𝑖
𝑗+1, 𝐴𝑇 (𝑣

𝑖
𝑗 , 𝑡))

The travel cost is the sum of the individual traversals of edges

(road weights). Since road weights change over time, 𝐴𝑇 (𝑣𝑖
𝑗
, 𝑡)

specifies the time instance.

Definition 3.3. Detour Cost (𝐷𝐶): Given a preferred path 𝑃∗, a
path 𝑃𝑖 = ⟨𝑣𝑖

1
, 𝑣𝑖

2
, . . . , 𝑣𝑖𝑛⟩ and and a departure time 𝑡 , the detour

cost is as follows:

𝐷𝐶 (𝑃𝑖 , 𝑃∗, 𝑡) =
∑

𝑤 (𝑣𝑖𝑗 , 𝑣
𝑖
𝑗+1, 𝐴𝑇 (𝑣

𝑖
𝑗 , 𝑡))

where the sum goes for all edges (𝑣𝑖
𝑗
, 𝑣𝑖

𝑗+1) ∈ 𝑃𝑖 which are not a

part of 𝑃∗.

As we can see, the detour cost is the sum of the travel costs on

the edges that do not belong to preferred path 𝑃∗. Note, that by
following a detour, the user can make a shortcut to the destination,

i.e., 𝑑𝑠 is not necessarily equal to 𝑑𝑑 .The travel cost and detour cost

are functions of the departure time 𝑡 of the user.

3.3 Linear Skyline Operator
Previous work has shown that the skyline operator is meaningful,

but the query result can be large, which may be confusing [1].

Hence, we use a variant of the operator called linear skyline operator
[19]. In the following, we introduce the conventional skyline and

linear skyline operators, then we discuss their differences.

We define conventional dominance as follows:

Definition 3.4. Conventional Dominance Let 𝑃 be the set of

all possible paths. Each path 𝑃𝑖 is assigned a cost vector 𝑝𝑖 =

(𝑝𝑖
1
, 𝑝𝑖

2
) representing its travel cost and detour cost (i.e., (𝑝𝑖

1
, 𝑝𝑖

2
) =

(𝑇𝐶 (𝑃𝑖 ), 𝐷𝐶 (𝑃𝑖 ))). 𝑃𝑖 ∈ 𝑃 dominates 𝑃 𝑗 ∈ 𝑃 , written as 𝑃𝑖 ≺ 𝑃 𝑗
,

when the following holds:

(𝑝𝑖
1
< 𝑝

𝑗

1
∧ 𝑝𝑖

2
≤ 𝑝

𝑗

2
) ∨ (𝑝𝑖

1
≤ 𝑝

𝑗

1
∧ 𝑝𝑖

2
< 𝑝

𝑗

2
)

Conventional dominance guarantees that 𝑃𝑖 is better than 𝑃 𝑗
in

at least one parameter and not worse in the other parameters. Thus,

the set of non-dominated paths in 𝑃 is

{
𝑃𝑖 ∈ 𝑃 |�𝑃 𝑗 , 𝑃 𝑗 ≺ 𝑃𝑖

}
.

3
Except in detours where a path potentially can visit a node more than one time; this

happens when the user reaches the POI through a route and comes back to 𝑃∗ through
the same route



In contrast, linear skyline maximizes the set of full paths which

minimize the parameter 𝐹 = 𝛿1 · 𝑝𝑖
1
+ 𝛿2 · 𝑝𝑖

2
for all possible combi-

nations of weight vectors 𝛿 = (𝛿1, 𝛿2):

Definition 3.5. Linear Dominance A Path 𝑃𝑖 is 𝛿-dominated by

path 𝑃 𝑗
iff 𝛿𝑇 ·𝑝𝑖 < 𝛿𝑇 ·𝑝 𝑗 where 𝛿 ∈ 𝑅2 > (0, 0) is a weight vector,

𝛿𝑇 is the transpose of vector 𝛿 , 𝑅 represents the real numbers, and

𝑅2 is a point in the 𝑋𝑌 plane.

Using this definition, the linear skyline [19] is as follows:

Definition 3.6. Linear Skyline Let 𝑃 be the set of all possible paths.

Set 𝑃 ′ ⊆ 𝑃 dominates path 𝑃 𝑗 ∈ 𝑃 , denoted as 𝑃 ′ ≺𝐿 𝑃 𝑗
, when the

following holds:

(∃𝑃𝑖 ∈ 𝑃 ′ |𝑃𝑖 ≺ 𝑃 𝑗 ) ∨ (∀𝛿 ∈ 𝑅2 > (0, 0), ∃𝑃𝑖 ∈ 𝑃 ′ |𝛿𝑇 𝑝𝑖 < 𝛿𝑇 𝑝 𝑗 )

The maximal set of linearly non-dominated paths is called linear

skyline (LS) set.

It is computationally expensive to check the predicates above for

any possible 𝛿 vector. The authors of [19] have shown that the linear

skyline has a graphical explanation, simplifying the computation

of linear dominance. A path 𝑃𝑖 is dominated by the paths in 𝑃 ′ if 𝑃𝑖

is located somewhere above the straight line with a negative slope

connecting any two paths from 𝑃 ′. This is illustrated in Figure 1b,

where 𝑃3 is dominated by 𝑃 ′ =
{
𝑃1, 𝑃2

}
.

Suppose that

{
𝑃𝑖 , 𝑃 𝑗

}
⊆ 𝑃 ′, and 𝑝𝑖

1
> 𝑝

𝑗

1
and 𝑝𝑖

2
< 𝑝

𝑗

2
holds.

Let 𝑢1 = min(𝑝𝑖
1
, 𝑝

𝑗

1
) and 𝑢2 = min(𝑝𝑖

2
, 𝑝

𝑗

2
). We define 𝑢 := (𝑢1, 𝑢2).

Next, let 𝑛 be the normal vector of the straight line connecting 𝑃𝑖

and 𝑃 𝑗
in the two dimensional vector space so that 𝑛𝑇 𝑝𝑖 = 𝑛𝑇 𝑝 𝑗 .

Then a path 𝑃𝑘 is linearly dominated by

{
𝑃𝑖 , 𝑃 𝑗

}
⊆ 𝑃 ′ if and only

if the following condition holds:

(𝑢 ≺ 𝑝𝑘 ) ∧ (𝑛𝑇 𝑝𝑘 > 𝑛𝑇 𝑝𝑖 = 𝑛𝑇 𝑝 𝑗 ) .

Figure 1 illustrates the differences between conventional sky-

line and the linear skyline operator. The paths {𝑃1, 𝑃2, 𝑃3, 𝑃4} have
different 𝐷𝐶 and 𝑇𝐶 , as shown in Figure 1. Figure 1a graphs the

share of the plane which is conventionally dominated by each path.

As one can see, only 𝑃4 is dominated by 𝑃3. So the result of the

conventional skyline is {𝑃1, 𝑃2, 𝑃3}. On the other hand, Figure 1b

graphs the share of the plane which is linearly dominated, using

an arrow (i.e. the highlighted area pointed by arrow is linearly

dominated area). Paths 𝑃3 and 𝑃4 are in the dominated area and are

not in the result, which is {𝑃1, 𝑃2}.

Figure 1: Skyline dominance: conventional (left), linear
(right)

3.4 Problem Definition
In the following, we define the problem formally:

Definition 3.7. STACY Query 𝑆𝑇𝐴𝐶𝑌 (𝑃∗, 𝑡,𝐺𝑡 ,𝐶𝑂𝐼 ) takes as in-
put a departure time 𝑡 , a preferred path 𝑃∗ within a time-dependent

network 𝐺𝑡
, and a 𝐶𝑂𝐼 . It returns all paths visiting at least one

point of interest from the COI which are not linearly dominated by

any other path in terms of detour cost 𝐷𝐶 and travel cost 𝑇𝐶 .

The result of a STACY query is a list 𝐿𝑆 =

{
𝑃1, 𝑃2, . . . , 𝑃𝑘

}
con-

taining paths which are not linearly dominated by any other com-

bination of paths in the list. Note that the result of a STACY query

depends on the departure time.

3.5 𝐴∗ Search Algorithm
Similar to all approaches presented in the related work section, our

approach relies on ideas directly originating from the 𝐴∗ Search
Algorithm. Thus, we briefly introduce the 𝐴∗ Search Algorithm

helping to introduce our STACY algorithm in the remainder.

Basically our approach expands partial paths in an 𝐴∗ manner.

Since it is the most commonly used search algorithm in route plan-

ning, this work relies on the notion of partial paths used in 𝐴∗

aiming at improving the readability of the paper.

The 𝐴∗ or best-first search is an algorithm used frequently in

path-finding problems in weighted graphs works as follows: Start-

ing from node 𝑠 , its goal is to find a path to the destination node 𝑑

having the smallest cost. This is done by keeping a tree of partial

paths originating from start node 𝑠 and expanding those partial

paths one edge at a time. The idea is presented in Algorithm 1.

Algorithm 1: 𝐴∗ algorithm
Input: Starting node 𝑠 , Destination node 𝑑 , Departure time

𝑡 ,Time-Dependent graph 𝐺𝑡

Output: Path 𝑃 with minimum travel time from 𝑠 to 𝑑

1 function 𝐴* 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

2 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑞𝑢𝑒𝑢𝑒 𝑃𝑄 𝑤𝑖𝑡ℎ 𝑠𝑡𝑎𝑟𝑡 𝑛𝑜𝑑𝑒 𝑠

3 while 𝑃𝑄 ≠ ∅ do
4 𝑃 ← 𝑃𝑄.𝑝𝑜𝑝 ()
5 if 𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑒𝑛𝑑𝑖𝑛𝑔 𝑖𝑛 𝑑 then
6 𝑟𝑒𝑡𝑢𝑟𝑛 𝑃

7 𝐸𝑥𝑝𝑎𝑛𝑑 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑝𝑎𝑡ℎ 𝑃 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜 𝑓 𝑖𝑡𝑠

8 𝑙𝑎𝑠𝑡 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑛𝑜𝑑𝑒 𝑎𝑛𝑑 𝑎𝑑𝑑 𝑡ℎ𝑒 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 𝑝𝑎𝑡ℎ𝑠 𝑡𝑜 𝑃𝑄

At first step, the algorithm initializes the priority queue (𝑃𝑄)

with the start node 𝑠 (Line 2). At each iteration of the algorithm, the

path 𝑃 with minimum cost is selected from 𝑃𝑄 (Line 4). If path 𝑃

meets the destination node 𝑑 , the algorithm has found the path and

terminates immediately (Lines 5-6). Otherwise, path 𝑃 is expanded

with all neighbors of its last visited node (Lines 7-8).

As one can see in the algorithm, 𝐴∗ needs to select a partial path
for expansion (Line 4). This selection is based on the actual travel

cost of the partial path and also an estimated travel cost to reach

the destination node 𝑑 . In other words, it selects the path which

minimizes the following function:

𝑂𝑇𝐶 (𝑣) = 𝑇𝐶 (𝑣) + ℎ(𝑣)
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where 𝑂𝑇𝐶 presents optimistic travel cost on node 𝑣 , 𝑇𝐶 shows

the travel cost of partial path 𝑃 (expanded partially to node 𝑣) and

ℎ(.) (also called heuristic function) estimates the travel cost to reach

destination 𝑑 .

It has been proven that if the function ℎ(.) underestimates the

remaining travel cost of the path, the algorithm always finds the

optimal path.

4 PROPOSED APPROACH
This section features our approach to evaluate STACY queries. This

section is organized as follows. In the first subsection, we present a

naïve STACY approach and motivate why extensions are needed

to improve it. In Section 4.2 we introduce the preliminary ideas

which we will use in the STACY algorithm. Then, we present our

proposed algorithm to solve STACY queries in Section 4.3.

4.1 Naïve STACY Approach To Motivate Our
Extensions

For didactic reasons, we first introduce a straight-forward approach

to compute STACY query results. It illustrates the general idea in-

cluding how we use (a modified) variant of the𝐴∗ algorithm. As we

outline the problem of this solution, is its computational complex-

ity being in opposition to our near real-time query response time

requirement. To this end, based on this naïve approach, we moti-

vate our main contributions within the STACY algorithm aiming at

significantly reducing the computational complexity.

4.1.1 Naïve STACY. Recall from Section 3, that a STACY query

aims at finding the set of paths which are not linearly dominated

by any other paths. Therefore, any path connecting the desired

start location 𝑠 and destination 𝑑 also visiting a POI of the desired

category has to leave the preferred path 𝑃∗ in some node named

detour source (𝑑𝑠) and return to 𝑃∗ in some node named detour

destination (𝑑𝑑). As a result, given that path 𝑃∗ has 𝑛 nodes and

there are𝑚 POIs belonging to the desired COI, a naive approach to

compute STACY queries is the following.

The naïve algorithm for STACY queries first runs a modified

𝐴∗ algorithm for each possible combination of detour start and

detour destination (𝑑𝑠 ,𝑑𝑡 ) and each POI𝑚 finding the shortest path

connecting them. This results in𝑚 ∗
(𝑛
2

)
𝐴∗ algorithm invocations.

Then, we compute the linear skyline on the result set. Note that

running the modified 𝐴∗ algorithm that often to find the paths is

unavoidable while the network is time-dependent.

4.1.2 Required Extensions. In the context of the naïve algorithm

for STACY, modified 𝐴∗ refers to an 𝐴∗ algorithm using a modified

heuristic function ℎ(.) being a lower bound for the real cost. We

develop this bound, such that it also holds for time-dependent

networks.

The extensive computation of invoking the modified 𝐴∗ algo-
rithm𝑚 ∗

(𝑛
2

)
times hardly leads to the desired near real-time query

performance (Requirement IV ). So we need to shrink the search

space. The general idea of how to shrink the search space is to

find provable upper bounds for costs in order to prevent expansion

of paths that cannot be part of the linear skyline. This is done by

the two pruning strategies, namely local and global pruning. The

purpose of the local pruning strategy is to limit the 𝐴∗ invocations

per detour start and detour destination (𝑑𝑠 ,𝑑𝑡 ), such that we do not

need to consider all𝑚 POIs. Subject of the global pruning strategy is

to reduce the number of detour start and detour destination (𝑑𝑠 ,𝑑𝑡 )

pairs, we need to consider. Since this is done by finding a global

upper bound for costs, we refer to it as global pruning strategy.

4.1.3 Outline for Introducing the STACY algorithm. In Section 4.2,

we introduce the heuristic function for the modified 𝐴∗ algorithms

as well as the two pruning strategies. Then in Section 4.3, we intro-

duce the STACY algorithm in detail illustrating, for instance, how

the pruning strategies are used when expanding partial paths and

how additional properties relevant in time-dependent networks,

such as the FIFO property, are ensured.

4.2 Search Heuristic and Pruning Strategies
In this section, first we discuss the heuristic function used by𝐴∗ and
then we show howwe can speed up its calculation by preprocessing

the road networks. Then, we present the pruning strategies used in

the STACY algorithm and prove their correctness.

4.2.1 𝐴∗ Search Heuristic Function. Generally, the total expected
travel costs of a path 𝑃 that has been expanded until some node 𝑣𝑖 is

the sum of the cost so far𝑇𝐶 (𝑣𝑖 ) and an estimation of the remaining

costs. The remaining costs include reaching the destination and

visiting a POI (if not done until 𝑣𝑖 ). For estimating the remaining

costs, we need a search heuristic function ℎ(.).
As we mentioned earlier, the 𝐴∗ search heuristic function ℎ(.)

should underestimate the travel cost of the remaining path, i.e., be

a lower bound. For a path 𝑃 that has been expanded to node 𝑣𝑖 , we

compute the heuristic function as follows:

ℎ(𝑣𝑖 ) =
{
max(𝐿𝐵(𝑣𝑖 ), 𝑡𝑖𝑚𝑒𝐸𝑢𝑐 (𝑣𝑖 , 𝑑)), if 𝑃 has not visited a POI

𝑡𝑖𝑚𝑒𝐸𝑢𝑐 (𝑣𝑖 , 𝑑), otherwise.

Where 𝐿𝐵(𝑣) is a lower bound of the cost to the nearest POI of the

desired category starting from 𝑣𝑖 .

The rational behind this heuristic is: If path 𝑃 has not visited a

desired POI during its expansion already, its remaining travel cost

is at least the maximum of two possible costs: (1) Either the cost

of visiting the closest POI (𝐿𝐵(𝑣𝑖 )), or (2) the cost of heading to

destination 𝑑 through a direct line (ignoring the road network). In

case 𝑃 already visited a POI during its expansion, it only remains

to continue its travel towards the destination.

Calculating 𝐿𝐵(𝑣). In order to calculate𝐴∗ search heuristic func-

tion, one needs to calculate 𝐿𝐵(𝑣). However, calculating 𝐿𝐵(𝑣) has
two main difficulties: First, the travel costs of roads are changing

over time. Second, calculating 𝐿𝐵(𝑣) is a time-consuming task and

this is in contrast with the last requirement (IV–near real-time Query
Performance).

To overcome the first difficulty, we propose to obtain a time-

invariant version of graph 𝐺𝑡
. We refer to time-invariant version

as 𝐺𝑡
. 𝐺𝑡

has the same nodes 𝑉 and edges 𝐸 as 𝐺𝑡
, but the edge

weights are the minimum travel cost over the entire day. Hence

graph 𝐺𝑡
is an optimistic time-invariant version of graph 𝐺𝑡

.

While 𝐺𝑡
has fixed travel costs for its edges, for each node 𝑣 in

𝑉 , one can calculate and store cost to the closest POI from COI. In

other words, the values of 𝐿𝐵(𝑣) can be computed for every node 𝑣

in graph𝐺𝑡
in a preprocessing step. Then, when answering STACY



queries, one does not need to compute 𝐿𝐵(𝑣): it suffices only to

look up the stored values and take the corresponding value for 𝑣 .

Having𝐺𝑡
, one needs to run Dijkstra’s algorithm starting from

each node 𝑣 to find the nearest POI from specified COI. Time com-

plexity of Dijkstra’s algorithm inworst-case scenario is𝑂 ( |𝐸 | log( |𝑉 |))
and since we run it |𝑉 | times, the total complexity of this prepro-

cessing is𝑂 ( |𝑉 | |𝐸 | log( |𝑉 |)). However, note that this preprocessing
is only done once for the entire road network. Also, the space com-

plexity for storing lower bounds is |𝑉 |, while for each node 𝑣 ∈ 𝑉
we calculate and store the cost to the nearest POI from specified

COI.

4.2.2 Local Pruning Strategy. The following lemma allows the al-

gorithm to discard paths sharing the same detour start and detour

destination (𝑑𝑠 ,𝑑𝑑) using local pruning.

Lemma 4.1. Let 𝑃 and 𝑃 ′ be two full paths which share the same de-
tour start and detour destination nodes on 𝑃∗. If𝐷𝐶 (𝑃, 𝑡) < 𝐷𝐶 (𝑃 ′, 𝑡),
then 𝑃 ′ cannot be in the query result.

Proof. The proof is in appendix A. □

As result of this lemma, having found a full path, we can stop

expanding (i.e., search for better POI for this (𝑑𝑠, 𝑑𝑑) pair) in case the
𝐷𝐶 exceeds the 𝐷𝐶 of the currently best found full path regardless

of whether the paths are partial or full paths. Example 4.2 presents

the local pruning strategy.

Example 4.2. Consider paths 𝑃 and 𝑃 ′ in Figure 2 which share

(𝑣∗
𝑖
, 𝑣∗

𝑗
) as their detour source and destination respectively. Also,

assume that path 𝑃 has the minimum 𝐷𝐶 among all other paths

connecting 𝑣∗
𝑖
to 𝑣∗

𝑗
visiting at least a POI. Then, according to the

local pruning strategy, we do not need to be concerned about paths

like 𝑃 ′, while the above-mentioned lemma guarantees that such

paths will not be part of the query answer set.

Figure 2: Detour paths

As one can see, the local pruning strategy assures us that for

any (𝑑𝑠, 𝑑𝑑) pair on 𝑃∗, we only need to look for the path with

minimum 𝐷𝐶 . Therefore, for any (𝑑𝑠, 𝑑𝑑) pair, we need to run 𝐴∗

only once. Hence, the total number of times that one needs to run

𝐴∗ is reduced significantly from𝑚 ∗
(𝑛
2

)
to

(𝑛
2

)
.

4.2.3 Global Pruning Strategy. Using local pruning, we already

reduced the required invocations of our modified 𝐴∗ algorithm
from 𝑚 ∗

(𝑛
2

)
to

(𝑛
2

)
, i.e., to one invocation per detour start and

detour destination (𝑑𝑠 ,𝑑𝑑). Now global pruning aims at reducing

the number of such considered pairs since time complexity is still

quadratic regarding the number of nodes on the preferred path 𝑃∗.
The global pruning strategy is by far more complex than the

local one. To this end, we first introduce the general idea behind the

global pruning strategy which is based on finding the travel cost of

the fastest path 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 . Then, we prove the existence of

𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 path and show that it is in the STACY query result

set 𝐿𝑆 . Finally, we give details on how to obtain 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡

in an efficient way.

The general idea of the global pruning strategy. The general idea
behind our global pruning strategy is to find an upper bound for

detour cost 𝐷𝐶 before starting to generate the partial paths at all.

By the definition of skyline queries, the pathwith overall minimal

travel costs𝑇𝐶 departing from source 𝑠 , visiting a POI, and arriving

at destination node 𝑑 , provides an upper bound for the detour cost

𝐷𝐶 . That is, it dominates all paths having larger 𝐷𝐶 , and we can

safely prune them (cf. 𝑃1 in Figure 1). Note this also includes partial

paths whose already known 𝐷𝐶 or a respective lower bound of the

𝐷𝐶 , meaning we can stop expanding such paths.

We call the fastest path 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 and the correspond-

ing upper bound for the detour cost 𝐷𝑒𝑡𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑈𝑝𝑝𝑒𝑟
. The formal

rationale for correctness of the bound is that, since we are looking

for skylines, any path 𝑃𝑖 with 𝐷𝐶 (𝑃𝑖 ) > 𝐷𝑒𝑡𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑈𝑝𝑝𝑒𝑟
is dom-

inated by 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 . This is because

𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 incurs minimal travel cost by definition, and

hence 𝑇𝐶 (𝑃𝑖 ) > 𝑇𝐶 (𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 ).

Proving that 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 path exists and is in the 𝐿𝑆 set. The
argument above shows that 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 cannot be pruned by

any other path using the skyline operator, i.e., the bound is correct.

However, to be able to use 𝐷𝑒𝑡𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑈𝑝𝑝𝑒𝑟
as the upper bound

for detour cost, two problems arise that we have to address: First,

since the network is FIFO, we need to prove that 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡

cannot be discarded by other partial paths due to FIFO property of

the network. Second, we need to obtain 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 efficiently.

In the following, we discuss the existence of 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 in

the linear skyline set and then show how one can obtain it.

Due to the FIFO property, we need to make sure that there is no

path arriving at any node being part of 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 earlier

than 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 itself. Otherwise, the path with earlier ar-

rival time will be expanded and 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 will be discarded,

i.e., is not part of the skyline. The following lemma proves that

𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 will not be pruned and will be part of the skyline

answer set.

Lemma 4.3. Having query 𝑆𝑇𝐴𝐶𝑌 (𝑃∗, 𝑡,𝐺𝑡 ,𝐶𝑂𝐼 ), consider
𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 to be the fastest path connecting source 𝑠 ∈ 𝑃∗ to
destination 𝑑 ∈ 𝑃∗ visiting at least one 𝑃𝑂𝐼 ∈ 𝐶𝑂𝐼 at departure time
𝑡 . Then 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 is a part of the query result.

Proof. The proof is in appendix B. □

Since 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 will be in the result, we can use

𝐷𝑒𝑡𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑈𝑝𝑝𝑒𝑟 = 𝐷𝐶 (𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 ) to shrink the search

space.

Obtaining 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 with TDOSR. We now discuss how

to calculate 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 . For this purpose we use a modified
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version of the TDOSR algorithm [5]. The TDOSR algorithm in its

original version addresses the optimal sequenced route query [17]

in time-dependent networks. However, a detailed inspection of

the algorithm reveals that the TDOSR algorithm does not produce

optimal results in some cases. We corrected this issue in consent

with the original authors being another minor contribution of this

paper.

TDOSR algorithm retains the partial paths in a priority queue

𝑃𝑄 ordered by their optimistic travel costs (OTCs). At each iteration

of the algorithm, the path 𝑃 with the lowest OTC is popped from

the queue and is expanded with the nearest neighbors of its last

vertex 𝑃𝑙𝑎𝑠𝑡 . The new partial paths will be inserted into the priority

queue if they do not violate the FIFO property of the network. For

this purpose, TDOSR employs a validation procedure as follows: If

paths 𝑃𝑖 and 𝑃 𝑗
are two different paths from 𝑠 to 𝑣 and 𝑂𝑇𝐶 (𝑃𝑖 ) <

𝑂𝑇𝐶 (𝑃 𝑗 ) and 𝑃𝑖 contains more POIs, then 𝑃 𝑗
could not be in the

result set. However, we argue that this could not be true in some

cases. This is simply because of the fact that having 𝑂𝑇𝐶 (𝑃𝑖 ) <
𝑂𝑇𝐶 (𝑃 𝑗 ), one cannot make sure that 𝑃𝑖 will arrive at destination 𝑑

earlier than 𝑃 𝑗
(which violates the FIFO property of the network).

We have corrected the pruning strategy of TDOSR so that it

yields the optimal results. Personal communication with the inven-

tors of TDOSR has resulted in the consent that our modification

solves the problem. We call this modified version of TDOSR tai-

lored to our problem time-dependent Optimal Route (TDOR). TDOR

shares the same heuristic with TDOSR. However, its FIFO validating

strategy is changed as we explain next.

The correct strategy would be to compare the travel costs (not

optimistic travel costs) of paths 𝑃𝑖 and 𝑃 𝑗
. The following lemma

states this:

Lemma 4.4. For two paths 𝑃𝑖 and 𝑃 𝑗 , if 𝑇𝐶 (𝑃𝑖 ) < 𝑇𝐶 (𝑃 𝑗 ) and 𝑃𝑖
contains more POIs, then 𝑃 𝑗 could not be in the result set.

Proof. The proof is in Appendix C. □

4.3 The STACY Algorithm
In this section, we first discuss the general idea behind our pro-

posed algorithm to solve STACY queries. Then we present details

of the different phases of our proposed algorithm. As illustrated in

Algorithm 2, the core of the Stacy Algorithm is how it generates and

prunes paths, which is explained in Section 4.3.1 (Line 3). Path gen-

eration and pruning contains several sub-steps including network

expansion and updating the result set 𝐿𝑆 explained in Sections 4.3.2

to 4.3.4. Finally, we need to check whether the FIFO property for

all found paths holds (cf. Section 4.3.5) (Line 4).

4.3.1 Generating and Pruning Partial Paths. In this section, we

discuss the process of generating partial paths and pruning them

based on the pruning strategies we introduced before. Similar to

the 𝐴∗ algorithm, we use a priority queue of partial paths aiming

at expanding promising paths first, which also allows early ter-

mination of the algorithm if the whole result is found. However,

as we consider two costs (travel and detour costs), return a set of

paths building the linear skyline, and use as input a preferred path

𝑃∗, the semantics of the queue as well as the whole procedure of

generating and pruning paths is quite different as we outline below.

Algorithm 2: STACY algorithm

Input: Starting node 𝑠 , Destination node 𝑑 , Departure time

𝑡 ,Time-Dependent graph 𝐺𝑡
, 𝑃∗ = ⟨𝑣∗

1
, 𝑣∗

2
, . . . , 𝑣∗𝑛⟩

and a 𝐶𝑂𝐼

Output: Linear sklyline set 𝑉𝐿𝑆 containing paths

that have visited at least one POI from 𝐶𝑂𝐼

1 function STACY()
2 𝑉𝐿𝑆 ← ∅
3 𝐿𝑆 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎𝑛𝑑 𝑝𝑟𝑢𝑛𝑒 𝑝𝑎𝑡ℎ𝑠, 𝑈𝑝𝑑𝑎𝑡𝑒 𝐿𝑆 ⊲

(Section 4.3.1, Algorithm 3)

4 𝑉𝐿𝑆 ← 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 𝐹𝐼𝐹𝑂 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑜 𝑓 𝐿𝑆 ⊲ (Section 4.3.5)

5 𝑟𝑒𝑡𝑢𝑟𝑛 𝑉𝐿𝑆

Priority Queue Initialization and Termination. To fully benefit

from both pruning strategies, we associate each pair (𝑑𝑠, 𝑑𝑑) with
a lower bound of the respective detour costs 𝐷𝐶 named optimistic

detour cost (𝑂𝐷𝐶).𝑂𝐷𝐶 is computed using the same heuristic that

we have presented earlier in Section 4.2.1, with the only difference

that its source and destination are 𝑑𝑠 and 𝑑𝑑 respectively. This is

because we want to generate the paths based on increasing the

lower bound of the 𝐷𝐶 , such that we can prune them based on local

and global pruning strategies. Specifically, this means, we terminate

considering the next (𝑑𝑠, 𝑑𝑑) pair having found the first pair whose
𝑂𝐷𝐶 is worse than the 𝐷𝐶 of the path having minimum travel cost

𝑇𝐶 (apply global pruning).

This is valid since 𝑂𝐷𝐶 is a lower bound for 𝐷𝐶 and paths

are generated based on increasing 𝐷𝐶 , the search for new paths

can be terminated when the first path 𝑃 is found with 𝑂𝐷𝐶 (𝑃) >
𝐷𝑒𝑡𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑈𝑝𝑝𝑒𝑟

. This is guaranteed by the following lemma and

the respective proof.

Lemma 4.5. The search for new paths can be terminated once the
first partial detour path 𝑃𝑖 is found such that𝑂𝐷𝐶 (𝑃𝑖 ) > 𝐷𝑒𝑡𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑈𝑝𝑝𝑒𝑟 .

Proof. The proof is in appendix D. □

Path Generation. Having proven the termination condition of

our search, we propose the path generation and pruning algorithm

which also updates the linear skyline. The outline of the algorithm

is presented in Algorithm 3.

In the algorithm, first we order the (𝑑𝑠, 𝑑𝑑) pairs using a priority

queue (𝑃𝑄) based on increasing 𝑂𝐷𝐶 . To initialize 𝑃𝑄 , we gener-

ate all possible (𝑑𝑠, 𝑑𝑑) pairs using nodes on 𝑃∗ and put them in

𝑃𝑄 (Lines 3-4). At each iteration the partial detour path 𝑃 with

minimum 𝑂𝐷𝐶 is dequeued from 𝑃𝑄 (Line 6). If 𝑃 is a full detour

path (i.e. a path that has visited at least one POI from COI and has

met its corresponding 𝑑𝑑), it is added to the linear skyline (𝐿𝑆) set

and 𝐿𝑆 is updated to preserve the linear skyline (Lines 7-9). If 𝑃 is

a full path with (𝑑𝑠, 𝑑𝑑) pair, according to local pruning strategy

(Section 4.2.2), other paths that share the same (𝑑𝑠, 𝑑𝑑) pair cannot
be part of the linear skyline set 𝐿𝑆 and therefore we remove them

immediately from 𝑃𝑄 (Line 10). According to the global pruning

strategy (Section 4.2.3), if the detour cost of path 𝑃 is greater than

𝐷𝑒𝑡𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑈𝑝𝑝𝑒𝑟
, we can stop our path generation algorithm since

the remaining partial paths cannot be a part of 𝐿𝑆 anymore (Lines

11-12). If none of the above conditions holds, we expand the path 𝑃



Algorithm 3: Generating and pruning paths, updating LS

1 function 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎𝑛𝑑 𝑃𝑟𝑢𝑛𝑒 𝑃𝑎𝑡ℎ𝑠 (𝐷𝑒𝑡𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑈𝑝𝑝𝑒𝑟 )
2 𝐿𝑆 ← ∅
3 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑞𝑢𝑒𝑢𝑒 𝑃𝑄 𝑤𝑖𝑡ℎ 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑑𝑒𝑡𝑜𝑢𝑟

4 𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑛𝑑 𝑑𝑒𝑡𝑜𝑢𝑟 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑖𝑟𝑠

5 while 𝑃𝑄 ≠ ∅ do
6 𝑃 ← 𝑃𝑄.𝑝𝑜𝑝 ()
7 if 𝑃 𝑖𝑠 𝑎 𝑓 𝑢𝑙𝑙 𝑝𝑎𝑡ℎ 𝑤𝑖𝑡ℎ (𝑑𝑠, 𝑑𝑑) 𝑝𝑎𝑖𝑟 then
8 𝐿𝑆.𝑎𝑑𝑑 (𝑃) ⊲ (Section 4.3.3)

9 𝑈𝑝𝑑𝑎𝑡𝑒 (𝐿𝑆) ⊲ (Section 4.3.4)

10 𝐿𝑜𝑐𝑎𝑙 𝑝𝑟𝑢𝑛𝑖𝑛𝑔 𝑤𝑖𝑡ℎ (𝑑𝑠, 𝑑𝑑) ⊲ (Section 4.2.2)

11 if 𝐺𝑙𝑜𝑏𝑎𝑙 𝑝𝑟𝑢𝑛𝑖𝑛𝑔 ℎ𝑜𝑙𝑑𝑠 ⊲ (Section 4.2.3) then
12 𝑆𝑡𝑜𝑝 𝑝𝑎𝑡ℎ 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

13 𝐸𝑥𝑝𝑎𝑛𝑑 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑝𝑎𝑡ℎ 𝑃 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛

14 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 ⊲ (Section 4.3.2, Algorithm 4)

15 𝑟𝑒𝑡𝑢𝑟𝑛 𝐿𝑆

with the neighbors of its last visited node (Lines 13-14) and continue

with the next (𝑑𝑠 ,𝑑𝑑) pair.

The detailed explanation of adding a path to the 𝐿𝑆 set, updating

the 𝐿𝑆 set and expanding path 𝑃 are presented next in Sections

4.3.3, 4.3.4, and 4.3.2, respectively.

4.3.2 Network Expansion. In this section, we briefly discuss how

the partial paths are expanded during network expansion. The

general outline is presented in Algorithm 4.

The algorithm expands the path 𝑃 adding to the currently last

vertex 𝑣𝑙𝑎𝑠𝑡 all (new) neighboring vertex. This way, we create multi-

ple new paths. For each of the new paths, we do the following. If the

new partial path has visited a POI during its expansion, we add the

spent time (e.g., expected serving time within a restaurant) on the

POI (Lines 3-4). Then the algorithm calculates the corresponding

travel cost and arrival time namely𝑇𝐶𝑉 and 𝐴𝑇𝑉 for the new path

to 𝑣 (i.e. the neighbor of 𝑣𝑙𝑎𝑠𝑡 ) and updates corresponding optimistic

detour cost namely𝑂𝐷𝐶 (Lines 5-9). If 𝑣 has not been visited before

via another partial path with more number of visited POIs and less

arrival time, we can expand the path 𝑃 with this vertex and FIFO

property still has not been invalidated. This, in turn, means, there

is a possibility that adding this new path 𝑃𝑛𝑒𝑤 to the priority queue

𝑃𝑄 causes some of the previously expanded paths to 𝑣 to be pruned

out due to the FIFO property of the network. Hence, the algorithm

checks possible partial paths in the 𝑃𝑄 and discards all paths which

have visited the same POIs with greater travel cost𝑇𝐶 (later), (Lines

10-19) because they cannot visit the remaining POIs and reach to

destination 𝑑 faster. Note, this does not entirely ensure the FIFO

property holds for all full paths found, as 𝑃𝑄 contains only partial

paths. There may be full paths already added to the result. This

explains why we need to validate the FIFO property after having

computed the skyline.

4.3.3 Adding a New Full Paths to the Linear Skyline. When a full

path is generated it is not necessarily part of the skyline, i.e., it

may be dominated by some other path. Since checking for linear

Algorithm 4: Network expansion

1 function Network Expansion()
2 forall 𝑣 ∈ 𝐺𝑡 .𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑢) do
3 if |𝑃 .𝑝𝑜𝑖𝑠 | = 1 then
4 𝑠𝑝𝑒𝑛𝑡 = 𝑠𝑝𝑒𝑛𝑡 + 𝑃𝑂𝐼_𝑉𝑖𝑠𝑖𝑡_𝑇𝑖𝑚𝑒

5 𝑇𝐶𝑉 ← 𝑃 .𝑇𝐶 +𝑇𝐶 (𝑃𝑙𝑎𝑠𝑡 ,𝑣) (𝑃 .𝐴𝑇 )
6 𝐴𝑇𝑉 ← (𝑡 + 𝑠𝑝𝑒𝑛𝑡 +𝑇𝐶𝑉 + 𝑃 .𝑇𝐶𝐵𝑒𝑓 𝑜𝑟𝑒𝐷𝑒𝑡𝑜𝑢𝑟

7 if |𝑝𝑜𝑖𝑠 | = 1 then
8 𝑂𝐷𝐶 ← 𝑇𝐶𝑉 + 𝑡𝑖𝑚𝑒𝐸𝑢𝑐 (𝑣, 𝑃 .𝑑𝑑)
9 𝑂𝐷𝐶 ← 𝑇𝐶𝑉 +max(𝑡𝑖𝑚𝑒𝐸𝑢𝑐 (𝑣, 𝑃 .𝑑𝑑), 𝐿𝐵(𝑣))

10 if 𝑣¬𝑖𝑠𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 then
11 𝑃𝑛𝑒𝑤 ← 𝑒𝑥𝑝𝑎𝑛𝑑 𝑃 𝑏𝑦 𝑎𝑑𝑑𝑖𝑛𝑔 𝑣

12 if 𝑃𝑄 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑎 𝑝𝑎𝑡ℎ 𝑤ℎ𝑖𝑐ℎ ℎ𝑎𝑠 𝑠𝑎𝑚𝑒

13 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑛 𝑑𝑠 , 𝑑𝑑 𝑎𝑛𝑑 |𝑝𝑜𝑖𝑠 | 𝑎𝑠 𝑃𝑛𝑒𝑤 then
14 𝑃𝑄.𝑎𝑑𝑑 (𝑃𝑛𝑒𝑤)
15 else
16 𝑃𝑖𝑛𝑞 ← 𝑃𝑄.𝑔𝑒𝑡𝑃𝑎𝑡ℎ(𝑃𝑛𝑒𝑤 .𝑑𝑠, 𝑃𝑛𝑒𝑤 .𝑑𝑑)
17 if 𝑃𝑛𝑒𝑤 .𝑇𝐶 ≤ 𝑃𝑖𝑛𝑞 .𝑇𝐶 &|𝑃𝑛𝑒𝑤 .𝑃𝑂𝐼𝑠 ∥ ≥

|𝑃𝑖𝑛𝑞 .𝑃𝑂𝐼𝑠 ∥ then
18 𝑃𝑄.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑃𝑖𝑛𝑞)
19 𝑃𝑄.𝑎𝑑𝑑 (𝑃𝑛𝑒𝑤)

dominance is expensive, we first examine whether the path is con-

ventionally dominated.

Remember that 𝐿𝑆 keeps all linearly non-dominated full paths

ordered based on the detour costs of the paths. On the other hand,

the expansion algorithm itself generates the paths based on the

ascending order of their respective detour costs. As a result, we

already know that the newly generated path’s detour cost is greater

than the last element of 𝐿𝑆 namely 𝑃𝑘 , i.e., 𝐷𝐶 (𝑃𝑖 ) > 𝐷𝐶 (𝑃𝑘 ).
Therefore, in order to add 𝑃𝑖 to the 𝐿𝑆 , one needs to make sure that

𝑇𝐶 (𝑃𝑖 ) < 𝑇𝐶 (𝑃𝑘 ). Otherwise 𝑃𝑖 is conventionally dominated by

𝑃𝑘 . In case𝑇𝐶 (𝑃𝑖 ) < 𝑇𝐶 (𝑃𝑘 ), it means that it is not conventionally

dominated by the last path in 𝐿𝑆 . So in order to add it to the 𝐿𝑆 ,

we need to make sure that it is not linearly dominated by the set

of paths in 𝐿𝑆 . However, this examination of all paths in 𝐿𝑆 is not

necessary. It has been shown in [19] that we can safely add full

path 𝑃𝑖 to 𝐿𝑆 if it is not conventionally dominated by the path with

the highest detour cost in 𝐿𝑆 .

4.3.4 Delete Old Dominated Paths. By adding a new 𝑃𝑖 to 𝐿𝑆 , there

is a chance that some of the existing paths in 𝐿𝑆 are now linearly

dominated by the newly added path (this is a problem since we are

looking for linearly non-dominated paths). We need to find all those

paths and remove them from 𝐿𝑆 . To do so, the authors of [19] have

shown that, it is not necessary to check all possible paths in 𝐿𝑆 .

They have proven that a path is linearly dominated by 𝐿𝑆 if and only

if it has been linearly dominated only by its neighbors. Therefore

after adding 𝑃𝑖 , for 𝑃𝑘 , it should be checked that

{
𝑃𝑘−1, 𝑃𝑖

}
≺𝐿 𝑃𝑘

holds or not. If it holds, 𝑃𝑘 will be removed. Then 𝑃𝑖 and 𝑃𝑘−2 will
be the neighbors of 𝑃𝑘−1 and therefore

{
𝑃𝑘−2, 𝑃𝑖

}
≺𝐿 𝑃𝑘−1 will
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Figure 3: FIFO problem after obtaining 𝐿𝑆

be checked. This process will continue until there are only two

elements left in 𝐿𝑆 or there is a path that is not linearly dominated

by its immediate neighbors.

4.3.5 Validating the FIFO Property. After obtaining all non-dominated

paths 𝐿𝑆 , one challenge remains. The paths with different (𝑑𝑠, 𝑑𝑑)
pairs are expanded independently from each other. Therefore, there

is the possibility that a path like 𝑃𝑖 could be discarded by some

other path 𝑃 𝑗
in a node 𝑣 due to the FIFO property of the network.

The example below illustrates the existence of such paths in 𝐿𝑆 that

invalidate the FIFO property of the network.

Example 4.6. Assume Paths 𝑃𝑖 and 𝑃 𝑗
shown in Figure 3 are part

of 𝐿𝑆 and they meet in node 𝑣 after visiting their respective POIs

(shown with star signs in the figure). Consider 𝑇𝐶 (𝑃𝑖 ) = 30 and

𝑇𝐶 (𝑃 𝑗 ) = 20. If path 𝑃𝑖 meets node 𝑣 earlier than 𝑃 𝑗
, path 𝑃 𝑗

cannot

continue its expansion due to FIFO property of road network. This

is because if 𝑃𝑖 meets node 𝑣 earlier, it should arrive at 𝑑 earlier,

however as we see𝑇𝐶 (𝑃𝑖 ) > 𝑇𝐶 (𝑃 𝑗 ). Therefore, path 𝑃 𝑗
should be

removed from 𝐿𝑆 in order to preserve FIFO property.

In order to solve this problem, we propose Algorithm5.

Algorithm 5: Validating FIFO

1 function Validate FIFO()
2 forall 𝑃𝑖 ∈ 𝐿𝑆 do
3 forall 𝑃 𝑗 ∈ 𝐿𝑆 do
4 forall 𝑣𝑖 ∈ 𝑃𝑖 do
5 forall 𝑣 𝑗 ∈ 𝑃 𝑗 do
6 if 𝑣𝑖 𝑒𝑞𝑢𝑎𝑙𝑠 𝑣 𝑗 then
7 if 𝑏𝑜𝑡ℎ 𝑃𝑖 𝑎𝑛𝑑 𝑃 𝑗 ℎ𝑎𝑣𝑒 𝑣𝑖𝑠𝑖𝑡𝑒𝑑

8 𝑃𝑂𝐼 𝑏𝑒 𝑓 𝑜𝑟𝑒 𝑜𝑟 𝑎𝑓 𝑡𝑒𝑟 𝑣𝑖 then
9 if 𝐴𝑇 (𝑃𝑖 ) < 𝐴𝑇 (𝑃 𝑗 ) &

10 𝑇𝐶 (𝑃𝑖 ) > 𝑇𝐶 (𝑃 𝑗 ) then
11 𝑟𝑒𝑚𝑜𝑣𝑒 𝑃𝑖 𝑓 𝑟𝑜𝑚 𝐿𝑆

12 if 𝐴𝑇 (𝑃 𝑗 ) < 𝐴𝑇 (𝑃𝑖 ) &
13 𝑇𝐶 (𝑃 𝑗 ) > 𝑇𝐶 (𝑃𝑖 ) then
14 𝑟𝑒𝑚𝑜𝑣𝑒 𝑃 𝑗 𝑓 𝑟𝑜𝑚 𝐿𝑆

For any pair of full paths 𝑃𝑖 and 𝑃 𝑗
(Lines 2-3), in any node 𝑣 =

𝑣𝑖 = 𝑣 𝑗 which they share (Lines 4-6), we examine the corresponding

arrival time on 𝑣 and the number of visited POIs before visiting 𝑣

(Lines 7-8). In case a path has smaller arrival time to 𝑣 and finishes

its trip later, the other path will be pruned out since the path which

has arrived at the shared node 𝑣 earlier, should finish its trip faster

(Lines 9-14).

5 EVALUATION
In this section, we discuss how we want to evaluate our previously

proposed approach in terms of the requirements(I-IV) presented in

the introduction. While the requirements are of two types (func-

tional requirements vs. efficiency requirements), we discuss their

evaluation in two different settings. The organization of this sec-

tion is as follows: First, we discuss the functional requirements

(requirements I-III). Then we evaluate the efficiency requirement

(requirement IV).

5.1 Theoretical Evaluation of Functional
Requirements

In the following, we argue that our proposed approach addresses

all aforementioned functional requirements.

I–Correctness and Comprehensiveness. In Sections 4.2.2 and

4.2.3, we prove the correctness of the local and global pruning

strategies in our proposed algorithm. Therefore, STACY provides

accurate query results. On the other hand, it does not consider only

a single criterion for optimality, rather it takes TC and DC into

account and it minimizes both costs simultaneously.

II–Generality. Our approach satisfies generality by considering

time as the path cost which is not constrained to metric spaces.

III–Flexibility. In order to satisfy this criterion, one needs to

deal with time-dependent networks, which STACY does.

5.2 Experimental Evaluation of Efficiency
Requirement

In this section, we evaluate the efficiency of our proposed approach

(requirement IV–Real Time Query Performance).
Organization. This section is organized as follows: first, we

introduce the baseline approach which we use to compare our

proposed method introduced in Section 4 to. Next, we present

the datasets used, the details of the evaluation procedure and the

hardware specification. Finally, we study the effects of different pa-

rameters on query processing time (i.e., the length of the preferred

path, the density of POIs in the road network and the effects of the

linear skyline operator on the result set size).

5.2.1 Baseline Approach. Due to the lack of any prior work to

solve STACY queries, we propose the following approach as a base-

line to solve STACY queries allowing to evaluate the efficiency of

our pruning strategies. The idea is using the modified version of

𝑇𝐷𝑂𝑅 algorithm discussed earlier iteratively in order to generate

all possible detour paths.

Since in our problem we need to get along with two criteria

namely 𝑇𝐶 and 𝐷𝐶 , the 𝑇𝐷𝑂𝑅 algorithm alone could not provide

a solution to our problem directly. However, by having different

combinations of nodes 𝑣∗
𝑖
and 𝑣∗

𝑗
in 𝑃∗ as source and destination

of detour path (i.e. the path which starts from 𝑣∗
𝑖
in 𝑃∗ and after

visiting a POI returns back to 𝑣∗
𝑗
in 𝑃∗ with 𝑗 ≥ 𝑖) we are able to

find all possible detour paths. To be fair in comparison with the



proposed method, we use lemma 4.1 which guarantees that between

any pairs, only the minimum detour path could be in the result.

Once all paths are found, they are ordered by detour cost. We add

them to the linear skyline set in case they are not conventionally

dominated by the last element in 𝐿𝑆 . When a new path is added

to 𝐿𝑆 we make sure that there is not any previously existing path

that is linearly dominated by the new one. Such linearly dominated

paths will be removed during the process. Finally, the algorithm

examines the consistency of the remaining paths in 𝐿𝑆 with respect

to the FIFO property of the network. We also argue that the time

complexity of the baseline algorithm deteriorates for long paths

𝑃∗ with length 𝑛 while it needs to execute 𝑇𝐷𝑂𝑅 algorithm 𝑂 (𝑛2)
times.

5.2.2 Datasets. Weworkwith the two real-world datasets obtained

from OSM
4
. These datasets represent the real road networks of

Berlin and Oslo. Table 2 shows statistics of the datasets. As points

of interest, we consider having a set of restaurants and cafes in

each city.

Table 2: Statistics of the datasets

Dataset # Nodes # Edges #POIs

Berlin 27795 72434 6504

Oslo 8969 20305 813

5.2.3 Experimental Setup. In line with previous work in time-

dependent networks [5], for each road, we obtain its corresponding

travel costs during the daytime as follows: First, we obtain the

minimum of the maximum speeds for all roads, i.e. edges. Then, to

create the cost function per edge, we use a normal random variable

𝑋 ∼ N(`, 𝜎2) with its mean ` as the average of the value obtained

above and its own maximum speed. The standard deviation for

this normal random variable is set to one-fourth of its average (i.e.

𝜎 =
`

4

). Then we sample a random number from the random vari-

able 𝑋 and assign it as the speed of vehicles in that road. Then we

calculate the travel cost of the road, simply by dividing its length

to its speed.

To simulate the traffic jam conditions in different hours of the

day, we calculate a base cost for travel time of each road and then

multiply this cost by different factors to scale up the time needed

to traverse the road during busy times. We consider the travel cost

between 12 am and 8 am as the base cost. For time intervals 8am-

10am, 10am-16pm, 16pm-19pm, 19pm-23pm and 23pm-24pm this

cost was multiplied by 1.7, 1.4, 1.9, 1.3 and 1.1 respectively. This is

in line with related work [5].

We evaluate the scalability of STACY with respect to different

parameters. To quantify the effects of the different parameters sep-

arately, we use a fixed default setting of the parameter values, and

for each parameter, we evaluate how the processing time changes

when only this parameter changes. The parameters and their values

are shown in Table 3.

As shown in the table with bold fonts, the default value for 𝑛

is set to 10. This value is chosen with respect to the average trip

4
https://www.openstreetmap.org

Table 3: Parameter settings

Parameter values

Length of preferred path (𝑛) 5, 10, 15, 20
Density of POIs (𝐷𝑝 ) 1%, 2%, 5%

length in a city. For example, in Berlin, the average trip length is

about 5km [8]. This is equal to the sum of 10 average-length streets

(i.e., 500𝑚).

Regarding POIs, each of them is mapped to the closest node

in the graph. In line with previous work [1], for parameter 𝐷𝑝 ,

we use only a small portion of POIs in order to make the settings

independent of the dataset used. In this setting, we only choose

POIs randomly, in a way that it only covers a small number of

nodes in the graph. We try this with a very small number of POIs

(1% of the nodes in the graph) and incrementally evaluate until 5%

of the nodes are covered by POIs. This makes the problem more

challenging since the number of POIs is much less than the real

number of POIs, one needs much more processing time to obtain

query answers.

For generality and statistical soundness, we have evaluated our

proposed approachwith ten thousand queries for each sub-experiment.

System Specification. Our code is in Java and Python. We use

a modern machine with 16 CPU cores (2.4GHz) and 132 GB RAM.

5.2.4 Effect of Trip Length 𝑛. As one can see in Figure 4, for both

datasets the proposed approach is several magnitudes faster than

the baseline approach in terms of query processing time. The green

horizontal line shows the threshold of near real-time query process-

ing time which we set it to two seconds for all our experiments..

As shown in the figure, for longer preferred paths with 𝑛 = 20,

the proposed approach provides the results in 10 seconds, but the

baseline approach needs 58 seconds which is approximately six

times slower than our proposed approach.

Also, as the length of preferred path 𝑛 increases, the baseline

approach slows down with a much higher rate than the proposed

approach. This is because the baseline approach needs to call the

TDOR algorithm 𝑂 (𝑛2) times while the proposed approach with

the A
*
search heuristics, directly goes for finding the paths.

On the other hand, as the network size increases, the query

processing time tends to be higher. This is because the branching

factor of 𝐴∗ algorithm increases as the network size grows and this

causes the search space to be much bigger.

5.2.5 Effect of Density of POIs 𝐷𝑝 . The results of 𝐷𝑝 parameter

are shown in Figure 5. In both datasets, as the ratio of POIs grows,

query processing time decreases, however, the proposed approach is

several magnitudes faster than the baseline approach. For example,

when the number of nodes containing POIs is 1% in the Berlin

dataset, the proposed approach needs only 1.3 seconds to answer

the queries, but the baseline approach provides the results in 12.2

seconds which is approximately 9 times slower. For the Oslo dataset,

this is 1.7 seconds for the proposed approach while 4 seconds for

the baseline approach. This difference is because as the frequency

of POIs grows, it gets much easier for both algorithms to find full

paths and hence the paths can be generated faster.
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Figure 4: Effects of parameter 𝑛

Also as one can see, when the network size grows the query

processing time increases. This is because of the branching factor

of the 𝐴∗ algorithm which mentioned earlier.

Figure 5: Effects of Parameter 𝐷𝑝

5.2.6 Effect of Linear Skyline Operator. As mentioned earlier, the

linear skyline operator is used in order to get smaller number of

items in the query result set, so that the user can select the best

option without getting puzzled. Therefore, we evaluate the effect

of linear skyline operator as follows: we calculate the ratio of the

paths in linear skyline set to the number of paths generated by the

algorithm using default parameter settings for both datasets. These

numbers are 7% and 13% for Berlin and Oslo dataset respectively. As

one can see, the linear skyline operator filters out 93% of irrelevant

paths in Berlin dataset and 87% in Oslo dataset. Also, note that the

maximum size of the query result set in Berlin and Oslo datasets

were 6 and 4 respectively. So, the user can select the one she prefers

among the small number of items in the query result set.

6 CONCLUSIONS AND FUTUREWORKS
Even though the users of road networks tend to catch up with their

favorite routes during their daily lives, but not all the places they

need to visit are on their favorite route. Therefore, it happens a

lot that they need to deviate from their regular route to visit the

places. Since their regular route is the most familiar to them, they

would like most to be on their favorite routes. However, this may

cause them to spend more travel cost to visit their target places

and come back to their favorite route. In fact, this is a two-variable

optimization problem in which the users tend to minimize their

travel costs as well as their detour costs. On the other hand, time

plays an essential role when we are studying road networks while

the travel cost of each road depends heavily on the time of day.

Having time as the measure of the travel cost, our first contri-

bution is proposing an efficient algorithm named STACY which

solves the aforementioned optimization problem by means of travel

cost and detour cost. In other words, having a time-dependent road

network, a user with a favorite path and a set of POIs which the

user is interested in visiting at least one of them, we find all appro-

priate paths which the user might be interested in. To this end, we

have proposed a solution with guaranteed upper bound for detour

cost which shrinks the search space efficiently. As a result, the

processing time of this query type is improved significantly.

Our second contribution is to evaluate the goodness of STACY

with respect to different parameter settings. In order to do this, we

compare the processing time of queries with a baseline approach.

We show that STACY is several magnitudes better than the baseline

approach in terms of processing time.
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A PROOF OF LEMMA 4.1
Proof. Consider two paths 𝑃 and 𝑃 ′ sharing same exit and en-

trance nodes 𝑣∗
𝑖
and 𝑣∗

𝑗
respectively. Consider sub-path 𝑃∗𝑠,𝑣𝑖 with

corresponding travel cost𝑇𝐶 (𝑃∗𝑠,𝑣𝑖 , 𝑡). On the other hand, according
to lemma conditions we have 𝐷𝐶 (𝑃, 𝑡) < 𝐷𝐶 (𝑃 ′, 𝑡). This means

that travel cost of the detour path 𝑃𝑣∗
𝑖
,𝑣∗

𝑗
has greater travel cost than

𝑃 ′
𝑣∗
𝑖
,𝑣∗

𝑗

. Therefore we have 𝑇𝐶 (𝑃𝑠,𝑣∗
𝑗
, 𝑡) < 𝑇𝐶 (𝑃 ′

𝑠,𝑣∗
𝑗

, 𝑡) and therefore

𝑃 arrives at 𝑣∗
𝑗
earlier than 𝑃 ′. Since this is a FIFO network, we have

𝑇𝐶 (𝑃𝑣∗
𝑗
,𝑑 , 𝑡) < 𝑇𝐶 (𝑃 ′

𝑣∗
𝑗
,𝑑
, 𝑡) and therefore 𝑇𝐶 (𝑃𝑠,𝑑 , 𝑡) < 𝑇𝐶 (𝑃 ′

𝑠,𝑑
, 𝑡).

Having 𝐷𝐶 (𝑃, 𝑡) < 𝐷𝐶 (𝑃 ′, 𝑡) alongside the obtained inequality

shows that path 𝑃 dominates path 𝑃 ′ using skyline operator and

hence 𝑃 ′ could not be part of the skyline set. □

B PROOF OF LEMMA 4.3
Proof. We prove this lemma by contradiction. Assume

𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 = ⟨𝑠 = 𝑣1, . . . , 𝑣𝑖 , . . . , 𝑑 = 𝑣𝑛⟩ and 𝑃 ′ = ⟨𝑠 =

𝑣 ′
1
, . . . , 𝑣 ′

𝑗
, . . . , 𝑑 = 𝑣 ′𝑚⟩ having met each other at node 𝑣𝑖 = 𝑣 ′

𝑗

during their traversal and travel cost of the partial path 𝑃 ′
1, 𝑗

=

⟨𝑠 = 𝑣 ′
1
, . . . , 𝑣 ′

𝑗
⟩ is less than travel cost of partial path 𝑃𝑇𝐶

1,𝑖
= ⟨𝑠 =

𝑣1, . . . , 𝑣𝑖 ⟩. We also assume that they have visited same number of

POIs before reaching to node 𝑣𝑖 = 𝑣 ′
𝑗
(i.e. they have either visited a

POI or they have not visited any POI). Since the network is FIFO,

then 𝑃𝑇𝐶
1,𝑖

cannot reach to destination 𝑑 earlier than 𝑃 ′
1, 𝑗

. Therefore,

we have 𝑇𝐶 (𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 ) > 𝑇𝐶 (𝑃 ′), and this is in contradic-

tion with our main assumption that 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 is the fastest

path. So no path 𝑃 ′ can discard 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 , and it will be

part of the query result. □

C PROOF OF LEMMA 4.4
Proof. Let 𝑃𝑖 and 𝑃 𝑗

be two paths from 𝑠 to 𝑣 and assume that

𝑇𝐶 (𝑃𝑖 ) < 𝑇𝐶 (𝑃 𝑗 ) and that 𝑃𝑖 containsmore POIs than 𝑃 𝑗
. Consider,

for example, that 𝑃 𝑗
has passed by POIs belonging to the categories

𝐶𝑂𝐼1, . . . ,𝐶𝑂𝐼𝑘 and 𝑃𝑖 passed by the categories 𝐶𝑂𝐼1, . . . ,𝐶𝑂𝐼𝑘+1.
𝑃𝑖 needs to be extendedwith a path from 𝑣 that passes by𝐶𝑂𝐼𝑘+2, . . .
,𝐶𝑂𝐼𝑚 and finally goes to 𝑑 . Let 𝑃𝑚𝑖𝑛

be the path with minimum

travel cost satisfying these conditions. Similarly, 𝑃 𝑗
needs to be

extended with a path from 𝑣 that passes by 𝐶𝑂𝐼𝑘+1, . . . ,𝐶𝑂𝐼𝑚 and

finally goes to 𝑑 . Let 𝑃𝑏 be the path with minimum cost satisfy-

ing these conditions. Note that since 𝑃𝑏 needs to visit more POIs

than 𝑃𝑎 (and they both are paths from 𝑣), then 𝑇𝐶 (𝑃𝑎) < 𝑇𝐶 (𝑃𝑏 ).
Since by assumption 𝑇𝐶 (𝑃𝑖 ) < 𝑇𝐶 (𝑃 𝑗 ), then 𝑇𝐶 (𝑃𝑖 ) +𝑇𝐶 (𝑃𝑎) <
𝑇𝐶 (𝑃 𝑗 ) +𝑇𝐶 (𝑃𝑏 ) also holds. Therefore, it is not worth expanding

𝑃 𝑗
, since 𝑃𝑖 leads to better paths (in terms of travel cost). □

D PROOF OF LEMMA 4.5
Proof. We differentiate between two cases that may occur:

• If 𝑃𝑖 is a full detour path with (𝑑𝑠, 𝑑𝑑) we define 𝑃 𝑗 =

𝑃∗
𝑠,𝑑𝑠
∥𝑃𝑖 ∥𝑃∗

𝑑𝑑,𝑑
as a full path containing 𝑃𝑖 . Since the detour

path 𝑃𝑖 is a sub-path of 𝑃 𝑗
, we have 𝐷𝐶 (𝑃𝑖 ) = 𝐷𝐶 (𝑃 𝑗 ) =

𝑂𝐷𝐶 (𝑃𝑖 ). By definitionwe have𝑂𝐷𝐶 (𝑃𝑖 ) > 𝐷𝑒𝑡𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑈𝑝𝑝𝑒𝑟
,

thus we can infer 𝐷𝐶 (𝑃 𝑗 ) >
𝐷𝑒𝑡𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑈𝑝𝑝𝑒𝑟 = 𝐷𝐶 (𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 ). On the other

hand, 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 is defined as the fastest path, so

we have 𝑇𝐶 (𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 ) < 𝑇𝐶 (𝑃 𝑗 ). Therefore 𝑃 𝑗
is

worse than 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 in terms of travel cost and de-

tour cost and thus we can prune 𝑃𝑖 immediately.

• If 𝑃𝑖 is a partial detour path with (𝑑𝑠, 𝑑𝑑) we take 𝑃𝑘 with

(𝑑𝑠, 𝑑𝑑) to be a full detour path with minimum detour cost

obtained by extending partial path 𝑃𝑧 in the queue. Since

𝑃𝑖 is dequeued first we have 𝑂𝐷𝐶 (𝑃𝑧) > 𝑂𝐷𝐶 (𝑃𝑖 ). Again
according to definition 𝑂𝐷𝐶 (𝑃𝑖 ) > 𝐷𝑒𝑡𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑈𝑝𝑝𝑒𝑟

. Thus

we can conclude𝑂𝐷𝐶 (𝑃𝑧) > 𝐷𝑒𝑡𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑈𝑝𝑝𝑒𝑟
. Thenwe de-

fine 𝑃 𝑗 = 𝑃∗
𝑠,𝑑𝑠
∥𝑃𝑧 ∥𝑃∗

𝑑𝑑,𝑑
as a full path containing 𝑃𝑧 . Since

the detour path 𝑃𝑧 is a sub-path of 𝑃 𝑗
, we have 𝐷𝐶 (𝑃𝑧) =

𝐷𝐶 (𝑃 𝑗 ) = 𝑂𝑇𝐷 (𝑃𝑧). By definition we have 𝑂𝐷𝐶 (𝑃𝑧) >

𝐷𝑒𝑡𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑈𝑝𝑝𝑒𝑟
, thuswe can infer𝐷𝐶 (𝑃 𝑗 ) > 𝐷𝑒𝑡𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑈𝑝𝑝𝑒𝑟

= 𝐷𝐶 (𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 ). On the other hand, 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡
is defined as the fastest path, sowe have𝑇𝐶 (𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 )
< 𝑇𝐶 (𝑃 𝑗 ). Therefore 𝑃 𝑗

is worse than 𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 in

terms of travel cost and detour cost and thus we can prune

𝑃𝑖 immediately.

Once we have proven the network expansion for detour paths with

same (𝑑𝑠, 𝑑𝑑) pair won’t result in non-dominated paths, it is trivial

to extend it to the paths with different (𝑑𝑠, 𝑑𝑑) than that of 𝑃𝑖 . □


	2021,1_Titelbl.pdf
	Saeed_Taghizadeh_Technical_Report_STACY.pdf
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries and Problem Definition
	3.1 Road Network Structure
	3.2 Costs
	3.3 Linear Skyline Operator
	3.4 Problem Definition
	3.5 A* Search Algorithm

	4 Proposed Approach
	4.1 Naïve STACY Approach To Motivate Our Extensions
	4.2 Search Heuristic and Pruning Strategies
	4.3 The STACY Algorithm

	5 Evaluation
	5.1 Theoretical Evaluation of Functional Requirements
	5.2 Experimental Evaluation of Efficiency Requirement

	6 Conclusions and Future Works
	References
	A Proof of Lemma 4.1
	B Proof of Lemma 4.3
	C Proof of Lemma 4.4
	D Proof of Lemma 4.5


