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Zusammenfassung

In vitro Synthese ist eine biotechnologische Alternative zu klassischen chemischen Katalysen.

Der manuelle Entwurf von mehrstufigen Biosynthesewegen ist jedoch sehr anspruchsvoll,

vor allem wenn Enzyme verschiedener Organismen beteiligt sind. Daher besteht ein Bedarf

an Methoden, die helfen solche Synthesewege in silico zu entwerfen und die in der Lage

sind große Mengen biologischer Daten zu bewältigen - insbesondere in Hinblick auf die

Rekonstruktion genomskaliger metabolischer Netzwerkmodelle und die Pfadsuche in solchen

Netzwerken.

In dieser Arbeit wird ein Algorithmus zur Pfadsuche zu einem Zielprodukt ausgehend von

beliebigen Substraten präsentiert. Der Algorithmus basiert auf einem gemischt-ganzzahligen

linearen Programm, das Graphtopologie mit Reaktionsstöchiometrien kombiniert. Die Pfad-

kandidaten werden anhand verschiedener Kriterien geordnet, um die am besten geeigneten

Kandidaten für die Synthese zu finden. Außerdem wird ein umfassender Workflow für die

Rekonstruktion metabolischer Netzwerke basierend auf der Datenbank KEGG sowie thermody-

namischen Daten vorgestellt. Dieser umfasst einen Filter, der anhand verschiedener Kriterien

geeignete Reaktionen auswählt. Der Workflow wird zum Erstellen einer organismusüber-

greifenden Netzwerkrekonstruktion, sowie Netzwerken einzelner Organismen genutzt. Diese

Modelle werden mit graphentheoretischen Methoden analysiert. Es wird diskutiert, wie die

Ergebnisse für die Planung von biosynthetischen Produktionswegen genutzt werden können.



Abstract

In vitro synthesis is a biotechnological alternative to classic chemical catalysts. However, the

manual design of multi-step biosynthesis routes is very challenging, especially when enzymes

from different organisms are involved. There is therefore a demand for in silico tools to

guide the design of such synthesis routes using computational methods for the path-finding,

as well as the reconstruction of suitable genome-scale metabolic networks that are able to

harness the growing amount of biological data available.

This work presents an algorithm for finding pathways from arbitrary metabolites to a target

product of interest. The algorithm is based on a mixed-integer linear program (MILP)

and combines graph topology and reaction stoichiometry. The pathway candidates are

ranked using different ranking criteria to help finding the best suited synthesis pathway

candidates. Additionally, a comprehensive workflow for the reconstruction of metabolic

networks based on data of the Kyoto Encyclopedia of Genes and Genomes (KEGG) combined

with thermodynamic data for the determination of reaction directions is presented. The

workflow comprises a filtering scheme to remove unsuitable data. With this workflow, a pan-

organism network reconstruction as well as single organism network models are established.

These models are analyzed with graph-theoretical methods. It is also discussed how the

results can be used for the planning of biosynthetic production pathways.
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Introduction and Background

Part I
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CHAPTER 1

Multi-Enzyme Biocatalysis

The following chapter is based on the published review article

HEINZLE, E., WEYLER, C., KRAUSER, S., & BLASS, L. K. (2013): Directed

multistep biocatalysis using tailored permeabilized cells. A.-P. ZENG (Ed.),

Advances in biochemical engineering/biotechnology (pp. 185–234). Springer

Berlin Heidelberg. https://doi.org/10.1007/10_2013_240

that I co-authored.

In billions of evolutionary steps, nature developed an impressive set of strategies to create

molecules with a wide range of structures. Nearly every carbon-, nitrogen-, oxygen-, or

sulfur-containing skeleton and functional group can be assembled in principle by bioconver-

sions. A large number of different enzymatically catalyzed reactions support cellular growth

and survival (LOPEZ-GALLEGO et al., 2010). Not only the substrate and reaction specificity

but also the efficiency of enzymatic reactions are usually far beyond man-made chemical

processes. Recent developments in biochemical research not only support a detailed mecha-

nistic understanding of relationship of structure and reactivity, but they also allow extended

targeted redesign and modification of enzymes. Even completely new functionalities can be

designed and created with modern molecular and modeling tools (e.g. Diels-Alder synthesis

with a de novo designed enzyme (SIEGEL et al., 2010)). The development and present status

concerning biocatalysis - mostly based on engineered single enzymes - have been reviewed

thoroughly elsewhere (BORNSCHEUER et al., 2012). Recent developments in the field of

metabolic network research, both experimentally as well as computationally, open up new

potentials for multi-step biocatalysis both in vivo as well as in vitro.

3
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4 Chapter 1 Multi-Enzyme Biocatalysis

Presently, slightly more than 100 commercial applications use enzymes in industrial-scale

processes (LIESE et al., 2000). Due to the usually high price, the time required for improving

enzymes genetically, the often shorter development times required for organic chemistry

alternatives, and the still widespread ignorance of biocatalysis in the field of organic chemistry,

bioconversion processes are often not considered (WOHLGEMUTH, 2011). There is, however,

a trend towards biotechnological processes as the ecological impact (E-factor) of industrial

productions is gaining weight and public pressure demands a sustainable industry (AEHLE,

2004; DRAUZ et al., 2012; HEINZLE et al., 2006; WOHLGEMUTH, 2010). Biocatalytic processes

often have a very low ecological impact, such as with selective oxidation of carbohydrates

(SCHNEIDER et al., 2012), but in some cases chemical alternatives are similar or even better

(KUHN et al., 2010).

Although in vivo synthesis using whole, viable microorganisms provides complex products

from simple and cheap raw materials by fermentation, it is limited by the fitness and tolerance

of the organism and by cellular transport processes. Modern metabolic engineering methods

provide a whole toolbox comprising computational and molecular tools for directed design

and optimization of production pathways. In most cases, these allow the conversion of a

poorly producing native organism into a highly efficient producer strain. However, transport

barriers, bottlenecks in the metabolism, toxic side effects, and the usually required complex

downstream processing of resulting mixtures of product and growth medium limit the

industrial applications (Figure 1.1, Case C).

In vitro synthesis, on the other hand, serves as a biotechnological alternative to the classic

chemical catalysts. Engineered for the highest activity, stability, and substrate spectrum,

enzymes provide the highest turnover rates, simultaneously working with outstanding selec-

tivity (BORNSCHEUER et al., 2012). However, in case of complex syntheses, the use of enzymes

is restricted by required optimal conditions for each enzyme and potential intermediate

clean-up or buffer change between individual steps (Figure 1.1, Case A). Additionally, the re-

generation of cofactors, such as nicotinamide adenine dinucleotide (phosphate) (NAD(P)H),

limits this type of application.

A further alternative is the one-pot synthesis using multiple enzymes; however, they require

extended optimization of enzymes to operate at the same pH and buffer concentrations

(Figure 1.1, Case B). This approach can also be taken using cell hydrolysates of suitable

strains, as has been reviewed elsewhere (YOU et al., 2013). On the other hand, various

approaches use synthetic assemblies of enzymes, such as in emulsions, using scaffolds,



5

Figure 1.1: Types of multi-step biosynthetic processes. A: Synthesis using multiple enzymes in
separate processes, B: Synthesis with all enzymes reacting in one-pot, C: In vivo synthesis using
living cells in fermentation processes, D: In situ synthesis using permeabilized cells.

tethering to surfaces, or covalent binding to achieve one-pot synthesis biocatalysis (MOSES

et al., 2013).

Yet another strategy uses permeabilized cells - often called in situ synthesis (Figure 1.1,

Case D). Permeabilized cell membranes allow diffusion of small compounds between the

intracellular space and the surrounding reaction buffer while large biopolymers (i.e. proteins

and deoxyribonucleic acid (DNA)) remain trapped inside the microenvironment of the cell.

Contrary to using cell hydrolysates, which has a very long tradition (YOU et al., 2013),

optimal permeabilization will keep the enzymes in their native macromolecular environment

and does not cause any denaturation of enzymes by the permeabilizing agent. In this

way, the macromolecular crowding effects that are expected to modify protein activities

(MINTON, 2006), such as channeling (MONTI et al., 2009), are preserved in their original

status. Removing all small metabolites and cofactors represents a kind of reset of the
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metabolic network, permitting directed conversions by the selection of appropriate substrate

combinations. In general, this can be combined with careful tailoring of the enzymatic outfit of

a cell, thus increasing selectivity of bioconversion using permeabilized cells. Network changes

may involve gene deletions, gene amplification, or heterologous gene expression. Additionally,

selective inhibitors might be used to block undesired side reactions (KRAUSER et al., 2012). An

interesting alternative concept (YE et al., 2012) uses enzymes from thermophilic organisms

that are expressed in a mesophilic organism. Cells are cultivated and then heated to rupture

the cells and inactivate enzymes that are not desired for the in vitro biocatalytic conversion.

The term ‘in situ synthesis’ was introduced in the early 1960s, indicating that macromolecules

remain in their original macromolecular environment. Prokaryotic and eukaryotic cells can

be permeabilized, but the permeabilization procedure depends on the composition of the cell

wall and has to be optimized for each cell type. Early studies on permeabilized cells by Felix

showed promising results. Felix concluded that permeabilized cells can be produced quickly

and simply and can be used several times, thus requiring less energy for the synthesis of

biomass (FELIX, 1982). These studies on synthesis with permeabilized cells never achieved

appropriate acknowledgment, however - likely because of the missing genetic and metabolic

engineering tools at that time. The available tools have dramatically changed since then, and

it seems obvious that synthesis with permeabilized cells will provide an alternative method,

thus closing the gap between in vivo and in vitro biosynthesis.

The enormous increase in DNA sequencing power has recently created an overwhelming

wealth of genome and metabolic network information of a large number of single (micro)or-

ganisms but also of microbial habitats using metagenome analysis. In parallel, computational

tools for handling and exploring this vast amount of data have been developed at a high

rate. However, detailed biochemical knowledge of enzyme characteristics is lagging far

behind. Nevertheless, genome and enzyme databases provide an enormous amount of data

that may be explored for permeabilized cell synthesis. Whole genome metabolic networks

become increasingly available - a few of them already carefully curated. Metabolic regu-

lation is also increasingly explored, but it requires considerably higher effort compared to

sequencing. For some microorganisms, such as Escherichia coli and Saccharomyces cerevisiae,

metabolic and regulatory networks are already fairly well understood, but we are still quite

far away from the comprehensive understanding required for creating fully predictive models.

This is even more the case or the majority of microorganisms. The metabolism of microor-

ganisms may differ considerably. Nevertheless, they all share large parts of their central

metabolism, particularly the 12 small precursor molecules representing the bottleneck of the

bow-tie-shaped structure of metabolic networks (MA et al., 2003). These precursor molecules



7

serve as starting materials for all building blocks and polymers that can be synthesized in

the metabolic network (Figure 1.2). Biopolymers constitute the major fraction of cellular

Figure 1.2: Overall structure of metabolism

biomass. Secondary metabolites are of great interest as pharmaceutically active compounds

or precursors thereof. These are synthesized starting from precursor metabolites and building

blocks. Up to now, this has in most cases been done with fully intact genetically engineered

cells.

With the present knowledge, molecular and computational methods, and the advent of new

possibilities of designing and engineering enzymes and whole metabolic pathways, a large

field of applications opens up. Together with the long-known technique of permeabilization

of cellular barriers (i.e. cell membranes and cell walls), new and intriguing opportunities for

designing tailored biocatalyst and bioprocesses become accessible. Once such a biocatalyst is

established, it can be produced easily by simple cultivation followed by permeabilization.

Downstream processing would simply start with the removal of the biocatalyst, such as by
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centrifugation. There are, however, major hurdles to be overcome as far as more complex

biosynthesis is concerned. The most important are the supply of precursors and cosubstrates,

such as adenosine 5’-triphosphate (ATP) or NAD(P)H; the achievement of selective biocat-

alysts, meaning the elimination of the manifold possible undesirable side reactions; and

the intensification of processes to obtain high final product concentrations. To reach these

goals, it is important to understand (i) the permeabilization process on a molecular basis,

(ii) biosynthetic pathways and their regulation, (iii) supply of precursor molecules, (iv)

regeneration of cosubstrates, (v) design and selection of enzymes as part of the biosynthetic

processes, and (vi) design of biocatalytic pathways on the basis of the vast genomic and

biochemical knowledge.



CHAPTER 2

Network Design

The following chapter is based on the published review article

HEINZLE, E., WEYLER, C., KRAUSER, S., & BLASS, L. K. (2013): Directed

multistep biocatalysis using tailored permeabilized cells. A.-P. ZENG (Ed.),

Advances in biochemical engineering/biotechnology (pp. 185–234). Springer

Berlin Heidelberg. https://doi.org/10.1007/10_2013_240

that I co-authored.

Directed, selective biosynthesis using either cell hydrolysates or permeabilized cells can be

a straightforward process for shorter paths or small networks. It is, however, becoming

increasingly challenging for longer biosynthetic paths with more compounds involved. The

number of potentially undesired side reactions increases dramatically. Therefore, there is a

great need to guide the design of such complex biocatalysts by using adequate computational

tools and the rapidly increasing information available on mostly public databases. Panke

and Bujara proposed an in silico tool for network topology analysis based on genome-scale

metabolic network models to be applied for in vitro biocatalysis in cell-free systems (BUJARA

et al., 2012). Starting out from the whole-genome scale metabolic reconstruction of E. coli

(FEIST et al., 2007), they introduced several changes, particularly concerning transport and

other membrane processes. Considering basic thermodynamic data and expression data from

E. coli, they arrived at a model that could eventually predict interfering pathways for the

production of dihydroxyacetone phosphate starting from glucose. The presently available

examples of pathway prediction for biosynthesis using either cell extracts or permeabilized

9
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10 Chapter 2 Network Design

cells are still very limited, but we expect that there will be a rapid increase of such studies in

the very near future. There is, however, a whole series of studies available for living cells

that are separated from the environment by their envelopes, providing selective transport of

molecules in and out of the cells.

Modern planning and development of biochemical syntheses or novel synthesis routes in

living organisms is effectively supported by the use of appropriate in silico tools. Such

tools are increasingly available for pathway design in microorganisms and allow quick and

directed engineering of living cells (KROEMER et al., 2006; NEUNER et al., 2011). These tools

rely heavily on the existence and quality of the numerous biological databases containing

information on different aspects such as genome sequences, enzyme data, or even whole

pathways (Tables 2.1 to 2.5). Together with data from primary literature and further sources,

this information can be used for the composition of network reconstructions of the organism

of interest. Such networks can then be conveniently analyzed and developed further with

different bioinformatic tools (Table 2.7 later in Section 2.2 Bioinformatic Tools). In particular,

they can be used to design pathways or biosynthetic subnetworks useful for biocatalytic

purposes, such as the in situ synthesis of a desired primary or secondary metabolite. With

an increasing number of steps and increasing numbers of metabolites and coenzymes, the

involved design becomes an increasingly complex task.

2.1 Databases

Biological databases can be classified into several different categories, such as biochemical

databases, genome databases, protein or enzyme databases, pathway databases, or model

databases (Tables 2.1 to 2.5). This classification is based on the biological content of the

respective databases. However, an overlap of information can occur. For example, genome

databases (Table 2.2) also contain protein sequence information.

Biochemical Databases

Table 2.1 lists different biochemical databases. Rhea (MORGAT et al., 2016) is a manually

annotated, expert-curated reaction database with a main focus on enzyme-catalyzed reactions.

It also contains other types of reactions. All reaction participants are linked to Chemical

Entities of Biological Interest (ChEBI) (HASTINGS et al., 2015), which provides data such

as structure, formula, and charge. All reactions in the database are stoichiometrically and

charge-balanced and reaction directionality is added if it is available.
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Table 2.1: Biochemical databases

Database URL Content

PubChem (S. Kim et al.,
2019)

http://pubchem.ncbi.nlm.nih.gov Chemical molecules and
their activities against bio-
logical assays

ChEBI (Hastings et al.,
2015)

http://www.ebi.ac.uk/chebi Chemical Entities Of Bio-
logical Interest

TCDB (Saier Jr et al., 2015) http://www.tcdb.org Transporter Classification
Database

Transport DB (Elbourne et
al., 2016)

http://www.membranetransport.org Transporter protein analy-
sis database

SABIO-RK (Wittig et al.,
2012)

http://sabio.villa-bosch.de Biochemical reaction ki-
netics

Rhea (Morgat et al., 2016) http://www.ebi.ac.uk/rhea Manually annotated
database of chemical
reactions

MINE (Jeffryes et al.,
2015)

https://minedatabase.mcs.anl.gov Metabolic In Silico
Network Expansion
Databases

SABIO-RK (WITTIG et al., 2012), the biochemical reaction kinetics database, is a curated

database containing biochemical reactions and their corresponding kinetics. It describes the

participants and modifiers of the reactions as well as measured kinetic data, such as kinetic

rate equations, embedded in an experimental and environmental context.

The Transporter Classification Database (TCDB) (SAIER JR et al., 2015) provides a functional

and phylogenetic classification of membrane transport proteins. The classification system

used is the transporter classification (TC) system that is analogous to the Enzyme Commission

(EC) number for enzymes. The database is curated with data from over 15,000 published

references. It contains over 18,000 unique protein sequences that are classified in more than

1,600 transporter families.

TransportDB (ELBOURNE et al., 2016) contains the predicted cell membrane transport protein

complement for over 2760 organisms (bacteria, archaea, and eukaryota). The protein

classification is done according to the TC classification system.

MINE (JEFFRYES et al., 2015) is a database containing predicted molecules that are likely

to occur in reactions based on known metabolites and common biochemical reactions. The

http://pubchem.ncbi.nlm.nih.gov
http://www.ebi.ac.uk/chebi
http://www.tcdb.org
http://www.membranetransport.org
http://sabio.villa-bosch.de
http://www.ebi.ac.uk/rhea
https://minedatabase.mcs.anl.gov
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prediction utilizes BNICE (HATZIMANIKATIS et al., 2005) and expert-curated reaction rules.

The database contains more than 571,000 compounds.

ATLAS of Biochemistry (HADADI et al., 2016) is a database containing all possible theoretical

biochemical reactions (more than 137,416 known and novel reactions) predicted with BNICE

(HATZIMANIKATIS et al., 2005) using the means of enzyme reaction rules as well as other

cheminformatic tools.

Genome Databases

Genome databases (Table 2.2) contain nucleotide sequences and functional annotations.

GenBank (BENSON et al., 2013), run by the National Center for Biotechnology Information

(NCBI), is a genetic sequence database of all publicly available DNA sequences. It contains

the bibliographic and biological annotated sequences from almost 260,000 organisms. NCBI

Entrez Gene (MAGLOTT et al., 2011) is a gene database containing a large variety of infor-

mation that focuses on completely sequenced genomes. NCBI Entrez Genome (SAYERS et al.,

2012) contains sequence and map data of more than 1,000 species or strains. The Gene

Ontology (GO) (ASHBURNER et al., 2000; T. G. O. CONSORTIUM, 2019) focuses on the function

genes.

Table 2.2: Genome databases

Database URL Content

GenBank® (Benson
et al., 2013)

http://www.ncbi.nlm.nih.gov/Genbank Annotated collection
of all publicly avail-
able DNA sequences

NCBI Entrez Genome
(Sayers et al., 2012)

http://www.ncbi.nlm.nih.gov/sites/genome Sequence and map
data from whole
genomes of over
1,000 species and
strains

NCBI Entrez Gene
(Maglott et al., 2011)

http://www.ncbi.nlm.nih.gov/gene Database of genes

GO (Ashburner et al.,
2000; T. G. O. Consor-
tium, 2019)

http://www.geneontology.org The Gene Ontology

ENA (Hussein et al.,
2018)

http://www.ebi.ac.uk/ena European Nucleotide
Archive

http://www.ncbi.nlm.nih.gov/Genbank
http://www.ncbi.nlm.nih.gov/sites/genome
http://www.ncbi.nlm.nih.gov/gene
http://www.geneontology.org
http://www.ebi.ac.uk/ena
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Protein and Enzyme Databases

Protein and enzyme databases (Table 2.3) collect functional information from proteins and

enzymes. Braunschweig Enzyme Database (BRENDA) (JESKE et al., 2018), is a collection of

Table 2.3: Protein and enzyme databases

Database URL Content

BRENDA (Jeske et al.,
2018)

http://www.brenda-enzymes.info Comprehensive enzyme in-
formation System

Expasy-ENZYME (Bairoch,
2000)

http://www.expasy.org/enzyme Enzyme nomenclature
database

UniProt (U. Consortium,
2018)

http://www.uniprot.org The Universal Protein Re-
source

PSORTdb (Peabody et al.,
2016; Yu et al., 2011)

http://db.psort.org Protein subcellular localiza-
tions for bacteria and ar-
chaea

ProLinks (Bowers et al.,
2004)

http://prl.mbi.ucla.edu/prlbeta Inferring functional link-
ages between proteins

STRING (Szklarczyk et al.,
2019)

http://string-db.org Search Tool for the Re-
trieval of Interacting
Genes/Proteins

IntAct (Orchard et al.,
2014)

http://www.ebi.ac.uk/intact Molecular interaction
database

functional and property data of enzymes. The majority of the contained data is manually

extracted from primary literature and covers information in over 50 data fields, such as

classification and nomenclature; reaction and specificity; information on function, struc-

ture, occurrence, preparation, and application of enzymes; and properties of mutants and

engineered variants. Enzymes in BRENDA are linked to their respective pathways, source

organism, and protein sequence, if deposited.

UniProt (U. CONSORTIUM, 2018), the universal protein resource, contains information on

protein sequences and annotation data. It comprises four databases, namely the UniProt

Knowledgebase (UniProtKB), the UniProt Reference Clusters (UniRef), the UniProt Archive

(UniParc), and the UniProtMetagenomic and Environmental Sequences (UniMES) database

on metagenomic and environmental data. UniProtKB is a collection of functional information

on proteins together with annotation. The core data available for each protein are its

amino acid sequence, protein name or description, taxonomic data, and citation information.

Additionally, it contains as much annotation information as possible, such as ontologies,

http://www.brenda-enzymes.info
http://www.expasy.org/enzyme
http://www.uniprot.org
http://db.psort.org
http://prl.mbi.ucla.edu/prlbeta
http://string-db.org
http://www.ebi.ac.uk/intact
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classifications, and cross-references, together with an indication of annotation quality. The

database consists of two sections: UniProtKB/SwissProt contains reviewed and manually

annotated records, whereas UniProtKB/TrEMBL has data records that are unreviewed and

automatically annotated and still await full manual annotation. In the April 2020 release,

UniProtKB/Swiss-Prot contained more than 562,000 sequence entries and UniProtKB/TrEMBL

contained more than 180,690,000 sequence entries. UniRef is a database providing clustered

sets of sequences from UniProtKB, including splice variants and isoforms and selected

UniParc records. Its purpose is to obtain the complete coverage of sequence space at several

resolutions. UniParc contains most of the publicly available protein sequences.

The planning of a biochemical synthesis involves, besides other aspects, the determination of

possible side reactions. Those unwanted reactions may lead to a decrease in the yield of the

desired product and complicate the downstream processing. It would thus be favorable to find

information on all reactions catalyzed by the enzyme of interest including thermodynamic

and kinetic parameters. Some of the enzyme resources presented in Table 2.3 contain

information on single enzymes. However, as of 2020, there is, to our knowledge, no database

that presents such information in a systematic manner.

Model Databases

Model databases (Table 2.4) are repositories of mathematical models of biological systems.

They contain models ranging from reconstructions of individual pathways up to genome-scale

metabolic networks of organisms.

Table 2.4: Model databases

Database URL Content

BiGG (King, Lu, et al.,
2015)

http://bigg.ucsd.edu Knowledgebase of Bio-
chemically, Genetically,
and Genomically Struc-
tured Genome-Scale
Metabolic Network Recon-
structions

BioModels (Chelliah et al.,
2014; Glont et al., 2017)

https://www.ebi.ac.uk/biomodels Annotated Published Mod-
els

EcoCyc (Keseler et al.,
2017)

http://ecocyc.org E. coli K-12 MG1655

SGD (Cherry et al., 2011) http://www.yeastgenome.org S. cerevisiae Genome
Database

http://bigg.ucsd.edu
https://www.ebi.ac.uk/biomodels
http://ecocyc.org
http://www.yeastgenome.org
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BiGG Models is a knowledge base of biochemically, genetically, and genomically structured

genome-scale metabolic network reconstructions (KING, LU, et al., 2015). As of Mai 2020,

it contains 108 different genome-scale reconstructions from different organisms and share

a standard nomenclature. BiGG allows browsing the model contents, the visualization of

metabolic pathway maps with the Escher pathway visualization library (KING, DRÄGER, et al.,

2015), as well as the export of all models into different standard formats.

BioModels (CHELLIAH et al., 2014; GLONT et al., 2017) is a repository for computational

models of biological systems. In August 2019, it contained more than 10,000 manually

curated, auto-generated or non-curated models. The database features browsing of models

through lists, based on GO terms or using the taxonomy annotations as well as model search.

The model presentation gives access to all information stored about a model. All models

can be exported in various file formats or represented graphically. Basic model simulation is

also possible. The functionality of BioModels can also be accessed by other software tools

through its web services.

Pathway Databases

Pathway databases (Table 2.5) contain data on biochemical pathways, their reactions, and

components that are involved in them and their corresponding interactions, thus describing

the biochemistry of metabolic processes. These databases offer the possibility of providing

several types of information in the context of graphical representation of the pathways in

pathway maps.

BioCyc (KARP et al., 2017) is a collection of more than 17,000 pathway/genome databases

in version 23.5. Each database contains the genome and metabolic pathways of a single

organism. Based on the quality of the data, the databases are divided into three tiers. Tier

1 contains databases that are curated based on literature data. Tier 2 and tier 3 databases

contain computationally predicted metabolic pathways, predictions as to which genes code for

missing enzymes in metabolic pathways, and predicted operons. Tier 2 undergoes moderate

curation and tier 3 is not curated at all.

The KEGG (KANEHISA et al., 2012; KANEHISA et al., 2018) is a curated database resource

that integrates genomic, chemical, and systemic function information of various organisms.

Its knowledge base consists of 18 main databases in the 5 categories systems information

(pathway, brite, module); genomic information (orthology, genome, genes, ssdb); chemical
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Table 2.5: Pathway databases

Database URL Content

KEGG (Kanehisa et al.,
2012; Kanehisa et al.,
2018)

http://www.genome.jp/kegg Kyoto Encyclopedia of
Genes and Genomes

BioCyc (Karp et al.,
2017)

http://biocyc.org Collection of more
than 17,000 Path-
way/Genome
Databases

BioPath (Reitz et al.,
2004)

https://www.mn-am.com/databases/biopath Biochemical
molecules, reactions
and pathways

Biochemical Path-
ways (Artimo et al.,
2012)

http://biochemical-pathways.com Digitized version of
the Roche Applied
Science ’Biochemical
Pathways’ wall chart

EAWAG-BBD (Gao et
al., 2010)

http://umbbd.ethz.ch EAWAG Biocataly-
sis/ Biodegradation
Database

MetaNetEx.org
(Moretti et al., 2016)

http://metanetx.org Automated Model
Construction and
Genome Annota-
tion for Large-Scale
Metabolic Networks

Reactome (Fabregat
et al., 2017; Jassal et
al., 2019)

https://reactome.org Manually curated and
peer-reviewed path-
way database

information (compound, glycan, reaction, enzyme); health information (network, variant,

disease, drug, environ) and drug labels (medicus).

The BioPath database (REITZ et al., 2004) contains molecules, reactions, and biological

pathways. Its first version is based on the Roche Applied Science ’Biochemical Pathways’

wall chart and is extend with additional information from literature. In its version 3, BioPath

contained about 14,000 chemical structures and about 3,900 biochemical transformations.

A new version of the book form was also published (MICHAL et al., 2012).

The EAWAG-BBD contains information about microbial biocatalytic reactions and biodegra-

dation pathways for xenobiotic compounds (GAO et al., 2010). Information on microbial

enzyme-catalyzed reactions that are important for biotechnology can also be found. A Swiss

bioinformatics group has opened their database for automated model construction and

http://www.genome.jp/kegg
http://biocyc.org
https://www.mn-am.com/databases/biopath
http://biochemical-pathways.com
http://umbbd.ethz.ch
http://metanetx.org
https://reactome.org
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genome annotation for large-scale metabolic networks, providing links to several hundred

genome-scale metabolic networks (GANTER et al., 2013).

The Reactome database (FABREGAT et al., 2017; JASSAL et al., 2019) is a manually curated,

peer-reviewed, open-source and open access pathway database. It contains information

on signaling and metabolic molecules. The database features pathway visualization, data

analysis tools as well as downloads of all data in major open-data standards such as Sys-

tems Biology Markup Language (SBML), Systems Biology Graphical Notation (SBGN) and

Biological Pathway Exchange (BioPax) (DEMIR et al., 2010).

Organism-Specific Databases

Information about specific organisms are often collected in organism-specific databases

(Table 2.6). Examples for such databases are EcoCyc (KESELER et al., 2017), which contains

E. coli K-12 MG1655 data, or the S. cerevisiae Genome Database SGD (CHERRY et al., 2011).

Table 2.6: Organism specific databases

Database URL Content

EcoCyc (Keseler et al., 2017) http://ecocyc.org E. coli K-12 MG1655

SGD (Cherry et al., 2011) http://www.yeastgenome.org S. cerevisiae Genome
Database

Summary

In this thesis, the data for the genome-scale metabolic network reconstructions and the

organism-specific network reconstructions is exclusively taken from KEGG. However, the

information contained in the databases listed in Tables 2.1 to 2.5 could additionally be

used to extend and enhance the networks. For organism-specific networks, especially the

information in the databases listed in Tables 2.4 and 2.6 are helpful. They already contain

models of numerous organisms, which can either be used with minimal changes or taken as

a basis for network reconstructions in combination with further resources.

2.2 Bioinformatic Tools

For the automated reconstruction of networks and analysis of network reconstructions,

various bioinformatic tools are available. A selection is listed in Table 2.7.

http://ecocyc.org
http://www.yeastgenome.org
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Table 2.7: Bioinformatic tools for automated reconstruction of metabolic network models and
their analysis

Database URL Content

Automated reconstruction

Model SEED (Overbeek et al.,
2005)

http://modelseed.org A comparative genomics en-
vironment for curation of ge-
nomic data

Pathway Tools (Karp et al.,
2015)

http://bioinformatics.ai.
sri.com/ptools

A symbolic systems biology
software system

KOBAS (Ai et al., 2018; Xie et
al., 2011)

http://kobas.cbi.pku.edu.
cn

KEGG Orthology Based Anno-
tation System

GLAMM (Bates et al., 2011) http://glamm.lbl.gov Genome-Linked Application for
Metabolic Maps

GEMSiRV (Liao et al., 2012) http://sb.nhri.org.tw/
GEMSiRV/en/GEMSiRV

Software platform for genome-
scale metabolic models simu-
lation, reconstruction, and vi-
sualization

ERGO https://www.igenbio.com/
ergo

Genome Analysis and Discov-
ery System for the in silico
analysis of organisms

Analysis

CellNetAnalyzer (von Kamp et
al., 2017)

http://www.mpi-magdeburg.
mpg.de/projects/cna

MATLAB package for structural
and functional analysis of bio-
chemical networks

Metatool (von Kamp et al.,
2006)

https://www.schleiden.
uni-jena.de/Software.
html

Computation of structural
properties of biochemical
reaction networks

Efmtool (Terzer et al., 2008) http://www.csb.ethz.ch/
tools/software/efmtool.
html

Computation of elementary
flux modes of metabolic net-
works

COBRA Toolbox (Heirendt et
al., 2019)

https://opencobra.github.
io

COnstraints-Based Reconstruc-
tion and Analysis

http://modelseed.org
http://bioinformatics.ai.sri.com/ptools
http://bioinformatics.ai.sri.com/ptools
http://kobas.cbi.pku.edu.cn
http://kobas.cbi.pku.edu.cn
http://glamm.lbl.gov
http://sb.nhri.org.tw/GEMSiRV/en/GEMSiRV
http://sb.nhri.org.tw/GEMSiRV/en/GEMSiRV
https://www.igenbio.com/ergo
https://www.igenbio.com/ergo
http://www.mpi-magdeburg.mpg.de/projects/cna
http://www.mpi-magdeburg.mpg.de/projects/cna
https://www.schleiden.uni-jena.de/Software.html
https://www.schleiden.uni-jena.de/Software.html
https://www.schleiden.uni-jena.de/Software.html
http://www.csb.ethz.ch/tools/software/efmtool.html
http://www.csb.ethz.ch/tools/software/efmtool.html
http://www.csb.ethz.ch/tools/software/efmtool.html
https://opencobra.github.io
https://opencobra.github.io
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Model SEED (OVERBEEK et al., 2005) is a web-based resource for the high-throughput genera-

tion, optimization, and analysis of genome-scale metabolic network models. It integrates and

augments technologies for the genome annotation, the construction of gene-protein reaction

associations, the generation of biomass reactions, reaction network assembly, thermodynamic

analysis of reaction reversibility, and model optimization to generate draft genome-scale

metabolic network models. The generation of a metabolic network reconstruction from the

assembled genome sequence takes about 48 h and automates nearly every step.

PathwayTools (KARP et al., 2015) is a software environment for the creation of pathway/genome

databases (PGDBs) such as EcoCyc (KESELER et al., 2017). It allows the prediction of

metabolic pathways and operons and network gap filling. Curators can interactively edit

PGDBs. A large number of query and visualization tools as well as tools for comparative

and systems biology analyses are available. Pathway Tools consists of three components.

PathoLogic is used to create new PGDBs from annotated genomes. The Pathway/Genome

Editors allow for the refinement of PGDBs. With the Pathway/Genome Navigator querying,

visualization and analyses of PGDBs can be carried out.

Metatool (von KAMP et al., 2006) is a user-friendly tool for the calculation of elementary

flux modes, conservation relations, and enzyme subsets in metabolic networks. Version 5.1

can be embedded into GNU Octave and MATLAB through script files and shared libraries.

For calculations, the metabolic network data can be supplied to the program through the

Metatool input format, as an SBML file or as stoichiometric matrix directly.

CellNetAnalyzer (von KAMP et al., 2017) is a MATLAB package with tools for the structural

and functional analysis of different types of biochemical networks. For all computations, only

the network topology is needed. CellNetAnalyzer allows the construction, input, and output

of network projects via the Network Composer, text files, or SBML. Furthermore, it is possible

to visualize network maps, either through import from KEGG or TRANSPATH or with external

drawing tools. The functional network analysis covers the characterization of functional states

of a network, the detection of functional dependencies, or qualitative predictions on effects of

perturbations. For mass flow networks, there are two kinds of methods - namely constraint-

based approaches and graph-theoretical analysis. Features are topological properties of the

network such as dead-end metabolites, blocked or parallel reactions, and enzyme subsets.

Metabolic flux analysis is also covered with the computation of steady-state flux distributions,

feasibility check of flux scenarios, or optimal flux distributions for arbitrary linear objective

functions. The computation of elementary modes for the metabolic path analysis is also

possible. Minimal cut set analysis can help to detect strategies for the repression of certain
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network functionality. From the graph-theoretical side, network properties such as shortest

path lengths, connectivity of the network, or network diameter can be computed.

The Genome-linked Application for Metabolic Maps (GLAMM) (BATES et al., 2011) is a web

interface unifying different tools for the reconstruction of metabolic networks from annotated

genome data, visualization of metabolic networks together with experimental data, and

investigation of the construction of novel transgenic pathways. GLAMM supports biological

retrosynthesis and integration with tools of MicrobesOnline.

The genome analysis and discovery system ERGO developed by Integrated Genomics is a

systems biology informatics toolkit for comparative genomics. With ERGO, one can capture,

query, and visualize sequenced genomes and assign functions to genes, integrate genes

into pathways, and identify unknown genes, gene products, and pathways. Its genomic

database integrates with a collection of microbial metabolic and nonmetabolic pathways

and proprietary algorithms. ERGO allows automated or manual annotation of genomes and

genes, pathway analysis, multiple genome comparison, functional analysis of microarray

data, data mining for the discovery of target genes, and in silico metabolic engineering and

strain improvement.

2.3 Network Reconstruction

A metabolic network reconstruction is a structured database combining the available ge-

netic, genomic, and biochemical data of an organism (REED et al., 2006). In general, a

genome-scale metabolic network reconstruction consists of a list of reactions including their

stoichiometry, the specific genes whose gene products are associated with these reactions,

supporting annotation, and literature references. The fundamental goal of a network recon-

struction is the accurate definition of the chemical transformations that take place among the

chemical components of the network (REED et al., 2006). The construction and curation of a

computational network links the organism’s genome and expression to metabolic reaction

fluxes, biomass, and energy production and consumption and enables the mathematical

representation of the reactions and metabolic processes occurring in the organism. Metabolic

networks can thus be used for in silico experiments (ZOMORRODI et al., 2012).

The process of compiling a (genome-scale) metabolic network can be broken up into five

major stages (THIELE et al., 2010), as depicted in Figure 2.1. Briefly, in the first stage, a

draft reconstruction of the network is built, which is refined in the second step. Then the
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Draft Reconstruction

Draft Refinement

Metabolic Network Reconstruction

Evaluation
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Mathematical Model
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Different
media

Figure 2.1: Workflow of an iterative network reconstruction process
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network is converted to a mathematical model. In the fourth step, the reconstructed network

is validated and can then be used for further experiments.

The first stage consists of creating a draft reconstruction of the network, at minimum contain-

ing a list of genes with their associated reactions and the corresponding EC numbers. The

draft is based on the genome annotation for the most recent version of the target organism’s

genome and data from biological databases (Tables 2.1 to 2.5) and results in a collection of

the genome-encoded functions of the metabolism. The important information for each gene

is its function, its position in the genome and coding region, the strand and locus names, and

the protein it codes for. For eukaryotes, information regarding alternative transcripts is also of

interest because they may have distinct functions or a different cellular localization (THIELE

et al., 2010). Candidate metabolic functions for the draft reconstructions can be retrieved by

using GO categories, EC numbers, and biochemical databases (THIELE et al., 2010) (Tables

2.1 to 2.5). In general, the creation of a network draft is carried out automatically with the

help of different software tools (Table 2.7). The automated genome annotation process with

ERGO provides a draft annotation that requires manual curation to add organism specific

information. The Basic Local Alignment Search Tool (BLAST) (ALTSCHUL et al., 1990) is used

to annotate gene function based on orthology with other annotated genomes provided in

online databases as well as phylogenetic approaches. Model SEED starts with an unannotated

genome sequence and builds a draft metabolic network with gap filling and verification

features (HAGGART et al., 2011). To refine this draft, a manual reconstruction refinement

step is necessary.

The manual refinement step starts with an initial evaluation of the completeness of the draft

reconstruction for identifying missing functions in the network. The draft can be reviewed

pathway by pathway, starting from canonical pathways. The reactions of the model are

evaluated in their metabolic context such that missing gene annotations and missing reactions

can be identified easier. The use of network maps that show the environment of reactions is

also convenient. Such maps can be found in databases such as KEGG or in organism-specific

literature (THIELE et al., 2010). Correct stoichiometry requires complete balancing of ele-

ments and charges. Some databases may lack information on protons and water, for example.

The incorporation of thermodynamic information is also of great value for the network model.

Reaction directions can be based on the reaction’s thermodynamic favorability, which can

be determined from Gibbs free-energy changes. This information can be obtained from

literature. However, the available data are rarely sufficient for genome-scale reconstructions,

but rather for smaller models. Software, such as the biochemical thermodynamics calculator

eQuilibrator (FLAMHOLZ et al., 2012), can be used to estimate thermodynamic parameters for
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biological reactions in networks and pathways (NOOR et al., 2014) using the group contribu-

tion method (NOOR et al., 2013). If no thermodynamic information is available, the reaction

should be left reversible. Organism-specific functions should also be taken into account,

such as the use of substrate and cofactors, which can differ between different organisms.

The review of primary literature dealing with the metabolism and function of the organism

is necessary to identify these organism-specific characteristics. For a growing number of

organisms, specific textbooks exist, which are a resource for additional information. When

organism-specific information is not available to the desired extent, data from phylogenetic

neighbors can be taken into account. Gene-protein reaction relationships, which connect the

genes with their associated enzymes via Boolean logic, allow the simulation of phenotypic

effects of gene knockouts. Also, the compartmentalization information for metabolite and

reaction localization as well as intracellular transport reactions have to be checked. If no

sufficient data are available, the respective proteins should be assumed to reside in the cytosol.

However, incorrect assignment can lead to additional network gaps (THIELE et al., 2010). For

cell-free systems, e.g. cell lysates, there exist no compartments. A network reconstruction for

such a system thus has no need for compartmentalization, intracellular transport reactions

and separated metabolite pools. They can be neglected in the reconstruction process.

Furthermore, biomass composition, maintenance parameters, and growth conditions of the

organism are to be determined by different experimental and computational methods. When

designing a biosynthetic synthesis pathway, the selection of substrates and cofactors has to

take into account toxicity for the host organism. For living organisms, non-toxic substrates

and cofactors should be preferred. This does not need to be incorporated into network

reconstructions for cell-free systems, where reactants can also be present in non-physiological

concentrations.

The conversion from the network reconstruction to a mathematical model for validation and

in silico applications consists of three steps, which can mostly be automated with suitable tools.

The first step is the mathematical representation of the network as a stoichiometric matrix.

In the second step, the boundaries of the system are defined. For each metabolite that can be

consumed or secreted, an exchange reaction is added to allow the definition of environmental

conditions for in silico simulations. This is only needed for network reconstructions of living

organisms and is omitted in network reconstructions of cell-free systems. For network

reconstructions of living organisms, constraints are added to the model to turn it into a

condition-specific model. Thermodynamic data for enzyme capacities or regulation help to

determine a set of feasible steady-state flux solutions.
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The evaluation stage includes network verification, evaluation, and validation steps to help

detect gaps in the network. To find candidates for filling gaps, an intensive literature search

is needed that helps to identify the environment of the dead-end metabolites. Databases

such as ATLAS of Biochemistry (HADADI et al., 2016) and other cheminformatic tools (e.g.

the rePrime procedure (KUMAR et al., 2018)) can also help to close network gaps with de

novo reactions. Methods like BridgIT (HADADI et al., 2019) can be used to identify genes

and proteins for orphan reactions that are not associated with enzymes.

For network reconstructions of living organisms one must also take care of stoichiometrically

balanced cycles formed by internal network reactions that can carry fluxes despite closed

exchange reactions (THIELE et al., 2010). The model must be tested for its ability to syn-

thesize all biomass precursors, such as amino acids, nucleotide triphosphates, or lipids with

different medium compositions. This can be done by growing the organism on specific carbon

sources (HAGGART et al., 2011). It should be checked if the model could reproduce known

incapabilities of the organism. It is also advised to compare the predicted physiological

properties with known properties such as carbon splits in the central metabolic pathways of

the organism. For cell-free network reconstructions, these steps can be omitted.

Network reconstructions can be used for several major applications that address different

aims of these models (OBERHARDT et al., 2009), such as using metabolic network reconstruc-

tions for putting high-throughput experimental data into context. They can also be used for

discovery of network properties, hypothesis-driven discovery, and exploration of multispecies

relationships. Network reconstructions also have applications in metabolic engineering,

where they can be used for constraint-based modeling and the in silico prediction of possible

cellular phenotypes without the need for kinetic data. The main concept behind network

metabolic modeling is the identification and mathematical definition of constraints for the

separation of feasible and infeasible metabolic behavior. These constraints are usually much

easier to identify than kinetic parameters. There are three types of constraints: Physicochem-

ical constraints deal with mass and energy conservation, the dependency of reaction rates on

metabolite concentrations, and the negative free-energy change for spontaneous reactions.

Environmental constraints are imposed as a result of specific conditions such as nutrients,

whereas regulatory constraints express the effects of gene expression and enzyme activity

regulation properties.
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2.4 Network Representation

Metabolic network models can formally be described as graphs G(V, E), where V is the set

of vertices and E is the set of edges connecting node pairs. In a directed graph, the edges

are ordered, whereas in an undirected graph an edge is represented by an unordered node

pair. There are different possibilities to represent a metabolic network graph. In a compound

M1 M3

M2 M4

M5

(a) Compound graph

R2R1

(b) Reaction graph

M2 M4

R1 M5M1 M3 R2

(c) Bipartite graph

M5M3

M2

M1

M4

(d) Hypergraph

Figure 2.2: Graph representations. Rounded squares: metabolites; circles: reactions.

graph (Figure 2.2(a)), the nodes represent the chemical compounds. An (un)directed edge

connects two compounds if they are substrate and product of the same reaction. The dual
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form of the compound graph is the reaction graph (Figure 2.2(b)), where the nodes represent

reactions. Edges in this graph connect two reactions if one reaction has products that are

substrates of the other reaction. Both types of representation have similar limitations, as

they are both ambiguous and do not represent all information of the network. Another type

of graph representation is the bipartite graph (Figure 2.2(c)), in which there are two classes

of nodes representing compounds and reactions in the graph. Directed or undirected edges

in a bipartite graph are only possible between two nodes of different classes. A substrate is

defined by a directed edge from a compound to a reaction node, a product by an edge from

a reaction to a compound node. An equivalent representation of a bipartite graph and also

the generalization of a compound graph is a hypergraph (Figure 2.2(d)) with directed or

undirected edges. In such a graph, a hyperedge relates a set of substrates to a set of products.

This graph type allows an unambiguous representation of reactions and compounds, but it

has limited coverage because reaction control factors cannot be represented. Diverse graph

types and data models for biochemical pathways are reviewed in more detail in (DEVILLE

et al., 2003).

A biological pathway can be defined in several different ways, depending on the underlying

biological network representation or the context in which the pathway is considered. When

metabolism is defined as a network of chemical reactions catalyzed by enzymes and connected

by substrates and products, then the most basic definition of a metabolic pathway is a

coordinated series of reactions (DEVILLE et al., 2003). Given a compound graph, a pathway

can be a sequence of metabolites that are linked by reactions or substrate-product pairs.

In the simplest case, the sequence is a linear path from a start metabolite A to a target

metabolite B (Figure 2.3(a)). In most cases, this definition is too basic. Especially in the

context of biological synthesis, this kind of pathway does not cover all information needed.

It is much more meaningful to look at branched pathways. A branched pathway to a given

target metabolite does not have a single start metabolite, but it rather can have multiple start

metabolites by taking into account every substrate of each reaction involved in the pathway

to produce the target metabolite B (Figure 2.3(b)).

A basic mathematical representation of metabolic networks is the stoichiometric matrix. It

represents its charge and elementary balanced metabolic reactions and thus quantifies the

stoichiometric relationship between the metabolites in a reaction. The rows and columns of

the matrix correspond to the metabolites and reactions of the network. Its nonzero elements

are the stoichiometric coefficients, which are positive for products and negative for substrates.

For genome-scale metabolic networks, the stoichiometric matrix is sparse because relatively

few metabolites participate in a given reaction.
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R3 BR2M1 M3A R1

(a) Linear pathway from a start metabolite A to a target metabolite B.
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(b) Branched pathway to a target metabolite B.

Figure 2.3: Pathway definitions. Rounded squares: metabolites; circles: reactions.

Another quite simple representation method for metabolic networks is compiling all informa-

tion in spreadsheets. The spreadsheet should contain all gene names and their abbreviations.

For each reaction, the reactant, substrate, product symbols, balanced stoichiometry, re-

versibility, compartment, associated protein, and its EC number should be included. Also of

importance are literature references and a confidence rating for each annotation entry as

well as comments.

SBML is a machine-readable format for representing biological models. Its basic idea is

to cast a network reconstruction into a formal, computable form, thus allowing network

analysis using simulations and other mathematical methods.

The SBGN (LE NOVERE et al., 2009) is a project that aims to standardize the graphical

notation used in maps of biological processes. Currently, there are three different languages

for different types of network maps. The Process Description (PD) language (ROUGNY et al.,

2019) can be used to depict temporal courses of biochemical interactions of a network.
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Relationships between entities of a network can be modeled with the Entity Relationship

(ER) language (SOROKIN et al., 2015). The Activity Flow (AF) language (MI et al., 2015)

visualizes the information flow between biochemical entities in the network, such as for

representation of the effects of perturbations on the network.

BioPax (DEMIR et al., 2010) is an open standard language for the integration, exchange and

visualization of biological pathways.

2.5 Metabolic Network Design and Manipulation

The planning of a biochemical synthesis in permeabilized cells involves primarily finding

a synthesis route starting from available, inexpensive, and stable substrates. The overall

goal is to obtain high product concentration with high yield and selectivity in the shortest

possible time. High yield and selectivity can only be obtained if undesired side reactions do

not take place. The products of undesired side reactions will also complicate downstream

processing. Side reactions do not occur if one of the substrates required is missing. The

substrate composition is a design variable when using permeabilized cells as biocatalysts.

Side reactions can be eliminated by the deletion of the corresponding gene or by the addition

of a selective inhibitor. A major engineering task of biosynthesis in permeabilized cells is the

regeneration of cofactors, such as NAD(P)H (LEE et al., 2013) or ATP (HORINOUCHI et al.,

2006; HORINOUCHI et al., 2012).

Metabolic engineering is the manipulation of enzymatic, transport, and regulatory functions

of a cell through recombinant DNA technologies. One of its important objectives is the

improvement of the cellular phenotype or the yield of a desired product. Traditionally, this is

done by rationally selected gene deletions or overexpression of native and heterologous genes

in an organism. To remove undesirable metabolic pathways in an organism, site-directed

mutagenesis or homologous recombination can be used. To increase biochemical yields

and add new functions, heterologous genes or even complete pathways can be introduced

into the organism. In silico metabolic models allow rational predictions of the phenotypical

response of changes in culture media, gene knockouts, and the incorporation of heterologous

enzymes and pathways into an organism (BLAZECK et al., 2010).

Flux balance analysis is a widely used constraint-based method in metabolic engineering

for studying biochemical networks. It allows for the in silico prediction of flux profiles that

optimize a cellular objective, depending on the problem. Often, the biomass production or the

production rate of a certain metabolite of interest is used as an objective. The fundamental
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assumption for flux balance analysis is that the metabolism in the cell is at steady state as

well as all reaction fluxes and metabolite concentrations (HAGGART et al., 2011). The input

for flux balance analysis is the mathematical representation of the metabolic network as

a stoichiometric matrix. The stoichiometric coefficients in the matrix constrain the flow

of metabolites through the network. These steady-state mass balance equations for each

metabolite and the environmental and growth conditions can be described mathematically

in the form of constraints for an optimization problem. The metabolite balance equation is a

homogeneous system of linear equations S · v(t) = 0, where S is the stoichiometric matrix

and v(t) is the vector of reaction rates. It requires that each metabolite is consumed at the

same rate as it is produced (TERZER et al., 2009). For the quantitative determination of the

metabolic fluxes, linear programming can be used to solve the stoichiometric matrix for a

given objective function under various constraints (T. Y. KIM et al., 2012). A linear program

is a mathematical optimization model which requires maximizing or minimizing a given

objective under a finite set of given constraints. The constraints describe the space of all

eligible possibilities from which an optimal solution can be selected. They are generally

given in the form of equalities and/or inequalities. In its canonical form, a linear program it

can be formulated as

maximize cTx

subject to Ax≤ b

and x≥ 0

where x is the vector of variables; c and b are vectors of known coefficients; and A is a

known matrix of coefficients. (·)T is the matrix transpose. A feasible solution of the linear

program is any assignment of x satisfying all constraints (CORMEN et al., 2009). For an integer

linear program all variables are required to be integers, while in a MILP also non-integer

variables are allowed. Finding a feasible solution for a linear problem can be generally

done in polyomial time, for example with the simplex algorithm (CORMEN et al., 2009).

However, finding a feasible solution of a integer linear problem is NP-hard, so there are no

polynomial-time algorithms known. Nevertheless, commercially available tools such as the

IBM CPLEX Optimizer as well as non-commercial solvers allow for the fast computation of a

feasible solution. Note that in the worst case the running time is not polynomial.

Constraint-based methods focus only on reaction fluxes, neglecting enzyme kinetics and

regulations that can influence the actual fluxes. Therefore, they have some limitations in

their predictive capabilities (DUROT et al., 2009). However, they can be computed very



30 Chapter 2 Network Design

efficiently, even for large networks. Elementary mode analysis is an important method for

metabolic network studies (von KAMP et al., 2006), allowing the enumeration of all indepen-

dent minimal pathways in the network that are stoichiometrically and thermodynamically

feasible. Elementary flux modes are independent flux distributions of a metabolic network at

steady state. The inputs for elementary mode analysis are the reaction stoichiometries and

reversibilities. All metabolites in the network are classified as either internal or external. The

internal metabolites are balanced and the external metabolites are assumed to be buffered.

The computation of elementary modes in large networks is difficult due to its combinatorial

complexity (KLAMT et al., 2007). Once elementary modes are computed, the deletions

necessary for the elimination of undesired side product formation can be directly identified.

It requires that each metabolite is consumed at the same rate as it is produced (REED et al.,

2006). For the quantitative determination of the metabolic fluxes linear programming can

be used to solve the stoichiometric matrix for a given objective function under various con-

straints (ZOMORRODI et al., 2012). The constraints of the problem describe the space of all

eligible possibilities from which an optimal solution can be selected. It has been shown that

it is even possible to directly identify successful targets for the overexpression of enzymes

just based on the known stoichiometry of a network (BOGMAN et al., 2003; HAGGART et al.,

2011; NEUNER et al., 2011; RYAN et al., 1991).

However, these methods are not directly applicable for permeabilized cells because they as-

sume a steady-state in the network. This will be discussed in detail in Section 4.1 Background

where a different approach tailored for cell-free systems is presented.



CHAPTER 3

Aims and Scope

This thesis has two main aims. The first aim is to design a comprehensive method for

finding and analyzing pathway candidates for synthesis in genome-scale metabolic network

reconstructions of cell-free systems. The second aim of this thesis is to develop a method for

creating and characterizing such network reconstructions from KEGG data for the planning

of biosynthetic production pathways using cell-free systems.

In Part II Path-Finding and Network Analysis for Multi-Enzyme Biocatalysis, a newly developed

method for finding pathways in a genome-scale metabolic network reconstruction is discussed.

The method is based on a MILP and combines both topology of the graph based on the network

and the stoichiometry of the reactions in the network model. The algorithm only requires

the specification of the target product of interest to find pathways starting from arbitrary

substrates and a set of ubiquitous cofactors (e.g. nucleoside triphosphates such as ATP;

or NAD(P)H) and inorganic metabolites such as water or CO2. A set of different ranking

criteria to help finding well-designed and meaningful synthesis pathway candidates is also

developed. These criteria include pathway length, reaction thermodynamics, the number

of heterologous enzymes for a given host organism or cofactor requirement of the pathway,

amongst others. The features of the method are presented using geranyl pyrophosphate

(GPP), amygdalin, pyrrolysine and (S)-2-phenyloxirane as examples for target metabolites.

In Part III Network Reconstructions for Cell-Free Systems a method for the reconstruction of

genome-scale metabolic network models based on KEGG data is presented and discussed.

Not suitable data, e.g. generic metabolites, general reactions and reactions with invalid

stoichiometry are removed with a filtering scheme. The network models also comprise

stoichiometric and thermodynamic data that allow the definition of constraints to identify

31
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potential pathways. A pan-organism network reconstruction containing all suitable reac-

tions in KEGG is assembled. Furthermore, single organism network reconstructions from

several organisms important in biotechnological production and scientific research, such as

Escherichia coli and Corynebacterium glutamicum, amongst others, are established. These

network models are analyzed with the help of graph theoretical methods to identify a set of

metabolites that are potentially reachable from a defined set of starting metabolites. It is

discussed how they can be used for the planning of biosynthetic production pathways. The

usage of the path-finding tool is presented using the example of UDP-glucose as a target.

The workflow for network reconstruction and analyzing together with the path-finding

method describes a powerful and highly customizable toolbox usable for the design of multi-

enzyme biosynthetic production pathways. The data resulting from the studies presented

in this work can be directly applied to the planning of biosynthetic production pathways

and can also help setting up custom network reconstructions or improving existing network

models.



Path-Finding and Network Analysis for Multi-Enzyme Biocatalysis

Part II
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CHAPTER 4

Network Design and Analysis for Multi-Enzyme Biocatalysis

The following chapter is based on the published research article

BLASS, L. K., WEYLER, C., & HEINZLE, E. (2017): Network design and

analysis for multi-enzyme biocatalysis. BMC Bioinformatics (Aug. 2017),

vol. 18([1]): 366. https://doi.org/10.1186/s12859-017-1773-y

that I co-authored.

Appendix A is based on the the supplementary material of this research article.

Abstract

As more and more biological reaction data becomes available, the full exploration of the en-

zymatic potential for the synthesis of valuable products opens up exciting new opportunities

but is becoming increasingly complex. The manual design of multi-step biosynthesis routes

involving enzymes from different organisms is very challenging. To harness the full enzy-

matic potential, we developed a computational tool for the directed design of biosynthetic

production pathways for multi-step catalysis with in vitro enzyme cascades, cell hydrolysates

and permeabilized cells.

We present a method which encompasses the reconstruction of a genome-scale pan-organism

metabolic network, path-finding and the ranking of the resulting pathway candidates for

proposing suitable synthesis pathways. The network is based on reaction and reaction pair

data from the KEGG and the thermodynamics calculator eQuilibrator. The pan-organism
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network is especially useful for finding the most suitable pathway to a target metabolite

from a thermodynamic or economic standpoint. However, our method can be used with

any network reconstruction, e.g. for a specific organism. We implemented a path-finding

algorithm based on a MILP which takes into account both topology and stoichiometry of

the underlying network. Unlike other methods we do not specify a single starting metabo-

lite, but our algorithm searches for pathways starting from arbitrary start metabolites to a

target product of interest. Using a set of biochemical ranking criteria including pathway

length, thermodynamics and other biological characteristics such as number of heterologous

enzymes or cofactor requirement, it is possible to obtain well-designed meaningful pathway

alternatives. In addition, a thermodynamic profile, the overall reactant balance and potential

side reactions as well as an SBML file for visualization are generated for each pathway

alternative.

We present an in silico tool for the design of multi-enzyme biosynthetic production pathways

starting from a pan-organism network. The method is highly customizable and each module

can be adapted to the focus of the project at hand. This method is directly applicable for (i)

in vitro enzyme cascades, (ii) cell hydrolysates and (iii) permeabilized cells.

4.1 Background

While thousands of enzymes are already known, numerous new enzymes or new enzymatic

activities are still discovered every year. Many of these biocatalysts accept multiple substrates

and even catalyze different reactions. From a biotechnological point of view, the enzymatic

potential of nature can be considered an extremely versatile tool potentially giving access to

countless valuable products ranging from bulk chemicals to most complex drug compounds.

The methods for such syntheses can range from using single isolated enzymes over multi-

enzyme systems or enzyme cascades up to syntheses with cell lysates or permeabilized cells

(HEINZLE et al., 2013).

However, the full exploration of the enzymatic potential is often hampered by the sheer

amount and complexity of available reaction data. When manually designing a multi-step

synthesis route to a certain metabolic intermediate, the network of alternative synthesis

pathways quickly grows highly complex as more reaction steps are introduced. Additionally,

assembling all reactions that lead to each reactant is extremely time consuming. The manual

determination of the most suitable pathway candidate is challenging as multiple aspects such

as thermodynamics, cofactor use, etc. need to be considered. To more easily harness the

full potential of the enzymatic toolbox we developed a computational tool for the directed
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design of biosynthetic production pathways for interesting products in cell extracts and

permeabilized cells.

The search for pathways in genome-scale metabolic networks is a common task of wide

interest and there is a large variety of path-finding and pathway design methods. Most of

those methods can be categorized into one of two types, namely stoichiometric methods and

graph-based methods. Stoichiometric methods make use of the stoichiometry of a network

to analyze the metabolism under the assumption of a steady-state condition. Popular and

mathematically well understood methods are for example elementary flux modes (SCHUSTER

et al., 1999) or flux balance analysis (PHARKYA et al., 2004; TERVO et al., 2016). Graph-

based methods in general neglect stoichiometry and treat the networks as graphs in a

mathematical sense and search for pathways based on connectivity (FAUST et al., 2009),

with the use of atom or atom group tracking (BLUM et al., 2008a, 2008b; HUANG et al.,

2017), retrosynthesis (CARBONELL et al., 2011; HATZIMANIKATIS et al., 2005), heuristic

search algorithms (MCCLYMONT et al., 2013) or evolutionary algorithms (GERARD et al.,

2015). In the last years, methods combining stoichiometry and structural properties of

networks emerged, e.g. the so called carbon flux paths proposed by Pey et al. (PEY et al.,

2014; PEY et al., 2011). However, the majority of these methods tackles the problem of

finding pathways between two given metabolites and does not take into account a search

starting with an arbitrary metabolite in the network. Another drawback of these methods for

our focus of application is that most of them assume a steady-state condition for the major

part of the network. This is valid for living cells or cells with intact membranes. In these

cases the actual reactions are running in a cellular compartment that keeps all intermediates

separated from the bioreactor, whereas in the case of enzyme cocktails and permeabilized

cells the reaction compartment is identical to the bioreactor used. Examples of the latter

type of reaction systems are becoming increasingly popular (CARSTEN et al., 2015; DUDLEY

et al., 2016; KARIM et al., 2016; KOIZUMI, 2003; KOIZUMI et al., 2000; KOIZUMI et al., 1998;

KRAUSER et al., 2015; WEYLER et al., 2015).

We thus propose a tool which encompasses the reconstruction of a genome-scale pan-organism

metabolic network, the implementation of a path-finding algorithm and the ranking of path-

way candidates for proposing suitable synthesis pathways starting from arbitrary substrates.

4.2 Methods

In the following we will present the individual parts of our method. Figure 4.1 shows the

workflow through its different components.
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Figure 4.1: Workflow through the components of our tool. We start with a network reconstruction
which is then used for path-finding with the presented MILP. The resulting pathway candidates
are ranked according to the different ranking criteria.
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The first step is the network reconstruction where the network is built with data from KEGG

(KANEHISA et al., 2000; KANEHISA, SATO, KAWASHIMA, et al., 2016) and the biochemical

thermodynamics calculator eQuilibrator 2.0 (FLAMHOLZ et al., 2012; NOOR et al., 2013).

Details on how the network is compiled are given in Section 4.2 Network Reconstruction.

The path-finding in the network is based on an optimization algorithm developed by Pey et

al. (PEY et al., 2011). It combines graph-based path-finding and reaction stoichiometry in a

MILP. The algorithm with our extensions is presented in detail in Section 4.2 Mathematical

Model. In a further stage the resulting pathway candidates are ranked using different criteria.

We will give details on the ranking in Section 4.2 Filtering and Ranking. The output is a

list of ranked pathway candidates which can be assessed with expert knowledge to help

determining the most suitable synthesis pathway for a desired product.

Network Reconstruction

We combine data from different KEGG databases and eQuilibrator 2.0 for the reconstruction

of a pan-organism network with data from all organisms contained in KEGG release 78.1

from May 1, 2016.

Reaction and Reaction Pair Data

The reaction network was reconstructed with COnstraint-Based Reconstruction and Analysis

(COBRA) Toolbox (SCHELLENBERGER et al., 2011) using reactions from KEGG REACTION.

We excluded reactions with the comments ‘generic’and ‘incomplete’in their data entries;

reactions with ambiguous stoichiometry with stoichiometric coefficient n in the reaction

equation; as well as reactions involving glycans with G numbers in KEGG.

From all remaining reactions in the model we built a network of reaction pairs, the so called

arcs. A reaction pair is a biologically meaningful substrate-product pair in a reaction. We

derived the arcs from the KEGG RPAIR database 1 containing reaction pairs for each reaction.

The reaction pairs in KEGG are classified into five categories (KOTERA, HATTORI, et al.,

2004) from which we used the main-pairs, describing the main changes on the substrates

in a reaction and the trans-pairs which describe transferase reactions. We did not use the

remaining three types cofac-pairs, ligase-pairs and leave-pairs. However, they can be included

at user’s discretion.

1 discontinued since KEGG release 80.0, October 1, 2016
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Our network reconstruction comprises a total of 9038 reactions (10160 including reversible

reactions), 7405 metabolites and 14803 arcs.

Thermodynamic Data

The KEGG REACTION database does not contain any detailed information about reaction

directions, so we incorporated thermodynamic data from the biochemical thermodynamics

calculator eQuilibrator 2.0. The component contribution method used (NOOR et al., 2013)

provides different types of the reaction Gibbs energy. ∆r G′° expresses the change of the

Gibbs free energy of a reaction at a given pH and ionic strength I in 1 M concentration of the

reactants. However, for metabolic reactions in cells it makes more sense to use physiologically

meaningful concentrations. For ∆r G′m the concentration of the reactants is thus set to 1 mM.

For all calculations standard parameters are used which are a temperature of 25 °C (298.15

Kelvin), a pH of 7 and a pressure of 1 bar. We set the threshold for the discrimination of

reversible and irreversible to ∆r G = 15 kJ/mol. Reactions without available thermodynamic

data are considered irreversible in the direction given in the reaction equation from KEGG.

Network Details

We categorize the metabolites in the model into different sets which we treat differently in

our path-finding method. All sets are given in Additional file 1 of (BLASS et al., 2017). A

Venn diagram of these sets is depicted in Figure 4.2.

As start metabolites S we denote all metabolites that can be potential start points of a

metabolite path. A metabolite path is a sequence of metabolites through the network

connected by arcs. We compiled the list of possible start metabolites with all metabolites

in the model contained in arcs with a molecular mass between 0 and 300. A subset of

the start metabolites are the so called basis metabolites B. They are an expert-curated set

of metabolites that are hubs of the arc network, easily available and inexpensive, such as

D-glucose (C000311) or pyruvate (C00022).

As cofactors we denote metabolites that are required for the activity of the enzymes catalyzing

the reactions in the network but are not directly part of the reaction chain. We exclude

arcs containing cofactors from the set of arcs to prevent biologically meaningless shortcuts

in the network. The list is expert-curated and contains mono-, di- and triphosphates (e.g.

1 KEGG compound ID
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metabolites M
7405

cofactors
34

start metabolites S
3201

basis metabolites B
51

metabolite pool Em

3407

generic metabolites
1053

excluded metabolites
123

external metabolites
4358

Figure 4.2: Venn diagram with the different metabolite categories in the network reconstruction.
Metabolites M: all metabolites in the network; metabolite pool Em: metabolites considered
available from start; start metabolites: all metabolites in the model contained in arcs with a
molecular mass between 0 and 300; basis metabolites: expert-curated subset of start metabolites;
cofactors: cofactors for enzymes; excluded metabolites: treated as cofactors; external metabolites:
not contained in the metabolite pool, cannot be externally supplied; generic metabolites: marked
as ‘generic’ in their KEGG entry; the grey background indicates the set that can contain the
product P.

adenosine 5’-monophosphate (AMP) (C00020), adenosine 5’-diphosphate (ADP) (C00008)

and ATP (C00002)), electron carriers such as nicotinamide adenine dinucleotide (NAD+)

(C00003) and others. The mono- and diphosphates are usually not considered cofactors, but

we chose to incorporate them into the list to avoid unnecessary interconversions between

them on the pathway candidates. The set of excluded metabolites is treated in the same

way as the cofactors. It contains metabolites that are considered as freely available, such as

water, oxygen or CO2. As the metabolite pool Em we denote the superset of metabolites we

consider as freely available. This set consists of start metabolites, basis metabolites, cofactors

and excluded metabolites. As external metabolites we denote all metabolites that are not

contained in the metabolite pool. They have to be produced in a production pathway and

cannot be externally supplied. Generic metabolites are metabolites that are marked as ’generic’
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in their KEGG entry, such as peptide (C00012) or protein (C00017). In our network we treat

them as external metabolites and exclude arcs containing those metabolites from the arc

network. The pool of external metabolites also contains metabolites with arcs that are not

start metabolites as well as all other metabolites that are not part of any other set.

Path-Finding

In the following we introduce our method for finding pathway candidates in the network by

means of a MILP.

Mathematical Model

Given a metabolic model with the set of reactions R and the set of metabolites M we build the

network of arcs. We also use the |M|-by-|R| stoichiometric matrix of the network, where

each row corresponds to a metabolite and each column corresponds to a reaction. An entry

in the matrix represents the stoichiometric value of a metabolite in the respective reaction,

where negative values indicate a reactant and positive values indicate a product. Reversible

reactions appear in the model as two different reactions with opposite directions.

MILP

The algorithm presented is based on an algorithm proposed by Pey et al. (PEY et al., 2011).

However, in comparison to the original algorithm we changed the problem statement. Pey et

al. dealt with the question of finding the K-shortest flux paths between a given source and

a target metabolite. Different from this problem statement we do not specify any specific

starting metabolite, but our algorithm identifies suitable starting metabolites for finding a

pathway to a target metabolite P. In our definition, a pathway consists of two parts. The first

part is a sequence of metabolites connected by reactions. It starts with a reaction that has one

of the possible start metabolites as substrate and ends with a reaction with the desired target

metabolite as a product. This part is called the linear path. The second part is a minimal set

of reactions supplying substrates that are needed by the reactions on the path which are not

contained in the metabolite pool. These are called supplying reactions.

We introduce the set of binary variables ui j which are 1, if an arc from i to j is part of the

linear path, and 0 otherwise (for i, j = 1, . . . , |M |). The first constraint given by equation (4.1)

establishes that there is exactly one arc on the linear path ending in the target metabolite P,
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whereas the second constraint in equation (4.2) assures that no arc on the linear path starts

with P.

|M |∑
i=1

uiP = 1 (4.1)

|M |∑
j=1

uP j = 0 (4.2)

The two constraints ensure that the target P is always the last node on each identified path

and thus the path actually ends with the desired product. Both constraints have been adopted

from (PEY et al., 2011). Inequality (4.3) states that the number of arcs entering a node l

from the set of possible start nodes S on the path is smaller or equal to the number of arcs

leaving it.

|M |∑
i=1

uil ≤
|M |∑
j=1

ul j l ∈ S; l 6= P (4.3)

This means that a metabolite l is either the starting metabolite of a path (
∑

uil = 0 and∑
ul j = 1) or the metabolite is an intermediate (

∑
uil =

∑
ul j). In the trivial case where l is

not on the path, both sums are zero. The idea of the constraint has been adopted from (PEY

et al., 2011). However, we changed it to incorporate the set of starting metabolites, which

has not been introduced in the original MILP. For the set of basis metabolites B we introduce

a constraint formulated in equation (4.4) stating that the number of arcs entering a node l

from the set of basis metabolites B should be zero. This means that a basis metabolite can

only appear as the first metabolite in a metabolite path and not as an intermediate.

|M |∑
i=1

uil = 0 l ∈ B; l 6= P (4.4)

For all other nodes k in the network except the target node P the number of in-going arcs

must be equal to the number of out-going arcs, as given in constraint (4.5).

|M |∑
i=1

uik =
|M |∑
j=1

uk j k ∈ M \ S; k 6= P (4.5)
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This means that if an arc is entering an intermediate node k, then there must also be an arc

leaving this node. Constraints (4.3) to (4.5) ensure that a path can only start with a start

metabolite contained in the set of possible start nodes S. This constraint was taken from

(PEY et al., 2011), but has been adapted for start metabolites. Constraint (4.6), which was

adopted from (PEY et al., 2011), forces nodes on a path to be unique, i.e. at most one arc

can enter any given node.

|M |∑
i=1

uik ≤ 1, k = 1, . . . , |M | (4.6)

Constraints (4.1) to (4.6) ensure that a solution contains a connected simple path from a

start node of the set of start nodes S to a given end node P.

The next set of constraints deals with the feasibility of the linear path in the given network.

Given are the stoichiometric coefficients Smr for a metabolite m in reaction r (for m =
1, . . . , |M |, r = 1, . . . , |R|). The variables vr assign each reaction r a non-negative flux.

Constraint (4.7) expresses that the external metabolites are not necessarily balanced and

can only be produced, but not be taken up. Only metabolites from the metabolite pool Em

containing the set of start metabolites, basis metabolites, cofactors and excluded metabolites

can be taken up. This means that all substrates on the pathway must be producible with

metabolites contained in the metabolite pool. This constraint was adopted from (PEY et al.,

2011).

|R|∑
r=1

Smr vr ≥ 0, ∀m ∈ E, m /∈ Em (4.7)

We added constraint (4.8) to make sure the target metabolite P can only be produced.

|R|∑
r=1

SPr vr ≥ 1, (4.8)

With constraints (4.9) and (4.10), (adopted from (PEY et al., 2011)), we introduce the binary

variable zr which is 1, when reaction r has a flux and 0 otherwise. All fluxes are scaled

between 1 and a chosen positive value Max with Max ≥ 1. This constraint relates fluxes in

the flux distribution defined by vr to reactions.

zr ≤ vr , r = 1, . . . , R (4.9)

and vr ≤ Max · zr , r = 1, . . . ,R (4.10)
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Constraint (4.11) states that a reaction and its reverse cannot appear together in a valid flux

distribution to exclude trivial cycles. This constraint was adopted from (PEY et al., 2011)).

zλ + zµ ≤ 1 (4.11)

∀(λ,µ) ∈ B = {(λ,µ)|λ and µ are reverse}

The path-finding and the stoichiometry constraints are linked through a linking constraint

(4.12).

|R|∑
r=1

di jr · zr ≥ ui j i = 1, . . . ,|M |; j = 1, . . . ,|M |; i 6= j (4.12)

The binary coefficients di jr are 1, if there exists an arc between the metabolites i and j in

reaction r and 0 otherwise. If an arc from i to j is used in the path (ui j = 1) then at least

one reaction r containing this arc (di jr = 1) has to be active. This constraint was adopted

from (PEY et al., 2011)).

Constraints (4.7) to (4.12) define a valid flux distribution for the pathway ensuring that the

found path is feasible.

The objective function of the problem is formulated in equation (4.13).

Minimize
|M |∑
i=1

|M |∑
j=1, j 6=i

ui j +
1
|R|+ 1

|R|∑
i=1

zi (4.13)

As proposed by (PEY et al., 2011) we minimize the number of arcs ui j used but additionally

we also minimize the number of active reactions on the whole pathway candidate.

A solution to the MILP described by equations (4.1) to (4.13) is a sequence of arcs given by

the values of ui j and the set of active reactions given by the values of zr . By minimizing the

objective function we ensure that the linear path is connected and cycle-free and the number

of active reactions and thus of supplying reactions is minimal. From the active reactions we

determine those corresponding to the active arcs, denoted as Z ′. One solution represents

one pathway candidate.

To find further solutions we have to exclude solutions with the same active arcs and the same

reactions Z ′. Note that a valid new solution can have exactly the same set of active arcs as a

previous solution if Z ′ is different, since an arc can be derived from more than one reaction.

Let Uk
i j be the value of ui j for the k-th unique solution with respect to the metabolite path.
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To indicate that a solution is exactly the same as solution k regarding the metabolite path,

we introduce a binary variable sk. When a solution is different from solution k regarding the

metabolite path, sk has to be 0 and 1 otherwise. Whenever we find a metabolite path Uk′ we

have not seen before, we introduce constraints (4.14) to (4.16) and a new binary variable

sk′ .

|M |∑
i

|M |∑
j

Uk′
i j · sk′ ≤

|M |∑
i

|M |∑
j

Uk′
i j ui j (4.14)

|M |∑
i

|M |∑
j

(1− Uk′
i j )ui j + sk′ |M |2 ≤ |M |2 (4.15)

Constraints (4.14) and (4.15) establish that, whenever we find a new solution U and sk′ is

set to 1, we know that U = Uk′ . In more detail, constraint (4.14) ensures that if sk′ is 1 all

arcs of solution k′ are also active. Additionally, constraint (4.15) forbids U to contain any arc

that was not present in Uk′ . We denote the first metabolite in the path in solution k′ by αk′ .

|M |∑
i

|M |∑
j

Uk′
i j ui j −

|M |∑
i

uiαk′ − sk′ ≤
|M |∑

i

|M |∑
j

Uk′
i j − 1 (4.16)

Constraint (4.16) ensures that a valid new solution has to fulfill one of the following three

properties. It has either exactly the same metabolite path Uk′; or at least one of the arcs

from the previous metabolite path Uk′ is not active; or all arcs from Uk′ are active and one

arc entering the first metabolite αk′ is active extending a previously found metabolite path.

This constraint also ensures that sk′ is set to 1 if U = Uk′ . Constraint (4.17) is always added

for each new solution. Assume the found metabolite path is the same from solution k (Uk).

Let Z ′li indicate whether reaction i is active in solution l and corresponds to an active arc in

Uk. The number of ones in Z ′l is denoted by ml . This constraint prevents to find a second

solution that is exactly the same as a previously found solution with regard to both linear

path and reactions.

|R|∑
i

Z ′li zi + sk|R| ≤ ml − 1+ |R| (4.17)

Figure 4.3 depicts an exemplary pathway to the target metabolite P illustrating a possible
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solution of the presented MILP. The light yellow square M1 is the starting metabolite of the

M1 M2

M4

M3 P

S2

S4

S1

S3

R2

R4

R3R1

Figure 4.3: Exemplary pathway illustrating a possible solution. The squares depict metabolites,
the circles represent reactions. The pathway is a feasible synthesis pathway from M1 to the
product P.

linear path, whereas the dark orange square P is the target metabolite. The light blue squares

are metabolites from the metabolite pool. The linear path highlighted in yellow is defined

through constraints (4.1) to (4.6). One of the substrates for reaction R3, metabolite M4, is

not available in the metabolite pool and thus must be supplied by other reactions. These

supplying reactions are defined by constraints (4.7) to (4.12). In this example, reaction R4

depicted by the white circle is added to the resulting path. The overall pathway is a synthesis

pathway from M1 to the desired product P that is feasible within the given network.

Filtering and Ranking

We rank the pathway candidates generated by the MILP by different criteria in order to

highlight the most meaningful candidates for the synthesis of the desired product. As a global

optimization method, the MILP cannot take into account if the first reaction of a pathway

candidate is feasible only with metabolites in the metabolite pool. We thus have to perform

a filtering step before the ranking to eliminate those pathway candidates that do not comply

with this requirement. The ranking criteria are listed in Table 4.1.

The first criterion is the number of active reactions in the pathway candidate. Shorter

pathways favor a fast product formation, a reduced substrate demand and are generally
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Table 4.1: Ranking criteria in the order they are applied to the pathway candidates.

position criterion comment

1 number of active reactions shorter pathways are favorable

2 candidate starts with basic metabolites only ‘yes’ is preferred

3 number of reactions without ∆r G as few as possible

4
∑
(∆r G + |∆r G|) preferably all ∆r G are negative

5
∑
∆r G negative is preferred

6 number of heterologous enzymes as few as possible

7 number of cofactors as few as possible

easier to realize than a pathway with more reactions. The second ranking criterion prefers

pathway candidates starting with basic metabolites only. A further ranking criterion favors

pathways for which there is thermodynamic information available. This is based on the notion

that reactions without known or assessable ∆r G are often poorly described. Another ranking

criterion is the sum of the ∆r G’s and the absolute value of those ∆r G’s
∑

r(∆r G + |∆r G|)
for all reactions r in the linear path of the pathway candidate. Ideally this sum is 0, since

then each reaction has a negative ∆r G. Therefore, pathway candidates with positive ∆r G of

intermediate reactions are ranked down, as they would lead to kinetic traps. Furthermore,

the pathway candidates are ranked by the overall thermodynamics of the linear path of the

pathway candidate. Pathways with a negative overall ∆r G are preferred over those with a

positive overall ∆r G. The ranking also takes into account the number of enzymes that are

native in a specified host organism. Pathways with less heterologous enzymes are preferred

as they potentially require less genetic engineering work in the practical implementation.

The last ranking criterion counts the number of different cofactor species that are required

by a pathway candidate. Cofactors are often expensive and require regeneration which can

be difficult to implement. Thus, pathway candidates with less cofactors are preferred.

In addition to the output of the reactions of each pathway candidate and an overall balance

of each reactant in a pathway, further information useful for their assessment is given. The

thermodynamic profile allows for a quick visual assessment of each pathway. An SBML

(HUCKA et al., 2003) file containing all reactions on the pathway allows the visualization of

the path and the active reactions with any tool capable of reading SBML (e.g. Cytoscape

(SHANNON et al., 2003; SMOOT et al., 2011)). A list of possible side reactions for each

pathway candidate in a given host organism can help to find pathways with a small number

of side reactions or even identify those side reactions that can be deleted.
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Computational Details

Our path-finding tool is implemented in MATLAB© R2015a (8.5.0) (MathWorks). As a MILP

solver we used the IBM CPLEX Optimizer 12.5. All data from KEGG is obtained using the

KEGG REST API. The eQuilibrator 2.0 source code was cloned from the GitHub repository of

component-contribution 1. The computations were carried out on a 64bit, 3.4Ghz Intel Core

i7-2600 PC with 8 GB RAM.

All data generated or analyzed during this study are included in this part and Appendix A.

The software used in this study is available for download at https://doi.org/10.5281/

zenodo.816174. The most recent version can be found at our github repository https:

//github.com/mecatsb/mecat.

4.3 Results

We use GPP as a first example to illustrate features of our method. GPP is part of the

metabolism of most organisms and plays a key role in the terpenoid biosynthesis. Its

precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) can

be synthesized via two different pathways. The mevalonate pathway starting with acetyl-CoA

is present in fungi, archaea and some bacteria. The non-mevalonate pathway (MEP/DOXP

pathway) with pyruvate as a precursor exists in plants, eubacteria and protozoa (MICHAL

et al., 2012). From the computed pathways we chose interesting candidates depicted in

Figure 4.4 and 4.5.

The pathway candidate in Figure 4.4 corresponds to the lower mevalonate pathway. It starts

with 2-oxoglutarate synthesizing IPP and DMAPP in seven consecutive reactions plus an

additional reaction to GPP. The pathway candidate has 11 potential side reactions which

are provided in more detail in the Appendix Section A.1. These reactions can potentially be

active in permeabilized cells or cell lysates but might be disrupted by corresponding gene

deletions. If a synthetic mixture of enzymes of interest would be applied, these reactions

would not be active at all. With the presented network we were also able to recover the

non-mevalonate pathway shown in Figure 4.5. The thermodynamic profiles for the linear

path of these pathways are shown in Figure 4.6 and 4.7. They indicate that the operation of

these pathways is thermodynamically feasible with negative and constantly dropping ∆r G.

Our tool proposes 11 potential side reactions for the mevalonate pathway and 24 for the

1 https://github.com/eladnoor/component-contribution, cloned on 20.02.2016

https://doi.org/10.5281/zenodo.816174
https://doi.org/10.5281/zenodo.816174
https://github.com/mecatsb/mecat
https://github.com/mecatsb/mecat
https://github.com/eladnoor/component-contribution
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2-Oxoglutarate Succinyl-CoA (S)-3-Hydroxy-3-methylglutaryl-CoA
R02084R08549

H+
NADPH

NADP+

Succinate

R02082

CoA

3-Hydroxy-3-methylglutarate

CO2

NAD+ H+

CoA

NADH

(R)-Mevalonate

R02245

ATPADP

R01658
Geranyl diphosphate

Diphosphate

ADP CO2

ATP

(R)-5-Diphosphomevalonate

Isopentenyl
diphosphate

R01121

Orthophosphate

R01123

ADP

Dimethylallyl
diphosphate

ATP

(R)-5-Phosphomevalonate
R03245

Figure 4.4: Pathway candidate 1. Synthesis of geranyl pyrophosphate via the mevalonate
pathway.

non-mevalonate pathway. They are provided in more detail in the Appendix Section A.1. The

candidate for the mevalonate pathway was chosen because of its favorable thermodynamic

profile (Figure 4.6) with a large drop of ∆r G in the last two reactions. This final drop has

the potential to lead to high conversion. Additionally, all substrates for the synthesis are

readily available. However, the mevalonate pathway is not natively present in our chosen

host E. coli. The second pathway candidate based on the non-mevalonate pathway displays

an alternative method for the production of GPP, which is fully present in E. coli.

We chose amygdalin as a further example. In this case, we added sucrose as a potential

starting and basis metabolite. Sucrose is excluded from the original set of starting metabolites

because of its higher molecular mass but is much cheaper than α-D-glucose 6-phosphate.

The generated pathways contain two interesting candidates with both four consecutive
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ADP

2-Phospho-4-(cytidine
5'-diphospho)-2-C-methyl-D-erythritol

R05634

R05633

4-(Cytidine
5'-diphospho)-2-C-methyl-D-erythritol

CTP

ATP

Diphosphate

D-Glyceraldehyde
3-phosphate

R05688

1-Deoxy-D-xylulose
5-phosphate

2-C-Methyl-D-erythritol
4-phosphatePyruvate

R05636

NADP+NADPH
CO2

H+

Oxidized ferredoxin

2-C-Methyl-D-erythritol
2,4-cyclodiphosphate

R05637

R08689

CMP

H2O

Reduced ferredoxin

R01658

Dimethylallyl
diphosphate

1-Hydroxy-2-methyl-2-butenyl
4-diphosphate

Geranyl diphosphate
R08210

Oxidized ferredoxin

-R01123

Isopentenyl
diphosphate

H+
H2O

Reduced ferredoxin Diphosphate

Figure 4.5: Pathway candidate 2. Synthesis of geranyl pyrophosphate via the non-mevalonate
pathway.

active reactions to amygdalin. The first candidate starts with sucrose and the second with

α-D-glucose 6-phosphate.

Both candidates require a uridyl moiety as substrate. Nevertheless, in the search carried out,

uridine 5’-triphosphate (UTP), uridine 5’-diphosphate (UDP) and uridine 5’-monophosphate

(UMP) were considered cofactors to avoid unnecessary interconversion of nucleotides that

would add numerous but not meaningful pathway candidates. And in both candidates,

two of the reactions are catalyzed by heterologous enzymes. For the first pathway, four

potential side reactions are proposed and five for the second. These pathway candidates

highlight the impact of the list of potential starting metabolites on the results. While both

pathways look promising, the first one starts with the cheap starting substrate sucrose and
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Figure 4.6: Thermodynamic profile for the mevalonate pathway.

has a better thermodynamic profile. In an industrial environment it would be advisable to

create a customized list of starting metabolites considering more criteria, e.g. of cost and

availability.

Another example is pyrrolysine. The selected pathway candidate has four active reactions

and starts with L-Lysine as substrate. Thermodynamic data for this pathway is not available

in eQuilibrator. In E. coli, this pathway does not exist, but it is native in methanogenic

archaea. The pathway requires ATP and NAD+/reduced nicotinamide adenine dinucleotide

(NADH) as cofactors. It has nine potential side reactions.

As a last example, we chose (S)-2-phenyloxirane. The selected pathway candidate for (S)-2-

phenyloxirane has four consecutive active reactions. It uses cinnamaldehyde as substrate

and requires CoA, NADP+/NADPH and AxP as cofactors. The thermodynamic profile is

not ideal with regard to the first and last reaction steps that both have a slightly positive
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Figure 4.7: Thermodynamic profile for the non-mevalonate pathway.

∆r G. Potentially, the last step could be promoted by an efficient reduced flavin adenine

dinucleotide (FADH2) regeneration or oxygen supply pushing the equilibrium to the product

side. However, it remains questionable if FADH2 can be regenerated in permeabilized cells.

Details to all examples shown are given in the respective sections of the Appendix Section

A.1. The Appendix Section A.2 contains details on the computation times of all examples.

4.4 Discussion

We presented a method for searching potential synthesis pathways for target metabolites

without the specification of a fixed starting point. Due to the nature of the search algorithm,

the resulting pathway candidates are unbiased by the user’s knowledge and expectation of

the most suitable pathway. Our method leads to a large number of results in a broad solution

space which may make it challenging to find the most appropriate candidate. Handling
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this amount of data requires a sophisticated tool of filtering, ranking and expert assessment

together with additional features such as the quick evaluation of potential side reactions and

thermodynamics. Altogether, our tool is highly customizable and offers flexible filtering and

ranking options. All metabolite lists, especially the metabolite pool can be easily adapted to

meet the needs of a specific project. This is especially useful in cases where the metabolite pool

should be composed of chemicals of the laboratories’ inventory or of inexpensive chemicals.

Analogously, all ranking or filtering criteria can be tailored to the focus of the study, such as

reagent costs or a specific host organism.

Expert knowledge to assess the pathway candidates is still needed. However, the same

applies to any pathway design method available to date. The resulting pathway candidates

depend fully on the data used to set up the network. The sheer mass of reactions in KEGG

makes errors hard to identify manually, and we did not carry out any data cleaning except the

measures discussed in section 4.2 Network Reconstruction. Crude errors such as unbalanced

or ill-formed reaction entries in KEGG were automatically identified and excluded from our

network.

Thermodynamics of a pathway is complex. Most substances involved in a pathway are not

present at the beginning but are rather formed as the synthesis proceeds. This is not taken

into consideration. We fix the initial starting concentrations of all metabolites to 1 mM.

However, these can be easily modified by adapting the respective values for the calculation of

the ∆r G in eQuilibrator. Note, that all ∆r G are estimated using the component contribution

method. They can however be replaced by experimental values, if available.

We do not consider enzyme concentrations or any kind of kinetic parameters such as enzyme

turnover numbers or Km values. While this would be a relevant addition, to our knowledge

this information is not readily available on the scale needed for large networks. It could

however be integrated for smaller networks, e. g. (KHODAYARI et al., 2016), particularly in

the ranking procedure.

4.5 Conclusions

The presented method provides a helpful computational tool for the directed design of biosyn-

thetic production pathways and the planning of syntheses. The tool provides a very useful

basis for the eventual selection of pathways to be implemented in the wet lab. Building on this,

expert knowledge is required to tackle possible practical problems with the implementation

of the most promising candidates. All features presented are autonomous. The generated
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thermodynamic profiles of pathways are invaluable for selecting the most promising pathway

alternatives. Similarly, computing potential side reactions leads to important insights for all

kinds of pathways.

In different use cases different ranking criteria may be considered important. The user of the

tool can easily select or define own criteria for ranking results. For the synthesis with cell

lysates or permeabilized cells, the consideration of heterologous enzymes and the choice of

the most suitable host as well as potential side reactions are certainly very important.
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CHAPTER 5

In-depth Characterization of Genome-Scale Network

Reconstructions for the in vitro Synthesis in Cell-Free Systems

The following chapter is based on the published research article

SCHUH, L. K., WEYLER, C., & HEINZLE, E. (2019): In-depth characterization

of genome-scale network reconstructions for the in vitro synthesis in cell-

free systems. Biotechnology and Bioengineering (2019), vol. 117([4]): 1137–

1147. https://doi.org/10.1002/bit.27249

Appendix B is based on the the supplementary material of this research article.

Abstract

Cell-free systems containing multiple enzymes are becoming an increasingly interesting

tool for one-pot syntheses of biochemical compounds. To extensively explore the enormous

wealth of enzymes in the biological space, we present methods for assembling and curing

data from databases to apply them for the prediction of pathway candidates for directed

enzymatic synthesis. We use KEGG to establish single organism models and a pan-organism

model that is combining the available data from all organisms listed there. We introduce a

filtering scheme to remove data that are not suitable, e.g. generic metabolites and general

reactions. Additionally, a valid stoichiometry of reactions is required for acceptance. The

networks created are analyzed by graph theoretical methods to identify a set of metabolites

that are potentially reachable from a defined set of starting metabolites. Thus, metabolites
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not connected to such starting metabolites cannot be produced unless new starting metabo-

lites or reactions are introduced. The network models also comprise stoichiometric and

thermodynamic data that allow the definition of constraints to identify potential pathways.

The resulting data can be directly applied using existing or future pathway finding tools.

5.1 Introduction

The enzymatic potential of the numerous enzymes in nature is a most promising, extremely

versatile and powerful resource for creating powerful tools for the production of various

interesting products. Besides the production in host organisms, synthesis using cell-free sys-

tems gains more and more interest. Particularly multi-step biocatalysis seems only marginally

explored today compared to its expected huge potential (HEINZLE et al., 2013). Cell-free

systems for the synthesis range from mixtures of isolated enzymes over multi-enzyme systems,

e.g. multi-enzyme complexes (S.-Z. WANG et al., 2017) and enzyme cascades, to cell lysates

(ENDO et al., 2001) and permeabilized cells. In special cases such systems are even combined

with chemical synthesis in one pot (GROEGER et al., 2014).

The design of a multi-step synthesis route does not only require the determination of the

reaction sequence leading to the desired product, but also depends on numerous aspects such

as substrate and cofactor supply or thermodynamics. For living cells, a recent review article

discusses the state of the art computational tools for design and reconstruction of metabolic

pathways (L. WANG et al., 2017). To design such a pathway for cell-free biosynthesis is by

far not developed to such a mature state. In particular, it seems almost impossible to explore

manually all potentially feasible pathways and to determine which one is the most suitable

for production.

The in silico path-finding and design methods all require a metabolic network model contain-

ing all required information from the host organisms of interest, such as enzyme, reaction

and thermodynamics data. There is an ever-growing plethora of biological databases with

enzyme and reaction data of an ever-growing number of organisms that is suited for the

reconstruction of genome scale metabolic networks. One of the most popular databases is

KEGG (KANEHISA, FURUMICHI, et al., 2016; KANEHISA et al., 2000; KANEHISA et al., 2018).

However, despite the huge amount of data collected from primary literature that is carefully

curated afterwards, the data is partly incomplete, and sometimes even inconsistent or er-

roneous. It is thus a challenge to handle this data and make it suitable for useful network

reconstructions.
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We already presented a computational tool to guide and support finding the most suitable

synthesis path to a product (BLASS et al., 2017). We extended this work by developing a

method of building network models from KEGG data which is suitable for path-finding. We

selected nine organism networks that are of interest primarily for their application in cell-free

production. Some were selected because of peculiarities of the networks. Finally, a so-called

pan-organism network was used lumping all metabolic reactions listed in KEGG in one single

network.

5.2 Materials and Methods

In the following we give a short introduction to our path-finding method. We also present

how to build network reconstruction models based on data found in biological databases,

particularly KEGG.

Path-finding

We already presented a method for finding candidates for suitable synthesis pathways in

genome-scale metabolic network reconstructions starting from arbitrary substrates (BLASS

et al., 2017). A pathway in our definition consists of two parts. First, the so called linear path

consists of a sequence of metabolites connected by reactions. It starts with a reaction that

has one of the possible predefined start metabolites as a substrate and ends with a reaction

that has the target metabolite T as a product. Second, there is the set of supplying reactions,

which provide the substrates required by the reactions on the pathway that are not contained

in the metabolite pool. All metabolites in this pool are considered freely available since they

will be provided by the specified pathway reactions (see Section 5.2 Model Building).

The path-finding algorithm is based on a MILP and combines graph-based path-finding and

reaction stoichiometry (PEY et al., 2011). The method is elaborated in detail in (BLASS

et al., 2017). Figure 5.1 shows an exemplary pathway illustrating a possible solution of the

MILP. The pathway shown is a feasible synthesis pathway to the target T (depicted as red

octagon). Metabolites in the figure are depicted as squares, where large squares represent

metabolites in arcs (see 5.2 Model Building) and small squares represent cofactors and

inorganic metabolites. Reactions are represented by circles. The linear path of the pathway

is marked with a blue background. Metabolites S1 to S4 and M1 (marked in green) are

contained in the metabolite pool (see 5.2 Model Building) and are thus initially available. As

M4, which is required by reaction R3, is not available from the metabolite pool, R4 is needed

as a supplying reaction producing it.
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S3

S2

R4S4 M4

M2

S1

R2M1 TM3 R3R1

Figure 5.1: Exemplary pathway illustrating a feasible pathway to the target metabolite T
(red octagon). Large squares: metabolites with arcs (see 5.2 Model Building); small squares:
cofactors/inorganic metabolites; green: metabolites from the metabolite pool (see 5.2 Model
Building); circles: reactions; blue background: linear path; R4 : supplying reaction.

In addition to the 17 constraints of the MILP presented in (BLASS et al., 2017) we added a

constraint which prevents the use of a reaction in the pathway (more precisely, the supplying

reactions) that consumes the target. This constraint is necessary to prevent cycles formed by

a reaction belonging to the linear path that produces the target and a supplying reaction

consuming the target to produce a precursor which is consumed by a reaction on the linear

path. It thus prevents pathways for which the target has to be already present in at least

catalytic amounts. An example for such an undesired pathway is shown in Figure 5.2. In this

example, the target T needs to be consumed by reaction R6 to form metabolite M4 which is

required by reaction R5 to produce the target T.

The complete MILP is listed in Appendix Chapter B.1.

Model Building

In the following, we define the different parts of our network reconstruction and model

based on KEGG data. The reactions and metabolites in the model are given as lists of KEGG

REACTION and COMPOUND ids (KANEHISA, FURUMICHI, et al., 2016). The reactions and

metabolites are connected by arcs, which are derived from reactions.
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R5

M4 R6 S2

S3

TR2

S1

M2R1M1 M3

Figure 5.2: Exemplary pathway illustrating a pathway to the target metabolite T (red octagon)
where T needs to be consumed in order to produce M4. Large squares: metabolites with arcs;
small squares: cofactors/inorganic metabolites; green: metabolites from the metabolite pool;
circles: reactions; blue background: linear path; R4 is a supplying reaction. This pathway
example is not a valid synthesis pathway candidate for T.

The metabolites in the model are categorized into sets that are treated differently in the path-

finding algorithm. One set consists of potential start metabolites. These are all metabolites in

the model that can be used as the start of the linear path of a pathway candidate. Metabolites

in this category are automatically determined and have a molecular mass smaller than 300

and occur in arcs. The so called basis metabolites are expert-curated metabolites which

are inexpensive, easily available and are often hubs in the arc network, such as D-glucose

(C00031) or pyruvate (C00022). The cofactors (e.g. ATP (C00002), NADH (C00004) etc.)

and inorganics such as water (C00001), oxygen (C00007) or CO2 (C00011) are a set of

expert-curated metabolites that are considered as freely available if they are required as

substrates in reactions, but are not part of the reaction chain. They are thus excluded from

the arcs to prevent biologically meaningless shortcuts in the pathways. All metabolite sets

are disjoint, except for the basis metabolites that form a subset of the start metabolites. The

metabolite pool is the superset of metabolites that are considered as freely available. It is

made up of start metabolites, basis metabolites, cofactors and inorganic metabolites. Further

details on the different categories are given in Section 4.2 Network Reconstruction.

For each reaction there is a set of arcs, which are substrate-product pairs of a reaction. There

are different strategies to derive the arcs from a reaction. The straightforward method

is using all possible combinations (i.e. the cross product) of substrates and products of

a reaction. It is however more useful to use meaningful substrate-product pairs, such as

reactant pairs. A reactant pair is a substrate-product pair with both parts having atoms or

atom groups in common that preserves the chemical substructures of the reactants through
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the reaction (KOTERA, HATTORI, et al., 2004; KOTERA, OKUNO, et al., 2004). The reactant

pairs are defined in the KEGG RCLASS database, which classifies reactions based on the

chemical structure patterns of their substrate-product pairs (MUTO et al., 2013). Only those

reactant pairs are used for the arcs that do not contain any metabolite from the cofactor and

inorganics list. This means, however, that reactions involving metabolites from this list are

still represented by the remaining arcs. A more detailed discussion on the arcs can be found

in Appendix B.2 (Tables B.12 to B.16). The arc graph of the model is a directed graph G = (V,

E), where V is the set of metabolites and E is the set of arcs between these metabolites. The

model also contains a stoichiometric matrix, where each row corresponds to a metabolite in

the model and each column indicates a reaction. An entry in the matrix is the stoichiometric

coefficient of the metabolite in the respective reaction.

When using KEGG COMPOUND and KEGG REACTION data for a network reconstruction

some obstacles have to be addressed. One of them is reaction directionality. For the reactions

contained in KEGG the reaction directions are not indicated in the database entries. There

is thus a need for further reaction data to annotate directionality. To do so, we use the

component contribution method of the biochemical thermodynamics calculator eQuilibrator

(FLAMHOLZ et al., 2012; NOOR et al., 2013) to compute the ∆r G′m value (the change of the

Gibbs free energy of a reaction at a given pH of 7 and ionic strength I in 1 mM concentration

of the reactants) for each reaction in the network and infer if the respective reaction is

reversible. Reactions with |∆r G| ≤ 15 kJ/mol are designated as reversible. In biological

systems as well as in most biosynthetic setups concentrations of substrates and products often

differ by several orders magnitude. This significantly influences reaction reversibility. As

these effects cannot be adequately considered given the size of the networks presented in this

work and the unknown kinetics, the∆r G value of 15 kJ/mol was chosen as a consensus value

to determine reaction reversibility. This somewhat arbitrary value represents a compromise

between the assumption of reversibility of all reactions and a more stringent restriction with a

∆r G value of less than 15 kJ/mol that would potentially exclude feasible biosynthetic routes

with concentrations of intermediates adjusting in a running system. The value was set after a

series of simulations and expert inspection of results. However, the user of our tool can freely

set the ∆r G cutoff to meet the needs of his specific investigation. The reactions are added

to the model in the respective direction(s), which means that for each reversible reaction

we get two reactions in the respective directions. Another obstacle is the inconsistent use of

identifiers for metabolites. In some reaction equations, the KEGG COMPOUND (C) identifiers

are used and in others the G identifiers from the KEGG GLYCAN structure database. As we

do not consider glycans, those reactions are excluded. For polymerization reactions, the
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reaction stoichiometry in KEGG is not expressed in distinct numbers. Such reactions are not

applicable for our method where the coefficients in the stoichiometric matrix are required to

be integer numbers.

We did not generally exclude membrane associated reactions. To our knowledge it is not

sufficiently clear whether and to which extent intracellular as well as extracellular membrane

associated enzymes are active in permeabilized cells. In earlier work we could, however,

experimentally show that megasynthases producing a circular oligopeptide can be kept active

in permeabilized cells in contrast to cell extracts where activities could not be detected

(WEYLER et al., 2017). The exact reasons were not identified but could potentially be related

to yet unknown membrane association. On the other hand, in selectively permeabilized

eukaryotes, the organelles including membrane reactions remain intact and functional (e.g.

(NICOLAE et al., 2015)).

We thus have to filter the KEGG data before building a model. Figure 5.3 shows the filtering

steps to obtain the reactions suitable for building a reconstruction of a pan-organism network

encompassing reactions from all organisms and also for organism-specific networks.

The filtering starts with all 11196 reactions in KEGG REACTION. First, the reactions with

invalid reactants are removed, which are reactants that do not have a C identifier. The 10764

remaining reactions are further trimmed down to 10603 reactions with valid stoichiometry,

where all reactants have integer stoichiometric coefficients. From these, reactions that are

generic or contain generic reactants (i.e. the database entry has a comment containing

’generic’, ’incomplete’ or ’general’) are removed, sparing 7989 reactions. After removing

those without any reaction class annotations, 7676 reactions remain in the pan-organism

model, which corresponds to about 69 % of all KEGG reactions.

To build the organism-specific models, the organism annotation for the genes of the enzymes

catalyzing those reactions is used. From the 7676 reactions in the pan-organism network

reconstruction, KEGG has EC numbers associated with 5975 reactions. 4549 (76 %) of them

have enzymes whose genes are annotated with organisms. These reactions are the basis of

the organism-specific network model reconstructions. Our network reconstruction workflow

filters out ill-formed reaction entries in KEGG. However, we do not include a gap filling step.

This would require large manual efforts that are not in the scope of this work.

Possible target metabolites in KEGG for the computation of synthesis pathway candidates are

determined automatically. A target metabolite is a metabolite in the respective model that is

not a dedicated start or basis metabolite. It also has to appear as a product in at least one
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valid reactants
10764

valid stoichiometry
10603

 not general or generic reaction
7989

reactions with RCLASS entries
7676

reactions in pan-organism network reconstruction
7708

reaction with associated
enzyme(s)

5975

reactions with associated
organism(s)

4549

organism-specific network reconstructions

all KEGG reactions
11196

Figure 5.3: Reaction filtering from all reactions in KEGG to the set of reactions for building
the pan-organism network reconstruction and the organism-specific models. The reactions are
filtered in the given order. The numbers indicate how many reactions stay after filtering. The
width of the box bases are proportional to the number of reaction that remain after filtering.
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arc in the network, so it could be potentially produced. We predict potentially producible

targets in a given model by determining its feasible reactions, i.e. reactions for which

potentially all substrates are available or producible. The feasible reactions are obtained by

initially starting with the set of metabolites consisting of the model’s start metabolites and

cofactors/inorganics. With these metabolites, all reactions that are feasible are determined

by checking for each reaction that has not already been added to the set of feasible reactions

if all substrates are available. The products of these feasible reactions are added to the set of

metabolites. This step is repeated until no new substrates are added. The resulting set of

reactions is then a subset of the model’s reactions that potentially are feasible.

The next step is to do a reachability screening in the arc graph of the model. To do so, we

add a node representing an artificial start metabolite that is connected to all potential start

metabolites. From there, we do a breadth-first search (BFS), which is a suitable algorithm

for exploring a graph. The search starts with a source vertex and discovers all neighboring

vertices with the present depth before discovering the next depth-level vertices (CORMEN

et al., 2009). The potentially producible targets are those targets that are connected with

the start node by a path (a sequence of edges that connect vertices) and that are produced

by any of the feasible reactions.

Computational Details

The model data is based on KEGG release 90.1, May 1, 2019. The code for model building

and statistics is written in Python 2.7, the code for the thermodynamics is written in Python

3.6 using the eQuilibrator API (FLAMHOLZ et al., 2012). We furthermore used the packages

graph-tool (PEIXOTO, 2014) and Matplotlib (HUNTER, 2007). The path-finding tool was run

on MATLAB R2019a with IBM CPLEX Studio 12.9. All computations were carried out on an

Intel Core i7 with 2.5 Ghz and 32 GB RAM.

The software used in this study is available at https://github.com/mecatsb, where the

repository mecat contains the path-finding tool and the repository mecatpy contains the

code used for the pathway analysis as well as the organism models. Release v1.0 contains

the code version used in this study.

5.3 Results

We first present the organisms and models used in our study and then discuss some interesting

properties of these models. We finally present and discuss the results of our path-finding

https://github.com/mecatsb
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analysis.

Models

For each organism in the KEGG Organisms database we build an organism-specific network

model as described in Section 5.2 Model Building. Figure 5.4 shows the number of reactions

in KEGG that are annotated for the specific organism together with the number of reactions

that are part of the organism-specific network reconstruction. The organisms are sorted
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Figure 5.4: Comparison of the total number of reactions and the number of reactions selected
for the models for all organisms annotated in KEGG.

in descending order with respect to the number of annotated reactions in the model. The

order in which the reactions are filtered is following the procedure shown in Figure 5.3. On

average 67 % of the reactions in KEGG that are annotated with an organism end up in an

organism-specific model (see insert in Figure 5.4). The reason for this is the filtering of all

reactions according to the filter constraints shown in Figure 5.3 and discussed in detail in

Section 5.2 Model Building. Figure 5.3 shows that the majority of the discarded reactions

are general and/or generic or contain generic reactants.
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In addition to the pan-organism network model we chose nine organism-specific models

for all network and pathway analyses as examples. Table 5.1 lists the organisms, which

were chosen primarily for their importance in biotechnological production as well as in

scientific research. CHO, the permanent cells of the ovary of a Chinese hamster C. griseus

Table 5.1: Models for the studies. The model names are derived from the KEGG organism codes,
except for the pan-organism network model which is named kegg. The number of reactions in
KEGG refers to the number of reactions that are annotated for the respective organism. The
number of reversible reactions is the corresponding subset of the reactions in the model. The
feasible reactions are determined as described in Section 5.2 Model Building based on the set of
basis metabolites as start metabolites. The basis metabolites are selected as described in Section
5.2 Model Building.

model name reactions (KEGG /
model / reversible)

feasible reactions metabolites (model
/ basis)

kegg Pan-organism
network model

11196/7676/2934 5467 6473/39

cge Cricetulus griseus
(Chinese hamster)

2616/1555/639 922 1485/39

eco Escherichia coli
K-12 MG1655

1775/1225/511 950 1191/39

vna Vibrio natriegens 1690/1193/489 888 1180/39

ppun Pseudomonas
putida NBRC 14164

1683/1199/469 766 1240/37

mxa Myxococcus
xanthus

1492/1021/428 684 1077/36

sce Saccharomyces
cerevisiae (budding

yeast)

1543/1020/403 655 1031/39

spo Schizosaccha-
romyces pombe
(fission yeast)

1408/905/378 592 915/39

cgb Corynebacterium
glutamicum ATCC
13032 (Bielefeld)

1122/792/318 534 845/38

mpe Mycoplasma
penetrans

371/236/101 166 314/22

were originally isolated already in 1957. CHO is serving as a model cell line for metabolic

studies. Most importantly, however, it is most frequently used for the industrial heterologous

production of therapeutic proteins (LALONDE et al., 2017; WURM, 2004). The application

of animal cells for biosynthetic purposes is easier starting from cell lines like CHO rather
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than cells from primary tissues. E. coli is probably the most important model organism and

is used in all kinds of areas spanning from basic molecular biological work to industrial

applications (PONTRELLI et al., 2018). V. natriegens is an extremely fast growing marine

bacterium that recently got increasing interest. Due to its duplication time of ten minutes

it has been in the focus of molecular biology research, e.g. for protein production also in

cell-free systems (FAILMEZGER et al., 2018; HOFFART et al., 2017). P. putida is known for its

diverse biodegradation and biosynthetic capabilities (LOESCHCKE et al., 2015; NIKEL et al.,

2016; POBLETE-CASTRO et al., 2012). M. xanthus is a model organism for studying social

behavior of bacteria with extended signaling networks and secondary metabolite production

(WRÓTNIAK-DRZEWIECKA et al., 2016). S. cerevisiae is probably the most important eukaryotic

model microorganism used very widely and already for a long time for the production of

ethanol in alcoholic beverages and biofuel. It is also widely discussed for the production of

other metabolites and its broad application is supported by a large toolbox for metabolic

engineering (KRIVORUCHKO et al., 2015; NIELSEN, 2019; STEENSELS et al., 2014). The yeast

S. pombe is a model organism primarily used in molecular and cell biology but is recently also

discussed as promising candidate for the expression and secretion of heterologous proteins

(TAKEGAWA et al., 2009). C. glutamicum is a most important microorganism in the industrial

scale production of amino acids but also other metabolic products (BECKER et al., 2016).

While these organisms have been used in a vast range of production processes they are also

well understood and we assume that KEGG data on these organisms is relatively complete

and accurate. M. penetrans has the smallest genome of known organisms and its metabolism

is very limited (SASAKI et al., 2002). From the present view, the most important organisms

for cell-free synthesis are E. coli, S. cerevisiae, P. putida and M. xanthus. All model data is

part of the GitHub repository https://github.com/mecatsb/mecatpy. We exclude plants

and algae from our species models since they seem less applicable from the present view on

cell-free biocatalysis.

Table 5.2 shows the number of potential targets for the respective model as defined in Section

5.2 Model Building. The arc reachable targets are those targets that are connected to a basis

metabolite via an arc path, which is determined by BFS. The feasible targets are targets that

are products of feasible reactions as described in Section 5.2 Model Building. The set of

potentially producible targets is the intersection of the targets that are connected to a basis

metabolite via an arc path and the targets that are products of the feasible reactions.

Table 5.2 shows that a large portion of potential targets is not connected to any of the basis

metabolites in the model. For all models, about 32% (in the S. pombe model spo) to 43% (in

the pan-organism model kegg) of all potential targets are potentially producible targets. This

https://github.com/mecatsb/mecatpy
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Table 5.2: Number of potential targets for each organism model based on basis metabolites as
possible start metabolites. Arc reachable targets: targets that are connected to a basis metabolite
via an arc path; feasible targets: targets that are products of feasible reactions as described
in Section 5.2 Model Building; potentially producible targets: targets that are connected to a
basis metabolite via an arc path and that are products of feasible reactions and are thus realistic
targets, intersection of the former two columns of the table; % of potential targets: percentage
of potentially producible targets in relation to the total number of potential targets.

model potential
targets

arc reachable
targets

feasible
targets

potentially
producible

targets

% of potential
targets

kegg 5441 3017 2412 2325 43%

cge 1128 437 358 333 30%

eco 878 419 376 351 40%

vna 865 397 348 328 38%

ppun 902 380 317 293 32%

mxa 777 320 281 266 34%

sce 713 268 243 227 32%

spo 637 264 216 201 32%

cgb 598 261 215 200 33%

mpe 184 70 69 56 30%

means that for all other potential targets a synthesis pathway cannot be found, as a path is

a required part of a valid solution. We will elaborate the reasons for this drastic reduction

later in this work.

Network Model Analysis

We first present some basic properties of the arc graphs of the different organism models.

Figure B.1 in Appendix B.2 shows the node degree distributions of the arc graphs of the

different organism network reconstructions. The degree of a node is the number of edges

leaving it (out-degree) plus the number of edges entering it (in-degree). Tables B.1 to B.10

in Appendix B.2 list the hubs with the top 5 occurrences of each network. As expected,

pyruvate, L – glutamate, D – glyceradehyde3-phosphate and acetyl-CoA are in almost all cases

metabolites with highest node degrees. M. penetrans (mpe), having the smallest network of

all studied here, differs most significantly from all others both in the types of metabolites with

highest node degrees as well as in the generally small numbers of node degrees (< 13). In the

pan-organism network model (kegg), trans,trans-farnesyl diphosphate has an exceptionally
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high node degree (107) that is, however, mostly originating from plant metabolism. In kegg,

pyruvate is by far the most connected metabolite with a node degree of 167. The outstanding

role of only a few metabolites is most strikingly seen in Figure B.1 of Appendix B.2. The

sizes of the arc graphs together with the average node degrees, standard deviation of the

distribution are listed in Table B.11 of the Appendix Section B.2. It is interesting to see that

the average node degrees vary only from 2.37 to 3.14 for individual organisms and 3.3 for

kegg, the pan-organism network.

Table 5.3 lists the number of connected components of the arc graphs in the respective models

and the size of the largest connected component, respectively. A connected component in

Table 5.3: Number of components in the models with the number of metabolites in the largest
component. The fourth column lists the number of components containing basis metabolites.
The last column shows the number of metabolites that belong to a component containing basis
metabolites. The percentage of those metabolites in relation to the number of metabolites in the
arc graph is shown in parentheses.

model number of
components

size of largest
component

components with
basis metabolites

metabolites in
components with
basis metabolites

kegg 481 4612 1 4612 (74%)

cge 186 754 4 763 (55%)

eco 139 766 2 768 (69%)

vna 146 726 1 726 (66%)

ppun 157 761 2 763 (66%)

mxa 159 587 3 595 (60%)

sce 182 478 1 478 (50%)

spo 162 438 1 438 (52%)

cgb 115 457 2 459 (60%)

mpe 57 76 7 141 (54%)

the graph is a subgraph where each vertex in the subgraph is connected to each other vertex

in the subgraph by a path (CORMEN et al., 2009). The smallest connected components

contain 2 vertices in all models. This is by definition the smallest component size as the

arc graph does not contain metabolites without any arcs. We furthermore list the number

of components containing basis metabolites; as well as the total number of metabolites in

all those components with the percentage of those metabolites in relation to the number of

metabolites in the arc graph (in parentheses). These numbers give information on how much

of each network is possibly reachable from the designated start points, since a potentially
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producible target has to be connected to any of the predefined basis metabolites via an

arc path. Table 5.3 shows that between half and two third of the metabolites in a model’s

arc graph are contained in a component with basis metabolites. Exemplarily, Figure 5.5

shows the arc graph of the pan-organism model kegg. The arc graph consists of a large main

Figure 5.5: Arc graph of the pan-organism model kegg. Red: components containing potential
start metabolites; blue: satellite components without start metabolites.

component and a large number of small components. Components in red are components

containing potential start metabolites, whereas the components in blue are so called satellite

components without start metabolites. The arc graphs of the other models are shown in
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Figure B.2 of Appendix B.2. Figure B.3 of Appendix B.2 shows the arc graph component

histograms.

There are several reasons for isolated components in a model. The first reason is missing

annotation in the data on which the model is based. This could be improved by using manually

compiled and curated network reconstructions with gap filling. Several reactions in KEGG

are formulated as general reactions and/or are reactions containing generic compounds.

Some of the often numerous reactions summarized in such reactions are explicitly listed in

KEGG. An even larger number could in principle be added e.g. from BRENDA (JESKE et al.,

2018). Some reactions involve additional proteins that transfer electrons or groups or use

covalently bound cofactors as e.g. NAD(P)H. These are filtered out in the model building

process. As we do not include such reactions in our model, some metabolic pathways could

be cut off. Another reason is that a component is really isolated.

In the Supplementary Information 3 of (SCHUH et al., 2019) we list all components identified

in the kegg model. The 6246 metabolites are grouped in 481 components. The largest

component connected to start metabolites comprises 4612 metabolites and is represented in

the center of Figure 5.5. All other components with a size of 5 or more metabolites were

investigated in more detail (Supplementary Information 4 of (SCHUH et al., 2019)). They

comprise 682 metabolites in 69 components. We could identify some typical families related

to biochemical characteristics (Appendix B.3). Reactions of xenobiotic compounds, e.g. drugs,

were most prominent with 14 components with 141 metabolites followed by polyketides

(10/109), carbohydrate derived metabolites (10/86), terpenoids (9/112), compounds with

gonane tape nucleus (7/74), fatty acid and lipids related compounds (7/59) and flavonoids

(4/54). Xenobiotics are inherently not listed in the starting metabolites. Some of these

families have often general reactions or involve generic metabolites, e.g. metabolites contain

a group -R that is not explicitly specified. R is later cleaved off the metabolite. Smaller

components (< 5) were not analyzed in detail but could often serve as missing links in larger

pathways once the connecting reactions could be defined following the criteria specified in

5.2 Model Building.

Reachability Analysis

We determined the target reachability in the pan-organism network and the organism-specific

networks by testing the existence of a pathway candidate to each possible target starting with

basis metabolites using our MILP presented in Section 5.2 Path-finding. Figure 5.6 shows

for each model the percentage of targets for which a synthesis pathway candidate has been
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identified and for which a pathway candidate is not accessible and why. The raw data for
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Figure 5.6: Analysis of the target search in the different organism models. Blue: targets for
which a pathway candidate has been found by our method, but that have not been predicted as
feasible; orange: targets for which a pathway candidate has been found by our method; green:
targets for which a candidate has not been found due to the absence of an arc path from any start
metabolite to the target because the target is in a satellite component without start metabolite;
red: targets for which a candidate has not been found due to the absence of an arc path from
any start metabolite to the target (and the target is in a component with start metabolites);
purple: targets for which a candidate has not been found due to the lack of a feasible reaction
that produces the target; brown: targets for which a candidate has not been found due to other
reasons that are discussed in the text.

the figure is listed in Table B.17 of Appendix B.2. In the following, we discuss the different
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fractions in more detail.

The blue and orange fractions represent the targets for which a synthesis pathway candidate

has been identified in the respective models. The targets represented by the orange fractions

have been predicted to have a pathway candidate. This means that they can be produced

by feasible reactions of the model and they are connected to at least one of the predefined

basis metabolites by a path in the arc graph (see Section 5.2 Model Building). An example

for this category is UDP-glucose (Chapter 6 Synthesis Paths for UDP-glucose). However, the

targets represented by the blue fractions have not been predicted to be feasible, despite

having a synthesis pathway candidate. For those targets we found that most of the pathway

candidates calculated with the MILP include a direct cycle formed by supplying reactions

that use metabolites that are not in the metabolite pool. In a mathematical sense, it is

valid to consume a metabolite as long as its overall balance is zero. However, in real world

applications, this would not be correct since the metabolite has to be present in at least

catalytic amounts already at the start of the reaction. An example for such a pathway is the

pathway candidate for the 5-methyl-5,6,7,8-tetrahydromethanopterin (C04488) production

in the pan-organism network model kegg (Appendix B.4). The pathway requires coenzyme

F420 (C00876) and reduced coenzyme F420 (C01080), which are neither metabolites nor

cofactors and thus are not part of the metabolite pool. They thus have to be produced by the

reactions of the pathway.

The green, red, purple and brown fractions represent targets without any pathway candidate.

In the following, we will discuss the different reasons for this. With the help of BFS, we

found that the targets represented by the green and red fractions are not connected to any

of the potential start metabolites via an arc path. Therefore, these targets cannot have a

pathway candidate, since a path from a start metabolite to the target is mandatory, as stated

in Section 5.2 Path-finding.

The targets belonging to the green category are not part of a component containing potential

start metabolites. In our pan-organism model kegg, this is the case for proansamycin X.

Component 134 in Supplementary Information 4 of (SCHUH et al., 2019) shows that there is

no reaction in KEGG producing proansamycin X (C12176) from 3-amino-5-hydroxybenzoate

(C12107), which belongs to a component with start metabolites (Supplementary Information

3 of (SCHUH et al., 2019)). The situation could be improved by using manually compiled

and curated network reconstructions with gap filling, e.g. for metabolites of the earlier

discussed polyketide, flavone and terpenoid families (see also Appendix B.3). As outlined in

Section 5.2 Model Building, we only did some minor generic curation which has the purpose
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of extracting meaningful data and removing ill-specified data. A comprehensive network

reconstruction for an organism would require a lot of manual work encompassing more data

sources including primary literature, which was not in the scope for this study. However,

when using our path-finding method, the user can choose any network model that contains

the information needed for path-finding, regardless of data origin.

The targets represented by the red fractions are contained in components with start metabo-

lites but do not have a necessary arc path from a start metabolite to the target, such as

riboflavin (C00255).

The targets represented by the purple fractions are connected to a potential start metabolite

in the network via an arc path. However, this is not sufficient for a valid pathway candidate.

In addition, the arcs have to be associated with reactions for which all substrates are available

or producible to ensure that the pathway candidate is feasible (BLASS et al., 2017). However,

for these targets there is no reaction in the set of feasible reactions (see Section 5.2 Model

Building) that produces that target for the last one arc of the arc path, which means that

the overall pathway is not feasible. Note that the other arc-reaction associations thus do not

matter in this case. An example for such a target is biotin (C00120) (Appendix B.4).

The targets represented by the brown fractions are targets that are predicted to have pathway

candidates as they are connected to predefined start metabolites by an arc path and are

produced by feasible reactions. However, our path-finding algorithm could not determine

valid pathway candidates. To explore the reasons for this, we list the feasible reactions

of the respective models that produce these targets for each of those targets. For each of

these reactions we determine why it is not part of a pathway candidate. We identified

three non-disjoint categories in which we can sort these reactions. To the first category

belong reactions that produce the target but do not have arcs containing the target. As

discussed in Section 5.2 Path-finding, a valid pathway candidate has to include a reaction

with an arc to the target. Reactions that produce the targets only from substrates that are

designated cofactors or inorganic metabolites are also sorted to this category, as they are

correctly predicted to be feasible. However, our path-finding method does not handle such

pathways since a valid pathway candidate requires at least one arc by definition and there are

no arcs containing cofactors and inorganic metabolites. The second category encompasses

reactions that do have an arc to the target, but require a substrate that is also a target for

which no pathway candidate has been identified with our method. The reactions in the

third category cannot be used in a pathway candidate because of a constraint in the MILP,

which excludes pathways that use reactions consuming the target, as discussed in Section 5.2
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Path-finding. There is no valid sequence of reactions with arcs that is feasible without using

supplying reactions that consume the target. An example for a target of the brown fraction

is 5’-methylthioadenosine (C00170), where the reactions producing this target belong to the

first two categories discussed above (Appendix B.4).

To illustrate the different target categories, the example arc graph in Figure 5.7(a) depicts

examples for each of the categories. Note that, for the sake of clarity, the depicted arc graph

has additional vertices for the cofactors (small circles), which would normally not be part of

the graph. The potential start metabolites A and B are depicted by hexagons, the potential

targets E, F, G and H by octagons. Figure 5.7(b) lists the reaction equations and the arcs

belonging to these reactions. A valid pathway candidate to E consists of the reactions R1 and
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(a) Arc graph

reaction equation arcs
R1 A + B→ C 1,2
R2 B + X→ I 3
R3 C + Y→ E + Z 4
R4 C + X→ D 5
R5 G→ D 6
R6 J→ G 7
R7 D + W→ H 8
R8 I + X↔ D + Y 9,10
R9 L + Z→ F 11
R10 F↔ K 12,13

(b) Reaction definitions

Figure 5.7: Arc graph with examples for the different target categories in Figure 5.6 and the
corresponding reactions. (a): Small circles: cofactor metabolites; hexagons: potential start
metabolites; octagons: potential targets; large circles: metabolites not in any of the previous
categories. Orange: target of the orange category; green: target of the green category; red:
target of the red category; purple: target of the purple category. The numbers on the arcs refer
to the column ’arcs’ in (b). (b): Reactions in the example network with their respective reaction
equations.

R3 (arcs 1, 2 and 4), since all needed substrates, i.e. A, B and Y, are available. E would thus

be a target represented by the orange fractions in Figure 5.6. For target F it is not possible

to find a pathway candidate because F is part of a graph component that does not include

potential start metabolites. F is thus an example of the green fractions. Target G is part of

the component which also includes the potential start metabolites. However, there is no arc
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path connecting metabolites A or B to G, which makes G a target represented by the red

fractions. Target H is an example for the purple fraction. To reach H, there are valid arc

paths (e. g. 1→ 5→ 8 or 2→ 5→ 8), however the last reaction belonging to arc 8 requires

W as a substrate, which is not available.

5.4 Concluding Remarks

Our presented method allows creating and characterizing genome-scale metabolic network

reconstructions for the planning of biosynthetic production pathways using cell-free systems.

The data are taken from biological databases, e.g. KEGG. We also discussed typical problems

in the context of network reconstruction and how these can be solved in order to obtain

applicable network models. We used the presented method for establishing models for the

network reconstruction of a pan-organism from the whole KEGG database as well as for

several interesting model organisms. We also used our path-finding method based on a global

optimization problem to compute pathway candidates for all possible target molecules in the

models and demonstrated that our method yields correct and meaningful results and that it

is widely applicable for all kinds of networks and network sizes. The increasing availability of

larger-scale metabolic networks that are increasingly well curated, as is e.g. already the case

for E. coli and S. cerevisiae (ORTH et al., 2011; ZOMORRODI et al., 2010), will also increase

the power of our method. Our network analysis method for multi-enzyme systems that do

not have any cellular compartments particularly lacking a cell membrane differs significantly

from published methods for whole cells with a defined link to the extracellular environment

via transport systems (von KAMP et al., 2017; S.-Z. WANG et al., 2017) or with models of

microbial communities, e.g. (MAGNÚSDÓTTIR et al., 2018).

The tools we presented are directly applicable to designing the synthesis of target compounds

in cell-free systems. Our analysis tools - especially the feasibility prediction we described

in Section 5.2 Model Building - are useful tools to predict if a target could potentially be

produced in a given model and could thus be used to quickly screen if a host organism or

strain is potentially capable of producing a certain product directly. If this is not the case, a

comparison of biosynthesis pathways in a selected host organism and in the pan-organism is

useful for identifying genetic engineering targets to create a production organism eventually.

Our tools help identifying heterologous enzymes that might be candidates for insertion in

the host organism chosen using genetic engineering to complete a desired pathway in that

organism. Our tools also help to answer which substrates are required for a certain synthesis

pathway.
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Biosynthesis pathway candidates including stoichiometric and thermodynamic constraints

can be determined with our presented path-finding algorithm presented earlier (BLASS et al.,

2017). As reviewed in a recent publication (LIN et al., 2019), various methods have already

been published and are in development that additionally allow the identification of new

reactions considering the promiscuity of many enzymes but also the chemical similarity of

substrates of these enzymes.

Our network reconstructions are the basis for the identification of gaps in the network that

would prohibit synthesis of a desired target. With our tools, it is possible to identify potential

gap fillers from the pan-organism network, which can then be implemented in an organism

of interest using genetic engineering. It is also possible to do manual directed gap filling in

the pan-organism network, e.g. by considering generic reactions, reactions not contained in

KEGG, or expert reasoning.

Overall, our tools and networks are a suitable basis for focused and directed experimental

work and the implementation of the synthesis of target compounds in cell-free systems.



CHAPTER 6

Synthesis Paths for UDP-glucose

In this chapter, the synthesis of UDP-glucose is discussed as an example for the usage of the

presented path-finding tool for the design of synthesis pathways. UDP-glucose is a nucleotide

sugar that plays an important role as an intermediate in various metabolic pathways (RALEVIC,

2015). The path-finding tool is used to computationally search for a synthesis pathway for

the already experimentally shown multi-step synthesis of UDP-glucose from sucrose, UMP,

ATP and phosphate (WEYLER et al., 2015) in recombinant E. coli, shown in Figure 6.1. The

R00803

D-fructose

ATP

R00289D-glucose 1-phosphate

UTP

orthophosphate

UDP-glucose

diphosphate

sucrose

R00158 R00156UDP

ADP

UMP

Figure 6.1: Pathway for the synthesis of UDP-glucose (WEYLER et al., 2015). R00803: su-
crose:phosphate α-D-glucosyltransferase; R00289: UTP:α-D-glucose-1-phosphate uridylyltrans-
ferase; R00156: ATP:UDP phosphotransferase; R00158: ATP:UMP phosphotransferase. Metabo-
lite names in small script denote cofactors or inorganic metabolites.
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pathway consists of two branches. The first branch starting from sucrose via D-glucose-1-

phosphate to UDP-glucose and the second branch starting from UMP via UDP and UTP to

UDP-glucose.

6.1 Model

The pan-organism network model for the design of the synthesis pathway is the same model

that has been used in the experiments discussed in Chapter 5 Network Reconstructions

for Cell-Free Systems with two changes. The first change is the addition of UMP to the

hand-curated list of basis metabolites presented in Section 5.2 Model Building. The second

change is the removal of UTP from the list of cofactors and inorganic compounds to allow

for the synthesis of UTP from UDP.

6.2 Path-Finding and Pathway Candidates

As the longest branch of the experimentally implemented pathway has length three, the

path-finding tool is used to exhaustively find pathway candidates with at most three reactions

on the linear path. The search results in 1203 pathway candidates. Upon inspection of the

candidates, one can observe candidates which involve a direct cycle formed by supplying

reactions that use metabolites that are not part of the metabolite pool and would thus not be

possible in real world applications without the addition of those metabolites to the medium.

Such pathway candidates have already been discussed in Section 5.3 Reachability Analysis

(blue fractions of Figure 5.6). As a global optimization method, the implemented MILP does

not detect such cycles. However, a filter step to remove such pathway candidates has been

developed. The filter takes the set of active reactions of the pathway and the metabolite pool.

It tests for each reaction if all substrates of the reaction are contained in this pool. If this is

the case, the products of the respective reaction are added to the metabolite pool. The active

reactions are tested until no new metabolites are added. If there remain any active reactions

that are not feasible with the substrates of the metabolite pool, the whole pathway is not

feasible and thus filtered from the set of pathway candidates.

After filtering 442 pathway candidates remain. The shortest pathway candidate consists of

two active reactions, while the longest has 39 active reactions. The pathway candidates

have 117 unique linear paths with different supplying reactions. The start metabolites of

the linear pathways are listed in Table 6.1 together with the number of pathway candidates

from the respective start metabolite. The table shows that most pathway candidates start
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with D-glucose (12 candidates), followed by UMP (10 candidates). For sucrose, there are

five pathway candidates.

Table 6.1: Start metabolites of the pathway candidates to UDP-glucose with KEGG ids and the
number of pathway candidates.

start metabolite KEGG id number of pathway candidates
D-glucose C00031 12
UMP C00105 10
D-glucose 6-phosphate C00092 7
D-fructose C00095 5
pyruvate C00022 5
sucrose C00089 5
α-D-glucose C00267 4
2-oxoglutarate C00026 4
acetate C00033 4
citrate C00158 4
oxaloacetate C00036 4
L-serine C00065 4
β-D-glucose C00221 3
glycerol C00116 3
glycine C00037 3
malate C00149 3
L-alanine C00041 3
L-arginine C00062 3
L-aspartate C00049 3
L-cysteine C00097 3
L-glutamate C00025 3
L-glutamine C00064 3
L-histidine C00135 3
D-ribose C00121 2
fumarate C00122 1
L-lysine C00047 2
L-threonine C00188 2
succinate C00042 2
L-phenylalanine C00079 1
L-proline C00148 1
L-tryptophan C00078 1
L-tyrosine C00082 1
L-valine C00183 1

The shortest pathway proposed by the path-finding tool that can produce UDP-glucose

from the given metabolite pool is the two-step pathway shown in Figure 6.2. This pathway
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produces UDP-glucose from sucrose, UMP and ATP. The linear path of the pathway is sucrose

→ UDP-glucose (black arrows). UDP is synthesized from UMP and ATP by reaction R00158.

Listing 1 in Appendix Section C.1 shows the details of this pathway candidate.

UDP-glucose

ATP

UMP

ADP

R00158

-R00806sucrose

D-fructose

UDP

Figure 6.2: Two-step pathway candidate to UDP-glucose from sucrose, UMP and ATP. R00806:
UDP-glucose:D-fructose 2-α-D-glucosyltransferase; R00158: ATP:UMP phosphotransferase. Black
arrows: arcs used on the linear path. Metabolite names in small script denote cofactors or
inorganic metabolites.

Figure 6.3 depicts the second shortest pathway candidate, consisting of three active reactions.

It synthesizes UDP-glucose from sucrose, Cytidine 5’-triphosphate (CTP), orthophosphate

and water. The linear path of this pathway is sucrose → D-glucose 1-phosphate → UDP-

glucose, designated by black arrows. It corresponds to the branch starting with sucrose of

the experimentally shown pathway (Figure 6.1). Reaction R00568 is the supplying reaction

for UTP from CTP and water. The details of this pathway candidate are shown in Listing 2 of

Appendix Section C.1.

The search also proposes a pathway candidate starting from UMP, D-glucose 6-phosphate

and ATP, depicted in Figure 6.4 (details in Listing 3 of Appendix Section C.1). Its linear path

is UMP→ UDP→ UTP→ UDP-glucose (black arrows), corresponding to the UMP branch of

the experimentally shown pathway (Figure 6.1).
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H2O

D-fructoseorthophosphate diphosphate

ammonia

UTP

R00568CTP

D-glucose 1-phosphate UDP-glucoseR00289sucrose R00803

Figure 6.3: Pathway candidate to UDP-glucose from sucrose, CTP, orthophosphate and water.
R00803: sucrose:phosphate α-D-glucose-glucosyltransferase; R00289: UTP:α-D-glucose-glucose-
1-phosphate uridylyltransferase; R00568: CTP aminohydrolase. Black arrows: arcs used on the
linear path. Metabolite names in small script denote cofactors or inorganic metabolites.

R00156

ADP

UMP R00158 UDP

ATP

-R08639 R00289D-glucose 6-phosphate UDP-glucose

diphosphate

D-glucose 1-phosphate

UTP

Figure 6.4: Pathway candidate to UDP-glucose from D-glucose 6-phosphate, UMP and ATP.
R08639: α-D-glucose 1,6-phosphomutase; R00289: UTP:α-D-glucose-glucose-1-phosphate uridy-
lyltransferase; R00156: ATP:UDP phosphotransferase; R00158: ATP:UMP phosphotransferase.
Black arrows: arcs used on the linear path. Metabolite names in small script denote cofactors or
inorganic metabolites.
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6.3 Discussion

As the presented results show, the experimentally implemented pathway depicted in Figure

6.1 can be obtained by combining the linear paths of the pathway candidates shown in

Figures 6.3 and 6.4. The combination of multiple pathways is an interesting approach to

generate further pathway candidates for cases in which the desired pathway is not contained

in the path-finding results. It can be applied whenever reactions with multiple arcs such

as reaction R00289 in Figure 6.1 are included in a pathway. This reaction contains the

arcs D-glucose-1-phosphate - UDP-glucose and UTP - UDP-glucose and therefore allows the

combination of pathways were one of those arcs is active with pathways where the other arc

is active.

To explain why the tool did not propose the pathway from Figure 6.1 as a single pathway

candidate, the details of the path-finding algorithm have to be inspected in more detail. As

already described in Section 4.2 MILP, a pathway consists of the linear path and supplying

reactions. In the pathway candidate shown in Figure 6.4, the linear path is UMP→ UDP

→ UTP→ UDP-glucose (R00158→ R00156→ R00289). D-glucose 1-phosphate, which is

a required substrate for R00289, is not contained in the metabolite pool. It thus has to be

synthesized. In this pathway candidate, this is done by reaction -R08639 (the supplying

reaction) from D-glucose 6-phosphate. Reaction R00803, which is used in the experimentally

implemented pathway, is not found as an alternative since the combination of active arcs of

the path and the chosen reactions are not different and a full enumeration of the supplying

reactions in the MILP has not been implemented. Since for the optimization problem all

reactions are treated equally, the choice of supplying reactions is arbitrarily done by the

CPLEX solver. A means of influencing which supplying reactions the solver chooses for a

pathway candidate besides minimizing the number of supplying reactions has not been

included in the algorithm. A possible extension of the objective function of the MILP that

heuristically takes into account the ∆r G value of a reaction by preferring reactions with a

smaller ∆r G can be implemented as shown in Equation (6.1).

Minimize
|M |∑
i=1

|M |∑
j=1, j 6=i

ui j +
1

2 · |R|+ 1

|R|∑
i=1

(1+∆Gni) · zi (6.1)

∆Gni is the ∆r G of reaction i normalized by the maximum |∆r G| of all reactions in the

network reconstruction. This objective function minimizes the number of active reactions

and the ∆r G of the supplying reactions. Using this objective function in the path-finding, the

pathway shown in Figure 6.1 can be directly retrieved as the second pathway candidate.
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CHAPTER 7

Extended Summary

This study presents the findings of the work on the two main aims in the scope of cell-free

systems defined in Chapter 3 Aims and Scope. A comprehensive workflow for the directed

design of biosynthetic production pathways using cell-free systems and the planning of such

syntheses (Part II Path-Finding and Network Analysis for Multi-Enzyme Biocatalysis) has been

developed and discussed. Additionally, a method for the creation and characterization of

genome-scale metabolic network reconstructions for the planning of biosynthetic production

pathways (Part III Network Reconstructions for Cell-Free Systems) has been established.

7.1 Path-Finding and Ranking

The developed path-finding method presented in this work is suitable for finding synthesis

pathways in metabolic network reconstructions of cell-free systems. The MILP-based method

computes pathway candidates to a given target metabolite in a metabolite graph, in which the

metabolites are connected by arcs derived from biologically meaningful reaction pairs defined

in the KEGG RCLASS database. A pathway discovered by the method consists of two parts.

The first part is a sequence of metabolites connected by reactions starting with one of the

start metabolites and ending with the product. The second part is a minimal set of reactions

supplying substrates required by the pathway reactions that are not directly available in

the metabolite pool composed of start metabolites, cofactors and inorganic compounds.

The MILP is defined by constraints that take into account the network topology and the

stoichiometries of the underlying reactions to identify biologically meaningful pathway

candidates. The constraints of the MILP can be adapted freely to customize it for the task at

hand. The presented method stands in contrast to other methods that either only account

89



90 Chapter 7 Extended Summary

for shortest paths in a graph between a given start and end node without taking into account

stoichiometry; or methods that depend on a steady state in the network, which is not the

case in cell-free systems.

To handle the large number of results in the broad solution space of a pathway search to a

target metabolite and to highlight the most meaningful candidates, the pathways generated

are ranked according to various different criteria. The criteria comprise metrics such as

pathway length, reaction thermodynamics, the number of heterologous enzymes in a given

host organism, cofactor requirement, or number of potential side reactions. However, these

criteria can be fully adapted and expanded, to take into account further aspects that might

be of importance for a given synthesis.

By means of the examples GPP, amygdalin, pyrrolysine and (S)-2-phenyloxirane it is shown

that the method proposes meaningful pathway candidates that can be used as a base for

further investigation to find the most promising synthesis pathway candidate. The synthesis

pathway for the multi-step synthesis of UDP-glucose from sucrose, UMP, ATP and phosphate

that was implemented in a recombinant, permeabilized E. coli strain (WEYLER et al., 2015)

(Chapter 6 Synthesis Paths for UDP-glucose) has also been recovered successfully.

Overall, the method presented in this work is a useful tool for the planning of biosynthetic

syntheses. The different steps of the path-finding and ranking workflow can be adapted to

meet the needs of a specific project at hand, which makes the method highly versatile and

suitable for a variety of problems.

7.2 Model Building and Analysis

A workflow for building and characterizing genome-scale metabolic network reconstructions

for the planning of biosynthetic production pathways has been developed. This workflow is

used for the reconstruction of networks from the KEGG databases COMPOUND, REACTION

and ENZYME. The large number of reactions in KEGG has to be filtered in order to include only

meaningful reactions into our model reconstructions. For the network models, only reactions

whose reactants have KEGG COMPOUND identifiers, integer stoichiometric coefficients, that

are not generic or contain generic reactants and that have reaction class annotations are

taken into account. Reactions satisfying these requirements are included in a pan-organism

network model. Additionally, models from nine specific organisms chosen for biotechnological

and scientific importance are compiled using the organism annotation for the genes of the

enzymes catalyzing the suitable reactions.
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The metabolites in the models are grouped into different categories, which are treated

differently in the path-finding algorithm. Potential start metabolites can be used as start

point for a pathway candidate. This is also true for basis metabolites, which constitute a

hand-curated subset of inexpensive and easily available metabolites. Cofactors and inorganic

metabolites are excluded from arcs, but are freely available as substrates for reactions in a

pathway. These sets constitute a metabolite pool of freely available metabolites.

For all models, all possible target metabolites are determined automatically and pathway

candidates for them are computed. The presented path-finding method yields meaningful

results in different kinds of networks and network sizes. A tool based on BFS to quickly predict

if a given target compound could potentially be produced in a given host organism has also

been implemented. The different properties of the network reconstructions, such as network

hubs and connected components are furthermore analyzed. These properties, together with

the target reachability analysis allow for a more in-depth analysis of the networks.





CHAPTER 8

Concluding Remarks and Outlook

In the following, the aspects that have not been already addressed fully in other parts of

this work are wrapped up and discussed. Furthermore, this chapter gives an outlook for

subsequent expansions of the presented algorithm and methods.

8.1 Network Reconstruction and Curation

The data used in this study for assembling network reconstructions following the workflow

presented in Chapter 2 Network Design is taken from KEGG. However, depending on the

aim of the study in which the network reconstruction is used, it can be fully adapted to the

needs by using any database or data source providing the necessary information (Section

2.1 Databases). In general, the quality of a network reconstruction depends heavily on the

quality of the data used. It is thus important to use high quality (curated) data sources

that contain as much information as needed to obtain network reconstructions that are as

comprehensive as possible.

Gap filling of the network reconstruction is a vital step for obtaining well-founded results with

respect to finding pathway candidates to a product. So in a further iteration of the network

reconstruction workflow, it would be beneficial to employ gap-filling strategies to obtain

even more comprehensive network reconstructions (Section 2.3 Network Reconstruction).

Almost 50% of the reaction entries in KEGG (version 65.0) are orphan reactions lacking

an associated protein sequence or enzyme (SOROKINA et al., 2014). While building the

organism-specific network model reconstructions it can be observed that only about 78 % of

the reactions from the pan-organism model have associated enzyme(s) (Figure 5.3). As in
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the presented filtering scheme enzyme associations are a requirement for associating the

respective reaction to an organism, a large part of the reactions in KEGG does not qualify for an

organism-specific model as these reactions do not have any enzymes associated. Associating

orphan reactions with enzymes could thus improve the quality of network reconstruction

models.

As discussed in Section 5.2 Model Building, the default parameters of eQuilibrator’s (FLAMHOLZ

et al., 2012) have been used for the computation of the ∆r G values. To determine reaction

reversibility, a ∆r G value of 15 kJ/mol was chosen empirically. However, the parameters

for the thermodynamics can be easily adapted if necessary, even individually for each reac-

tion. Additionally, the estimated values could easily be replaced by experimental values, if

available.

A meaningful expansion of the network reconstruction step would be to take into account

enzyme concentrations or kinetic parameters (SRINIVASAN et al., 2015).

8.2 Path-Finding

The presented path-finding method is highly customizable and can easily be adapted to the

respective requirements of the studies in which it is employed. There are numerous aspects

of the tool that can be tailored to the respective needs. One possibility is to customize the

MILP by adding, modifying or removing constraints. In this study, the MILP is applied on a

network representing cell free systems instead of a living organism, so it is not assumed that

any metabolite is in steady-state in the network. However, adding the constraint (8.1) (the

mathematical notation following Section 4.2 MILP), would be applicable in the case where

the objective is to find synthesis paths in living cells. Given a set of internal metabolites I ,

the constraint ensures that these metabolites are balanced.

|R|∑
r=1

Smr vr = 0, ∀m ∈ I (8.1)

The result of the path-finding heavily depends on the choice of arcs. The reason for choosing

reaction pairs as basis for the arcs in this study has been discussed in Appendix Section B.2.

However, the method of extracting arcs from reactions is totally customizable and can be

fully adapted.
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It is also possible to completely customize the different metabolite lists. The start and basis

metabolites can be specified depending on the specified target or on the availability of certain

substrates. The list of cofactors and inorganic compounds is also fully customizable to account

for a specific kind of medium composition.

The objective function of the MILP presented in Section 6 that minimizes the number of

active reactions as well as the ∆r G of the supplying reactions is only one possible extension

of the path-finding algorithm. A further aspect that could be taken into account are the costs

of substrates that are needed for the supplying reactions.

A further extension of the MILP would be to investigate if a full enumeration of the supplying

reactions is possible (and meaningful) to deliver even more pathway candidates.

8.3 Ranking

All ranking criteria can be fully adapted and extended. It is possible to define all kinds of

ranking criteria based on the respective synthesis. The order of the ranking criteria can be

rearranged to change the impact of a specific criterion. Additionally, more ranking criteria

can be incorporated. A practical and meaningful extension would be to incorporate the

prices of the substrates. This was not possible during the study due to the lack of a readily

available method for automatically extracting prices for purchasable substrates. Given such

a price list, it would be possible to rank the pathway candidates based on the prices of their

required substrates. One could even tailor the list of starting metabolites depending on

the availability of certain substrates and exclude those that are not purchasable. A step

forward to this ranking criterion would be to categorize the substrates into categories such

as inexpensive/expensive and prefer pathway candidates that contain more inexpensive

substrates.

8.4 Further Aspects

In Chapter 4 Network Design and Analysis for Multi-Enzyme Biocatalysis the detection of

potential side reaction for a given pathway candidate as an additional ranking criterion is

presented. However, this criterion can only consider reactions already incorporated in KEGG.

In most cases, KEGG only contains the main reaction(s) for a specific enzyme. It would

thus be a meaningful addition to take into account further data sources and tools which

contain information on side reactions of enzymes, such as BRENDA (JESKE et al., 2018),

MINE (JEFFRYES et al., 2015) or ATLAS of Biochemistry (HADADI et al., 2016).
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A further interesting extension would be to account for cofactor regeneration systems. This

could for example be done by taking into account cofactor usage and adding reactions that

regenerate cofactors to a pathway candidate.
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Km Michaelis-Menten constant

pH potential of Hydrogen

°C degree Celcius

de novo from the beginning, anew

in silico refers to an experiment performed with a computer (simulation)

in situ refers to an experiment or a synthesis performed in place where it occurs

in vitro refers to a biological experiment performed outside the normal biological context
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A Appendix Network Design and Analysis for Multi-Enzyme

Biocatalysis

The following chapter is based on the the supplementary material of the research ar-

ticle (BLASS et al., 2017) (Chapter 4 Network Design and Analysis for Multi-Enzyme

Biocatalysis).

A.1 Pathway Examples

Geranyl Pyrophosphate

Pathway Candidate: Mevalonate Pathway

Table A.1: Ranking of pathway candidate to geranyl pyrophosphate: mevalonate pathway

criterion value

number of active reactions: 8

starts with basic: False

reactions w/o dG: 0

sum (dG + |dG|): 0

dG: -2.154517e+02

number of heterologous enzymes: 5

number of cofactors: 8

number of side reactions: 11

R08549 : 2-Oxoglutarate dehydrogenase complex -2.723933e+01

substrates:
1 C00026 2-Oxoglutarate
1 C00010 CoA
1 C00003 NAD+

products:

123
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1 C00091 Succinyl-CoA
1 C00011 CO2
1 C00004 NADH
1 C00080 H+

R02084 : succinyl-CoA:3-hydroxy-3-methylglutarate CoA-transferase -3.166626e+00

substrates:
1 C00091 Succinyl-CoA
1 C03761 3-Hydroxy-3-methylglutarate

products:
1 C00042 Succinate
1 C00356 (S)-3-Hydroxy-3-methylglutaryl-CoA

R02082 : (R)-Mevalonate:NADP+ oxidoreductase (CoA acylating) -2.534910e+01

substrates:
1 C00356 (S)-3-Hydroxy-3-methylglutaryl-CoA
2 C00005 NADPH
2 C00080 H+

products:
1 C00418 (R)-Mevalonate
1 C00010 CoA
2 C00006 NADP+

R02245 : ATP:(R)-mevalonate 5-phosphotransferase -1.348146e+01

substrates:0
1 C00002 ATP
1 C00418 (R)-Mevalonate

products:
1 C00008 ADP
1 C01107 (R)-5-Phosphomevalonate

R03245 : ATP:(R)-5-phosphomevalonate phosphotransferase -2.712405e+00

substrates:
1 C00002 ATP
1 C01107 (R)-5-Phosphomevalonate

products:
1 C00008 ADP
1 C01143 (R)-5-Diphosphomevalonate

R01121 : ATP:(R)-5-diphosphomevalonate carboxy-lyase (adding ATP -6.741552e+01
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substrates:
1 C00002 ATP
1 C01143 (R)-5-Diphosphomevalonate

products:
1 C00008 ADP
1 C00009 Orthophosphate
1 C00129 Isopentenyl diphosphate
1 C00011 CO2

R01123 : Isopentenyl-diphosphate delta3-delta2-isomerase -4.902559e+00

substrates:
1 C00129 Isopentenyl diphosphate

products:
1 C00235 Dimethylallyl diphosphate

R01658 : Dimethylallyl-diphosphate:isopentenyl-diphosphate
dimethylallyltranstransferase -7.118467e+01

substrates:
1 C00235 Dimethylallyl diphosphate
1 C00129 Isopentenyl diphosphate

products:
1 C00013 Diphosphate
1 C00341 Geranyl diphosphate

Overall Balance

Table A.2 shows the overall balance of the pathway candidate representing the mevalonate

pathway.

Side Reactions

R00089 : ATP diphosphate-lyase (cyclizing; 3',5'-cyclic-AMP-forming)

substrates:
1 C00002 ATP

products:
1 C00575 3',5'-Cyclic AMP
1 C00013 Diphosphate
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Table A.2: Overall balance of the pathway candidate representing the mevalonate pathway
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R00104 : ATP:NAD+ 2'-phosphotransferase

substrates:
1 C00002 ATP
1 C00003 NAD+

products:
1 C00008 ADP
1 C00006 NADP+

R00112 : NADPH:NAD+ oxidoreductase

substrates:
1 C00005 NADPH
1 C00003 NAD+

products:
1 C00006 NADP+
1 C00004 NADH

R00405 : Succinate:CoA ligase (ADP-forming)

substrates:
1 C00002 ATP
1 C00042 Succinate
1 C00010 CoA

products:
1 C00008 ADP
1 C00009 Orthophosphate
1 C00091 Succinyl-CoA

R02003 : Geranyl-diphosphate:isopentenyl-diphosphate geranyltrans-transferase

substrates:
1 C00341 Geranyl diphosphate
1 C00129 Isopentenyl diphosphate

products:
1 C00013 Diphosphate
1 C00448 trans,trans-Farnesyl diphosphate

-R00127 : -ATP:AMP phosphotransferase

substrates:
2 C00008 ADP
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products:
1 C00002 ATP
1 C00020 AMP

-R00130 : -ATP:dephospho-CoA 3'-phosphotransferase

substrates:
1 C00008 ADP
1 C00010 CoA

products:
1 C00002 ATP
1 C00882 Dephospho-CoA

-R00137 : -ATP:nicotinamide-nucleotide adenylyltransferase

substrates:
1 C00013 Diphosphate
1 C00003 NAD+

products:
1 C00002 ATP
1 C00455 Nicotinamide D-ribonucleotide

-R00267 : -Isocitrate:NADP+ oxidoreductase (decarboxylating)

substrates:
1 C00026 2-Oxoglutarate
1 C00011 CO2
1 C00005 NADPH
1 C00080 H+

products:
1 C00311 Isocitrate
1 C00006 NADP+

-R00519 : -formate:NAD+ oxidoreductase

substrates:
1 C00080 H+
1 C00011 CO2
1 C00004 NADH

products:
1 C00058 Formate
1 C00003 NAD+
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-R00833 : -(R)-Methylmalonyl-CoA CoA-carbonylmutase

substrates:
1 C00091 Succinyl-CoA

products:
1 C01213 (R)-Methylmalonyl-CoA

Pathway Candidate: Non-mevalonate Pathway

Table A.3: Ranking of pathway candidate to geranyl pyrophosphate: non-mevalonate pathway

criterion value

number of active reactions: 9

starts with basic: False

reactions w/o dG: 2

sum (dG + |dG|): 0

dG: -1.998150e+02

number of heterologous enzymes: 0

number of cofactors: 3

number of side reactions: 24

R05636 : 1-Deoxy-D-xylulose-5-phosphate pyruvate-lyase (carboxylating) -2.901798
e+01

substrates:
1 C00022 Pyruvate
1 C00118 D-Glyceraldehyde 3-phosphate

products:
1 C11437 1-Deoxy-D-xylulose 5-phosphate
1 C00011 CO2

R05688 : 1-Deoxy-D-xylulose-5-phosphate isomeroreductase -2.321112e+01

substrates:
1 C11437 1-Deoxy-D-xylulose 5-phosphate
1 C00005 NADPH
1 C00080 H+

products:
1 C11434 2-C-Methyl-D-erythritol 4-phosphate
1 C00006 NADP+
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R05633 : CTP: 2-C-Methyl-D-erythritol 4-phosphate cytidylyltransferase -4.729713
e+00

substrates:
1 C11434 2-C-Methyl-D-erythritol 4-phosphate
1 C00063 CTP

products:
1 C11435 4-(Cytidine 5'-diphospho)-2-C-methyl-D-erythritol
1 C00013 Diphosphate

R05634 : ATP:4-(Cytidine 5'-diphospho)-2-C-methyl-D-erythritol 2-
phosphotransferase -5.273891e+00

substrates:
1 C11435 4-(Cytidine 5'-diphospho)-2-C-methyl-D-erythritol
1 C00002 ATP

products:
1 C11436 2-Phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol
1 C00008 ADP

R05637 : 2-Phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol CMP-lyase (
cyclizing) 0

substrates:
1 C11436 2-Phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol

products:
1 C11453 2-C-Methyl-D-erythritol 2,4-cyclodiphosphate
1 C00055 CMP

R08689 : (E)-4-hydroxy-3-methylbut-2-en-1-yl-diphosphate:oxidized ferredoxin
oxidoreductase (hydrating) 0

substrates:
1 C11453 2-C-Methyl-D-erythritol 2,4-cyclodiphosphate
2 C00138 Reduced ferredoxin

products:
1 C11811 1-Hydroxy-2-methyl-2-butenyl 4-diphosphate
1 C00001 H2O
2 C00139 Oxidized ferredoxin

R08210 : dimethylallyl diphosphate:ferredoxin oxidoreductase -6.639758e+01

substrates:
1 C11811 1-Hydroxy-2-methyl-2-butenyl 4-diphosphate



A.1 Pathway Examples 131

2 C00138 Reduced ferredoxin
2 C00080 H+

products:
1 C00235 Dimethylallyl diphosphate
1 C00001 Oxidized ferredoxin
2 C00139 H2O

R01658 : Dimethylallyl-diphosphate:isopentenyl-diphosphate
dimethylallyltranstransferase -7.118467e+01

substrates:
1 C00235 Dimethylallyl diphosphate
1 C00129 Isopentenyl diphosphate

products:
1 C00013 Diphosphate
1 C00341 Geranyl diphosphate

----------
-R01123 : -Isopentenyl-diphosphate delta3-delta2-isomerase 0

substrates:
1 C00235 Dimethylallyl diphosphate

products:
1 C00129 Isopentenyl diphosphate

Overall Balance

Table A.4 shows the overall balance of the pathway candidate representing the non-mevalonate

pathway.

Side Reactions

R00004 : diphosphate phosphohydrolase

substrates:
1 C00013 Diphosphate
1 C00001 H2O

products:
2 C00009 Orthophosphate

R00086 : ATP phosphohydrolase
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Table A.4: Overall balance of the pathway candidate representing the non-mevalonate pathway
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Table A.4: Overall balance of the pathway candidate representing the non-mevalonate pathway
(continued)

R
01

65
8

R
05

63
3

R
05

63
4

R
05

63
6

R
05

63
7

R
05

68
8

R
08

21
0

R
08

68
9

-R
01

12
3

ov
er

al
l

1-
de

ox
y-

D
-

xy
lu

lo
se

5-
ph

os
ph

at
e

0
0

0
1

0
-1

0
0

0
0

C
O

2
0

0
0

1
0

0
0

0
0

1
2-

C
-m

et
hy

l-
D

-
er

yt
hr

it
ol

2,
4-

cy
cl

od
ip

ho
sp

ha
te

0
0

0
0

1
0

0
-1

0
0

C
M

P
0

0
0

0
1

0
0

0
0

1
N

A
D

PH
0

0
0

0
0

-1
0

0
0

-1
H
+

0
0

0
0

0
-1

-2
0

0
-3

N
A

D
P+

0
0

0
0

0
1

0
0

0
1

1-
hy

dr
ox

y-
2-

m
et

hy
l-

2-
bu

te
ny

l
4-

di
ph

os
ph

at
e

0
0

0
0

0
0

-1
1

0
0

re
du

ce
d

fe
rr

e-
do

xi
n

0
0

0
0

0
0

-2
-2

0
-4

ox
id

iz
ed

fe
rr

e-
do

xi
n

0
0

0
0

0
0

2
2

0
4

H
2
O

0
0

0
0

0
0

1
1

0
2



134 A Appendix Network Design and Analysis for Multi-Enzyme Biocatalysis

substrates:
1 C00002 ATP
1 C00001 H2O

products:
1 C00008 ADP
1 C00009 Orthophosphate

R00087 : ATP diphosphohydrolase (diphosphate-forming)

substrates:
1 C00002 ATP
1 C00001 H2O

products:
1 C00020 AMP
1 C00013 Diphosphate

R00089 : ATP diphosphate-lyase (cyclizing

substrates:
1 C00002 ATP

products:
1 C00575 3,5-Cyclic AMP
1 C00013 Diphosphate

R00199 : ATP:pyruvate,water phosphotransferase

substrates:
1 C00002 ATP
1 C00022 Pyruvate
1 C00001 H2O

products:
1 C00020 AMP
1 C00074 Phosphoenolpyruvate
1 C00009 Orthophosphate

R00200 : ATP:pyruvate 2-O-phosphotransferase

substrates:
1 C00002 ATP
1 C00022 Pyruvate

products:
1 C00008 ADP
1 C00074 Phosphoenolpyruvate
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R00511 : cytidine-5-monophosphate phosphohydrolase

substrates:
1 C00055 CMP
1 C00001 H2O

products:
1 C00475 Cytidine
1 C00009 Orthophosphate

R00512 : ATP:CMP phosphotransferase

substrates:
1 C00002 ATP
1 C00055 CMP

products:
1 C00008 ADP
1 C00112 CDP

R00515 : CTP diphosphohydrolase (diphosphate-forming)

substrates:
1 C00063 CTP
1 C00001 H2O

products:
1 C00055 CMP
1 C00013 Diphosphate

R00568 : CTP aminohydrolase

substrates:
1 C00063 CTP
1 C00001 H2O

products:
1 C00075 UTP
1 C00014 Ammonia

R00572 : CTP:pyruvate 2-O-phosphotransferase

substrates:
1 C00063 CTP
1 C00022 Pyruvate

products:
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1 C00112 CDP
1 C00074 Phosphoenolpyruvate

R01015 : D-glyceraldehyde-3-phosphate aldose-ketose-isomerase

substrates:
1 C00118 D-Glyceraldehyde 3-phosphate

products:
1 C00111 Glycerone phosphate

R01123 : Isopentenyl-diphosphate delta3-delta2-isomerase

substrates:
1 C00129 Isopentenyl diphosphate

products:
1 C00235 Dimethylallyl diphosphate

R01195 : Ferredoxin:NADP+ oxidoreductase

substrates:
1 C00006 Reduced ferredoxin
1 C00080 NADP+
2 C00138 H+

products:
1 C00005 Oxidized ferredoxin
2 C00139 NADPH

R02003 : Geranyl-diphosphate:isopentenyl-diphosphate geranyltrans-transferase

substrates:
1 C00341 Geranyl diphosphate
1 C00129 Isopentenyl diphosphate

products:
1 C00013 Diphosphate
1 C00448 trans,trans-Farnesyl diphosphate

R05884 : isopentenyl-diphosphate:ferredoxin oxidoreductase

substrates:
1 C11811 1-Hydroxy-2-methyl-2-butenyl 4-diphosphate
2 C00138 Reduced ferredoxin
2 C00080 H+

products:
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1 C00129 Isopentenyl diphosphate
1 C00001 Oxidized ferredoxin
2 C00139 H2O

-R00104 : -ATP:NAD+ 2-phosphotransferase

substrates:
1 C00008 ADP
1 C00006 NADP+

products:
1 C00002 ATP
1 C00003 NAD+

-R00127 : -ATP:AMP phosphotransferase

substrates:
2 C00008 ADP

products:
1 C00002 ATP
1 C00020 AMP

-R00132 : -carbonate hydro-lyase (carbon-dioxide-forming)

substrates:
1 C00011 CO2
1 C00001 H2O

products:
1 C01353 Carbonic acid

-R00216 : -(S)-Malate:NADP+ oxidoreductase(oxaloacetate-decarboxylating)

substrates:
1 C00022 Pyruvate
1 C00011 CO2
1 C00005 NADPH
1 C00080 H+

products:
1 C00149 (S)-Malate
1 C00006 NADP+

-R00513 : -ATP:cytidine 5-phosphotransferase

substrates:
1 C00008 ADP
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1 C00055 CMP

products:
1 C00002 ATP
1 C00475 Cytidine

-R01064 : -2-dehydro-3-deoxy-6-phospho-D-galactonate D-glyceraldehyde-3-phospho-
lyase (pyruvate-forming)

substrates:
1 C00022 Pyruvate
1 C00118 D-Glyceraldehyde 3-phosphate

products:
1 C01286 2-Dehydro-3-deoxy-6-phospho-D-galactonate

-R05605 : -2-dehydro-3-deoxy-6-phospho-D-gluconate D-glyceraldehyde-3-phosphate-
lyase (pyruvate-forming)

substrates:
1 C00118 D-Glyceraldehyde 3-phosphate
1 C00022 Pyruvate

products:
1 C04442 2-Dehydro-3-deoxy-6-phospho-D-gluconate

-R10092 : -carbonate hydro-lyase (carbon-dioxide-forming)

substrates:
1 C00011 CO2
1 C00001 H2O

products:
1 C00288 HCO3-
1 C00080 H+

Amygdalin

Pathway Candidate: Starting From Sucrose

R00803 : sucrose:phosphate alpha-D-glucosyltransferase 4.881509e-02

substrates:
1 C00089 Sucrose
1 C00009 Orthophosphate

products:
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Table A.5: Ranking of pathway candidate to amygdalin starting from sucrose

criterion value

number of active reactions: 4

starts with basic: True

reactions w/o dG: 0

sum (dG + |dG|): 9.763018e-02

dG: -4.130443e+01

number of heterologous enzymes: 2

number of cofactors: 1

number of side reactions: 4

1 C00095 D-Fructose
1 C00103 D-Glucose 1-phosphate

R00289 : UTP:alpha-D-glucose-1-phosphate uridylyltransferase -8.295754e+00

substrates:
1 C00075 UTP
1 C00103 D-Glucose 1-phosphate

products:
1 C00013 Diphosphate
1 C00029 UDP-glucose

R10638 : UDP-D-glucose:(R)-mandelonitrile beta-D-glucosyltransferase -1.412458e
+01

substrates:
1 C00561 Mandelonitrile
1 C00029 UDP-glucose

products:
1 C00844 Prunasin
1 C00015 UDP

R10639 : -1.893291e+01

substrates:
1 C00844 Prunasin
1 C00029 UDP-glucose

products:
1 C08325 Amygdalin
1 C00015 UDP
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Thermodynamic Profile

Figure A.1 shows the thermodynamic profile for the pathway candidate for the synthesis of

amygdalin from α-D-glucose 6-phosphate.
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Figure A.1: Thermodynamic profile for the pathway candidate of the synthesis of amygdalin
from sucrose.

Overall Balance

Table A.6 shows the overall balance of the pathway candidate for the synthesis of amygdalin

from sucrose.

Side Reactions
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Table A.6: Overall balance of the pathway candidate to amygdalin starting from sucrose

R00803 R00289 R10638 R10639 overall
sucrose -1 0 0 0 -1
orthophosphate -1 0 0 0 -1
D-fructose 1 0 0 0 1
D-glucose 1-phosphate 1 -1 0 0 0
UTP 0 -1 0 0 -1
diphosphate 0 1 0 0 1
UDP-glucose 0 1 -1 -1 -1
mandelonitrile 0 0 -1 0 -1
prunasin 0 0 0 -1 -1
UDP 0 0 1 1 2
amygdalin 0 0 0 1 1

R00291 : UDP-glucose 4-epimerase

substrates:
1 C00029 UDP-glucose

products:
1 C00052 UDP-alpha-D-galactose

R00959 : alpha-D-Glucose 1-phosphate 1,6-phosphomutase

substrates:
1 C00103 D-Glucose 1-phosphate

products:
1 C00668 alpha-D-Glucose 6-phosphate

R08639 : alpha-D-glucose 1,6-phosphomutase

substrates:
1 C00103 D-Glucose 1-phosphate

products:
1 C00092 D-Glucose 6-phosphate

-R00878 : -alpha-D-Glucose aldose-ketose-isomerase

substrates:
1 C00095 D-Fructose

products:
1 C00267 alpha-D-Glucose
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Pathway Candidate: Starting From α-d-glucose 6-phosphate

Table A.7: Ranking of pathway candidate to amygdalin from α-D-glucose 6-phosphate

criterion value

number of active reactions: 4

starts with basic: False

reactions w/o dG: 0

sum (dG + |dG|): 2.070859e+00

dG: -3.202206e+01

number of heterologous enzymes: 2

number of cofactors: 1

number of side reactions: 5

-R00959 : -alpha-D-Glucose 1-phosphate 1,6-phosphomutase 4.881509e-02

substrates:
1 C00668 alpha-D-Glucose 6-phosphate

products:
1 C00103 D-Glucose 1-phosphate

R00289 : UTP:alpha-D-glucose-1-phosphate uridylyltransferase -1.412458e+01

substrates:
1 C00075 UTP
1 C00103 D-Glucose 1-phosphate

products:
1 C00013 Diphosphate
1 C00029 UDP-glucose

R10638 : UDP-D-glucose:(R)-mandelonitrile beta-D-glucosyltransferase -1.893291e
+01

substrates:
1 C00561 Mandelonitrile
1 C00029 UDP-glucose

products:
1 C00844 Prunasin
1 C00015 UDP

R10639 : 9.866146e-01
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substrates:
1 C00844 Prunasin
1 C00029 UDP-glucose

products:
1 C08325 Amygdalin
1 C00015 UDP

Thermodynamic Profile

Figure A.2 shows the thermodynamic profile for the pathway candidate for the synthesis of

amygdalin from α-D-glucose 6-phosphate.
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Figure A.2: Thermodynamic profile for the pathway candidate of the synthesis of amygdalin
from α-D-glucose 6-phosphate.
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Overall Balance

Table A.8 shows the overall balance of the pathway candidate for the synthesis of amygdalin

from α-D-glucose 6-phosphate.

Table A.8: Overall balance of the pathway candidate to amygdalin starting from α-D-glucose
6-phosphate

R00289 R10638 R10639 -R00959 overall
α-D-glucose 6-phosphate 0 0 0 -1 -1
D-glucose 1-phosphate -1 0 0 1 0
UTP -1 0 0 0 -1
UDP 0 1 1 0 2
diphosphate 1 0 0 0 0
UDP-glucose 1 -1 -1 0 -1
mandelonitrile 0 -1 0 0 -1
prunasin 0 1 -1 0 0
amygdalin 0 0 1 0 1

Side Reactions

R00291 : UDP-glucose 4-epimerase

substrates:
1 C00029 UDP-glucose

products:
1 C00052 UDP-alpha-D-galactose

R00959 : alpha-D-Glucose 1-phosphate 1,6-phosphomutase

substrates:
1 C00103 D-Glucose 1-phosphate

products:
1 C00668 alpha-D-Glucose 6-phosphate

R02737 : UDPglucose:D-glucose-6-phosphate 1-alpha-D-glucosyltransferase

substrates:
1 C00029 UDP-glucose
1 C00668 alpha-D-Glucose 6-phosphate

products:
1 C00015 UDP
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1 C00689 alpha,alpha'-Trehalose 6-phosphate

R02740 : alpha-D-Glucose 6-phosphate ketol-isomerase

substrates:
1 C00668 alpha-D-Glucose 6-phosphate

products:
1 C05345 beta-D-Fructose 6-phosphate

R08639 : alpha-D-glucose 1,6-phosphomutase

substrates:
1 C00103 D-Glucose 1-phosphate

products:
1 C00092 D-Glucose 6-phosphate

Pyrrolysine

Pathway Candidate

Table A.9: Ranking of pathway candidate to pyrrolysine.

criterion value

number of active reactions: 4

starts with basic: True

reactions w/o dG: 4

sum (dG + |dG|): 0

dG: 0

number of heterologous enzymes: 4

number of cofactors: 2

number of side reactions: 9

R10010 : L-lysine carboxy-aminomethylmutase 0

substrates:
1 C00047 L-Lysine

products:
1 C20277 (2R,3R)-3-Methylornithine

R10011 : 0
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substrates:
1 C00047 L-Lysine
1 C20277 (2R,3R)-3-Methylornithine
1 C00002 ATP

products:
1 C20278 (2R,3R)-3-Methylornithinyl-N6-lysine
1 C07305 Products of ATP breakdown

R10012 : 0

substrates:
1 C20278 (2R,3R)-3-Methylornithinyl-N6-lysine
1 C00003 NAD+
1 C00001 H2O

products:
1 C20279 (2R,3R)-3-Methylglutamyl-5-semialdehyde-N6-lysine
1 C00014 Ammonia
1 C00004 NADH

R10013 : 0

substrates:
1 C20279 (2R,3R)-3-Methylglutamyl-5-semialdehyde-N6-lysine

products:
1 C16138 L-Pyrrolysine
1 C00001 H2O

Overall Balance

Table A.10 shows the overall balance of the pathway candidate for the synthesis of pyrrolysine

from L-Lysine.

Side Reactions

R00086 : ATP phosphohydrolase

substrates:
1 C00002 ATP
1 C00001 H2O

products:
1 C00008 ADP
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Table A.10: Overall balance of the pathway candidate to pyrrolysine.

R10010 R10011 R10012 R10013 overall
L-lysine -1 -1 0 0 -2
(2R,3R)-3-methylornithine 1 -1 0 0 0
ATP 0 -1 0 0 -1
(2R,3R)-3-methylornithinyl-N6-
lysine

0 1 -1 0 0

products of ATP breakdown 0 1 0 0 1
NAD+ 0 0 -1 0 -1
H2O 0 0 -1 0 1
(2R,3R)-3-methylglutamyl-5-
semialdehyde-N6-lysine

0 0 1 -1 0

NADH 0 0 1 0 1
L-pyrrolysine 0 0 0 1 1

1 C00009 Orthophosphate

R00087 : ATP diphosphohydrolase (diphosphate-forming)

substrates:
1 C00002 ATP
1 C00001 H2O

products:
1 C00020 AMP
1 C00013 Diphosphate

R00089 : ATP diphosphate-lyase (cyclizing

substrates:
1 C00002 ATP

products:
1 C00575 3',5'-Cyclic AMP
1 C00013 Diphosphate

R00103 : NAD+ phosphohydrolase

substrates:
1 C00003 NAD+
1 C00001 H2O

products:
1 C00020 AMP
1 C00455 Nicotinamide D-ribonucleotide
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R00104 : ATP:NAD+ 2'-phosphotransferase

substrates:
1 C00002 ATP
1 C00003 NAD+

products:
1 C00008 ADP
1 C00006 NADP+

R00143 : ammonia:NAD+ oxidoreductase

substrates:
1 C00014 Ammonia
1 C00003 NAD+
1 C00001 H2O

products:
1 C00192 Hydroxylamine
1 C00004 NADH
1 C00080 H+

R00462 : L-lysine carboxy-lyase (cadaverine-forming)

substrates:
1 C00047 L-Lysine

products:
1 C01672 Cadaverine
1 C00011 CO2

R00787 : ammonia:NAD+ oxidoreductase

substrates:
1 C00014 Ammonia
2 C00001 NAD+
3 C00003 H2O

products:
1 C00088 Nitrite
3 C00004 NADH
3 C00080 H+

R11104 : NADH phosphohydrolase

substrates:
1 C00004 NADH
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1 C00001 H2O

products:
1 C00020 AMP
1 C21113 NMNH

(S)-2-phenyloxirane

Pathway Candidate

Table A.11: Ranking of pathway candidate to (S)-2-phenyloxirane

criterion value

number of active reactions: 4

starts with basic: False

reactions w/o dG: 1

sum (dG + |dG|): 2.081496e+01

dG: -1.728943e+01

number of heterologous enzymes: 4

number of cofactors: 3

number of side reactions: 11

R02506 : cinnamaldehyde:NADP+ oxidoreductase (CoA-cinnamoylating) 6.126122e+00

substrates:
1 C00903 Cinnamaldehyde
1 C00010 CoA
1 C00006 NADP+

products:
1 C00540 Cinnamoyl-CoA
1 C00005 NADPH
1 C00080 H+

-R02255 : -trans-Cinnamate:CoA ligase (AMP-forming) 0

substrates:
1 C00020 AMP
1 C00013 Diphosphate
1 C00540 Cinnamoyl-CoA

products:
1 C00002 ATP
1 C00423 trans-Cinnamate
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1 C00010 CoA

R11070 : trans-cinnamate carboxy-lyase -2.769690e+01

substrates:
1 C00423 trans-Cinnamate

products:
1 C07083 Styrene
1 C00011 CO2

R05488 : styrene,FADH2:oxygen oxidoreductase 4.281356e+00

substrates:
1 C07083 Styrene
1 C01352 FADH2
1 C00007 Oxygen

products:
1 C20782 (S)-2-Phenyloxirane
1 C00016 FAD
1 C00001 H2O

Thermodynamic Profile

Overall Balance

Table A.12 shows the overall balance of the pathway candidate to (S)-2-phenyloxirane.

Side Reactions

R00004 : diphosphate phosphohydrolase

substrates:
1 C00013 Diphosphate
1 C00001 H2O

products:
2 C00009 Orthophosphate

R00086 : ATP phosphohydrolase

substrates:
1 C00002 ATP
1 C00001 H2O



A.1 Pathway Examples 151

R02506 -R02255 R11070 R05488

KEGG reaction ID

-25

-20

-15

-10

-5

0

5

10

dG

Figure A.3: Thermodynamic profile for a pathway candidate of the synthesis of (S)-2-
phenyloxirane from cinnamaldehyde.

products:
1 C00008 ADP
1 C00009 Orthophosphate

R00087 : ATP diphosphohydrolase (diphosphate-forming)

substrates:
1 C00002 ATP
1 C00001 H2O

products:
1 C00020 AMP
1 C00013 Diphosphate

R00089 : ATP diphosphate-lyase (cyclizing
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Table A.12: Overall balance of the pathway candidate to (S)-2-phenyloxirane.

R02506 -R02255 R11070 R05488 overall
cinnamaldehyde -1 0 0 0 -1
CoA -1 1 0 0 0
NADP+ -1 0 0 0 -1
cinnamoyl-CoA 1 -1 0 0 0
NADPH 1 0 0 0 1
H+ 1 0 0 0 1
AMP 0 -1 0 0 -1
diphosphate 0 -1 0 0 -1
ATP 0 1 0 0 1
trans-cinnamate 0 1 -1 0 0
styrene 0 0 1 -1 0
CO2 0 0 0 1 1
FADH2 0 0 0 -1 -1
oxygen 0 0 0 -1 -1
(S)-2-phenyloxirane 0 0 0 1 1
FAD 0 0 0 1 1
H2O 0 0 0 1 1

substrates:
1 C00002 ATP

products:
1 C00575 3',5'-Cyclic AMP
1 C00013 Diphosphate

R00127 : ATP:AMP phosphotransferase

substrates:
1 C00002 ATP
1 C00020 AMP

products:
2 C00008 ADP

R00182 : AMP phosphoribohydrolase

substrates:
1 C00020 AMP
1 C00001 H2O

products:
1 C00147 Adenine
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1 C00117 D-Ribose 5-phosphate

R00183 : adenosine 5'-monophosphate phosphohydrolase

substrates:
1 C00020 AMP
1 C00001 H2O

products:
1 C00212 Adenosine
1 C00009 Orthophosphate

R00190 : AMP:diphosphate phospho-D-ribosyltransferase

substrates:
1 C00020 AMP
1 C00013 Diphosphate

products:
1 C00147 Adenine
1 C00119 5-Phospho-alpha-D-ribose 1-diphosphate

-R00132 : -carbonate hydro-lyase (carbon-dioxide-forming)

substrates:
1 C00011 CO2
1 C00001 H2O

products:
1 C01353 Carbonic acid

-R00161 : -ATP:FMN adenylyltransferase

substrates:
1 C00013 Diphosphate
1 C00016 FAD

products:
1 C00002 ATP
1 C00061 FMN

-R10092 : -carbonate hydro-lyase (carbon-dioxide-forming)

substrates:
1 C00011 CO2
1 C00001 H2O

products:
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1 C00288 HCO3-
1 C00080 H+

A.2 Computation Times

Geranyl Pyrophosphate

We generated 1645 pathway candidates. Figure A.4(a) shows the number of pathway

candidates over time. The computation time for the individual pathway candidates is shown

in Figure A.4(b).
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Figure A.4: Geranyl pyrophosphate.

Amygdalin

We generated 100 pathway candidates. Figure A.5(a) shows the number of pathway candi-

dates over time. The computation time for the individual pathway candidates is shown in

Figure A.5(b).

Pyrrolysine

5 pathway candidates were generated. Figure A.6(a) shows the number of pathway candi-

dates over time. The computation time for the individual pathway candidates is shown in

Figure A.6(b).
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Figure A.5: Amygdalin.
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Figure A.6: Pyrrolysine.

(S)-2-phenyloxirane

11 pathway candidates were generated. Figure A.7(a) shows the number of pathway candi-

dates over time. The computation time for the individual pathway candidates is shown in

Figure A.7(b).

Remarks

We showed the number of pathway candidates over time empirically for the example pathway

searches we presented in Section 4.3 Results. For a typical pathway search, the computation
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Figure A.7: (S)-2-phenyloxirane.

time was in the range of minutes for the first 100 pathway candidates. For all examples, the

trend shows that the solver takes more time with each solution, due to the fact that for each

additional solution, the number of constraint and variables in the MILP grows.



B Appendix In-depth characterization of genome-scale network

reconstructions for the in vitro synthesis in cell-free systems

The following chapter is based on the the supplementary material of the research article

(SCHUH et al., 2019) (Chapter 5 Network Reconstructions for Cell-Free Systems).

B.1 MILP

The MILP presented below identifies pathway candidates for a given target T from a given

list of possible starting metabolites.

|M |∑
i=1

uiP = 1 (B.1)

|M |∑
j=1

uT j = 0 (B.2)

|M |∑
i=1

uil ≤
|M |∑
j=1

ul j l ∈ S; l 6= T (B.3)

|M |∑
i=1

uil = 0 l ∈ B; l 6= T (B.4)

|M |∑
i=1

uik =
|M |∑
j=1

uk j k ∈ M \ S; k 6= T (B.5)

157
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|M |∑
i=1

uik ≤ 1, k = 1, . . . , |M | (B.6)

Constraints (B.1) to (B.6) ensure that a solution contains a connected simple path from a

start node of the set of designated start nodes to the given end note T.

|R|∑
r=1

Smr vr ≥ 0, ∀m ∈ E, m /∈ Em (B.7)

|R|∑
r=1

STr vr ≥ 1, (B.8)

zr ≤ vr , r = 1, . . . , R (B.9)

and vr ≤ Max · zr , r = 1, . . . ,R (B.10)

zλ + zµ ≤ 1 (B.11)

∀(λ,µ) ∈ B = {(λ,µ)|λ and µ are reverse}

|R|∑
r=1

di jr · zr ≥ ui j i = 1, . . . ,|M |; j = 1, . . . ,|M |; i 6= j (B.12)

The constraint formulated in equation (B.13) prevents the use of a a reaction in the pathway

that consumes the target T. The set RT is the set of reactions that consume the target and

thus have a negative stoichiometric coefficient.∑
r∈RT

vrSr ≥ 0, RT = {r|STr < 0} (B.13)

Constraints (B.7) to (B.13) define a valid flux distribution for the pathway ensuring that the

found path is feasible.
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The objective function is given in equation (B.14).

Minimize
|M |∑
i=1

|M |∑
j=1, j 6=i

ui j +
1
|R|+ 1

|R|∑
i=1

zi (B.14)

The MILP consisting of equations (B.1) to (B.14) provides a pathway candidate given by

a sequence of arcs (i.e. the values of ui j) and the active reactions (the values of zr). The

objective function guarantees a connected and cycle-free linear path with a minimal number

of supplying reactions.

The remaining constraints are used to find further pathway candidates.

|M |∑
i

|M |∑
j

Uk′
i j · sk′ ≤

|M |∑
i

|M |∑
j

Uk′
i j ui j (B.15)

|M |∑
i

|M |∑
j

(1− Uk′
i j )ui j + sk′ |M |2 ≤ |M |2 (B.16)

|M |∑
i

|M |∑
j

Uk′
i j ui j −

|M |∑
i

uiαk′ − sk′ ≤
|M |∑

i

|M |∑
j

Uk′
i j − 1 (B.17)

|R|∑
i

Z ′li zi + sk|R| ≤ ml − 1+ |R| (B.18)

An in-depth discussion of each constraint of the MILP can be found in Section 4.2 Mathemat-

ical Model.

B.2 Arc Graph Properties

Node Degree Distributions

Figure B.1 shows the node degree distributions of the arc graphs of the different organism

network reconstructions.
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Figure B.1: Total node degree distributions of the different organism networks.
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Figure B.1: Total node degree distributions of the different organism networks (continued).

Hubs

Tables B.1 to B.10 list the hubs with the top 5 occurrences of each network.

Table B.1: Hubs in kegg

count KEGG ID name
167 C00022 pyruvate
107 C00448 trans,trans-farnesyl diphosphate
77 C00033 acetate
72 C00031 D-glucose
65 C00025 L-glutamate

Model Properties

Table B.11 lists the sizes of the arc graphs together with the average node degrees (sum of

ingoing and outgoing arcs) and the standard deviation σ.
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Table B.2: Hubs in cge

count KEGG ID name
29 C00022 pyruvate
29 C00025 L-glutamate
26 C00024 acetyl-CoA
21 C00037 glycine
18 C05345 β-D-fructose 6-phosphate
18 C00020 AMP
18 C00065 L-serine

Table B.3: Hubs in eco

count KEGG ID name
60 C00022 pyruvate
33 C00024 acetyl-CoA
30 C00111 glycerone phosphate
24 C00025 L-glutamate
24 C00118 D-glyceraldehyde 3-phosphate

Table B.4: Hubs in vna

count KEGG ID name
49 C00022 pyruvate
34 C00024 acetyl-CoA
24 C00025 L-glutamate
24 C00111 glycerone phosphate
20 C00118 D-glyceraldehyde 3-phosphate

Table B.5: Hubs in ppun

count KEGG ID name
52 C00022 pyruvate
34 C00024 acetyl-CoA
24 C00025 L-glutamate
19 C00118 D-glyceraldehyde 3-phosphate
17 C00109 2-oxobutanoate

Table B.6: Hubs in mxa

count KEGG ID name
28 C00024 acetyl-CoA
27 C00022 pyruvate
19 C00025 L-glutamate
19 C00118 D-glyceraldehyde 3-phosphate
18 C00037 L-serine
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Table B.7: Hubs in sce

count KEGG ID name
28 C00022 pyruvate
27 C00024 acetyl-CoA
21 C00025 L-glutamate
18 C05345 β-D-fructose 6-phosphate
17 C00118 D-glyceraldehyde 3-phosphate
17 C00065 L-Serine

Table B.8: Hubs in spo

count KEGG ID name
31 C00022 pyruvate
22 C00025 L-glutamate
18 C05345 β-D-fructose 6-phosphate
17 C00118 D-glyceraldehyde 3-phosphate
16 C00020 AMP
16 C00026 2-oxoglutarate

Table B.9: Hubs in cgb

count KEGG ID name
31 C00022 pyruvate
23 C00025 L-glutamate
19 C00118 D-glyceraldehyde 3-phosphate
14 C00024 acetyl-CoA
13 C00111 glycerone phosphate

Table B.10: Hubs in mpe

count KEGG ID name
13 C00111 glycerone phosphate
13 C00118 D-glyceraldehyde 3-phosphate
9 C00085 D-fructose 6-phosphate
9 C05345 β-D-fructose 6-phosphate
8 C03794 N6-(1,2-dicarboxyethyl)-AMP
7 C05378 β-D-fructose 1,6-bisphosphate
7 C00147 adenine
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Table B.11: Number of metabolites, arcs and average node degrees (sum of ingoing and outgoing
arcs) and their standard deviation σ of each model.

model metabolites with arcs arcs average node degree σ

kegg 6246 10291 3.3 4.45
cge 1395 2056 2.95 2.64
eco 1106 1736 3.14 3.28
vna 1093 1663 3.04 3.04
ppun 1154 1683 2.92 2.9
mxa 997 1424 2.86 2.58
sce 954 1303 2.73 2.55
spo 840 1187 2.83 2.54
cgb 768 1093 2.85 2.51
mpe 263 312 2.37 1.83

One can observe that the average node degrees are similar for all models, regardless of the

arc graph size. The higher average node degree in kegg could be caused by the fact that this

model consists of all reactions fulfilling the criteria discussed in Section 5.2, whereas in the

organism models the reactions are additionally selected by organism annotation, which may

introduce a bias.

Arc Graph Creation

As explained in Section 5.2 Model Building, the basis of the arc graph is the set of reactant

pairs from KEGG RCLASS for each reaction without those containing cofactors or inorganic

metabolites. In the following, we will discuss the reasoning behind that choice. To do

so, we built four different arc graphs for each model, listed in Table B.12. Arc graph 1

Table B.12: Setup for the four different arc graphs in discussion. In the second column, the ’+’
marks that the arcs in the respective arc graph are derived from the KEGG RCLASS entries of the
reactions in the model, the ’-’ denotes that the cross product of all substrates and products of the
reactions is used. In the third column, a ’+’ means that arcs containing cofactors and inorganic
compounds are included, a ’-’ means that such arcs are excluded.

arc graph RCLASS cofactors/inorganics number arcs number vertices
1 + - 10291 6246
2 + + 10697 6329
3 - - 15118 6366
4 - + 25231 6467

is built as described in Section 5.2 Model Building and comprises arcs derived from the

RCLASS reaction pairs (i.e. reaction pairs based on chemical structure patterns), without arcs
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containing cofactors or inorganic metabolites. This arc graph was applied in our path-finding

calculations. This setup allows synthesis of the predicted compounds in the network, as

demonstrated by the results presented and discussed in Section 5.3 Reachability Analysis. In

arc graph 2, we additionally included arcs involving cofactors and inorganic metabolites. As

KEGG RCLASS predominantly contains relevant arcs, arcs involving cofactors and inorganic

metabolites are not normally included in the first place. For this reason the number of arcs

does not significantly increase from arc graph 1 to 2. In arc graph 3 all possible substrate-

reaction pairs are used, but arcs involving cofactors are not, whereas arc graph 4 consists of

all substrate-reaction pairs. For each of those arc graphs we investigated the top 10 hubs

(based on occurrence), which are listed for the pan-organism network kegg, exemplarily

in Tables B.13 to B.16. These tables show that those arc graphs which incorporate arcs

containing containing cofactors and inorganic metabolites (arc graphs 2 and 4) also have

such metabolites in their top 10 hubs. In the arcs derived from all substrate-reaction pairs,

8 out of 10 hubs are cofactors or inorganic metabolites. For the arcs derived from KEGG

RCLASS, only one of the ten hubs is a cofactor. It is thus reasonable to exclude cofactors and

inorganic metabolites from arcs, as already stated in Section 5.2 Model Building. Comparing

the arc graphs 1 and 3 (Tables B.13 and B.15), one can observe that arc graph 3, which is

based on all substrate-reaction pairs, contains mono- and diphosphates such as AMP or ADP.

These metabolites are not present in the top 10 hubs of arc graph 1, which is based on KEGG

RCLASS. Let us have a look at the example reaction given in equation 1.

S + ATP P + ADP + AMP {1}

Here, all substrate-reaction pairs are S-P, S-ADP, S-AMP, ATP-P, ATP-ADP, ATP-AMP. In

RCLASS most likely only the S-P arc will appear. Arc graph 3 uses S-P, S-ADP, S-AMP.

In most cases the arcs S-ADP and S-AMP are not meaningful connections, however. The

additional arcs in arc graph 3 predominantly consist of this kind of nonsensical arcs. It is

thus reasonable to derive the arcs from KEGG RCLASS and exclude arcs with cofactors and

inorganic metabolites.

Target Statistics

Table B.17 lists the numbers used for the analysis of the target search in the different organism

models in Figure 5.6.
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Table B.13: Top 10 hubs for arc graph 1 of Table B.12 based on KEGG RCLASS without arcs
containing cofactors and inorganic metabolites. The first column gives the number of occurrences,
the second column the KEGG COMPOUND id and the last column the name of the metabolite.

count KEGG id name
167 C00022 pyruvate
107 C00448 trans,trans-farnesyl diphosphate
77 C00033 acetate
72 C00031 D-glucose
65 C00025 L-glutamate
55 C00067 formaldehyde
53 C00024 acetyl-CoA
53 C00058 formate
47 C00084 acetaldehyde
46 C00037 glycine

Table B.14: Top 10 hubs for arc graph 2 of Table B.12 based on KEGG RCLASS including arcs
containing cofactors or inorganic metabolites. The first column gives the number of occurrences,
the second column the KEGG COMPOUND id and the last column the name of the metabolite.
KEGG ids in bold are cofactors or inorganic metabolites.

count KEGG ID name
167 C00022 pyruvate
147 C00010 CoA
107 C00448 trans,trans-farnesyl diphosphate
77 C00033 acetate
72 C00031 D-glucose
67 C00025 L-glutamate
56 C00058 formate
55 C00024 acetyl-CoA
55 C00067 formaldehyde
49 C00037 glycine
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Table B.15: Top 10 hubs for arc graph 3 of Table B.12 based on all substrate-reaction pairs
without arcs containing cofactors and inorganic metabolites. The first column gives the number
of occurrences, the second column the KEGG COMPOUND id and the last column the name of
the metabolite.

count KEGG ID name
2445 C00022 pyruvate
519 C00008 ADP
489 C00021 S-Adenosyl-L-homocysteine
316 C00026 2-oxoglutarate
289 C00015 UDP
242 C00025 L-glutamate
234 C00024 acetyl-CoA
219 C00020 AMP
205 C00029 UDP-glucose
157 C00042 succinate

Table B.16: Top 10 hubs for arc graph 4 of Table B.12 based on all substrate-reaction pairs
including arcs containing cofactors or inorganic metabolites. The first column gives the number
of occurrences, the second column the KEGG COMPOUND id and the last column the name of
the metabolite. KEGG ids in bold are cofactors or inorganic metabolites.

count KEGG ID name
1892 C00001 H2O
1315 C00080 H+

1062 C00007 oxygen
699 C00005 NADPH
620 C00006 NADP+

617 C00004 NADH
577 C00003 NAD+

545 C00008 ADP
500 C00021 S-Adenosyl-L-homocysteine
449 C00002 ATP
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Table B.17: Raw data for plot in Figure 5.6. found and not predicted: targets for which a target
candidate has been found by our method, but that have not been predicted as feasible; found
and predicted: targets for which a target candidate has been found by our method; not found
(connectivity): targets for which a candidate has not been found due to the absence of an arc
path from any start metabolite to the target; not found (feasibility): targets for which a candidate
has not been found due to the lack of a feasible reaction that produces the target; not found
(feasibility): targets for which a candidate has not been found due to other reasons that are
discussed in Section 5.3 Reachability Analysis.

kegg cge eco vna ppun mxa sce spo cgb mpe
found and not pre-
dicted

99 9 15 1 0 2 4 0 11 0

found and predicted 2294 317 335 315 287 250 213 186 185 48
not found (connectiv-
ity - satellite compo-
nents)

1342 534 275 291 291 313 354 301 242 87

not found (connectiv-
ity - components with
start metabolites)

1082 157 184 177 231 144 91 72 95 27

not found (feasibil-
ity)

593 95 53 68 87 52 37 63 50 14

not found (other) 31 16 16 13 6 16 14 15 15 8
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Arc Graph Maps

Figure B.2 shows the arc graphs of the different organism networks. The components colored

in red are components containing potential start metabolites. Components in blue are

components without start metabolites.

(a) cge (b) eco

(c) vna (d) cgb

Figure B.2: Arc graphs of the different organism networks. Red: components containing
potential start metabolite; blue: satellite components without start metabolites.
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(e) ppun (f) mxa

(g) mpe (h) spo

(i) sce

Figure B.2: Arc graphs of the different organism networks (continued). Red: components
containing potential start metabolite; blue: satellite components without start metabolites.
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Arc Graph Component Histograms

Figure B.3 shows the arc graph component histograms of the different organism networks.
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Figure B.3: Arc graph component histograms of the different organism networks.
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Figure B.3: Arc graph component histograms of the different organism networks (continued).

B.3 Components of the kegg Model

The components identified for the kegg model are listed in Table B.18. Component 1 contained

4612 compounds/metabolites representing the central metabolic network. In total there are

481 components with 6246 compounds/metabolites.

We investigated the identified components not directly connected to the main component

1 that contains 4612 compounds in the range from 5 to 33 compounds (Supplementary

Information 3 of (SCHUH et al., 2019)). These are in total 69 components representing 682

compounds/metabolites.

The members of the larger remaining components were of the families of

polyketides including macrolides (21/23, 28/19, 74/13, 63/10, 94/9, 115/9, 217/9, 152/6,

156/6, 112/5) - 10

flavonoids (15/33, 263/9, 210/7, 247/5) - 4
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Table B.18: Components in model kegg

Number of components Size of component (number of compounds)
306 2
80 3
25 4
19 5
10 6
7 7
2 8
8 9
2 10
3 11
3 12
3 13
2 14
1 16
1 17
1 18
1 19
1 20
1 23
1 24
1 31
2 33
1 4612

terpenoids (6/33, 7/31, 185/13, 38/7, 47/7, 245/6, 27/5, 223/5, 270/5) - 9

compounds with gonane type nucleus, also known as perhydrocyclopenta[a]phenanthrene

(e.g. steroids, cholic acid derivatives): (49/18, 5/17, 66/16, 73/7, 168/6, 31/5, 64/5) - 7

xenobiotic compounds, e.g. drugs (32/16, 108/14, 95/12, 109/12, 11/11, 18/11, 36/11,

70/9, 147/9, 206/9, 116/8, 23/7, 114/7, 194/5) - 14

other degradation pathways (30/12, 305/6) - 2

carbohydrate derived (4/24, 134/13, 68/9, 61/8, 180/6, 260/6, 83/5, 101/5, 149/5, 250/5)

- 10

fatty acids and lipids related (25/20, 44/5, 83/5, 101/5, 234/5, 318/5, 318/5) - 7

porphyrins (22/10, 62/6) - 2

amino acid derived (127/7, 69/6, 253/6, 9/5, 188/5) - 5

nucleotide derived (137/5) - 1
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B.4 Target Examples

UDP-glucose

-R00806 : -R00806 UDP-glucose:D-fructose 2-alpha-D-glucosyltransferase dG:
0.02295

substrates:
1 C00089 Sucrose
1 C00015 UDP

products:
1 C00029 UDP-glucose
1 C00095 D-Fructose

R00159 : R00159 UTP phosphohydrolase dG: -41.17

substrates:
1 C00001 H2O
1 C00075 UTP

products:
1 C00009 Orthophosphate
1 C00015 UDP

5-methyl-5,6,7,8-tetrahydromethanopterin

R04456 : R04456 5,10-methylenetetrahydromethanopterin:coenzyme-F420
oxidoreductase dG: 0

substrates:
1 C00876 Coenzyme F420
1 C04377 5,10-Methylenetetrahydromethanopterin
1 C00080 H+

products:
1 C01080 Reduced coenzyme F420
1 C04330 5,10-Methenyltetrahydromethanopterin

R09099 : R09099 5,10-methylenetetrahydromethanopterin:glycine
hydroxymethyltransferase dG: -9.909

substrates:
1 C00065 L-Serine
1 C01217 5,6,7,8-Tetrahydromethanopterin
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products:
1 C00037 Glycine
1 C04377 5,10-Methylenetetrahydromethanopterin
1 C00001 H2O

R04464 : R04464 5,10-Methylenetetrahydromethanopterin:coenzyme-F420
oxidoreductase dG: -10.2

substrates:
1 C01080 Reduced coenzyme F420
1 C04377 5,10-Methylenetetrahydromethanopterin

products:
1 C00876 Coenzyme F420
1 C04488 5-Methyl-5,6,7,8-tetrahydromethanopterin

Biotin

Table B.19 lists reactions in the model that produce biotin but do not belong to the feasible

reactions in the network.

Table B.19: Reactions producing biotin that are not feasible in the network.

KEGG id reaction equation
R10127 biotin sulfoxide + NAD(P)H + H+ <=> biotin + NADP+ + H2O
-R01075 AMP + diphosphate + biotinyl-CoA <=> ATP + biotin + CoA
R01076 biotin amide + H2O <=> biotin + ammonia
R01077 biocytin + H2O <=> biotin + L-lysine

5’-methylthioadenosine

In the following, we list reactions in our model that produce 5’-methylthioadenosine and
belong to the feasible reactions in the network.

R10881
S-Adenosyl-L-methionine + Nocardicin G <=> 5'-Methylthioadenosine + Isonocardicin
C

no arc to target

R00180
S-Adenosyl-L-methionine <=> 5'-Methylthioadenosine + Homoserine lactone

no arc (cofactors)
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no arc to target

R11089
S-Adenosylmethioninamine + Norspermine <=> 5'-Methylthioadenosine +
Caldopentamine + H+

no pathway to substrate

-R01402
Adenine + S-Methyl-5-thio-D-ribose 1-phosphate <=> 5'-Methylthioadenosine +
Orthophosphate

no pathway to substrate

R08359
S-Adenosylmethioninamine + Cadaverine <=> 5'-Methylthioadenosine +
Aminopropylcadaverine

no pathway to substrate

R10338
S-Adenosylmethioninamine + Agmatine <=> 5'-Methylthioadenosine + N1-(3-
Aminopropyl)agmatine

no pathway to substrate

R01920
S-Adenosylmethioninamine + Putrescine <=> 5'-Methylthioadenosine + Spermidine

no pathway to substrate

R00175
S-Adenosyl-L-methionine + H2O <=> 5'-Methylthioadenosine + L-Homoserine

no arc (cofactors)
no arc to target

R11088
S-Adenosylmethioninamine + Norspermidine <=> 5'-Methylthioadenosine + Norspermine
+ H+

no pathway to substrate

R11154
2 S-Adenosylmethioninamine + Spermidine <=> 2 5'-Methylthioadenosine + N4-Bis(
aminopropyl)spermidine
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no pathway to substrate

R00179
S-Adenosyl-L-methionine <=> 1-Aminocyclopropane-1-carboxylate + 5'-
Methylthioadenosine

no arc (cofactors)
no arc to target

R11159
S-Adenosylmethioninamine + Spermidine <=> 5'-Methylthioadenosine + N4-
Aminopropylspermidine

no pathway to substrate

R03726
S-Adenosyl-L-methionine + N6-(Delta2-Isopentenyl)-adenine <=> 5'-
Methylthioadenosine + Discadenine

no arc to target

R03271
S-Adenosylmethioninamine + 1,3-Diaminopropane <=> 5'-Methylthioadenosine +
Norspermidine + H+

no pathway to substrate

R09531
S-Adenosylmethioninamine + Spermidine <=> 5'-Methylthioadenosine + Thermospermine
+ H+

no pathway to substrate

R03072
S-Adenosyl-L-methionine + Nocardicin E <=> 5'-Methylthioadenosine + Isonocardicin
A

no arc to target

R02869
S-Adenosylmethioninamine + Spermidine <=> 5'-Methylthioadenosine + Spermine

no pathway to substrate
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C.1 Pathway Candidates

sucrose -> UDP-glucose

-R00806 : -R00806 UDP-glucose:D-fructose 2-alpha-D-glucosyltransferase dG: 1.06

substrates:
1 C00089 Sucrose
1 C00015 UDP

products:
1 C00029 UDP-glucose
1 C00095 D-Fructose

R00158 : R00158 ATP:UMP phosphotransferase dG: 4.863

substrates:
1 C00105 UMP
1 C00002 ATP

products:
1 C00015 UDP
1 C00008 ADP

Listing 1: Two-step pathway candidate to UDP-glucose from sucrose.

sucrose -> D-glucose 1-phosphate -> UDP-glucose

R00803 : R00803 sucrose:phosphate alpha-D-glucosyltransferase dG: -8.474

substrates:
1 C00009 Orthophosphate
1 C00089 Sucrose

products:
1 C00103 D-Glucose 1-phosphate
1 C00095 D-Fructose
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R00568 : R00568 CTP aminohydrolase dG: -42.62

substrates:
1 C00063 CTP
1 C00001 H2O

products:
1 C00014 Ammonia
1 C00075 UTP

R00289 : R00289 UTP:alpha-D-glucose-1-phosphate uridylyltransferase dG: 0.929

substrates:
1 C00103 D-Glucose 1-phosphate
1 C00075 UTP

products:
1 C00013 Diphosphate
1 C00029 UDP-glucose

Listing 2: Pathway candidate to UDP-glucose from sucrose.

R00156 : R00156 ATP:UDP phosphotransferase dG: -2.68

substrates:
1 C00002 ATP
1 C00015 UDP

products:
1 C00008 ADP
1 C00075 UTP

R00158 : R00158 ATP:UMP phosphotransferase dG: -4.863

substrates:
1 C00105 UMP
1 C00002 ATP

products:
1 C00015 UDP
1 C00008 ADP

R00289 : R00289 UTP:alpha-D-glucose-1-phosphate uridylyltransferase dG: 0.929

substrates:
1 C00103 D-Glucose 1-phosphate
1 C00075 UTP
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products:
1 C00013 Diphosphate
1 C00029 UDP-glucose

-R08639 : -R08639 alpha-D-glucose 1,6-phosphomutase dG: 7.392

substrates:
1 C00092 D-Glucose 6-phosphate

products:
1 C00103 D-Glucose 1-phosphate

Listing 3: Two-step pathway candidate to UDP-glucose from D-glucose 6-phosphate.





D Software

The software developed for this study is divided into two packages. The first package

comprises the tools for model building and model analysis. It is for the most part implemented

in Python 2.7; except the thermodynamics part, which is implemented in Python 3.6. The

implementation makes use of the external packages eQuilibrator (FLAMHOLZ et al., 2012),

graph-tool (PEIXOTO, 2014) and scipy (JONES et al., 2001). The second package is the

implementation of the path-finding algorithm and the pathway ranking and analysis, written

in MATLAB R2019a using IBM ILOG CPLEX as MILP solver.

D.1 Model Building

KEGG Parser

Parsers for extracting the data needed for model building from the raw KEGG entries from

KEGG COMPOUND, REACTION and ENZYME databases were implemented. All parsers

take a raw text entry as input and create an instance of the respective class containing the

relevant data for the model. The parsers can be found in the following scripts in MECATPy_-

KEGG: compound.py, reaction.py, enzyme.py, rclass.py, organism.py and pathway.py.

Parsing the raw data can be invoked by calling the script KEGGreader.py, which only needs

the respective filenames for the raw data and automatically creates Python pickles and

MATLAB dictionaries containing the parsed data.

Model

The network reconstruction models consist of the files listed in Table D.1, which are generated

by the script buildHostModels.py.

183
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Table D.1: Model files. model denotes the chosen model name (typically the KEGG organism
code).

filename description

cofactorsmodel.txt textfile containing the internal ids of the dedicated
cofactor and inorganic compounds

cofactors_namesmodel.txt textfile containing the KEGG ids, names and in-
ternal ids of the dedicated cofactor and inorganic
compounds

compoundsmodel.txt textfile containing the KEGG ids of all compounds
contained in the model

compounds_namesmodel.txt textfile containing the KEGG ids, names and inter-
nal ids of all compounds contained in the model

start_compoundsmodel.txt textfile containing the KEGG ids of the designated
start compounds

start_compounds_namesmodel.txt textfile containing the KEGG ids and names of the
designated start compounds

terminal_compoundsmodel.txt textfile containing the KEGG ids of the designated
basic compounds

terminal_compounds_namesmodel.txt textfile containing the KEGG ids and names of the
designated basic compounds

targets_organism.txt textfile containing the KEGG ids of the potential
target metabolites

targets_organism_names.txt textfile containing the KEGG ids and names of the
potential target metabolites

reactionsmodel.txt textfile containing the KEGG ids of all reactions con-
tained in the model. A ’-’ in front of the id denotes
that the reaction is reversed.

reactions_namesmodel.txt textfile containing the KEGG ids and names of all
reactions contained in the model

reversible_reactionsmodel.txt textfile containing the internal ids of the reversible
reactions (first column: reaction in KEGG direction,
second column: reaction in reversed direction)

reversible_reactions_namesmodel.txt textfile containing the KEGG ids of the reversible
reactions

non_enzymatic_reactionsmodel.txt textfile containing the KEGG ids of the non-
enzymatic reactions contained in the model. A ’-’ in
front of the id denotes that the reaction is reversed.

non_enzymatic_reactions_namesmodel.txt textfile containing the names of the non-enzymatic
reactions contained in the model
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Table D.1: Model files. model denotes the chosen model name (typically the KEGG organism
code) (continued).

filename description

thermodynamics.mat MATLAB map containing the thermodynamic data of all model
reactions

thermodynamicsmodel.map MATLAB struct containing the thermodynamic data of all model
reactions

RxR_keggmodel.txt textfile containing the arcs of the model given as pairs of internal
compound ids and the internal id of the respective reaction

RxR_kegg_namesmodel.txt textfile containing the arcs of the model given as pairs of KEGG
compound ids and the KEGG id of the respective reaction

arcs.mat MATLAB matrix containing the arcs of the model given as pairs of
internal compound ids

Smodel.mat MATLAB matrix with the stoichiometrix matrix. Row and column
indices correspond to the internal compound and reaction indices

model_model.pickle Python pickle file containing the Model class instance of the re-
spective model

feasible_reactions.txt textfile with the KEGG ids and equations of the feasible reactions
(with respect to the given metabolite pool)
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D.2 Path-Finding

Input File

All necessary parameters for the path-finding tool can be given in a special input file, described

in Table D.2.

Table D.2: Parameters for the input file for the path-finding tool.

parameter type comment

DATA_PATH string path to the model data

GENERIC_METABOLITES text file contains generic metabolites

COFACTORS text file contains internal ids of cofactors

START_METABOLITES text file contains internal ids of start metabolites

BASIS_METABOLITES text file contains internal ids of basis metabolites

COMPOUNDS text file contains KEGG compound ids

REACTIONS text file contains KEGG reaction ids

COMPOUND_NAMES text file contains compound names

REACTION_NAMES text file contains reaction names

ARCS text file contains reaction pairs

STOICHIOMETRIC_MATRIX mat MATLAB formatted data containing the stoichiometric
matrix

REVERSIBLE_REACTIONS text file contains reversible reactions

KEGG_DATA_PATH string path to the KEGG data

REACTION_MAP mat MATLAB formatted data containing reaction data

COMPOUND_MAP mat MATLAB formatted data containing compound data

ENZYME_MAP mat MATLAB formatted data containing enzyme data

PATHWAY_MAP mat MATLAB formatted data containing pathway data

NON_ENZYMATIC_REACTIONS text file contains KEGG reaction ids of non-enzymatic reac-
tions

THERMODYNAMICS_MAP mat MATLAB formatted data containing thermodynamics
data

SBML_MODEL xml SBML file of model

REVERSIBILITIES_MAP mat MATLAB formatted data containing reaction reversibil-
ity information

HOST string KEGG organism code
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MILP Generation and Path-Finding

The basic script for the MILP generation and path-finding is fsr.m. It takes the filename of the

aforementioned input file. The basic MILP is set up with the script buildBasicProblem.m,

which is called automatically by fsr.m. The additional constraints to exclude pathways that

have already been found are added successively by the script findSynthesisRoutesAll.m

(also called automatically). There are two modes for path-finding. The default mode is

running the solver until no new pathway candidates can be found. The second one searches

for a user defined number of pathway candidates (at most). This can be set up in the script

findSynthesisRoutesAll.m. All pathway candidates are stored as MATLAB *.mat files in

the predefined folder under the respective target KEGG id and can be analyzed with the

ranking scripts described in the following section.

D.3 Analysis

The analysis encompasses different aspects. The first aspect is the ranking of the pathway

candidates for a given target. The second aspect is the analysis of the network reconstructions.

The last aspect is the analysis of the results of the pathway searches to all possible potential

targets of the network reconstructions.

Ranking

The ranking of pathway candidates for a specific target is done with the MATLAB script

writeTargets.m, which takes the filename of the configuration input file (Table D.2). The

script automatically calls the ranking scripts in the respective order, which can be varied

depending on how much weight a specific ranking function should have in the overall ranking.

In the default case, the order is as given in Table 4.1. The script also writes the pathway

candidates in a user-friendly manner which then can be assessed further.

Model Statistics

The Python script Statistics\ModelStatistics.py provides various model statistics. The

script writes general metabolite statistics including the number of metabolites, number of

external/generic metabolites, the size of the metabolite pool, number of start and basis

metabolites, as well as number of cofactors/inorganic metabolites. The reaction statistics

encompass the number of reactions in the model, number of unique reactions (without

reverse) and number of reversible reactions.
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There are analysis methods that explore properties of the arc graph of the network recon-

structions. For example, the script writes a list of the network metabolites together with

the component to which they belong to (Supplementary Information 3 of (SCHUH et al.,

2019)). This information can also be divided into lists containing all metabolites of the

main component and the metabolites of the other component. It also generates a histogram.

The degree distribution of the arc graphs can also be plotted. The script also performs the

reachability screening presented in Section 5.2. It also outputs the potential targets that are

reachable by BFS and those that are predicted to be feasible.

It is also possible to output the top n hubs in the network depending on the arc construction

method. If arcs with cofactors/inorganics are chosen, the script does also output which of

the top n hub metabolites belong to this group. Common hubs, which appear in the top n

hubs of each network model are also written.

Result Statistics

A prerequisite for the following scripts is that (i) for a given metabolic network reconstruction

the existence of a pathway candidate to each possible target is tested using the path-finding

method and (ii) the results have been processed with the MATLAB script writeTargets.m

to generate the file targets_overview.

The main part of the Python script OrganismResultStatistics.py is the generation of

the raw data and the plot shown in Table B.17 and Figure 5.6 based on the results of the

path-finding experiment. For each model, lists with the targets belonging to each category

are written. The script also determines which targets are common in all organism network

reconstructions (including the pan-organism model) and which ones are unique (excluding

the pan-organism network model).
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