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Abstract

When interacting with mobile applications, users may not always get what they
expect. For instance, when users download Android applications from a market,
they do not know much about their actual behavior. A brief description, a set
of screenshots and a list of permissions, which give a high level intuition of what
applications might be doing, form user expectations. However applications do
not always meet them. For example, a gaming application intentionally could
send SMS messages to a premium number in a background without a user’s
knowledge. A less harmful scenario would be a wrong message confirming a
successful action that was never executed.

Whatever the behavior of a mobile application might (app) be, in order to
test and fully understand it, there needs to be a technique that can analyse the
User Interface (UI) of the app and the code associated with it as the whole.

This thesis presents a static analysis framework called SAFAND1 that given
an ANDROID app performs the following analysis:

• gathers information on how the application uses sensitive data;

• identifies and analyses UI elements of the application;

• binds UI elements with their corresponding behavior.

The thesis illustrates how results obtained from the framework can be used
to identify problems ranging from small usability issues to malicious behavior
of real-world applications.

1SAFAND = Static Analysis For ANomaly Detection
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Zusammenfassung

Bei der Interaktion mit mobilen Anwendungen erhalten Benutzer möglicherweise
nicht immer das, was sie erwarten. Wenn Benutzer beispielsweise Android-
Anwendungen von einem Marktplatz herunterladen, wissen sie nicht viel über
das tatsächliche Verhalten dieser Anwendungen. Eine kurze Beschreibung, eine
Reihe von Screenshots und eine Liste von Berechtigungen, die eine umfassende
Vorstellung davon geben sollen, welche Anwendungen möglicherweise ausgeführt
werden können, bilden die Erwartungen der Benutzer.

Die Anwendungen entsprechen diesen Erwartungen aber nicht immer. Zum
Beispiel könnte ein Spiel ohne Wissen des Benutzers im Hintergrund absichtlich
SMS-Nachrichten an eine Premium-Nummer senden. Ein weniger schädliches
Szenario wäre eine falsche Meldung, welche eine erfolgreiche Aktion bestätigt,
die jedoch niemals durchgeführt wurde.

Unabhängig vom Verhalten einer mobilen Anwendung (App) muss eine Tech-
nik vorhanden sein, die die Benutzeroberfläche (User Interface, UI) der App und
des damit verbundenen Codes testet und als Ganzes versteht.

In dieser Arbeit wird ein statisches Analyseframework namens SAFAND2

vorgestellt, bei dem eine ANDROID-App die folgende Analyse durchführt:

• sammelt Informationen darüber, wie die Anwendung sensible Daten ver-
wendet;

• identifiziert und analysiert UI-Elemente der Anwendung;

• verbindet UI-Elemente mit ihrem entsprechenden Verhalten.

Die Arbeit zeigt, wie Probleme, von kleinen Usability-Problemen bis hin zu
böswilligem Verhalten realer Anwendungen, mit den Ergebnissen des Frame-
works identifiziert werden können.

2SAFAND = Static Analysis For ANomaly Detection
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Chapter 1

Introduction

People like to use mobile applications, it is quite convenient to have an instant
access to services, data and media out of the pocket. According to the recent
statistics [16], the Google Play Android application market [23] has about 70%
of the market share and contains two and half million applications [50]. It is
thus not surprising that there are lots of bad quality apps among them.

1.1 Research Problem

When users install applications they already have expectations on how these
applications should work. The expectations are usually based on their previous
experience with similar apps. Sometimes applications do not meet user expec-
tations because of their intransparent or harmful behavior: app developers can
intentionally hide or mask functionality and aim to steal user’s personal informa-
tion or disguises the use of premium services [6]. Although the quality standards
of the official Android market are generally high, malicious applications can be
still found, and they are more prevalent in other markets [18][53][21]. Despite
being the main focus of the research on Android, malware detection is still an
open challenge [38]. In fact, as malware detection techniques improve, malware
writers find new ways to hide malicious behavior. As a consequence, it becomes
more and more difficult to understand whether an application has some hidden
behavior.

1



CHAPTER 1. INTRODUCTION

Expectations of users are unmet even if a developer made a mistake. In this
case, an unintentionally introduced bug can lead to behavioral and functional
changes. Such changes can be visible, e.g., UI mistakes, or invisible, e.g., an
incorrect condition in the code resulting in the completely different functionality.

Whatever the conditions and intentions could be there is a need of a frame-
work that could analyze applications as a whole: from the UI up to its code
discovering the corresponding functionality.

There are two ways to perform program analysis: statically and dynamically.
Static program analysis is sound, i.e., it reports all possible functionalities of

an application, but it also introduces false positives. For example, it warns a user
that the application under analysis leaks some sensitive information, but in real-
ity these are infeasible paths. This happens because some conditions cannot be
resolved statically, and consequently the analysis over-approximates the results.
The false positive rate is not the only problem of static taint analysis. In order
to achieve soundness, the analysis may be complex and expensive, and might
consequently incur scalability problems. Static analysis has also well-known
limitations. Namely, it struggles with code reflection, code obfuscation and
encryption. Code reflection as well as code obfuscation are quite common tech-
niques to circumvent signature-based malware detection techniques. Moreover,
most techniques implemented for Android do not support native code analysis.
Native code (C/C++ code) is widely used in a development of games in order
to have better memory management and performance. It is thus necessary to
support these features when analyzing Android applications.

Dynamic program analysis can only report behavior that has been observed
during actual executions. The problem of dynamic approaches is that they
mainly depend on the set of inputs that have been used to generate executions,
and can thus lack relevant information. Moreover, mobile devices have limited
resources such as CPU, RAM, storage and battery life, and it is challenging to
implement dynamic analyses on such devices.

At first sight, dynamic program analysis is the best choice, but unfortunately
in reality it becomes infeasible. The prevalence of modern applications requires a
user account. Users must provide login credentials for allmost every application.
Such requirement is practically unrealizable for automatic approaches thousands
of applications have to be analyzed. Thus, static techniques are the only option
to fully analyze behavior of applications.

As of December 2017 there is 3.5 million of application in Google Play Store
[50]. However, there are a lot of bad-quality applications among them: from
apps with bad design to apps with harmful behavior. In order to identify such
bad-quality applications it is necesarry to understand their behavior.

2
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1.2 Contributions of the Thesis

The thesis presents a set of static analysis techniques to investigate ANDROID

applications called SAFAND (Static Analysis For ANomaly Detection). SAFAND

implements techniques to extract program features which are useful to find
anomalies both in behavior of applications and their UI elements. SAFAND is
a synergy of program analysis stages of BACKSTAGE [13] and MUDFLOW [12]
tools.

MUDFLOW describes a behavior of an application by using flows of sensitive
data between its APIs. For example, Travel Guide app usually sends a device
location to the internet in order to suggest best places to visit. MUDFLOW con-
structs behavioral patterns of applications based on their sensitive data flows
and group them. At the end, it identifies abnormal applications as their behav-
ior do not fit in the group’s pattern. Such abstraction is very useful not only
for automatic classification, but also for general understanding of what applica-
tions doing. In the practice MUDFLOW was able to reveal malicious behavior of
applications based on extracted dataflows with high accuracy.

Modern applications, in fact, access a lot of Android APIs to improve user’s
experience and provide more functionality. This makes it more problematic to
identify abnormal behavior as it becomes less distinguishable on the API and
dataflows level. To address this issue, we developed a technique called BACK-

STAGE, which analyses GUI of applications and connects it to the corresponding
behavior. BACKSTAGE can detect and report triggered APIs and dataflows, for
example, after clicking on the Share button. Such technique makes it possible
to identify whether some action happens automatically without user’s notice or
his explicit agreement. Moreover, this technique gives the possibility to under-
stand whether the app meets user’s expectations in terms of its functionality.
The proposed approach improves MUDFLOW and introduces new program fea-
tures which are helpful for end-users and security researches to understand how
applications behave. BACKSTAGE, thus, is very useful for detecting typical pro-
gramming failures, such as assigning a wrong callback function to the button,
as well as for identifying apps with suspicious behavior.

Together with the static analysis framework the thesis presents a study of
the typical information flows of Android applications that are popular on the
Google Play market.

Despite the fact that the presented techniques are targeted to ANDROID

applications, they can be easily adopted to analyze apps from other platforms
like Windows Mobile[58] or iOS[31].

3



CHAPTER 1. INTRODUCTION

SAFAND has a modular structure and technically is built on the top of
SOOT [35] framework.

It consists of five main independent modules (see Figure 1.1):

Resource Analysis SAFAND takes an application as an input and dissolves
it to analyze its static resources, such as screen layouts, icons and text
declarations.

Mining Sensitive Data Flows from the application SAFAND leverages FLOW-

DROID [8] static taint analysis tool in order to extract flows of sensitive
data in the application. SAFAND implements customizations to dissolve
access to sensitive resources and resolves the target activity and data of
intercomponent calls.

Mining Sensitive APIs from the application SAFAND leverages a call-graph
of FLOWDROID and traverses it to find all reachable Sensitive APIs. SAFAND

implements optimizations to minimize the possibility of discovering APIs

in the dead code.

Mining GUI Elements from screens For each UI screen SAFAND extracts
the set of UI elements associated with it.

Identifying a behavior of UI elements For each extracted UI element on
the screen, SAFAND associates it with a set of APIs and Data Flows. Such
association represents a mapping between the expected behavior of the UI

element (e.g. what a user sees on the screen) and its actual behavior (e.g.
what the UI element actually does).

SAFAND is the highly customizable framework. For example, UI analysis
module is fully independent and can be run without any prerequisites, while
the association of API and Data Flows with UI elements modules requires results
of UI phase as an input. One can run UI analysis module once and then reuse
results in the future as SAFAND provides an option to load previously saved
results of UI analysis.

To support further research in app mining, as well as replication and ex-
tension of the results in this thesis, all our data is available for download. For
details, see our project pages

https: // www. st. cs. uni-saarland. de/ appmining/ mudflow

https: // www. st. cs. uni-saarland. de/ appmining/ backstage/

4

https://www.st.cs.uni-saarland.de/appmining/mudflow
https://www.st.cs.uni-saarland.de/appmining/backstage/


1.2. CONTRIBUTIONS OF THE THESIS
SA

FA
ND

 F
ra

m
ew

or
k

LO
C 3

SM
S 2

ID
2

SM
S 2

Ex
tra

ct
io

n 
of

 
Da

ta
 F

lo
w

s

JO
IN

 C
O

M
M

UN
IT

Y

Ex
tra

ct
io

n 
of

 U
I E

le
m

en
ts

st
ar

tA
ct

iv
it

y
Lo

ca
ti

on
Ma

na
ge

r

JO
IN

 C
O

M
M

UN
IT

Y

Lo
ca
ti
on
Ma
na
ge
r

Lo
g

As
so

ci
at

in
g 

UI
 E

le
m

en
ts

 w
ith

 c
or

re
sp

on
di

ng
 b

eh
av

io
ur

Yo
u 

ha
ve

 s
uc

ce
ss

fu
lly

 
jo

in
ed

 o
ur

 c
om

m
un

ity
!

W
EB

2
CA

L 1

ID
4

LO
G

2

AP
I A

na
ly

si
sSM

S

W
EB

CA
L

ID

LO
C

LO
G

Re
so

ur
ce

 A
na

ly
si

s
Ap

p 
Co

lle
ct

io
n

Figure 1.1: Overview of the SAFAND framework.
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The source code of the MUDFLOW program analysis could be found in

https: // github. com/ uds-se/ soot-infoflow-android

https: // github. com/ uds-se/ soot-infoflow

The source code of the BACKSTAGE program analysis could be found in

https: // github. com/ uds-se/ backstage

1.3 Research Questions

The goal of this thesis is to present static analysis techniques which can be useful
to effectively identify applications with suspicious behavior. Therefore research
questions are:

RQ1 : Can APIs on itself can be used to identify applications with suspicious
and malicious behavior?

RQ2 : Can flows of sensitive information in an application on itself can be used
to identify its suspicious and malicious behavior?

RQ3 : Can a combination of UI and its corresponding behavior (e.g., APIs or
flows of sensitive data) can be used to identify applications whose behavior
deviate from the expected one?

1.4 Structure of the Thesis

The thesis is organized as follows:

• In Chapter 2 we discuss the basics of ANDROID and its ecosystem. Further,
we introduce data flow and taint analysis techniques as well as give a short
overview of existing frameworks for analyzing ANDROID apps.

• In Chapter 3 we present a set of techniques to mine APIs and dataflows in
a large number of Android applications. We will also show how extracted
features can be used to compare and classify applications.

• In Chapter 4 we introduce an approach to mine user interfaces by extract-
ing visible information from the screen of an application.

6
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• In Chapter 5 we present a technique that improves previously discussed
approaches. It searches for mismatches between the ANDROID APIs and
Data Flows, which applications invoke, and the visible information on the
screen by combining the approaches from Chapter 3 and Chapter 4.

• Chapter 6 provides conclusions and a discussion of the future work.

1.5 Publications

This thesis is built on the following papers (in chronological order):

1. Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas
Zeller, Steven Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. Mining
apps for abnormal usage of sensitive data. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1 (ICSE ’15),
Vol. 1. IEEE Press, Piscataway, NJ, USA, pp. 426-436. [12]

2. Vitalii Avdiienko. 2015. Mining patterns of sensitive data usage. In
Proceedings of the 37th International Conference on Software Engineering
- Volume 2 (ICSE ’15), Vol. 2. IEEE Press, Piscataway, NJ, USA, 891-894.
[10]

3. Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas
Zeller, Steven Arzt, Siegfried Rasthofer, and Eric Bodden. Abnormal
Sensitive Data Usage in Android Apps. In Proceedings of the Jornadas
Nacionales de Investigación en Ciberseguridad (JNIC 2016). Best Pub-
lished Research Award. Granada, Spain.

4. Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas
Zeller, Steven Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. Mining
apps for abnormal usage of sensitive data. In Proceedings of Grande
Region Security and Reliability Day 2015, Trier, Germany.

5. Konstantin Kuznetsov, Vitalii Avdiienko, Alessandra Gorla and An-
dreas Zeller. Checking App User Interfaces Against App Descriptions.
In Proceedings of the International Workshop on App Market Analytics
(WAMA 2016). [34]
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6. Vitalii Avdiienko, Konstantin Kuznetsov, Paolo Calciati, Juan Car-
los Caiza Roman, Alessandra Gorla and Andreas Zeller. CALAPPA: a
Toolchain for Mining Android Applications. In Proceedings of the Inter-
national Workshop on App Market Analytics (WAMA 2016). [11]

7. Vitalii Avdiienko, Konstantin Kuznetsov, Isabelle Rommelfanger, An-
dreas Rau, Alessandra Gorla and Andreas Zeller. Detecting Behavior
Anomalies in Graphical User Interfaces. Technical Report. [13].

8. Vitalii Avdiienko, Konstantin Kuznetsov, Isabelle Rommelfanger, An-
dreas Rau, Alessandra Gorla and Andreas Zeller. Detecting Behavior
Anomalies in Graphical User Interfaces. In Proceedings of the 39th Inter-
national Conference on Software Engineering (ICSE 2017) - Poster Track.

9. Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas
Zeller, Steven Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. App
Mining. In Proceedings of SE 2017 (Tagung Software Engineering), Han-
nover, Germany.
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Chapter 2

Background

2.1 Android

Android is a mobile operating system developed by Google1. Android is an
open-source Linux-based software stack designed for a wide range of mobile
devices. Nowadays more than 1.4 billion devices are running under Android2.
Nevertheless, the platform architecture is universal across all of them. Vendors
can introduce their specific changes in User Interface (UI) or in a collection of
applications, but changes to the kernel itself are not permitted. In order to build
a comprehensive program analysis technique it is important to know building
blocks of the platform under test and working principles of apps.

2.1.1 Platform Architecture

Android is built on the top of the Linux Kernel. Such design takes an advantage
of key security features of Linux kernels and allows vendors to work with the
well-know software. The diagram on Figure 2.1 shows the major components of
Android platform.

The Linux Kernel provides the possibility to access sensors, memory, a dis-
play and wireless channels of communication. It simplifies and unifies access to
the most-desired hardware functionality. Power Management is also encapsu-
lated within Linux Kernel so that developers and software vendors do not have

1https://www.android.com/
2http://www.androidcentral.com/google-says-there-are-now-14-billion-active-android-

devices-worldwide
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Figure 2.1: Components of Android Platform [44]

10



2.1. ANDROID

to care about it and better spend their valuable time on implementing software
features.

Hardware Application Layer (HAL) provides interfaces to expose hardware
capabilities to the high-level Java API framework. It defines the standard inter-
faces for hardware vendors and allows Android to be agnostic about lower-level
driver implementations.

Prior to Android 5.0 a mobile application was executed in its own instance
of the Dalvik Virtual Machine (VM) and it was fully isolated from other apps on
the same device. Each application was executed in a full isolation by using de-
fault Linux security mechanisms: a Linux Id and a Group Id uniquely identified
each application. The Dalvik VM, however, has the register-based architecture
in contrast to Java VMs, which are stack-based. Such architectural solution
caused a need of have an operating system with low battery consumption. In
addition, the Dalvik VM has the CPU-optimized bytecode interpreter and uses
the runtime memory very efficiently. It executes Dalvik EXecutable (DEX) files
resulted from the compilation of the Java code. Each application can have mul-
tiple DEX files, as each DEX file is limited to 64,000 methods3. DEX files are
part of an APK file, which in addition contains also resource files and metadata.
The APK file is a final deliverable from developers.

Starting from Android 5.0 (Lollipop) Google introduced new Android Run-
time(ART)4. ART uses Ahead-of-time compilation of the code which improves
application performance. ART provides Ahead-of-time (AOT) compilation and
Just-in-time (JIT) compilation, while Dalvik supports only AOT. Moreover,
ART has the optimized garbage collection, better debugging and diagnostic sup-
port. Apps that are developed for ART-devices can also run on Dalvik-devices
but not always vice-versa.

Many core Android system components and services, such as access to sen-
sors via HAL interface5, are built from native code that requires C/C++ li-
braries. The Android framework provides Java API to expose the functionality
of some of these native libraries. Developers can also write apps using C/C++
and can have direct access to Android native libraries with help of Android
NDK6. Android NDK is mostly used in game development, as it provides access
to OpenGL library7.

3https://developer.android.com/studio/build/multidex.html
4https://source.android.com/devices/tech/dalvik/
5https://source.android.com/devices/sensors/hal-interface.html
6https://developer.android.com/ndk/index.html
7https://developer.android.com/guide/topics/graphics/opengl.html
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CHAPTER 2. BACKGROUND

The most of Android apps are written in Java, as using Java API is the
easiest and the most convenient way to develop them. The entire set of Android
OS features like accessing the current location or contacts in the address book
is available trough API written in Java language. Android SDK is shipped
alongside with Android Studio8 that helps developers to create and debug apps
with little effort.

Android has a set of system apps. These apps are predefined in devices
and cannot be uninstalled. They provide key capabilities that developers can
access from their own apps. For example, one does not need to implement a
functionality og making photos. One can just open a predefined Camera app
that will do it and return the photo to the app. The same holds for sending
emails, opening web-pages, making phone calls etc.

2.1.2 App Components

Android applications communicate with the Android platform through its Ap-
plication Programming Interfaces (API), which can be used to access different
platform functionalities. Within the API only a small set of methods is used for
accessing sensitive information such as user’s address book, SMS messages and
GPS coordinates. To protect users from unauthorized usage of their sensitive
information, Android requires permissions to access them. Prior to Android 6.0
these permissions were enlisted in the Android Manifest XML file. The Android
platform reads them when installing an application and asks the user for a con-
firmation (Figure 2.2). The user must agree to grant all necessary permissions,
otherwise the application will not be installed. If the application accesses sensi-
tive information without asking permission, the Android platform will deny the
access and throw an appropriate exception.

Starting from Android 6.0 (Marshmallow) users grant permissions to apps
while the apps are running and not during their installation. It gives the user
more control over the app’s behavior, as it is almost impossible to understand
why the app requires some permission before using it. The user can choose to
allow the navigation app to access his location but not to the list od contacts
in her address book (Figure 2.3).

Android applications have four types of components9:

• an activity represents a single screen with a user interface which user can
interact with in order to do something. An application typically consists

8https://developer.android.com/studio/index.html
9https://developer.android.com/guide/components/fundamentals.html
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Figure 2.2: Requesting permissions while installing the Facebook app.

of multiple activities and each activity is responsible for a specific action,
e.g. sign-up, an add payment method etc.

• a service is a component that runs in the background to perform long-
running operations or work for remote processes. Services do not have
user interfaces.

• a content provider manages a shared set of application data. It also enables
sharing data between apps, e.g. the address book, the photo gallery.
In order to access a specific resource developers need to provide a URI.
For example, access to contacts in the address book is done by providing
ContactsContract.Contacts.CONTENT URI.

13
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Figure 2.3: Requesting permissions at a runtime [5]

• a broadcast receiver is a component that responds to system-wide broad-
cast announcements. For example, it is a good approach to listen to system
events such as the low battery state or whether a device is connected to
power supply to adapt the behavior of the application in such scenarios.

An Android application typically has several activities, which can commu-
nicate by means of Intents. Intents can start activities within the same or from
another application. Intents can be explicit, i.e. they can trigger a specific pre-
defined component in the same application, and implicit, i.e. they can start any
activity which supports a specific action. Intents are thus the main means to
support Inter Process Communication within the Android platform. Intents are
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widely used to start another screen or app and send messages to a background
service.

2.1.3 Activity Lifecycle

Activities are essential building blocks of applications. Each application consists
of multiple activities. Each activity usually represents a piece of functionality
and has a connection with another activity. Consider the case of buying a
pencil in a web-shop. First, you search for a pencil, then select it, enter a
delivery address, select a payment method and, finally, order it. Each of these
steps is typically placed in a separate activity, but they are interconnected, e.g.
a user can go multiple steps back or proceed to the next step of a process. Such
complex logic of activity management is the heart of the Android platform.

Activities of an application are stored in the activity stack. The most recent
used activity is always located on the top of the stack. All other activities are
inactive until they become the top element of the stack. Figure 2.4 illustrates
the complete activity lifecycle. An activity has event-based nature and has the
following states:

• If the activity is on the top of the activity stack and in the foreground of
the screen, it is active.

• If the activity lost focus but is still visible, it is paused.

• If the activity is no longer visible, it is stopped.

Android has a predefined sequence of events in each scenario and the execu-
tion sequence is quite important. Developers should always keep in mind that
onStart event follows onCreate event and precedes onResume. This provides a
better control over the processing order of the certain parts of the code will be
processed.

On one hand, such design gives more flexibility and power to developers.
On the other hand, program analysis tools should take care of such complex
lifecycle and create a precise model which takes into consideration the ordering
of events. We will discuss how state-of-the-art static analysis tools deal with it
in Section 3.3.
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Figure 2.4: Activity Lifecycle [1]

2.2 Android User Interface

2.2.1 Defining and Combining Layouts

In the Android framework, an activity is a single screen containing several UI

elements, such as buttons and text fields, organized in a hierarchy. Each app can
and typically does contain multiple activities. The layout of the activity is usu-
ally declared in an XML file named layout.xml. Different files and names can be
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used though, as developers can bind an activity to the layout XML file thanks to
the android.app.Activity:setContentView(layoutFileId) method. Refer
to Listing 2.1 for an example of the layout file.

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <LinearLayout android:layout width=”fill parent”
3 android:layout height=”fill parent”>
4 <fragment android:id=”@+id/fragment”
5 class=”uinomaly.fragmentclass”.../>
6 <Button android:id=”@+id/buttonOK”
7 android:text=”@string/buttonOK”
8 android:onClick=”xmlDefinedOnClick”
9 style=”@style/okButtonStyle”/>

10 <ImageButton android:id=”@+id/imageButtonPrint” ...
11 android:src=”@drawable/print button”
12 android:contentDescription=”@string/printText” />
13 </LinearLayout>

Listing 2.1: A Sample Activity layout declared in a XML file.

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <resources>
3 <style name=”okButtonStyle” parent=”Theme.Material”>
4 <item name=”colorPrimary”>#673AB7</item>
5 <item name=”text”>Save</item>
6 </style>
7 </resources>

Listing 2.2: A Definition of the Text using Styles.

Reusable layouts and fragments take an important place in the modern app
development as there is a strong need in the flexible and adoptable design for
hundreds of different devices with multiple versions of the Android platform.

A layout can be entirely or partially reused in different activities in multiple
ways:

<include> and <merge> XML tags. Developers can include other XML files
by means of the <include> tag. To do this they simply have to spec-
ify the file Id such as <include layout="@layout/reusableLayout"/>.
Developers can also use the <merge> tag to achieve the same purpose with
the advantage of eliminating redundant hierarchical elements.

Inflate layouts programmatically. LayoutInflater instantiates the corre-
sponding layout file into a View object. The View object can later be
added to the layout of the activity. This way makes it possible to assign
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more than one layout to the activity, which can be only done from the
Java code. Let’s consider an example in Listing 2.3. It describes the way
how to create a screen with two different layouts: one on the left side and
one on the right side.

1 LinearLayout layoutMain = new LinearLayout(myActivity);
2 LayoutInflater inflate = (LayoutInflater) getSystemService(Context.
3 LAYOUT INFLATER SERVICE);
4 LinearLayout layoutLeft = (LinearLayout) inflate.inflate(R.layout.
5 leftlayout, null);
6 LinearLayout layoutRight = (LinearLayout) inflate.inflate(R.layout.
7 leftlayout, null);
8 layoutMain.addView(layoutLeft, layoutParams); layoutMain.addView(

layoutRight, layoutParams);
9

Listing 2.3: Example of inflating layouts from the code

Fragments. Fragments are modular sections of an activity. Unlike the pre-
viously discussed layouts, a fragment has its own lifecycle and receives
its own input events. The comprehensive information concerning lifecycle
methods of fragments can be found in the official Android documentation[20].
According to it, there are two different ways to include a fragment into an
activity statically through the layout file and programmatically through
the code:

1. The simplest way is to declare a fragment in the layout file of the
activity directly (see lines 5–11 in Listing 2.1 for an example).

2. It is also possible to create dynamically the fragment in the activity
code by means of the FragmentManager class. This can be done by
using LayoutInflater:inflate method which has been discussed
above. The only difference is that this behavior should be imple-
mented in onCreateView lifecycle method of fragment.

A great advantage of using fragments in the activity is the ability to
add, remove, replace and perform other actions with them in response
to user interaction. Each set of changes that you commit to the
activity is called a transaction and you can perform it using APIs

in FragmentTransaction. The example in Listing 2.4 shows how to
replace my button element with the content of the myFragmentClass
at runtime.
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Table 2.1: Signatures of Fragment Lifecycle Methods

android.app.AlertDialog$Builder: void 〈init〉(android.content.Context)
android.app.AlertDialog$Builder: android.app.AlertDialog$Builder setTitle(int)
android.app.AlertDialog$Builder: android.app.AlertDialog$Builder setMessage

(java.lang.CharSequence)
android.app.AlertDialog$Builder: android.app.AlertDialog$Builder setNeutralButton

(java.lang.CharSequence,android.content.DialogInterface$OnClickListener)
android.app.AlertDialog$Builder: android.app.AlertDialog$Builder setPositiveButton

(java.lang.CharSequence,android.content.DialogInterface$OnClickListener)
android.app.AlertDialog$Builder: android.app.AlertDialog$Builder setNegativeButton

(java.lang.CharSequence,android.content.DialogInterface$OnClickListener)
android.app.AlertDialog$Builder: android.app.AlertDialog create()
android.app.AlertDialog: void show()

1 FragmentManager fragmentManager = getFragmentManager();
2 FragmentTransaction fragmentTransaction = fragmentManager.

beginTransaction();
3 Fragment fragment = new MyFragmentClass();
4 fragmentTransaction.add(R.id.myButton, fragment);
5 fragmentTransaction.commit();
6

Listing 2.4: Manipulating fragments at runtime

2.2.2 Defining Alert Dialogs

Alert dialogs act as a confirmation pop-up windows that typically ask user to
confirm some action (refer to Figure 4.1 for an example). An alert dialog is a
special element that it is fully separated from the activity on which it appears.
Considering the example in Figure 4.1, the text of the dialog does not have any
relation to the tweets in the background and just asks for permission to use the
device location for future purposes. Only the dialog message and button labels
matter here. Each button in the dialog is responsible for a different kind of
actions. There are positive, negative and neutral buttons. A callback of each
button performs a completely different action. The full list of methods that are
responsible for building dialogs can be found in Table 2.1. It is important to
mention that the procedure of creating the alert dialog should be finished with
invocations of create() and show() methods. Otherwise the dialog will not be
displayed on the page.
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Option Menus

Figure 2.5: Example of Option Menu

2.2.3 Defining Menus

Additional challenges in the analysis of GUI comes from dealing with complex
elements such as menus. The ANDROID framework provides several of them:

Option Menus. Option menus are placed in the top right corner of a screen.
They usually give access to functionalities that are relevant for the appli-
cation regardless of the context (e.g. the Settings button). Option menu
items can be easily created by implementing the onCreateOptionsMenu

method of the activity (refer to Figure 2.5 and Listing 2.5 for an example).

1 @Override
2 public boolean onCreateOptionsMenu(Menu menu) {
3 MenuInflater inflater = getMenuInflater();
4 inflater.inflate(R.menu.optionmenu, menu);
5 return true;
6 }
7

Listing 2.5: Defining a layout of the option menu

Contextual Menus. Contextual menus appear when a user presses a UI el-
ement with a long-click. They can display further actions for a specific
element especially inside a ListView. They are created by implementing
the onCreateContextMenu method, and they can be bound to UI elements
by means of registerForContextMenu(elementId) (refer to Figure 2.6
and Listing 2.6 for an example).

20



2.2. ANDROID USER INTERFACE

1 @Override
2 public void onCreateContextMenu(ContextMenu menu, View v,

ContextMenu.ContextMenuInfo menuInfo) {
3 super.onCreateContextMenu(menu, v, menuInfo);
4 MenuInflater inflater = getMenuInflater();
5 inflater.inflate(R.menu.contextmenu, menu);
6 }
7

Listing 2.6: Defining a layout of the contextual menu

Figure 2.6: Example of Contextual Menu

Navigation-Drop-Down Menus. Navigation-drop-down menus are used for
a quick and easy navigation through the whole application and can be
identified through a small triangle in the lower right corner of the displayed
text. The menu items are specified through the implementation of an
adapter with the corresponding array of strings. To create such menus,
the developer can invoke the setListNavigationCallbacks(adapter,

navListener) method on an ActionBar instance (refer to Figure 2.7 and
Listing 2.7 for an example). This menu was deprecated in the Android
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API level 21. But there are many apps written for old ANDROID versions
and they are still widely used.

1 ActionBar ab = getActionBar();
2 ab.setNavigationMode(ActionBar.NAVIGATION MODE LIST);
3 SpinnerAdapter adapter = ArrayAdapter.createFromResource(this, R.

array.myItems, android.R.layout.simple list item 1);
4 ActionBar.OnNavigationListener navListener = new ActionBar.

OnNavigationListener(){
5 @Override
6 public boolean onNavigationItemSelected(int i, long l) {
7 ...
8 return false;
9 }

10 };
11 ab.setListNavigationCallbacks(adapter, navListener);
12

Listing 2.7: Defining a layout of the navigation-drop-down menu

Figure 2.7: Example of Navigation-Drop-Down Menu
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Drawer Layouts. Drawers are panels that can be opened with a swipe from
the outer vertical side of the screen to the middle. A drawer can be created
with a DrawerLayout tag in the XML layout file (refer to Figure 2.8 and
Listing 2.8 for an example).

1 drawerLayout = (DrawerLayout) findViewById(R.id.drawerlayout);
2 drawer = (ListView) findViewById(R.id.drawer);
3 // set up the drawer’s list view with items and click listener
4 drawer.setAdapter(
5 new ArrayAdapter<String>(this, android.R.layout.simple list item 1,

android.R.id.text1, getResources().getStringArray(R.array.drawerItems)));
6 drawer.setOnItemClickListener(this);
7

Listing 2.8: Defining a layout of the drawers

Figure 2.8: Example of Drawer Layout
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Tab Views. Tab views are created dynamically via actionBar.newTab(), and
can later be added to an action bar. Each tab view is represented by a
fragment (refer to Figure 2.9 and Listing 2.9 for an example).

1 // setup action bar for tabs
2 ActionBar actionBar = getActionBar();
3 actionBar.setNavigationMode(ActionBar.NAVIGATION MODE TABS);
4 actionBar.setDisplayShowTitleEnabled(false);
5

6 ActionBar.Tab tab = actionBar.newTab()
7 .setText(R.string.Tab1Title)
8 .setTabListener(new TabListener<Fragment1>(this, ”Tab1”, Fragment1.class

));
9 actionBar.addTab(tab);

10

Listing 2.9: Defining a layout of the tab views

Tab Views

Figure 2.9: Example of Tab Views

2.2.4 Assigning Text to UI Elements

There are several ways in Android to define the text of UI elements:

Label assignment in layout files. Developers usually define the label of UI

elements in the XML layout file by using the android:text attribute.
Refer to line 13 in Listing 2.1 for an example. The text can be defined
either by using the reference to the app’s resources with the "@string/"

prefix or directly by providing the string that will be displayed. Even if
the second option is deprecated, as it introduces localization problems, it
is still used. There are more attributes that can be used to set a label for
a UI element (refer to Table 4.3).
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Image Buttons

Figure 2.10: Example of Usage Actionable Icons

Label assignment in Java code. Layout templates can be reused across dif-
ferent activities. However, the text of the UI elements in such layouts usu-
ally differs depending on the context (i.e. activity). Therefore, developers
usually assign textual labels to such UI elements in the code depending
on the activity. View:setText(resourceId) and View:setText(text)

allow to redefine labels for UI elements. Refer to Listing 4.16, lines 4 and
6 for an example.

Label assignment in style files. Developers can assign labels to UI elements
using the styles.xml file. This option is typically used when the text of UI

labels changes depending on the style. Developers can specify labels of UI

elements by creating an <item> with the attribute name="android:text".
Refer to Listing 2.1, line 15 as an example.

2.2.5 Defining Icons

Icons are prevalent in GUIs as they can represent the semantic of UI elements
in an intuitive way. A camera icon, for instance, can be easily interpreted by
a user as a button to take pictures. Icons are extensively used in mobile GUIs

also because they are more space efficient than text (refer to Figure 2.10 for an
example).
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Table 2.2: A set of attributes responsible for binding icons to UI elements

android:background android:drawableRight android:drawableTop
android:src android:drawableLeft android:drawableBottom
android:drawableEnd android:drawableStart

A sample use of icons for UI elements is reported in Listing 2.1, where the
print button icon is bound to the ImageButton element. The full list of at-
tributes responsible for binding icons to UI elements is presented in Table 2.2.

2.3 Sensitive APIs in Android

As discussed in the introduction, APIs can be used as a proxy for behavior of an
application. But which APIs are important for characterization the app behav-
ior? Android has thousands of methods that provide a possibility to deal with
its different features [46]. For program analysis it is important to concentrate
on the predefined set of APIs to reduce the search space. Thus, in this thesis we
concentrate on APIs that access sensitive information such as the user’s address
book or the microphone, or perform sensitive tasks, e.g. altering system set-
tings, sending messages, etc. For this, though, we need to identify which APIs

are sensitive and which are not. This is less easy than it might seem, because
several Android APIs are not or hardly documented. Furthermore, lists of APIs

crafted by researchers get outdated with every new Android version.

2.3.1 PSCOUT

The first and the most straightforward approach to identify sensitive APIs was
proposed by Au et al [9]. In their work authors presented a set of APIs that
are governed by the Android permission setting. Prior to Android 6.0, when a
user wants to install an application she has to make herself familiar with the
list of permissions that the app needs and accept them. Starting from Android
6.0, Google introduces the concept of dynamic permissions that allows users
to make their decision at runtime. Now permissions are not listed during the
installation process but access to each protected API has to be granted whenever
it is invoked. Moreover, users can grant only a subset of permissions while in
older versions of Android a user has to accept or deny all of them. Denying an
action prior to Android 5 leads to rejection of the app installation.
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Nevertheless, the concept stays the same. Permissions have to be explicitly
declared in an AndroidManifest.xml file and, if the application invokes an API

protected by an unmentioned permission, Android will deny this action and
throw an exception. These permissions are proxies for the sensitive behavior
that the app will do. Typically, one permission is just a group of different APIs

as there are multiple ways to perform the same task. Authors presented a tool
called PSCOUT that performs analysis of Android platform and provides the
mapping between permissions and the corresponding list of APIs. For example,
android.telephony.TelephonyManager: java.lang.String getDeviceId() API maps
to READ PHONE STATE permission which is responsible for revealing the
unique identifier of an Android device. The full mapping is available at [45].

2.3.2 SUSI

As Rasthofer et al. [46] showed that not all sensitive data is protected by per-
missions. Authors proved that current approaches based on permission checks
alone are inadequate because, contrary to the popular belief, permission checks
are not a good indicator for the method relevance. There is still a chance to
obtain the user-sensitive information without requesting an appropriate permis-
sion. Moreover, taint-analysis techniques, as will be discussed in Section 3.3, re-
quire categorization of sensitive APIs to sources (where information comes from)
and sinks (where information goes to). They proposed SUSI, a novel machine-
learning guided approach for identifying sources and sinks directly from the
code of any Android API. They ran SUSI on Android 4.2 and found that there
are a lot more sources and sinks than was previously known in the scientific
literature. Therefore we leverage the SUSI framework by Rasthofer et al., which
automatically classifies all methods in the whole Android API as sources, sinks
or neither of them using a small hand-annotated fraction of the Android API to
train a classifier. Besides providing a list of APIs that access sensitive data, SUSI

also provides a categorization of these APIs listed in Table 2.3. For instance,
the method android.telephony.gsm.SmsManager: void sendTextMessage(...) is
a sink and falls into the SMS MMS category and android.location.Address: dou-
ble getLongitude() is a source and it belongs to the LOCATION category. The
comprehensive list of the categorized sources and sinks can be found at the
official web-site of the SUSI project [52].

Sources and sinks form the main concept in a data-flow analysis and therefore
should be well defined. Rasthhofer et al. introduce the first and the most
comprehensive definitions of these terms.

27



CHAPTER 2. BACKGROUND

Source : Sources are calls into resource methods returning a non-constant val-
ues into the application code. For example, android.location.Address: dou-
ble getLongitude() is a source because it returns non-constant value de-
pending on the device location.

Sink : Sinks are calls into resource methods accepting at least one non-constant
data value from the application code as parameter, if and only if a new
value is written or an existing one is overwritten on the resource. For
example, android.telephony.gsm.SmsManager: void sendTextMessage(...)
is a sink because it accepts a telephone number as a first parameter and
a text of the message as a third parameter.

Table 2.3: SUSI API categories of sensitive sources and sinks

Sources

• HARDWARE INFO

• UNIQUE IDENTIFIER

• LOCATION INFORMATION

• NETWORK INFORMATION

• ACCOUNT INFORMATION

• EMAIL INFORMATION

• FILE INFORMATION

• BLUETOOTH INFORMATION

• VOIP INFORMATION

• DATABASE INFORMATION

• PHONE INFORMATION

• CONTENT RESOLVER (*)

• NO SENSITIVE SOURCE (*)

(*) New category, see Section 3.3

Sinks

• PHONE CONNECTION

• VOIP

• PHONE STATE

• EMAIL

• BLUETOOTH

• ACCOUNT SETTINGS

• SYNCHRONIZATION DATA

• NETWORK

• EMAIL SETTINGS

• FILE

• LOG

• INTENT (*)

• NO SENSITIVE SINK (*)

Shared

• AUDIO

• SMS MMS

• CONTACT INFORMATION

• CALENDAR INFORMATION

• SYSTEM SETTINGS

• IMAGE

• BROWSER INFORMATION

• NFC
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2.4 Information flow control

Information flow control (IFC) is a technique to assert the security of a given
program with respect to a given security policy. The classical security policy
noninterference requires that the public output of a program should not be
influenced by the secret input [25]. In the context of Android, it is interesting
to track information flows between a sensitive source and a sensitive sink. In
essence, given a source of information (e.g., a SQLite database containing the
list of contacts) and a sink (e.g., a HTTP connection to a third party server),
program analysis can tell whether this information flows to the specified sink.

Information Flow Control needs to track two types of flows [32]:

• explicit flows, which arise due to computations dependent on the values
of their parameters;

• implicit flows, which arise from predicates that control the execution of
certain code blocks.

Next we will discuss these types of flows in detail as well as the way how to
track them.

2.4.1 Taint Analysis

Taint Analysis is a form of Information flow analysis. In the taint analysis all
sources of information are marked as ”sensitive“ from the very beginning. This
”sensitive“ label is also called taint. Whenever a program variable in a code has
a data assignment from or is influenced by the tainted variable, this variable also
becomes tainted. Such taints are propagated from sensitive sources to sensitive
sinks.

According to the method, the analysis can be propagated more than one
taint. This may be helpful if not only the presence of a particular data flow
should be reported, but also which data is exactly leaked. For example, let
us consider the code in Listing 2.10. The imei variable on line 3 receives
UNIQUE IDENTIFIER taint and the location variable on line 6 receives LOCA-
TION taint. Later on line 7 these variables are concatenated to the leakedData
variable that is then sent via SMS. The leakedData variable obtains two taints
after the concatenation that makes it possible to report that LOCATION and
UNIQUE IDENTIFIER data are leaked via SMS and not just that the taint is
present.
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1 public void foo(){
2 TelephonyManager telephonyManager = (TelephonyManager)getSystemService(

Context.TELEPHONY SERVICE);
3 String imei = telephonyManager.getDeviceId();
4 SmsManager smsManager = SmsManager.getDefault();
5 LocationManager locationManager = (LocationManager) mContext.

getSystemService(LOCATION SERVICE);
6 String location = locationManager.getLastKnownLocation(

LocationManager.NETWORK PROVIDER);
7 String leakedData = imei + location;
8 smsManager.sendTextMessage(”+49176000000”, null, leakedData, null,

null);
9 }

Listing 2.10: Example of merging two taints

Static taint analysis, on the one hand, examines a program without run-
ning it and reports all possible flows. On the other hand, it introduces false
positives due to conditions that depend on runtime values. This means that it
warns a user that an application under analysis leaks some sensitive informa-
tion, but in reality the found taint paths are infeasible. This happens because
some conditions cannot be resolved statically, and consequently the analysis
over-approximates the results. The high false positive rate is not the only prob-
lem of static taint analysis. In order to achieve soundness, i.e., find all possible
flows, the analysis may become complex and resource-expensive. Consequently
it might incur scalability problems. Static analysis has also well-known limita-
tions. Namely, it struggles with code reflection, code obfuscation and encryp-
tion. Code reflection as well as code obfuscation are quite common techniques
to circumvent signature-based malware detection techniques. Moreover, most
techniques implemented for Android do not support the analysis of native code.
Native code (C/C++ code) is widely used in development of games in order
to have better memory management and performance. It is thus necessary to
support these features when analyzing Android applications.

Dynamic taint analysis tools like TaintDroid [19], only report data flows that
have been observed during actual executions. The problem of the dynamic taint
analysis tools is that they mainly depend on the set of inputs that have been
used to generate executions. Therefore they can thus lack relevant information.
Moreover, mobile devices have limited resources such as CPU, RAM, storage
and battery life, and it is challenging to implement dynamic taint analyses on
devices.
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2.4.2 Explicit Flows

Explicit Flows are also called Data Flows. Data flow analysis propagates a source
value through direct assignments of variables in the inter-procedural way, e.g.,
it propagates values through the parameters of a method and its return value.
Let’s consider the code in Listing 2.11. The code is triggered when a user clicks
on a button in an application. TelephonyManager class provides access to the
information about the telephony services on the device. In particular, an IMEI
(International Mobile Equipment Identity) on line 3 is retrieved. According
to the SUSI mapping (Section 2.3.2) this information is sensitive as it uniquely
identifies the device and, thus, all actions in the app can be mapped to the
particular device and be potentially used by unauthorized parties.

1 public void onClick(View view){
2 TelephonyManager telephonyManager = (TelephonyManager)getSystemService(

Context.TELEPHONY SERVICE);
3 String imei = telephonyManager.getDeviceId();
4 SmsManager smsManager = SmsManager.getDefault();
5 String leakedData = getMessageToSend(imei);
6 smsManager.sendTextMessage(”+49176000000”, null, leakedData, null,

null);
7 }

Listing 2.11: Example of leaking a Device Id through the SMS channel

Now the imei variable contains the sensitive IMEI number, i.e., it is tainted.
Then it is passed to the method getMessageToSend as a parameter. The data
flow propagator knows that the input parameter of this function is tainted and
automatically assigns a taint to the inputString variable in the function getMes-
sageToSend (refer to Listing 2.12). In turn, the getMessageToSend function
just returns the substring of the inputString variable on a line 3. Therefore, its
return value also becomes tainted.

1 private String getMessageToSend(String inputString) {
2 return inputString.substring(1,5);
3 }

Listing 2.12: Explicit Data Flow Example

Next, we go back to the onClick method of Listing 2.11 (see line 5). Now
we know that the return value of the getMessageToSend method is tainted and
the dataflow propagator automatically assigns a taint to the leakedData vari-
able. Finally, the leakedData variable is passed to the sendTextMessage method
as a parameter. The sendTextMessage method is responsible for sending SMS
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messages and, thus, it performs a sensitive action. SUSI labels the getDevi-
ceId source and the sendTextMessage as the UNIQUE IDENTIFIER and the
SMS MMS categories, respectively. Thus, there is a flow of sensitive data in
this example (refer to Table 2.4).

Table 2.4: Flow of Sensitive Data in Listing 2.11

TelephonyManager: java.lang.String getDeviceId() ; SmsManager: void sendTextMessage(...)
UNIQUE IDENTIFIER ; SMS MMS

2.4.3 Implicit Flows

However, Explicit Flows are easier to detect than Implicit Flows. Implicit Flows
assume tracking of control-flow dependencies. It means that a taint should be
assigned to a given variable according to the certain heuristic as no direct data
assignments happen. Let us consider the previous example in Listing 2.11.
But now the getMessageToSend method is more complicated than before, see
Listing 2.13.

1 private String getMessageToSend(String inputString) {
2 StringBuilder message = new StringBuilder();
3 for(char character: inputString.toCharArray() ){
4 switch(character){
5 case ’1’:
6 message.append(’1’);
7 break;
8 case ’2’:
9 message.append(’2’);

10 break;
11 case ’3’:
12 message.append(’3’);
13 break;
14 case ’4’:
15 message.append(’4’);
16 break;
17 case ’5’:
18 message.append(’5’);
19 break;
20 case ’6’:
21 message.append(’6’);
22 break;
23 case ’7’:
24 message.append(’7’);
25 break;
26 case ’8’:
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27 message.append(’8’);
28 break;
29 case ’9’:
30 message.append(’9’);
31 break;
32 case ’0’:
33 message.append(’0’);
34 break;
35 }
36 }
37 return message.toString();
38 }

Listing 2.13: Implicit Data Flow Example

According to taint analysis, the inputString variable in the method getMes-
sageToSend is tainted. However, the return variable message does not accept
any piece of data from it, i.e. there is no dataflow dependency between these two
variables. Explicit Flow analysis will not assign a taint to the return variable
message and, thus, will miss the flow. There is a leak of sensitive data, though.
What the getMessageToSend does is simply splitting an IMEI into single char-
acters, iterating over them and then performing some action. In this case an
attacker has prior knowledge about the inputString variable and processes it
smartly. She knows that the input variable consists of digits in the range of 0-9.
Thus, she just implements a check for each value of the digit and appends the
same value to the message variable. At the end, the message variable will have
the same value as the inputString.

Taint analysis, which supports Implicit Flows, usually detects such control
dependencies and reports that the message variable depends on the inputString
variable. But it is likely to be a false positive alarm. Consider an example
in Listing 2.14.

1 private String getMessageToSend(String inputString) {
2 String outputValue = ”1”;
3 if(inputString.equals(”0000000000”)){
4 outputValue = ”1”;
5 }
6 return outputValue;
7 }

Listing 2.14: False Positive of the Implicit Flow analysis

As we see on line 3, the outputValue depends on the value of the inputString
variable. Therefore taint analysis will assign a taint to the outputValue variable.
There is no leak of sensitive data here, though. The value of the outputValue
will be always ”1“ independent of the value of the inputString variable.
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Due to the runtime costs most of static taint analysis tools support only
explicit flows.

2.5 Program Analysis

Program analysis is a process of automatically analyzing the behavior of a pro-
gram with respect to selected criteria. People examine a piece of code to under-
stand whether it satisfies a certain criterion, such as performance or correctness.
Nearly everybody who has written a code performed program analysis.

Examining a small piece of code or a self-written application is not a hard
task. But when a system grows and has many modules with the complex logic,
manual investigation becomes difficult and almost infeasible. When it comes
to analyzing thousands of programs, one should think about the way to au-
tomatize it. For this reason people develop frameworks, such as SOOT [35] and
WALA [56], to perform such analysis fast and efficiently. The most of needed
functionality is already implemented there, one just needs perform an analysis
on the top of them.

2.5.1 SOOT analysis framework

SOOT [35] is the most well-known framework for analysis of Android and Java
applications. It was initially designed as the Java-optimization framework, but
nowadays people from all over the world use it for analyzing and instrumenting
of Java and Android programs.

SOOT supports Java as well as Android binaries as an input. Then it trans-
forms them into an Intermediate Representation (IR) called JIMPLE [54]. JIM-

PLE is the SOOT ‘s primary typed 3-address intermediate representation which
is specifically designed for the bytecode transformation and analysis. SOOT sup-
ports lots of different analysis techniques and all of them are implemented using
JIMPLE. Some of them are as follows:

• Call-graph construction

• Points-to analysis

• Def/use chains

• Template-driven Intra-procedural data-flow analysis

• Template-driven Inter-procedural data-flow analysis, in combination with
heros [26]
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• Taint analysis in combination with FLOWDROID [8].

The Figure 2.11 illustrates different packs of SOOT. First, it applies jb (JIM-

PLE body) pack, which is responsible for transforming bodies of all methods, to
the JIMPLE IR. This phase is fixed and usually no custom analysis is built here.

After jb comes cg, which builds the call-graph based on entry points. cg
applies to all methods in the app as well as to three next phases that start
with the letter w. wjtp is the right place to perform analysis if the call-graph is
needed (refer to Listing 2.15 for an example).

1 public static void main(String[] args){
2 PackManager.v().getPack(’’wjtp‘‘).add(new Transform(”wjtp.

exampleTransform”, new SceneTransformer(){
3 @Override
4 protected void internalTransform(String phaseName,
5 Map<String, String> options) {
6 CallGraph callGraph = Scene.v().getCallgraph();
7 }
8 }));
9 }

Listing 2.15: Example of analysis on the top of wjtp

Next three phases are again applied to each method and its body. jtp is the
usual pack to write the intra-procedural analysis which is based on the method
body (refer to Listing 2.16 for an example).

1 public static void main(String[] args){
2 PackManager.v().getPack(’’jtp‘‘).add(new Transform(”jtp.exampleTransform”,

new BodyTransformer(){
3 @Override
4 protected void internalTransform(final Body body, String phaseName,

@SuppressWarnings(”rawtypes”) Map options) {
5 final PatchingChain<Unit> units = body.getUnits();
6 for(final Iterator<Unit> iter = units.snapshotIterator(); iter.

hasNext();) {
7 final Unit u = iter.next();
8 }
9 }

10 }));
11 }

Listing 2.16: Example of analysis on the top of jtp
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Every transformer added to the whole Jimple pack must be a SceneTrans-
former, otherwise it must be a BodyTransformer. Scene Transformer is fired
once a Call Graph is present. By using it developers can traverse the Call
Graph and perform the desired analysis. Body Transformer, in turn, is fired for
each method in each class and is primarily used to alter the code.

Before considering the last two phases, it should be mentioned that SOOT

supports not only loading and analyzing the code, but also writing it back. As
we already discussed, SOOT was initially designed as an optimization framework
and, thus, it has the capability to write the optimized code back to the binaries.
The last phases are responsible exactly for writing the code back. Finally, SOOT

runs bb and tag packs. The former converts JIMPLE bodies into Baf bodies, i.e.,
a stack based intermediate representation, from which SOOT creates bytecode.
The latter aggregates certain tags, such as a line number, to gain uniqueness of
the code.

Figure 2.11: SOOT phases [49]
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Chapter 3

Mining Sensitive APIs and
Dataflows

3.1 Related Work

As mobile devices are a particularly rich store of sensitive data, it is not sur-
prising that that a lot of research on mobile security resulted in taint analysis
techniques for detecting information leaks. Among the research works that
leverage dynamic taint analysis, TAINTDROID is de-facto the state-of-the-art
tool for Android applications [19]. Thanks to the efficient instrumentation of
the Android execution environment, TAINTDROID can report information leaks
without any false positives in apps even when they involve native code.

Dynamic taint analysis has the obvious limitation of reporting only on what
has been observed during a limited set of executions. On the contrary, static
taint tracking tools report any information leak that may occur at runtime. The
FLOWDROID tool, which will be described in Section 3.3, employs the highly
precise static control and data flow analysis of Android apps to report both
explicit and implicit information flows [8]. Other static taint tracking tools
work in a similar fashion, but they miss several possible information flows since
they implement less precise data-flow analysis [62, 22].
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Other techniques focus on detecting information flows involving inter-applications
communication. Thus, they can detect when multiple applications act together
to leak sensitive information [33, 36].

The intention of the approach described in this Chapter is orthogonal to all
these techniques. In fact, while they can detect whether there is any information
flow in Android applications, they cannot tell whether such behavior is likely
to be malicious or not. At the same time, our approach has no ability to
detect information flows on its own, and therefore extends FLOWDROID to collect
information regarding the behavior of apps.

3.2 Mining Sensitive APIs

Applications communicate with ANDROID system by using Application Pro-
gramming Interfaces (APIs). Sensitive APIs are the APIs that access or operate
with sensitive information. We already discussed ways to find sensitive APIs

in Section 2.3. SAFAND uses the set of SUSI APIs (Section 2.3.2) as it is more
comprehensive and comes with categorization of every API.

The algorithm of mining sensitive APIs is illustrated in Algorithm 1 and
works as follows:

1. as ANDROID ecosystem is event-based, each callback and event is an en-
try point. In order to take all of them into account SAFAND builds a
dummyMainMethod by using the functionality of FLOWDROID [8]. FLOW-

DROID provides a possibility to build a highly precise dummy main method,
which includes emulations of all kinds of callbacks and events;

2. it builds the Control Flow Graph by using SOOT and a CHA [17] algo-
rithm. CHA algorithm is a default algorithm of SOOT framework.. In
order to build a Call Graph an entry point is required. The entry point
is used to identify the starting point of the analysis. SAFAND passes the
dummyMainMethod from the previous step;

3. it calculates the set of reachable methods from the current entry point
and the call graph by iterating over its edges;

4. it identifies the set of used sensitive APIs by comparing them with the set
of reachable methods;

5. it runs post-processors which will be described in Section 3.2.1 and Sec-
tion 3.2.2.

38



3.2. MINING SENSITIVE APIS

Algorithm 1 Strategy of mining sensitive APIs.

Require: Application APP , Sensitive APIs SAPIS
1: procedure mineSensitiveApis(APP , SAPIS)
2: DMM ← buildDummyMainMethod(APP )
3: FOUND APIS ← new List
4: CG← buildCallGraph(APP )
5: RMETHODS ← calculateReachableMethods(CG, DMM)
6: for RMETHOD in RMETHODS do
7: if RMETHOD in SAPIS then
8: addToList(RMETHOD, FOUND APIS)
9: end if

10: end for
11: RunPostProcessors(FOUND APIS, RMETHODS)
12: end procedure

3.2.1 Mining Sensitive Resources from an Application

During our investigation, we found that Android apps also access sensitive re-
sources through content providers—external components that resolve appropri-
ate resource identifiers. A CalendarContract provider, for instance, can access
calendar data. All these flows start from the android.content.ContentResolver
API, which gets the desired resource identifier as an argument.

Listing 3.1 shows example of a typical access to the user Address Book. It
is realised by using ContentResolver:query method. The type of data access
strongly depends on its first argument, e.g. android.net.Uri. ContactsContract.
Contacts.CONTENT URI tells the system that the Address Book should be ac-
cessed, while Telephony$Sms$Inbox:android.net.Uri CONTENT URI, for ex-
ample, is responsible for accessing sms messages in the inbox.
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1 public String readContact(){
2 ContentResolver cr = getContentResolver();
3 Cursor cur = cr.query(ContactsContract.Contacts.CONTENT URI,null, null,

null, null);
4 if (cur.getCount() > 0) {
5 while (cur.moveToNext()) {
6 return cur.getString(cur.getColumnIndex(ContactsContract.

Contacts.DISPLAY NAME));
7 }
8 }
9 return null;

10 }

Listing 3.1: Example of the access to Sensitive Resources

SUSI assigns the ContentResolver API to NO CATEGORY because the same
API can be used to access all sorts of resources, sensitive or non-sensitive. In
2012, however, Au et al. [9] published a list of sensitive resource schemes used
in Android. We therefore conducted an additional step of static analysis: us-
ing SOOT [35], we have implemented a postprocessor of results, extracted an-
droid.net.URI usages from found APIs and assigned them to the appropriate
SUSI source categories. Any resource usage which is not in the list would be
classified into the CONTENT RESOLVER sensitive source category. The precise
algorithm of resolving URIs is stated in Algorithm 2.

The actual implementation of URI resolving algorithm can be found on the
official GitHub page of the project [41].

Limitations

Custom URIs Access to sensitive resources is not limited to the set of prede-
fined URIs that come with Android. People can come up with their own
values and their are out of scope of this work.

Complex string operations with URIs Developers can also create URIs by
using Uri:parse method as it is shown below:

Uri uri = Uri.parse(“content://downloads/public downloads”)

But sometimes they can concatenate the passed string before as it is shown
in Listing 3.2.
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Algorithm 2 Strategy of resolving URI values.

Require: Caller method CM , URI register REG, Current unit CU , Call graph
CG

1: procedure resolveUri(CM , REG, CU)
2: D ←GetImmediateDominator(CU ,CM)
3: while D is not NULL do
4: if D is AssignStmt then
5: L← getLeftOp(D)
6: if L == REG then
7: R← getRightOp(D)
8: if R is VAR then
9: REG = R

10: else if R is URI then
11: return R
12: else if R is InvokeExpr then
13: if R is URI PARSE then
14: return getParameterValue(R,0)
15: end if
16: return resolveReturnValueInInvocation(U)
17: end if
18: end if
19: else if D is the input parameter then
20: PNUM ← getParamNumber(D)
21: return findValueInCallers(PNUM ,CM)
22: end if
23: D ←GetImmediateDominator(D,CM)
24: end while
25: end procedure

26: procedure resolveReturnValueInInvocation(U)
27: CE ← getMethodsOutOf(CG,U)
28: for Edge in CE do
29: RET ← findReturnStatement
30: CM ← getMethodOf(U)
31: ARG← getReturnReg(RET )
32: URI ← resolveUri(CM ,ARG,RET )
33: if URI is not NULL then
34: return URI
35: end if
36: end for
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37: end procedure
38: procedure findValueInCallers(PNUM ,CM)
39: CE ← getMethodsTo(CG,CM)
40: for Edge in CE do
41: ARG← getArgumentReg(PNUM ,Edge)
42: CU ← getSourceUnit(Edge)
43: CM ← getMethodOf(CU)
44: URI ← resolveUri(CM ,ARG,CU)
45: if URI is not NULL then
46: return URI
47: end if
48: end for
49: end procedure

1 String stringUri = String.format(‘‘%s://%s/%s’’,‘‘content’’,‘‘downloads
’’,‘‘public downloads’’);

2 Uri uri = Uri.parse(stringUri)
3

Listing 3.2: Complex string operations with URI

In this case our prototype can extract all string items, but resolving the
mask is out of scope of this work. The worst scenario would be here is
when individual string components came from dynamic operations such
as networking or accessing a file. Static analysis cannot resolve such cases
by its nature.

3.2.2 Mining Intercomponent Communications inside an
Application

We found that a huge number of sensitive APIs are responsible for communica-
tion between multiple apps of app components (“Intent” in Android parlance).
Intents are the single communication channels between components and apps.
Therefore they are used for storing data that should be passed to the target
activity. In Line 9 of Listing 3.3 a developer passes the message “Value for the
second screen” to the SecondActivity class, which in turn sends it out.
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1 public class FirstActivity extends Activity{
2 public void startMaps(View view){
3 String latitude = ‘‘49.254696’’;
4 String longtitude = ‘‘7.040594’’;
5 String uri = String.format(Locale.ENGLISH, ‘‘geo:%f,%f’’, latitude,

longitude);
6 Intent intent = new Intent(android.content.Intent.ACTION VIEW,
7 Uri.parse(uri));
8 startActivity(intent);
9 }

10 public void readAndGo(View view){
11 Intent startNew = new Intent(this, SecondActivity.class);
12 startNew.putExtra(”myKey”, ”Value for the second screen”);
13 startActivity(startNew);
14 }
15 }
16

17 public class SecondActivity extends Activity{
18 @Override
19 public void onCreate(Bundle savedInstanceState){
20 ...
21 Intent intent = getIntent();
22 inputStr = intent.getStringExtra(”myKey”);
23 sendMeSomewhere(inputStr);
24 ...
25 }
26 }

Listing 3.3: Example of using of explicit and implicit intents

Listing 3.3 shows an example of typical usages of intents. There are two
different kinds of intents: explicit and implicit.

Explicit Intents Explicit intents declare the target receiver explicitly in the
code. In Line 12 of Listing 3.3 an explicit intent is defined by providing
the class SecondClass as the target component. Explcit intents can be
sent to the classes of the same application to avoid security flaws.

Implicit Intents Impicit intents are all intents that go through the Android
system. Whenever an app sends such intent, it goes to the Android system,
which, in turn, performs routing and resolving a set of the target apps. If
there is more than one app which can receive such intents, the Android
system displays a dialog and asks a user to select the desired app. Line 6
of Listing 3.3 shows the way how to open some app that can show a map
with the desired position. The developer does not care about the target
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Table 3.1: Signatures of methods that start new activity

android.content.Context: void startActivity(...)
android.content.Context: void startActivityForResult(...)
android.content.Context: void startActivityFromChild(...)
android.content.Context: void startActivityFromFragment(...)
android.content.Context: void startActivityIfNeeded(...)

Table 3.2: Signatures of methods that define important properties of intents

android.content.Intent: android.content.Intent setData(android.net.Uri)
android.content.Intent: android.content.Intent setAction(java.lang.String)
android.content.Intent: android.content.Intent setClassName(android.content.Context,

java.lang.String)
android.content.Intent: android.content.Intent putExtra(java.lang.String,java.lang.String[])
android.content.Intent: android.content.Intent putExtras(android.os.Bundle)
android.content.Intent: android.content.Intent setComponent

(android.content.ComponentName)

app, he just wants to show the position on the map. The Android system
is fully responsible for showing it.

Our analysis tracks both types of intents and extracts all needed properties
as action, URI, data, extras and target class to distinguish them. In MUDFLOW,
however, we do not use this information and assign all intents to INTENT cate-
gory.

Let us go step by step through the precise algorithm of the Intent reso-
lution (Algorithm 3). First of all, given sinks of dataflows, it checks for oc-
currences of special methods that are responsible for launching new activity
(Table 3.1). When the algorithm reaches these methods, it identifies the value
of android.content.Intent parameter and saves it. Next, it iterates backward
through the method body and tries to find invocations of the methods that are
responsible for assigning the class name or URI, for example. The full list of
such methods can be found in Table 3.2.

During the analysis, it is checked that assignments are performed to a correct
instance of the android.content.Intent class and bound to the gathered val-
ues. setAction, setClassName and putExtra methods have java.lang.String

Table 3.3: Signatures of Intent constructors

android.content.Intent: void 〈init()〉
android.content.Intent: void 〈init(java.lang.String)〉
android.content.Intent: void 〈init(java.lang.String,android.net.Uri)〉
android.content.Intent: void 〈init(android.content.Context,java.lang.Class)〉
android.content.Intent: void 〈init(java.lang.String,android.net.Uri,

android.content.Context,java.lang.Class)〉
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Algorithm 3 Strategy of gathering data on the intent.

Require: Dataflows D, List of Signatures from Table 3.1 SA, List of signatures
from Table 3.3 IC

1: procedure searchForNewActivity(D)
2: for S in getSink(D) do
3: if S in SA then
4: IREG←extractIntentParameter(S)
5: I ←gatherIntentInformation(S,IREG)
6: enrichSinkWithIntentInformation(S,I)
7: end if
8: end for
9: end procedure

10: procedure gatherIntentInformation(S,IREG)
11: I ← new instance of IntentInformation
12: M ←GetMethodOf(S)
13: U ←GetUnitOfMethod(S,M)
14: D ←GetImmediateDominator(U ,M)
15: while D is not NULL do
16: if !ContainsInvokeExpression(D) then; continue;
17: end if
18: if ReachedConstructorOfIntent(D,I) then break;
19: end if
20: if processExtras(D,I) then
21: D ←GetImmediateDominator(D,M); continue;
22: end if
23: if processAction(D,I) then
24: D ←GetImmediateDominator(D,M); continue;
25: end if
26: if processClass(D,I) then
27: D ←GetImmediateDominator(D,M); continue;
28: end if
29: if processData(D,I) then
30: D ←GetImmediateDominator(D,M); continue;
31: end if
32: if processComponent(D,I) then
33: D ←GetImmediateDominator(D,M); continue;
34: end if
35: D ←GetImmediateDominator(D,M);
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36: end while
37: return I
38: end procedure
39: procedure ReachedConstructorOfIntent(D,I)
40: DM ← getMethodOf(D)
41: if DM in IC then
42: switch DM do
43: case INIT DEFAULT
44: return true
45: case INIT WITH ACTION
46: A←ExtractAction(D)
47: EnrichIntentWithAction(A,I)
48: return true
49: case INIT WITH ACTION URI
50: A←ExtractAction(D)
51: EnrichIntentWithAction(A,I)
52: URI ←ExtractUri(D)
53: EnrichIntentWithUri(URI,I)
54: return true
55: case INIT CONTEXT CLASS
56: CON ←ExtractContext(D)
57: EnrichIntentWithContext(CON ,I)
58: CL←ExtractClass(D)
59: EnrichIntentWithClass(CL,I)
60: return true
61: case INIT WITH ACTION URI CONTEXT CLASS
62: A←ExtractAction(D)
63: EnrichIntentWithAction(A,I)
64: URI ←ExtractUri(D)
65: EnrichIntentWithUri(URI,I)
66: CON ←ExtractContext(D)
67: EnrichIntentWithContext(CON ,I)
68: CL←ExtractClass(D)
69: EnrichIntentWithClass(CL,I)
70: return true
71: end if
72: return false
73: end procedure
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74: procedure ProcessExtras(D,I)
75: DM ← getMethodOf(D)
76: if DM is PUT EXTRA then
77: E ← ExtractExtra(D)
78: EnrichIntentWithExtra(E,I)
79: return true
80: else if DM is PUT EXTRAS then
81: ELIST ← ExtractExtrasBundle(D)
82: for E in ELIST do
83: EnrichIntentWithExtra(E,I)
84: end for
85: return true
86: end if
87: return false
88: end procedure

89: procedure ProcessAction(D,I)
90: DM ← getMethodOf(D)
91: if DM is SET ACTION then
92: AC ← ExtractAction(D)
93: EnrichIntentWithAction(AC,I)
94: return true
95: end if
96: return false
97: end procedure

98: procedure ProcessClass(D,I)
99: DM ← getMethodOf(D)
100: if DM is SET CLASS NAME then
101: C ← ExtractClass(D)
102: EnrichIntentWithClass(C,I)
103: return true
104: end if
105: return false
106: end procedure
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107: procedure ProcessData(D,I)
108: DM ← getMethodOf(D)
109: if DM is SET CLASS NAME then
110: URI ← ExtractUri(D)
111: EnrichIntentWithUri(URI,I)
112: return true
113: end if
114: return false
115: end procedure
116: procedure ProcessComponent(D,I)
117: DM ← getMethodOf(D)
118: if DM is SET CLASS NAME then
119: DT ← ExtractComponent(D)
120: EnrichIntentWithComponent(DT ,I)
121: return true
122: end if
123: return false
124: end procedure

parameters or key-value pairs of them as in putExtra. Therefore we perform the
String propagation which will be discussed in detail in Chapter 4. setData, in
turn, has android.net.Uri argument and therefore we perform the URI prop-
agation as discussed in Algorithm 2.

In this section we will describe the algorithm of propagating android.os.Bundle

value as it is used in putExtras method. In essence android.os.Bundle is a
list of key-value pairs. The key-value pair can be anything, but we support only
java.lang.String for performance reasons. The problem of resolving extras
is reduced to propagating strings corresponding to the key and the value in the
pair. However, the value in the pair does not give a lot of information and is
very specific to the app and the activity. Therefore we collect only keys.

Another way to determine the target activity is to use a component instead
of a class (e.g. android.intent.Intent:setComponent). In this case, a devel-
oper should pass the instance of android.content.ComponentName class, which
gives the possibility to identify the target class by providing its package and its
name. The analysis algorithm for the instantiations of ComponentName, resolves
the name of the package and the class and merges them together. Again, the
problem is reduced to the string propagation.
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The actual implementation of Intent resolving algorithm can be found on
the official GitHub page of the project [40].

Limitations

Variety of data types in extras android.os.Bundle is a key-value pair col-
lection that supports data types derived from java.lang.Object, as well
as all primitive types. In the current work for simplicity we concentrate
only on the case when the value if java.lang.String. The program
analysis presented in the thesis is used for detecting anomalies among
thousands of apps. Thus, apps should have a set of comparable features.

Custom URIs As we discussed in Section 3.2.1, developers can create their
own custom URIs, but we only support the predefined set of default URIs
defined by ANDROID.

3.3 Mining Sensitive Data Flows

SAFAND internally uses FLOWDROID [8] static taint tracking tool to extract sen-
sitive data flows from Android apps. We chose a FLOWDROID because it is a
state-of-the-art tool for Android applications (Section 2.4.1). Unlike standard
Java programs Android apps do not have a single entry point (e.g. the static
main method), which poses an important question of how to handle this sce-
nario. Android has the event-based nature (Section 2.1.3). Therefore to achieve
high-precision analysis it is required to take into account the order of their
execution (e.g., onPause can not be executed before onCreate or onResume).

FLOWDROID provides this functionality out-of-the-box and accurately mod-
els the lifecycle of Android applications and their interactions with the Android
OS. Callbacks in Android apps can be registered both statically and dynami-
cally (refer to Section 4.8 for more details). Static callbacks are defined in the
XML layout files that describe the layout of the corresponding activity (e.g.,
screen). Reusable components are fundamental features of the Object Oriented
Design(OOD) and, thus, developers should have a possibility to redefine a call-
back for a particular purpose. For example, one could develop a custom alert
dialog with OK and Cancel buttons, reuse it within the whole app and set
the custom onClick action in each particular case. This can only be done by
dynamically redefining callbacks. FLOWDROID first analyses the app for regis-
tered components and callbacks and then creates a dummy main method that
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simulates these interactions with the operating system. Such workflow causes
the static analysis to analyse behavior during the runtime correctly.

FLOWDROID provides the highly precise taint analysis that supports the
following principles:

flow-sensitive: a flow-sensitive analysis is aware of the order of program state-
ments.

context-sensitive: according to this principle, when analyzing a target of the
function call, one keeps track of the calling context. This makes it possi-
ble to reduce the noise and always return to the target caller instead of
assuming all possible call-sites of the method.

object-sensitive: This is a context-sensitive approach that distinguishes in-
vocations of methods made on different objects. It is a very important
problem in object-oriented languages as child classes usually redefine the
behaviour of a superclass. Thus, object-sensitivity makes the analysis
more precise.

An interested reader could refer to the following source [37] to better understand
these terms. High precision is a very important requirement for machine learning
approaches like the MUDFLOW to reduce the false-positive (missed malware) rate
and the noise of data.

FLOWDROID uses the instantiation of IFDS framework by Reps and Hor-
witz [47] in order to reduce the data-flow problem to the graph reachability
problem, where nodes represent combinations of possible facts about the pro-
gram. If one fact is derived from another one, then these facts are connected by
the appropriate edge in the graph. If a certain fact at a sink is reachable from
the source node than the analysis reports the dataflow between them.

Listing 3.4 shows an example of leaking a unique device id by sending it via
SMS. In this example the variable imei on line 3 forms a root of the graph. It
is connected to the node that models “someString is tainted” due to the nor-
mal forward propagation. When accessing the resolve method, the algorithm
creates an invocation edge to the callee causing the input parameter str(line
10) to be tainted. The method return value becomes tainted causing the vari-
able message(line 6) to be also tainted. As the message variable is used later
for sending an SMS it automatically becomes a sink. getDeiviceId method is
transitively reachable from this sink and, thus, the analysis reports a flow of
sensitive data. Context-sensitive analysis makes it possible to distinguish be-
tween different method calls to resolve methods with different parameter values.
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Context-insensitive analysis would act conservative considering all return sites
of the resolve method tainted even with benign parameter values.

FLOWDROID is not a contribution of this thesis, we therefore omit a lot
of details and kindly point an interested reader to the original FLOWDROID

paper [8].

1 public void onClick(View view){
2 TelephonyManager telephonyManager = (TelephonyManager)getSystemService(

Context.TELEPHONY SERVICE);
3 String imei = telephonyManager.getDeviceId();
4 String someString = imei;
5 SmsManager smsManager = SmsManager.getDefault();
6 String message = resolve(someString);
7 smsManager.sendTextMessage(”+49176000000”, null, message, null, null);
8 }
9

10 private String resolve(String str){
11 return String.format(‘‘Device Id :%s’’, str);
12 }

Listing 3.4: Example of data leak in Android

In order to perform a taint analysis one should define methods that are
responsible for obtaining sensitive data and which—for leaking them out. More
precisely, FLOWDROID requires a categorized list of sources and sinks as an
input for the analysis. In Section 2.3 we discussed the possible ways to obtain
them. As it is staved in Section 2.3.2, SUSI approach by Rasthofer et al.[46]
automatically classifies methods to sources and sinks. Moreover, it assigns them
meaningful labels listed in Table 2.3.

In addition to the originally published SUSI categories, we created three
new categories to further break down the behavior of Android apps, which are
marked with (*) in Table 2.3.

3.3.1 Dealing with Advertisement Frameworks

Free Android apps generate revenue through advertisements, which are deliv-
ered by specific advertising frameworks. These frameworks access sensitive data
such as account data to deliver personalized advertisements. However, they are
separate from the actual app code and do not describe functionality of an ap-
plication. As advertising frameworks are frequently used, their behavior thus
becomes “normal” and makes malicious behavior harder to detect. Further-
more, malicious software may use an advertisement framework to justify and
mask its suspicious behavior (Figure 3.1).
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Assuming that advertisement frameworks are to be trusted, SAFAND ignores
all sensitive flows taking place within advertisement frameworks, allowing to fo-
cus on the actual app code. Table 3.4 shows a list of frequently used frameworks
where flows are excluded in SAFAND. Currently SAFAND is unable to detect such
advertisement frameworks in presence of code obfuscation. This problem is in
the scope of our future work and will be discussed in Chapter 6. We kindly
point an interested reader to the recent work in the field of library detection
under code obfuscation [14].

Table 3.4: Ad frameworks where flows are excluded

com.admob.android com.adsdk.sdk
com.adsmogo com.aduwant.ads
com.applift.playads com.google.ads
com.inneractive.api.ads com.mopub.mobileads
com.revmob.ads com.smartadserver.android
com.swelen.ads de.selfadservice

✔ ✘

Ad
Library

Ad
Library

App1 App2

IMG2

ACC1 ACC1

ACC1WEB2

WEB1 WEB1

WEB1

Figure 3.1: Noise induced by ad libraries

3.3.2 Emulating Non-sensitive Sources and Sinks

Almost all applications in Google Play Store access sensitive sources. However,
the accessed data does not necessarily end up in a sensitive sink. For instance,
wallpaper apps access user’s images as sensitive sources, but the user’s display
is not a sensitive sink. To leverage such access patterns, every used source that
does not flow into a sensitive sink is modelleded as a flow every source from
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that source “to” the special category NO SENSITIVE SINK. Similarly, we modeled
a flow that does not start from a sensitive source and ends up in a sensitive
sink from the special category NO SENSITIVE SOURCE. The precise algorithm is
explained in Algorithm 4. To avoid ambiguous cases when there are multiple
API invocations of the same method, we always compare instances of SOOT Stmt

which represents unique lines of code. Thus, if the app has three invocations of
TelephonyManager:getDeviceId and one instance has a flow to the sensitive
sink, only two other instances will have a flow to NO SENSITIVE SINK and not this
one.

Algorithm 4 Strategy of processing non-sensitive sources and sinks.

Require: Dataflows D, List of Sources from the app SO, List of sink from the
app SI

1: procedure EnrichDataflowsWithNonSensitiveSoSi(D,SO,SI)
2: for S in SO do
3: if S not in getSources(D) then
4: addNewFlow(S,NO SENSITIVE SINK)
5: end if
6: end for
7: for S in SI do
8: if S not in getSinks(D) then
9: addNewFlow(NO SENSITIVE SOURCE,S)

10: end if
11: end for
12: end procedure

3.3.3 Dataflow Representation

Applied on a single app, SAFAND uses FLOWDROID to extract all data flows from
all sensitive data sources to all sensitive data sinks(Figure 3.2). The result is a
set of pairs that characterizes the sensitive flows in the application—and thus
the application itself:

Flows(app) =
{
source1 ; sink1, source2 ; sink2, . . .

}
where each sourcei and sinki are sensitive Android API methods. (Again, “sen-
sitive” means that a method falls into one of the SUSI categories listed in Ta-
ble 2.3). As examples of such flows, consider Table 3.7 and Table 3.8 discussed
in Section 3.4.5.
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SMS

LOC

ID

WEB

SMS

Sources SinksApp

SMS1
SMS2

SMS3 WEB1

LOG

Figure 3.2: Dataflows produced by FLOWDROID

By default, each source and sink contain a full method name and a signature.
For the sake of coarser granularity, this information can be shortened, allowing
for multiple sources and sinks to be aggregated. SAFAND supports the following
three granularity levels, from finest to most coarse:

Method. This is the full method signature—for instance, LocationManager.
requestLocationUpdates(. . . ). Table 3.7 shows the flows in Android Twit-
ter app at the method level.

Class. Considering only the class name (LocationManager) allows to express
flows between classes rather than methods. This treats all methods of the
class uniformly.

Category. Considering only the SUSI category of the API (LOCATION INFORMATION)
allows to express flows between categories. This is the coarsest way of
expressing flows, yet one that could be made accessible to end users. Ta-
ble 3.5 shows the flows in the Android Twitter app at the category level.
Here, it is indeed easy to spot how the sensitive data is used.

The granularity level of features is a very important aspect of machine learn-
ing techniques. If one wants to compare multiple apps among each other it is
a quite important to have as many common features as possible. In the con-
text of API usage it means that the method granularity level can introduce a
huge number of features and it would be hard to find commonalities there. It
is known that there are many ways in programming to achieve the same goal.
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Rasthofer et al in their SUSI work showed that there are multiple APIs in An-
droid that are actually performing the same task [46]. Thus, if two apps use
different APIs to perform the same task, the method granularity level will not
group them together. Therefore there is no golden hammer solution on selecting
the appropriate level of the granularity and it mainly depends on the goal of
the task.

Table 3.5: Flows in Android Twitter App, by SUSI category

ACCOUNT INFORMATION ; SYNCHRONIZATION DATA

ACCOUNT INFORMATION ; ACCOUNT SETTINGS

ACCOUNT INFORMATION ; INTENT

ACCOUNT INFORMATION ; LOG

NETWORK INFORMATION ; INTENT

NETWORK INFORMATION ; LOG

DATABASE INFORMATION ; LOG

3.4 Evaluation

To evaluate the data flow module we use experiments from the MUDFLOW paper
[12]. As mentioned before, MUDFLOW internally uses SAFAND dataflows module,
which, in turn, leverages FLOWDROID [8].

MUDFLOW is based on the idea that having the instant access to a sufficiently
large set of benign apps it is possible to automatically detect suspicious apps
with no prior knowledge about them. The assumption is that all benign apps
are similar to each other in terms of usage of sensitive data and, thus, suspicious
apps should be dissimilar to them. Checking for dissimilarity is not the same
as checking for similarity. Each app is written in its unique style and uses quite
unique code fragments. The code by itself can not be used for establishing
dissimilarity. We introduces the term usage of sensitive data as a feature to
compare apps. Of course, a messaging app is not similar to a flashlight app in
terms of a usage of sensitive data, thus we also introduces the notion of context
that better describes a group of apps.
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3.4.1 Apps Mined

The distribution of apps in MUDFLOW is shown in Figure 3.3.

Benign apps We mined 2950 apps from the Google Play Store. More precisely—
we took top 100 apps based on the number of downloads from 30 Google
Play categories as of March 2014. We treat these apps as benign as they
come from the trusted market. Indeed, the hypothesis that all apps from
the Google Play store is benign is not fully correct. There is still a chance
to have some malware samples there but the probability is a quite low.

Malicious apps For the malicious set of apps we used two different sources:
MalGenome [63] and VirusShare [55] datasets that contain 1260 and 24,317
apps respectively

Figure 3.3: Dataset of apps used in experiments
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3.4.2 Analysis Settings

Running a precise static taint analysis on real-world applications is challeng-
ing. In favor of faster analysis or the ability to analyze a larger application,
which would otherwise not fit in memory, we used the following FLOWDROID

settings [8]:

• No flow across intents. Android apps use special components, which are
called intents, to implement messaging between components, in particular
to start activities or provide services in the background. We do not track
flows across intents; when sensitive data is sent to an intent, the flow is
marked with the INTENT category as a sink;

• Explicit flows only. Our static taint analysis settings consider neither
conditionals controlling specific flows, nor the flows leading to these con-
ditionals. This is in contrast to information flow analysis, which also takes
such implicit flow into account;

• Flow-insensitive alias search, which may generate false positives and greatly
reduces runtime for large applications;

• Maximum access path length of 3, again possibly reducing precision with
respect to the default setting of 5;

• No-layout mode, ignoring Android GUI components, such as input fields,
as data flow sources;

• No static fields, ignoring the tracking of static fields.

All these choices sacrifice some amount of precision for speed and memory.
As a result, the list of flows determined by MUDFLOW can have false positives,
e.g., am example, flows that are infeasible during executions as well as false neg-
atives, e.g., am example, missing flows that actually might be possible. But still,
FLOWDROID is much more precise than the basic object- or context-insensitive
data flow analysis. As ever when applying precise static analysis on real-world
programs with finite time and resources, striking the good balance between false
positives and false negatives is an important challenge. Let us remind at this
point, that our goal is to detect anomalies and not to prove the presence or
absence of flows. Thus, we can tolerate imprecision as long as the overall results
are fine.
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Figure 3.4: Analysis time of benign applications with respect to their callgraph
sizes. All time measurements obtained on an Intel 64-core machine with 730 GB
RAM.

Still, let us state what “finite time and resources” mean in our setting,
and why compromises are badly needed. The main machine we used to run
MUDFLOW was a compute server with 730 GB of RAM and 64 Intel Xeon CPU

cores, far exceeding the standard memory sizes of today’s personal computers.
Even with all the compromises listed above, the server sometimes used all its
memory, running on all cores for more than 24 hours to analyze one single
Android app, as shown in Figure 3.4. Overall, we had this machine run for two
months without interruption to extract data flows from Android applications.

Out of the 2,950 “benign” apps, 84 (3%) were not analyzable: 16 apps
exceeded the RAM limit of 730 GB or the 24-hour timeout, and 68 apps caused
a SOOT exception while transforming DEX bytecode to JIMPLE representation.
Of the “malicious” apps, 10,239 (40%) were not analyzable because of corrupted
or incomplete APKs; most frequently, the required Android manifest was missing.
We also removed all such non-analyzable apps from our dataset. This resulted in
final datasets of 2,866 “benign” apps and 15,338 “malicious” apps (Figure 3.3).
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Table 3.6: Data flows in benign (left) and malicious (right) applications, by SUSI
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CHAPTER 3. MINING SENSITIVE APIS AND DATAFLOWS

3.4.3 Data Flow in Benign Apps

Table 3.6 summarizes the data flows detected in our set of “benign” apps.
Most interesting, 68.3% of all accesses to sensitive data do not end in a sen-
sitive sink. Across the sensitive sinks, we detected 43,371 different data flows,
i.e., 43,371 distinct pairs of code locations accessing a sensitive source API

and a sensitive sink API linked by data flow between them. The most im-
portant source is DATABASE INFORMATION followed by CALENDAR INFORMATION,
NETWORK INFORMATION and LOCATION INFORMATION. This reflects what most
Android apps do: interacting with external services using information main-
tained in their own databases.

As it comes to the least frequently used sources, we find patterns that reflect
programming practices in Android. The source EMAIL shows no flows at all,
which might be surprising, considering the number of the apps that handle
phone calls or e-mails. This is because most of e-mail access takes place via
IMAP and POP protocols and thus belongs to the NETWORK INFORMATION source
category. The sources SYSTEM SETTINGS and BROWSER INFORMATION rarely end
in sensitive sinks.

The most important sinks are LOG and INTENT, which make up more than
94% of all sinks in sensitive flows. As discussed in Section 3.4.2, the INTENT

category means that the data was used by another activity in the app, a flow
we currently cannot analyze. LOG, however, is a true sink but it is less harmful
as starting from Android 4.1 log files can only be accessed by diagnostic and
administrative tools.

The data set coming with this thesis contains detailed information on all
flows, showing the exact flows between APIs for all benign applications.

In “benign” apps, 94% of all sensitive data flows are to logging and
Inter-Process-Communications, i.e. intent.

3.4.4 Data Flow in Malicious Apps

Table 3.6 summarizes the data flows detected in our set of “malicious” apps,
showing similarities but also important differences to the “benign” apps from
Table 3.6. The most important source here is NETWORK INFORMATION, which
is almost twice as prevalent as in “benign” apps. To our suprise, CALEN-

DAR INFORMATION is accessed as a sensitive source far less frequently that AC-

COUNT INFORMATION.
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3.4. EVALUATION

In sinks, we also see important differences. Most striking is the SMS MMS

sink, that is over 77 times more prevalent than in our benign apps. This reflects
the common stealthily attack sending SMS messages to premium numbers and
allowing the owner of these numbers to earn money from the victim. As the
flows to SMS MMS indicate, the malicious apps also include sensitive data such
as UNIQUE IDENTIFIER and CONTACT INFORMATION in their messages, as well as
NETWORK INFORMATION such as network MAC addresses or SIM card information.

Given that 25% of our malicious apps use SMS as a sink, whereas this is the
case for only 1% of the “benign” apps, a simple check for the ability to send
SMS messages would easily weed out 25% of malicious apps, with a precision of
99%. Note, however, that several of such simple checks may bring conflicting
classifications. Also, while our “benign” set is representative in that it encom-
passes the most popular apps, our “malicious” set is in no way representative
for malware actually prevalent in the wild or the types of attacks actually con-
ducted. In that sense, Table 3.6 serves as descriptive statistics of the dataset
we use for the evaluation of SAFAND.

Our set of “malicious” apps differs from the “benign” apps in terms of
sources, sinks, and flows.

3.4.5 Sensitive Data Flows

MUDFLOW introduces a flow of sensitive data as a notion of the usage of sensitive
data. A pattern of sensitive data usage has a following form:

Data F low Pattern =
{
Sensitive Source ; Sensitive Sink

}
As discussed in Section 2.3.2 sources are Android APIs that are responsi-

ble for obtaining data from a device. In turn sinks are Android APIs that are
responsible for leaking data from the device. Depending on the type of anal-
ysis, patterns of sensitive data usage can have different representations. MUD-

FLOW extracts all dataflows within a particular Android app by using SAFAND.
However, due to inability of static analysis to know values of variables, these
dataflows can only be represented as pairs of signatures of methods, which are
in fact pairs of Android API methods:

{
TelephonyManager.getSubscriberId() ; URL.openConnection()

}
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Table 3.7: Flows in Android Twitter App

AccountManager.get() ; ContentResolver.setSyncAutomatically()
AccountManager.get() ; AccountManager.addOnAccountsUL()
AccountManager.get() ; Activity.setResult()
AccountManager.get() ; Log.w()
AccountManager.getAccountsByType() ; ContentResolver.setSyncAutomatically()
AccountManager.getAccountsByType() ; Activity.setResult()
AccountManager.getAccountsByType() ; Log.w()
Uri.getQueryParameter() ; Activity.startActivity()
Uri.getQueryParameter() ; Activity.setResult()
Uri.getQueryParameter() ; Activity.startActivityForResult()
Uri.getQueryParameter() ; Log.d()
Uri.getQueryParameter() ; Log.v()
Uri.getQueryParameter() ; Log.w()
SQLiteDatabase.query() ; Log.d()
SQLiteOpenHelper.getReadableDatabase() ; Log.d()
SQLiteOpenHelper.getWritableDatabase() ; Log.d()

Table 3.8: Flows in com.keji.danti604 malware

TelephonyManager.getSubscriberId() ; URL.openConnection()
TelephonyManager.getDeviceId() ; URL.openConnection()

As an example of such flows, consider the well known Android Twitter app.
Table 3.7 shows its extracted data flows. We can see that, while the Twitter app
accesses sensitive account information, it uses this information only to manage
synchronization across multiple devices. Network information was accessed (as
a part of the main functionality of the app), saved in logs, and passed on to
other components.

In contrast, consider the com.keji.danti604 malware from the VirusShare
database [55]. Table 3.8 shows two flows in that application; they leak the
subscriber and device ID to a Web server. Both these flows are very uncommon
for benign applications. Furthermore, danti604 does not contain any of the
flows that would normally come with apps that use the TelephonyManager for
legitimate reasons. Thus, danti604 is an anomaly—not only because it may be
similar to known malware, but in particular because its data flows are dissimilar
to flows found in benignware such as Twitter.

Section 3.4.3 and Section 3.4.4 showed that benign and malicious apps use
sensitive data differently. Therefore thus, MUDFLOW implemented multiple clas-
sifiers trained on the data flow of benign apps to automatically flag apps with
suspicious features. We kindly point to the original MUDFLOW paper [12] for
obtaining more information concerning the used machine learning techniques.
In Section 3.4.6 we briefly discuss the idea and obtained results.
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3.4.6 Detecting Malicious and Abnormal Apps

As shown above, the flow within malicious apps may differ significantly from the
flow within benign apps. MUDFLOW leverages such differences to automatically
classify novel apps whether they are malicious or not. While most malware
detection is retrospective in nature—checking apps against patterns found in
known malware— MUDFLOW is able to compare a new app against benignware
only and check whether it contains abnormal flows with respect to this set. This
allows MUDFLOW to detect malware as abnormal even if the specific attack is
the first of its kind.

The MUDFLOW malware classification takes a set of benign apps, e.g., say,
all apps from an app store, and then performs in the following three steps:

Per-category outlier detection For each SUSI category such as UNIQUE IDENTIFIER

(shortened to “ID”), MUDFLOW selects apps that use APIs of that category
as source and uses their flows as features. Then it takes a new unknown
app and determines its outlier score with respect to the “normal” apps.
The higher the score is, the less “normal” the app behaves inside a par-
ticular SUSI category. See Figure 3.5.

Aggregating probabilities across API usage Given an app, for each SUSI

category, we use the approach from Figure 3.5 to determine the distance
of the app with respect to the benign training set. The resulting vector
of scores (“maliciogram”) tells how abnormal the app is in each category.
See Figure 3.6.

Classifying apps across multiple categories For each “benign” app in the
Google Play store, we determine its vector of probabilities of being an
outlier in each SUSI category (Figure 3.6). A one-class classifier trained
from these vectors can label an unknown app as “likely benign” if it is
normal across all categories, or “likely malicious” instead. See Figure 3.7.

To obtain more details on how the classification works, we kindly refer the
interested reader to the MUDFLOW paper [12].
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Figure 3.5: Per-category outlier detection.

App?? ✔ ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✔ ✘
d = 0.76 d = 0.62 d = 0.30 d = 0.08 d = 0.63

Figure 3.6: Aggregating probabilities across API usage.

Results

In our first experiment, we evaluated the full MUDFLOW classifier on the dataset
from Section 3.4.1 as described in Section 3.4.6.

The average results are as follows:

True positives (malware recognized as such): 86.4%

True negatives (benignware recognized as such): 81.3%
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Figure 3.7: Classifying apps across multiple categories.

Accuracy (apps correctly classified): 83.8%

MUDFLOW recognizes 86.4% of malware as such,
with the false positive rate of 18.7%.

As we are most interested in apps that access and send sensitive data, we
ran the second evaluation on the subset of 10,552 “malicious” apps that have at
least one flow from a sensitive source to a sensitive sink (i.e., malware leaking
sensitive data). For this “sensitive” subset, we get the following results:

True positives (malware recognized as such): 90.1%

True negatives (benignware recognized as such): 81.3%

Accuracy (apps correctly classified): 86.0%
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Table 3.9: Effectiveness of MUDFLOW using different features.
Malicious True True

Features set positives negatives Accuracy
Source methods all 81.7% 82.5% 82.1%
Sink methods all 71.0% 83.9% 77.2%
Flow between classes all 82.7% 79.7% 81.2%

sensitive 87.7% 79.9% 83.7%
Flow between methods all 86.4% 81.3% 83.8%

sensitive 90.1% 81.3% 86.0%

MUDFLOW recognizes 90.1% of malware leaking sensitive data as such, with
the false positive rate of 18.7%.

Again, all these numbers come from one-class classification; that is, no ex-
isting malware is used for training.

In RQ1 and RQ2 we wanted to understand if APIs and flows of sensitive
data on itself can be used to identify applications with suspicious and malicious
behavior. To answer to these questions we repeated the evaluation using differ-
ent features. Notably, we checked the classification results using source methods
alone as features, as this would not require complex static analysis. We can
therefore confirm that both sensitive APIs and sensitive Dataflows can be used
effectively to identify applications with suspicious behavior. As summarized
in Table 3.9, data flow between methods shows the best accuracy perfromance
across all features.

66



Chapter 4

Mining UI elements

4.1 Related Work

ASDROID [29] by Huang et al. is the first work that explicitly analyzes Android
applications for mismatches between user interfaces and program behavior. Its
general setting is similar to BACKSTAGE, in the sense that it maps UI elements
to invoked functions and checks labels as well as invoked APIs. However, it only
checks for a small set of fixed scenarios, such as sending text messages or making
phone calls in the background, both in terms of analyzed labels as well as in the
set of invoked APIs. This is because ASDROID focuses on stealthy (malicious)
behavior only.

BACKSTAGE can be seen as the generalization of ASDROID. By mining thou-
sands of UI elements, BACKSTAGE can detect arbitrary mismatches between user
interfaces and associated behavior. Such mismatches include stealthy behavior
as detected by ASDROID. In mature apps with well-tested user interfaces, most
anomalies found by BACKSTAGE would show stealthy behavior, as this would
not be found during GUI testing. However, such mismatches also include mis-
leading button labels, wrong API associations and more. All these would be
discovered by BACKSTAGE only.

GATOR [60] by Yang et al. was the first work to provide precise mappings be-
tween ANDROID UI elements and their callbacks via pure static analysis. Earlier
works had focused on dynamic analysis and exploration, either in a black box [3]
or a grey box [61] style. The advantage of static analysis is that it can explore
and identify UI elements that would be hard to reach dynamically—because ac-
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cessing them would require, for example, a password, an in-app purchase or the
defeat of a boss monster.

The analysis in BACKSTAGE follows the GATOR approach in creating such
mappings. However, we also address the specific need to extract the visible
text and context from the UI elements, as well as to identify dynamic changes
of text, context and callbacks. They do not consider menus, fragments and
dialogs on the layout level. Furthermore, they do not extract listeners from
XML layout files and APIs of UI elements. Our analysis can thus be interpreted
as the specialization of GATOR towards text extraction.

UIPicker [43], SUPOR [27] and BIDTEXT [28] also analyze UI elements of
Android apps. However they do so to automatically identify sensitive user
inputs and sensitive data disclosure. Thus, their final aim is quite different
from ours.

One field that is missing in the above list is Human-Computer Interaction
(HCI). Interestingly, to the best of our knowledge and to the knowledge of HCI

experts in the field, we are not aware of any work in HCI that would rely on large-
scale mining and analysis of UI elements. Thus BACKSTAGE opens the door for
general automatic anomaly detection in user interfaces considering features such
as their visual appearance, their natural language semantics, their layout, their
interaction or their behaviors. We see plenty of future potential in this direction.

4.2 Overall Design

The next module of SAFAND is the module to analyze and extract UI elements
from applications. As easy as it may initially seem, implementing a sound
technique to analyze the Android UI is not trivial, given the complexity of the
Android GUI [57].

Each UI mining module implements the inter-procedural analysis. For ex-
ample, if SAFAND searches for the View:setText(resourceId) API it does not
assume a very simple case when the value of the resourceId variable is directly
passed to the View:setText method. Our initial experiments showed that de-
velopers tend to use more complex scenarios when the resourceId is stored as
a variable inside the method and even as the argument of the method. We will
discuss the inter-procedural analysis of each UI mining phase in detail in the
corresponding section.

The UI mining phase starts with exploring lifecycle methods of activities
(Table 4.1) and fragments (Table 4.2). These methods act as top-level methods
in Android. For each of these methods, it will be searched for the set of reachable
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Table 4.1: Signatures of Activity Lifecycle Methods

void onCreate(android.os.Bundle)
void onStart()
java.lang.CharSequence onCreateDescription()
void onPostCreate(android.os.Bundle)
boolean onCreateOptionsMenu(android.view.Menu)
void onCreateContextMenu(android.view.ContextMenu,

android.view.View,android.view.ContextMenu$ContextMenuInfo)

methods, which is then analyzed in the context of the corresponding top-level
parent. If the analysis identifies the button in reachable methods, it will be
assigned to the corresponding activity of the top-level parent. For each of the
reachable methods, SAFAND searches for layouts, tab views and fragments and
menus in order to construct the UI hierarchy as well as dialogs, dynamically
defined strings and listeners in order to enrich UI elements with later required
information.

Algorithm 5 UI mining strategy

Require: Callgraph CG
1: procedure UIMining(CG)
2: LC ←getActivityAndFragmentLifecycleMethods
3: for L in LC do
4: analyzeReachableMethods(L,CG)
5: end for
6: end procedure
7: procedure analyzeReachableMethods(L,CG)
8: RM ←getReachableMethods(L,CG)
9: for M in RM do

10: searchForDialogs(M)
11: searchForLayouts(M)
12: searchForDynamicStrings(M)
13: searchForListeners(M)
14: searchForFragments(M)
15: searchForTabViews(M)
16: searchForMenus(M)
17: end for
18: end procedure
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Table 4.2: Signatures of Fragment Lifecycle Methods

android.view.View onCreateView(android.view.LayoutInflater,
android.view.ViewGroup,android.os.Bundle)

void onViewCreated(android.view.View,android.os.Bundle)
void onAttach(android.os.Bundle)
void onCreate(android.os.Bundle)
void onStart()
java.lang.CharSequence onCreateDescription()
void onPostCreate(android.os.Bundle)
boolean onCreateOptionsMenu(android.view.Menu)
void onCreateContextMenu(android.view.ContextMenu,

android.view.View,android.view.ContextMenu$ContextMenuInfo)

In Section 2.2 we provided background information on the Android GUI, i.e.
how to declare elements and how to arrange them in the layout. We now proceed
with an explanation how we extract the information that anomaly detection
mechanisms need.

Some UI mining techniques as analysis of reusable layouts, menus, tab views
and fragments are contribution of another thesis. We kindly refer the interested
reader to them for more details[48].

4.3 Resource Analysis

Google in its official documentation suggests to externalize application resources
such as images and strings to simplify their maintenance without changing the
code[7].

Kuznetsov et al. showed that statically defined resources are also useful for
anomaly detection[34]. In this section we will demonstrate how SAFAND extracts
them from applications.

4.3.1 Extraction of Statically-Defined Text

All declarations of text values and their references are done within XML files.
Therefore processing of these XML files is nothing more than parsing of them.
All strings are placed in res\values folder. Those strings are default and
developers can redefine them for each language. If they do not do it, the default
values are used.

SAFAND uses the same concept. It searches for strings in the default folder
which is res\values and then overwrites the values from the specified language.
The default language is a native language of the application and is not neces-
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Table 4.3: A set of attributes responsible for binding text to UI elements

android:text android:title android:textOn
android:hint android:contentDescription android:textOff
android:label

sary English. Currently SAFAND supports only extraction of English resources
by searching for overrides of default strings in res\values-en folder. By per-
forming the small extension of the SAFAND framework one can make the target
folder as a program parameter and extract the text for the desired language.

Text declaration in layout files. Technically, the definition of the text is
done by setting the android:text attribute in the layout file. As an
example, consider line 7 in Listing 2.1. The text can be defined either by
using the reference to the app’s resources with the "@string/" prefix or
directly by providing the string that will be displayed. Even if the second
option is deprecated, since it introduces localization problems, SAFAND

supports it. There are more attributes that can be used to set a label for
a UI element (refer to Table 4.3), and SAFAND supports all of them. If
the definition is done by referencing the value of resources, SAFAND will
search it in the default resources location and then override values from
the English resources as discussed before.

Text declaration in style files. Less obvious but also a quite convenient way
is to define the text in style files. These files should have .xml end-
ing and be placed inside the res\values folder. This option is typically
used when the text of UI labels changes depending on the style. Devel-
opers can specify text of UI elements by creating an item with the at-
tribute name="android:text". As an example, consider Listing 2.2, line
5. SAFAND identifies the reference to the styles and then searches for the
definition of the referenced style in XML files under the default location.
Then it overrides the reference if it is present in the location of English
resources.
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4.3.2 Analysis of Icons

Icons serve the same psychological purpose as paragraph breaks: they visually
break up the content, making it less intimidating.[30]. Icons are placed under
res\drawable folder. But developers can redefine icons for each screen resolu-
tion and then place them, for example, under res\drawable-hdpi folder. Icons
from this folder are used for devices with resolution 72px × 72px, which is the
high-resolution screen.

However, SAFAND does not process icons by itself right now, it reads only
their annotation. Therefore the framework takes referenced icons from the
res\drawable folder and provides them alongside with their annotation as an
output.

Annotations of icons are, in fact, their alternative text, which can be read
out loud to the user by a speech-based accessibility service. The reference to the
icons is specified via android:drawable attribute (refer to line 11 in Listing 2.1).
The annotation of the icon, in turn, is specified in the android:contentDescription
attribute of the UI element (refer to line 12 in Listing 2.1). SAFAND then per-
forms the search for the actual text by using the technique described in Sec-
tion 4.3.1. This information is what SAFAND extracts and uses for UI elements
which have icons instead of text labels.

SAFAND relies on developers during the analysis of icons. It assumes that
they always the initialize alternate text of the icon with the respective value.
Otherwise, it can not identify the description of the icon. One possible task for
the future work is to analyze content of icons with image-processing techniques
and annotate them based on extracted labels.

4.4 Analyzing Android Activities and their Lay-
out

In Section 2.2.1 it has been discussed how to define a layout of an application.
However, people rarely use such simple cases when the value of layoutFileId

is directly provided as an integer constant. Modern software has quite complex
architecture and consists of dozens of modules and classes. Moreover, Object-
Oriented-Principles (OOP) guide developers to write high quality code that can
be sometimes quite complicated for static analysis.

Consider the following scenario which we found in one of the analyzed ap-
plications to evaluate how complex the design could be. Normally, when the
developer implements a new activity, she has to set android.app.Activity as
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its superclass and then assign its XML layout by using setContentView method.
However, if the app has a lot of screens, developers will create their own base
class that extends the android.app.Activity and then inherit it by all activi-
ties in the app. Such base classes often contain a lot of common functionality and
the common. In particular, each and every activity has to call setContentView
method to bind an XML layout. Guidelines would help developers to extract
this functionality to the base class and put it to its onCreate method (refer to
Listing 4.1 as an example). But then the developer should somehow pass the
layoutFileId which is unique for each child activity. As onCreate does not
accept any additional parameters, guidelines would say that the developer needs
to define the abstract getLayoudFileId method and force each child activity to
implement it, return the appropriate value of the layout file (refer to Listing 4.2
as a final code of the child class).

1 public abstract class AbstractActivity extends Activity{
2 @Override
3 protected void onCreate(Bundle savedInstanceState) {
4 super.onCreate(savedInstanceState);
5 }
6 protected void setLayout(){
7 this.setContentView(getLayoudFileId());
8 }
9 protected abstract int getLayoudFileId();

10 }

Listing 4.1: An abstract Activity class

1 public class ChildClass extends AbstractActivity {
2 @Override
3 protected void onCreate(Bundle savedInstanceState) {
4 super.onCreate(savedInstanceState);
5 this.setLayout();
6 }
7 @Override
8 protected int getLayoudFileId() {
9 return R.layout.activity child class;

10 }
11 ...
12 }

Listing 4.2: Implementation of the abstract Activity
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On the one hand, this code, follows OOP guidelines. On the other hand,
it is quite complicated for static analysis. If we search for occurrences of
android.app.Activity:setContentView(layoutFileId) in the code, we will
reach line 7 of Listing 4.1. Then the intra-procedural analysis will try to re-
solve the return value of the getLayoutFileId() method. As his is the abstract
method and every child activity redefines it, analysis will have the mapping of
the AbstractActivity to all layout files of its children. Such mapping does not
give any helpful information as the AbstractActivity does not represent any
screen and moreover has multiple layout files.

To catch such cases we have designed the UI Mining phase of SAFAND in a
way that we analyze each activity in complete isolation and track the return
context. In particular, our analysis will start from the onCreate method of
the ChildClass as it has a GUI representation on the screen. Then it will
procceed to the AbstractActivity:onCreate because there is a call edge. From
there it will reach AbstractActivity:getLayoutFileId and then choose the
correct implementation of the method by memorizing that it started from the
ChildActivity class. By using the described heuristic, the analysis will end up
at line 9 of the Listing 4.2.

Besides using XML files, developers can create the entire activity layout dy-
namically in the app code. This strategy is rarely used, since it is error-prone
and makes the maintenance of the GUI harder. Given their little prevalence,
entire dynamically generated screen layouts are out of the scope of SAFAND for
now.

4.5 Analyzing Alert Dialogs

As we discussed in Section 2.2.2, the callback of each button in the alert dialog
performs completely a different action. Therefore we store the exact mapping
of a call back to a button in the dialog (refer to Listing 4.18 for an example).
Moreover we bind the label to the corresponding button in order to have the
mapping between label, action and set of APIs later on (see Section 4.10).

The procedure of finding alert dialogs works as described in Algorithm 6.
The algorithm searches for the method call which is responsible for displaying
dialogs on the app’s screen. From these code points the algorithm searches
for dialog messages, titles, buttons and their corresponding callbacks, using
backward analysis.
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Algorithm 6 Mining of Alert Dialogs

Require: Callgraph CG
1: procedure searchForDialogs(M)
2: UNITS ← getUnitsOfMethod(M)
3: for U in UNITS do
4: if U contains InvokeExpr then
5: CM ← getInvokedMethod(U)
6: if CM == SHOW METHOD then
7: REG← getInstanceOfDialog(U)
8: AD ←propagateAndCollectData(U , M , REG)
9: end if

10: end if
11: end for
12: end procedure
13: procedure resolveButtonAndAdd(D,AD, BTNTY PE)
14: STRREG← getLabelReg(D)
15: STR← resolveString(STRREG)
16: CBREG← getCallbackReg(D)
17: CBSIG← resolveSignatureOfCB(CBREG,D)
18: addButton(AD,CBSIG,SRT ,BTNTY PE)
19: end procedure
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20: procedure propagateAndCollectData(U , M , REG)
21: AD = NULL
22: D ← getImmediateDominator(U ,M)
23: while D is not NULL do
24: if D contains InvokeExpr AND isTheSameInstance(REG) then
25: CM ← getInvokedMethod(D)
26: if CM == CREATE METHOD then
27: AD ← new AlertDialog; continue
28: end if
29: if CM == INIT METHOD then return AD
30: end if
31: if AD is not NULL then
32: if CM == SET TITLE then
33: STRREG← getTitleReg(D)
34: STR← resolveString(STRREG)
35: addTitle(AD,SRT )
36: else if CM == SET MESSAGE then
37: STRREG← getMessageReg(D)
38: STR← resolveString(STRREG)
39: addMessage(AD,SRT )
40: else if CM == SET NEGATIVE BUTTON then
41: resolveButtonAndAdd(D,AD,NEGATIVE)
42: else if CM == SET POSITIVE BUTTON then
43: resolveButtonAndAdd(D,AD,POSITIVE)
44: else if CM == SET NEUTRAL BUTTON then
45: resolveButtonAndAdd(D,AD,NEUTRAL)
46: end if
47: end if
48: end if
49: D ← getImmediateDominator(D,M)
50: end while
51: return AD
52: end procedure
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Table 4.4: Signatures of StringBuilder methods

java.lang.StringBuilder: java.lang.String toString()
java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String)

4.6 String Analysis

Extraction of the text of UI elements is essential when it comes to the definition
of the visible behavior on the screen. In Section 4.3 we discussed how SAFAND

handles statically defined text. Many UI mining modules which identify the
text of UI elements deal with the problem of not explicitly defined strings in
the method parameters. There is a variable or even another method invocation
instead. The most interesting and the most complex case is string concatena-
tion. String concatenation is done in Java by using the StringBuilder class.
Thus, we continue with an explanation of the technique for resolving string
concatenations.

SAFAND deals with string concatenation by analyzing StringBuilder in-
stances. Moreover, it performs backward analysis from the method parameter
if the relevant string is not specified there directly, but rather stored in some
variables in other parts of the code (refer to Algorithm 7).

StringBuilder is an essential class in Java for working with textual in-
formation. Even if developers argue that they never use StringBuilder and
prefer the simple concatenation with + sign, they are wrong. Java Virtual Ma-
chine (JVM) translates all simple concatenations like ’’John ‘‘ + ’’Doe‘‘ to
the StringBuilder at compile time while optimizing the code. The mentioned
example is translated to the code in Listing 4.3.

1 String line = ‘‘John ’’ + ‘‘Doe’’;
2 /∗ translates to ∗/
3 StringBuilder stringBuilder = new StringBuilder();
4 stringBuilder.append(‘‘John ’’);
5 stringBuilder.append(‘‘Doe’’);
6 String line = stringBuilder.toString();

Listing 4.3: Convertion of string concatenation to the StringBuilder by JVM

Our string analysis performs the inter-procedural backward propagation of a
parameter of View:setText(). If StringBuilder:toString() assigns its value
to the tracked variable, it collects all values of the StringBuilder:append() of
the same instance of StringBuilder and joins them in a way how they would
be displayed. Each and every variable in this module is analyzed using the
inter-procedural backward method (refer to Algorithm 8).
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Algorithm 7 Strategy of resolving the value of strings

Require: Caller method CM , Argument ARG, Current Unit CU
1: procedure resolveString(CM ,ARG,CU)
2: D ← getImmediateDominator(CU ,CM)
3: while D is not NULL do
4: if D is AssignStmt then
5: R← getRightOp(D)
6: L← getLeftOp(D)
7: if L == ARG then
8: if D contains InvokeExpr then
9: M ← getMethodOf(R)

10: if M == STRING BUILDER TOSTRING then
11: B ← getRegOfSBInstance(R)
12: return findValueInStringBuilder(B,D,CM)
13: else
14: return resolveReturnValueInInvocation(D)
15: end if
16: else
17: if R is StringConstant then
18: return R
19: end if
20: if R is CastExpr then
21: L← getCastedOp(R)
22: end if
23: if R is Field then
24: return findValueOfField(R)
25: end if
26: end if
27: end if
28: else if D is InvokeExpr then
29: return resolveReturnValueInInvocation(D)
30: else if D is the input parameter then
31: PNUM ← getParamNumber(D)
32: return findValueInCallers(PNUM ,CM)
33: end if
34: D ← getImmediateDominator(D,CM)
35: end while
36: end procedure
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Algorithm 8 Strategy of resolving the value of the String Builder

1: procedure findValueInStringBuilder(B,CU ,CM)
2: S ← new String
3: D ← getImmediateDominator(CU ,CM)
4: while D is not NULL do
5: if D is AssignStmt then
6: R← getRightOp(D)
7: L← getLeftOp(D)
8: if L == ARG then
9: if D containsInvokeExpr then

10: M ← getMethodOf(R)
11: if M == STRING BUILDER APPEND then
12: V ← getValueOfParameter(0)
13: RES ← resolveString(CM ,V ,D)
14: join(S,RES,“#”)
15: end if
16: else
17: if R is NewExpr then
18: return S
19: end if
20: end if
21: end if
22: end if
23: D ← getImmediateDominator(D,CM)
24: end while
25: return S
26: end procedure
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Limitations

Over-approximation The content of some strings sometimes depends on spe-
cific conditions. For example, if it depends on the content of the file or
its length, the problem becomes unsolvable for static analysis. Our anal-
ysis can not resolve such conditions due to their complexity and assumes
that strings will contain assigned values from all conditions (e.g. over-
approximation).

Dynamic values When user makes a purchase, she enters his credit card num-
ber to the text field, and then this information is being sent to the remote
server as a part of JSON object. Our analysis can not tell which exactly
value is being sent due to its dynamic nature. SAFAND only reports hard-
coded strings and strings from resource files.

4.7 Extracting Context of Text Labels

Well-designed applications usually have semantically meaningful text labels to
improve the application usability. For example, the button label “Send SMS”
makes it clear that the user would send an SMS message by clicking that button.
However, most of the times text labels are semantically generic and can be
correctly interpreted only given their context. For instance, this is the case
for labels such as “OK” or “Yes”, which are highly prevalent. The expected
behavior for clicking an “OK” button is to confirm an operation that has been
mentioned earlier or is described somewhere else in the GUI (refer to Figure 4.1
for an example). As a consequence, together with the text label for a UI element,
BACKSTAGE collects all the surrounding text, which we interpret as relevant
context to understand the semantic of the label itself. More precisely, for each
UI element we collect all text that the activity containing the element displays.

As shown in Figure 4.1, “OK” button has the following context: “Twitter
would like to use your current location to customize your experience”. But
“Don’t allow” text should not be definitely a part of the context of the “OK”
button. Thus, we assume that only inactive text could be a part of the context.
In other words, inactive text is the text that does not relate to any UI element,
which has at least one assigned callback (refer to Section 4.8) and can perform
any action. Static labels are instances of inactive context, while buttons and
text fields usually are not as they may invoke onKeyPressed or onClick call-
backs. But if a text field, for example, does not have any assigned callbacks,
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Context of the Action

Description of the Action

Figure 4.1: Actions and their Context

it wll participate in the context of UI elements from the same screen (refer to
Algorithm 9).

Alert Dialogs, as shown in Figure 4.1 do not use the context of the screen
where they appear. This type of UI elements is quite independent from outer
environment. The title of the dialog, the message and three buttons, positive
(usually “OK”), negative (usually “NO”) and neutral (usually “Cancel”) are
completely independent pieces of the context and perform actions that are not
related to the screen.

Limitations

Currently, SAFAND associates the inactive context of the whole screen with re-
spective UI element. It assumes that one particular screen talks about one
action. However, screens can talk about more actions in real life. One of the
possible heuristics to reduce the over-approximation is to associate the UI ele-
ment only with the elements that are on the same parent layout. But it does
not work well for all applications as layouts can be designed in quite different
ways. A more sophisticated technique for gathering the context is a possible
future work.
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Algorithm 9 Strategy of resolving the context of labels

Require: id of UI elements ELIDS, Screen hierarchy SH, Layouts LIDS
Ensure: Map of the elements to context ELLC

1: procedure resolveContextOfElements(ELIDS,LIDS,SH)
2: ELLC ← map of the elements to context
3: LC ← gatherContextOfLayouts(LIDS,SH)
4: for ELID im ELIDS do
5: ELC ← extractContextOfTheUiElement(ELID,LC,SH)
6: putToMap(ELID,ELC,ELLC)
7: end for
8: end procedure

9: procedure gatherContextOfLayouts(LIDS,SH)
10: LC ← map of the layout to context
11: for LID in LIDS do
12: for CH in getChilds(LID) do
13: if CH has no callbacks then
14: L← getLabel(CH)
15: addToMapping(LID,L,LC)
16: end if
17: end for
18: end for
19: return LC
20: end procedure

21: procedure extractContextOfTheUiElement(ELID, SH)
22: LID ← getLayoutOfElement(ELID, SH)
23: CON ← getValueFromMap(LID,LC)
24: return CON
25: end procedure
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Table 4.5: A set of standard callbacks in Android

afterTextChanged onTextChanged onKey
onEditorAction onClick onDrag
onHover onLongClick onTouch
onKeyboadDismiss onItemClick onItemLongClick
onItemSelected onNothingSelected onScroll
... (42 more) ...

4.8 Mining Callbacks of UI Elements

SAFAND characterizes each UI element, which represented by the text label and
its surrounding text, with the behavior that it would trigger at runtime. As a
proxy to represent this behavior, it uses the set of the Android API invocations
that are reachable and therefore can be executed. The algorithm needs first
to identify the callbacks, since these are the entry points of the analysis. A
callback is a special function that is bound to a particular event on a UI element
which triggers its execution. The most well-known example of the callback is the
onClick function, which gets executed when the user clicks on some UI element
on a screen.

There are dozens of predefined UI callbacks available in Android, but de-
velopers can also implement their own custom callbacks and bind them to any
UI element. However, SAFAND currently deals only with the predefined set of
Android callbacks, which we report in Table 4.5.

Developers can declare a callback for a UI element either statically in a layout
file or dynamically in the app code. Thus, we proceed with the discussion of
each particular case and its challenges.

Defining callbacks in a layout file

The most straightforward way to define callbacks is to directly declare them in
the layout XML file together with the corresponding UI element. In order to bind
a callback to the UI element, developers should provide a name of the function
to the android:onClick attribute of the corresponding UI element (refer to
Listing 2.1, line 8 for an example). However, only onClick callbacks can be
defined this way. All other types of callbacks that are listed in Table 4.5 have
to be binded from the code and will be discussed in Section 4.8.
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In Listing 2.1 the developer provided a callback with the name xmlDefinedOnClick.
The next step is to define the function with the same name in the code of the
same activity. The callback function in this particular case is listed in List-
ing 4.4.

1 public class myActivity extends Activity{
2 public void onCreate(android.os.Bundle savedInstanceState){
3 ...
4 }
5 ...
6 public void xmlDefinedOnClick(android.view.View button){
7 // an implementation of the functionality of the button click
8 }
9 }

Listing 4.4: An implementation of the XML defined callback

All XML defined callbacks of all UI elements should be registered in the
code of the corresponding activities as they relate to the same class. Such
design poses one important problem: a developer should take care of naming
of callbacks and assign the unique name to each callback as multiple methods
with the same name inside the same class are forbidden in Java.

Such design simplifies static analysis of UI elements. SAFAND parses the lay-
out of the corresponding activity, collects onClick callback for each UI element
and automatically resolves its class name. xmlDefinedOnClick method from
Listing 2.1 has the following signature:

myActivity:xmlDefinedOnClick(android.view.View).
The last step is to check the existence of the callback. The developer can

define the name of the callback in the XML layout file but forget to write its
implementation in the code. If such method is not declared in the Java code, it
will not be mapped to the corresponding UI element.

Defining callbacks in code

The modern UI of mobile apps is flexible and responsive. Therefore the actual
behavior of UI elements strongly depends on a huge number of preconditions.
Thus there is a need to define the behavior at runtime: for example, assign
onClick callback to the button if some radio-button is selected.

Java language provides multiple ways to bind a particular callback to the
UI element from the code. We will illustrate each of them using an assign-
ment of onClick callback to the button. onClick callback is assigned by using
Button:setOnClickListener() method. All considered cases are from the real
life and have been gathered from the real code.
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Anonymous handler Anonymous expressions are quite popular nowadays.
They give to the developer the possibility to avoid writing separate func-
tions and classes while implementing some behavior. Refer to Listing 4.5
for an example.

1 public class myActivity{
2 public void onCreate(android.os.Bundle savedInstanceState){
3 Button myButton = (Button)findViewById(R.id.btnSave);
4 myButton.setOnClickListener(new View.OnClickListener() {
5 @Override
6 public void onClick(View view) {
7 //implementation of the onClick functionality
8 }
9 });

10 }
11 }
12

Listing 4.5: Binding an anonymous onClick listener to the button

Activity class that implements OnClickListener interface The next de-
sign option is to make a class that extends android.app.Activity and is
actually responsible for the lifecycle of the screen as well as for the Button
events. In other words, the class extends android.app.Activity and also
implements View.OnClickListener interface. Refer to Listing 4.6 for an
example. Now the developer just needs to pass this object as the listener
and the corresponding onClick method of the same activity class at line
8 will be triggered.

1 public class myActivity extends Activity implements View.
OnClickListener{

2 public void onCreate(android.os.Bundle savedInstanceState){
3 Button myButton = (Button)findViewById(R.id.btnSave);
4 myButton.setOnClickListener(this);
5 }
6

7 @Override
8 public void onClick(View view){
9 //implementation of the onClick functionality

10 }
11 }
12

Listing 4.6: Binding the onClick listener to the button which is also an
Activity
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OnClickListener is a private field of the Activity Some developers define
the onClickListener as a field of the Activity class. Refer to the Listing 4.7
for an example. myClick here is a private field of the class and the devel-
oper assigns it to the event which will be fired when a user will click on
that button.

1 public class myActivity extends Activity{
2 private View.OnClickListener myClick = new View.

OnClickListener(){
3 public void onClick(View view) {
4 //implementation of the onClick functionality
5 }
6 };
7

8 public void onCreate(android.os.Bundle savedInstanceState){
9 Button myButton = (Button)findViewById(R.id.btnSave);

10 myButton.setOnClickListener(myClick);
11 }
12 }
13

Listing 4.7: Binding the onClick listener to the button which is also a
private field of the same Activity

Sub-class that implements onClickListener interface The last considered
case is when the sub-class of the Activity class acts as a button. Refer to
Listing 4.8 for an example.

1 public class myActivity extends Activity{
2 public void onCreate(android.os.Bundle savedInstanceState){
3 Button myButton = (Button)findViewById(R.id.btnSave);
4 myButton.setOnClickListener(new MyInnerListener());
5 }
6 private class MyInnerListener implements View.

OnClickListener{
7 @Override
8 public void onClick(View view){
9 //implementation of the onClick functionality

10 }
11 }
12 }
13

Listing 4.8: Binding the onClick listener to the button which is also a
sub-class of the same Activity
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Unlike callbacks that are defined statically (Section 4.8), runtime-defined
callbacks cannot have different names. All of them have onClick(android.view.View)
subsignature. And the challenge here is to correctly resolve the name of the class
where this callback is defined. Moreover, developers like to extract some mean-
ingful blocks of code to separate functions to make the code more readable and
supportable (refer to Listing 4.9 for an example). Fortunately, SAFAND supports
inter-procedural propagation of the button object as well as the listener object.

1 public class myActivity extends Activity{
2 public void onCreate(android.os.Bundle savedInstanceState){
3 Button myButton = (Button)findViewById(R.id.btnSave);
4 setListener(myButton, new MyOnClickListener());
5 }
6 private void setListener(android.widget.Button button, View.onClickListener

listener){
7 myButton.setOnClickListener(listener);
8 }
9 }

10

11 public class MyOnClickListener implements View.OnClickListener{
12 @Override
13 public void onClick(View view){
14 //implementation of the onClick functionality
15 }
16 }

Listing 4.9: Binding the onClick listener to the button from the separate method

Developers are very creative in writing the code, that is why it is very im-
portant to track such cases. SAFAND tracks all of them and can correctly map
UI elements to the corresponding callbacks. The precise algorithm is described
in Algorithm 10.

UI elements on reusable layouts can also have different callbacks depending
on the context. To track the context of the callback, we keep track of the class
name that declares it. We will discuss the precise algorithm in Section 4.9.
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Algorithm 10 Strategy of mining callbacks

Require: Callgraph CG, Current Method M , Set of callbacks CBS (Table 4.5)
1: procedure searchForListeners(M)
2: UNITS ← findAssignmentsOf(CBS,M)
3: for U in UNITS do
4: UIReg ← getElementRegister(U)
5: CBREG← getCallbackRegister(U)
6: ELID ← resolveElementId(UIReg,U)
7: CBSIG← resolveSignatureOfCallback(CBREG,U)
8: addCallbackToElement(ELID,CBSIG)
9: end for

10: end procedure

Limitations

Due to complexity of the code it is sometimes impossible to identify which
exactly UI element a callback relates to. In such cases we just forget about
such callbacks and better miss some of them rather than introduce the over-
approximation.

4.9 Dealing with Redefining Text and Callbacks
in Reusable Layouts

As we already mentioned in Section 2.2.1, modern mobile applications heavily
use reusable layouts. Let us assume that the developer wants to create a custom
piece of layout and put there two buttons and a title (Listing 4.10). The title
as well as the button labels have predefined text. The behavior of this layout
is still unknown and heavily depends on the context, e.g. on the screen where
it will be injected. There are two screens to which the layout will be injected
(Listing 4.11 and Listing 4.12). Each screen will be responsible for redefining
the default text of the buttons and the title label as well as redefining the list
of assigned callbacks (Listing 4.13 and Listing 4.14). Thus, there is a need to
correctly map the text of each button to the associated callback, e.g., the label
of the button on the screen #1 should be mapped to the callback that will be
fired when a user will click on this button at this particular screen. Analysis
must not mix labels and behaviors from different screens.
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REUSABLE LAYOUTS

1 <FrameLayout>
2 <TextView
3 android:layout width=”wrap content”
4 android:layout height=”38dp”
5 android:text=”This is a default text of a fragment”
6 android:id=”@+id/frag default text” />
7

8 <Button
9 android:layout width=”wrap content”

10 android:layout height=”wrap content”
11 android:text=”DEFAULT OK”
12 android:id=”@+id/default ok”/>
13

14 <Button
15 android:layout width=”wrap content”
16 android:layout height=”wrap content”
17 android:text=”DEFAULT CANCEL”
18 android:id=”@+id/default cancel” />
19 </FrameLayout>

Listing 4.10: An XML layout file of the fragment.

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <RelativeLayout>
3 <fragment
4 android:id=”@+id/fragment with buttons inside”
5 class=”com.example.avdiienko.fragmentapp.FragmentWithButtons”
6 android:layout width=”match parent”
7 android:layout height=”match parent”/>
8 </RelativeLayout>

Listing 4.11: Injecting the fragment ot the activity layout of the main screen

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <RelativeLayout>
3 <fragment
4 android:id=”@+id/fragment with buttons inside 2”
5 class=”com.example.avdiienko.fragmentapp.FragmentWithButtons”
6 android:layout width=”match parent”
7 android:layout height=”match parent”/>
8 </RelativeLayout>

Listing 4.12: Injecting the fragment ot the activity layout of the second screen

1 public class MainActivity extends FragmentActivity implements View.
OnClickListener, FragmentWithButtons.OnFragmentInteractionListener {

2 private Button okButton;
3 private Button cancelButton;
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4

5 @Override
6 protected void onCreate(Bundle savedInstanceState) {
7 super.onCreate(savedInstanceState);
8 setContentView(R.layout.activity main);
9 TextView myFrag = (TextView) findViewById(R.id.frag default text);

10 myFrag.setText(”Main activity Text for TextView”);
11 okButton = (Button) findViewById(R.id.default ok);
12 okButton.setText(”Main Acitvity OK”);
13 okButton.setOnClickListener(this);
14 cancelButton = (Button) findViewById(R.id.default cancel);
15 cancelButton.setText(”Main Acitvity Cancel”);
16 cancelButton.setOnClickListener(this);
17 }
18

19 @Override
20 public void onClick(View v) {
21 //implementation of the onClick functionality
22 }
23 }

Listing 4.13: Redefining text and callbacks of the fragment on the main screen

1

2 public class SecondActivity extends FragmentActivity implements View.
OnClickListener, FragmentWithButtons.OnFragmentInteractionListener {

3

4 @Override
5 protected void onCreate(Bundle savedInstanceState) {
6 super.onCreate(savedInstanceState);
7 setContentView(R.layout.activity second);
8 TextView myFrag = (TextView)findViewById(R.id.frag default text);
9 myFrag.setText(”Second activity Text for TextView”);

10 Button okButton = (Button)findViewById(R.id.default ok);
11 okButton.setText(”Second Acitvity OK”);
12 okButton.setOnClickListener(this);
13 Button cancelButton = (Button)findViewById(R.id.default cancel);
14 cancelButton.setText(”Second Acitvity Cancel”);
15 cancelButton.setOnClickListener(this);
16 }
17 @Override
18 public void onClick(View v) {
19 //implementation of the onClick functionality
20 }
21 }

Listing 4.14: Redefining text and callbacks of the fragment on the second screen
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The developer could inject the layout to the third activity but redefine only
the text of the title and leave everything else as is. Or the developer could also
define the default callback for the layout. Such cases are possible and apart from
differentiating the text and callbacks on different screens, the analysis must store
also their default values. SAFAND, due to analyzing each activity and fragment
in isolation, is able to create such mapping. The mapping of the OK button is
shown in Listing 4.15. default value key says that the value has been assigned
in the XML layout file, whereas other values point to the respective classes.

1 <AppsUIElement>
2 <id>2131492947</id>
3 <text>
4 <entry>
5 <string>default value</string>
6 <string>DEFAULT OK</string>
7 </entry>
8 <entry>
9 <string>com.example.avdiienko.fragmentapp.SecondActivity</string>

10 <string>Second Acitvity OK</string>
11 </entry>
12 <entry>
13 <string>com.example.avdiienko.fragmentapp.MainActivity</string>
14 <string>Main Acitvity OK</string>
15 </entry>
16 </text>
17 <kindOfUiElement>Button</kindOfUiElement>
18 <listeners>
19 <st.cs.uni.saarland.de.entities.Listener>
20 <declaringClass>com.example.avdiienko.fragmentapp.SecondActivity</

declaringClass>
21 <listenerMethod>void onClick(android.view.View)</listenerMethod>
22 <listenerClass>com.example.avdiienko.fragmentapp.SecondActivity</

listenerClass>
23 <xmlDefined>false</xmlDefined>
24 </st.cs.uni.saarland.de.entities.Listener>
25 <st.cs.uni.saarland.de.entities.Listener>
26 <declaringClass>com.example.avdiienko.fragmentapp.MainActivity</

declaringClass>
27 <listenerMethod>void onClick(android.view.View)</listenerMethod>
28 <listenerClass>com.example.avdiienko.fragmentapp.MainActivity</

listenerClass>
29 <xmlDefined>false</xmlDefined>
30 </st.cs.uni.saarland.de.entities.Listener>
31 </listeners>
32 </AppsUIElement>

Listing 4.15: Mapping of text and callbacks produced by SAFAND
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Matching callbacks and text labels with default values

Indeed, Listing 4.15 shows the internal representation of results in a form that
is inconvenient to the user. Moreover, it is not clear how we want to use
default value in our mapping. Therefore we perform the post-processing
phase that resolves the final mapping between text items and callbacks. The
algorithm is described in Algorithm 11.

Algorithm 11 Strategy of matching callbacks and text of UI elements.

Require: Text Mapping T , Callback Mapping C
Ensure: Mapping of Matchings M

1: procedure resolve(T , C)
2: for key in GetUniqueKeys(C, T ) do
3: if key in T and C then
4: AddToMapping(T .get(key), C.get(key))
5: RemoveItem(T , key)
6: RemoveItem(C, key)
7: else if key in C and Contains(T , “default value”) then
8: AddToMapping(T .get(“default value”), C.get(key), M)
9: else if key in T and Contains(C, “default value”), M then

10: AddToMapping(T .get(key), C.get(“default value”), M)
11: end if
12: end for
13: return M
14: end procedure

In the first step the analysis iterates over all keys in the mapping of text and
callbacks to the values. If it finds the matching of keys in both collections, it
will add them to the final matching and remove them from the initial ones.

If the key is present only in one collection, the analysis identifies this collec-
tion and then checks whether there is an item with default value key in the
second one. If the operation is successful then the analysis will add the mapping
of the item from the first collection and the default item from the second one.

Such algorithm makes it possible to cover cases when developers redefine
only text labels or callbacks in the injected screen. The default value key from
the text collection of Listing 4.15 will not have any matching in the callbacks
collection as later does not have the default value key.
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4.10 Context-Sensitive Analysis of Callbacks

As discussed in Section 4.8, callbacks can be assigned to UI elements either
statically in a layout file or dynamically in the code. Beside the simple case
when a single callback is bound to a single button, there are cases when one
callback is bound to multiple buttons. As an example, consider the code in
Listing 4.16 where the same myClick callback is assigned to both okButton and
cancelButton. This example shows that to precisely assign API invocations to
the right button the analysis should be context-sensitive, i.e. it should be able
to correctly bind the okButton to the branch at line 16 and the cancelButton

to the one at line 19 respectively.

1 @Override
2 protected void onCreate(Bundle savedInstanceState) {
3 Button okButton = (Button) findViewById(R.id.ok button);
4 okButton.setText(R.string.okButton);
5 Button cancelButton = (Button) findViewById(R.id.cancel button);
6 cancelButton.setText(R.string.cancelButton);
7 okButton.setOnClickListener(myClick);
8 cancelButton.setOnClickListener(myClick);
9 }

10

11 View.OnClickListener myClick = new View.OnClickListener() {
12 public void onClick(View v) {
13 switch (v.getId()) {
14 case R.id.ok button:
15 //action if button is the okButton
16 break;
17 case R.id.cancel button:
18 //action if button is the cancelButton
19 break;
20 }
21 }
22 };

Listing 4.16: An example of assigning the same callback to multiple buttons

SAFAND checks each function that is reachable from a particular callback for
such comparisons and takes the correct branch based on the Id of UI element

to which the callback is mapped.
The same mechanism applies to the analysis of menu items. For now,

SAFAND supports the context-sensitive analysis of Option and Contextual menus,
tracks MenuItem:getItemId() comparisons and takes the correct branch based
on the menu item to which the callbacks is mapped (refer to Listing 4.17 for an
example). Other types of menus are out of scope of the current analysis.
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1 @Override
2 public boolean onCreateOptionsMenu(Menu menu) {
3 getMenuInflater().inflate(R.menu.main, menu);
4 return true;
5 }
6 @Override
7 public boolean onOptionsItemSelected(MenuItem item) {
8 switch (item.getItemId()) {
9 case R.id.search menu:

10 //action if search menu item is clicked
11 return true;
12 case R.id.share menu:
13 //action if share menu item is clicked
14 return true;
15 case R.id.print menu:
16 //action if print menu item is clicked
17 return true;
18 default:
19 return super.onOptionsItemSelected(item);
20 }
21 }

Listing 4.17: An example of assigning the same callback to multiple menu items

The last type of UI elements that requires a special treatment case in the anal-
ysis is Alert Dialogs (refer to Figure 4.1 for an example). They have completely
different behavior in contrast to buttons and menus. An alert dialog consists
of three buttons: positive, negative and neutral (Listing 4.18). Each of
them has a special unique id inside the alert dialog: -1, -2 and -3, respectively.
SAFAND analyses the which parameter of DialogInterface.OnClickListener()
in order to differentiate behavior of these buttons. Such analysis is a must-have
for alert dialogs as mixing up the behavior of positive and negative buttons
will lead to the overapproximation and will introduce noise.
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1 private void showDialog(){
2 DialogInterface.OnClickListener dialogClickListener = new DialogInterface.

OnClickListener() {
3 @Override
4 public void onClick(DialogInterface dialog, int which) {
5 switch (which){
6 case DialogInterface.BUTTON POSITIVE:
7 //perform the action
8 break;
9

10 case DialogInterface.BUTTON NEGATIVE:
11 //cancel the action
12 break;
13

14 case DialogInterface.BUTTON NEUTRAL:
15 //do nothing
16 break;
17 }
18 }
19 };
20

21 AlertDialog.Builder builder = new AlertDialog.Builder(this);
22 builder.setMessage(‘‘Do you want to perform the action X?’’);
23 builder.setPositiveButton(‘‘Yes’’, dialogClickListener);
24 builder.setNegativeButton(‘‘No’’, dialogClickListener);
25 builder.setNeutralButton(‘‘Skip’’, dialogClickListener);
26 builder.create().show();
27 }

Listing 4.18: An example of assigning the same callback to multiple buttons in
Alert Dialogs

Our SAFAND tool implements static context-sensitive inter-procedural analysis
that correctly handles the most typical cases (see Algorithm 12). Unfortunately,
as we discussed above, developers are so creative in writing the code and it is
impossible to handle all cases when it comes to the analysis of more than 10000
apps.
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Algorithm 12 Strategy of context-sensitive analysis of callbacks.

Require: UI element type UITY PE, UI element id UID, Callback CB, Call-
graph CG

Ensure: Calls CALLS
1: procedure analyzeCallback(UITY PE, UID CB)
2: if UITY PE == “Dialog Click” then
3: CALLS ← getCallsOfDialog(UID, CB)
4: return CALLS
5: end if
6: PARAM TY PES ← getParamTypes(CB)
7: if “android.view.View” in PARAM TY PES then
8: PNUM ← getIndexOfParam(“android.view.View”)
9: ID SIG← “android.view.View: int getId()”

10: CALLS ← getCallsOfViews(UID, CB, PNUM , ID SIG)
11: return CALLS
12: end if
13: if “android.view.View” in PARAM TY PES then
14: PNUM ← getIndexOfParam(“android.view.MenuItem”)
15: ID SIG← “android.view.MenuItem: int getItemId()”
16: CALLS ← getCallsOfViews(UID, CB, PNUM , ID SIG)
17: return CALLS
18: end if
19: CALLS ← edgesOutOfMethod(CG, CB)
20: return CALLS
21: end procedure

22: procedure getCallsOfDialog(UID, CB)
23: CALLS ← new List()
24: IDREG← getParamReg(1)
25: UNITS ← getUnits(CB)
26: for U in UNITS do
27: UNIT CALLS ← analyzeFromUnit(U ,IDREG,UID)
28: addToList(CALLS, UNIT CALLS)
29: end for
30: return CALLS
31: end procedure
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32: procedure getCallsOfViews(UID, CB, PNUM ID SIG)
33: CALLS ← new List()
34: IDREG← NULL
35: REGINSTANCE ← getParamReg(PNUM)
36: UNITS ← getUnits(CB)
37: for U in UNITS do
38: if U contains ID SIG then
39: LOC INST REG← getInstanceVar(U)
40: if REG INSTANCE == LOC INST REG then
41: IDREG← getLeftOp(U)
42: end if
43: end if
44: if IDREG != NULL then
45: UNIT CALLS ← analyzeFromUnit(U ,IDREG,UID)
46: addToList(CALLS, UNIT CALLS)
47: end if
48: end for
49: return CALLS
50: end procedure

51: procedure analyzeFromUnit(BRANCH UNIT ,IDREG,UID)
52: if U is SwitchStmt then
53: SWITCH REG← getSwitchValue(U)
54: if SWITCH REG == IDREG then
55: CASE UNIT ← findCaseBasedOnId(UID)
56: CASE CALLS ← analyzeFromU-

nit(CASE UNIT ,IDREG,UID)
57: addToList(CALLS, CASE CALLS)
58: return CALLS
59: end if
60: end if
61: if U is IfStmt then
62: IF REGS ← getIfRegs(U)
63: if IDREG in IF REGS then
64: BRANCH UNIT ← findBranchBasedOnId(UID)
65: BR CALLS ← analyzeFromU-

nit(BRANCH UNIT ,IDREG,UID)
66: addToList(CALLS, BR CALLS)
67: return CALLS
68: end if
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69: end if
70: UNIT CALLS ← edgesOutOfUnit(CG, U)
71: addToList(CALLS, UNIT CALLS)
72: end procedure

Limitations

During our experiments we observed that developers do not always follow guide-
lines on how to check which button has been clicked. Instead of comparing their
ids they compare objects, class names or even check in which activity they are.
Such cases rely on dynamic executions and cannot be resolved statically.

4.11 Evaluation

As the first step evaluation of SAFAND UI analysis module we aimed to compare
its abilities against the latest version of GATOR (March 2017), which is the
only currently available static framework to analyze Android UI elements and
bind them to their corresponding callbacks. We first ran SAFAND and GATOR

on a small set of synthetic examples that cover many different features of the
Android UI. We present the results of our analysis in Section 4.11.1. We conclude
our comparison by briefly presenting the results on the Health Tracker app
in Section 4.11.2.

In Section 5.1.4 and Section 5.1.5 we will show how program features ex-
tracted with the help of SAFAND UI analysis module can be used effectively to
identify UI errors.

4.11.1 Comparison on Synthetic Samples

To compare which features are supported by SAFAND and GATOR, we carefully
reviewed the Android documentation and analyzed several real apps. We crafted
a set of synthetic samples to validate capabilities of each tools. The sample apps
cover the following features:

• UI elements challenge — checks whether the analysis can capture UI ele-
ments declared in the code.
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• Layouts challenge — checks whether the analysis can correctly model the
layout structure of the activity. Different types of layout hierarchies are
present, created both statically, via xml tags, and dynamically, in the code.
The samples include merged layouts, fragments, menus, and dialogs.

• Listeners challenge — checks whether the app can correctly bind UI el-
ements to listeners in the following cases: 1) an instance of a class that
implements a listener, 2) an anonymous inner class, 3) a variable declared
as a type of interface, 4) an activity itself implements the listener interface
(See Listing 4.19), 5) via an xml layout attribute onClick.

• Text label challenge — tests whether the analysis handles text connected
to a UI element. We consider the following string types: plain text, static,
non-static and global fields, which are defined in Android resource files.
We also include examples of string concatenations via the StringBuilder.

• Style challenge — checks whether user-defined styles are supported. La-
bels and listeners are both defined via XML tags inside a style file.

• API challenge — tests whether the analysis correctly associates UI element
with APIs they trigger. We include samples that require context-sensitive
inter-procedural to obtain the correct information.

Table 4.6 and Table 4.7 report the results of our analysis. GATOR correctly
identified menus of two types. However, it could not find Pop-up menu and
mistakenly assigned the Contextual menu to a wrong button. Finally, it does
not support Navigation-Drop-Down menus as well. Regarding listeners, instead,
(see Table 4.7) GATOR tends to over-approximate in most cases assigning too
many listeners to UI elements.

4.11.2 Comparison on the Health Tracker app

On the Health Tracker app, see Figure 4.2, GATOR reported 9 listeners bound
to the Send User Data By Email button. Actually, it assignes the exact same
set of listeners to each of the 7 buttons in Health Tracker app. Two additional
buttons come from the Dialog invoked by one of the buttons. This dialog was
correctly identified by GATOR, but the list of listeners is over-approximated, and
its layout is completely blundered with the elements of the underlying activity.
Thus, for the Health Tracker app GATOR could produce only the rough model
of the activity, missing many details. In contrast, SAFAND generated the precise
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Table 4.6: User Interface Elements Support.

UI Element GATOR BACKSTAGE

<include>xml tag 3 3
LayoutInflater 3 3

<fragment>xml tag 7 3
FragmentManager 7 3

Option menu 3 3
Pop-up menu 7 3
Contextual menu 3 3
Navigation-Drop-Down menu 7 3

Drawer Layout 3 3
Tab View (via ActionBar) 7 3
ViewPager

xml defined 3 3
via PagerAdaptor 7 3

AlertDialog 3 3
Toast 7 3
Notification 7 3

Table 4.7: Listeners Support.

Listener Type GATOR BACKSTAGE

Layout xml file 7 3
Style xml file 7 3

Anonymous inner class V 3
Menu callbacks 3 3

Listener interface V 3
Shared superclass V 3
Listener assigned in a loop V 7

3— listener correctly identified, 7— listener not found,
V— too many listener found, over-approximation
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1 public class Main extends Activity implements OnClickListener {
2 @Override
3 public void onCreate(Bundle savedInstanceState) {
4 super.onCreate(savedInstanceState);
5 setContentView(R.layout.main);
6 findViewById(R.id.button1).setOnClickListener(
7 new OnClickListener() {
8 public void onClick(View arg0) {...}
9 });

10 findViewById(R.id.button2).setOnClickListener(new HClick());
11 findViewById(R.id.button3).setOnClickListener(this);
12 }
13 public void onClick(View arg0) {...}
14

15 private class HClick implements OnClickListener {
16 public void onClick(View arg0) {...}
17 }
18 }
19

Listing 4.19: Ways to register an event listener

activity model. It correctly assigned all listeners to the corresponding buttons.
Along with handler binding it supplied each button with its label and produced
a list of APIs reachable from each listener.

The over-approximation in UI hierarchy construction and callback handler
binding by GATOR is caused by the missing support of dynamic dispatch recog-
nition. For instance, for a set of subclasses, it reports a union of all layouts
assigned by a method defined in a shared superclass, whereas layout id is re-
defined inside each subclass. The same over-approximation also happens for
listeners implemented by an anonymous inner class. Namely, GATOR can not
distinguish such listeners, i.e. if two UI elements have different listeners it will
assign both to each of them.
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Figure 4.2: Health Tracker Lite app. The same message “File saved” is shown
for export as well as for the email actions.
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Chapter 5

Associating Graphical User
Interfaces with Sensitive
Behavior

5.1 Associating Graphical User Interfaces with
Sensitive APIs

The next phase of the program analysis phase in SAFAND is to map the adver-
tised behavior e.g., UI elements and their visible representation on the screen to
the actual behavior that is triggered in the process of user interaction. In this
section we use a notion of sensitive APIs (Section 2.3.2) as a proxy of the actual
behavior.

5.1.1 Mining Reachable APIs

To mine APIs that are reachable from a corresponding callback, SAFAND per-
forms the following steps:

1. SAFAND identifies callbacks from the UI analysis phase as discussed in
Section 4.8, and sets them as entry points for the call-graph construction.
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2. It builds the call-graph thanks to the Rapid Type Analysis algorithm
(RTA), which limits the over-approximation by identifying the classes in
the program that are possibly instantiated [15]. It should be mentioned
that we did not write our own implementation of the algorithm and reused
the built-in one version from SOOT. SAFAND, however, is fully configurable
and supports Variable Type Analysis (VTA) [51] and Hierarchy Analysis
(CHA) [17], as SOOT also supports them.

Both VTA and CHA have their own advantages and disadvantages. CHA

is quite fast in computing, but it over-approximates a lot and contains
infeasible edges. VTA, in turn, is highly precise as it performs propagation
of an abstract class object to represent all created objects of that class.
Such heuristic of VTA, on the one hand, eliminates infeasible edges and
makes call-graph more precise, but on the other hand it is time- and
resource costly. Moreover, in the presence of missed libraries, VTA is quite
conservative and truncates edges to them, as it cannot perform analysis
for the missed code. People mostly use the stubbed version of Android
platform classes which is shipped with Android SDK. Thus, all edges to the
Android platform will be removed by VTA as there is no implementation of
methods. The analysis of the whole Android platform is quite a resource
consuming task and therefore is not applicable for real-world problems.

RTA is between CHA and VTA in terms of the precision of the call-graph
and time which is needed for its construction. That is why RTA has been
chosen as a default algorithm, but one can easily change it.

3. For each callback it collects all reachable Android API invocations in the
transitive closure of its call-graph by performing the context-sensitive anal-
ysis described in Section 4.10.

Indeed, the last item in the list above is not as simple as it sounds. Dur-
ing our experiments we found that call-graph construction algorithms contain
some missing edges. The source of such misses is mostly related to the asyn-
chronous events and complex chains of them. Yang et al. [59] discussed in
their paper the problem of poor responsiveness of apps. And the main root-
cause was the fact that all time- and resource consuming operations have to
be excluded to background and asynchronous tasks. The current official An-
droid documentation suggests the same [4]. That is why developers take care
of the responsiveness of their apps as it directly correlates with the user sat-
isfaction. The most critical case is shown in Listing 5.1. We do not include
full implementation neither of Java Development Kit (JDK) nor of Android
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platform. Therefore we cannot identify which methods will be invoked in the
process of running executeOnExecutor method. The call-graph implementa-
tion of SOOT has the predefined knowledge for such cases, but this particu-
lar case is missed. SAFAND takes care of this case and manually points the
analysis to LongOperation:doInBackground method. We omit for now meth-
ods like onPreExecute or onPostExecute for performance reasons and assume
that they do not invoke any sensitive APIs and their job is merely to notify
the user about the task. Such construction was used in Tripwolf app. Apart
from android.os.AsyncTasks, SAFAND supports also classes that implement
java.lang.Runnable and all kinds of their submits.

1 public class MyActivity extends Activity(){
2 public void onCreate(Bundle savedInstanceState){
3 runTask();
4 }
5 private void runTask(){
6 LongOperation longOp = new LongOperation();
7 longOp.executeOnExecutor(Executors.newSingleThreadExecutor(), ””);
8 }
9

10 private class LongOperation extends AsyncTask<String, Void, String> {
11 @Override
12 protected String doInBackground(String... params) {
13 Log.w(”MyTag”, ”Long operation done”);
14 return ”Executed”;
15 }
16

17 @Override
18 protected void onPostExecute(String result){
19 update UI
20 }
21 }

Listing 5.1: Running asynchronous task by using Executor

The code included in apk files often includes libraries. As a consequence,
many API invocations that SAFAND would identify with its analysis belong to
third party libraries. Our initial manual evaluation of the analysis results showed
that many of these library invocations are infeasible in practice. This is due to
the over-approximation of static analysis as libraries usually have checks for
some conditions. Those checks appear in the code due to wide audience of the
libraries. Vendors release libraries which contains a lot of different functionality
and each developer uses only the small part of it. That is why the libraries
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code ensures that only desired functionality is triggered. Unfortunately, static
analysis is unable to cope with these conditions and thus, such code gives more
disadvantages than advantages. To diminish this problem, we decided to limit
the analysis only to the application code, thus excluding libraries from the
analysis.

To achieve this goal, we filter classes based on their package name. Therefore,
for instance, when analyzing the Twitter app, we would focus only on classes
belonging to the com.twitter package.

Furthermore, we also included a parameter to limit the depth of the call-
graph analysis starting from entry points. In fact, the farther the code from the
entry points, is the more likely it contains infeasible invocations. The default
settings, which are what we used in our experiments, consider only invocations
to the Android API that are in methods with the maximum depth of five calls
from the corresponding callback.

Finally, after obtaining the mapping between the UI element and its APIs

we conducted post-processing to resolve types of Intents (Section 3.2.2) and
Sensitive Resources (Section 3.2.1) in the same way as by extracting sensitive
data flows in Section 3.3. Precise values of Intents and Sensitive Resources
provide more expressive information on what behavior is being triggered.

5.1.2 Dissolving Intercomponent Calls

As we discussed in Section 2.1, Android application consists of a set of screens
and each screen usually performs a separate action. The typical example is a
process of making an order. In one screen a user selects the product, then by
clicking on “Proceed to the Payment” button he reaches the second screen with
payment details and confirmation. Activities are fully isolated in Android and
the only way to transfer the data from the first screen to the second one is to
leverage the inter-component communication mechanism by means of sending
Intents.

As we discussed in Section 3.2.2, intents can be explicit and implicit. Ex-
plicit intents are responsible for communication between activities of the same
application. In this section we describe the analysis of explicit intents and the
algorithm to dissolve them. By dissolving explicit intents we can identify the
target screen and thus, gather APIs that are invoked in its lifecyle methods (Sec-
tion 2.1.3). In other words, we gather APIs from others screens that are tight to
the selected product and “Proceed to the Payment” button from the first screen.

In order to achieve this, we analyze the class name of the corresponding
Intent API (Table 5.1) during API analysis. If the class name is the app’s activity,
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Table 5.1: Signatures of APIs that perform inter-component calls

android.content.Context: void startActivities(android.content.Intent[],android.os.Bundle)
android.content.Context: void startActivities(android.content.Intent[])
android.content.Context: void startActivity(android.content.Intent)
android.content.Context: void startActivity(android.content.Intent,android.os.Bundle)
android.content.Context: void startActivityForResult(android.content.Intent,int)
android.content.Context: void startActivityForResult(android.content.Intent,

int,android.os.Bundle)
android.content.Context: void startActivityFromChild(android.app.Activity,

android.content.Intent,int,android.os.Bundle)
android.content.Context: void startActivityFromChild(android.app.Activity,

android.content.Intent,int)
android.content.Context: void startActivityFromFragment(android.app.Fragment,

android.content.Intent,int,android.os.Bundle)
android.content.Context: void startActivityFromFragment(android.app.Fragment,

android.content.Intent,int)
android.content.Context: void startActivityIfNeeded(android.content.Intent,

int,android.os.Bundle)
android.content.Context: void startActivityIfNeeded(android.content.Intent,int)
android.content.Context: android.content.ComponentName startService(

android.content.Intent)
android.content.Context: boolean bindService(android.content.Intent,

android.content.ServiceConnection,int)

Table 5.2: Signatures of APIs that are responsible for triggering Activity and
Service

android.app.Service: void onStart(android.content.Intent,int)
android.app.Service: int onStartCommand(android.content.Intent,int,int)
android.app.Service: android.os.IBinder onBind(android.content.Intent)
android.app.Service: void onRebind(android.content.Intent)
android.app.Activity: void onCreate(android.os.Bundle)

we manually jump to its onCreate method and continue API search. Each such
jump increments the depthComponentLevel counter of further APIs. We do the
same for services, i.e. if we reach an API that is responsible for interaction with
the service, we extract the name of the service and emulate calls to its lifecycle
methods (Table 5.2). We use here only those lifecycle methods that can receive
an Intent and are very popular.
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5.1.3 Limitations

The main limitation of the API mining phase is missed or overapproximated
edges of the call-graph. Due to its nature, RTA algorithm fails to truncate
infeasible edges. The current implementation of SOOT’s call-graph does not
assume all possible cases of Java Threads, Executors and their combinations.

5.1.4 Graphical User Interfaces and their APIs

The Android Apps Dataset and its UI Elements

BACKSTAGE needs a large number of apps in order to point out relevant outliers.
Thus, we collected a big dataset that includes the top 600 Android apps in each
category of the Google Play Store as displayed in the US in July 2016. We chose
the US market in order to maximize the number of apps using English as the
main language. Instead of crawling the Google Play store to download the app
APKs, we retrieved them from ANDROZOO [2].

As a result of this step we collected 12,000 apps, which is less than one would
originally expect. This is because either Google Play lists less than 600 top apps
for some categories, or ANDROZOO does not have the desired APK.

Given that BACKSTAGE detects anomalies in the graphical user interface,
we filtered out the apps with little to no GUI, as well as the apps where UI is
mainly made of drawings on canvases (e.g. interactive games). As a heuristic to
filtering out the apps we could not analyze, we computed the ratio between the
number of layout files and the number of activities in the app. We ignored the
apps with the ratio under 70%. The intuition behind this heuristic is that there
is usually one layout file for each activity. When this is not the case, it means
that the activity does not have a UI that can be analyzed with our approach
(i.e. there are no labels with text, buttons, etc.). In essence, this heuristic
led us to ignore all apps listed in the GAMES, ANDROID WEAR, COMICS, and
APP WIDGET categories. As a result we removed from our dataset those apps
that are out of the scope of this work (924 apps).

Moreover, given that BACKSTAGE semantically groups similar text labels, it
requires on a dataset in one language. We chose English for its prevalence, and
we relied on LangDetect [42] to detect the language of the GUI text. Similarly
to the previous heuristic, we removed from our dataset the apps with less than
70% of the resources in English. 203 apps were removed in this step.
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Analysis Settings

Experiments have been conducted on the machine with with 730 GB of RAM,
64 Intel Xeon CPU cores and Java 8. We run 4 instances of the analysis at once
and each instance used 40 GB of RAM and 16 CPU cores.

In order to decrease the search space of APIs we decided to search for them
only in the code that relates to the same package as the app (refer to Section 5.1.1
for more details).

Each UI mining pack (Section 4.2) as well as reachability analysis of each
callback (Section 5.1.1) had a timeout of 1 minute. The overall timeout for the
analysis of an app was 3 hours. We could not analyze 356 apps due to this
timeout, and we thus removed them from the dataset too.

Analysis Results

Despite these filtering processes, our dataset remains significantly large: We ana-
lyzed in total 10326 apps and 292674 UI elements, which included 9375 unique UI

element types (Button, ImageButton, RadioButton, ToggleButton, CheckBox,
ImageView, EditText, and 9368 additional custom button types), and extracted
47677 unique text labels. Figure 5.1 shows the distribution of UI elements in
our dataset.

We analyzed more than 373000 unique callbacks, where the analysis identi-
fied over 4.5 million API invocations, in which they refer to 3.618 unique APIs.

Button
51%

Radiobutton
1%

ImageView
15%

TextView
17%

EditText
13%

Checkbox
3%

Figure 5.1: Distribution of UI elements in apps
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Figure 5.2 motivates the need of such complicated and sophisticated UI anal-
ysis like BACKSTAGE employs. Over 85% of callbacks are defined in the code at
runtime. It means that parsing layout XML files of activities gives us only 15%
of overall callbacks, which is just a tiny portion of them.

49231

289200

Defined	in	XML	layout Defined	dynamically

Figure 5.2: Ratio of callbacks defined in the XML layout file and dynamically in
the code

A large number of unique UI element types is suprising as developers love to
extend custom Android types as Button because of their limited functionality.
However, such UI elements are still Buttons. Therefore we group UI types by
their names and assign, for example, com.starbucks.mobilecard.controls.
SBButton to the Button type. We do this for the most known standard UI

elements: Button, RadioButton, ImageView, TextView, EditText, CheckBox.
Figure 5.3 shows the distribution of callbacks per UI type after applying this
heuristic.

As we discussed in Section 4.8, the most typical callback is onClick. However,
it does not mean that it is prevalent in all UI types. The ratio of callbacks for the
mentioned UI types is illustrated in Figure 5.4, Figure 5.5, Figure 5.6, Figure 5.7
and Figure 5.9. These ratios show that just tracking of onClick callback is not
enough which motivates the list of callbacks that we presented in Section 4.8.
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Figure 5.3: Ratio of callbacks defined in the XML layout file and dynamically in
the code by UI element type

It is interesting to see that not only Buttons can invoke APIs. Figure 5.10
shows that buttons, indeed, do not take the first place in this. It turns out that
TextView and ImageView invoke more APIs on average which clearly tell us that
UI analysis should assume a big variety of UI elements as BACKSTAGE does.

As we already mentioned, the whole analysis of one app has been run on
8 CPUs and has been fully parallelized. The runtime performance of the UI

analysis phase is illustrated in Figure 5.11. For most of the apps UI analysis
phase has been terminated within 5000 seconds (83 minutes). UI analysis of
Android Twitter app took about 10 hours. This app is the exception because
of an complexity of its code.

In contrast to UI analysis, reachability analysis of APIs is very fast (Fig-
ure 5.12). The main bottleneck is building a call-graph. Once it is built, the
analysis just walk over its edges and searches for APIs. The most time expensive
app for the reachability analysis is Google Docs app and the analysis took about
100 minutes. The reachability analysis of the most apps has been terminated
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OnClick;	 114579

OnLongClick;	 706
OnTouch;	1782 OnCheckedChanged;	

1111 Others;	158

Figure 5.4: Ratio of callbacks for Buttons

OnClick; 2244 

OnCheckedChang
ed;	557

OnLongClick;	 3 OnTouch; 42 

Figure 5.5: Ratio of callbacks for RadioButtons
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Figure 5.6: Ratio of callbacks for ImageViews
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Figure 5.7: Ratio of callbacks for TextViews
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Figure 5.8: Ratio of callbacks for EditText
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Figure 5.9: Ratio of callbacks for CheckBoxes
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Figure 5.10: Average number of reachable API invocations per UI element

in 6 minutes, which is quite a good result.

The most important thing is that BACKSTAGE can easily parallelize the
analysis. And by having access to very powerful servers one can easily analyze
even such big apps in a few minutes.

Each callback usually leads to one or more Android APIs. As we discussed
in the Section 5.1.1, we leverage the SUSI list of Android APIs and also their
categorization. However, there are 108561 callbacks that do not have any API

invocation from the list. It means that a particular UI element does not interact
with the Android system but can perform some internal app-related operations.
Figure 5.13 illustrates the top 50 API SUSI categories sorted by their occurrences.
It should be mentioned that in case an API falls to NO CATEGORY, we apply the
following scenario: we extract the package name of the corresponding API and
use it as a SUSI category. We assume that APIs from the same package should
perform similar operations. Such categorization helps us to understand what
behavior is being triggered in most cases.

Figure 5.13 shows that there are only 9 sensitive categories of APIs in the
top 50. Moreover, DATABASE INFORMATION and NETWORK are very general and
usually it is very hard to understand just from statistics which data is being
sent to the Internet or being stored in the database. That is why we deal not
only with sensitive APIs there, but assume all kind of Android APIs.
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Figure 5.11: Runtime of UI analysis phase

5.1.5 Mining anomalies

In this section we will discuss whether APIs on itself can be used to identify
applications with suspicious and malicious behavior (RQ3). Moreover we will
provide the background why a combination of declared and actual behavior can
be effectively used to identify abnormal apps. The content of the section is
primarily based on the BACKSTAGE technical report by Avdiienko et al.[13].

The declared behavior of UI elements the typically constructed from what a
user sees on the screen: If a UI element says “Print”, “Save”, “OK”, “Close”, or
“Cancel”, the experience with other programs using these labels gives users an
idea of what to expect. The actual behavior is everything that happens after
the user’s interaction with the UI element: If the user clicked on the “Save”
button, the actual behavior is “data has been saved to the database” and “the
corresponding pop-up message has been shown”.

To solve the aforementioned problem we have developed a tool called BACK-

STAGE. SAFAND handles the program analysis work of BACKSTAGE and provides
a possibility to identify the expected result of an UI element. The result could
be either visible or invisible to the user. Opening another window or poping-
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Figure 5.12: Runtime of Reachability analysis phase

up an alert dialog are examples of the visible result. Whereas all background
activities, which are associated with the UI element, are typically considered as
an instance of the invisible behavior. In other words, the user could say that
they are running behind the scene, i.e., in a backstage.

After performing the described program analysis, we perform two additional
steps in order to identify anomalies in GUIs:

Cluster Analysis. From associated text of all UI elements, we clustered their
verbs and nouns into 250 concepts—clusters of words with the minimal
semantical distance using the WORD2VEC model [39]. For each UI element,
we determine the distance between its text and the concepts. A button
named “Share”, for instance, would be semantically close to the concepts
of “friend” (to share) and “finances” (a share). Figure 5.14 shows the
labels of all UI elements that form the “Signup” concept.

For each button, we also extract the APIs used. Figure 5.15 shows the
ANDROID packages used by Signup buttons. The “normal” behavior of a
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Signup function is to access the network via android.net or org.apache.http.
Several signup functions also access android.telephony to access the
country code of either the current network or the inserted SIM card. The
android.location package also is frequently used—but only to access the
current local time.

Outlier Detection. For each concept, we use outlier detection to identify the
UI elements that invoke uncommon APIs, indicating differing and possibly
unexpected behavior. Accessing the current precise location is rarely used
in the Signup cluster—and thus, the TRIPWOLF Signup button is flagged
as an anomaly.

Since our analysis uses most widely used apps, with a high level of maturity,
visible GUI errors as those prevented by BACKSTAGE are typically quickly de-
tected, reported, and fixed. We thus switch to a well-established scheme used to
evaluate testing techniques. To evaluate how BACKSTAGE fares as it comes to
general GUI mismatches, we devised a setting in which we would create synthetic
GUI errors (mutations). Specifically, we would take existing buttons and change
their labels such that they would no longer match the APIs used. Then we would
then evaluate whether BACKSTAGE detects these mutations as anomalies.

In detail, we implemented the following mutations, modeled after mutation
and crossover operations in genetic algorithms:

Label replace. Given a UI element e, we replace its label with a label from
another concept. This label is chosen in two ways:

• randomly—that is, out of all the labels encountered across all apps.
This simulates a random error in labeling a UI element.

• high distance—that is, from a concept that is semantically distant
with respect to the original label.

Crossover. Given a UI element e, we would swap its label with the label of a
random UI element e′ 6= e in the same app. This simulates the error of
a developer confusing two UI elements, swapping callbacks to UI elements
within the same application. The mismatches created by crossover would
be more subtle, as they occur within the same range of app functionality.

All these mutations are applied on the data alone; we do not actually change
the code of existing apps. In terms of the difference induced by the mutation,
we would assume “high distance” mutations to be the easiest to detect, followed
by random mutations, and finally crossover.
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Table 5.3: BACKSTAGE accuracy for “random” label replace mutations.

Classified as
Input Abnormal Normal Total Precision = 75%
Mutant TP = 3369 FN = 1630 4999 Recall = 67%
Correct FP = 1100 TN = 4056 5156 Accuracy = 73%
Total 4469 5686 10155 Specificity = 79%

Table 5.4: Accuracy for “high distance” label replace mutations.

Classified as
Input Abnormal Normal Total Precision = 76%
Mutant TP = 3528 FN = 1471 4999 Recall = 71%
Correct FP = 1096 TN = 4060 5156 Accuracy = 75%
Total 4624 5531 10155 Specificity = 79%

The overall results of BACKSTAGE are summarized in the confusion matrices
in Table 5.3, Table 5.4, and Table 5.5. Let us discuss random mutations first,
and then contrast the results with the alternative mutation schemes.

As seen in Table 5.3, of the 4,999 mutants fed into BACKSTAGE, 3,369
are correctly classified as being abnormal, which results in the recall rate of
3369/4999 = 67%. As expected, high distance mutations (Table 5.4) have a
higher chance (71%) of being detected. Even if the programmer confuses two
buttons (Table 5.5), BACKSTAGE detects every second such mistake. All these
results should be interpreted from the standpoint that to the best of our knowl-
edge, there is no other approach which would detect such mismatches.

A high recall means little if the precision is low; that is, if the UI elements
reported by BACKSTAGE contain many false positives. For “random” mutations
(Table 5.3), the precision is 75% meaning that three out of four UI elements
reported will actually be abnormal; high distance mutations fare even slightly
better, with 76%. For “crossover” mutations (Table 5.5), BACKSTAGE still has
the precision of 69%, a bit more than two out of three UI elements reported
will be true anomalies. This high precision makes BACKSTAGE a practical tool
and proves that associations between UI and its program behavior is a good
indicator for incorrect behavior of apps.
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Table 5.5: BACKSTAGE Accuracy for crossover label mutations.

Classified as
Input Abnormal Normal Total Precision = 69%
Mutant TP = 2290 FN = 2475 4765 Recall = 48%
Correct FP = 1026 TN = 4121 5147 Accuracy = 65%
Total 3316 6596 9912 Specificity = 80%

5.2 Associating Graphical User Interfaces with
Sensitive Data Flows

The mere presence of a particular dataflow in the application does not nec-
essarily means that the app has suspicious behavior. Moreover, it is a quite
complicated task to understand why the dataflow is present in the application,
and, finally, to understand which action triggers it. For example, if the SMS

sending functionality is being triggered by the UI element (e.g., by the user in-
teraction) than, most probably, such dataflow is expected. In Section 3.3 we
already showed that flows of sensitive data is a good property to describe the
behavior of the application. Indeed, it is important to know not only the pres-
ence of the dataflow in the application, but also its intention and its trigger.
In other words, the location of the user is leaked to the Internet only when he
presses the button with the label “Locate”. It is sometimes necessary to know
how your location is used when you press this button. The location information
can be used in multiple ways and the exact way is essential to identify whether
the usage is legitimate or not. If user location is just obtained for saving her
route and leaks only to the internal database for history purposes, it will not
be assumed as a harmful. Moreover, associating UI elements and APIs (Sec-
tion 5.1.5) is not so helpful either, as it can not tell the user in what way her
location is used.

The workflow is described in Algorithm 13. SAFAND first starts with the
set of callbacks obtained from the UI analysis phase (Section 4.8). For each
callbacks it perform its context-sensitive analysis (Section 4.10) and extract all
reachable source APIs. We again rely on the SUSI (Section 2.3.2) categorization of
Android APIs to sources and sinks. Next, it saves the mapping of sources to their
corresponding callbacks. SAFAND does not just save APIs as a sources, it stores
all needed information to make APIs unique. It can differentiate invocations of
TelephonyManager:getDeviceId inside different callbacks for example. Next,
SAFAND invokes FLOWDROID and provides collected sources as starting points
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Algorithm 13 Strategy of identifying data flows and mapping them to respec-
tive UI elements.

Require: Callbacks C, CallGraph CG
Ensure: Mapping of UI elements to data flows UIF low

1: procedure DataflowAnalysis(T , C)
2: CBS ← callbacks to sources
3: AllS ← all sources
4: for CB in C do
5: S ←GetSourcesContextSensitive(CB,CG)
6: put(CBS,CB,S)
7: add(AllS,S)
8: end for
9: SubmitSourcesToInfoflowAnalysis(AllS)

10: Flows←RunInfoflowAnalysis
11: UIF low ←MapUiToFlows(CBS,Flows)
12: return UIF low
13: end procedure
14: procedure MapUiToFlows(CBS,Flows)
15: UiF low ← mapping of callbacks to flows
16: for F in Flows do
17: S ←GetSource(F )
18: CB ←GetCallbackForSource(CBS,S)
19: put(UiF low,CB,F )
20: end for
21: return UIF low
22: end procedure
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of the dataflow analysis. FLOWDROID performs forward taint propagation and
thus starts from sources and searches for their connections with sinks. When
the dataflow analysis is done, SAFAND obtains the set of dataflows and for each
dataflow it checks to which callbacks its source belongs. By using such heuristic
SAFAND can precisely match dataflows to their corresponding callbacks, and
consequently to UI elements that initiate them.

In this section we fully rely on FLOWDROID to obtain dataflows and do not al-
ter it. The only modification is the set of sources to start and the post-processing
phase which resolves values of sensitive resources and intents as explained above.

5.2.1 Evaluation

Practical evaluation of associations between UI and sensitive dataflows are out
of scope of the thesis. As mentioned in Chapter 3, dataflow analysis is quite
resource and time-expensive. This approach goes one level of granularity deeper
in comparison with the approach from Section 5.1 as sensitive dataflows describe
the behavior of an application more precise than just the presence of particular
APIs.

122



5.2. ASSOCIATING GRAPHICAL USER INTERFACES WITH
SENSITIVE DATA FLOWS

2600649
2411466

2241141
1208916

830336
684851

527939
490713

245312
218093
187652

129294
125689
95424
87499
77181
76579
74236
72845
56629
49664
49384
37910
33285
31256
28960
25317
23103
20919
17979
16969
15448
14834
14711
13264
12607
11225
8232
7589
7318
7245
7017
6266
5952
5846
5658
5362
5247
4814
4319

0 500000 1000000 1500000 2000000 2500000 3000000

android.view
android.content
android.widget

org.json
android.content.res

LOG
android.os

android.app
android.graphics

DATABASE_INFORMATION
NETWORK

org.apache.http.client.methods
android.graphics.drawable

android.webkit
LOCATION_INFORMATION

DIALOG
android.preference

TOAST
org.apache.http.message

INTENT
android.util

CONTENT_RESOLVER
android.view.animation
android.database.sqlite

android.accounts
android.support.v4.view

android.text
android.media

android.provider
FILE

android.hardware
javax.crypto

UNIQUE_IDENTIFIER
org.apache.http.conn.scheme

org.apache.http.impl.client
ACCOUNT_INFORMATION

android.support.v4.content
IMPLICIT_INTENT

org.apache.http.params
android.appwidget

AUDIO
NOTIFICATIONS

android.sax
org.xml.sax

org.apache.http.impl.cookie
SYSTEM_SETTINGS

org.apache.http.entity
BLUETOOTH

android.text.format
android.animation

Figure 5.13: Top 50 APIs reachable from UI elements
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Figure 5.14: Labels of semantically related UI elements, forming a “Login”
concept. Based on its label and its context on the screen, the “Join TRIPWOLF”
Signup button is associated with this concept.

Figure 5.15: The ANDROID API packages used by the functions triggered by
the UI elements in Figure 5.14. “Normal” functions of login buttons include
accessing the Internet and switching to a new screen.
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Chapter 6

Conclusion and future work

Nowadays mobile devices are an essential part of people’s life. Social networks,
corporate and personal mailboxes, videos, photos and even payments are pos-
sible and accessible via modern pocket devices. Such impetuous break-through
in technology indeed introduces a lot of security and privacy risks for end-users.

Each mobile device has dozens of installed apps and all of them are ubiqui-
tous. End-users sometimes can not observe and control what these applications
are actually doing on their devices. Therefore cybercriminals develop malicious
payloads for well-known applications or create completely new and shiny apps
which steal sensitive user data such as passwords, contacts and payment infor-
mation.

In the thesis we addressed aforementioned issues and presented the set of
static analysis approaches to analyze and describe behavior of Android appli-
cations called SAFAND. SAFAND encapsulates program analysis techniques of
MUDFLOW and BACKSTAGE tools.

MUDFLOW analyses and learns “normal” flows of sensitive data from trusted
applications to detect “abnormal” flows in possibly malicious applications. For
example, it reports if an application accesses the address book of a device and
this data goes to the network. The approach is effective in detecting novel
attacks, learning from benignware only, as well as recognizing known attacks,
learning from benign as well as malicious samples.

Despite data flow analysis of MUDFLOW being expensive for real-world apps,
it has been shown that the flow of sensitive data is a useful abstraction not only
for automatic classification, but also for end users to understand what an app
does with sensitive data.
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The presence of a particular dataflow does not necessarily mean that the app
is malicious. Developers of modern applications leverage a huge set of Android
APIs to make their apps more attractive for end-users. Thus, it is not easy to
identify malicious applications just based on their flows of sensitive data.

What actually matters is whether the user is aware of such behavior and at
the end agreed on it. To address this issue, we extended our analysis from just
API to UI level aa well. The idea is to connect UI of Android applications with
their corresponding behavior. For example, it is important to know whether the
address book was accessed and the data was been sent to the network by clicking
on a Send button or the action was executed somewhere in the background
without user’s notice.

BACKSTAGE is the first approach that generally checks the advertised func-
tionality of UI elements against their implemented functionality. To this end,
BACKSTAGE analyzes thousands of existing text and context UI elements shown
to the user, clusters them by common concepts, and in each cluster detects out-
liers—that is, UI elements that use different APIs than the others. This approach
is general and effective: In our evaluation, BACKSTAGE was able to effectively
identify GUI behavior mismatches with high accuracy.

We proved that presented program analysis can be effectively used to identify
applications with suspicious behavior.

Despite presented successes, there are still lots of opportunities for improve-
ment.

Our own future work will focus on the following topics:

• To fool MUDFLOW, malware writers could use reflection, native code, self-
decrypting code, or other features that challenge static analysis. Usage
of such techniques in combination with sensitive data, however, would be
unusual for benign apps. We are investigating analysis techniques that
would detect such obfuscation techniques as anomalies.

• While static taint analysis across components and intermediate data stor-
ages is difficult, it is not fundamentally impossible. We want to design
analysis techniques specifically tailored to app-wide and system-wide data
flows as found in Android.

• Incorporating our earlier CHABADA work [24], we want to associate flows
with app descriptions, detecting anomalies within specific application do-
mains such as “travel”, “wallpapers”, and likewise.
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• Where static analysis is challenged, combinations of automated test gen-
eration and dynamic flow analysis may prove to be helpful alternatives.
We are investigating such combinations in conjunction with static analysis
to combine the strengths of both static and dynamic flow analysis.

• Despite the ease of static analysis, we are considering using additional dy-
namic analysis and exploration to assess dynamic features. Most notably,
we want to validate anomalies as reported by BACKSTAGE by creating test
cases that demonstrate the actual API access.

• Detecting a mismatch of UI element label and its behavior allows for au-
tomatic suggestions of better fitting labels. One idea we are investigating
is to identify labels of UI elements that use similar APIs and to suggest
them as automatic repairs, e.g., “This button should be named ‘Send’.”

• Besides ANDROID apps, there are several other domains with programs
whose GUIs could be mined, such as desktop applications.

• Besides looking for anomalies between text and behavior, one might also
examine anomalies in visual presentation (for example, “The ‘Send’ button
should be highlighted”), layout, process, or visual images. This would
open a door to general automatic anomaly detection and recommendations
for GUI design.
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