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Abstract

When humans comprehend language, their interpretation consists of more than just the
sum of the content of the sentences. Additional logic and semantic links (known as coher-
ence relations or discourse relations) are inferred between sentences / clauses in the text.
The identification of discourse relations is beneficial for various NLP applications such as
question-answering, summarization, machine translation, information extraction etc.
Discourse relations are categorized into implicit and explicit discourse relations depending
on whether there is an explicit discourse marker between the arguments. In this thesis, we
mainly focus on the implicit discourse relation classification, given that with the explicit
markers acting as informative cues, the explicit relations are relatively easier to identify for
machines.
The recent neural network based approaches in particular suffer from insufficient training
(and test) data. As shown in Chapter 3 of this thesis, we start out by showing to what extent
the limited data size is a problem in implicit discourse relation classification, and propose
data augmentationmethodswith the help of cross-lingual data. And thenwepropose several
approaches for better exploiting and encoding various types of existing data in the discourse
relation classification task.
Most of the existing machine learning methods train on sections 2-21 of the PDTB and test
on the section 23, which only includes a total of less than 800 implicit discourse relation
instances. With the help of cross validation, we argue that the standard test section of the
PDTB is too small to draw conclusions upon. Withmore test samples in the cross validation,
we would come to very different conclusions about whether a feature is generally useful.
Second, we propose a simple approach to automatically extract samples of implicit discourse
relations frommultilingual parallel corpus via back-translation. After back-translating from
target languages, it is easy for the discourse parser to identify those examples that are origi-
nally implicit but explicit in the back-translations. Having those additional data in the train-
ing set, the experiments show significant improvements on different settings.
Finally, having better encoding ability is also of crucial importance in terms of improving
the classification performance. We propose different methods including a sequence-to-
sequence neural network and a memory component to help have better representation of
the arguments. We also show that having the correct next sentence is beneficial for the task
within and across domains, with the help of the BERT (Devlin et al., 2019) model. When
it comes to a new domain, it is beneficial to integrate external domain-specific knowledge.
In Chapter 8, we show that with the entity-enhancement, the performance on BioDRB is
improved significantly, comparing with other BERT based methods.
In sum, the studies reported in this dissertation contribute to address the data bottleneck
problem in implicit discourse relation classification and propose corresponding approaches
that achieve 54.82% and 69.57% on PDTB and BioDRB respectively.
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Zusammenfassung

WennMenschen Sprache verstehen, besteht ihre Interpretation ausmehr als nur der Summe

des Inhalts der Sätze. Zwischen Sätzen imText werden zusätzliche logische und semantische

Verknüpfungen (sogenannte Kohärenzrelationen oder Diskursrelationen) hergeleitet. Die

Identifizierung von Diskursrelationen ist für verschiedene NLP-Anwendungen wie Frage-

Antwort, Zusammenfassung, maschinelle Übersetzung, Informationsextraktion usw. von

Vorteil.

Diskursrelationen werden in implizite und explizite Diskursrelationen unterteilt, je nach-

dem, ob es eine explizite Diskursrelationen zwischen den Argumenten gibt. In dieser Arbeit

konzentrieren wir uns hauptsächlich auf die Klassifizierung der impliziten Diskursrelatio-

nen, da die expliziten Marker als hilfreiche Hinweise dienen und die expliziten Beziehun-

gen für Maschinen relativ leicht zu identifizieren sind. Es wurden verschiedene Ansätze

vorgeschlagen, die bei der impliziten Diskursrelationsklassifikation beeindruckende Ergeb-

nisse erzielt haben. Die meisten von ihnen leiden jedoch darunter, dass die Daten für auf

neuronalen Netzen basierende Methoden unzureichend sind. In dieser Arbeit gehen wir

zunächst auf das ProblembegrenzterDaten bei dieser Aufgabe ein und schlagen dannMeth-

oden zur Datenanreicherung mit Hilfe von sprachübergreifenden Daten vor. Zuletzt schla-

gen wir mehrere Methoden vor, um die Argumente aus verschiedenen Aspekten besser

kodieren zu können.

Die meisten der existierenden Methoden des maschinellen Lernens werden auf den Ab-

schnitten 2-21 der PDTB trainiert und auf dem Abschnitt 23 getestet, der insgesamt nur

weniger als 800 implizite Diskursrelationsinstanzen enthält. Mit Hilfe der Kreuzvalidierung

argumentieren wir, dass der Standardtestausschnitt der PDTB zu klein ist um daraus

Schlussfolgerungen zu ziehen. Mit mehr Teststichproben in der Kreuzvalidierung würden

wir zu anderen Schlussfolgerungen darüber kommen, ob ein Merkmal für diese Aufgabe

generell vorteilhaft ist oder nicht, insbesondere wennwir einen relativ großen Labelsatz ver-

wenden. Wenn wir nur unseren kleinen Standardtestsatz herausstellen, laufen wir Gefahr,

falsche Schlüsse darüber zu ziehen, welche Merkmale hilfreich sind.

Zweitens schlagen wir einen einfachen Ansatz zur automatischen Extraktion von Samples
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impliziter Diskursrelationen aus mehrsprachigen Parallelkorpora durch Rückübersetzung

vor. Er ist durch den Explikationsprozess motiviert, wenn Menschen einen Text übersetzen.

Nach der Rückübersetzung aus den Zielsprachen ist es für den Diskursparser leicht, diejeni-

gen Beispiele zu identifizieren, die ursprünglich implizit, in den Rückübersetzungen aber

explizit enthalten sind. Da diese zusätzlichen Daten im Trainingsset enthalten sind, zeigen

die Experimente signifikante Verbesserungen in verschiedenen Situationen. Wir verwen-

den zunächst nur französisch-englische Paare und haben keine Kontrolle über die Qualität

und konzentrieren uns meist auf die satzinternen Relationen. Um diese Fragen in Angriff

zu nehmen, erweitern wir die Idee später mit mehr Vorverarbeitungsschritten und mehr

Sprachpaaren. Mit den Mehrheitsentscheidungen aus verschiedenen Sprachpaaren sind die

gemappten impliziten Labels zuverlässiger.

Schließlich ist auch eine bessere Kodierfähigkeit von entscheidender Bedeutung für die

VerbesserungderKlassifizierungsleistung. Wir schlagen ein neuesModell vor, das aus einem

Klassifikator und einem Sequenz-zu-Sequenz-Modell besteht. Neben der korrektenVorher-

sage des Labels werden sie auch darauf trainiert, eine Repräsentation derDiskursrelationsar-

gumente zu erzeugen, indem sie versuchen, die Argumente einschließlich eines geeigneten

impliziten Konnektivs vorherzusagen. Die neuartige sekundäre Aufgabe zwingt die interne

Repräsentation dazu, die Semantik der Relationsargumente vollständiger zu kodieren und

eine feinkörnigere Klassifikation vorzunehmen. Um das allgemeine Wissen in Kontexten

weiter zu erfassen, setzen wir auch ein Gedächtnisnetzwerk ein, um eine explizite Kon-

textrepräsentation von Trainingsbeispielen für Kontexte zu erhalten. Für jede Testinstanz

erzeugenwir durch gewichtetes LesendesGedächtnisses einenWissensvektor. Wir evaluieren

das vorgeschlagene Modell unter verschiedenen Bedingungen und die Ergebnisse zeigen,

dass dasModellmit demSpeichernetzwerk dieVorhersage vonDiskursrelationen erleichtern

kann, indem es Beispiele auswählt, die eine ähnliche semantische Repräsentation und

Diskursrelationen aufweisen.

Auch wenn ein besseres Verständnis, eine Kodierung und semantische Interpretation für

die Aufgabe der impliziten Diskursrelationsklassifikation unerlässlich und nützlich sind, so

leistet sie doch nur einen Teil der Arbeit. Ein guter impliziter Diskursrelationsklassifikator

sollte sich auch der bevorstehenden Ereignisse, Ursachen, Folgen usw. bewusst sein, um die
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Diskurserwartung in die Satzdarstellungen zu kodieren. Mit Hilfe des kürzlich vorgeschla-

genen BERT-Modells versuchen wir herauszufinden, ob es für die Aufgabe vorteilhaft ist,

den richtigen nächsten Satz zu haben oder nicht. Die experimentellen Ergebnisse zeigen,

dass das Entfernen der Aufgabe zur Vorhersage des nächsten Satzes die Leistung sowohl

innerhalb der Domäne als auch domänenübergreifend stark beeinträchtigt.

Die begrenzte Fähigkeit von BioBERT, domänenspezifisches Wissen, d.h. Entitätsinforma-

tionen, Entitätsbeziehungen etc. zu erlernen, motiviert uns, externes Wissen in die vor-

trainierten Sprachmodelle zu integrieren. Wir schlagen eine unüberwachte Methode vor,

bei der Information-Retrieval-System und Wissensgraphen-Techniken verwendet werden,

mit der Annahme, dass, wenn zwei Instanzen ähnliche Entitäten in beiden relationalen Ar-

gumenten teilen, die Wahrscheinlichkeit groß ist, dass sie die gleiche oder eine ähnliche

Diskursrelation haben. Der Ansatz erzielt vergleichbare Ergebnisse auf BioDRB, verglichen

mit Baselinemodellen. Anschließend verwenden wir die extrahierten relevanten Entitäten

zur Verbesserung des vortrainierten Modells K-BERT, um die Bedeutung der Argumente

besser zu kodieren und das ursprüngliche BERT und BioBERT mit einer Genauigkeit von

6,5% bzw. 2% zu übertreffen.

Zusammenfassend trägt diese Dissertation dazu bei, das Problem des Datenengpasses bei

der impliziten Diskursrelationsklassifikation anzugehen, und schlägt entsprechende An-

sätze in verschiedenen Aspekten vor, u.a. die Darstellung des begrenzten Datenproblems

und der Risiken bei der Schlussfolgerung daraus; die Erfassung automatisch annotierter

Daten durch den Explikationsprozess während der manuellen Übersetzung zwischen En-

glisch und anderen Sprachen; eine bessere Repräsentation vonDiskursrelationsargumenten;

Entity-Enhancement mit einer unüberwachten Methode und einem vortrainierten Sprach-

modell.
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Chapter 1

Introduction

The comprehension of language by humans are not simply the combination of interpreta-

tion of isolated and unrelated sentences or clauses, instead humans assign meaning to the

sentences by adding logic links between the clauses. In this way, a piece of text is often being

understood by connecting to other text units from its context. These units can be surround-

ing clauses, sentences or even paragraphs. These logic and semantic links between clauses

are also known as coherence / discourse relations. Discourse relations between clauses also

affect and add new interpretation of the text in many ways, let’s consider the following ex-

ample:

1. Countries implement necessary quarantines and social distancing practices after the

global spread of the coronavirus. Theworld economy is expected to have a large recession

in 2020.

In the first sentence, two events have been connected by the temporal connective after, which

indicates that countries implement actions after the spread of the virus. But it can also be

interpreted that the measures implemented by countries are caused by the global spread

of the virus. What’s more, without any explicit cues like the word after, the cause relation

between the spread of virus and the economic recession can also be easily inferred.



2 Chapter 1 Introduction

If readers are not able to construct the relationships between sentences and simply sum the

meanings of sentences solely, they will fail to fully understand the context of the text. Hence,

discourse relation is crucial to natural language understanding in general.

In this chapter, we first give a general introduction to the basic concepts of computational

discourse relation parsing. And then we briefly introduce the research questions discussed

in this dissertation which is followed by the contributions to those questions. At last, we

have an overview of the structure of this dissertation.

1.1 Computational discourse relation parsing

Even when a text is well-structured, finding the discourse relationships that hold texts to-

gether automatically is difficult. The process of discourse-level analysis may lead to a num-

ber of natural language process tasks: connective identification, discourse segmentation,

discourse relation classification.

The PennDiscourse Treebank (Prasad et al., 2008) adopts a binary predicate-argument view

on discourse relations, where the connective acts as a predicate that takes two text spans as

its arguments. The span to which the connective is syntactically attached is called Argument

2, while the other one is called Argument 1. Thus the first step to analyze discourse is to

identify the connectives.

Discourse relations are held between two attributes. Given a paragraph of raw text, identi-

fying the spans for attributes is called discourse segmentation. As for explicits, having the

connective attached to Arg2 makes the task relatively easier because only Arg1 needs to be

extracted. However, for implicits, both arguments spans need to be identified.

After having both arguments, how to encode and classify the discourse relation between

them leads us to the task of discourse relation classification. In this dissertation, we focus

on the implicit discourse relation classification where the discourse relations are not sig-

naled explicitly by discourse connectives. Previous work has shown that implicit discourse

relation classification has been the bottleneck of discourse parsing due to the difficulty in

better representing the semantic and syntactic information of the arguments.
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1.2 Research questions

With the booming successes of deep learning methods in natural language processing in re-

cent years, lots of neural network models have been proposed for implicit discourse relation

classification. However, due to the difficulties of manually annotating discourse relation

data, most of the models are trained and evaluated on the single largest available discourse

relation corpus available for now, the Penn Discourse Treebank, with some conventional

settings. In this dissertation, we try to answer the following questions:

1. Is the currently most-used dataset large enough for the machine learning methods to

train on? Is it risky to draw conclusions aboutwhether the inclusion of certain features

constitute a genuine improvement depending on the results on a small test set?

2. Manually annotating discourse relations, implicit ones in particular, are very expen-

sive and time-consuming. Is there a way to acquire automatically annotated implicit

discourse relation data with high confidence?

3. With limited number of data, learning the surface cues is obviously not adequate.

How to have better understanding of how arguments relate to one another and to

have better semantic representations are of crucial importance for implicit discourse

relation classification.

4. Having good encoding only does part of the job, a good implicit discourse relation

classifier should be competent in being able to encode discourse expectation and learn

typical temporal event sequences, causes, consequences etc. for all kinds of events.

This motivates us to figure out whether the next sentence prediction subtask in BERT

(Devlin et al., 2019) is really helpful or not in capturing the upcoming events.

5. For neural network models, the domains matter a lot. The differences in vocabu-

lary and writing style across domains can cause state-of-the-art supervised models to

dramatically increase in error. The gap between different domains, like Wall Street

Journal (economic journals) and PubMed (biomedical journals) dataset, has great in-

fluences on the models. How to shift and reduce the impacts of domain discrepancies

with the pre-trained language models and external entity knowledge?
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These are important questions for the task of implicit discourse relation classification, espe-

cially for the neural network models. In this dissertation, we tackle these questions in three

pathways: data argumentation, representation modeling and entity enhancement. Specifi-

cally, we first expose the risky idea of drawing conclusions with the results from a limited

number of test samples and advocate to use cross validation instead. Then we propose to

use back-translation methods on multi-lingual data to expand the scale of annotated train-

ing data, which later alsomotivates us to use sequence to sequencemodel to better represent

the relational arguments. Last but not the least, we try to use unsupervisedmethods and also

entity enhancement techniques with pre-trained language models.

1.3 Dissertation contributions

This dissertation is concerned with using machine learning methods to assign the discourse

relation to a pair of sentences with no explicit discourse connective in between. We tackle

this task from different angles inspired by the weaknesses of previous proposed methods,

and propose new approaches respectively. The major contributions of this dissertation are

summarized as follows.

1.3.1 Limited data size problem

In recent studies, various classes of features are explored to capture lexical and semantic

regularities for identifying the sense of implicit discourse relations, including linguistically

informed features like polarity tags, Levin verb classes, length of verb phrases, language

model based features and constituent features etc.. Most of them are trained and tested on

the PDTB, in which there are only a dozen instances for some of the second-level relations.

The PDTB is split from the Penn Treebank (Marcus et al., 1993), which has a lot more in-

stances to learn from for the parsing community. Conclusions about the effectiveness of

including certain features are made depending on the performances on the conventional

most-used test set, which has only less than 800 implicit relations. In this work, we aim

to demonstrate the degree to which conclusions would depend on whether one evaluates

on the standard test section only, or performs cross validation on the whole dataset for the
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second-level discourse relation classification.

We employ simple Long Short-Term Memory networks that concatenate surface features

to predict the implicit discourse senses, given both the relational arguments. Our experi-

ment results suggest that it comes to very different conclusions if actually running the cross-

validation experiments, which means that the standard test section of the PDTB is way too

small to draw conclusions about whether a feature is generally beneficial to this task or not,

especially when we use a relatively larger label sets. We run a large risk of drawing incorrect

conclusions about which features are helpful if we only stick out our small standard test set.

In this work we argue in favor of significance testing with cross validation, as opposed to

boot strapping methods that only use the standard small test set. This is the first work that

systematically evaluates the effect of the train/test split for the implicit discourse relation

classification task on PDTB.

1.3.2 Data augmentation with multi-lingual back-translation

With the increasing number of parameters to be trained, most of the proposed neural net-

work models for implicit discourse relation classification suffer from the shortage of labeled

data. While manually annotating implicit discourse relations requires professional linguis-

tic knowledge, is time consuming and also expensive, we hereby address the problem by

procuring additional training data from parallel corpora. When human translate a text, they

sometimes add connectives (also know as explicitation process). We automatically back-

translate it into an English connective and use it to offer an explicit label to the original

implicit English with high confidence.

The pipeline works as follows. Firstly we back-translate the target French sentence from

corpora that are mostly used in machine translation task into English using a pre-trained

machine translation system. Then with the help of an end-to-end discourse parser, we parse

both the original and back-translated English sentences. The parser will output a list of

explicit relations including the discourse relation tags and argument spans. Since all the

implicit instances are consecutive sentences in the PDTB scheme, we follow this rule and

then identify the implicit-to-explicit discourse relation alignments according the outputs of

end-to-end parser. We extract those sentence pairs that hold implicit relation in the original
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English but explicit in the back-translations. In the end we label the source English sentence

pairs with the relation tag of the explicit relation in the back-translated target text.

However, this method still suffers from the fact that typical sentence-aligned corpora may

have some sentences removed and make the consecutive sentences no longer coherent to

get inter-sentential discourse instances. In addition, using a single language pair (English-

French in this case) might not be sufficient to get instances with high confidence. In order

to solve these questions, we expand the pipeline described above with more preprocessing

steps and more language pairs. With the majority votes from different language pairs, the

mapped implicit labels are more reliable.

1.3.3 Better representation of relation arguments

Given that there is no connectives acting as informative cues for implicit discourse rela-

tion classification, the difficulties of this task has shifted into how to effectively encode the

relational arguments. We here propose a new model, which consists of a classifier and a

sequence-to-sequence model which is trained to generate a representation of the discourse

relation arguments by trying to predict the arguments including a suitable implicit connec-

tive. The whole method is trainable because such implicit connectives have been annotated

as part of the PDTB corpus. This novel secondary task forces the internal representation to

more completely encode the semantics of the relation arguments and to make a more fine-

grained classification. To further capture common knowledge in contexts, we also employ

a memory network to get explicit context representation of contexts training examples. For

each test instance, we generate a knowledge vector by weighted memory reading. Exper-

imental results show that with the context memory, the model can facilitate the discourse

relation prediction by choosing examples that share similar semantic representation and

discourse relation.

The successful use of memory network means that having the relevant context is beneficial

for implicit discourse relation classification. However, it can only provide some background

knowledge and give hints as to what topic the instance possibly is about and what coherence

relation may be present. It is clear that models cannot learn all these diverse relations from

the limited amounts of available training data. A more general representation of discourse
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expectations should also be vital and learnt.

After seeing all those successes in various NLP tasks made by the bidirectional encoder rep-

resentation from transformers (BERT) proposed by Devlin et al. (2019), we see that the next

sentence prediction ,which has been used in BERT as a sub-task, is a very good fit for the

implicit discourse relation classification. It allows the model to be aware of what typical

causes, consequences, events or contrasts are coming up in the next sentence. To have bet-

ter understanding about what role the next sentence prediction task plays in model, we try

the BERT model with and without the sub-task within and across domains. In addition, in-

domain continue pre-training with BERT has been proven very useful in improving the per-

formance of this task. With the continue training on the new domain data, the model shows

very competitive ability in shifting across domains, compared with the whole-in-domain

training model like BioBERT (Lee et al., 2020).

1.3.4 Entity-enhanced pre-trained language model

In the last work, we show that with a small amount of in-domain data for continue pre-

training, the BERT model demonstrates very competitive ability in shifting across domains.

However, comparing with the BioBERT which is pre-trained with gigantic in-domain data,

the improvement brought by the in-domain raw texts pre-training is very limited. One of the

reasons is that for a new domain such as biomedical, the entities may have different formats

or appear very rarely. This sparsity problem makes it very hard for neural network language

models to encode.

In this work, we first use the information retrieval system to extract the SPO (Subject, Pred-

icate, Object) triples from the explicit discourse instances. We assume that if both discourse

instances are talking about the same entities, there is high possibility that they share some

similarities in the sense of discourse relations. The experiments show that even with the

unsupervised majority voting system, the proposed method achieves comparable results

comparing with the BERT models that are trained across domains. In addition, we employ

the recent proposed approach K-BERT which injects the domain-specific entity knowledge

into the pre-trained model. With the extra SPO triples we extract with the knowledge graph

system, the classification performance outperforms the BioBERT with 2% accuracy and be-
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comes the new state of the art result on the BioDRB.

1.4 Overview of the dissertation

This dissertation is organised into nine chapters.

• Chapter 2 provides a general introduction to discourse relation including some basic

concepts of discourse relation and as well as different theories in the recent decades.

Furthermore, we look into the available resources for computational study of dis-

course relations and give an overview of the Penn Discourse Treebank, which is a

discourse-level annotation atop the Penn Treebank. And then we review the recent

proposed neural modeling techniques and talk about the recent machine learning at-

tempts and advances in the task of discourse modelling.

• In Chapter 3, we talk about the problem of limited number of training data for the

task. We argue that the standard test section of the PDTB is too small to draw con-

clusions about whether a feature is generally useful or not, especially when using a

larger label set, and we run large risk of having incorrect conclusions if we stick to the

small, most-used standard test set. Instead, we advocate to make full use of the whole

dataset by using cross validation.

• InChapter 4, we propose a new pipeline to automatically annotating original English

sentences with the help of back-translated connectives of French sentences. After

back-translating the French sentences from the English-French parallel corpus, we

identify the explicit connectives in the back-translation and label the original English

with high confidence. In this way, we expand the training data to a significant size.

• In Chapter 5, we expand the idea from Chapter 4 to multiple language pairs, which

means that each implicit discourse relation instance from the original English is an-

notated with multiple labels. With the majority vote from those labels, instances with

ambiguous relations and as well as the disagreements between different human trans-

lators have been filtered out. In addition, we use paragraph-aligned sentences to keep



Section 1.4 Overview of the dissertation 9

the topic of both arguments consistent and also use statistical machine translation

system to get stabler translation of connectives.

• In Chapter 6, we propose a novel sequence-to-sequence model to encode the rela-

tional arguments for implicit discourse relation classification. It consists of a classifier,

a memory component and a seq2seq model which is trained to generate a representa-

tion of the arguments by trying to predict the relational arguments including a suitable

implicit connective. The additional secondary task of explicitation forces the internal

representation to more completely encode the semantics of the relational arguments

and has been proven beneficial by the experimental results on different test settings.

• Chapter 7 discusses the necessity of capturing what events are expected to cause or

follow each other in extracting better representations of the relational arguments. We

look into what role the next sentence prediction sub-task plays in the recently pro-

posed model in Devlin et al. (2019). We show that BERT has very good ability in

encoding the semantic relationship between sentences with its “next sentence pre-

diction” task in pre-training. In particular, with several epochs of continuous pre-

training on the in-domain data, it also shows very good capability in domain shifting

and outperforms the recent state of the art system with a substantial margin across

domain.

• In Chapter 8, we propose a pipeline with the information retrieval and knowledge

graph system to extract the most relevant SPO triples, given an implicit discourse in-

stance as a query. With different matching strategies, we first use an unsupervised

method for the relation prediction and achieve competitive results on BioDRB. We

then employ the recent K-BERTmethod alongwith our extracted SPO triples as exter-

nal entity knowledge, and achieve the state of the art results, outperform the BioBERT

with a significant margin.

• Lastly, Chapter 9 summarizes the work in this dissertation and outlines a number of

future directions for the task of implicit discourse relation classification.
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Chapter 2

Background

This chapter briefly presents an overview of some basic concepts of discourse relation and

previous work that is relevant to the work reported in this thesis. I start with an introduction

to the definition of implicit discourse relation and how they are categorized and annotated

in the Penn Discourse Treebank (PDTB), followed by some recently proposed neural net-

work models in general natural language process, that are essential as some techniques have

partially been used in this thesis. Finally I survey previous approaches in this task, including

traditional feature-based methods and recent successes of neural network models.

2.1 Introduction to discourse relation

When human comprehend language, their interpretation consists more than just the sum of

the contents of the sentences. Additional semantic relations (known as coherence relations

or discourse relations) are inferred between sentences in the text.

To better understand the notion of coherence, consider the following example from Tannen

et al. (2015). There were two signs in a swimming pool. One of them said, Please use the

toilets, not the pool, the other sign said, Pool formembers only. Each sign is reasonable enough

if we read them separately. Butwhen the two sentences are read as if theywere part of a single

discourse, the second sentence forces a reinterpretation of the first one. With the relationship
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between sentences, new meanings are created.

Discourse relations describe the logical relation between two sentences/clauses, they reveal

the structural organization of text and allow for additional inferences. The identification of

discourse relations is beneficial for various downstream NLP applications such as question-

answering (Liakata et al., 2013; Jansen et al., 2014), summarization (Maskey andHirschberg,

2005; Yoshida et al., 2014; Gerani et al., 2014), machine translation (Guzmán et al., 2014;

Meyer et al., 2015) and information extraction (Cimiano et al., 2005). In recent years, the

task of discourser relation parsing has drawn increasing attention, including two CoNLL

shared tasks. (Xue et al., 2015, 2016).

Discourse relations in texts are sometimes expressed with a connective (e.g., but, because,

however, that are referred to as explicit discourse relation. However, connectives are often

absent, while a discourse relation is still inferred. These are called implicit relations. As

shown in the following example.

1. [The federal government suspended sales of U.S. savings bonds.]Arg1 because [Congress

hasn’t lifted the ceiling on government debt.]Arg2

— Explicit, Contingency.Cause.Reason - wsj_0008

2. [“I believe in the law of averages,” declared San Francisco batting coachDusty Baker after

game two.]Arg1 (Implicit = accordingly) [“I’d rather see a so-so hitter who’s hot come up

for the other side than a good hitter who’s cold.”]Arg2

— Implicit, Contingency.Cause.Result - wsj_2202

These two examples are annotated by the PennDiscourse Treebank, wewill talk about PDTB

in detail in the next section. The first example shows an example of explicit relations with a

connective originally present in the text. With the explicit discourse connective “because”, it

is easy to know that the discourse relation is Contingency.Cause. However, if the connective

is absent, as is the case in the second example, identifying the relation is more difficult. One

way to identify the relation is to insert a connective, in this case the annotators inferred

the connective “accordingly” that most intuitively connects Arg1 and Arg2. It is relatively

easy for human to correctly infer the relation with the semantic and syntactic information
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of the arguments, but not for machines. How to encode and get good representation of

the arguments becomes the key point of this task, which also makes the implicit discourse

relation classification very challenging and represents a bottleneck of the entire discourse

parsing system.

According to the work of linguists over decades, a few theories of discourse relation have

been developed, including the theory of coherence and coreference by Hobbs (1979), the

rhetorical structure theory (RST) by Mann and Thompson (1988), the discourse structure

theory by Grosz and Sidner (1986), the segmented discourse representation theory (SDRT)

by Asher et al. (2003). Unfortunately, not so much consensus has been obtained to date in

terms of the number and type of relation senses that should be considered in a standard

discourse analysis (Asr, 2015). Among the few theories along with annotated corpora that

illustrate the theories and allow for the computational aspect of discourse analysis, the RST-

DT (Carlson et al., 2001) and PDTB (Prasad et al., 2008) are themost famous and frequently

used corpora.

Figure 2.1: An example of RST discourse structure. (Taken from Ji and Eisenstein (2014)

Rhetorical StructureTheory Discourse Treebank (RST-DT)

The framework that is used to annotate RST-DT (Carlson et al., 2001) is based on the Rhetor-

ical StructureTheory proposed byMann andThompson (1988). It adopts a tree as the struc-

ture that underlines relationships within the units of text. In terms of tree structure, the

leaves of the tree correspond to text fragments that represent the minimal units of the dis-

course is called elementary discourse units (EDUs). The internal nodes of the tree correspond

to contiguous text spans. And eachnode is characterized by itsnuclearity: anucleus indicates
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Attribution attribution, attribution-negative
Background background, circumstance
Cause cause, result, consequence
Comparison comparison, preference, analogy, proportion
Condition condition, hypothetical, contingency, otherwise
Contrast contrast, concession, antithesis
Elaboration elaboration-additional, elaboration-general-specific,

elaboration-part-whole, elaboration-process-step,
elaboration-object-attribute, elaboration-set-number,
example, definition

Enablement purpose, enablement
Evaluation evaluation, interpretation, conclusion, comment
Explanation evidence, explanation-argumentative, reason
Joint list, disjunction
Manner-Means manner, means
Topic-comment problem-solution, question-answer, statement-response,

topic-comment, comment-topic, rhetorical-question
Summary summary, restatement
Temporal temporal-before, temporal-after, temporal-same-time, sequence,

inverted-sequence
Topic change topic-shift, topic-drift
Structural textual-organization, span, same-unit

Table 2.1: Tagset of discourse relations in RST-DT (Carlson and Marcu, 2001).

a more essential unit of information, while a satellite indicates a supporting or background

unit of information. Each node is characterized by a rhetorical relation that holds between

two or more non-overlapping, adjacent text spans, as shown in Figure 2.1. The arrow origi-

nates at the nucleus and points to the satellite with a discourse relation on the top. Relations

in RST-DT can be semantic, intentional, or textual nature, and are explicitly classified into

these three categories. Carlson et al. (2001) distinguish 78 relation labels, partitioned into

16 classes and share some type of rhetorical meaning, more details please refer to Table 2.1

and the annotation manual (Carlson and Marcu, 2001).

However, RST-DT discourse segments or relational arguments can vary between a phrase

and a paragraph and the discourse connectives are only used for determining the boundaries

of the discourse segments, i.e. they do not have an official status in determining the type of

discourse relation (Asr, 2015).

With about 50k relations instances, PDTB is the largest resource of discourse relation in

size. And the text comes from Wall Street Journal that have been also manually annotated

for syntax in the Penn Treebank project (Marcus et al., 1994). It also has few labels com-

pared with RST-DT introduced above. What’s more, PDTB annotators have also achieved

a relatively good level of inter-annotator agreement. Given all these factors, recent work
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that focus on computational modelling of discourse relation prefer using another annotated

corpora PDTB, we will give an overview of PDTB next.

2.2 Overview of the Penn Discourse Treebank

The PDTB 2.0 corpus (Prasad et al., 2008) is the largest manually annotated discourse rela-

tion corpus available at the moment. The framework that was used to annotate the corpus

is referred to as PDTB as well and has been used to create new corpora in other languages

such as Arabic (Al-Saif and Markert, 2010), Italian(Tonelli et al., 2010) and Chinese (Zhou

and Xue, 2015). It covers the set of onemillion word Wall Street Journal (WSJ) articles in the

Penn Treebank (PTB) (Marcus et al., 1994), which is much larger than the previous existing

RST-DT corpus. Unlike RST-DT, PDTB does not have the smallest textual units. It adopts

a binary predicate-argument view on the discourse relations, where the connective acts as a

predicate that takes two text spans as its arguments.

PDTB distinguishes between explicit and implicit discourse relations depending onwhether

it is marked with a discourse connective. When annotating implicit relations, annotators are

asked to insert a connective they think would best fit and annotate the coherence relation

with the inserted connective. Relations in the PDTB have two and only two arguments, re-

ferred as Arg1 and Arg2. These arguments can be continuous or discontinuous. In the case

of explicit relations, the argument that is syntactically bound to the connective is labeled as

Arg2, while the other one is Arg1 which may be adjacent or non-adjacent with Arg2. How-

ever, implicit discourse relations have only been annotated between adjacent sentences with

paragraphs, as well as between complete clauses delimited by a semi-colon (“;”) or colon

(“:”).

As illustrated in Figure 2.2, 43 discourse relations have been distinguished in PDTB 2.0.The

labels are organised in a hierarchy consisting of three levels:

(i) class is the top level, which contains the four major semantic classes: temporal, con-

tingency, comparison and expansion. Temporal is used when the events or situations

in Arg1 and Arg2 are related temporally. The relation belongs to contingency when one

argument causally influences or causes the other. When the events in Arg1 and Arg2 are
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Figure 2.2: The Hierarchy of sense tags in PDTB (Prasad et al., 2008).



Section 2.2 Overview of the Penn Discourse Treebank 17

compared to highlight the difference, it is labeled as a Comparison and otherwise it is called

Expansion if one argument is to expand the other one semantically or in discourse.

(ii) type is the second levelwhich refines the semantic of the class level. For example, there are

four types defined under the Comparison class: Contrast, Pragmatic Contrast, Concession

and Pragmatic Concession.

(iii) sub-type is themost fine-grained level, which defines the semantic contribution and also

direction of each argument, e.g. reason and result in Contingency.Cause.

If the annotator was uncertain of themore fine-grained senses of subtype, s/he could choose

the higher level, which means that not every discourse relation instance in PDTB has all the

three level relations. Conventionally, existing work on discourse parsing tend to evaluate

their models either on the first-level 4-way classification (Pitler et al., 2009; Rutherford and

Xue, 2014; Chen et al., 2016; Shi and Demberg, 2019a) or the second-level 11-way classifi-

cation (Lin et al., 2009; Ji and Eisenstein, 2015; Qin et al., 2016a, 2017; Shi and Demberg,

2019b).

However there are three additional labels where an implicit discourse connective could not

be inserted. A connective cannot always be inserted when there is no discernible coherent

relation between two sentences (NoRel). This label is assigned when adjacent sentences

don’t stand in a direct relation to on another because they belong to two different discourse

segments. When the sentences do coherent together but via only cohesion, like talking about

the same entity instead of a definable coherent relation, they have been annotated as EntRel,

which stands for Entity Relation. AltLex (Alternative Lexicalization) applies to examples

that there is already another explicit expression presented and the insertion of a connective

leads to a perception of relation redundancy.

In total, there are 40600 instances annotated from 25 sections in PDTB 2.0, of which there

are 18459 explicit, 16053 implicit and 6088 others (AltLex, EntRel and NoRel). Given that

PDTB is now the largest available corpus in discourse relation parsing and each instance

have two arguments, which is easier for modeling, more and more existing work have been

using it as the gold standard label for the evaluation of the proposed methods. In this thesis,

we also mainly use the conventional PDTB for evaluation to make our results comparable

to the existing work.
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Figure 2.3: Mutilayer fully connected feedforward neural network.
Source: http://uc-r.github.io/feedforward_DNN

2.3 Neural modeling in natural language process

The recent decade has witnessed remarkable success by the neural networks in a lot of areas.

It has become the industry-standard algorithm that achieves as low as 9% word error rate

in speech recognition, boosts the machine translation performances and has been broadly

used in many computer vision tasks as well.

However, compared with computer vision and speech recognition, there are relatively larger

spaces to achieve good results on many tasks in natural language process. In this section,

I will briefly introduce the recently proposed and mostly used neural network models by

researchers in NLP.

FeedForward neural network

Deep feedforward network, also known as multilayer perceptrons, are the foundation of

most deep learning models. The decision flow, as occurs in the single neuron, is unidi-

rectional, advancing from the input to the output in successive layers, without cycles or

loops. In a vanilla feedforward neural network, inputs are first transformed to a feature

vector specifically designed for the task. Two operations are alternatively applied to the

vectors: linear transformation and non-linear activation functions (sigmoid, tangent etc.),

which results in a representation of the inputs and can be used for classification or the input
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Figure 2.4: Recurrent Neural Networks.
Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

of another round of linear and non-linear transformation, as shown in Figure 2.3. Formally,

given the inputX ∈ Rd, we derive the representationHi with single layer feedforward units

follow the below equation:

Hi = σ(Wi ·X + bi) (2.1)

, where theWi denotes the weightmatrix of linear transformationwith the size of k∗d and bi
is a bias vector. The non-linear activation function σ is usually chosen to be tanh or sigmoid.

For multilayer feedforward network, theX should be replaced withHi−1, the output vector

from previous layer.

Recurrent neural network (RNN)

It is easy to notice that the feedforward network can only take inputs with the fixed size,

given that the size of linear transformation matrix is predetermined. However, for a time

sensitive inputs like natural language or speech, it is vital to have a model that can be flexible

in dealing with the time series. A recurrent neural network is designed to take a series of

inputwith nopredetermined limit on the size. What’smore important, it remembers the past

and it’s decisions are influenced by what it has learnt from the past. As illustrated in Figure

2.4, there is a loop which allows information to be passed from one step of the network to

the next. In other words, the hidden state of the current time step ht is a function of the

current time step input Xi and the hidden state of the previous time step ht−1. It can be

written in equation as follows:

ht = σ(W · ht−1 + U ·Xi + b) (2.2)
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Figure 2.5: The repeating module of Long short-term memory cell.
Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

In each time step, all the weight matrix W and U are shared, which makes the framework

recurrent.

In order to minimize the cost function, neural network models are usually optimized with a

gradient-based method as there is no closed-form solution. As for RNN, back-propagation

through time (BPTT) is involved, in which the gradient calculation involves the whole se-

quence of hidden states and outputs. It is an efficient way for training without large scale of

harms to the performance. Unfortunately, it has been observed by Bengio et al. (1994) that

it is difficult to train RNNs to capture long-term dependencies because the gradients tend

to either vanish (most of the time) or explode (rarely, but with severe effects), due to the

small (gradient vanishing) or large (gradient explosion) values in the matrix and multiple

matrix multiplications. This makes gradient-based optimization methods struggle (Chung

et al., 2014).To address this problem, two RNN-based variants, Long short-term memory

(LSTM) network (Hochreiter and Schmidhuber, 1997) (Figure 2.5) and Gated Recurrent

Units (GRU) (Cho et al., 2014) are introduced. They are designed with more sophisticated

gate layers rather than an usual activation function, consisting of affine transformation (lin-

ear transformation and translation), followed by a simple element-wise nonlinearity by us-

ing gating units. With the gates, the model can decide by itself to which extend to receive,

remember and output the incoming information and cell state from the last time-step. Both

of these two RNN variants have been shown to perform well in tasks that require capturing

long-term dependencies including speech recognition, language modelling, machine trans-

lation and etc..
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Figure 2.6: The Gated recurrent unit cell.
Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Transformer

Recurrent models typically factor computation along the symbol positions of the input and

output sequences. Aligning the positions to steps in computation time, they generate a se-

quence of hidden state ht, as a function of the previous hidden state ht−1 and the input

for position xt. This inherently sequential nature precludes parallelization within training

examples, which becomes critical at longer sequence lengths, as memory constraints limit

batching across examples (Vaswani et al., 2017). Vaswani et al. (2017) proposed the Trans-

former, as the architecture illustrated in Figure 2.7, a model eschewing recurrence and rely-

ing entirely on an self-attention mechanism to capture global dependencies between input

and output, without using sequence-aligned RNNs or convolution. They proposed a multi-

head attention layer that has been fed in with three vectors: the query, keys and values. The

output is computed as a weighted sum of the values, where the weight assigned to each value

is computed by a compatibility function of the query with corresponding key, as shown in

Equation 2.3.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.3)

In addition, they found it beneficial to linearly project the queries, keys and values h times

with different, learned linear projections to allow the model to jointly attend to information
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Figure 2.7: The architecture of Transformer from Vaswani et al. (2017).
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from different representation subspaces at different positions, which eventually formed the

Multi-Head attention, as illustrated in Equation 2.4.

MultiHead(Q,K, V ) = Concat(head1, head2, ..., headh)W
O

whereheadi = Attention(QWQ
i , KWK

i , V W V
i )

(2.4)

2.4 Related work

Soricut and Marcu (2003) firstly addressed the task of discourse structure parsing within

the same sentences. They proposed two probabilistic models that can be used to identify

elementary discourse units and build sentence-level discourse parse trees. They showed

how syntactic and lexical information can be exploited in the process of identifying elemen-

tary units of discourse and achieved near-human levels of performance on the sophisticated

task of deriving sentence-level syntactic trees and discourse segments. A discourse parser

requires many components to form a long pipeline. However, the implicit discourse rela-

tion classification has been shown to be the main performance bottleneck of an end-to-end

parser (Lin et al., 2014). The release of PDTB, the largest available manually annotated cor-

pora of discourse relations, opens the door to supervised machine learning based discourse

relation classification. They are roughly categorized into two major types: feature-based

and neural network models. Early work addressing discourse relation parsing were trying

to classify unmarked discourse relation by training on explicit discourse relations with the

marker removed (Marcu and Echihabi, 2002). While this method promised to provide al-

most unlimited training data, it was shown that explicit relations differ in systematic ways

from implicit relations (Asr and Demberg, 2012), so that performance on implicits is very

poor when learning on explicits only (Sporleder and Lascarides, 2008). The implicits are

difficult and thus is the focus of this thesis.

2.4.1 Feature-based methods

The core idea of feature-based methods is to exploit discriminative features for implicit dis-

course relations. Pitler et al. (2009) investigated the effectiveness of various features de-
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signed to capture lexical and semantic regularities for identifying the sense of implicit dis-

course relations, including word-pairs, polarity tags, inquirer tags, verb features, modality,

context as well as some language modeling features. Results indicated that features devel-

oped to capture work polarity, verb classes and orientation, as well as some lexical features

are strong indicators for this task. Lin et al. (2009) further introduced contextual, constituent

and dependency parse features and achieved an accuracy of 40.2% for 11-way classification,

a 14.1% absolute improvements over the baseline. With all these features, Park and Cardie

(2012) provided a systematic study of the combinations of them for implicit discourse rela-

tion identification and identified feature combinations that optimizeF1-scores for the PDTB

to date. They also found that with some other features that are designed to represent the spe-

cific aspects for the discourse relation arguments, general features like work pairs may no

longer have a role to play for this task. To address the sparsity problem of word pairs, Biran

and McKeown (2013) proposed to use relation specific word similarity. They presented a

reformulation of the word pair features which replaces the sparse lexical features with dense

aggregated score features. Rutherford andXue (2014) investigated the effects of using Brown

clusters as an alternative word representation and analyze the impactful features that arise

from Brown cluster pairs. What’s more, they studied coreferential patterns in different types

of discourse relations in addition to using them to boost the performance of classification.

2.4.2 Neural network methods

With the popularity of using distributed word representations (Bengio et al., 2003; Mikolov

et al., 2013), various neural network models have been proposed and proved to be helpful

for implicit discourse relation classification. Studies (e.g. Braud and Denis (2015)) have

shown that distributed word representations have an advantage in dealing with data sparsity

problem that feature-based models have suffered from.

Zhang et al. (2015) proposed a shallow convolutional neural network for implicit discourse

relation recognition to alleviate the overfitting problem and help preserve the recognition

and generalization ability with the model. Ji and Eisenstein (2014) proposed to get dis-

tributed meaning representation for each discourse argument with recurrent neural net-

work. Ji and Eisenstein (2015) have restructured the RNN around a binary syntactic tree.
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A tree-structured RNN is also known as recursive neural network, which has been widely

used for parsing and sentiment analysis task (Socher et al., 2013; Tai et al., 2015). The hid-

den state corresponds to an intermediate non-terminal in the phase structure tree. The root

node servers as the feature vector for the classification task. In this way, both syntactic and

semantic information of the sentence have been preserved and represented by the root vec-

tor.

Ji et al. (2016) introduced a latent variable to recurrent neural network and combined RNN

language model and discriminative output layer that predicts the discourse relation. This

approach worked well in the top-level 4-way classification. Chen et al. (2016) adopted a

gated relevance network to capture the semantic interaction between work pairs. Qin et al.

(2016a) proposed to use a character-based model to deal with the insufficient training on

rare words. With a character-based model, it is easier to encode morphological informa-

tion and alleviate the rare word problem. Results showed that with the character-enhanced

embeddings, the performance on both multi-class and binary classification outperformed

most of the existing methods. Qin et al. (2017) introduced an adversarial neural network

to exploit the annotated implicit connective by making the model confused about whether

the arguments’ representations are from explicit or implicit components. With the adver-

sarial training between generator and discriminator, they tried to project both explicit and

implicit examples to one unified space, given that the classification is much easier with the

informative connective in the explicit instances.

More recently, with the success made by the pre-trained language models, the performances

of lots of tasks have been pushed to a new level. Bai and Zhao (2018) combined different

grained text representations, including character, subword, word, sentence and sentence

pair levels, jointly predicted connective and relations and achieved great improvements on

both accuracy and F1 scores. He et al. (2020) claimed previous methods that primarily en-

code two arguments separately and extract the specific interaction patterns have failed to

fully exploit the annotated relation signal. Instead, they proposed a novel TransS-driven

joint learning architecture which translates discourse relation in low-dimensional embed-

ding space and further exploit the semantic features of arguments withmulti-level encoders.

However, with the proposed neural network based models become more and more sophis-
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ticated, the number of parameters to be learned also boomed. Most of the neural based

methods suffer from the insufficient annotated data. Wu et al. (2016) extracted bilingual-

constrained synthetic implicit data from a sentence-aligned English-Chinese corpus. Nie

et al. (2019) curated a high quality sentence relation task by leveraging explicit discourse

relations with dependency parsing and rule-based rubrics. They proposed the DisSent task,

which uses the discourse prediction task to train sentence embedding. With the learned em-

bedding for each argument and results showed good generalization performances on lots of

tasks.

2.5 Summary

In this chapter, we first give a brief introduction to the basic concepts about discourse re-

lation, including a general idea about the different theories of discourse relation, which is

followed by an overview of the largest available manually annotated discourse relation cor-

pus PDTB. In the following chapters, we will mostly focus on the evaluation on the PDTB.

The second part of this chapter are some preliminary knowledge regarding neural network

models that are most relevant to this dissertation, and also review related work in implicit

discourse relation classification. In the upcoming chapter, wewill detail the discussion about

the problem and risk of using the current conventional data-split settings and our proposed

solutions.
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Chapter 3

Limited data problem of implicit

discourse relation classification

3.1 Introduction

The community most often uses the Penn Discourse Treebank (PDTB) (Prasad et al., 2008)

as a resource for implicit discourse relation classification, and has adopted the usual split

into training and test data as used for other tasks such as parsing. Because discourse relation

annotation is at a higher level than syntactic annotation, this however means that the test

set is rather small, and with the amount of alternative features and, more recently, neural

network architectures being applied to the problem, we run a serious risk as a community

of believing in features that are successful in getting some improvement on the specific test

set but don’t generalize at all.

Previous studies show that the presence of connectives can greatly help with classification of

the relation and can be disambiguated with 0.93 accuracy (4-ways) solely on the discourse

relation connectives (Pitler et al., 2008). In implicit relations, no such strong cue is available

and the discourse relation instead needs to be inferred based on the two textual arguments.

In recent studies, various classes of features are explored to capture lexical and semantic
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regularities for identifying the sense of implicit relations, including linguistically informed

features like polarity tags, Levin verb classes, length of verb phrases, language model based

features, contextual features, constituent parse features and dependency parse features (Lin

et al., 2009; Pitler et al., 2009; Zhou et al., 2010; Zhang et al., 2015; Chen et al., 2016). The

most used dataset in this community is the Penn Discourse Treebank, which adds a dis-

course layer to the Penn Treebank (Marcus et al., 1993). For some of second-level relations

in PDTB (a level of granularity that should be much more meaningful to downstream tasks

than the four-way distinction), there are only a dozen instances, so that it’s important to

make maximal use of both the data set for training and testing. The test set that is currently

most often used for 11 way classification is section 23 (Lin et al., 2009; Ji and Eisenstein,

2015; Rutherford et al., 2017a), which contains only about 761 implicit relations. This small

size implies that a gain of 1 percentage point in accuracy corresponds to just classifying an

additional 7-8 instances correctly, which makes it risky to draw conclusions solely relying

on the results of the limited test data.

This chapter therefore aims to demonstrate the degree to which conclusions about the effec-

tiveness of including certain features would depend on whether one evaluates on the stan-

dard test section only, or performs cross validation on the whole dataset for second-level

discourse relation classification. The model that we use is a neural network that takes the

words occurring in the relation arguments as input, as well as traditional featuresmentioned

above, to make comparisons with most-used section splits. To the best of our knowledge,

this was the first work that systematically evaluates the effect of the train/validation/test

splits for the implicit discourse relation classification task on PDTB at the time of the re-

search. In this chapter, We report the classification performances (accuracy) on random

and conventional splits among the whole sections.

As a model, we use a neural network that also includes some of the surface features that

have been shown to be successful in previous work, which was as well competitive with

the state of the art models at the time of the study. The experiments here are exemplary of

what kind of conclusions we would draw from the cross validation vs. from the usual train-

test split. We find that results are quite different in the different splits of dataset, which we

think is a strong indication that cross validation is important to adopt as a standard practice
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for the implicit discourse relation classification community. We view cross validation as

an important method in case other unseen datasets are not available (note that at least for

English, new datasets have recently beenmade available as part of the shared task (Xue et al.,

2015, 2016), as well as SPICE (Rehbein et al., 2016)).

The model we use in this chapter is most closely related to the neural network model pro-

posed in Rutherford et al. (2017a). The model also has access to the traditional features,

which are concatenated to the neural representations of the arguments in the output layer.

In order to simulate what conclusions we would be drawing from comparing the contribu-

tions of the handcrafted surface features, we calculate accuracy for each of the hand-crafted

features.

3.2 Corpora and conventional settings

ThePennDiscourse Treebank (PDTB)We use the Penn Discourse Treebank (Prasad et al.,

2008), the largest available manually annotated corpora of discourse on top of one million

word tokens from the Wall Street Journal (WSJ). The PDTB provides annotations for ex-

plicit and implicit discourse relations. By definition, an explicit relation contains an explicit

discourse connective while the implicit one does not. The PDTB provides a three level hi-

erarchy of relation tags for its annotation. Previous work in this task has been done over

two schemes of evaluation: first-level 4-ways classification (Pitler et al., 2009; Rutherford

and Xue, 2014; Chen et al., 2016), second-level 11-ways classification Lin et al. (2009); Ji and

Eisenstein (2015). The distribution of second-level relations in PDTB is illustrated in Table

3.1.

We follow the preprocessing method in Lin et al. (2009) and Rutherford et al. (2017a). If the

instance is annotated with two relations, we use the first one shown up, and remove those

relationswith too few instances (less than 5, same as previouswork). We treat section 2-21 as

training set, section 22 as development set and section 23 as test set for our results reported

as “most-used split”. In order to investigate whether the results with benefits from including

a certain feature to the model are stable, we conduct 10-fold cross-validation on the whole

corpus including sections 0-24. Note that we here included also the validation section for
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Relation Most-used Split Cross Validation *

Train Test Train Test
Temporal.Asynchronous 542 (4.25%) 12 (1.58%) 583 65
Temporal.Synchrony 150 (1.18%) 5 (0.66%) 155 18
Contingency.Cause 3259 (25.53%) 193 (25.36%) 3581 398
Contingency.Pragmatic cause 55 (0.43%) 5 (0.66%) 61 7
Comparison.Contrast 1600 (12.54%) 126 (16.56%) 1843 205
Comparison.Concession 189 (1.48%) 5 (0.66%) 194 22
Expansion.Conjunction 2869 (22.48%) 116 (15.24%) 3075 342
Expansion.Instantiation 1130 (8.85%) 69 (9.07%) 1254 140
Expansion.Restatement 2481 (19.44%) 190 (24.97%) 2792 311
Expansion.Alternative 151 (1.18%) 15 (1.97%) 160 18
Expansion.List 337 (2.64%) 25 (3.29%) 347 39
Total 12763 761 14045 1565
* Numbers are averaged over different folds

Table 3.1: The distribution of training and test sets in Most-used Split and Cross Validation
on level 2 relations in PDTB. Five types that have only very few training instances
are removed.

our experiments, to have maximal data for our demonstration of variability between folds.

For best practice when testing newmodels, we instead recommend to keep the validation set

completely separate anddo cross-validation for the remaining data. Also note that youmight

want to choose repeated cross-validation (which simply repeats the cross-validation step

several times with the data divided up into different folds) as an alternative to simple cross-

validation performed here. For a more in-detail discussion of cross validation methods, see

Kim (2009); Bengio and Grandvalet (2005).

In Table 3.1, we can see that the relations’ proportions are quite different on the training and

test set of themost-used split setting. For instance, temporal relations are under-represented

which may lead to a misestimation of the usefulness of features that are relevant for classi-

fying temporal relations. For our cross validation experiments, we evenly divide all the in-

stances in section 0-24 into 10 balanced folds1. The proportions of each class in the training

and testing set are identical. With the same distribution of each class, we here avoid having

an unbalanced number of instances per class among training and testing set.

1While we here chose balanced distributions, other designs of splitting up the data into folds such that
different folds have organically different distributions of classes can alternatively be argued for, on the basis of
more accurately representing new in-domain data distributions.
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3.3 Approach

3.3.1 Overview of the model

The task is to predict the implicit discourse relation given the two arguments of an implicit

instance. As a label set, we use 11-way distinction as proposed in Lin et al. (2009) and Ji

and Eisenstein (2015). Word Embeddings are trained with the Skip-gram architecture in

Word2Vec (Mikolov et al., 2013), which is able to capture semantic and syntactic patterns

with an unsupervised method, on the training sections of WSJ data.

Our model is illustrated in Figure 3.1. Each word is represented as a vector, which is found

through a look-up word embedding. Then we get the representations of argument 1 and ar-

gument 2 separately after transforming semantic word vectors into distributed continuous-

value features by LSTM recurrent neural network. With concatenating feature vector and

the instance’s representation, we classify it with a softmax layer and output its predicted

label.

Implementation All the models are implemented in Keras2, which runs on top of Theano.

The architecture of the model we use is illustrated in Figure 3.1. Regarding the initializa-

tion, regularization and optimization, we follow all the settings in Rutherford et al. (2017a).

We employ cross-entropy as our cost function, Adagrad as the optimization algorithm, ini-

tialized all the weights in the model with uniform random and set dropout layers after the

embedding and output layer with a drop rate of 0.2 and 0.5 respectively.

3.3.2 Features

For the sake of our cross-validation argument, we choose five kinds of most popular fea-

tures in discourse relation classification, namely Inquirer Tags (semantic classification tags),

Brown Clusters, Verb features, Levin classes and Modality. Features that include word pairs

directly are not included here, because we assume these have already been represented di-

rectly in the neural network by the concatenated representations of the arguments.

Inquirer Tags: Negated and non-negated fine-grained semantic classification tags for the
2https://keras.io/
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Figure 3.1: Long Short-Term Memory Model with surface features.

verbs in each arguments. They are drawn from the General Inquirer Lexicon (Stone et al.,

1966).

Brown Cluster: Brown Clustering algorithm (Brown et al., 1992) induces a hierarchy of

words in a large unannotated corpus based on word co-occurrences within the window.

Thus every word has a unique hierarchical word cluster.

Verbs: Including Part-of-Speech of the main verbs, the Average Lengths of Verb Phrase,

count of verbs from Arg1 and Arg2 belonging to the same Levin Class (Levin, 1993).

Modality: Modal words, which are often used to express conditional statements. We include

a feature for the presence and absence of modal words in argument 1 and 2.

3.4 Results

We test five frequently-used surface features with our model. Results are shown in Table

3.2. We can see that our implemented model is comparable with the state of the art models

at the time of the study. Our main point here is however not to argue that we outperform

any particular model, but rather we would like to discuss what conclusions we would be

drawing from adding surface features to our neural network model if using the standard

test set vs. doing cross validation.

In Table 3.2, “No additional surface features” means that there is no surface feature in the
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Models Most-used Split Cross Validation
Most common class 25.36 25.59
Lin et al. (2009) 40.20 -1
Ji and Eisenstein (2015) (surface features only) 40.66 -
Rutherford et al. (2017a) 39.56 -

N
eu

ra
lN

et
w
or

k No additional surface features 37.68 34.44 (±1.37)
Inquirer Tags 40.46 33.58 (±1.36) (2+,8-)
BrownCluster 38.77 33.83 (±1.59) (3+,7-)
Levin Class 40.92 34.17 (±1.48) (4+,6-)
Verbs 40.21 34.26 (±1.22) (5+,5-)
Modality 40.82 37.65 (±1.83) (6+,4-)
All Features above 38.56 35.90 (±1.32) (2+,8-)

1 “-” means no result currently.

Table 3.2: Performance comparison of different features inMost-used Split andCrossValidation
on second-level relations. Numbers for cross validation indicate the mean accuracy
across folds, the standard deviation, and the number of folds that showbetter vs. worse
performance when including the feature.

input. It is easy to find that all the performances on the most-split settings are improved by

the surface features with 1-3%. But it’s not in the same case with the cross-validation set-

ting. For instance, the Levin class helps improve the accuracy with 3.2% on the conventional

setting but lowers the accuracy on the cross-validation.

For each cross validation with different features, the separation into train and test sets are

identical. We can see that the performances on Most-used Split section is generally 3-7%

better than the results for the rest of the corpus. While we would also conclude from our

model when evaluated on the standard test set that each of these features contribute some

useful information, we can also see that it comes to very different conclusions if actually

running the cross-validation experiment.

The cross validation is primarily a way of measuring the predictive performance of a model.

With such a small test set, improvements on the classification could be the results of many

factors. For instance, take a look at the effectiveness of including Inquirer Tags: these lead

to an increase in performance by 2.8% in Most-used Split, but actually only helped on two

out of 10-fold in the cross-validation set, overall leading to a small decrease in performance

of the classifier. Similarly, the verb features seem to indicate a substantial improvement in

relation classification accuracy on the standard test set, but there is no effect at all across the
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folds.

It is easy to understand from Table 3.2 that performances on most-used split sections are

improved by the surface features. To verify if it is the same on the cross validation, we employ

the Student’s t-test to do the significance test. Thep-value for the performanceswith inquirer

tags, brown cluster, verbs and modality are 0.14, 0.25, 2.6e−9, 0.7e−3, which mean that we

cannot say that all the features are useful to improve the classification accuracy significantly,

compared with the No Feature one. Thatmay be due to the different distribution of relations

or the features indeed cannot be generalized to the whole dataset.

Nonetheless, we see that cross validation is not the only way to validate the problem of dif-

ferent distribution in a relative small dataset. Other works, such as Berg-Kirkpatrick et al.

(2012) strongly recommend significance testing to validate metric gains in natural language

processing tasks, even though the relationship between metric gain and statistical signifi-

cance is complex. We observe that recent papers in discourse relation parsing do not always

perform significance testing, and if they do report significance, then oftentimes they do not

report the test that was used. We would here like to argue in favour of significance testing

with cross validation, as opposed to boot strapping methods that only use the standard test

set. Due to the larger amount of data, calculating significance based on the cross valida-

tion will give us substantially better estimates about the robustness of our results, because

it can quantify more exactly the amount of variation with respect to transferring to a new

(in-domain) dataset.

3.5 Conclusion and discussion

In this chapter, we have argued that the standard test section of the PDTB is too small to

draw conclusions upon, about whether a feature is generally useful or not, especially when

using a larger label set as is the case in recent work using second level labels.

While these ideas are far from new and apply also to other NLP tasks with small evaluation

sets, we think it is important to discuss this issue, as recent work in the field of discourse

relation analysis has mostly ignored the issue of small test set sizes in the PDTB.

Our experiments support our claim by showing that features thatmay look like they improve
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performance on the 11-way classification on the standard test set, do not always show a

consistent improvement when the training / testing was split up differently. This means that

we run a large risk of drawing incorrect conclusions about which features are helpful if we

only stick to our small standard test set for evaluation.

3.6 Summary

In this chapter, we show that it is risky to draw conclusions about features or models with a

limited size of test set. However, cross validation is only an important method and conces-

sion without new annotated dataset.

Having cheaper, more reliable and automatically labeled data would be much beneficial for

this task, especially for the various neural network models proposed recently. With more

data, how to have better understanding of how arguments relate to one another and to have

better semantic representations are also crucial for the task. However, having good encod-

ing only does part of the job, a good implicit discourse relation classifier should also be

competent in being able to encode discourse expectation and learn typical events, causes,

consequences etc. for all kind of events. In the next chapters, we address the data bottleneck

problem by proposing different methods to solve each of the problems separately, including

introducing a new pipeline to get more annotated implicit discourse relation instances with

the help of explicitated connectives between English and French translations, proposing a

sequence-to-sequence model to encode the process of explicitation, trying to figure out the

importance of having correct next sentences and also shifting the model across domains.
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Chapter 4

Explicitation of Implicit Discourse

Relation between English and French

4.1 Introduction

Implicit relation classification is very challenging and represents a bottleneck of the entire

discourse parsing system.

In recent studies, lots ofmethods are proposed to directly infer underlying relations, ranging

from various classes of features, to the end-to-end neural models.

Early methods have focused on designing various features to overcome data sparsity and

more effectively identify relevant concepts in the two discourse relational arguments. (Lin

et al., 2009; Zhou et al., 2010; Biran and McKeown, 2013; Park and Cardie, 2012; Rutherford

and Xue, 2014), while recent efforts use distributed representations with neural network

architectures (Zhang et al., 2015; Ji and Eisenstein, 2015; Ji et al., 2016; Chen et al., 2016;

Qin et al., 2016a, 2017). Both streams of methods suffer from insufficient annotated data

(Wang et al., 2015), since the Penn Discourse Treebank (PDTB) (Prasad et al., 2008), which

is the discourse annotated resource mostly used by the community, consists of just 12763

implicit instances in the usual training set and 761 relations in the test set. Some second-
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level relations only have about a dozen instances.

With such limited amount of data, in the last chapter, we argue that we would run a seri-

ous risk as the community believes in features that are successful in getting some improve-

ments on the specific test set but don’t generalize well. Havingmore labeled data for training

would lower the risk and generalize the trained model to have more stable and reliable per-

formances even with a large label set, like the PDTB label set used in the implicit discourse

relation classification task. It is therefore crucial to obtain extra data for machine learning

methods.

However,manually annotating implicit discourse relation is a very difficult, time-consuming

and expensive task. In this chapter, we propose a simple approach to automatically extract

samples of implicit discourse relations from parallel corpus via back-translation: Our ap-

proach is motivated by the fact that humans sometimes omit connectives during translation

(implicitation), or insert connectives not originally present in the source text (explicitation)

(Laali and Kosseim, 2014; Koppel and Ordan, 2011; Cartoni et al., 2011; Hoek and Zufferey,

2015; Zufferey, 2016). When explicitating an implicit relation, the human translator is, in

other words, disambiguating the source implicit relation with an explicit DC in the target

language. This chapter focuses on the former case, but it also can be applied in reverse, to

find less explicit as well.

The contribution of this chapter is twofold: Firstly, we propose a pipeline to automatically

label English implicit discourse relation samples based on explicitation of DCs in human

translation, which is the target side of a parallel corpus. Secondly, we show that the extra

instances mined by the proposed method improve the performance of a standard neural

classifier by a large margin, when evaluated on the PDTB 2.0 benchmark test set as well as

by cross-validation which is advocated in the last chapter.

4.2 Related work

Early work addressing discourse relation parsing were trying to classify unmarked discourse

relations by training on explicit discourse relations with the marker been removed (Marcu

and Echihabi, 2002). While this method promised to provide almost unlimited training
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data, it was shown that explicit relations differ in systematic ways from implicit relations

(Asr and Demberg, 2012), so that performance on implicits is very poor when learning on

explicits only (Sporleder and Lascarides, 2008).

The release of PDTB (Prasad et al., 2008), the largest available corpus which annotates im-

plicit examples, lead to substantial improvements in classification of implicit relations, and

spurred a variety of approaches to the task, including feature-based methods (Pitler et al.,

2009; Lin et al., 2009; Park and Cardie, 2012; Biran and McKeown, 2013; Rutherford and

Xue, 2014) and neural network models (Zhang et al., 2015; Ji and Eisenstein, 2015; Ji et al.,

2016; Chen et al., 2016; Qin et al., 2016a, 2017). However, the limited size of the annotated

corpus, in combination with the difficulty of the task of inferring the type of relation be-

tween given text spans, presents a problem both in training (Rutherford et al. (2017c) find

that a simple feed-forward architecture can outperform more complex architectures, and

argue that the larger number of parameters can not be estimated adequately on the small

amount of training data) and testing (In the Chapter 3, we show that results on the standard

test set are not reliable due to the small set of just 761 relations).

Data extension has therefore been a longstanding goal in discourse relation classification.

The main idea has been to select explicit discourse instances that are similar to implicit ones

to add to the training set. Wang et al. (2012) proposed to differentiate typical and atypical

examples for each discourse relation, and augment training data for implicits only by typical

explicits. In a similar vein, Rutherford and Xue (2015) proposed criteria for selecting among

explicitly marked relations ones that contain discourse connectives which can be omitted

without changing the interpretation of the discourse. These relations are then added to the

implicit instances in training.

On the other hand, Lan et al. (2013) presented multi-task learning based systems, which in

addition to the main implicit relation classification task, contain the task of predicting pre-

viously removed connectives for explicit relations, and profit from shared representations

between the tasks. Similarly, Hernault et al. (2010) observes features that occur in both

implicit and explicit discourse relations, and exploit such feature co-occurrence to extend

the features for classifying implicits using explicitly marked relations. Mihăilă and Anani-

adou (2014) and Hidey and McKeown (2016) proposed semi-supervised learning and self-
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learning methods to improve recognition of patterns that typically signal causal discourse

relations.

The approach proposed here differs from previous approaches, because we extend our train-

ing data only by originally implicit relations, and obtain the label through the disambigua-

tion that sometimes happens in human translation.

Parallel corpora have been exploited as a resource of discourse relation data in previous

work but have mostly been used with goals different from ours: Cartoni et al. (2013) and

Meyer et al. (2015) used parallel corpora to label and disambiguate discourse connectives in

the target language based on explicitly marked English relations, in order to help machine

translation. A second application has been to project discourse annotation from English

onto other languages through parallel corpora, in order to construct discourse annotated

resources for the target language (Versley, 2010; Zhou et al., 2012; Laali and Kosseim, 2014).

The approach that is in spirit most similar to ours is by Wu et al. (2016), who extracted

bilingual-constrained synthetic implicit data from a sentence-aligned English-Chinese cor-

pus and got improvements by incorporating these data via a multi-task neural network on

the 4-way classification.

4.3 System overview

Our proposed method aims at sentence pairs in the parallel corpora where an implicit dis-

course relations on the source English side has been translated by human translators into an

explicitly marked relation on the target side. The inserted connective hence disambiguates

the originally implicit relation, and the discourse relation can be classified with confidence

(under the assumption that the same discourse relation holds in the original source text).

The pipeline of our approach is detailed in below steps.

1. The target side of a sentence-aligned parallel corpus, with English as the source text,

is back-translated to English using a pre-trained machine translation system.

2. An end-to-end discourse relation parser for English is run on both the source side

and the back-translated target side. The parser will output a list of explicit and implicit

relations, including the relation sense and argument spans of each relation.
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Figure 4.1: Pipeline showing how an implicit discourse relation sample, sentence pair 3-4,
is extracted and labeled using a parallel corpus.

3. Implicit-to-explicit discourse relation alignments are identified according to the out-

put of the end-to-end parser. Implicit relations in the PDTB are only ever annotated

between consecutive sentences. Therefore, we specifically extract pairs of consecutive

sentences on the source English side:

• that are identified as the Arg1 and Arg2 of an implicit discourse relation1;

• whose corresponding back-translated target sentences are identified as the Arg1

and Arg2 of an explicit relation;

• that are not part of the Arg1 or Arg2 of any other discourse relations2.

4. Label the source English implicit relation with the relation class of the explicit relation

in back-translated target text. The two consecutive sentences are marked as Arg1 and

Arg2 respectively.

Figure 4.1 illustrates the pipeline of our approach, which takes an English-to-French par-

allel corpus as input and outputs a list of implicit discourse relations, each containing two
1Relations signaled by Alternative Lexicalization are counted as implicit relations and extracted as samples.

However, NoRel and EntRel are excluded.
2This restriction avoids mis-alignment of relations between source and target texts.
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arguments from the source English text and a relation class according to the back-translated

French DC.

We then compare the performance of a neural implicit discourse relation classifier trained

with the annotated implicit relation samples in PDTB alone and also with the extra train-

ing samples mined from the parallel corpus. The classifier performance is evaluated on the

standard PDTB implicit relation test set and by cross-validation.

4.3.1 Advantages of using back-translation

In the proposed method, we disambiguate implicit relations according to the explicitated

translation. Instead of directly classifying the explicit relation in the target language, we

back-translate the target text to the source language by machine translation (MT) because:

• Discourse parsers on low-resource languages do not perform well, or are even not

available.

• Different languages have different sets of discourse relation classes defined. By the

means of back-translation, we can use an English discourse parser on the target text,

and thus label the implicit relations with the same set of relation labels defined for

English.

• The quality of the MT system has limited impact on our approach. Since the DC

tokens are powerful features to disambiguate an explicit relation, limited contextual

features are required. We just need correct translation of the explicit DC tokens, irre-

spective of word order and the rest of the translation.

4.3.2 Inter-sentential and intra-sentential relations

Only inter-sentential implicit relations are annotated in the PDTB, due to time and resource

constraints (Prasad et al., 2008). However, this does not mean that implicit relations only

hold between consecutive sentences.

We decided to extract intra-sentential relation samples from the parallel corpus based on

two motivations: Firstly, we hypothesize that intra-sentential implicit relations share simi-

lar features as inter-sentential ones. Including both types may hence increase dataset size.
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In fact, we will see in the experiment results that intra-sentential training samples largely

improve classification of implicit relations, even though the test data from PDTB contains

inter-sentential samples only. An analysis on what we learn from the intra-sentential sam-

ples is presented in Section 4.5.2.

Secondly, intra-sentential relations can potentially be identified with higher reliability: Par-

allel corpora are typically sentence-aligned. Thismakes it a lot easier to extract sentences that

are detected by the end-to-end discourse relation parser as explicit in the (back-)translation

target side but not on the original source side, without needing to worry about whether any

sentences in the dataset were removed or the order changed during preprocessing (which

would be detrimental for detecting intra-sentential relations).

4.3.3 Argument spans

It is possible but not entirely trivial to determine the argument spans of the discourse rela-

tions labeled with the back-translation method. In this chapter, we chose a neural network

model that concatenates the Arg1 and Arg2 representations (see Section 4.4.4), so that de-

termining exact text spans of Arg1 and Arg2 was not necessary. We are not the first one to

do like this, in the work by Rönnqvist et al. (2017), they modeled the Arg1-Arg2 pairs as a

joint sequence and did not compute intermediate representations of arguments separately,

tomake itmore generally flexible inmodeling discourse units and easily extend to additional

contexts.

4.4 Experiments

4.4.1 Data

Parallel CorporaThe corpora used for the extraction of implicit discourse relation samples

are publicly available bilingual English-French parallel datasets compiled by (Rabinovich

et al., 2015).3 They consist of European parliamentary proceedings, literary works and the

Hansard corpus – genres that are different from the PDTB, because we want to expand the
3All corpora are available at http://cl.haifa.ac.il/projects/translationese/
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diversity of discourse relation samples available in the PDTB. These corpora contain a total

of∼ 1.9M sentence pairs with an average of 22.7 words per English sentence. Each corpus

contains an originally written part in English (used as target for the MT system) and its

corresponding human translation in French (used as source). We use the same corpora to

train the French–English MT system (Section 4.4.2), to back-translate the French side into

English and to extract additional discourse training data.

The Penn Discourse Treebank (PDTB) We use the Penn Discourse Treebank 2.0 (Prasad

et al., 2008) for the training and testing of the implicit discourse relation classifier. PDTB is

the largest available manually annotated corpus of explicit and implicit discourse relations

based on one million word tokens from the Wall Street Journal. Each discourse relation

is annotated with at most two senses from a three-level hierarchy of discourse relations:

Class, Type and Subtype. The first level roughly categorizes the relations into four major

classes, each of which is further categorized in to more distinct relation types. Conven-

tionally, discourse relation classifiers are either evaluated by the accuracy of the first-level

4-way classification(Pitler et al., 2009; Rutherford and Xue, 2014; Chen et al., 2016), or the

second-level 11-way classification (Lin et al., 2009; Ji and Eisenstein, 2015; Qin et al., 2016a,

2017).

4.4.2 Machine translation system

We train an MT system to back-translate the target side of the parallel corpus to English.

To produce the highest-quality back-translation, we use a neural MT system trained on the

same parallel corpus. The system is implemented by Open-source Neural Machine Transla-

tion (OpenNMT), as shown in Figure 4.2. (Klein et al., 2017).

Source words are first mapped to word vectors and then fed into a recurrent neural network.

At each target time step, attention is applied over the source RNN and combined with the

current hidden state to produce a prediction of the next word, and this prediction would be

fed back into the target RNN.

We evaluate the MT system on newstest2014 and newsdiscusstest2015, reaching 24.63 and

22.58 BLEU respectively. The French side of the training data back-translated into English



Section 4.4 Experiments 45

Figure 4.2: Schematic view of neural machine translation (NMT).

is evaluated against the originally written English source, leading to a BLEU score of 34.17.4

The evaluation of the back-translated corpus indicates that the source text is not exactly

reproduced. Critically, we assume that theMT system preserves the explicitness of the target

DCs, instead of explicitating or implicitating DCs as in the human translation.

4.4.3 End-to-end discourse parser

We employ the PDTB-style End-to-End Discourse Parser (Lin et al., 2014) to identify and

classify the explicit instances from the back-translated English sentences. It achieved about

87% F1 score for explicit relations on level-2 types, even higher than human agreement of

84%. The accuracy on explicit DC identification is 96%.

On the source side, the end-to-end parser is applied to pick implicit relations from other

types of relations, i.e. explicit relations or no relation, in order to extract implicit-to-explicit

DC translation from the parallel corpus5. On the back-translation, the end-to-end parser is

applied to identify only explicitly marked discourse relations.

4Case sensitive BLEU implemented in mteval-v13a.pl. Test sets available at http://www.statmt.
org/wmt15/translation-task.html

5The non-explicit sense classification module of this parser is thus not used in the proposed method.
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4.4.4 Implicit relation classification model

We use a Bidirectional Long Short-Term Memory (LSTM) network as the implicit relation

classification model to evaluate the samples extracted by the proposed method. This archi-

tecture inspects both left and right contextual information and has been proven effective in

relation classification (Zhou et al., 2016; Rönnqvist et al., 2017). The reasons why we choose

this model come from the following two sides. Firstly, bidirectional LSTM network com-

bines forward and backward sequence representations, which could better capture depen-

dencies between parts of the input sequence by inspection of both left and right-hand-side

context at each time step. Secondly, it is very easy to implement and also effective inmultiple

NLP tasks (Rönnqvist et al., 2017; Zhou et al., 2016).

The model is illustrated in Figure 4.3, where each word from the two discourse relational

arguments is represented as a vector, which is found through a look-up word embedding.

Given the word representations [w1,w2,...,wn] as the input sequence, an LSTM computes the

state sequence [h1,h2,...,hn] with the following equations:


it

ft

ot

ĉt

 =


σ

σ

σ

tanh

W · [ht−1, xt]

ct = ft ⊙ ct−1 + it ⊙ ĉt

ht = ot ⊙ tanh(ct)

(4.1)

The forward and backward LSTM layers traverse the sequence ei, producing sequences of

vectors hif and hib respectively, which are summed together in the coming sum layer.

Following the preprocessing method in Lin et al. (2009), relations with too few instances

(Contingency.Condition, Pragmatic Condition; Comparison.Pragmatic Contrast, Pragmatic

Concession; Expansion.Exception) are removed during training and evaluation, resulting in

11 types of relations. Among instances annotated with two relation senses, we only use the

first sense.
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Figure 4.3: The bidirectional LSTM Network for the task of implicit discourse relation clas-
sification.

Relation intra- inter- Total

explicit→ explicit 199,047 111,090 310,137
explicit→ implicit 101,381 29,964 131,345
implicit→ explicit 77,228 25,086 102,314
1 “→” means from source to target side.

Table 4.1: Numbers of intra/inter-sentence samples
extracted from parallel corpora.
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The model is implemented in Keras6, which is capable of running on top of Theano. We use

word embeddings of 300 dimensions, which are trained on the original English side of the

parallel corpora as well as PDTBwith the Skip-gram architecture inWord2VecMikolov et al.

(2013). We initialize the weights with uniform random distribution; use standard cross-

entropy as our loss function; employ Adagrad as the optimization algorithm of choice and

set dropout layers after the embedding layer and output layer with a drop rate of 0.2 and 0.5

respectively. Each LSTM has a vector dimension of 300, matching the embedding size.

We split the PDTB data and evaluate the classifier in two settings. Firstly, we adopt the stan-

dard PDTB splitting convention, where section 2-21, 22, and 23 are used as train, validation

and test sets respectively (Lin et al., 2009). Secondly, we conduct 10-fold cross validation

on the whole corpus including sections 0-24, as advocated in Shi and Demberg (2017). And

extra samples are only added into training folds in the CV setting, which means that testing

fold consists of instances from PDTB only. Models trained with and without extra samples

we extracted, on top of the PDTB data, are compared.

4.5 Distribution of additional instances

In total, 102, 314 implicit discourse relation samples are extracted, ofwhich 25, 086 are inter-

sentential relations and 77, 228 are intra-sentential. Inter-sentential relations are much less

abundant because stricter screening strategy is applied (the end of point 3 in Chapter 4.3).

From Table 4.1 we can also see that majority of DCs in the source side have been translated

into the target side explicitly.

Figure 4.4 compares the distribution of relation senses among the annotated implicit re-

lations in the PDTB and our extracted samples. The relation distribution generally cor-

responds to the distribution in PDTB, but some relations, such as Temporal and Contin-

gency.Condition, are particularly numerous in the intra-sentential samples.

6https://keras.io/
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Figure 4.4: Relation sense distribution of implicit relations in PDTB and the extra intra-
and inter-sentence samples

4.5.1 Experimental results

We compare our model with current state-of-the-art models that were evaluated under the

same setting (11-way classification, PDTB section 23 as test set) (Qin et al., 2016a, 2017;

Rutherford et al., 2017c), as well as a model based on linguistic features (Lin et al., 2009)

that uses this setting for evaluation.

Qin et al. (2017) developed an adversarialmodel, which consists of twoCNNs inwhich argu-

ments are represented separately, a four-layer Perceptron and a dense layer for classification,

to enable an adaptive imitation scheme through competition between the implicit network

and a rival feature discriminator. Our model substantially differs from that setup, as it uses

a much simpler network architecture and represents the two discourse relation arguments
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Models PDTB Test Set Cross Validation

Most common class 25.36 25.59
Lin et al. (2009) 40.20 -
Ji and Eisenstein (2015) Surface features only 40.66 -

+ Entity semantics 44.59 -
Qin et al. (2016a) 43.81 -
Qin et al. (2017) 44.65 -
Rutherford et al. (2017c) 39.56 -
Shi and Demberg (2017) (no surface features) 37.68 34.44

Ours

PDTB only 34.32 30.01
PDTB + inter-sentential samples 42.29 34.14
PDTB + intra-sentential samples 44.29 35.08
PDTB + all samples 45.50 37.84

1 “-” means no result currently.

Table 4.2: Accuracy of 11-way classification of implicit discourse relations on PDTB test
set and by cross validation.

jointly, i.e. without knowledge of the arguments’ spans. We can see that our baseline model

performs substantially less well than the state of the art, and also less well than our results

in Chapter 3, which also uses an LSTM but represents discourse relational arguments sep-

arately. As adding training data can be expected to be largely orthogonal to the choice of

classificationmodel, we are heremost interested in seeing whether adding the new instances

improves over the baseline model with identical architecture.

Table 4.2 shows that including the extra inter- and intra-sentential instances leads to very

substantial improvements in classification accuracy. Using the additional data, our method

not only improves performance by 11%-points on the PDTB test set compared to training on

the PDTB implicit relations only, but also outperforms much more complex neural network

models (Qin et al., 2016a, 2017) on this task.

The evaluation using cross-validation (around 8% point improvement over the baseline)

furthermore shows that the obtained improvements do not only hold for the PDTB standard

test set but also are stable across the whole PDTB data. These results strongly support the

effectiveness of the implicit relation samples mined from parallel texts.

The accuracies reported for our models are based on 10 repeat-runs with different initial-

ization of the network. This allows us to show the amount of variance in results we obtained
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Figure 4.5: Average and variance of classification accuracy evaluated on the PDTB test set
with different sample size.

in Figure 4.5. We found that results sometimes varied a lot between different runs, and

would therefore like to encourage others in the field to also report variability due to initial-

ization or other random factors. For instance, our best run achieved 49.84% accuracy on the

PDTB test set trained with all additional instances, while mean performance for that setting

is 45.50% accuracy. Variances were substantially smaller for the cross-validation setting, as

the number of overall instances going into the evaluation is a lot larger in this setting, and

hence yields more stable performance estimates.

4.5.2 Qualitative analysis

In order to illustrate what kinds of instances our method extracts, we show an instances

below. The underlined DC is the explicit DC identified in the back-translated target text;

the discourse relation is automatically classified based on the back-translation.

3. [Justice demands it.]Arg1 but [The minister refuses.]Arg2

— Comparison.Contrast
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One strength of the proposed method is that it can mine and label discourse relations that

are not commonly regarded as discourse relations and hence not annotated in PDTB. Below

are some examples where the bold DC was identified in the (back-)translation:

4. A conservative member was kicked out of his caucus for defending Nova Scotians.

— because, Contingency.Cause

5. A failure to do so would affect our attitude to their eventual accession.

—if, Contingency.Condition

6. In January, Caronport ’s mayor and volunteer fire chief, Royden Taylor, perished fighting

a fire.

—while, Temporal.Synchronous

7. A full pension is payable after 40 years of residence in Canada.

—if, Contingency.Condition

These extra samples are in fact an invaluable resource of discourse-informative patterns,

which are not available to discourse relation parsers that are trained only on the PDTB

dataset. These cases provide evidence that our proposed method can not only provide in-

stances that are similar to implicit labelled instances, but detect additional patterns, as at-

tempted inMihăilă and Ananiadou (2014); Hidey andMcKeown (2016) for causal relations,

and generalize from the semantic content observed in such relations to actual implicit dis-

course relations.

For example, as reported in Section 4.5, numerous Temporal relations are mined from the

parallel corpus. These include cases where the original text contained a verbal construction

which expresses the temporal relation, which through back-translation gets expressed as a

discourse relation, or where explicit relations include gerunds in the Arg2, e.g.

“any plan takes time to have the effect required”→ “before getting the effect required”

“how much longer do women have to wait for fairness?” → “before women have fair-

ness.”
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“having gone over the estimates”→ “after going over the estimates.”

(source text followed by (back-)translation, where the explicitated DC is underlined).

In thiswork, we only extracted inter- and intra-sentential discourse relations, but themethod

can be in principle extended to other discourse relations that are not annotated in the PDTB,

such as implicit relation between non-consecutive sentences. Discourse parsers that identify

a larger range of relations are more useful in end applications. More importantly, identifica-

tion of discourse-informative linguistic patterns by the proposed method opens the oppor-

tunity to mine extra samples under a monolingual setting and further improve classification

performance.

4.5.3 Quantitative analysis

In order to get detailed insights on how much extra data is most beneficial to the task, we

also trained our classifier with different numbers of additional extracted samples. Figure

4.5 compares the classification accuracy when training on incremental number of extra in-

stances. We find that the performance increases with samples size, but plateaus after 40, 000

intra-sentential samples.

In fact, this sample size produces the highest averaged classification accuracy of 45.87%,

which is even higher than our model which includes all extracted samples. A possible rea-

son for not seeing further improvement by adding more intra-sentential examples is the

difference in distribution and properties of these extra samples compared to the PDTB

data. We also experimented with training on the parallel-text samples only (i.e., without

any PDTB training samples), but the result was worse than using PDTB only. Adding more

inter-sentential samplesmight further improve the performance, as these instances are closer

to the PDTB data.

4.6 Methodological discussion

Our proposedmethod uses back-translated target discourse connectives to label implicit re-

lations. The quality of the relation label is intrinsically subject to the translation policy of
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the parallel corpora and also extrinsically subject to the accuracy of explicit DC classifica-

tion by the end-to-end parser and the quality of the MT system. For example, a particularly

high proportion of Contingency.Condition relations is found in the intra-sentential samples.

Analyzing these samples, we found numerous instances where the word ‘if ’ is wrongly iden-

tified as a DC (e.g. He asked if it was correct.). It is not surprising to have noisy samples

extracted because limited screening strategy is applied in the current method.

As a reference for the quality of the relation label produced, we analysed the intra-sentential

relations in the parallel corpus that are explicit on the source side and also in the back-

translation. We found that 68% of the originally explicit DCs are (back-)translated to the

same explicit DCs and 75% toDCs of the same level-2 sense, according to automatic explicit

DC classification of the end-to-end parser.

4.7 Summary

In this chapter, we show that explicitation during human translation can provide a valuable

signal for expanding datasets for implicit discourse relations. As the expansion of training

instances is orthogonal to the mechanism of implicit discourse relation classification, this

method can be applied to improve any methods of implicit discourse relation classification.

Compared to previous methods, the proposed model is much simpler and more practical in

reality. Our best run in fact even reaches 49.84% accuracy on the PDTB test set. In Chapter

3, I point out that small evaluation set is too risky to draw conclusions in this task, we still

get significant improvements on the cross validation setting which tells that the method is

effective and additional data we got indeed helped.

There is plenty of room for further improvement by controlling the sample quality, such as

selection based on explicit discourse connective identification confidence, restraining the

discourse relation structure, identifying Arg1 and Arg2 such that approaches which use two

separate representations for arguments instead of a single concatenated vector become pos-

sible, reducing language-specific bias by mining from parallel corpora of other language

pairs, and fine-tuning the MT system for discourse connective translation. We leave the ex-

ploration of these areas to the next chapter. We also experiment after excluding samples with
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ambiguous connectives in the (back-)translation, such as “and”, as the discourse connectives

classification is likely to be nosier. However, the resulting implicit relation classification is

slightly degraded.

To alleviate the above problems, in the next chapter, I expand the language pairs to German,

French and Czech and also re-paragraph the texts to make the arguments coherent and in

topic.
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Chapter 5

Multilingual explicitation for implicit

discourse relation classification

5.1 Introduction

In the last chapter I introduce a back-translationmethod, which exploits the fact that human

translators sometimes insert a connective in their translation evenwhen a relation is implicit

in the original text. Using a back translationmethod, I showe that such instances can be used

for acquiring additional automatically annotated texts.

However, in the last chapter, only a single target language (French) is used and we have no

control over the quality of the labels extracted from back-translated connectives. In this

chapter, I therefore systematically compare the contribution of three target translation lan-

guages from different language families: French (a Romance language), German (from the

Germanic language family) andCzech (a Slavic language). As all three of these languages are

part of the EuroParl corpus (Koehn, 2005), this also allows us to directly test whether higher

quality can be achieved by using those instances that were consistently explicitated in sev-

eral languages. We use cross-lingual explicitation to acquiremore reliable implicit discourse

relation instances with separate arguments that are from adjacent sentences in a document,
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and conduct experiments on PDTB benchmark with multiple conventional settings includ-

ing cross validation. The experimental results show that the performance can be improved

significantly with the additional training data, compared with the baseline systems.

5.2 Methodology

Our goal here aims at sentence pairs in cross-lingual corpora where connectives have been

inserted by human translators during translation from English to several other languages.

After automatically back-translating from other languages to English, explicit relations can

be easily identified by a discourse parser and then original English sentences would be la-

beled accordingly.

We follow the pipeline proposed in Chapter 4, as illustrated in Figure 5.1, with the following

differences:

• The model in Chapter 4 suffers from the fact that typical sentence-aligned corpora

may have some sentences removed and make the sentences no longer coherent to

get inter-sentential discourse relation instances. Here we filter and re-paragraph the

line-aligned corpus to parallel document-aligned files, which makes it possible to ob-

tain in-topic inter-sentential instances. After preprocessing, we got 532,542 parallel

sentence pairs in 6,105 documents.

• In Chapter 4, I point out that having correct translation of explicit discourse connec-

tive is more important than having the correct translation of the whole sentence. In

this chapter I use a statistical machine translation system instead of a neural one for

more stable translations of discourse connectives.

• Instead of a single language pair, we use three language pairs and majority votes be-

tween them to get annotated implicit discourse relation instances with high confi-

dence.

Figure 6.1 illustrates the pipeline of our approach. It consists of a few steps including pre-

processing, back-translating, discourse parsing and majority voting. For each document,

we back-translate its German, French and Czech translation back to English with the MT
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Figure 5.1: Thepipeline of proposedmethod. “SMT” and “DRP” denote statistical machine
translation and discourse relation parser respectively.

system and parse them with discourse parser. In this way, we can easily identify those in-

stances that are originally implicit but explicit in the human translations to German, French

or Czech. With majority vote by the explicit examples in those three languages, the original

English instance can be labeled, and labelling confidence can be estimated.

5.2.1 Preprocessing

We use European Parliament Proceedings Parallel Corpus (Europarl1) (Koehn, 2005) and

choose English-French, English-German and English-Czech pairs as our parallel corpora.

Each source-target pair consists of source and target sentences alongwith a sentence IDwith

which we can easily identify the location of the sentence in its paragraph. In order to get

document-aligned parallel sentences between all these four languages, we do preprocessing

steps as follows:

• Filtering: remove those sentences that don’t have all the three translations in French,

German or Czech. In this way, each input sentence pair would have the same votes in

the later steps.

• ID matching: re-group each sentence into its origin document by the sentence IDs.
1Data is downloaded from http://opus.nlpl.eu/Europarl.php



60 Chapter 5 Multilingual explicitation for implicit discourse relation classification

• Re-paragraph: order the sentences in each documents by the ID and re-paragraph

them. This is to make the arguments of the extracted implicit discourse instance con-

secutive and are in the same context.

5.2.2 Machine translation

We train three MT systems to back-translate French, German and Czech to English. To

have word alignments, better and stable back-translations, we employ a statistical machine

translation systemMoses2 (Koehn et al., 2007), trained on the same parallel corpora. Source

and target sentences are first tokenized, true-cased and then fed into the system for training.

In our case, the translation target texts are identical with the training set of the translation

systems; this would not be a problem because our only objective in the translation is to back-

translate connectives in the translation into English. On the training set, the translation

system achieves BLEU scores of 66.20 (French), 65.30 (German) and 69.05 (Czech), while

on news2015 and newsdiscusstest2015 it achieves BLEU scores of 23.923, 17,93 and 18.82

respectively. The reason why they performed much worse on the test set than the current

state-of-the-art (namely 35.00), is that they are only trained on a small part of the normal

training set in MT practice. In this case, it doesn’t matter too much because we only need to

make sure that the implicit connectives in other languages can be back-translated to English

correctly.

5.2.3 Discourse parser

We employ the PDTB-style parser proposed in Lin et al. (2014), which achieved about 96%

accuracy on explicit connective identification, to pick up those explicit examples in back-

translations in each document. Following the definitions of discourse relations in the PDTB

that the arguments of the implicit discourse relations should be adjacent sentences but not

for the explicit relations, we screen out all those explicit samples from the outputs of the

parser that don’t have consecutive arguments.

2http://www.statmt.org/moses/
3Case sensitive BLEU implemented in meteval-v13a.pl.
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5.2.4 Majority vote

After parsing the back-translations of French, German and Czech, we can compare whether

they contain explicit relations which connect the same relational arguments. The analy-

sis of this subset then allows us to identify those instances that can be labeled with high

confidence, i.e. where back-translations from all three languages allow us to infer the same

coherence label. Note that it is not necessarily the case that all back-translations contain

an explicitation for the same instance (for instance, the French translator may have explic-

itated a relation, while the German and the Czech translators didn’t do so), or that they

propose the same coherence label: the human translation can introduce “noise” in the sense

of the human translators inferring different coherence relations, the machine translation

model can introduce errors in back-translation, and the discourse parser can mislabel am-

biguous explicit connectives. When we use back-translations of several languages, the idea

is that we can eliminate much of this noise by selecting only those instances where all back-

translations agree with one another, or the ones where at least two back-translations allow

us to infer identical labels.

Figure 5.2 illustrates the number of automatically labeled implicit discourse relation exam-

ples together with the information of how many of the instances that just one, two or all

three back-translations provided the same labels.

In theOneVote agreement, every explicit relationhas been accepted and the original implicit

English sentences have been annotated correspondingly. Likewise, Two Votes agreement

needs at least two out of three languages to have the same explicit relation label after back-

translation; agreement between all three back-translations is denoted as Three Votes.

5.3 Experiments

5.3.1 Data

Europarl Corpora: Theparallel corpora used here are from Europarl (Koehn, 2005), it con-

tains about 2.05M English-French, 1.96M English-German and 0.65M English-Czech pairs.

After preprocessing, we got about 0.53M parallel sentence pairs in all these four languages.
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Figure 5.2: Numbers of implicit discourse relation instances from different agreements of
explicit instances in three back-translations. En-Fr denotes instances that are
implicit in English but explicit in back-translation of French, same for En-De
and En-Cz. The overlap means they share the same relational arguments. The
numbers under “Two-Votes” and “Three-Votes” are the numbers of discourse
relation agreement / disagreement between explicits in back-translations of two
or three languages.

The Penn Discourse Treebank (PDTB): PDTB (Prasad et al., 2008) is the largest available

manually annotated corpus of discourse relations from Wall Street Journal, as introduced

in Chapter 2. In this chapter, I follow the previous conventional settings and focus on the

second-level 11-ways classification (Lin et al., 2009; Ji and Eisenstein, 2015; Rutherford et al.,

2017b; Shi et al., 2017), after removing the relations with few instances.

5.3.2 Implicit discourse relation classification

To evaluate whether the extracted data is helpful to this task, we use a simple and effec-

tive bidirectional Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997)
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Figure 5.3: Bi-LSTM network for implicit discoure relation classification.

network.

A LSTM recurrent neural network processes a variable-length sequencex = (x1, x2, ..., xn).

At time step t, the state of memory cell ct and hidden ht are calculated with the Equations

5.1:


it

ft

ot

ĉt

 =


σ

σ

σ

tanh

W · [ht−1, xt]

ct = ft ⊙ ct−1 + it ⊙ ĉt

ht = ot ⊙ tanh(ct)

(5.1)

After being mapped to vectors, words are fed into the network sequentially. Hidden states

of LSTM cell from different directions are averaged. The representations of two arguments

from two separate bi-LSTMs are concatenated before being fed into a softmax layer for pre-

diction. The architecture is illustrated in Figure 5.3.

Implementation: The model is implemented in Pytorch4. All the parameters are initialized
4https://pytorch.org/
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uniformly at random. We employ cross-entropy as our cost function, Adagrad with learning

rate of 0.01 as the optimization algorithm and set the dropout layers after embedding and

output layer with drop rates of 0.5 and 0.2 respectively. The word vectors are pre-trained

word embeddings from Word2Vec5.

Settings: We follow the previous works and evaluate our data on second-level 11-ways clas-

sification on PDTB with 3 settings: Lin et al. (2009) (denotes as PDTB-Lin) uses sections

2-21, 22 and 23 as train, dev and test set; Ji and Eisenstein (2015) (denotes as PDTB-Ji) uses

sections 2-20, 0-1 and 21-22 as train, dev and test set; Moreover, I also use 10-folds cross val-

idation among sections 0-23 (Shi and Demberg, 2017). For each experiment, the additional

data is only added into the training set.
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Figure 5.4: Distributions of PDTB and the extracted data among each discourse relation.

5https://code.google.com/archive/p/word2vec/
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Figure 5.5: Distributions of discourse relations with different agreements.

PDTB-Lin PDTB-Ji Cross Validation size of extra data

Majority Class 26.11 26.18 25.59 -
Rutherford et al. (2017b) 38.38 - - -
Shi et al. (2017) 45.50 - 37.84 102,314
PDTB only 37.95(0.59) 40.57(0.67) 37.82(0.14) -

PDTB +

En-Fr 38.96(0.69) 40.14(0.78) 38.32(0.62) 14,548
En-De 39.65(0.95) 39.96(0.44) 37.97(0.46) 16,757
En-Cz 37.90(1.27) 40.59(0.51) 37.42(0.50) 14,375
All 37.73(0.74) 40.41(0.65) 37.16(0.64) 45,680

PDTB + 2-votes 40.34(0.75) 41.95(0.97) 38.98(0.14) 9,298
PDTB + 3-votes 39.88(0.79) 41.19(0.63) 38.33(0.50) 1,298

Table 5.1: Performances with different sets of additional data. Average accuracy of 10 runs
(5 for cross validations) are shown here with standard deviation in the brackets.
Numbers in bold are significantly (p<0.05) better than the PDTB only baseline
with unpaired t-test.

5.4 Results and analysis

5.4.1 Distribution of new instances

Figure 5.4 shows the distributions of expert-annotated PDTB implicit relations and the im-

plicit discourse examples extracted from the French, German and Czech back-translations.

Overall, there is no strong bias – all relations seem to be represented similarly well, in line
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with their general frequency of occurrence. One interesting exception is the higher number

of Expansion.Conjunction relation from the German translations. The over-representation

of Expansion.Conjunction relation in German indicates that German translators tend to

use more explicit cues to mark these relations. This is an independently discovered well-

known finding from the literature (Kunz and Lapshinova-Koltunski, 2015), which observed

that German tends to mark conjunction relations with discourse cues, while English tends

to use coreference instead. We also find that Expansion.Restatement relations are under-

represented in our back-translation method, indicating that these relations are explicitated

particularly rarely in translation. We also find that we can identify more Contingency.Cause

and Comparison.Contrast relations from the German and Czech back-translations com-

pared to the French ones. This provides us with an interesting lead for future work, to inves-

tigate whether French tends to explicitate these relations less, expressing them implicitly like

in the English original, or whether French connectives for causal and contrastive relations

are more ambiguous, causing problems in the back-translations.

Figure 5.5 shows that the filtering by majority votes (including only two cases where at least

two back-translations agreewith one another vs. where all three agree) does again not change

the distribution of extracted relations.

In summary, we can conclude that the choice of translation language can matter: depending

onwhat types of relations aremost important to acquiremore data for the target task at hand,

a language that tends to explicitate that relation frequently can be particularly suitable. On

the other hand, if no strong such preferences on labelling specific relations exist, we can see

that the choice of translation language only has a minor effect on the overall distribution of

additional implicit discourse relation labels.

5.4.2 Quantitative results

Table 5.1 shows that best results are achieved by adding only those samples for which two

back-translations agree with one another. This may represent the best trade-off between

reliability of the label and the amount of additional data. The setting where the data from

all languages is added performs badly despite the large number of samples, because this

method contains different labels for the same argument pairs, for all those instances where
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the back-translations don’t yield the same label, thus introducing noise into the system. The

size of the extra data used in Chapter 4 is about 10 times larger than our 2-votes data. The

selection of instances differs in their paper from ours, in that they only use French, and in

that they, unlike this chapter, focus on intra-sentential samples. The model using the few re-

liable samples extracted from the back-translations of the three languages here significantly

outperforms the results in Chapter 4 in the cross-validation setting. On the PDTB-Lin test

set, we don’t match performance, but note that this test set is based only on 800 instances,

as opposed to the 16k instances in the cross-validation evaluation.

5.4.3 Qualitative analysis

Finally, we want to provide insight into what kind of instances the system extracts, and why

back-translation labels sometimes disagree. We have identified four major cases based on a

manual analysis of 100 randomly sampled instances.

Case 1: Sometimes, back-translations from several languagesmay yield the same connective

because the original English sentence actually was not really unmarked, but rather contained

an expression which could not be automatically recognized as a discourse relation marker

by the automatic discourse parser6. This can actually help us to identify new alternative lex-

icalization for discourse relations, and thus represents a promising technique for improving

discourse relation classification also on texts for which no translations are available.

Original English: I presided over a region crossed by heavy traffic fromall over Europe, with

significant accidents which gave rise to legal actions. What is more, In 2002, two Member

States of the European Union appealed to the European Court of Justice to repeal Directive

2002/15/EC because it included self-employed drivers ; the Court rejected their appeal on

the grounds of road safety.

French back-translation: I presided over a region crossed by heavy traffic from the whole

of Europe, with significant accidents which gave rise to legal actions, moreover in 2002 ,

two Member States have appeal on the European Court of Justice, which has condemned

6In the following examples, the original English sentence is shown is followed by the back-translations from
French, German and Czech along with the connectives and senses.
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the rejection of the grounds of road safety.

(Expansion.Conjunction)

German back-translation: I presided over a region crossed by heavy traffic from across

Europe, with significant accidents which, moreover in 2002, two Member States of the Eu-

ropean Union appealed to the European Court of Justice to repeal Directive 2002/15/EC ,

because it included self-employed drivers ; the Court quashed for reasons of road safety.

(Expansion.Conjunction)

Czech back-translation: I was in the region with very heavy traffic from all over Europe,

with significant accidents which gave rise to legal actions therefore after all, in 2002, two

Member States of the European Union appealed to the European Court of Justice to repeal

Directive 2002/15/EC that also applies to self-employed drivers; the Court rejected their

appeal on the grounds of road safety.

(Contingency.Cause)

The expression what is more is not part of the set of connectives labeled in PDTB and hence

was not identified by the discourse parser. Our method is successful because such cues can

be automatically identified from the consistent back-translations into two languages. (The

case in Czech is more complex because the back-translation contains two signals, therefore

and after all, see case 4.)

We also found some similar expressions in this case like:

“in reality” (“implicit”, original English)→ “in fact” (explicit, back-translation);

“for that reason”→ “therefore”;

“this is why”→ “therefore”;

“be that as it may”→ “however / nevertheless”;

“for another”→ “furthermore / on the other hand”;

“in spite of that”→ “however / nevertheless” and so on.

Case 2: Majority votes help to reduce noise related to errors introduced by the automatic

pipeline, such as argument or connective misidentification: in the below example, also in

the French translation is actually the translation of along with.
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Original English: on behalf of the PPE-DE Group. (DE) Madam President, Commissioner,

ladies and gentlemen, the public should be able to benefit in two ways from the potential for

greater road safety. For this reason, along with the report we are discussing today, I call for

more research into the safety benefits of driver-assistance systems.

French back-translation: (DE) Madam President, Commissioner, ladies and gentlemen,

citizens should be able to benefit in two ways of the possibility of improving road safety.

also when we are discussing this report today, I appeal to the intensification of research

at the level of the benefits of driver-assistance systems in terms of security, as well as the

transmission of information about them.

(Expansion.Conjunction)

German back-translation: (DE) Madam President, Commissioner, ladies and gentlemen,

road safety potentials should citizens in the dual sense therefore I urge, together with the

report under discussion today, the prevention and education about the safety benefits of

driver-assistance systems.

(Contingency.Cause)

Czech back-translation: (DE) Madam President, Commissioner, ladies and gentlemen,

the public would be the potential for greater road safety should have a two-fold benefit,

therefore I call, in addition to the report, which we are debating today , for more research

and education in the safety benefits of driver-assistance systems.

(Contingency.Cause)

Case 3: Discrepancies between connectives in back-translations can also be due to differ-

ences in how translators interpreted the original text. Here are cases of genuine ambiguities

in the implicit discourse relation.

Original English: with regard, once again, to European Union law, we are dealing in this

case with the domestic legal system of the Member States. That being said, I cannot answer

for the Council of Europe or for the European Court of Human Rights, which have issued a

decision that I understand may raise some issues for Parliament.

French back-translation: with regard, once again, the right of the European Union, we are

here in the domestic legal system of the Member States. however, I cannot respond to the
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place of the Council of Europe or for the European Court of Human Rights, which have

issued a decision that I understand may raise questions in this House.

(Comparison.Contrast)

German back-translation: once again on the right of the European Union, we have it in

this case with the national legal systems of the Member States. therefore, I cannot, for the

Council of Europe and the European Court of Human Rights, which have issued a decision,

which I can understand, in Parliament raises some issues.

(Contingency.Cause)

Czech back-translation: I repeat that, when it comes to the European Union, in this case

we are dealing with the domestic legal system of the Member States. in addition, I cannot

answer for the Council of Europe or for the European Court of Human Rights , which has

issued a decision that I understand may cause in Parliament some doubts.

(Expansion.Conjunction)

Case 4: Implicit relations can co-occur withmarked discourse relations (Rohde et al., 2015),

and multiple translations help discover these instances, for example:

Original English: We all understand that nobody can return Russia to the path of freedom

and democracy, (implicit: but) what is more, the situation in our country is not as straight-

forward as it might appear to the superficial observer.

French back-translation: we all understand that nobody can return Russia on the path of

freedom and democracy but Russia itself, its citizens and its civil society but there is more,

the situation in our country is not as simple as it might appear to be a superficial observer.

(Comparison.Contrast)

German back-translation: we are all aware that nobody Russia back on the path of freedom

and democracy, as the country itself, its people and its civil society but the situation in our

country is not as straightforward as it might appear to the superficial observer.

(Comparison.Contrast)

Czech back-translation: we all know that Russia cannot return to the path of freedom and

democracy there, but Russia itself, its people and civil society. in addition the situation in
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our country is not as straightforward as it might appear to the superficial observer.

(Expansion.Conjunction)

5.5 Summary

In this chapter, I compare the explicitations obtained from translations into three different

languages, and find that instances where at least two back-translations agree yield the best

quality, significantly outperforming a version of themodel that does not use additional data,

or uses data from just one language.

I also found that specific properties of the translation language affect the distribution of the

additionally acquired data across coherence relations: German, for instance, is known to

mark conjunction relations using discourse cues more frequently, while English and other

languages tend to express these relations rather through lexical cohesion or pronouns. This

was reflected in our experiments: we found a larger proportion of explicitations for con-

junction relations in German than the other translation languages.

Finally, the qualitative analysis shows that the strength of the method partially stems from

being able to learn additional discourse relation signals because these are typically translated

consistently. Themethod thus shows promise for the identification of discoursemarkers and

alternative lexicalizations, which can subsequently be exploited also for discourse relation

classification in the absence of translation data. Our analysis also shows that our method is

useful for identifying cases where multiple relations holding between two arguments.

The idea of using the explicitation process in human translating not only can be applied

with multi-lingual data, but also it can be used in monolingual data and making better use

of the implicit connective annotations in the PDTB with neural networks (Qin et al. (2017)

shows that the implicit connective annotation also helps neural networks in learning better

sentence representations). Moreover, with the limited number of data, learning the surface

cues is obviously not adequate for tasks that need deeper encoding and interpretation. Hav-

ing better understanding of how arguments relate to one another and having better seman-

tic representation are crucial. In the next chapter, I will introduce a sequence-to-sequence
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neural network based method, which forces the internal representation to more completely

encode the semantics of the relational arguments, and makes a more fine-grained classifi-

cation than is necessary for the overall task.
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Chapter 6

Learning to explicitate connectives with a

Seq2Seq network

In Chapter 3 we conclude that having better understanding of how two relation arguments

are related to one another and better semantic sentence representations are of crucial im-

portance to the task. The implicit connective annotations in the PDTB give us the chance to

transfer the idea of using the explicitation process in human translating tomonolingual data.

In this chapter, we propose a sequence-to-sequence network model to mimic the process of

explicitation and the evaluate the approach on different settings and data splits.

6.1 Introduction

The Penn Discourse Tree Bank (Prasad et al., 2008, PDTB) provides lexically-grounded an-

notations of discourse relations and their two discourse relational arguments (i.e., two text

spans).

When annotating implicit relations in the PDTB, annotators were asked to first insert a con-

nective which expresses the relation, and then annotate the relation label. This procedure

was introduced to achieve higher inter-annotator agreement for implicit relations between

human annotators. In the approach taken in this chapter, our model mimics this procedure



74 Chapter 6 Learning to explicitate connectives with a Seq2Seq network

by being trained to explicitate the discourse relation, i.e. to insert a connective as a secondary

task.

The key in implicit discourse relation classification lies in extracting relevant information for

the relation label from (the combination of) the discourse relational arguments. Informa-

tive signals can consist of surface cues, as well as the semantics of the relational arguments.

Statistical approaches have typically relied on linguistically informed features which capture

both of these aspects, like temporal markers, polarity tags, Levin verb classes and sentiment

lexicons, as well as the Cartesian products of the word tokens in the two arguments (Lin

et al., 2009). More recent efforts use distributed representations with neural network archi-

tectures (Qin et al., 2016a).

The main question in designing neural networks for discourse relation classification is how

to get the neural networks to effectively encode the discourse relational arguments such that

all of the aspects relevant to the classification of the relation are represented, in particular in

the face of very limited amounts of annotated training data, see e.g. Rutherford et al. (2017b).

The crucial intuition in the present chapter is to make use of the annotated implicit connec-

tives in the PDTB: in addition to the typical relation label classification task, we also train

the model to encode and decode the discourse relational arguments, and at the same time

predict the implicit connective. This novel secondary task forces the internal representa-

tion to more completely encode the semantics of the relational arguments (in order to allow

the model to decode later), and to make a more fine-grained classification (predicting the

implicit connective) than is necessary for the overall task. This more fine-grained task thus

aims to force the model to represent the discourse relational arguments in a way that allows

the model to also predict a suitable connective.

Our overall discourse relation classifier combines representations from the relational argu-

ments as well as the hidden representations generated as part of the encoder-decoder archi-

tecture to predict relation labels. What’s more, with an explicit memory network, the net-

work also has access to history representations and acquiremore explicit context knowledge.

We show that our method outperforms previous approaches on the 11-way classification on

the PDTB 2.0 benchmark.
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6.2 System overview
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Figure 6.1: The Architecture of Proposed Model.

Our model is based on the sequence-to-sequence model used for machine translation (Lu-

ong et al., 2015), an adaptation of an LSTM (Hochreiter and Schmidhuber, 1997) that en-

codes a variable length input as a fix-length vector, then decodes it into a variable length

of outputs. As illustrated in Figure 6.1, our model consists of three components: Encoder,

Decoder and Discourse Relation Classifier. We here use different LSTMs for the encoding

and decoding tasks to help keep the independence between those two parts.

The task of implicit discourse relation recognition is to recognize the senses of the implicit

relations, given the two arguments. For each discourse relation instance, The Penn Dis-

course Tree Bank (PDTB) provides two arguments (Arg1, Arg2) along with the discourse

relation (Rel) and manually inserted implicit discourse connective (Conni). Here is an im-

plicit example from section 0 in PDTB:

3. Arg1: This is an old story.

Arg2: We’re talking about years ago before anyone heard of asbestos having any ques-

tionable properties.
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Conni: in fact

Rel: Expansion.Restatement

During training, the input and target sentences for sequence-to-sequence neural network

are [Arg1;Arg2] and [Arg1;Conni;Arg2] respectively, where “;” denotes concatenation.

6.3 Model components

6.3.1 Encoder

Given a sequence of words, an encoder computes a joint representation of the whole se-

quence.

After mapping tokens to Word2Vec embedding vectors (Mikolov et al., 2013), a LSTM re-

current neural network processes a variable-length sequence x = (x1, x2, ..., xn) by incre-

mentally adding new contents into a single memory cell, with gates controlling the content

to which contents should bememorized, erased or inputed. At time step t, the state of mem-

ory cell ct and hidden ht are calculated with the Equations 6.1:


it

ft

ot

ĉt

 =


σ

σ

σ

tanh

W · [ht−1, xt]

ct = ft ⊙ ct−1 + it ⊙ ĉt

ht = ot ⊙ tanh(ct)

(6.1)

where xt is the input at time step t, i, f and o are the input, forget and output gate activation

respectively. ĉt denotes the current cell state, σ is the logistic sigmoid function and⊙denotes

element-wise multiplication. The LSTM separates the memory c from the hidden state h,

which allows for more flexibility incombining new inputs and previous context.

For the sequence modeling tasks, it is beneficial to have access to the past context as well as

the future context. Therefore, we chose a bidirectional LSTM as the encoder and the output
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of the word at time-step t is shown in the Equation 6.2. Here, element-wise sum is used to

combine the forward and backward pass outputs.

ht =
[−→
ht ⊕

←−
ht

]
(6.2)

Thus we get the output of encoder:

he = [he
1, h

e
2, ..., h

e
n] (6.3)

6.3.2 Decoder

With the representation from the encoder, the decoder tries to map it back to the targets

space and predicts the next words.

Here we used a separate LSTM recurrent network to predict the target words. During train-

ing, target words are fed into the LSTM incrementally and we get the outputs from decoder

LSTM:

hd =
[
hd
1, h

d
2, ..., h

d
n

]
(6.4)

Global attention

In each time-step in decoding, rather than choosing the hidden state of the last time-step, it’s

better to consider all the hidden states of the encoder to give the decoder a full view of the

source context. Sowe adopt the global attentionmechanismproposed in Luong et al. (2015).

For time step t in decoding, context vector ct is the weighted average of he, the weights for

each time-step are calculated with hd
t and he as illustrated below:

αt =
exp(hd

t
⊤Wαhe)

n∑
t=1

exp(hd
t
⊤Wαhe)

(6.5)

ct = αhe (6.6)
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Word prediction

Context vector ct captures the relevant source side information to help predict the current

target word yt. We employ a concatenate layer with activation function tanh to combine

context vector ct and hidden state of decoder hd
t at time-step t as follows:

ĥd
t = tanh(Wc

[
ct;h

d
t

]
) (6.7)

Then the predictive vector is fed into the softmax layer to get the predicted distribution

p̂(yt|s) of the current target word.

p̂(yt|s) = softmax(Wsĥd + bs)

ŷt = argmax
y

p̂(yt|s)
(6.8)

After decoding, we obtain the predictive vectors for the whole target sequence

ĥd =
[
hd
1, h

d
2, ..., h

d
n

]
(6.9)

Ideally, it contains the information of exposed implicit connectives.

Gated interaction

In order to predict the coherent discourse relation of the input sequence, we take both the

hencoder and the predictiveword vectorshd into account. K-max pooling can “draw together”

features that are most discriminative and among many positions apart in the sentences, es-

pecially on both the two relational arguments in our task here; this method has been proved

to be effective in choosing active features in sentence modeling (Kalchbrenner et al., 2014).

We employ an average k-max pooling layer which takes average of the top k-max values

among the whole time-steps as in Equation 6.10 and 6.11:

h̄e =
1

k

k∑
i=1

topk(he) (6.10)
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h̄d =
1

k

k∑
i=1

topk(ĥd) (6.11)

h̄e and h̄d are then combined using a linear layer (Lan et al., 2017). As illustrated in Equation

6.12, the linear layer acts as a gate to determine how much information from the sequence-

to-sequence network should be mixed into the original sentence’s representations from the

encoder. Compared with bilinear layer, it also has less parameters and allows us to use high

dimensional word vectors.

h∗ = h̄e ⊕ σ(Wih̄d + bi) (6.12)

6.3.3 Explicit context knowledge

To further capture common knowledge in contexts, we here employ a memory network

proposed in Liu et al. (2018), to get explicit context representations of contexts training

examples. We use a memory matrix M ∈ RK×N , where K,N denote hidden size and

number of training instances respectively. During training, the memory matrix remembers

the information of training examples and then retrieves them when predicting labels.

Given a representation h∗ from the interaction layer, we generate a knowledge vector by

weighted memory reading:

k = Msoftmax(MTh∗) (6.13)

Wehere use dot product attention, which is faster and space-efficient than additive attention,

to calculate the scores for each training instances. The scores are normalized with a softmax

layer and the final knowledge vector is a weighted sum of the columns in memory matrix

M . Afterwards, the model predicts the discourse relation using a softmax layer.

p̂(r|s) = softmax(Wr[k;h
∗] + br)

r̂ = argmax
y

p̂(r|s)
(6.14)



80 Chapter 6 Learning to explicitate connectives with a Seq2Seq network

6.3.4 Multi-objectives

In our model, the decoder and the discourse relation classifier have different objectives. For

the decoder, the objective consists of predicting the target word at each time-step. The loss

function is calculated with masked cross entropy with L2 regularization, as follows:

Lossde = −
1

n

n∑
t=1

yt log(p̂y) +
λ

2
∥ θde ∥22 (6.15)

where yt is one-hot represented ground truth of target words, p̂y is the estimated probabili-

ties for each words in vocabulary by softmax layer, n denotes the length of target sentence.

λ is a hyper-parameter of L2 regularization and θ is the parameter set.

The objective of the discourse relation classifier consists of predicting the discourse relations.

A reasonable training objective for multiple classes is the categorical cross-entropy loss. The

loss is formulated as:

Losscl = −
1

m

m∑
i=1

ri log(p̂r) +
λ

2
∥ θcl ∥22 (6.16)

where ri is one-hot represented ground truth of discourse relation labels, p̂r denotes the

predicted probabilities for each relation class by softmax layer, m is the number of target

classes. Just like above, λ is a hyper-parameter of L2 regularization.

For the overall loss of the whole model, we set another hyper-parameterw to give these two

objective functions different weights. Larger w means that more importance is placed on

the decoder task.

Loss = w · Lossde + (1− w) · Losscl (6.17)

6.4 Experiments and results

6.4.1 Experimental setup

We evaluate our model on the PDTB. While early work only evaluate classification perfor-

mance between the fourmainPDTB relation classes, more recentwork including theCoNLL



Section 6.4 Experiments and results 81

Settings Train Dev Test
PDTB-Lin 13351 515 766
PDTB-Ji 12826 1165 1039

Cross valid. per fold avg. 12085 1486 14861

Table 6.1: Numbers of train, development and test set on different settings for 11-way clas-
sification task. Instances annotated with two labels are double-counted and some
relations with few instances have been removed.

2015 and 2016 shared tasks on Shallow Discourse Parsing (Xue et al., 2015, 2016) have set

the standard to second-level classification. The second-level classification is more useful for

most downstream tasks. Following other works we directly compare to in our evaluation,

we here use the setting where AltLex, EntRel and NoRel tags are ignored. About 2.2% of

the implicit relation instances in PDTB have been annotated with two relations, these are

considered as two training instances.

To allow for full comparability to earlier work, we here report results for three different set-

tings. The first one is denoted as PDTB-Lin (Lin et al., 2009); it uses sections 2-21 for train-

ing, 22 as dev and section 23 as test set. The second one is labeled PDTB-Ji (Ji and Eisenstein,

2015), and uses sections 2-20 for training, 0-1 as dev and evaluates on sections 21-22. Our

third setting follows the recommendations of Chapter 3, and performs 10-fold cross valida-

tion on the whole corpus (sections 0-23). Table 6.1 shows the number of instances in train,

development and test set in different settings.

As advocated inChapter 3, cross validation approach addresses problems related to the small

corpus size, and reports model performance across all folds. This to some extend avoids the

risks of unreliable conclusions that are made on the small test set in the conventional data

split settings.

Preprocessing

We first convert tokens in PDTB to lowercase and normalize strings, which removes special

characters. The word embeddings used for initializing the word representations are trained

with the CBOW architecture in Word2Vec2 (Mikolov et al., 2013) on PDTB training set. All

the weights in the model are initialized with uniform random.

1Cross-validation allows us to test on all 15057 instances.
2https://code.google.com/archive/p/word2vec/
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To better locate the connective positions in the target side, we use two position indicators

(⟨conn⟩, ⟨/conn⟩) which specify the starting and ending of the connectives (Zhou et al.,

2016), which also indicate the spans of discourse arguments.

Since our main task here is not generating arguments, it is better to have representations

generated by correct words rather than by wrongly predicted ones. So at test time, instead

of using the predicted word from previous time step as current input, we use the source

sentence as the decoder’s input and target. As the implicit connective is not available at test

time, we use a random vector, which we used as “impl_conn” in Figure 6.2, as a placeholder

to inform the sequence that the upcoming word should be a connective.

Hyper-parameters

There are several hyper-parameters in our model, including dimension of word vectors d,

two dropout rates after embedding layer q1 and before softmax layer q2, two learning rates

for encoder-decoder lr1 and for classifier lr2, top k for k-max pooling layer, different weights

w for losses in Equation (6.17) and λ denotes the coefficient of regularizer, which controls

the importance of the regularization term, as shown in Table 6.2.

d q1 q2 lr1 lr2 k w λ
100 0.5 0.2 2.5e−3 5e−3 5 0.2 5e−4

Table 6.2: Hyper-parameter settings.

6.4.2 Model training

To train our model, the training objective is defined by the loss function we introduced

above. We use Adaptive Moment Estimation (Adam) (Kingma and Ba, 2014) with different

learning rate for different parts of the model as our optimizer. Dropout layers are applied

after the embedding layer and also on the top feature vector before the softmax layer in

the classifier. We also employ L2 regularization with small λ in our objective functions

for preventing over-fitting. The values of the hyper-parameters, are provided in Table 6.2.

The model is trained firstly to minimize the loss in Equation 6.15 until convergence, we use

scheduled sampling (Bengio et al., 2015) during training to avoid “teacher-forcing problem”.
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Methods PDTB-Lin PDTB-Ji Cross Validation

Majority class 26.11 26.18 25.59
Lin et al. (2009) 40.20 - -
Qin et al. (2016a) 43.81 45.04 -
Cai and Zhao (2017) - 45.81 -
Qin et al. (2017) 44.65 46.23 -
Shi et al. (2017) (with extra data) 45.50 - 37.84

Encoder only (Bi-LSTM) (Shi et al., 2017) 34.32 - 30.01
Auto-Encoder 43.86 45.43 39.50
Seq2Seq w/o Mem Net 45.75 47.05 40.29
Proposed Method 45.82 47.83 41.29

Table 6.3: Accuracy (%) of implicit discourse relations on PDTB-Lin, PDTB-Ji and Cross
Validation Settings for multi-class classification.

And then to minimize the joint loss in Equation 6.17 to train the implicit discourse relation

classifier.

6.4.3 Experimental results

Second-level multi-class classification

We compare our models with six previous methods, as shown in Table 6.3. The baselines

contain feature-basedmethods (Lin et al., 2009), state-of-the-art neural networks at the time

of the study (Qin et al., 2016a; Cai and Zhao, 2017), including the adversarial neural net-

work that also exploits the annotated implicit connectives (Qin et al., 2017), as well as the

data extension method based on using explicitated connectives from translation to other

languages (as in Chapter 5).

Additionally, we ablate our model by taking out the prediction of the implicit connective in

the sequence to sequence model. The resulting model is labeled Auto-Encoder in Table 6.3.

And seq2seq network without knowledge memory, which means we use the output of gated

interaction layer to predict the label directly, as denoted as Seq2Seq w/o Mem Net.

Our proposed model outperforms the other models in each of the settings. Compared with

performances inQin et al. (2017), althoughwe share the similar idea of extracting highly dis-

criminative features by generating connective-augmented representations for implicit dis-
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course relations, our method improves about 1.2% on setting PDTB-Lin and 1.6% on the

PDTB-Ji setting. The importance of the implicit connective is also illustrated by the fact that

the “Auto-Encoder” model, which is identical to our model except it does not predict the

implicit connective, performs worse than the model which does. This confirms our initial

hypothesis that training with implicit connectives helps to expose the latent discriminative

features in the relational arguments, and generates more refined semantic representation.

It also means that, to some extent, purely increasing the size of tunable parameters is not

always helpful in this task and trying to predict implicit connectives in the decoder does

indeed help the model extract more discriminative features for this task. What’s more, we

can also see that without the memory network, the performances are also worse, it shows

that with the concatenation of knowledge vector, the training instance may be capable of

finding related instances to get common knowledge for predicting implicit relations. As Shi

and Demberg (2017) argued that it is risky to conclude with testing on such small test set,

we also run cross-validation on the whole PDTB. From Table 6.3, we have the same con-

clusion with the effectiveness of our method, which outperformed the baseline (Bi-LSTM)

with more than 11% points and 3% compared with Shi et al. (2017) even though they have

used a very large extra corpus.

For the sake of obtaining a better intuition on how the global attention works in our model,

Figure 6.2 demonstrates the weights of different time-steps in attention layer from the de-

coder. Theweights show howmuch importance the word attached to the source words while

predicting target words. We can see that without the connective in the target side of test, the

word filler still works as a connective to help predict the upcoming words. For instance,

the true discourse relation for the right-hand example is Expansion.Alternative, at the word

filler’s time-step, it attached more importance on the negation “don’t” and “tastefully ap-

pointed”. It means the current representation could grasp the key information and try to

focus on the important words to help with the task. Here we see plenty room for adapting

this model to discourse connective prediction task, we would like to leave this to the future

work.

We also try to figure out which instances’ representations have been chosen from the mem-

ory matrix while predicting. Table 6.6 shows two examples and their context instances with
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Figure 6.2: Visualization of attention weights during predicting target sentence in train and
test, x-axis denotes the source sentence and the y-axis is the targets. Upper two
figures are examples from training set with implicit connectives inside, while the
bottom two, in which the implicit connectives have been replaced by the word
filler “impl_conn”, are from test set.

top 2memory attentions among the whole training set. We can see that both examples show

that the memory attention attached more importance on the same relations. This means

that with the Context Memory, the model could facilitate the discourse relation prediction

by choosing examples that share similar semantic representation and discourse relation dur-

ing prediction.
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Relation Train Dev Test
Comparison 1855 189 145
Contingency 3235 281 273
Expansion 6673 638 538
Temporal 582 48 55

Total 12345 1156 1011

Table 6.4: Distribution of top-level implicit discourse relations in the PDTB.

Methods Four-ways One-Versus-all Binary (F1)
F1 Acc. Comp. Cont. Expa. Temp.

Rutherford and Xue (2014) 38.40 55.50 39.70 54.42 70.23 28.69
Qin et al. (2016b) - - 41.55 57.32 71.50 35.43
Liu et al. (2016) 44.98 57.27 37.91 55.88 69.97 37.17
Ji et al. (2016) 42.30 59.50 - - - -
Liu and Li (2016) 46.29 57.17 36.70 54.48 70.43 38.84
Qin et al. (2017) - - 40.87 54.46 72.38 36.20
Lan et al. (2017) 47.80 57.39 40.73 58.96 72.47 38.50
Our method 46.40 61.42 41.83 62.07 69.58 35.72

Table 6.5: Comparison of F1 scores (%) and Accuracy (%) with the State-of-the-art Ap-
proaches at the time of the study for four-ways and one-versus-all binary classi-
fication on PDTB. Comp., Cont., Expa. and Temp. stand for Comparison, Con-
tingency, Expansion and Temporal respectively.
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In recent years, U.S. steelmakers have supplied about 80% of the 100 million tons of steel used
annually by the nation. (in addition,) Of the remaining 20%needed, the steel-quota negotiations
allocate about 15% to foreign suppliers.

— Expansion.Conjunction

1. The average debt of medical school graduates who borrowed to pay for their education
jumped 10% to $42,374 this year from $38,489 in 1988, says the Association of American
Medical Colleges. (furthermore) that’s 115% more than in 1981

— Expansion.Conjunction
2. ... he rigged up an alarm system, including a portable beeper, to alert him when Sventek
came on the line. (and) Some nights he slept under his desk.

— Expansion.Conjunction

Prices for capital equipment rose a hefty 1.1% in September, while prices for home electronic
equipment fell 1.1%. (Meanwhile,) food prices declined 0.6%, after climbing 0.3% in August.

— Comparison.Contrast

1. Lloyd’s overblown bureaucracy also hampers efforts to update marketing strategies.
(Although) some underwriters have been pressing for years to tap the low-margin business
by selling some policies directly to consumers.

— Comparison.Contrast
2. Valley National ”isn’t out of the woods yet. (Specifically), the key will be whether Arizona
real estate turns around or at least stabilizes

— Expansion.Restatement

Table 6.6: Example of attention in Context Knowledge Memory. The sentences in italic are
from PDTB test set and following 2 instances are the ones with top 2 attention
weights from training set.
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Top-level binary and 4-way classification

A lot of the recent works in PDTB relation recognition have focused on first level relations,

both on binary and 4-ways classification. We also report the performance on level-one rela-

tion classification for more comparison to prior works. As described above, we followed the

conventional experimental settings (Rutherford and Xue, 2015; Liu and Li, 2016) as closely

as possible. Table 6.4 shows the distribution of top-level implicit discourse relation in PDTB,

it’s worth noticing that there are only 55 instances for Temporal Relation in the test set.

To make the results comparable with previous work, we report the F1 score for four binary

classifications and both F1 and Accuracy for 4-way classification, which can be found in

Table 6.5. We can see that our method outperforms all alternatives on Comparison and

Contingency, and obtain comparable scores with the state-of-the-art in others at the time

of the study. For 4-way classification, we got the best accuracy and second-best F1 with

around 2% better than in Ji et al. (2016).

6.5 Analysis and discussion

We present in this chapter a novel neural method trying to integrate implicit connectives

into the representation of implicit discourse relations with a joint learning framework of

sequence-to-sequence network. We conduct experiments with different settings on PDTB

benchmark, the results show that our proposed method achieves state-of-the-art perfor-

mance (at the time of publication) on recognizing the implicit discourse relations at the

time of the study and the improvements are not only brought by the increasing number of

parameters. The model also has great potential abilities in implicit connective prediction in

the future.

Our proposed method shares similar spirit with previous work in Zhou et al. (2010), who

also tried to leverage implicit connectives to help extract discriminative features from im-

plicit discourse instances. Comparing with the adversarial method proposed by Qin et al.

(2017), our proposed model more closely mimics humans’ annotation process of implicit

discourse relations and is trained to directly explicitate the implicit relations before classi-

fication. With the representation of the original implicit sentence and the explicitated one
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from decoder, and the help of the explicit knowledge vector from memory network, the

implicit relation could be classified with higher accuracy.

Although our method has not been trained as a generative model in our experiments, we

can see potential for applying it to generative tasks. With more annotated data, minor mod-

ification and fine-tuned training, we believe our proposed method could also be applied to

tasks like implicit discourse connective prediction, or argument generation in the future.

6.6 Summary

In this chapter, I propose a sequence-to-sequence based neural network which not only pre-

dicts the implicit discourse relation between the arguments but also has a secondary task to

be trained to explicitate the discourse relation while generating the arguments at the same

time. The experimental results show that with the secondary task and the memory network

component, the proposed method achieved the best performances at the time of the study,

on different settings including the first level four-ways, one-versus-all and the 11 ways clas-

sification on the second level relations.

Nonetheless, having good encoding only does part of the job. A good implicit discourse

relation classification should be able to encode discourse expectation and learn typical tem-

poral sequences, causes, consequences etc. for all kinds of events. In the next chapter, I try

to figure out whether having the correct next sentence is beneficial for the task, with the help

of the recently proposed model BERT (Devlin et al., 2019), which has a next sentence pre-

diction as a subtask in the pre-training of the language model. And also try to understand

how much the pre-trained language model helps when it meets with a new domain.
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Chapter 7

Next Sentence Prediction helps within

and across domains

In the last chapters, we prove that having better understanding, encoding and semantic in-

terpretation are vital and beneficial to the task of implicit discourse relation classification.

However, taking the context to a broader range, it only does part of the work. A good im-

plicit discourse relation classifier should also be aware of the upcoming events, causes, con-

sequences etc. to encode the discourse expectations into the sentence representations. In

this chapter, we try to figure out whether having the correct next sentence is beneficial for

the task or not, with the help of the recently proposed BERT model.

7.1 Introduction

Discourse relations in texts are sometimes marked with an explicit connective (e.g., but, be-

cause, however), but these explicit signals are often absent. When there is no connective,

classification has to rely on semantic information from the relational arguments. This task

is very challenging, with the state-of-the-art systems at the time of the study achieving ac-

curacy of only 45% to 48% on 11-way classification. Let’s consider example 7.1:
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(1) [The joint venture with Mr. Lang wasn’t a good one.]Arg1 [The venture, formed in

1986, was supposed to be Time’s low-cost, safe entry into women’smagazines.]Arg2

implicitComparison.Concession.Expectation relation fromPDTB:wsj_1903

In order to correctly classify the relation, it is necessary to understand that Arg1 raises the

expectation that the next discourse segment may provide an explanation for why the ven-

ture wasn’t good (e.g., that it was risky), and Arg2 contrasts with this discourse expectation.

More generally, this means that a successful discourse relation classification model would

have to be able to learn typical temporal event sequences, reasons, consequences etc. for

all kinds of events. Statistical models attempted to address this intuition by giving models

word pairs from the two arguments as features (Lin et al., 2009; Park and Cardie, 2012; Biran

and McKeown, 2013; Rutherford and Xue, 2014), so that models could for instance learn to

recognize antonym relations between words in the two arguments.

Recent models exploit such similarity relations between the two arguments, as well as sim-

pler surface features that occur in one relational argument and correlate with specific co-

herence relations (e.g., the presence of negation, temporal expressions etc. may give hints as

to what coherence relation may be present, see Park and Cardie (2012); Asr and Demberg

(2015)). However, relations between arguments are often a lot more diverse than simple

contrasts that can be captured through antonyms, and may rely on world knowledge (Kishi-

moto et al., 2018). It is hence clear that one cannot learn all these diverse relations from

the very small amounts of available training data. Instead, we would have to learn a more

general representation of discourse expectations.

In fact, most of today’s discourse relation classifiers attempt to predict the coherence rela-

tion between relational arguments, without having access to the world knowledge that is

often necessary to assess how two events relate to one another. Instead, they capture some

generalizable patterns between word pairs in the relational arguments, e.g. if the relational

arguments contain antonyms, it’s highly possible to be a contrastive relation. And the largest

annotated discourse relation corpus, describes a text as a series of discourse relations, each

of which consists of two arguments and a connective. The discourse relation can either be

explicit or implicit depending on whether the connective is presence or not.

Many recent discourse relation classification approaches have focused on cross-lingual data
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augmentation (Chapter 4, 5), training models to better represent the relational arguments

by using various neural networkmodels, including feed-forward network (Rutherford et al.,

2017b), convolutional neural networks (Zhang et al., 2015), recurrent neural network (Ji

et al., 2016; Bai and Zhao, 2018), character-based (Qin et al., 2016a) or formulating relation

classification as an adversarial task (Qin et al., 2017). These models typically use pre-trained

semantic embeddings generated from language modeling tasks, like Word2Vec (Mikolov

et al., 2013), GloVe (Pennington et al., 2014) and ELMo (Peters et al., 2018).

However, previously proposed neural models still crucially lack a representation of the typ-

ical relations between sentences: to solve the task properly, a model should ideally be able to

form discourse expectations, i.e., to represent the typical causes, consequences, next events

or contrasts to a given event described in one relational argument, and then assess the con-

tent of the second relational argument with respect to these expectations (see Example 7.1).

Previous models would have to learn these relations only from the annotated training data,

which is much too sparse for learning all possible relations between all events, states or

claims.

The recently proposed BERT model (Devlin et al., 2019) takes a promising step towards

addressing this problem: the BERT representations are trained using a language modelling

and, crucially, a “next sentence prediction” task, where themodel is presentedwith the actual

next sentence vs. a different sentence and needs to select the original next sentence. We

believe it is a good fit for discourse relation recognition, since the task allows the model to

represent what a typical next sentence would look like.

In this chapter, we show that a BERT-basedmodel outperforms the current state of the art by

8% points in 11-way implicit discourse relation classification on PDTB. We also show that

after pre-training with small size cross-domain data, the model can be easily transferred to

a new domain: it achieves around 16% accuracy gain on BioDRB compared to state of the

art model. We also show that the Next Sentence Prediction task played an important role in

these improvements.
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7.2 BERT

Devlin et al. (2019) proposed the Bidirectional Encoder Representation from Transformers

(BERT), which is designed to pre-train a deep bidirectional representation by jointly con-

ditioning on both left and right contexts. BERT is trained using two novel unsupervised

prediction tasks: Masked Language Modeling and Next Sentence Prediction (NSP).

7.2.1 Masked language model

Given that both the contexts on the left and right side are vital for the language models, it is

reasonable to believe that a deep bidirectional model is more powerful than either a left-to-

right or a shallow concatenation of a left-to right and right-to-left model. In other words, a

deep bidirectional language model should be able to encode the surrounding contexts at the

same time. In this way, each word is able to indirectly see itself and the model could trivially

predict the target word in a multi-layered context.

Devlin et al. (2019) proposed a masked language model, in which some of the input tokens

are randomly chosen and masked and the final hidden vectors corresponding to the mask

tokens are fed into an output softmax over the vocabulary, as in a standard language model.

Specifically, 15% of all tokens at random in each sequence are chosen to be replaced by

(1) the actual “[MASK]” token 80% of the time. (2) a random token 10% of the time. (3)

the unchanged token 10% of the time. This is different compared with the denoising auto-

encoders such as sequence-to-sequence models, the masked language model only predicts

the masked words rather than reconstructing the entire input recurrently.

7.2.2 Next sentence prediction

Many downstream NLP tasks such as Question Answering (QA) and Natural Language In-

ference (NLI) are based on understanding the relationship between two sentences, which

is not directly captured by the language model. The next sentence prediction task has been

formulated as a binary classification task: the model is trained to distinguish the originally

following sentence from a randomly chosen sentence from the corpus, and it showed great
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Figure 7.1: The architecture from BERT (Devlin et al., 2019) for fine-tuning of implicit dis-
course relation classification.

helps in multiple NLP tasks especially inference ones. In more detail, the model is pre-

trained for a binarized next sentence prediction task that can be trivially generated from any

monolingual corpus. Specifically, when choosing the sentence A and B for each training

example, 50% of the time B is the actual next sentence that follows A, and 50% of the time

it is a random sentence from the corpus. The resulting BERT representations thus encode

a representation of upcoming discourse content, and hence contain discourse expectation

representations which, as we argued above, are required for classifying coherence relations.
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Methods PDTB-Lin PDTB-Ji Cross Validation

Cai and Zhao (2017) - 45.81 -
Kishimoto et al. (2018) 38.77 - 39.80
Bai and Zhao (2018) 45.73 48.22 -
Shi and Demberg (2019a) 45.82 47.83 41.29

Bi-LSTM + w2v_300 37.95(0.59) 40.57(0.67) 37.82(0.74)
BERT 53.13(0.37) 53.30(0.39) 49.30(1.33)
BERT + WSJ w/o NSP 53.39(0.49) 51.28(0.49) 49.32(1.24)
BERT + WSJ 54.82(0.61)∗ 53.23(0.32)∗ 49.35(0.83)

Table 7.1: Accuracy (%) with standard deviation in brackets of implicit discourse relation
classification on different settings of PDTB level 2 relations. NSP refers to the
subtask “next sentence prediction” in the pre-training of BERT. Numbers in bold
signal significant improvements over the previous state of the art (p<0.01). Num-
bers with ∗ denote significant improvements over BERT + WSJ w/o NSP with
p<0.01.

7.3 Experiments and results

As shown in Figure 7.1, E denotes the input tokens’ embedding and T are the target words.

In our case they are identical. We fit the implicit discourse relation task into sentence-pair

classification proposed in BERT. Argument 1 and Argument 2 are separated with token

“[SEP]”; “[CLS]” is the special classification embedding while “C” is the same as “[CLS]” in

pre-training but the ground-truth label in the fine-tuning. In the experiments, we used the

uncased base model1 provided by Devlin et al. (2019), which is trained on BooksCorpus and

English Wikipedia with 3300M tokens in total.

7.3.1 On PDTB

We use the Penn Discourse Tree Bank (Prasad et al., 2008), the largest available manually

annotated discourse corpus. It provides a three level hierarchy of relation tags. Following

the experimental settings and evaluation metrics in Bai and Zhao (2018), we use two most-

used splitting methods of PDTB data, denoted as PDTB-Lin (Lin et al., 2009), which uses

sections 2-21, 22, 23 as training, validation and test sets, and PDTB-Ji (Ji and Eisenstein,

2015), which uses 2-20, 0-1, 21-22 as training, validation and test sets and report the overall
1https://github.com/google-research/bert\#pre-trained-models
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accuracy score. In addition, we also performe 10-fold cross validation among sections 0-22,

as promoted in Shi and Demberg (2017). We also follow the standard in the literature to

formulate the task as an 11-way classification task.

Results are presented in Table 7.1. We evaluate three versions of the BERT-based model. All

of our BERT models use the pre-trained representations and are fine-tuned on the PDTB

training data. The version marked as “BERT” does not do any additional pre-training.

BERT+WSJ in addition performs further pre-training on the parts of the Wall Street Journal

corpus that do not have discourse relation annotation. The model version “BERT+WJS w/o

NSP” also performs pre-training on the WSJ corpus, but only uses the Masked Language

Modelling task, not the Next Sentence Prediction task in the pre-training. We added this

variant to measure the benefit of in-domain NSP on discourse relation classification (note

though that the downloaded pre-trained BERT model contains the NSP task in the original

pre-training).

We compare the results with four state-of-the-art systems: Cai and Zhao (2017) proposed a

model that takes a step towards calculating discourse expectations by using attention over an

encoding of the first argument, to generate the representation of the second argument, and

then learning a classifier based on the concatenation of the encodings of the two discourse

relation arguments. Kishimoto et al. (2018) fed external world knowledge (ConceptNet re-

lations and coreferences) explicitly into MAGE-GRU (Dhingra et al., 2017) and achieved

improvements compared to only using the relational arguments. However, we here show

that it works even better when we learn this knowledge implicit through next sentence pre-

diction task. Shi and Demberg (2019a) used a seq2seq model that learns better argument

representations due to being trained to explicitate the implicit connective. In addition, their

classifier also uses a memory network that is intended to help remember similar argument

pairs encountered during training. The current best performance was achieved by Bai and

Zhao (2018), who combined representations from different grained embeddings including

contextualized word vectors from ELMo (Peters et al., 2018), which has been proved very

helpful. In addition, we compare our results with a simple bidirectional LSTM network and

pre-trained word embeddings from Word2Vec.
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Method Cross-Domain In-Domain
Bi-LSTM + w2v_300 32.97 46.49
Bai and Zhao (2018) 29.52 55.90

BioBERT (Lee et al., 2020) 44.33 67.58
BERT 44.79 63.02
BERT + GENIA w/o NSP 43.99 65.02
BERT + GENIA 45.19∗ 66.04∗

Table 7.2: Accuracy (%) on BioDRB level 2 relations with different settings. Cross-Domain
means trained on PDTB and tested on BioDRB. For the In-Domain setting, we
used 5-fold cross-validation and report average accuracy. Numbers in bold are
significantly better than the state of the art system with p<0.01 and numbers
with ∗ denote denote significant improvements over BERT + GENIA w/o NSP
with p<0.01.

7.3.2 On BioDRB

TheBiomedical Discourse Relation Bank (Prasad et al., 2011) also follows PDTB-style anno-

tation. It is a corpus annotated over 24 open access full-text articles from the GENIA corpus

(Kim et al., 2003) in the biomedical domain. Compared with PDTB, some new discourse

relations and changes have been introduced in the annotation of BioDRB. In order to make

the results comparable, we preprocess the BioDRB annotations to map the relations to the

PDTB ones, following the instructions in Prasad et al. (2011).

The biomedical domain is very different from theWSJ or the data on which the BERTmodel

was trained. The BioDRB contains a lot of professional words / phrases that are extremely

hard to model. In order to test the ability of the BERT model on cross-domain data, we

performed fine-tuning on PDTB while testing on BioDRB. We also tested the state of the

art model of implicit discourse relation classification proposed by Bai and Zhao (2018) on

BioDRB. From Table 7.2, we can see that the BERT base model achieved almost 12% points

improvement over the Bi-LSTM baseline and 15% points over Bai and Zhao (2018). When

fine-tuned on in-domain data in the cross-validation setting, the improvement increases to

around 17% points.

It is also interesting to knowwhether the performance of the BERTmodel can be improved if

we add additional pre-training on in-domain data. BioBert (Lee et al., 2020) continues pre-

training BERT with bio-medical texts including PubMed and PMC corpora (around 18B
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Method Comp. Cont. Exp. Temp. Average

Naïve Bayes (Xu et al., 2012) 7.69(61.45) 3.88(60.24) 68.54(55.02) 17.19(57.43) 24.33(58.54)
MaxEnt (Xu et al., 2012) 7.08(57.83) 3.36(53.82) 72.32(60.64) 23.81(61.45) 26.64(58.44)
BERT 8.25(63.82) 10.26(71.54) 90.20(86.18) 63.41(87.80) 43.03(77.34)

Table 7.3: F1-score (Accuracy) of binary classification on level 1 implicit relation in Bio-
DRB.

tokens), which achieved the best results on in-domain setting. Similarly, BERT+GENIA

refers to a model in which the downloaded BERT representations are further pre-trained on

the parts of the GENIA corpus which consists of 18k sentences and is not annotated with

coherence relations. Evaluation shows that this in-domain pre-training yields another 3%

point improvement; our tests also show that theNSP task again plays a substantial role in the

improvement. We believe that gains for further pre-training on GENIA for the biomedical

domain are higher than for pre-training on WSJ for PDTB because the domain difference

between the BooksCorpus and the biomedical domain is larger.

Currently there are not so many published results that we can compare with on BioDRB

for implicit discourse relation classification. We compare BERT model with naïve Bayes

and MaxEnt methods proposed in Xu et al. (2012) on one-versus-all binary classification.

We followe the settings in Xu et al. (2012) and used two articles (“GENIA_1421503”, “GE-

NIA_1513057”) for testing and one article (“GENIA_111020”) for validation. During train-

ing, we employ down-sampling or up-sampling to keep the numbers of positive and negative

samples in each relation consistent. The BERT base model achieves 43.03% averageF1 score

and 77.34% average accuracy in one-versus-all level-1 classification. Compared with the

current state-of-the-art performances (26.64% F1 and 58.54% accuracy) in Xu et al. (2012),

it achieves around 16% and 19% points improvement when trained in-domain, as illustrated

in Table 7.3.

7.4 Conclusion and discussion

The usage of the BERT model in this chapter is motivated primarily by the use of the next-

sentence prediction task during training. The results in Table 7.1 and Table 7.2 confirm

that removing the “Next Sentence Prediction” hurts the performance on both PDTB and
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Relations WSJ w/o NSP WSJ w/ NSP CountP R F1 P R F1

Temporal.Asynchronous 0.38 0.46 0.41 0.29 0.38 0.33 13
Temporal.Synchrony - - - - - - 5
Contingency.Cause 0.57 0.65 0.61 0.57 0.64 0.60 200
Contingency.Pragmatic Cause - - - - - - 5
Comparison.Contrast 0.55 0.48 0.51 0.54 0.57 0.55 127
Comparison.Concession - - - - - - 5
Expansion.Conjunction 0.42 0.60 0.49 0.46 0.61 0.53 118
Expansion.Instantiation 0.62 0.67 0.64 0.62 0.65 0.64 72
Expansion.Restatement 0.52 0.45 0.48 0.55 0.45 0.50 190
Expansion.Alternative 0.83 0.33 0.48 0.67 0.40 0.50 15
Expansion.List 0.71 0.17 0.27 0.60 0.20 0.30 30
Micro Avg. 0.53 0.53 0.52 0.55 0.55 0.55 780

Relations GENIA w/o NSP GENIA w/ NSP CountP R F1 P R F1

Temporal.Asynchronous - - - - - - -
Temporal.Synchrony 0.87 0.84 0.85 0.90 0.88 0.89 80
Contingency.Cause 0.22 0.10 0.14 0.23 0.15 0.18 20
Contingency.Pragmatic Cause - - - - - - 1
Comparison.Contrast - - - - - - 22
Comparison.Concession - - - 0.50 0.06 0.11 16
Expansion.Conjunction 0.60 0.78 0.68 0.62 0.82 0.71 130
Expansion.Instantiation - - - - - - 9
Expansion.Restatement 0.56 0.76 0.65 0.59 0.69 0.64 72
Expansion.Alternative - - - - - - 1
Expansion.List - - - - - - -
Micro Avg. 0.55 0.64 0.59 0.59 0.66 0.61 351

Table 7.4: Precision, Recall and F1 score for each level-2 relation on PDTB-Lin setting and
BioDRB with “BERT + WSJ/GENIA” systems w/ and w/o NSP. “-” indicates 0.00
and “C.” means the number of each relation in the test set.
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BioDRB.

In order to have better insights about which relation has benefited from theNSP task, we also

report the detailed performance for each relation with and without it in BERT. As illustrated

in Table 7.4, we can see that performances on relations like Temporal.Synchrony, Compar-

ison.Contrast, Expansion.Conjunction and Expansion.Alternative have been improved by a

large margin. This shows that representing the likely upcoming sentence helps the model

form discourse expectations, which the classifier can then use to predict the coherence re-

lation between the actually observed arguments.

However, compared with BERT+GENIA, the results of BioBert (Lee et al., 2020) in Table 7.2

show that having large in-domain data for pre-training also has limited ability in learning

domain specific representations. We therefore believe that the model could be further im-

proved by including external domain-specific knowledge from an ontology (as in Kishimoto

et al. (2018)) or a causal graph for biomedical concepts and events.

7.5 Summary

In this chapter, we show that BERT has very good ability in encoding the semantic relation-

ship between sentences with its “next sentence prediction” task in pre-training. It outper-

forms the current state-of-the-art systems significantly with a substantial margin on both

in-domain and cross domain data. Our results also indicate that the next-sentence predic-

tion task during training indeed plays a role in this improvement.

However, the performance of BioBERT shows limited ability in learning domain specific

representations. In the next chapter, I will explore the joint representation of discourse

expectations through implicit representations that are learned during training and the in-

clusion of external domain-specific knowledge. In addition, Yang et al. (2019) shows that

NSP only helps tasks with longer texts. It would be interesting to see whether it has the same

effect on implicit discourse relation classification task, we’d like to leave that in the future

work.
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Chapter 8

Entity Enhancement for Implicit

Discourse Relation Classification

8.1 Introduction

Natural Language Processing (NLP) systems often perform below what is expected or ob-

served during the experimental testing, when they are being used in a real-life application.

One of the most important reasons is that when training the system, a huge assumption has

been made that the training and testing data come from a common underlying distribution

(Li, 2012). However, oftentimes the training data is too specialized to provide a generalized

estimation about the distribution. This problem leads to one of the core challenges in de-

signing a common computational language understanding system, how to adapt the trained

system to a new domain. For example, in the part-of-speech tagging task, the word monitor

is likely to be a verb in the financial domain, like the Wall Street Journal (WSJ) corpora,

while in the corpus of computer hardware, it’s more likely to be a noun. Therefore domain

adaptation algorithms are designed to bridge the distribution gap between the training data

and the test data.

As we discussed in the previous chapter, the PennDiscourse Treebank (PDTB) and Biomed-
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ical Discourse Relation Bank (BioDRB) are the most popular corpora for implicit discourse

relation classification. The domains’ gap (financial vs. biomedical) makes it very difficult to

learn general information from each other. Even with the powerful BERT model (Devlin

et al., 2019), the performance trained cross domain is around 20% accuracy worse than the

in-domain one.

The target of domain adaptation is to bring the underlying probability in the source do-

main ps(x, y) closer to the target domain pt(x, y). It basically can be categorized into three

categories (Li, 2012):

Instance-based methods: This set of methods revolve around selecting and/or weighting

instances in the source domain that are similar to those in the target domain. This type of

algorithm is closely related to common semi-supervised learning framework such as self-

training. The general idea is by weighting and selecting training instances, the influences

from the empirical distribution can be recovered. The main challenge in this class is how to

determine the instance weighting parameters or select which instance for training.

Feature transformation based methods: in this class, the assumption is that ps(x, y) dif-

fers from pt(x, y), but there exist some general features xg ∈ χ that identical or similar

conditional distribution in both the source and target domains. In this case, there are some

correspondence between ps(x, y) and pt(x, y), which means it’s possible to project the orig-

inal feature space χ into a new space χt by using some projection methods. For instance,

as shown in the Table 8.1, for the part-of-speech tagging task, some words differ in two do-

mains either because they have different meanings in the two domains or one feature occurs

in one domain but rarely occurs in another. For example, investment only occurs in the Wall

Street Journal, while the verb required, the prepositions from and for have same meanings

in the two domains. There are two main challenges in this type of methods: (1) How to

distinguish domain-specific features and general features. (2) How to find the projection

Biomedical Wall Street Journal
the signal required to investment required

stimulatory signal from buyouts from buyers
essential signal for to jail for violating

Table 8.1: Example of general and domain-specific features (Blitzer et al., 2006). The itali-
cized words are general features and bold are domain-specific.
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from source domain to the target. To address these two questions, previous work proposed

structural correspondence learning (Blitzer et al., 2006) and Topic modeling (Guo et al., 2009;

Xue et al., 2008).

Prior-based methods: these methods place different priors over the parameters or the la-

bels to make the estimated ps(y|x; θ) closer to pt(y|x). This kind of method exploits model

priors to overcome the distribution gap between two domains. One assumption is that the

conditional distribution p(x|y) is the same or similar in both domains, and that the gap

between posterior distributions mainly come from the different priors between ps(y) and

pt(y). Therefore a good estimation pt(y) based on the available data can boost the perfor-

mance with a generative model such as the Naive Bayes framework.

Apart from the abovemethods, transfer learning techniques with neural networks have seen

great successes in recent years. Pre-trained representations from deep neural network such

as convolutional neural network, recurrent neural network and transformers have worked

extremely well across a wide array of tasks nomatter in computer vision, speech recognition

or natural language processing.

Domain-specific embeddings: Mikolov et al. (2013) proposed Word2Vec to use only the

words within an n-size window of a target word, and employed tricks such as negative

sampling and hierarchical softmax layer to reduce computation time. GloVe (Pennington

et al., 2014) used global co-occurrence information rather than just the local context used

by Word2Vec, and train a regression model to minimize the difference between the vector

dot product of two words and the log of their co-occurrence ratio. Until now, pre-trained

word2vec embedding remains the most popular word representations and is mostly used as

the initial embedding layer of a task-specific network. However, without special supervision

on the domains, they still perform poor across domains. Bollegala et al. (2015) introduce

the cross-domain word representation task, where the goal is to learn a domain-specific rep-

resentation for each common word w. They constrain the representation of pivot features

to be similar across domains by predicting non-pivot features from the surrounding pivot

features.

Let’s have a deeper look into an example from the Biomedical Discourse Relation Bank (Bio-

DRB), as shown below. It would be very difficult for language models to learn domain-
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specific embeddings for professional and rare entities like the bold entity words in the ex-

ample. Given that the entities play an important role in inferring the implicit discourse

relation, having an emphasis on entities when learning with pre-trained language model

seem vital for implicit discourse relation classification.

1. [The synovial membrane of rheumatoid arthritis (RA) is characterized by an infiltrate

of a variety of inflammatory cells, such as lymphocytes, macrophages, and dendritic

cells, togetherwith proliferation of synovial fibroblast-like cells.]Arg1 (Implicit=As a result,)

[Numerous cytokines are overproduced in the inflamed joint.]Arg2

—Implicit, Contingency.Cause

In the last chapter, we show that the BioBERT (Lee et al., 2020), which is continuously pre-

trained with BERT on bio-medical texts including PubMed and PMC corpora (around 18

billion tokens), still has a very limited ability for learning domain specific knowledge, i.e. en-

tity information, entity relations etc.. This means that integrating external domain-specific

knowledge may be beneficial for this task, which also has been found by Kishimoto et al.

(2018), who integrated the ConceptNet relations as additional knowledge into the LSTM

network and achieved better performance on the PDTB. Thus in this chapter, we first pro-

pose an unsupervised method using information retrieval and knowledge graph techniques

with the assumption that if two instances share the same entities in both the relational ar-

guments, there are high possibilities that they have the same or similar discourse relation.

We then proceed to use the extracted relevant entities to enhance the pre-trained model

to help better encode the meaning of the arguments. Comparing with the work in Kishi-

moto et al. (2018), we use the information retrieval system to get more topic and domain

specific knowledge rather than the general knowledge base, and is not constrained by the

pre-defined relations in the knowledge base such as ConceptNet etc.
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8.2 Unsupervised methods with information retrieval

system

Sparse data like BioDRB, which have only around 2,000 labeled implicit instances in total,

are hard to encode. It is essential to use relevant similar explicit instances to help find the

latent patterns they share. In this section, we introduce an unsupervised method for im-

plicit discourse relation classification with the help of an information retrieval system and

a knowledge graph. The motivation here is that if the similar entities appear at the different

discourse instances, it is possible that the instances share some latent patterns in terms of

the discourse relation. Since that explicit instances are relatively easy to identify by the dis-

course parser with high accuracy (namely 96%), with a large amount of unlabelled raw data,

we believe that the system is able to identify those patterns and have statistically reasonable

predictions with the help of the extracted corresponding explicit discourse instances.

We first identify the relevant documents and with a discourse parser, it is easy to get the

explicit instances by identifying the discourse markers. Then we extract SPO (subject, pred-

icate andObject) triples with the knowledge graph system. Aftermatching the entities in the

explicit instances and those in the query, we get different labels from the explicit instances

that have similar entities in them. Finally we label the query with the majority vote.

8.2.1 Overview of the proposed method

Figure 8.1 illustrates the overall pipeline of the proposed method. First, each instance from

BioDRB (Prasad et al., 2011) is seen as a query and fed into the PubMed 1 and PMC 2

database.

PubMed and PMC are free full-text archive of biomedical and life sciences journal literature

at the U.S. National Institute of Health’s National Library of Medicine. The database we use

here is a subset of the whole PubMed and PMC collections. It consists of 7079 documents

in total (1,376 for pubMed and 5,703 for PMC).
1PubMed [Internet]. Bethesda (MD): National Library ofMedicine (US). [1946]. Available from: https:

//www.ncbi.nlm.nih.gov/pubmed/
2PubMed Central (PMC) [Internet]. Bethesda (MD): National Library of Medicine (US), National Center

for Biotechnology Information; 2000. Available from: https://www.ncbi.nlm.nih.gov/pmc/
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Figure 8.1: The Pipeline of the Proposed Method.

With the query and candidate documents, we employ the Term Frequency-inverse Docu-

ment Frequency (TF-IDF)with the equation below to extract the top 10 relevant documents.

tfidf(t, d,D) = tf(t, d) · idf(t,D)

tf(t, d) =
ft,d∑

t′∈d ft′,d

idf(t,D) = log
N

|t ∈ D : t ∈ d|

(8.1)

with

• ft,d: the raw count of term t, it equas to 1 if term t appears in document d, otherwise

0.

• N: total number of documents in the corpus N = |D|

• |d ∈ D : t ∈ d|: number of documents where the term t appears.

The candidate documents are later fed into the discourse parser, here we use the PDTB-style
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end-to-end parser by Lin et al. (2014). The outputs of the parser contain the two arguments,

discourse relation and the explicit discourse marker.

The Quasi Knowledge Graphs System proposed by Lu et al. (2019) is designed to answer

complex questions. It is a novel method that computes direct answers to complex ques-

tions by dynamically tapping arbitrary text sources and joining sub-results from multiple

documents, combining the versatility of text-based QA with graph-structure awareness of

knowledge graph. It consists of several steps including graph constructing, building the

quasi knowledge graph and graph algorithm. As we only need to get the SPO triples and

have no questions to answer, next we will briefly introduce the first step in the graph con-

structing which is extracting SPO triples.

In order to identify cues in the matching documents and to join them across multiple doc-

uments, Lu et al. (2019) apply OpenIE (Kadry and Dietz, 2017; Mausam, 2016) to extract

SPO triples. Popular tools for Open IE include OpenIE (Angeli et al., 2015), OpenIE 5.0

(Mausam, 2016), and ClausIE (Del Corro and Gemulla, 2013). However, each of these tools

comes with limitations, such as that Stanford OpenIE focuses on precision, and produces

correct but relatively few triples; OpenIE 5.0 and ClausIE often produce very long objects

from complex sentences and make it difficult to align them across different triples and ren-

dering subsequent graph construction infeasible. Therefore, Lu et al. (2019) devised their

IE method with judicious consideration to phrase ordering and term proximities, which is

also a very good fit for our task since we want that there is only one verb or noun phrase

between the subject and object and don’t have any other misleading graph edges. What’s

more, discourse relations are also very sensitive to the phrase ordering, for example, the

reason and result can be either in the argument 1 or 2 respectively and leads to different

discourse relations.

Firstly, they extracted the following triples respecting phrase ordering: Verb-phrase-mediated

triples and Noun-phrase-mediated triples. And then they used pairwise distances between

the triples’ parts (S, P or O) in the document where it stems from. They define the distance

d between two items as the number of intruding words plus one, and the score is set to 1/d.

This captures the intuition that the closer two parts are in text, the higher their score is. In

this way, each of the SPO triples is associated with a confidence score.
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After extracting the SPO triples from all the explicit discourse instances, we employ two

types ofmatching strategy to connect themwith the query: (i)Hardmatching, whichmeans

that if the subject and object appear in the query respectively or vice versa, we count it as

a vote. (ii) Soft matching. We find that with the hard matching, lots of positive samples

have been filtered out and very few explicit instances stay. Therefore, we use the cosine

distance between the subject / object and the noun phrases in the query, to measure the

similarities. To be specific, we use the pre-trained BioBERT to encode the noun phrases.

With a threshold, we can define whether they are close enough to make the corresponding

explicit instance to be counted as a valid vote or not. This way is also used in the later entity-

enhanced method with the pre-trained language model K-BERT (Liu et al., 2020).

With the steps described above, eventually each query has been connected to a number of

similar explicit instances and the prediction for the query is the majority vote from all of

them with their explicit discourse sense labels.

8.2.2 Experiments and results

Given that we haven’t used any of the labels of the instances in the BioDRB as supervision for

the training, we therefore can use all the instances as test sets. The experimental results are

shown in Table 8.2. We compare the results with some of the related work that have results

across domains.

• Bai andZhao (2018) combines representations fromdifferent levels of embeddings in-

cluding character-based embeddings, subword embeddings, and contextualized word

vectors from ELMo.

• Bi-LSTM + Word2Vec: The simple bidirectional LSTM network with the 300 dimen-

sion word embeddings.

• BERT: The uncased base model with 12 layers and 768 hidden dimensions.

• BERT + GENIA: Continue training BERT with in-domain raw texts GENIA. It is the

same as in the chapter 7.

• BioBERT (Lee et al., 2020): Pre-trained Bert with 18B in-domain tokens.
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Methods Cross-domain
Bai and Zhao (2018) 29.52
Bi-LSTM + Word2Vec 32.97
BERT (Devlin et al., 2019) 44.79
BERT + GENIA (Chapter 7) 45.19
BioBERT (Lee et al., 2020) 44.33

Hard-matching 35.29
Soft-matching 41.95

Table 8.2: Performances on BioDRB across domains. Across domainsmeans that themodel
is trained on PDTB and tested on BioDRB.

The results are shown in Table 8.2. The origin BERT achieves 44.79% accuracy across do-

mains. The BERT model is fine tuned on PDTB and tested on BioDRB. With the same

setting, the BERT + GENIA from Chapter 7 performs 45.19% and the gigantic in-domain

pre-trained BioBERT achieves 44.33%. It is obvious to see that our proposed unsupervised

method performsworse than the BERT-basedmethods on thewhole. However, even though

that the performances of the related methods we are comparing here are across domains,

they are still trained on the task of implicit discourse relation classification on PDTB. This

also indicates that BERT does not only care about the surface features of the tokens, it also

has good ability in digging up the latent discourse relation patterns that are shared by the

instances in different domains.

Nonetheless, our proposed unsupervised method achieves 35.29% with hard-matching and

41.95% with soft-matching, which is also comparable and competitive. This is because that

the model didn’t have access to supervised information other than the raw texts. Our as-

sumption here is that statistically if both instances are talking about the similar entities (sub-

jects and objects), it would be highly possible that they have the same discourse relation. In

particularly, comparing the hard and soft matching variants, we believe that with a relatively

loose constraint on identifying similar entities, the proposed method has better robustness

and more reliable majority vote.
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8.2.3 Conclusion and discussion

In this section, we introduce an unsupervised method with the help of the external entity

information from the information retrieval system. Comparing with the supervised Bert-

based models on the across-domains setting, although our experimental results haven’t out-

performed them, it achieved around 42% accuracy on BioDRB, only 2.33% worse than the

gigantic in-domain pre-trained language model BioBert. We believe that it is due to the

fact that the proposed method hasn’t got any supervised information regarding the deep

semantic representation and the discourse relation sense tags. It also motivates us to inject

the extracted external entity information into the pre-trained model for supervised learning

in the next section.

8.3 With pre-trained entity-augmented models

In Chapter 7, we have shown that the BERT is a crucial component in the high performance

models. But it still needs more domain-specific knowledge to better encode the sentences

from a new domain. With the pipeline proposed in the above section, now for each of the

instance in the BioDRB, we have several related SPO triples from the explicit examples that

are chosen with soft-matching. We here employ the recent proposed Knowledge-enabled

Language Representation model (Liu et al., 2020, K-BERT) to integrate the external entity

knowledge into the pre-trained language model for better argument representations.

8.3.1 K-BERT

Due to the domain discrepancies between the pre-training and fine-tuning, the unsuper-

vised language models such as Bert etc. do not perform well on knowledge-driven tasks.

Our previous results have also verified the conclusion. Integrating domain specific knowl-

edge into pre-trained model can alleviate this problem. However, the process of knowledge

acquisition can be inefficient and expensive (Liu et al., 2020).

In order to tackle the heterogeneous embedding space and knowledge noise problems, Liu

et al. (2020) proposed a Knowledge-enabled Bidirectional Encoder Representation from



Section 8.3 With pre-trained entity-augmented models 113

Figure 8.2: The structure of K-BERT. It is equippedwith an editable knowledge graphwhich
can be adapted to its application domain. Picture taken from Liu et al. (2020).

Transformers (K-BERT), as illustrated in Figure 8.2. It consists of a knowledge layer, embed-

ding layer, seeing layer and mask-transformer. With the knowledge layer and the external

knowledge graph, the input sentence has been expanded into a sentence tree and been input

into the embedding layer and seeing layer. A seeing layer is to generate the visible matrix

which controls the visible areas of each token to prevent changing the proper sequential

order of the original sentence.

Figure 8.3 has a detailed demonstration about converting a sentence tree into the embedding

representations. Thewhole sentence tree has been flattened into a sequencewith the position

index. Thevisiblematrix is generated to keep the interactions of each of the tokenswithin the

original sentence and also inside the knowledge graph triples. For example, with the hard-

position index (the grey index on Figure 8.3), when predicting the token “Apple” which is

an entity from the external KG, the visible matrix controls the self-attention layers in the

transformer not to look into tokens other than “Tim Cook CEO Apple”.
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Figure 8.3: The process of converting a sentence tree into an embedding representation and
a visible matrix. Picture taken from Liu et al. (2020).

8.3.2 Experiments and results

In Section 8.2, we introduce a pipeline to extract SPO triples from the explicit instances

that are closely connected to the query instance with the proposed soft matching strategy.

We see those SPO triples very good replacements for the knowledge graph which is used in

the K-BERT. Comparing with the general knowledge graph, our extracted SPO triples have

attached more importance on the discourse relations and stay in the same topic as they are

extracted from the explicit discourse relation instances and have been pair matched with the

entities in the input sentence / query.

ForK-BERTpre-training, it is configured to the sameparameter settings as the originGoogle

BERT (Devlin et al., 2019). And no additional knowledge graph are added to K-BERT dur-

ing the pre-training phase, because it would make the word vectors of the linked entities too

close or even the same to each other (Liu et al., 2020).

Therefore, for each input sentence, we attach the top 2 (default number from the K-BERT)

similar SPO triples to the entities and convert it into a sentence tree, same as the work flow

in Figure 8.2. We run the K-BERT as a classification task and evaluate it with the accuracy as

per the conventional settings in previous chapter. The experimental results are illustrated in

Table 8.3. We compare the results with some strong baselines that are reported in the recent
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Methods In-domain
Bai and Zhao (2018) 55.90
Bi-LSTM + Word2Vec 46.49
BERT (Devlin et al., 2019) 63.02
BERT + GENIA (Chapter 7) 66.04
BioBERT (Lee et al., 2020) 67.58

K-Bert (Liu et al., 2020) 69.57

Table 8.3: Performances on BioDRB within domain. Within domain here means 5-folds
cross validation on BioDRB.

work. K-BERT, which is initialized with the original BERT parameters, achieves 69.57%

accuracy on the 5 folds cross validation on BioDRB and outperforms the gigantic in-domain

continuously pre-trained BioBERT with around 2 percents.

In addition, because of the extra external SPO triples, the K-BERT outperforms the original

pure BERT by 6.5%. It also verifies the benefits brought by having the relevant SPO entities

within the sentence when encoding.

8.3.3 Conclusion and discussion

In this section, we use the SPO triples extracted from Section 8.2 and employ the entity-

augmented pre-trained language model K-BERT for the implicit discourse relation classi-

fication on BioDRB. The experimental results show that with the relevant entities, the rep-

resentation from the model can expand the arguments with more entity-enhanced infor-

mation and attach more importance to the interaction between the entities within the two

relational arguments. The entity-enhanced language model achieves the state of the art re-

sults on BioDRB, outperforms the origin BERT and continuously pre-trained BioBERTwith

a significant margin.

8.4 Summary

In this chapter, we aim to integrate the entity information into the pre-trained language

models to augment the model with more entity-specific information in the argument’s en-

coding. We firstly propose the unsupervised majority voting system, which is motivated on
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the assumption that if both discourse instances (both implicit or explicit ones) are talking

about the similar entities, there is high possibility that the discourse relations entailed in

them are the same. The results demonstrate competitive results on the BioDRB without any

label supervision in the whole pipeline.

However, the proposed unsupervised method has failed comparing with the supervised

methods across domains. This means that even in the very different domain, training on

the implicit discourse relation task still helps the model to grasp some latent patterns or dif-

ferences between the different discourse relations. We also show that with the extra informa-

tion brought by the extracted SPO triples, the entity-enhanced pre-trained language model

K-BERT shows more advantages in dealing with the professional and rare words in the new

Biomedical domain. It achieves the state of the art performance on BioDRB, compared with

the original BERT and the gigantic continuously in-domain pre-trained BioBERTwith 6.5%

and 2.0% accuracy respectively.

Even though that there are plenty of things, such as joint training with multi-tasks and com-

bining cognitive models into the pre-trained language models, that can be done with the

supervised learning methods, especially with the knowledge augmented methods like K-

BERT (Liu et al., 2020), KG-BERT (Yao et al., 2019) and KnowBERT (Peters et al., 2019)

etc. We would like to leave that to the future work. In the next chapter, we will conclude

the whole dissertation and have an outlook of promising research directions to the task of

implicit discourse relation classification.
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Chapter 9

Conclusion and Outlook

In this thesis, we mainly focus on how to improve the performance of implicit discourse

relation classification, which is to recognize the implicit discourse relation given the two

arguments. Due to the lack of informative cues like the explicit connectives between the

arguments, the task has been the bottleneck of the discourse parser. We tackle this task from

different angles that are motivated by the weaknesses of previous proposed methods, and

propose new approaches respectively. We evaluate the proposed methods on the manually

annotated corpora such as the Penn Discourse Treebank (PDTB) and Biomedical Discourse

Relation Bank (BioDRB), the results verify the effectiveness on different data-split settings.

In this chapter, we recap the contributions of our research work in this dissertation. We

briefly discuss the problems we met in improving the classifier’s performance and the solu-

tions we propose. At last, we will conclude this dissertation with some directions for future

work.

9.1 Conclusion

This thesis makes four main contributions to the research in implicit discourse relation clas-

sification. They include:
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1. Illustrating the limited data problem and the risks in concluding upon them. (Chapter

3)

2. Acquiring automatically annotated data via the explicitation process during human

translation between English and other languages. (Chapter 4, 5)

3. Better representation of discourse relation arguments. (Chapter 6, 7)

4. Entity enhancement with an unsupervised method and pre-trained language model.

(Chapter 8)

Limited Data Problem. Previous work on implicit discourse relation classification tend to

use the conventional settings on the data split of the PDTB, such as using the section 2-21, 22,

23 as the training, validation and testing sets respectively, following the setting in Lin et al.

(2009). This results in having only less than 800 implicit discourse instances in the test set. In

order to figure out the risk in concluding upon the small size of test set, we employ a simple

neural network model to concatenate the representation and the surface features to predict

the implicit discourse relation on both the conventional setting and the cross validation.

The experiment results suggest that it comes to very different conclusions if actually running

cross validation on all the sections, whichmeans that the standard test section of the PDTB is

way too small to draw conclusions about whether a feature is generally beneficial to this task

or not, especially when using a relatively large label sets (11-ways classification here). This

also motivates us to propose new approaches to acquire more annotated data for training in

the later work.

Acquiring Annotated Data via the Explicitation between Language Pairs. Parallel cor-

pora have been broadly used in training neural machine translation systems in the recent

years. They are easy to access and are manually translated by human translators. Inspired by

the fact that human translators often insert connectives to remove the ambiguity in the tar-

get language, we automatically back-translate the other languages (German, French, Czech)

back to English. With the trained PDTB parser, it is easy to identify the explicit instances in

the back-translations and label the original implicit English ones with the explicit label. In

this work, we firstly try to use English-French pairs that are sentence-aligned. (Chapter 4)

However, the problem of lacking topic consistency in the sentence-aligned corpora makes
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it hard to extract the inter-sentential instances. In Chapter 5, we expand the idea to three

language pairs. Both the experiments of the two chapters show that with the additional au-

tomatically labeled data for training, the performances on the test set have been improved,

compared with the baseline models. In addition, we also find some interesting cases, pat-

terns and cues in the human translation, especially with respect to the discourse relations

and connectives.

Better Representation of Discourse Relation Arguments. When annotating the PDTB,

the annotators are firstly asked to insert a connective and then label the instance with dis-

course relations. This is proven to be more efficient and accurate for the manual annotation.

To better use the connective annotations and also motivated by the methodology of explici-

tation across languages proposed above, we use a sequence to sequence model to mimic the

process of explicitation. It consists of three components: Encoder, Decoder and the Mem-

ory network. In addition to the typical relation classification task, we also train the model

to predict the implicit connectives along with the arguments. With both the representations

from the encoder and decoder, a gate serves as a selector to decide how much information

from both sides to form the final representation of the implicit discourse instance. After

combining the context vector from the memory network with the final representation, the

model is able to predict the discourse relations. We evaluate the proposed model on the first

level 4-ways, one-versus-all binary classification tasks and also themore fine-grained second

level 11-ways classification, and the results show that with the seq2seq network, the model

learns to grasp the key information and try to focus on the important words to help with the

task when predicting the connectives. The model achieved the state of the art performances

on the different settings at the time of the research.

However, a good implicit discourse classifier should not only be able to have good encoding

ability, but also encode discourse expectation and learn typical temporal sequences, causes,

consequences for all kinds of events. In Chapter 7, we find that with the help of the subtask

“next sentence prediction”, BERT has very powerful ability within and across domains. The

results also show that removing the subtask hurts the performances of implicit discourse

relation classification on different settings.

Entity enhancement with an unsupervised method and pre-trained language model. In
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the Chapter 7, BERT shows very impressive ability in encoding both the sentences and dis-

course expectation. However, it also shows limited ability in keeping improving the per-

formance with more in-domain raw texts for pre-training. This motivates us to integrate

more domain-specific knowledge into the pre-trained model. We propose an unsupervised

method with a information retrieval system and a quasi knowledge graphs system. With

the proposed pipeline, we can extract large amount of explicit relation instances that are

closely connected to the query (the implicit discourse relation instance to be labeled). After

voting by those explicit relations, the query is labelled unsupervisedly and the accuracy is

quite competitive comparing with the baseline BERT models. Despite that the BERT based

methods have shown impressive abilities in achieving high performances, when it comes

with a new domain, the ability is still limited. With all the SPO triples we extract with the

proposed pipeline, we also integrate them into the pre-trained language model with the re-

cent proposed K-BERT, achieve 69.57% accuracy and outperform the gigantic pre-trained

BioBERT with 2% on BioDRB.

9.2 Outlook

The task of implicit discourse relation classification has gained increasing attention from the

community recently. More andmore researchersmake lots of attempts to solve the problems

in different aspects. However, there is still plenty room for significant improvements on this

task as the overall performance is still low. Here we propose some future research directions

based on the work we present and what we have learned through the path of thesis.

9.2.1 Multi-task Learning

Multi-task learning is an effective approach to improve the performance of a single task with

the help of other related tasks. Mixed objectives can improve on the generalization ability

of neural networks and result in better sentence representation and performance on one

or more of the tasks. In Chapter 6, we use the argument generation as a secondary task

to have better ability in sentence encoding and classification performance as well. Liu et al.

(2016) combine the objectives of predicting connectives annotated for implicit relations, and
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implicit vs. explicit relation label predictions. The core idea in these approaches is to improve

learning by accessing other tasks for which larger amount of training data are available, and

which require encoding the discourse relation arguments in ways that are also relevant for

the prime task.

Sentiment polarity is one of the important features in training the statistical machine learn-

ing systems for implicit discourse relation recognition (Pitler et al., 2009). We believe that

sentiment analysis is one of the relevant tasks to the discourse relation prediction. For in-

stance, knowing the sentiment polarities of the two arguments is helpful for identifying con-

trastive relations. In addition, the task of question-answering can also be used in this setting.

QA tasks can be related to discourse relation classification (Verberne et al., 2007; Chai and

Jin, 2004), especially with respect to why-questions and causality in discourse relations.

Therefore, we believe the multi-task learning for implicit discourse relation classification is

a research direction that deserves investigation in the future.

9.2.2 Connective Generation

When annotating the current largest available corpus PDTB, the annotators were asked to

insert a proper connective before assigning a discourse relation to the arguments. This not

only can make the annotators to have better understanding of the instance, but also is bene-

ficial for higher inter-annotator agreement. Previous studies have tackled the task of predict-

ing whether a discourse relation should be marked by an explicit discourse cue or whether

the relation should instead be implicit (Yung et al., 2017; Patterson and Kehler, 2013), and

have shown that information-theoretic considerations are relevant to this choice. Recently

the pre-trained language models, such as GPT-2 (Radford et al., 2019), GPT-3 (Brown et al.,

2020) etc., have shown very good abilities in generating coherent natural language sentences.

However, there is no system to date that is able to predict which discourse connective among

the ones that express the target discourse relation should be chosen. We believe that with a

correctly predicted connective, it would be much easier for the model to predict the implicit

discourse relations and can be later used as the realizer component of a natural language

generation system to have more coherent generations.
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9.2.3 Distant Supervision

Supervised learning methods require golden annotations for the model’s training. The scale

of annotated data becomes larger and larger due to the increasing number of parameters to

be trained in the neural network models. Those annotations are mainly obtained through

expert annotation, crowd-sourcing, or automatically labeling. It is difficult, expensive and

time-consuming to get reliable golden annotations, especially for tasks like implicit dis-

course relations. For example, some world knowledge or professional background are re-

quired when trying to detect the causal relations between two sentences. Manually annota-

tion can only alleviate the current situation when dealing with one single task, and when a

more generalized method is needed, the annotation would be hard and even unfeasible to

get. So we believe that the future efforts should focus on using more general data for distant

supervision.

One way is similar to our work in Chapter 4 and 5. Our proposed pipeline have shown the

effectiveness of using raw and rich resources to get automatically labelled data. However, it

also needs better machine translation system to translate the connectives, better discourse

parser to identify the spans and connectives of the explicit instances. With the rich and easy-

to-access data and better strategy/criteria, we believe it would be promising to harvest more

data for the implicit discourse relation classification task.

Another way is spiritually similar to the idea of Generative Adversarial Network (GAN)

from the area of computer vision. The model is trained to distinguish golden label from

noisy ones while generating noisy labels at the meantime. In this way, the model would be

generalized to have better robustness in identifying the implicit labels. We believe this is a

research direction that deserves more investigation in the future.
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