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Abstract In this work, we present an ego lane detector de-
signed for the use in automotive vision systems for personal
light electric vehicles like electric bicycles, tricycles or scoot-
ers. The approach is based on a combination of gradient-
based line detection, color-based segmentation and geomet-
rical rules, making the ego lane detector fast, but also robust
to different scenes, including curves. Qualitative evaluation
on over fifty traffic scenes show that the lane detector is able
to find a suitable approximation of the road area with an IoU
of 75.71%.

Keywords Ego lane detection, color-based segmentation,
vanishing point detection

1 Introduction

In recent years, personal light electric vehicles like electric scooters,
bicycles or tricycles have been gaining in popularity. Being small
and lightweight, they represent an emission free alternative to cars
or a last-mile extension to public transportation systems. To increase
safety and comfort of users, automation and driving assistance sys-
tems as for autonomous vehicles are conceivable. Even though the
use-case appears to be similar, certain differences between personal
light electric vehicles and cars make the direct application of algo-
rithms difficult: As the product costs for personal light electric ve-
hicles are significantly lower in comparison to cars, the reasonable
? These authors contributed equally.
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maximum costs for sensors as well as computation hardware is lower
in the same way. The same applies for a lower possible power con-
sumption of the sensors and computation hardware, as the overall
system offers less power. Existing algorithms for autonomous cars
must be adapted to new traffic scenes and areas, as personal light
electric vehicles are not restricted to drive on streets, but they can
also use bicycle lanes or pedestrian paths. Aforementioned differ-
ences make especially the application of deep learning methods not
readily transferable, firstly, because of the restricted hardware op-
tions, secondly, because of the variation in the input data to the
training data sets for that the autonomous driving algorithms are
optimized for. Moreover, learning-based methods can not merely be
retrained because of the lack of datasets including traffic scenes of
pedestrian paths and bicycle lanes or related traffic signs etc.

This work presents an algorithm for detecting the two borders of
the lane, on which the ego vehicle, more precisely the ego bicycle, is.
The above mentioned requirements for low-cost sensors and compu-
tation hardware as well as the applicability in various kinds of traffic
scenes are fulfilled. Possible applications using ego lane detection
include, for instance, obstacle detection on the ego lane or the usage
of the ego lane information for traffic scene classification. The lane
border detection system works on RGB images taken from a cam-
era mounted on the handle bar of a bicycle. This camera setup and
scene perspective is applicable to most kinds of electric vehicles. The
lane boundaries are estimated with two straight lines on the left and
right side of the lane and, where applicable, a third line at the far
end of the visible road area. This approximation is close to the ac-
tual ego lane for many cases, but is limited to a straight lane course.
In curves, the aim is the linearization of the ego lane at the current
position with two straight lines using motion information.

The task entails following challenges: While the borders of streets
are often clearly distinguishable from neighboring areas due to lane
markings or clear material changes, the transitions can be smoother
for pedestrian or bicycle areas, especially where vegetation is adja-
cent to the lane. Another difficult case occurs if shadows overlap
the lane borders or if the lane borders are occluded through dirt or
objects such as parking vehicles.
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The contribution of this work is the development of a fast ego lane
detection system that is suitable for personal light electric vehicle
applications as it works in various road places. Using a combination
of two line detection strategies and geometrically based rules, no
large annotated data set is needed.

2 Related Work

Chougule et al. as well as Meyer et al. present deep learning ap-
proaches for lane border detection and lane segmentation in [1]
and [2], respectively. Thereby, a mean IoU of 76.39% (cf. [1]) and
80.01% for ego lanes (cf. [2]) is yielded. However, their methods are
not suitable for personal light electric vehicle applications with lim-
ited computation hardware. Furthermore, due to the dependency
on datasets, results are significantly worse for pedestrian or bicycle
lanes, as all training samples are taken from a car driver’s perspec-
tive driving on a street.

Lane detectors based on traditional image processing methods are
presented in [3] and [4]. For road area segmentation, in those works
texture descriptors are used. We show that a simple distance func-
tion based on color information suffice, is faster to calculate and
furthermore, better suited for the application on various lane types
where the variance in road surface structures is high compared to
solely street applications. In [4] and also in [5], the position of the
vanishing point is used to enhance lane area prediction. As the ge-
ometrical conditions of scenes in driver’s perspective give valuable
information about the lane borders, we use this approach for select-
ing the corresponding lines from a set of candidates. We show that a
fixed vanishing point estimation is sufficient for the approximation
of straight lanes.

3 Methology

The overall system goes through three phases for each image. First,
lane border candidates are proposed using gradient and color image
information. Secondly, the both candidates who best meet the ge-
ometric conditions of the scene are chosen as left and right border
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line. Thirdly, based on the movement between the previous and the
current image, it is decided whether the ego vehicle is currently driv-
ing a curve. If this is the case, with the aid of movement information,
straight road lane boundaries are estimated, that linearize the curve
at the current position.

Our approach specifically considers the following three traffic
scenes:

1. The ego vehicle drives straight on a straight lane. The lane bor-
ders are rich in contrast. In this case, the lane borders can be
extracted with traditional gradient-based edge detection meth-
ods. The approximation of the lane area with straight lines is
suitable.

2. The ego vehicle drives straight on a straight lane, but the lane
boundaries are not clear due to occlusions (e. g. vehicles parked
on the roadside) or smooth transitions (e. g. vegetation at the
roadside). In this case, the gradient based approach is unsuit-
able. Thus, the road surface is extracted using color-based seg-
mentation. The approximation of the lane area with straight
lines is suitable.

3. The ego vehicle drives along a curve. In this case, the two pre-
vious approaches may produce inappropriate results, because
the condition of a straight roadway is not fulfilled. The goal
in curves is the approximation of the actual roadway by lin-
earization of the lane borders at the current position. For this
purpose, the intersection point of the two linearized road edges
is estimated using optical flow.

In the following, the three approaches introduced above are de-
scribed in detail. Then, the final selection of the linearized roadway
boundaries is presented. Finally, we quantitatively and qualitatively
evaluate the results.

3.1 Gradient-based Lane Border Candidates

If the lane border is rich in contrast, e. g. due to road surface mark-
ings or a change in the pavement material, the lane borders can be
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extracted with the Canny edge detector pursuant to [6]. To suppress
high-frequency noise and high-frequency image structures, a bilat-
eral filter is applied in a pre-processing step. Assuming that the lane
borders are dominating lines in the image, they can be found in the
gradient image with the Hough line transform according to [7]. The
number of proposed lines depend on the scene. Typically, several
lines are proposed with the gradient-based approach. See Figure 3.1
for an example.

(a) (b)

(c) (d)

Figure 3.1: Visualization of the gradient-based lane border detection. (a) Input im-
age. (b) Bilateral filtering applied. (c) Gradients found with Canny edge
detector. (d) Lines found with Hough line transform, including the best
candidates for lane border approximation in green.

3.2 Color-based Segmentation Lane Border Candidates

For each image, in addition to candidates based on gradients, color-
based segmentation is used to extract the lane area and propose
two further candidates using geometrical conditions of traffic scenes.
This approach is aimed for situations where the road border line is
not clear because of occlusions by plants or other objects. Despite
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bilateral filtering, no lines are found at lane borders, if the transi-
tion is fluent on the one hand. On the other hand, edges extracted
from vegetation does not allow to find the lane border line. Then,
a high number of edges in different orientations are found near the
actual lane border when the Canny edge detector is applied. For
color-based segmentation of the lane area, a region of interest (ROI)
is chosen in the lower center of the image. Assuming that most pix-
els of the ROI show the surface of the ego lane, a binary mask with
pixels that may belong to the ego lane is created using a color-based
distance function. The reference color is the average of all color val-
ues of the pixel in the ROI. Several options of distance functions for
color images exist. For our application, best results are archived us-
ing a modified version of the CIE94 ∆E∗ color distance definition as
defined in [8]: For a reference color (L∗1 , C∗1 , H∗1 ) and another color
(L∗2 , C∗2 , H∗2 ) defined in the CIELAB color space, the color distance is
defined as

∆E∗94 =

√
∆L∗2

kLSL
+

∆C∗2

kCSC
+

∆H∗2

kHSH
, (3.1)

with ∆L∗ being the lightness difference, ∆C∗ being the chroma differ-
ence and ∆H∗ being the hue difference. SL, SC and SH are weighting
functions that adjust the CIE differences (∆L∗, ∆C∗, ∆H∗) according
to the standard in CIE 1976 color space: SL = 1; SC = 1 + 0.045C∗;
SH = 1 + 0.015C∗. kL, kC and kH are parametric weighting factors
of the three components. To decrease the impact of lightning on the
color distance, we choose a high value for kL. In that way, shadows
on the lane surface has less influence on the segmentation result.

By calculating the color distance for each pixel and thresholding,
a binary image is created.

For proposing two lane borders in the binary image, the position of
the vanishing point is used. We assume a fixed position of the van-
ishing point for a certain camera setup for simplicity and to show
the robustness of our method. An important prerequisite is that the
recorded images are in conformity with the perspective principle:
Assuming that the left and right lane borders are straight, parallel
and run in driving direction, they intersect in the vanishing point
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in the image. Thus, assuming a straight and parallel lane, all pos-
sible lane border candidates identified from the binary road area
image must run through the vanishing point. A second condition is,
that the ratio of lane pixel to the number of all pixels on the line is
higher than a certain threshold. For the color-based line detection,
one line for each the left and right lane boundary is proposed that
runs through the vanishing point, exceeds the road pixel threshold and
has the maximum opening angle from all possible lines fulfilling the
first and second condition.

(a) (b)

(c) (d)

Figure 3.2: Visualization of the segmentation-based lane border detection. As shown
in (b), the gradient-based approach fails in this case. (a) Input image with
the ROI marked in orange. (b) Edges and lines found with Canny edge
detector and Hough line transform. (c) Binary mask: white pixel: color
distance to reference color below threshold (lane pixel), black pixel: above
threshold. (d) Color-based candidates in input image.

3.3 Linearization of Curves using Motion Information

While the two methods above rely only on the current frame, the ego
motion between the previous and current frame is used in the cases
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of curves. More precisely, the sparse optical flow between the two
frames is used to refine the intersection of the road edges, which was
originally set as a fixed vanishing point. The idea is that the projec-
tion of the optical flow on the horizontal axis is a measure of how far
the intersection point of the two border lines of the road must shift
in the direction of the curve in order to achieve a linearization of the
road at the current position. The linearization should approximate
the actual lane course in the best possible way with straight lines and
the IoU between the actual and the linear approximated lane surface
should be optimized.

With the Lucas Kanade method, cf. [9], sparse optical flow vectors
are calculated for feature points above the estimated horizon in both
images. Then, noise, e. g. as a result of mismatched feature points is
reduced with two-dimensional Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) for the vector length and direc-
tion. Details about the clustering method DBSCAN are given in [10].
For vectors of the dominating cluster, the average length in horizon-
tal direction ¯|Vu| is determined. To take into account the difference of
the distance to the camera between the feature points and the van-
ishing point at the horizon, the displacement of the original point
of intersection (poi), thus, the static vanishing point, is defined as
∆poi = ± ¯|Vu|

1.25 with the sign selected according to the vector direc-
tion. Figure 3.3 visualizes the optical flow vector, the clustering and
displacement of the point of intersection for a sample image.

In curves, the gradient- and color segmentation approach fails as
the assumption of straight, parallel lane borders is not fulfilled. In-
stead, we use the assumption that the scene between two images
differs only slightly and take the intersections of the roadway bound-
aries and the lower image border from the previous image. In that
way, three image points are defined, which are the start and end
point of the approximated lane boundaries.

3.4 Final Lane Border Selection

In 3.1 and 3.2 it is shown, how several lane border candidates are
proposed. Following rules and conditions are applied to find the
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Figure 3.3: Visualization of poi refinement in curves. Left: Optical flow vectors in ori-
entation - length space. The two dominating clusters found with DBSCAN
marked with circles. Right: Optical flow vectors of two main clusters in
input image. The blue star marks the position of the default vanishing
point. The red star is the estimated point of intersection of the left and
right lane border (orange lines).

two candidates that represent the left and right lane border most
likely:

1. Assuming a straight road, the angle between the road border
line and the horizontal image boundary is within a certain
range. Experimentally determined are the ranges [30◦,80◦] and
[100◦,150◦] for the left and right lane boundary, respectively.

2. Assuming straight, parallel lane boundaries, the both lines in-
tersect in the vanishing point. Thus, the condition is set that the
absolute horizontal distance of the point of intersection of the
lane borders with the horizon to the position of the vanishing
point should be below a certain threshold.

3. Of the remaining lines, the two whose intersection with the
bottom edge of the image is farthest from the center are se-
lected.

If the mean absolute length of the optical flow vectors ¯|Vu| is above
a certain threshold, it is assumed that the ego vehicle is driving on a
curved lane. Then, two lane borders as described in 3.3 are taken as
final selection.
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3.5 Evaluation

We evaluated our approach on a total of over 1200 images from
about 50 different traffic scenes sequences. The scenes include one-
and multi-lane streets, bicycle lanes (separate, distinctly on streets,
and besides pedestrian paths), and pedestrian paths, forest paths or
parks. In most cases, the lane borders are predicted only with mi-
nor deviations from the actual position. Even though the true lane
area can not be represented correctly in curves as the lane borders
are limited to straight lines, the detected lane area overlaps widely
for the majority of test samples. Most scenes for which errors oc-
cur, show wide, open roads and a high variations from the standard
case of two parallel lane boundaries. For a quantitative analysis, we
take the best possible linear approximation with two lines as ground
truth. We reach a mean IoU between the area enclosed by the pre-
dicted and annotated lane borders and the button line of 75.71%.
Figure 3.4 and 3.5 show representative results for straight lanes and
curves.

Figure 3.4: Representative results for straight streets, bicycle lanes and sidewalks. Top
row: our results. The blue cross marks the point of intersection. Bottom
row: ground truth.

4 Discussion and Summary

Although each step of the pipeline is fast and simple, the lane border
detector is powerful and yields good results for various traffic types
including streets, bicycle and pedestrian lanes comparable to deep
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Figure 3.5: Representative results for curved streets, bicycle lanes and sidewalks. Top
row: our results. The blue cross marks the point of intersection. Bottom
row: ground truth.

learning approaches. Neither a large training data set or ground
truth labels are needed, nor are parameters needed to be fine-tuned
for the different lane types. Moreover, the algorithm can be to run on
low-cost hardware in real-time, which make a great advantage over
deep learning based approaches for applications on personal light
electric vehicles.
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