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ABSTRACT

Background: Although beneficial associations have been reported between moderate alcohol intake and the serum lipid profile,
it is unclear whether polymorphisms in alcohol-metabolizing enzymes can modify these associations. Here, we assessed the
effects of ADHIB His48Arg (1s1229984), ALDH2 Glu504Lys (rs671), and their combination on these associations.
Furthermore, we examined if the findings for ALDH?2 could be replicated.

Methods: We categorized 889 male participants in the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study into two
groups based on presence or absence of minor allele(s) or four groups based on genotype combinations. We performed
regression analyses of serum lipid concentrations on alcohol intake, with multivariable adjustment. The replication study was
conducted among 2,562 men in the Shizuoka part of the J-MICC Study.

Results: The ALDH2 Glu/Lys or Lys/Lys groups showed significant decreases in serum low-density lipoprotein (LDL)
cholesterol with increasing alcohol consumption; the coefficient per intake increase of 10g/day was —2.49 mg/dL (95%
confidence interval [CI], —3.85 to —1.13), and a significant interaction with the polymorphism was confirmed (P for
interaction = 0.006). This inverse correlation was more evident among the ADHIB His/His + ALDH2 Glu/Lys or Lys/Lys
groups (—3.24 mg/dL, 95% CI, —5.03 to —1.45). Serum triglycerides were positively associated with alcohol consumption in the
ADHIB His/His group (P for interaction = 0.020). The stronger association between serum LDL cholesterol and alcohol
consumption in the ALDH2 Glu/Lys or Lys/Lys groups was replicated.

Conclusions: The ALDH2 Glu504Lys polymorphism can modify the association between alcohol intake and serum LDL
cholesterol in Japanese men.
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including an increase in high-density lipoprotein (HDL)

INTRODUCTION

Epidemiological evidence has shown that moderate alcohol
consumption is negatively associated with the risk of coronary
heart disease and stroke.' This is partly explained by the
beneficial effects of alcohol consumption on blood lipids,

cholesterol levels and a decrease in low-density lipoprotein
(LDL) cholesterol levels. However, findings on the association
between alcohol consumption and LDL cholesterol have been
inconsistent.* Furthermore, alcohol intake has also been
associated with higher triglyceride levels.>® Although the
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molecular mechanisms underlying these associations remain
under discussion, several regulatory steps in the process of lipid
metabolism are thought to be involved.”® If so, the associations
between alcohol consumption and blood lipids may be altered by
alcohol metabolism-related gene variations that influence alcohol
degradation; these gene variations have been described in studies
of several diseases in Asian populations.”!® Two enzymes,
alcohol dehydrogenase (ADH) and aldehyde dehydrogenase
(ALDH), play key roles in alcohol metabolism. Ethanol is
oxidized to acetaldehyde by ADH and then metabolized into
acetate by ALDH.''? Genetic polymorphisms in ADHIB
(His48Arg) and ALDH2 (Glu504Lys) have strong effects on
alcohol metabolism. The rate of ethanol oxidation is accelerated
in individuals carrying the ADHIB His allele, and over 70% of
Asians have at least one His allele.!"'3 In contrast, approximately
20% of Asians carry the ALDH2 Lys alleles.'"* The Lys allele
gives an inactive form of the enzyme, which leads to increased
acetaldehyde levels after alcohol consumption due to a slower rate
of acetaldehyde metabolism.!>!® There are almost no hetero-
zygotes of these alcohol-related polymorphisms in Caucasian
populations.'” Hence, the high activity of ADHIB and the low
activity of ALDH? are rather specific to Asian populations.
Previous studies in Asian populations have focused mainly on
the influence of the ALDH2 genotype, and most studies have
examined HDL cholesterol'®22; thus, the effects of this genotype
on LDL cholesterol or triglycerides (TG) are still to be examined,
and the combined effects of ADHIB and ALDH?2 polymorphisms
on the associations between alcohol consumption and the lipid
profile remain unclear. Therefore, the aim of this study was
to evaluate the associations between alcohol intake and the
serum lipid profile according to the genotypes of the alcohol-
metabolizing enzymes ADHIB (His48Arg) and ALDH2
(Glu504Lys) and their combinations in Japanese men, in order
to gain insight into the association between moderate alcohol
consumption and the risk of cardiovascular diseases.

METHODS
Study subjects

The study subjects were drawn from participants in the Japan
Multi-Institutional Collaborative Cohort (J-MICC) Study.23 All
subjects were aged between 35 and 69 years and had been
voluntarily enrolled, mainly from health checkup examinees and
the general population. Subjects provided blood samples and
information on their lifestyles based on a questionnaire used
between 2005 and 2008 in nine study areas, and in 2004 in one
study area.>* The subjects in our cross-sectional study comprised
approximately 500 participants consecutively recruited in each
area, except for two areas where fewer participants had been
recruited. We selected 4,490 participants at baseline in the
J-MICC study. Written informed consent was obtained from all
participants. This study was conducted in accordance with the
Japanese government’s Ethical Guidelines for Human Genome
and Genetic Analysis Research. The study protocol was approved
by the ethics committees of Nagoya University Graduate School
of Medicine and other participating institutions.

Of the male participants in seven areas with a >10-hr fasting
serum lipid profile (n=1,073), we excluded those without
anthropometry (n = 1) or relevant genotypes (n = 1), and those
who reported a history of hepatitis B or C, liver cirrhosis, liver
cancer, or alcoholism (n = 51). We also excluded those with TG
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>1,000mg/dL (n=1) and those taking anti-diabetic or lipid-
lowering drugs (n = 130). Ultimately, 889 subjects qualified
for our analysis. However, participants receiving antihypertensive
drugs were excluded from the blood pressure analyses (n = 151),
while those with TG levels >400 mg/dL were excluded from the
LDL cholesterol analyses (n =17). We did not include female
participants due to their very low alcohol intake.

Lifestyle measurements

Lifestyle information was obtained using a common, standard
self-administered questionnaire in all of the seven study areas.
Alcohol consumption was estimated from the frequency of use
(almost none, 1 to 3 days/month, 1 to 2 days/week, 3 to 4 days/
week, 5 to 6 days/week, or everyday) and the amount consumed
by beverage type. Participants reported consumption for each
of the beverages consumed during the reported drinking session
using prescribed portion sizes (eg, Japanese sake: 1 gou
[180mL], shochu: 1 gou [180mL], shochu-based highball:
180 mL, beer: 633 mL, 500 mL, 350mL and 250 mL, whiskey:
30mL and 60 mL, and wine: 100 mL). Dietary intakes of energy,
saturated fatty acids (SFA), polyunsaturated fatty acids (PUFA),
cholesterol, and dietary fiber were estimated with a food
frequency questionnaire containing 47 food items.?> Body mass
index (BMI) was calculated using the following formula:
body weight (kg)/(height [m])>. Physical activity in metabolic
equivalents (METs) was estimated based on the frequency and
intensity of daily activities and habitual exercise. The presence
of diabetes was defined as a fasting blood glucose level >126
mg/dL or a hemoglobin Alc level >6.5% (values established
by the National Glycohemoglobin Standardization Program).

Measurement of serum lipid levels

Serum concentrations of total and HDL cholesterol and TG were
measured as a part of the health checkups or for research purposes
at the institutions participating in the J-MICC study. For the
health examinations, it was not possible to directly control the
procedures in most cases, as the majority of the data was collected
during routine health checkups performed at other institutions.
Measurements of the TG, total cholesterol, and HDL cholesterol
were performed under the standardization program of the Japan
Medical Association and/or the Center for Disease Control and
Prevention in all of the study areas. However, we cannot rule out
the possibility that there might have been some inter-institutional
differences in these measurements. Therefore, as described in our
statistical analysis section, we adjusted for these study areas in
order to minimize the effect of these potential differences in the
regression analyses. LDL cholesterol values were estimated using
the Friedewald formula (LDL cholesterol = total cholesterol —
HDL cholesterol — TG/S).

Genotyping of polymorphisms

DNA was extracted from the buffy coat fractions using a
BioRobot M48 Workstation (Qiagen Group, Tokyo, Japan)
or from whole blood using an automatic nucleic acid isolation
system (NA-3000; Kurabo, Co., Ltd., Osaka, Japan). The
genotyping of ADHIB His48Arg (rs1229984) and ALDH?2
Glu504Lys (rs671) polymorphisms was conducted at the
Laboratory for Genotyping Development, RIKEN Center for
Genomic Medicine (Yokohama, Japan), using a multiplex
polymerase chain reaction-based Invader assay (Third Wave
Technologies, Madison, WI, USA).?
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Statistical analysis

Accordance with the Hardy-Weinberg equilibrium, which
indicates the absence of discrepancy between genotypes and
allele frequencies, was checked using the y? test. Serum TG
and HDL cholesterol levels and intakes of SFA and cholesterol
were loge-transformed to approximate a normal distribution. To
categorize drinking habits during the analysis of the background
characteristics, we separated participants into two groups
(nondrinkers vs current drinkers) with former drinkers (n = 25)
included in the nondrinkers group. We compared background
characteristics between the genotypes or between the groups with
and without minor allele(s). Continuous variables were tested
with Student’s #-test, and categorical variables were assessed
using the y? test in order to evaluate the differences between
nondrinkers and current drinkers or between genotypes with or
without the minor allele(s).

Associations between alcohol intake and the serum lipid profile
were assessed by performing multiple regression analyses that
incorporated alcohol consumption (continuous, g/day) as an
independent variable and serum lipid concentrations as dependent
variables. We also assessed the associations between the lipid
concentrations and the drinking categories (non-drinkers [0 g],
light drinkers [0.1-22.9g], moderate drinkers [23.0-45.9¢],
and heavy drinkers [>46g]). To avoid effects by potential
confounders, we adjusted our analyses for age (continuous,
years), physical activity (continuous, MET-hr/day), BMI
(continuous, kg/m?), energy intake (continuous, kcal/day),
diabetes (categorical, yes/no), education (categorical, over high
school/high school or under), study area (categorical, six areas;
with one area merged into the nearest area due to the small
sample size), and smoking status (categorical, current smokers/
former smokers/never smokers). The education level was
included as an indicator of the socioeconomic status. We further
adjusted for the intakes of SFA (continuous, g/day), PUFA
(continuous, g/day), cholesterol (continuous, mg/day), and
dietary fiber (continuous, g/day) in additional analyses.

We stratified the subjects into two groups (those with at least
one minor allele and those without) or four groups (from the
combinations of the two genotypes) in order to evaluate the
effects of the polymorphisms on the associations between alcohol
intake and the lipid profile. We determined the P values for
interactions with the multiplicative terms calculated from the
alcohol intake amount (continuous, 10g/day) or the drinking
categories (non-drinkers: 0, light drinkers: 1, moderate drinkers:
2, and heavy drinkers: 3) and the presence of each genotype
group or combination group. The group or the combination with
the homozygotes of the major alleles was set as the reference.
For sensitivity analyses, we examined associations after
excluding the participants in the top 25% of the alcohol
consumption group, ie, those who consumed >39.1g/day.
Statistical analyses were conducted using Stata (ver. 13.1; Stata
Corp., College Station, TX, USA). All P values were two-sided,
and P values <0.05 were considered to be statistically significant.

Replication study

We also examined whether the modifying effect exerted by the
ALDH?2 polymorphism on the association between alcohol
consumption and serum lipids in our main study could be
replicated using existing data from an independent sample of
2,993 Japanese men aged 35 to 69 years from the Shizuoka
part of the J-MICC study. Subjects were recruited from male

examinees who visited a health checkup center in Hamamatsu,
Shizuoka, Japan, between January 2006 and December 2007.
After applying the same exclusion criteria used in the main study,
2,562 subjects were eligible for the replication analyses. We
collected lifestyle information, measured serum lipid levels, and
performed statistical analyses with the same methods as in the
main study. The DigiTag assay was used to determine ALDH?2
genotype.?”?® All participants gave their written informed
consent. The Shizuoka part of the J-MICC study was also
conducted in accordance with the Japanese government’s Ethical
Guidelines for Human Genome and Genetic Analysis Research.
The study protocol was approved by the ethics committee of
Nagoya University Graduate School of Medicine.

RESULTS

Participant characteristics

Table 1 shows the background characteristics of the participants,
including the distributions of the ADHIB and ALDH?2 genotypes
according to drinking habits. The average age of all participants

Table 1. Background characteristics according to alcohol drink-
ing habits in the main study?
All Nondrinkers Current .
(n = 889) (n=211) (n=678) r
Age, years 55.1 (9.0) 55.8 (9.6) 54.9 8.7) 0.186
Body mass index, kg/m2 23.7 3.1) 23.7 3.1) 23.7 3.1) 0.767
Smoking
Current smokers, % 27.8 25.6 28.5 0.147
Former smokers, % 43.0 39.8 44.0
Nonsmokers, % 29.3 34.6 27.6
Diabetes, %< 4.4 4.4 43 0.921
Education (over high school), % 449 44.4 46.5 0.601
Physical activity, MET-hr/day 14.2 (13.6) 15.3 (14.2) 13.9 (13.4) 0.192
Alcohol consumption, g/day 25.1 (28.4) — 32.9(28.3) —
Systolic blood pressure, mm Hg® 123.5 (16.0) 121.6 (16.9) 124.1 (15.6) 0.064
Diastolic blood pressure, mm Hg® 77.8 (11.0) 76.1 (12.1) 78.4 (10.6) 0.015
Serum total cholesterol, mg/dL 205.4 (31.0)  206.1 30.8) 2052 (31.1) 0.722
Serum triglycerides, mg/dL 128.6 (78.8) 122.2 (66.7) 130.6 (82.1) 0.257
Serum HDL cholesterol, mg/dL! 59.3 (15.9) 55.0 (14.4) 60.7 (16.1) <0.001
Serum LDL cholesterol, mg/dL# 121.1 (29.3) 127.1 (28.3) 119.3 (29.3) <0.001
Dietary intakes
Energy, kcal/day 1923 (351) 1882 (332) 1936 (356) 0.053
Saturated fatty acids, g/day’ 10.7 2.4) 10.8 (2.6) 10.6 (2.3) 0.382
Polyunsaturated fatty acids, g/day 129 (3.4) 12.5 (3.5) 13.0 3.3) 0.079
Cholesterol, mg/dalyf 235.1 (70.1) 226.2 (69.3) 237.8 (70.2) 0.018
Dietary fiber, g/day 9.9 (2.3) 10.2 3.1) 9.9 (2.7) 0.163
ADHIB (rs1229984)
His/His, % 582 59.7 57.7 0.062
His/Arg, % 36.2 379 35.7
Arg/Arg, % 5.6 24 6.6
His/Arg or Arg/Arg, % 41.8 40.3 423
ALDH?2 (rs671)
Glu/Glu, % 542 18.5 65.3 <0.001
Glu/Lys, % 384 51.7 342
Lys/Lys, % 74 29.9 0.4
Glu/Lys or Lys/Lys, % 45.8 81.5 34.7

HDL, high-density lipoprotein; LDL, low-density lipoprotein; MET,
metabolic equivalent.

*Values represent the means (standard deviation).

Includes former drinkers (n = 25).

‘Determined by f-test or chi-square test for comparison between nondrinkers
and current drinkers.

9The presence of diabetes was defined as fasting blood glucose >126 mg/dL
or hemoglobin Alc >6.5% (values of the National Glycohemoglobin
Standardization Program).

Participants receiving antihypertensive drugs were excluded from the
analysis for blood pressure (n = 151).

fStatistically tested for log.-transformed values.

Participants with serum triglycerides >400 mg/dL were excluded from the
analysis for LDL cholesterol (n = 17).

J Epidemiol 2018;28(4):185-193 | 187



Alcohol Intake and Serum Lipids—Genetic Modification

Table 2. Background characteristics according to the genotypes of ADH1B and ALDH?2 in the main study?

ADHIB (rs1229984) ALDH?2 (rs671)
His/His His/Arg Arg/Arg His/Arg or Arg/Arg P® Glu/Glu Glu/Lys Lys/Lys Glu/Lys or Lys/Lys P®

n 517 322 50 372 482 341 66 407
Age, years 54.8 (9.1) 55.5 (8.8) 55.7 (8.3) 555 (8.7 0.220 54.5 (8.8) 55.7.9.1) 56.4 (9.7) 55.8(9.2) 0.032
Body mass index, kg/m’ 235@3.1) 239 (3.1 244 (3.1) 239 (3.1 0.030 239 (3.2) 235 (3.1) 23.1 (2.6) 23.4 (3.0) 0.012
Smoking

Current smokers, % 275 28.6 26.0 28.2 0.955 274 29.6 212 283 0.068

Former smokers, % 437 413 46.0 41.9 40.3 45.8 485 46.2

Nonsmokers, % 28.8 30.1 28.0 29.8 324 24.6 303 25.6
Diabetes, % 4.8 4.4 0.0 3.8 0.441 5.0 35 4.6 3.7 0.348
Education (over high school), % 435 485 36.0 46.8 0.336 427 45.5 57.6 474 0.162
Physical activity, MET-hr/day 14.7 (14.2) 13.1 (12.4) 15.7 (15.0) 13.4 (12.8) 0.157 14.5 (14.1) 13.4 (12.8) 15.9 (14.2) 13.8 (13.1) 0.453
Alcohol consumption, g/day 24.3 (27.8) 25.6 (29.4) 30.4 (27.4) 26.2 (29.1) 0.311 35.1 (30.0) 15.7 (22.0) 0.3 (1.7) 13.2 (20.9) <0.001
Systolic blood pressure, mm Hg* 123.9 (15.3) 123.0 (17.1) 122.8 (16.5) 123.0 (17.0) 0.455 125.3 (16.5) 121.8 (15.1)  120.0 (15.9) 121.5 (15.2) 0.001
Diastolic blood pressure, mm Hg® 77.7 (10.6) 78.0 (11.4) 77.5 (13.1) 77.9 (11.7) 0.807 79.2 (11.1) 76.3 (10.9) 75.9 (10.2) 76.3 (10.8) <0.001
Serum total cholesterol, mg/dL 204.5 (31.5) 206.4 (30.1) 208.5 (32.6) 206.6 (30.4) 0.307 205.4 (31.7) 204.2 (30.1)  211.7 (30.2) 205.4 (30.2) 0.996
Serum triglycerides, mg/dL? 126.4 (76.9) 132.8 (84.5) 124.7 (56.8) 131.7 (81.3) 0.318 135.2 (86.1) 121.5 (69.0)  117.0 (65.5) 120.8 (68.4) 0.009
Serum HDL cholesterol, mg/dL? 60.1 (16.2) 58.4 (15.6) 57.6 (13.4) 58.3 (15.3) 0.104 60.5 (16.5) 584 (15.1) 55.3 (14.0) 57.9 (15.0) 0.016
Serum LDL cholesterol, mg/dL*® 119.9 (29.4) 1224 (29.2) 125.9 (27.9) 122.9 (29.0) 0.136 118.8 (30.2) 121.9 (27.6)  134.3 (27.3) 123.9 (27.9) 0.010
Dietary intakes

Energy, kcal/day 1915 (343) 1933 (349) 1941 (447) 1934 (363) 0.432 1927 (360) 1917 (349) 1925 (301) 1918 (341) 0.724

Saturated fatty acids, g/day? 10.7 2.4) 10.8 (2.5) 10.1 (1.9) 10.7 2.4) 0.924 10.7 2.4) 10.7 2.4) 10.9 (2.3) 10.7 2.4) 0.735

Polyunsaturated fatty acids, g/day 129 3.4) 12.8 (3.3) 132 (3.4) 12.9 (3.3) 0.716 13.0 3.2) 12.8 3.7) 12.7 2.7) 12.8 (3.5) 0.517

Cholesterol, mg/day* 235.1 (70.5) 235.6 (69.8) 231.8 (69.8) 235.1 (69.7) 0.883 236.0 (70.4) 233.1 (67.8)  237.9 (80.5) 233.9 (69.9) 0.612

Dietary fiber, g/day 9.9 2.8) 9.9 2.7) 9.9 3.1) 9.9 (2.8) 0.922 9.8 (2.7) 10.1 (2.9) 10.2 2.7) 10.1 (2.9) 0.149

HDL, high-density lipoprotein; LDL, low-density lipoprotein; MET, metabolic equivalent.

*Values represent the means (standard deviation).

®Determined by r-test or chi-square test for comparison between genotypes with or without minor allele(s).
“Participants receiving antihypertensive drugs were excluded from the analysis for blood pressure (n = 151).

dStatistically tested by log.-transformed values.

Participants with serum triglycerides >400 mg/dL were excluded from the analysis for LDL cholesterol (n = 17).

Table 3. Increase in serum lipid levels with an increase of alcohol intake by 10 g/day according to the genotypes of ADH1B and ALDHZ2 in
the main study?
Log.-triglycerides (mg/dL) Log.-HDL cholesterol (mg/dL) LDL cholesterol (mg/dL)
n p (95% Cl) n p (95% Cl) n p (95% CI)
All 889 0.006 (—0.006 to 0.018) 889 0.024 (0.019-0.030) 872 —1.47 (=2.20 to —0.75)
Genotypes
ADHIB (rs1229984)
His/His 517 0.017 (0.001-0.032) 517 0.024 (0.017-0.032) 508 —-1.59 (—2.56 to —0.62)
P for interaction reference reference reference
His/Arg or Arg/Arg 372 —0.005 (—0.024 to 0.014) 372 0.025 (0.016-0.033) 364 —-1.30 (—2.40 to —0.19)
P for interaction 0.020 0.609 0.871
ALDH? (rs671)
Glu/Glu 482 0.002 (—0.014 to 0.018) 482 0.025 (0.017-0.032) 470 —-0.73 (—1.72 to 0.25)
P for interaction reference reference reference
Glu/Lys or Lys/Lys 407 0.004 (—0.019 to 0.027) 407 0.021 (0.010-0.032) 402 -2.49 (—3.85to —1.13)
P for interaction 0.772 0.667 0.006

CI, confidence interval; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
“Determined by linear regression analysis adjusted for age, physical activity, body mass index, energy intake, study area, education, diabetes and smoking status

as covariates.

included in the analyses was 55.1 (standard deviation [SD], 9.0)
years. Among these participants, 678 were current drinkers
(76%), and their average daily alcohol intake was 32.9 (SD, 28.3)
g. The serum HDL cholesterol level was higher (P < 0.001) and
the LDL cholesterol level was lower (P < 0.001) in the current
drinkers than in the nondrinkers. The frequencies of both the
ADHIB and ALDH?2 genotypes were in Hardy-Weinberg
equilibrium (P =0.99 and P = 0.60, respectively). The distribu-
tion of the ALDH2 genotype greatly varied in accordance with
the drinking habits; the ALDH2 Glu/Lys or Lys/Lys genotypes
were present in 34.7% of the current drinkers versus in 81.5% of
the nondrinkers.

When we compared background characteristics between the
ADHIB and ALDH? genotypes (Table 2), a significant difference
in BMI was found among the ADH1B genotypes. In contrast, age
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and LDL cholesterol were significantly lower, while BMI, alcohol
consumption, systolic and diastolic blood pressure, serum TG,
and HDL cholesterol were significantly higher in the participants
with ALDH2 Glu/Glu when compared to those with ALDH2
Glu/Lys or Lys/Lys.

Associations between alcohol intake and lipid profile
according to genotype

The serum concentrations of HDL cholesterol and LDL
cholesterol were significantly associated with alcohol intake
(Table 3 and Figure 1); the HDL cholesterol level increased
(f =0.024; 95% confidence interval [CI], 0.019-0.030) and the
LDL cholesterol level decreased (ff = —1.47; 95% CI, —2.20 to
—0.75) with increasing alcohol intake. In the assessment of each
genotype, serum TG was positively and significantly correlated
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Figure 1.

Scatter diagrams of alcohol intake and triglycerides (A), HDL cholesterol (B) and LDL cholesterol (C) in the main study.

HDL, high-density lipoprotein; LDL, low-density lipoprotein.

Table 4.
ALDH?2 genotypes in the main study?

Increase in serum lipid levels with an increase of alcohol intake by 10g/day according to the combinations of ADH1B and

Loge-triglycerides (mg/dL)

Log.-HDL cholesterol (mg/dL) LDL cholesterol (mg/dL)

n p (95% Cl) n p (95% CI) n p (95% Cl)
Combinations of genotypes
ADHIB His/His + ALDH2 Glu/Glu 275 0.010 (—0.010 to 0.030) 275 0.023  (0.013-0.032) 270 -0.52 (—1.85 to 0.80)
P for interaction reference reference reference
ADHIB His/His + ALDH2 Glu/Lys or Lys/Lys 242 0.032 (0.0007-0.064) 242 0.020  (0.005-0.036) 238 —3.24  (=5.03 to —1.45)
P for interaction 0.473 0.713 0.010
ADHIB His/Arg or Arg/Arg + ALDH2 Glu/Glu 207  —-0.011 (—0.038 to 0.017) 207 0.028  (0.016-0.040) 200 —0.97 (=2.50 to 0.55)
P for interaction 0.161 0.537 0.548
ADHIB His/Arg or Arg/Arg + ALDH2 Glu/Lys or Lys/Lys 165 -0.031 (—0.066 to 0.004) 165 0.020  (0.002-0.038) 164 —0.90 (-=3.09 to 1.30)
P for interaction 0.017 0.890 0.109

CI, confidence interval; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
“Determined by linear regression analysis adjusted for age, physical activity, body mass index, energy intake, study area, education, diabetes and smoking status

as covariates.

with alcohol consumption in the ADHIB His/His group
(f=0.017; 95% CI, 0.001-0.032), and a significant interaction
was observed between this polymorphism and alcohol intake
(P =0.020). Meanwhile, the LDL cholesterol level in ALDH?2
Glu/Lys or Lys/Lys participants significantly decreased with
increasing alcohol intake (f = —2.49; 95% CI, —3.85 to —1.13),
with a significant interaction between the polymorphism and
alcohol intake (P = 0.006), while those in both ADH1B genotype
groups showed a significant inverse correlation between alcohol
consumption and LDL cholesterol level (= —-1.59; 95% CI,
—2.56 to —0.62 for ADHIB His/His and p=—1.30; 95% CI,
—2.40 to —0.19 for ADHIB His/Arg or Arg/Arg). The serum
HDL cholesterol level increased with increasing alcohol
consumption in every genotype group, and no interaction was
observed between alcohol consumption and the different

genotypes. In the analyses of the combination of ADHIB and
ALDH?2 genotypes, a stronger inverse association between
alcohol consumption and serum LDL cholesterol level was found
in individuals with ADHIB His/His and ALDH2 Glu/Lys or Lys/
Lys (f=-3.24; 95% CI, —5.03 to —1.45; P for interaction =
0.010; Table 4). This association remained after exclusion of the
participants in the top 25% of the alcohol consumption group
(ie, those who consumed >39.1 g/day; f = —5.25;95% CI, —8.62
to —1.89 and P for interaction = 0.009; data not shown). The
findings in Table 3 and Table 4 were not substantially changed
after additional adjustments for the intakes of SFA, PUFA,
cholesterol, and dietary fiber, although the adjusted coefficient for
TG was not statistically significant in the ADHIB His/His group
(eTable 1). When assessed according to the drinking level, the
results were almost unchanged. Decreased LDL cholesterol levels
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Table 5. Increase in serum lipid levels with an increase of alcohol intake by 10g/day according to the genotypes of ALDH?2 in the
replication study?
Log.-triglycerides (mg/dL) Log.-HDL cholesterol (mg/dL) LDL cholesterol (mg/dL)
n p (95% CI) s (95% Cl) n p (95% Cl)
All 2562 0.008 (0.001-0.016) 2562 0.020 (0.016-0.024) 2531 —1.23 (—1.70 to —=0.77)
Genotypes
ALDH? (rs671)
Glu/Glu 1253 0.009 (—0.001 to 0.018) 1253 0.013 (0.008-0.018) 1237 —-0.79 (—1.38 to —0.19)
P for interaction reference reference reference
Glu/Lys or Lys/Lys 1309 0.003 (—0.013 to 0.019) 1309 0.025 (0.018-0.033) 1294 -2.53 (—3.53 to —1.53)
P for interaction 0.221 0.004 0.002

CI, confidence interval; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
“Determined by linear regression analysis adjusted for age, physical activity, body mass index, energy intake, education, diabetes and smoking status as

covariates.

were observed when the ALDH?2 Lys allele (eTable 2) or the
ADHIB His/His and ALDH2 Glu/Lys or Lys/Lys genotypes
(eTable 3) were present in subjects with higher drinking levels.
Interactions were also detected between the genotypes and
alcohol consumption.

Associations between alcohol intake and lipid profile
according to the ALDH2 genotype in the replication
study

In the replication study, the distribution of ALDH?2 genotypes was
in Hardy-Weinberg equilibrium, and the minor allele frequency
was 0.30. The average age of the replication study participants
was 52.3 (SD, 8.8) years. Among these participants, 1,944 were
current drinkers (76%), and their average daily alcohol intake was
25.9 (SD, 25.8) g (eTable 4).

In the replication study, alcohol consumption was significantly
associated with the serum concentrations of HDL cholesterol and
LDL cholesterol, in addition to serum TG. When we assessed
whether the association between alcohol consumption and LDL
cholesterol level was modified by ALDH2 polymorphism, we
largely replicated the modification found in the main study.
The ALDH?2 Glu/Lys or Lys/Lys groups showed a significantly
decreased LDL cholesterol level with increasing alcohol
consumption; the coefficient per intake increase of 10g/day
was —2.53mg/dL (95% CI, —3.53 to —1.53). The ALDH2 Glu/
Glu group also showed a significant association, but it was weaker
than in the Glu/Lys or Lys/Lys groups (interaction P = (0.002;
Table 5). When assessed according to the level of drinking, LDL
cholesterol decreased in the subjects that had higher drinking
levels and ALDH?2 Glu/Lys or Lys/Lys as well, which was similar
to the main study. However, an interaction between the genotypes
and alcohol intake was not detected (eTable 5).

DISCUSSION

When we examined the decrease in the serum LDL cholesterol
level among Japanese men, we observed a significant interaction
of alcohol intake with the ALDH2 Glu/Lys or Lys/Lys genotypes,
as well as with the combination of ADHIB His/His and
ALDH? Glu/Lys or Lys/Lys genotypes. The positive correlation
between serum TG and alcohol consumption was stronger in
men with ADHIB His/His than in those with ADHIB His/Arg or
Arg/Arg. Furthermore, we replicated the findings of our main
study that demonstrated the ALDH2 polymorphism modified
the association between alcohol consumption and serum LDL
cholesterol.
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Prior studies have yielded conflicting results on the relationship
between alcohol consumption and blood LDL cholesterol.?%-3
Recently, it was proposed that these different observations may
be connected to genetic variations in the metabolism of
apolipoproteins, particularly the apolipoprotein A5 polymor-
phisms.* Alternatively, the differences may be related to poly-
morphisms in alcohol-metabolizing genes. However, previous
research that assessed the modifying effects of alcohol-related
genes in Caucasians found almost no significant interactions
between alcohol intake and the ADH or ALDH genetic
polymorphisms on blood LDL cholesterol or non-HDL
cholesterol levels.>**35 One study showed a significant
interaction effect between alcohol intake and the ADHIB His/
His or His/Arg genotype, which caused a decrease in the LDL
cholesterol level; however, no interactions were observed with
other ADH and ALDH gene polymorphisms.* In Asians, one
study demonstrated a possible association between the ALDH?2
Glu/Lys or Lys/Lys genotype and a rather high LDL cholesterol
level in the general population, after adjusting for drinking
habits.??> However, other studies that adjusted for alcohol intake
failed to detect any associations.2?2! In alcoholic men, a low odds
ratio for a high LDL cholesterol level was reported in those with
the ADHIB His allele.® However, our study found a significant
interaction between alcohol intake and the presence of the
ALDH? minor allele (Glu/Lys or Lys/Lys), and an even stronger
effect in the combination with ADHIB His/His. In our replication
study, a similarly significant interaction was observed for the
ALDH? Glu/Lys polymorphism. Thus, inconsistencies between
previous studies may be explained via differences in minor allele
frequencies among populations, the inclusion of only moderate-
to-heavy drinkers,?>* or dissimilarities in statistical method-
ology. In our main study, 41.8% and 45.8% of the participants
had at least one minor allele of the ADHIB and ALDH?2
polymorphisms, respectively. This enabled us to have sufficient
power to examine the interactions.

Additionally, although the mean LDL cholesterol level was
higher in subjects with ALDH2 Glu/Lys or Lys/Lys genotype
compared to those with ALDH2 Glu/Glu, LDL cholesterol
significantly decreased with increasing alcohol intake in the
former group. This suggests that the beneficial effect of a
moderate alcohol intake on LDL cholesterol is more apparent in
those with ALDH2 Glu/Lys or Lys/Lys. Participants with ALDH2
Glu/Glu had higher HDL cholesterol and TG concentrations,
which might lead a lower mean estimated LDL cholesterol.

Almost all studies have shown a robust relationship between
alcohol intake and an increase in the TG or HDL cholesterol
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level; however, results have been inconsistent regarding the
modifying effects of genetic variations, especially in alcohol
metabolism-related genes.* Although previous studies that
examined Asian general populations have shown that the TG or
HDL cholesterol level was significantly higher in alcohol drinkers
with sufficient ALDH2 activity (as determined by the skin
reaction test) compared to nondrinkers, interactions between lipid
levels and the ALDH2 phenotype were either not assessed or
not detected.'®! In another study performed in alcoholics, the
presence of the ADHIB His allele and ALDH?2 Glu/Glu genotype
was associated with the prevalence of hypertriglyceridemia or a
lower HDL cholesterol level.*® Our main study showed that there
was an increase in the TG level with increasing alcohol intake for
the ADHIB His/His genotype, but not for each of the ALDH2
genotypes. Since moderate alcohol consumption increases
lipoprotein lipase activity, this may decrease the TG level and
reduce the risk of fatty liver.3”38 However, we did not detect a
decrease in the TG in relation to moderate alcohol drinking.

We also found that alcohol consumption was associated with
an increase in the serum HDL cholesterol level regardless of the
ADHIB or ALDH?2 genotype. Polymorphisms in other genes,
such as those encoding apolipoproteins or cholesteryl ester
transfer protein, might have a more pronounced effect than ADH
and ALDH.*

From a biological point of view, the combination of a rapid
first step in metabolizing alcohol to acetaldehyde with a longer
exposure to acetaldehyde—a phenotype associated with the
combination of ADHIB His/His and ALDH2 Glu/Lys or Lys/Lys
genotypes—may partly explain the findings of the present study.
Interestingly, one report indicated that blood acetaldehyde
concentration after the intake of a moderate dose of ethanol
appeared to be approximately six times greater in individuals with
ADHIB His/His and ALDH2 Glu/Lys compared to those with
ADHIB His/His and ALDH2 Glu/Glu, and approximately
doubled when compared to those with ADHIB His/Arg and
ALDH?2 Glu/Lys.*® The formation of acetaldehyde adducts with
apolipoprotein B may reduce the conversion of very low-density
lipoprotein cholesterol to LDL cholesterol, which would decrease
the serum LDL cholesterol level.*'* Therefore, the varying
levels of acetaldehyde derived from alcohol consumption might
influence the serum LDL cholesterol level. Such effects of the
ADHIB or ALDH2 genotype may partly account for the
inconsistencies in LDL cholesterol level changes that have been
associated with alcohol consumption in different populations.
Regarding the influence of alcohol on circulating TG, both ADH
and ALDH use nicotinamide adenine dinucleotide (NAD)',
which is reduced to NADH, as a cofactor in both steps of alcohol
metabolism. The increased production of NADH may disturb the
tricarboxylic acid cycle and p-oxidation of fatty acids, thereby
resulting in higher TG levels.*** Thus, genetic differences in the
rate of alcohol degradation may alter NADH levels. The ADHIB
His alleles (which are associated with fast metabolism) may
increase NADH production more rapidly than the ADHIB Arg
alleles (which are associated with slow metabolism), thereby
increasing the serum TG level.

The aim of the present study was to assess the interaction
between alcohol intake and genetic variations and its effect on the
lipid profile in an Asian population with specific polymorphisms
in alcohol metabolism-related genes. The strength of our study
was that we replicated the modifying effect of the ALDH?2
polymorphism on the association between alcohol intake and

serum LDL cholesterol in a larger, independent sample. However,
there were several limitations. First, alcohol consumption was
relatively lower in participants with the ALDH?2 Lys alleles than in
those with the ALDH2 Glu/Glu genotype because of their slower
acetaldehyde metabolism.'>!® Therefore, the influence of heavy
alcohol drinking might be difficult to assess in those with the
ALDH? Lys alleles. However, our findings may be indicative of
the influence of moderate or lower alcohol intake because they
still showed significance after we excluded the participants in
the top 25% of the alcohol consumption group (ie, those who
consumed >39.1g/day). Second, in consideration of the age
range utilized in the J-MICC Study and the fact that there is a
higher intake of alcohol in men versus women, only middle-aged
men (35-69 years) were included in this study. Therefore,
evaluations in females and older participants will also need to be
performed in order to confirm these results. Third, since we used
pre-existing data, we could not examine the modifying effect of
the ADHIB polymorphism in our replication study. It would be
valuable to assess the influence of the ALDH2 polymorphism on
blood lipids, because the impact may be considerable, especially
in Asian populations.

We would caution against alcohol consumption by individuals
with the ALDH2 Glu/Lys or Lys/Lys genotype because of other
health concerns, such as the higher risk of alcohol-related cancer.’
However, our current findings imply that genetic modifications
might be indicative of the possible beneficial effects of moderate
alcohol intake on the risk of cardiovascular diseases. Our current
findings also suggest that these polymorphisms could have quite
strong impacts on the various aspects of metabolism and human
health. We believe that our study could contribute to the
cumulative evidence for the prevention of lifestyle-related
diseases considering to the gene-environmental interactions.

In summary, the ALDH2 Glu504Lys polymorphism modified
the association between alcohol intake and serum LDL
cholesterol. This association was even stronger with the ALDH?2
Glu/Lys or Lys/Lys genotype, which lessens the ability to
metabolize alcohol. Further studies on polymorphisms related to
alcohol metabolism or on the long-term effects of the ALDH?2
genotype are warranted, especially in Asian populations, where
the minor alleles are relatively common.
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