
pharmaceutics

Article

Physiologically Based Pharmacokinetic Modeling of
Metoprolol Enantiomers and α-Hydroxymetoprolol
to Describe CYP2D6 Drug-Gene Interactions

Simeon Rüdesheim 1,2 , Jan-Georg Wojtyniak 1,2 , Dominik Selzer 1, Nina Hanke 1 ,
Felix Mahfoud 3,4 , Matthias Schwab 2,5,6 and Thorsten Lehr 1,*

1 Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany;
simeon.ruedesheim@uni-saarland.de (S.R.); jangeorg.wojtyniak@uni-saarland.de (J.-G.W.);
dominik.selzer@uni-saarland.de (D.S.); n.hanke@mx.uni-saarland.de (N.H.)

2 Dr. Margarete Fischer-Bosch—Institute of Clinical Pharmacology, 70376 Stuttgart, Germany;
matthias.schwab@ikp-stuttgart.de

3 Department of Internal Medicine III, Cardiology, Angiology, Intensive Care Medicine,
Saarland University Medical Center and Saarland University Faculty of Medicine,
66421 Homburg, Germany; felix.mahfoud@uks.eu

4 Institute for Medical Engineering and Science, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

5 Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tübingen,
72076 Tübingen, Germany

6 Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”,
University of Tübingen, 72076 Tübingen, Germany

* Correspondence: thorsten.lehr@mx.uni-saarland.de; Tel.: +49-681-302-70255

Received: 10 November 2020; Accepted: 5 December 2020; Published: 11 December 2020 ����������
�������

Abstract: The beta-blocker metoprolol (the sixth most commonly prescribed drug in the USA in
2017) is subject to considerable drug–gene interaction (DGI) effects caused by genetic variations
of the CYP2D6 gene. CYP2D6 poor metabolizers (5.7% of US population) show approximately
five-fold higher metoprolol exposure compared to CYP2D6 normal metabolizers. This study aimed
to develop a whole-body physiologically based pharmacokinetic (PBPK) model to predict CYP2D6
DGIs with metoprolol. The metoprolol (R)- and (S)-enantiomers as well as the active metabolite
α-hydroxymetoprolol were implemented as model compounds, employing data of 48 different clinical
studies (dosing range 5–200 mg). To mechanistically describe the effect of CYP2D6 polymorphisms,
two separate metabolic CYP2D6 pathways (α-hydroxylation and O-demethylation) were incorporated
for both metoprolol enantiomers. The good model performance is demonstrated in predicted plasma
concentration–time profiles compared to observed data, goodness-of-fit plots, and low geometric
mean fold errors of the predicted AUClast (1.27) and Cmax values (1.23) over all studies. For DGI
predictions, 18 out of 18 DGI AUClast ratios and 18 out of 18 DGI Cmax ratios were within two-fold of
the observed ratios. The newly developed and carefully validated model was applied to calculate
dose recommendations for CYP2D6 polymorphic patients and will be freely available in the Open
Systems Pharmacology repository.

Keywords: physiologically based pharmacokinetic (PBPK) modeling; metoprolol;
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1. Introduction

Metoprolol is one of the most frequently administered beta-blockers in the U.S. with well over
50 million total prescriptions per year [1]. It is used in the treatment of hypertension, coronary artery
disease, heart failure, and arterial fibrillation [2]. Metoprolol is listed by the U.S. Food and Drug
Administration (FDA) as a moderately sensitive substrate for clinical drug-drug interaction (DDI)
studies as it is predominantly metabolized by cytochrome P450 2D6 (CYP2D6) [3].

CYP2D6 is an important drug metabolizing enzyme which is estimated to contribute to the
metabolism of 15–25% of all clinically used drugs [4,5]. The gene encoding CYP2D6 is subject to
different genetic variations, ranging from null alleles to several-fold amplification [5], resulting in
considerable phenotypical interindividual differences in CYP2D6-dependent drug metabolism [6].
The main purpose of the CYP2D6 activity score (AS) is to translate a patients’ CYP2D6 genotype to
the corresponding phenotype [7]. For this, CYP2D6 alleles are assigned a value indicating no (0),
decreased (0.25 or 0.5), normal function (1), or a copy number variation of a normal function allele (2).
However, as this assignment is based on semiquantitative observations, an activity score of 0.5 does not
necessarily imply a reduction of enzymatic activity by 50% [6,8]. Nevertheless, the activity score has
been shown to correlate well with metoprolol oral clearance in vivo [9]. Yet, considerable interindividual
variability in metoprolol plasma concentrations, caused by genetic components independent of the
CYP2D6 genotype, such as the rs5758550 SNP, has been observed [9,10].

Metoprolol is a BCS Class I drug, characterized by high permeability and high solubility. After its
rapid absorption, metoprolol undergoes extensive first-pass metabolism, reducing its bioavailability
to 40% in CYP2D6 normal metabolizers (NMs), whereas bioavailability approaches 100% in poor
metabolizers (PMs) [11]. Only 12% of metoprolol are bound to plasma proteins, primarily albumin [12].
O-demethylation, α-hydroxylation, and N-dealkylation by CYP2D6 and, to lesser extents, CYP2B6,
CYP2C9, and CYP3A4, are described as the pathways of metoprolol metabolism [13,14]. Of the major
metabolites, α-hydroxymetoprolol is of particular clinical interest, as it is pharmacologically active,
exhibiting 10% of the β1-blocking activity of metoprolol [15], and it is almost exclusively formed via
CYP2D6 [16]. Therefore, α-hydroxymetoprolol/metoprolol urinary metabolic ratios are employed for
CYP2D6 phenotyping [17]. Overall, CYP2D6 is estimated to be responsible for 80% of metoprolol
metabolism in normal metabolizers [14]. Depending on the CYP2D6 phenotype, only 1.5–12% of orally
administered metoprolol are excreted unchanged in urine [18].

Metoprolol is a chiral molecule, marketed as a racemic mixture of (R)- and (S)-metoprolol,
even though its enantiomers differ in their pharmacodynamic and pharmacokinetic properties.
The (S)-enantiomer has been shown to be 33-fold more potent in blocking β1-adrenoceptors in rats
than the (R)-enantiomer [19]. Moreover, in ultrarapid metabolizers (UMs) and normal metabolizers,
but not in poor metabolizers, the (S)-metoprolol area under the plasma concentration–time curve (AUC)
is significantly higher than the AUC of (R)-metoprolol, showing the enantiopreference of CYP2D6
towards the (R)-enantiomer [18,20]. The distribution of CYP2D6 genotypes varies substantially between
ethnicities. For instance, 5.7% of the US and 0.9% of Middle Eastern or Oceanian populations were found
to be poor metabolizers (AS = 0), whereas the prevalence of ultrarapid metabolizers (AS > 2) was 2.2% in
the US and 11.2% in Middle Eastern or Oceanian populations [21,22]. Interestingly, the reduced-function
CYP2D6*10 allele occurs more often in East Asian populations than the CYP2D6*1 allele (42% vs. 34%),
which results in an overall decreased CYP2D6 activity compared to other populations [23].

Previously published metoprolol PBPK models were either based on traditional CYP2D6
phenotypes [24,25] or did not take CYP2D6 DGIs into consideration [26,27]. Moreover, none of the
previously published metoprolol PBPK models incorporated the metoprolol (R)- and (S)-enantiomers
to describe the enantioselective metabolism via CYP2D6.

This study aimed to develop and qualify a novel, whole-body physiologically based
pharmacokinetic (PBPK) model of metoprolol to describe the effects of the different CYP2D6
genotypes and the resulting activity scores on the pharmacokinetics of metoprolol. The resulting
drug–gene interaction (DGI) PBPK model includes (R)- and (S)-metoprolol with their specific CYP2D6
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activity score-dependent metabolism, as well as the metabolite α-hydroxymetoprolol. In addition,
the established model was applied to generate metoprolol dose adaptations for patients with different
CYP2D6 activity scores and these adaptations were compared to a current guideline [28]. The model
was developed as a whole-body PBPK model to allow future model applications such as DDI modeling,
model scaling to special populations or PBPK-PD modeling. The final PBPK model will be publicly
available in the Open Systems Pharmacology (OSP) repository (www.open-systems-pharmacology.
org) [29] as a clinical research tool, and the Supplementary Materials to this article provide a detailed and
transparent evaluation of the model performance to be used as a reference manual and evaluation report.

2. Materials and Methods

2.1. Software

PBPK modeling, model parameter optimization (Monte Carlo algorithm), and local sensitivity
analysis were performed using PK-Sim® and MoBi® (Open Systems Pharmacology Suite 9.1).
Published clinical study data were digitized with GetData Graph Digitizer 2.26.0.20 (© S. Fedorov)
according to best practices [30]. Pharmacokinetic parameters (area under the plasma concentration-time
curve from the time of the first concentration measurement to the time of the last concentration
measurement (AUClast) and maximum plasma concentration (Cmax)) and model performance metrics
(mean relative deviation (MRD), geometric mean fold error (GMFE), DGI AUClast, and Cmax ratios)
were calculated using Python (version 3.7.4, Python Software Foundation, Wilmington, DE, USA)
in Visual Studio Code (version 1.49.1, Microsoft Corporation, Redmond, WA, USA). Plots were also
generated using Python in Visual Studio Code.

2.2. PBPK Model Building

The PBPK model building was initiated with an extensive literature search to gather information
on metoprolol absorption, distribution, metabolism, and excretion (ADME) processes, to obtain
physicochemical data and to collect clinical studies of the intravenous and oral administration of
metoprolol, in single- and multiple-dose regimens, performed in healthy individuals. Subsequently,
plasma concentration-time profiles from the published clinical studies were digitized and split into
a training dataset, for model building, and a test dataset, for model evaluation. Studies for model
training were selected to include different routes of administration (intravenous and oral), a wide
range of administered doses, single- and multiple-dose regimens, as well as stratification for CYP2D6
genotype or activity score. The training dataset was used for estimation of model input parameters
which could not be obtained from literature.

The metoprolol PBPK model was built in a stepwise approach. First, appropriate quantitative
structure-activity relationship (QSAR) methods to estimate the cellular permeabilities and partition
coefficients (e.g., Rodgers & Rowland, Berezhkovskiy) were selected, by fitting simulations of
intravenous metoprolol administration to their observed data. Subsequently, studies of orally
administered metoprolol in poor metabolizers were used to optimize parameters independent of
CYP2D6 metabolism. A single study in which metoprolol was administered as an oral solution
was used to optimize the intestinal permeability for both metoprolol enantiomers [31]. Finally,
(R)- and (S)-enantiomer CYP2D6 catalytic rate constant (kcat) values were optimized for studies
of the training dataset where the volunteers were either normal metabolizers or not phenotyped.
Racemic metoprolol plasma concentration–time profiles were modeled by the administration of
racemic doses of metoprolol (50% (R)- and 50% (S)-metoprolol and the use of a customized “observer”
within PK-Sim®, which adds up the simulated (R)- and (S)-metoprolol plasma concentrations to
directly display the racemic metoprolol plasma concentration–time profiles. Figure 1 provides an
overview of metoprolol metabolic pathways.

www.open-systems-pharmacology.org
www.open-systems-pharmacology.org


Pharmaceutics 2020, 12, 1200 4 of 18

1 

 

 

Figure 1 

 

 

Figure 1. Implemented metoprolol metabolic pathways. (R)- and (S)-metoprolol are both metabolized
via two different CYP2D6-dependent metabolic pathways: α-hydroxylation and O-demethylation,
as well as by an unspecific hepatic clearance process. The four α-hydroxymetoprolol diastereomers
(stereocenters are marked with asterisks) were modeled as one single compound due to lacking
published clinical data. CLhep: hepatic clearance, CYP2D6: cytochrome P450 2D6.

Supplementary Table S2.2.1 contains information concerning all studies included in the training
and test datasets. Supplementary Table S4.0.1 provides system-dependent parameters with technical
details on the implementation of CYP2D6.

2.3. DGI Modeling

The metoprolol clearance processes via CYP2D6 were implemented using Michaelis–Menten
kinetics according to Equation (1) [32]:

v =
vmax · S
Km + S

=
kcat · E · S
Km + S

(1)

where v = reaction velocity, vmax = maximum reaction velocity, S = free substrate concentration,
Km = Michaelis-Menten constant, kcat = catalytic rate constant, and E = enzyme concentration.

CYP2D6 Michaelis–Menten constant (Km) values were kept constant over the whole range of modeled
activity scores. CYP2D6 kcat values were optimized for each activity score separately. CYP2D6 poor
metabolizers (AS = 0) were assumed to show no CYP2D6 activity (0%), whereas populations with
two wildtype alleles (AS = 2) were used as reference (100%) to calculate relative kcat values according
to Equation (2).

kcat, rel, AS=i =
kcat, AS = i

kcat, AS = 2
× 100% (2)

where kcat, rel, AS=i = kcat for the investigated activity score relative to AS = 2, kcat, AS=i = kcat for the
investigated activity score, and kcat, AS = 2 = kcat for AS = 2.

The assignment of activity scores was carried out according to [33] as described in Table 1.
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Table 1. CYP2D6 activity score assignment according to [33].

Activity Score Projected Phenotype Examples of Relevant CYP2D6 Genotypes

0 PM *3/*3, *3/*4, *4/*4, *5/*6

0.25

IM

*4/*10, *5/*10
0.5 *4/*41, *5/*17, *10/*10

0.75 *17/*10, *41/*10
1 *1/*4, *2/*5, *17/*17, *17/*41

1.25

NM

*1/*10, *2/*10, *35/*10
1.5 *1/*41, *2/*17, *35/*41
2 *1/*1, *1/*2, *2/*35

2.25 *1x2/*17, *35x2/*41

>2.25 UM *1/*1x3, *1/*35x2, *2x2/*9

CYP2D6: Cytochrome P450 2D6, IM: intermediate metabolizer, NM: normal metabolizer, PM: poor metabolizer,
UM: ultrarapid metabolizer.

2.4. PBPK Model Evaluation

The performance of the metoprolol PBPK model regarding the prediction of racemic metoprolol,
its enantiomers and α-hydroxymetoprolol was evaluated using graphical and statistical methods. First,
predicted plasma concentration-time profiles were compared graphically with the profiles measured
in the respective clinical studies by plotting model population predictions (arithmetic mean ± SD)
together with observed data points. For this purpose, virtual populations of 100 individuals were
created based on the population characteristics stated in the respective publication. System-dependent
parameters, such as age, weight, height, organ weights, blood flow rates, tissue composition, etc.,
were varied by the implemented algorithm in PK-Sim. A comprehensive description of virtual
populations is given in Supplementary Section S1.1.3. Second, the plasma concentration values of all
studies predicted using the arithmetic mean of the population were plotted against their corresponding
observed values in goodness-of-fit plots.

In addition, model performance was evaluated by a comparison of predicted to observed AUC
values and Cmax values. All AUC values (predicted as well as observed) were calculated from the time
of the first concentration measurement to the time of the last concentration measurement (AUClast).

As quantitative measures of the model performance, the MRD of all predicted plasma
concentrations (Equation (3)) and the GMFE of all predicted AUClast and Cmax values (Equation (4))
were calculated.

MRD = 10x; x =

√ ∑k
i=1 (log 10ĉi − log10ci

)2

k
(3)

where ĉi = predicted plasma concentration that corresponds to the i-th observed concentration,
ci = i-the observed plasma concentration, and k = number of observed values.

GMFE = 10x; x =

∑m
i=1

∣∣∣∣log10

(
ρ̂i
ρi

)∣∣∣∣
m

(4)

where ρ̂i = predicted AUClast or Cmax value of study i, ρi = corresponding observed AUClast or Cmax

value of study i, and m = number of studies.
A detailed description of the local sensitivity analysis is provided in Supplementary Section S1.2.2.

2.5. DGI Modeling Evaluation

The DGI modeling performance was assessed by a comparison of predicted versus observed
plasma concentration–time profiles of racemic metoprolol, its enantiomers, and α-hydroxymetoprolol.
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Furthermore, predicted DGI AUClast ratios (Equation (5)) and DGI Cmax ratios (Equation (6))
were evaluated to assess, if the impact of the observed DGIs was well described by the model.

DGI AUClast ratio =
AUClast, DGI

AUClast, reference
(5)

where AUClast, DGI = AUClast of variant activity score or phenotype, while AUClast, reference = AUClast

of AS = 2 or normal metabolizer phenotype.

DGI Cmax ratio =
Cmax, DGI

Cmax, reference
(6)

where Cmax, DGI = Cmax of variant activity score or phenotype, Cmax, reference = Cmax of AS = 2 or normal
metabolizer phenotype. As a quantitative measure of the prediction accuracy, GMFE values of the
predicted DGI AUClast ratios and DGI Cmax ratios were calculated according to Equation (4).

3. Results

3.1. Metoprolol PBPK Model Development and Evaluation

A total of 48 clinical studies concerning the intravenous or oral administration of metoprolol
were used in the model development process, with doses ranging from 5 to 200 mg metoprolol in
single or multiple dose regimens. Of the 48 studies, nine included measurements of the metabolite
α-hydroxymetoprolol and 16 studies included measurements of the metoprolol enantiomers.

Metoprolol enantiomers were modeled as stand-alone compounds, to allow for the implementation
of enantioselective CYP2D6 metabolism. The four α-hydroxymetoprolol diastereomers were modeled
as one single compound, due to a lack of enantiomeric differentiation in the published clinical data.

For both metoprolol enantiomers, enantioselective metabolism via CYP2D6, an unspecific hepatic
clearance process, as well as passive glomerular filtration were implemented. Each of the metoprolol
enantiomers can be metabolized via CYP2D6 to produce eitherα-hydroxymetoprolol or to generate other
metabolites such as O-demethylmetoprolol which were not included as separately modeled compounds.
The metabolite α-hydroxymetoprolol is eliminated via an unspecific hepatic clearance process.
Figure 1 depicts a schematic overview of the implemented metabolic pathways. The drug-dependent
model input parameters of the metoprolol enantiomers are presented in Table 2. The drug-dependent
parameters of the α-hydroxymetoprolol model are provided in Supplementary Table S2.4.3.

Overall, the PBPK model accurately described and predicted the plasma concentration–time
profiles of metoprolol andα-hydroxymetoprolol after intravenous and oral administration, as illustrated
in Figure 2. This figure presents population predictions of selected clinical studies from the test and
training datasets. Plots documenting the model performance for all 48 clinical studies included in
this analysis are provided in Supplementary Sections S2.5 and S3.2. All simulated plasma profiles
are in good agreement with the observed metoprolol racemate, (R)-, and (S)-metoprolol as well as
α-hydroxymetoprolol plasma concentrations.
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Table 2. (R)- and (S)-metoprolol drug-dependent model parameters.

Parameter Unit
(R)-Metoprolol (S)-Metoprolol

Description
Value Source Literature Reference Value Source Literature Reference

MW g/mol 267.36 Lit. 267.36 [34] 267.36 Lit. 267.36 [34] Molecular weight
pKa (base) - 9.7 Lit. 9.70 [34] 9.7 Lit. 9.70 [34] Acid dissociation constant

Solubility tart. (pH 7.4) g/mL 1.00 Lit. 1.00 [35] 1.00 Lit. 1.00 [35] Solubility
Solubility succ. (pH 5.5) g/mL 0.16 Lit. 0.16 [36] 0.16 Lit. 0.16 [36] Solubility

logP - 1.77 Lit. 1.77 [37] 1.77 Lit. 1.77 [37] Lipophilicity
fu % 88 Lit. 88 [38] 88 Lit. 88 [38] Fraction unbound

CYP2D6 Km → αHM µmol/L 10.08 Lit. 10.08 ‡ [39] 10.75 Lit. 10.75 ‡ [39] Michaelis-Menten constant
CYP2D6 kcat → αHM 1/min 6.02 Optim. † 7.50 [39] 6.55 Optim. † 8.27 [39] Catalytic rate constant
CYP2D6 Km → ODM µmol/L 8.82 Lit. 8.82 ‡ [39] 12.43 Lit. 12.43 ‡ [39] Michaelis-Menten constant
CYP2D6 kcat → ODM 1/min 9.87 Optim. † 12.30 [39] 8.21 Optim. † 10.37 [39] Catalytic rate constant

CLhep., unsp. 1/min 0.08 Optim. - - 0.09 Optim. - - Unspecific hepatic clearance
GFR fraction - 1.00 Asm. - - 1.00 Asm. - - Filtered drug in the urine

EHC continuous fraction - 1.00 Asm. - - 1.00 Asm. - - Bile fraction cont. released
Intestinal permeability cm/min 4.14 × 10−5 Optim. 1.12 × 10−5 Calc. [40] 4.14 × 10−5 Optim. 1.12 × 10−5 Calc. [40] Transcellular intestinal perm.
Cellular permeability cm/min 4.64 × 10−3 Calc. PK-Sim [32] 4.64 × 10−3 Calc. PK-Sim [32] Perm. into the cellular space
Partition coefficients - Diverse Calc. R&R [41,42] Diverse Calc. R&R [41,42] Cell to plasma partitioning

NR Weibull time parameter min 12.31 Optim. - [43,44] 12.31 Optim. - [43,44] Dissolution time (50%)
NR Weibull shape parameter - 0.72 Optim. - [43,44] 0.72 Optim. - [43,44] Dissolution profile shape
CR Weibull time parameter min 331.92 Optim. - [45] 331.92 Optim. - [45] Dissolution time (50%)

CR Weibull shape parameter - 1.53 Optim. - [45] 1.53 Optim. - [45] Dissolution profile shape

-: not available, †: CYP2D6 kcat values were optimized in a fixed ratio (kcat → αHM:kcat → ODM) equivalent to the ratio of reported kcat values [39], ‡: in vitro values corrected
for binding in the assay, using estimated fraction unbound to microsomal protein (fu, mic, estimated = 84%) [46], αHM: α-hydroxymetoprolol, asm.: assumed, calc.: calculated, cont.:
continuously, CR: controlled release, CYP2D6: cytochrome P450 2D6, EHC: enterohepatic circulation, GFR: glomerular filtration rate, hep.: hepatic, lit.: literature, NR: normal release, ODM:
O-demethylmetoprolol, optim.: optimized, perm. permeability, PK-Sim: PK-Sim standard calculation method, R&R: Rodgers and Rowland calculation method, succ.: metoprolol succinate,
tart.: metoprolol tartrate, unsp.: unspecific.
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Figure 2. Metoprolol plasma concentrations. Model predictions of metoprolol and its metabolite
α-hydroxymetoprolol plasma concentration-time profiles of selected (a–c) intravenous and
(d–l) oral studies of the training and test datasets, compared to observed data [43–45,47–50].
Population predictions (n = 100) are shown as lines with ribbons (arithmetic mean ± standard deviation
(SD)), symbols represent the corresponding observed data ± SD. Detailed information on all clinical
studies is listed in Supplementary Table S2.2.1. iv: intravenous, po: oral.

Goodness-of-fit plots showing plasma concentrations, AUClast and Cmax values, respectively,
are presented in Figure 3. Predicted plasma concentrations were predominantly (88.3%) within two-fold
of the corresponding observed concentrations. Furthermore, a total of 72 out of 75 of the predicted
AUClast values (several studies included measurements of multiple analytes) and 64 out of 66 of the
predicted Cmax values were within the two-fold acceptance criterion. The metoprolol model GMFE
values were 1.27 (range 1.01–2.94) for the predicted AUClast values, and 1.23 (range 1.00–2.97) for the
predicted Cmax values. The MRD values and predicted to observed AUClast and Cmax ratios for all
48 clinical studies and all measured analytes are provided in Supplementary Tables S2.6.4–S2.6.7.
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Figure 3 

 

Figure 3. Goodness-of-fit plots of the final metoprolol model. Predicted versus observed (a,b) plasma
concentrations, (c,d) AUClast values and (e,f) Cmax values for the training (left column) and test
(right column) datasets. The solid black line indicates the line of identity, solid grey lines show two-fold
deviation, dashed grey lines indicate 1.25-fold deviation. Detailed information on all clinical studies is
listed in Supplementary Table S2.2.1. AUClast: area under the plasma concentration-time curve from
the time of the first concentration measurement to the time of the last concentration measurement,
Cmax: maximum plasma concentration, vs: versus.
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The local sensitivity analysis of a simulation of 100 mg metoprolol tartrate administered orally
(standard dose) revealed that the model predictions were most sensitive to the values of (R)- and
(S)-metoprolol fraction unbound (fu), which were gathered from literature and used unmodified as
model input parameters. Setting a sensitivity threshold of 0.5 (100% parameter value change = 50%
change of predicted AUC), the only other parameter value that the model predictions were sensitive
to is the CYP2D6 (R)-metoprolol → O-demethylmetoprolol catalytic rate constant (optimized).
A comprehensive visual and quantitative presentation of the sensitivity analysis results can be
found in Supplementary Section S2.6.7.

3.2. Metoprolol CYP2D6 DGI Model Development and Evaluation

The model training dataset included 11 plasma concentration-time profiles from studies that
reported the CYP2D6 activity scores of their study subjects, ranging from 0 (poor metabolizer)
to 3 (ultrarapid metabolizer). These studies were utilized to optimize kcat, rel values for the different
CYP2D6 activity scores. The identified values for both CYP2D6 pathways and both metoprolol
enantiomers are given in Table 3.

Table 3. Optimized kcat, rel values for the different modeled CYP2D6 activity scores.

Activity Score
(R)-Metoprolol (S)-Metoprolol

kcat, rel
kcat → αHM kcat → ODM kcat → αHM kcat → ODM

0 0.00 1/min 0.00 1/min 0.00 1/min 0.00 1/min 0%
0.5 1.65 1/min 2.70 1/min 1.82 1/min 2.27 1/min 19%

1.25 5.73 1/min 9.40 1/min 6.30 1/min 7.89 1/min 64%
1.5 6.38 1/min 10.48 1/min 7.03 1/min 8.81 1/min 72%
2 10.17 1/min 16.69 1/min 11.19 1/min 14.02 1/min 100%
3 19.03 1/min 31.22 1/min 20.93 1/min 26.23 1/min 213%

αHM: α-hydroxymetoprolol, kcat: catalytic rate constant, kcat, rel: catalytic rate constant relative to activity score = 2,
ODM: O-demethylmetoprolol.

Of all 48 analyzed clinical profiles, 15 metoprolol plasma concentration–time profiles belong to
studies that stratified their subjects by CYP2D6 activity score or phenotype. These studies either provided
the activity score for the investigated population (three studies), the CYP2D6 phenotype (two studies),
or comprehensive information on the CYP2D6 genotype of all individuals (10 studies). To simulate
the latter studies, mean activity scores were calculated according to current recommendations [33].
The good performance of the final metoprolol DGI model is demonstrated in Figure 4, showing predicted
metoprolol plasma concentration-time profiles of populations with different CYP2D6 activity scores,
compared with their corresponding observed data. Plots documenting the model performance for all
15 metoprolol DGI profiles found in the literature are provided in Supplementary Section S3.2.
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Figure 4. Metoprolol plasma concentrations of the modeled CYP2D6 drug-gene interaction.
Model predictions of (a–c) (R)-metoprolol and (S)-metoprolol as well as (d–f) metoprolol and
α hydroxymetoprolol plasma concentration-time profiles of selected metoprolol CYP2D6 DGI studies,
compared to observed data [18,51]. Population predictions (n = 100) are shown as lines with ribbons
(arithmetic mean ± standard deviation (SD)), symbols represent the corresponding observed data ± SD.
Detailed information on all clinical studies is listed in Supplementary Table S2.2.1. AS: activity score,
po: oral.

Predicted DGI AUClast and Cmax ratios were in very good agreement with the observed DGI
ratios, demonstrating that the impact of the different CYP2D6 activity scores on the pharmacokinetics
of racemic metoprolol, (R)-, and (S)-metoprolol and the metabolite α-hydroxymetoprolol was well
described by the model. Specifically, 18 out of 18 AUClast and 17 out of 18 Cmax ratios were within the
prediction success limits suggested by Guest et al. adopted for DGI evaluations [52], as visualized in
Figure 5. Predicted DGI AUClast ratios show an overall GMFE of 1.21 (range 1.00–1.69), while predicted
DGI Cmax ratios showed an overall GMFE of 1.21 (range 1.00–1.56). The predicted and observed ratios
and corresponding predicted to observed DGI AUClast and Cmax ratios for all studies are provided in
Supplementary Table S3.3.2.

3.3. Metoprolol Dose Adaptation for CYP2D6 DGIs

The developed metoprolol CYP2D6 DGI model was applied to calculate dose adaptations for
individuals with different CYP2D6 activity scores. Simulated doses for “variant” activity scores were
adapted in a stepwise approach until the AUC during steady-state (AUCss) matched the AUCss (±10%)
of a 100 mg twice daily metoprolol regimen in AS = 2 (wildtype) subjects. Predictions of plasma
concentration-time profiles for individuals with different activity scores, all administered with 100 mg
of metoprolol tartrate twice daily, are shown in Figure 6a. Simulations for different activity scores after
dose adaptation are shown in Figure 6b. The resulting model-based dose adaptations compared to the
Dutch Pharmacogenetics Working Group (DPWG) guideline recommendations for metoprolol [28] are
shown in Figure 6c. The corresponding AUCss values before (Figure 6d) and after (Figure 6e) dose
adaptation are visualized in the lower panel.
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Figure 5. Predicted versus observed metoprolol DGI ratios. Comparison of predicted versus observed
(a) DGI AUClast ratios and (b) DGI Cmax ratios for all analyzed metoprolol CYP2D6 DGI studies.
The straight black line indicates the line of identity, curved black lines show prediction success limits
proposed by Guest et al. including 1.25-fold variability [52]. Solid grey lines indicate two-fold deviation,
dashed grey lines show 1.25-fold deviation. Detailed information on all clinical studies as well as the
plotted values are listed in Tables S2.2.1 and S3.3.2 of the Supplementary Materials. AUClast: area under
the plasma concentration-time curve from the time of the first concentration measurement to the time of
the last concentration measurement, Cmax: maximum plasma concentration, DGI: drug-gene interaction,
vs: versus.

 

5 

 

Figure 6 
Figure 6. Model-based CYP2D6 DGI dose recommendations. (a) Simulations of metoprolol exposure in
individuals with different CYP2D6 activity scores, all administered with 100 mg metoprolol twice daily.
(b) Simulations of metoprolol exposure in individuals with different CYP2D6 activity scores, administered
with the model-based dose recommendations. Doses were adjusted to match the AUC168–180 h of 100 mg
metoprolol twice daily in AS = 2 (wt) individuals. (c) Model-based dose adjustments, compared to
the DPWG guideline recommendations for metoprolol [28]. (d) Metoprolol AUC168–180 h values for
administration of 100 mg twice daily to individuals with different CYP2D6 activity scores. (e) Metoprolol
AUCss values for administration of the model-based dose recommendations to individuals with different
CYP2D6 activity scores. The dotted horizontal line marks the wt AUCss. *: value interpolated due
to a lack of clinical studies with AS = 1, ‡: dose titration or change of medication recommended, AS:
activity score, AUCss: area under the plasma concentration-time curve during steady state (168–180 h),
bid: twice daily, DPWG: Dutch Pharmacogenetics Working Group, IM: intermediate metabolizer, NM:
normal metabolizer, PM: poor metabolizer, po: oral, UM: ultrarapid metabolizer, wt: wild type.
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4. Discussion

In this study, a whole-body PBPK model of metoprolol, including separate representations
of its (R)- and (S)-enantiomers and the metabolite α-hydroxymetoprolol, was built and carefully
evaluated to dynamically predict drug plasma concentrations over a wide dosing range (5–200 mg).
Moreover, the model was extended to describe the impact of different CYP2D6 activity scores on the
pharmacokinetics of racemic metoprolol, (R)-metoprolol, (S)-metoprolol, and α-hydroxymetoprolol.

Previously published metoprolol PBPK models were mostly developed for different applications.
Indeed, two models investigated the effects of pregnancy [24,27] and one model analyzed the effects of
investigational formulations [26]. A fourth published minimal PBPK-PD model of metoprolol was
built to describe the impact of CYP2D6 DGIs on metoprolol plasma concentration profiles and heart
rate. The DGI was implemented for three “traditional” phenotypes (poor, normal and ultrarapid
metabolizers). This model, however, did not further differentiate the CYP2D6 activity between AS = 0
and AS = 2 [25]. Our model is the first to integrate current knowledge on CYP2D6 activity to accurately
predict the impact of CYP2D6 DGIs over a wide range of activity scores. Moreover, this model is
the first PBPK model of metoprolol to include metoprolol enantiomers (and enantiospecific CYP2D6
metabolism), as well as the active metabolite α-hydroxymetoprolol.

The limitations of the presented model are related to the incompleteness of published
knowledge and data. Our model focused on CYP2D6 activity scores as opposed to CYP2D6 genotypes.
Grouping genotypes by activity scores was necessary, due to the limited amount of data available
on the enzyme kinetics of the >100 different CYP2D6 isoforms [53]. Consequently, the model is not
able to further differentiate between different genotypes within the same activity score group (e.g.,
between *1/*1, *1/*2, and *2/*2, which all belong to the AS = 2 group) [7]. The primary aim of this
model, namely the characterization, description, and prediction of metoprolol exposure in individuals
with CYP2D6 polymorphisms to enable model-informed precision dosing, was met [54]. As more
data (in vitro and clinical) regarding the CYP2D6 activity of the different individual genotypes emerge,
the model can be easily extended for an even finer graduation of the CYP2D6 activity, to differentiate
between genotypes within the same activity score group.

In addition, although the different CYP2D6 metabolic reactions (O-demethylation and
α-hydroxylation of both (R)-metoprolol and (S)-metoprolol) were successfully implemented using
Km values from in vitro literature [39], these Km values were assumed to be the same across all
CYP2D6 activity scores. Using metoprolol as the substrate, only three genotype-specific in vitro Km

values (*1, *2 and *17 isoforms), could be obtained from literature (metoprolol α-hydroxylation and
O-demethylation), showing a slightly higher Km for the *17 allele (AS = 0.5) [8]. Other studies reported
no clear trend of Km values using a wide range of CYP2D6 substrates to investigate the enzyme kinetics
of the reduced-function alleles *10 and *17 in comparison to the wildtype *1 allele [55]. Hence, due to
an insufficient amount of data, the same Km values were used in the model across all activity scores.
The final optimized kcat, rel values increased with increasing activity scores, reflecting an apparent
correlation of metoprolol oral clearance with the CYP2D6 activity score [9]. Plasma concentration–time
profiles and DGI AUClast and Cmax ratios of all analyzed clinical studies were well described by the
final model.

The enzymes CYP2B6, CYP2C9 and CYP3A4 have also been found to metabolize metoprolol
in vitro [14]. However, the fractions metabolized by these CYP enzymes in vivo, or which of those
enzymes is the second most relevant enzyme for metoprolol metabolism besides CYP2D6, is not
known (clinical DDI studies with fluconazole, ketoconazole or other strong CYP3A4 inhibitors
could not be found in the literature). In two of the previously published metoprolol PBPK
models, a CYP3A4-dependent clearance process was implemented [24,25]. Yet, the formation of
O-demethylmetoprolol and α-hydroxymetoprolol in human liver microsomes were less impacted
by inhibition of CYP3A4 than by inhibition of CYP2C9 or CYP2B6 [14]. However, as CYP2D6 is
estimated to account for >70% of metoprolol oral clearance [43], the impact of variations in CYP2B6,
CYP2C9 or CYP3A4 enzymatic activity on metoprolol PK was considered negligible. Moreover,
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model input parameters such as CYP2B6, CYP2C9, or CYP3A4 Km and kcat, that would be necessary for
a mechanistic implementation of the respective metabolic pathways, are not available in the literature.
Consequently, the authors decided to incorporate an unspecific hepatic clearance process in addition
to the CYP2D6-dependent pathways.

The final metoprolol PBPK model was applied to generate dose adaptations for populations with
different CYP2D6 activity scores. While it is generally acknowledged that metoprolol exposure is
mainly determined by the CYP2D6 activity score [56,57], there is no consensus in the literature on
whether increased metoprolol plasma concentrations in poor and intermediate metabolizers result in a
higher incidence of adverse drug reactions [58–61].

The model-based dose recommendations calculated for CYP2D6 DGIs were well in line with the
recommendations provided by the DPWG [28], except for the poor metabolizers, where this analysis
suggests even lower doses than the Dutch guidance document. Adapting a patients’ metoprolol dose
based on the CYP2D6 activity score will decrease the occurrence of adverse drug reactions or therapy
failure [56,59] and consequently help to provide more safe and efficient personalized dosing regimens.
Future possible applications of the newly developed PBPK model include the prediction of CYP2D6
DDI effects on metoprolol pharmacokinetics or scaling of the metoprolol model to special populations
such as pediatric patients, geriatric patients, or patients with renal or hepatic impairment.

5. Conclusions

A whole-body parent-metabolite PBPK model of metoprolol and its enantiomers was developed
to predict racemic metoprolol, (R)-metoprolol, (S)-metoprolol, and α-hydroxymetoprolol plasma
concentration–time profiles. The model focused on CYP2D6 activity score-dependent metabolism
and has been utilized to calculate dose adaptations in populations with various CYP2D6 activities
and genotypes. The Supplementary Materials of this manuscript provide an in-depth documentation
and evaluation of the final model and the PBPK model file will be made publicly available in the
OSP repository. The model can be applied to generate dose adaption for patients with different
CYP2D6 activity scores, to complement and refine the recommendations by existing guidelines and
facilitate personalized medicine. Due to the mechanistic implementation of the human physiology
and important pharmacokinetic pathways, the model allows for knowledge-based scaling to special
populations and can serve as the basis for future investigations of CYP2D6 DDI scenarios.
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intravenous studies of the training and test datasets, compared to observed data (semilogarithmic representation),
Figure S2.5.2: Metoprolol plasma concentrations. Model predictions of metoprolol and its metabolite
α-hydroxymetoprolol plasma concentration-time profiles of oral studies of the training and test datasets,
compared to observed data (semilogarithmic representation), Figure S2.5.3: Metoprolol plasma concentrations,
Figure S2.5.4: Metoprolol enantiomers plasma concentrations. Model predictions of (R)-metoprolol
and (S)-metoprolol plasma concentration-time profiles of oral studies of the trainingand test datasets,
compared to observed data (semilogarithmic representation), Figure S2.5.5: Metoprolol plasma concentrations,
Figure S2.5.6: Metoprolol plasma concentrations, Figure S2.5.7: Metoprolol plasma concentrations, Figure S2.5.8:
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plots for the final metoprolol model, Figure S2.6.14: AUClast goodness-of-fit plots for the final metoprolol
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kcat, rel values for the different CYP2D6 activity scores, Figure S3.2.1: Metoprolol plasma concentrations of the
modeled CYP2D6 drug-gene interaction, Figure S3.2.2: Metoprolol plasma concentrations of the modeled CYP2D6
drug-gene interaction, Figure S3.2.3: Metoprolol plasma concentrations of the modeled CYP2D6 drug-gene
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Figure S3.2.5: Metoprolol plasma concentrations of the modeled CYP2D6 drug-gene interaction, Figure S3.2.6:
Metoprolol plasma concentrations of the modeled CYP2D6 drug-gene interaction., Figure S3.2.7: Metoprolol plasma
concentrations of the modeled CYP2D6 drug-gene interaction, Figure S3.2.8: Metoprolol plasma concentrations of
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drug-gene interaction, Figure S3.2.11: Metoprolol plasma concentrations of the modeled CYP2D6 drug-gene
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