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Abstract 

Unsaturated silicon clusters (siliconoids) arise as transient intermediates during the 

industrial preparation of bulk silicon by chemical vapor deposition of silane precursors. 

Stable representatives reiterate surface features of silicon materials. The present 

thesis deals with the systematic manipulation of the ligand periphery and the cluster 

core of Si6 siliconoids. The attachment of representative electrophiles at that particular 

silicon scaffold is now possible at two distinct vertices and their influence on the 

electronic structure is rationalized. The isolation of boron- and phosphorus-substituted 

derivatives prompted investigations on the incorporation of the dopant atoms in the 

cluster core itself. An NHC-stabilized, cyclic Si2P phosphasilene is shown to dimerize 

upon Lewis-acid induced abstraction of the donating NHC-ligand. The resulting Si4P2 

species exhibit cluster structures reminiscent of the corresponding Si6 siliconoids 

despite their apparent saturated nature. Access to unsaturated ESi5 heterosiliconoids 

(E = B, P) was finally gained via a novel dianionic Si5 cluster, which is obtained by the 

formal reductive cleavage of a SiTip2 moiety from the Si6 siliconoid. The successful 

incorporation of dopant atoms in siliconoids extends the siliconoid/silicon surfaces 

analogy to the technological process of silicon doping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

XII 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

XIII 

Zusammenfassung 

Ungesättigte Siliciumcluster (Silicoide) treten als kurzlebige Zwischenprodukte bei der 

industriellen Herstellung von Bulk-Silicium durch chemische Gasphasenabscheidung 

von Silan-Vorstufen auf. Stabile Vertreter weisen Oberflächenmerkmale von 

Siliciummaterialien auf. Die vorliegende Arbeit befasst sich mit der systematischen 

Manipulation der Ligandenperipherie und des Clusterkerns von Si6-Silicoiden. Die 

Bindung repräsentativer Elektrophile an diesem bestimmten Siliciumgerüst ist nun an 

zwei verschiedenen Positionen möglich und ihr Einfluss auf die elektronische Struktur 

wird rationalisiert. Die Isolierung von Bor- und Phosphor-substituierten Derivaten 

veranlasste Untersuchungen zum Einbau der Dotierelemente in den Clusterkern 

selbst. Es wurde gezeigt, dass ein NHC-stabilisiertes, cyclisches Si2P-Phosphasilen 

bei Lewis-Säure-induzierter Abstraktion des Donor-NHC-Liganden dimerisiert. Die 

resultierenden Si4P2-Spezies weisen trotz ihrer augenscheinlich gesättigten Natur 

Clusterstrukturen auf, die an die entsprechenden Si6-Silicoide erinnern. Ungesättigte 

ESi5-Heterosilicoide (E = B, P) wurden schließlich über einen neuen dianionischen Si5-

Cluster zugänglich, der durch die formale reduktive Abspaltung einer SiTip2-Einheit 

vom Si6-Silicoid erhalten wird. Der erfolgreiche Einbau von Dotierelementen in 

Silicoide erweitert die Silicoid/Silicium-Oberflächen Analogie um den technologischen 

Prozess der Siliciumdotierung. 
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Preface – Silicon Then and Now 

Oxygen as indispensable element for life on earth also makes up almost half of the 

mass of the earth’s crust (46.1%).[1] It might surprise that the second most abundant 

element turns out to be silicon (rather than the carrier of life itself, carbon) with a mass 

fraction of around 28.2%,[1] which only leaves approximately one fourth of the mass for 

the residual 92 natural elements. 

The history of the element silicon goes back to the late 18th century, when Antoine 

Lavoisier first characterized “silice” (silica) as a “salifiable earth”, meaning an ore that 

produces salts upon treatment with acids.[2,3] Despite presumably having produced the 

neat metal, he considered it as a compound rather than an element. He concluded that 

“it is even possible that all substances we call earths may be only metallic oxyds, 

irreducible by any hitherto known process” [3] due to their strong affinity to oxygen. In 

1808, Sir Humphry Davy proposed the name “silicium”, which is derived from the Latin 

“silex” for flintstone while the ending “-ium” implies a metalloid character.[4] Conversely, 

Thomas Thomson argued in 1817 that the “base of silica” shows no metallic character 

at all but rather resembles the non-metallic elements boron and carbon. Hence, he 

changed the ending “-ium” to “-on” and coined the present English1 notation “silicon”.[5] 

The credit of discovery, however, is usually given to Jöns Jacob Berzelius who was 

finally able to isolate silicon in its amorphous form and realizing its elemental nature 

for the first time in 1824.[6] It took another 30 years until Henri Sainte-Claire Deville 

reported on the production of silicon in its crystalline state by electrolysis of a mixture 

of NaCl and AlCl3, which contained small amounts of SiCl4.[7]  

Silicon and its compounds show diverse structural, physical and chemical properties 

and are thus applicable in most areas of today’s everyday life: Silicon dioxide and 

silicates provide the basis for building materials like glass,[8] ceramics[9–11] or 

concrete.[12,13] Polysiloxanes, polymers with a backbone of alternating silicon and 

oxygen atoms better known as silicones, are even similarly multifaceted and used, for 

instance, as lubricants, heat-transfer media, rubbers, paint binders, medicinal implants, 

seals or insulators.[14,15] Silicon in its elemental form represents the prototypical 

semiconductor. Our information technology-centered society would be inconceivable 

without modern high-performance Si-based devices such as photovoltaic cells, thin-

film transistors or microprocessors.[16–22] In order to meet the resulting high demand, 

 
1 In contrast, the notation „Silizium/Silicium” has survived in the German language up to this day.  
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silicon is industrially produced on a huge scale every year (6.7 million metric tons in 

2018 worldwide).[23] Nowadays, metallurgical grade silicon is almost exclusively 

produced by the carbothermal or aluminothermal reduction of silicon dioxide. Most 

high-tech applications require further purification to semiconductor-grade or single 

crystalline silicon, which is routinely achieved by chemical vapor deposition and the 

Czochralski or float zone crystal growth processes, respectively.[17] The 

indispensability of silicon for the still ongoing “digital revolution”[24] has prompted the 

suggestion to refer to the current epoch as the “silicon age”, in reference to the bronze 

and the iron age of past civilizations.[25,26] 
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1. Introduction 

1.1. Perspective and Motivation 

The word cluster, originating from the old English “clyster”, denotes a bunch or group 

of something. Synonyms are for example the terms assemblage, collection, array, 

chunk or batch. The notion of “clusters” is widely used in nearly all sciences: In 

astronomy, the word cluster is typically used to group families of asteroids, stars or 

galaxies. The cluster headache is a medicinal term for a neurological disease, while a 

genetic cluster in biology denotes a group of genes with similar expression. A bunch 

of computers that are coupled in order to increase the processing power are called a 

computer cluster. In musicology, a chord compromised of a group of adjacent tones is 

referred to as a tone cluster.  

In chemistry (and physics) arrays of a relatively small number of atoms that are bonded 

to each other are called clusters and typically regarded as intermediates between 

molecules and bulk solids on grounds of their size as well as structural and electronic 

properties. Numerous examples of both transition metal and main group element 

clusters have been reported. In case of silicon, cage molecules with different 

composition of the corresponding cluster cores are known: The so-called 

silsesquioxanes with the general formula [RSiO1.5]x are based on silica and exhibit 

three-dimensional scaffolds of alternating silicon and oxygen atoms, which are 

substituted by peripheral functionalities R.[27–31] Since every silicon vertex is connected 

to three adjacent oxygen atoms the “polyhedral oligomeric silsesquioxanes” (POSS) 

are regularly referred to as Tx silsesquioxanes with x being the number of silicon atoms 

in the cluster core. The T8 silsesquioxane, for instance, exhibits a cubic structure and 

bears one substituent at every corner of the cube. Spherosilicates are a special case 

of silsesquioxanes, which feature pending -OR substituents and are thus of the general 

formula [ROSiO1.5]x.[28,31–33] Here, every silicon vertex is bonded to four oxygen atoms, 

which is why they are designated with the letter Q. The chemistry of heavier silicon 

chalcogenide cages is much less explored. Still, some examples have been reported 

including Si2E3 bicyclopentanes,[34,35] double-decker and adamantane-like Si4E6 

species,[36,37] Si4E3 cages of different shape (E = S, Se),[38,39] polythiadisilabicycles 

Si2Sx (x = 4-6)[40] as well as a Si4Te6 adamantane.[39] 
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Three-dimensional cage molecules with a scaffold that solely consists of silicon atoms 

can be further subdivided into saturated silicon cages,[41,42] Zintl ions[43–50] and 

siliconoids[51–53] depending on the inherent connectivity of the atoms, the substitution 

pattern and their charge. As the name indicates saturated silicon cages feature only 

saturated, tetracoordinate silicon vertices with at least one stabilizing ligand that is not 

part of the cluster core itself. In contrast, silicon-based Zintl ions are completely 

ligand-free or “naked” polyanionic clusters. Finally, the siliconoids as per definition[51,53] 

feature at least one unsubstituted silicon vertex with a hemispheroidal coordination 

environment (all bonds to neighboring cluster atoms pointing into the same half of a 

sphere) and can be either neutral or negatively charged. 

In the following, after a general classification of the scientific relevance of silicon 

clusters in the context of silicon-based semiconductors, synthetic approaches as well 

as unique structural and electronic properties of all three sub-categories are reviewed 

with specific focus on the chemistry of siliconoids. 

 

The inventions of the metal-oxide-semiconductor field-effect transistor (MOSFET) and 

integrated circuits (IC) in the late 1950’s and early 1960’s initiated the unprecedented 

and fascinating rise of silicon as the most important semiconducting material of our 

time. As early as 1965, Gordon Moore observed the trend that within 6 years after the 

development of the first transistor, the number of components on a single chip and 

thus its computing power had roughly doubled every year.[54] Not seeing any reason 

why this exponential growth should not continue, at least in the short term, he already 

predicted that in the future “integrated circuits will lead to such wonders as home 

computers – or at least terminals connected to a central computer – automatic controls 

for automobiles, and personal portable communication equipment”[54] – and how right 

he was. In 1975, reevaluation of the progress in fabrication of IC’s lead to a rule of 

thumb,[55] which is nowadays generally known as Moore’s law: The number of 

transistors on a single microprocessor which correlates with the chip’s computing 

power doubles around every two years (Figure 1).[56–58] As a consequence thereof, the 

miniaturization of silicon transistors was the main strategy for performance optimization 

and enhancement of computing power of ICs over the last decades.  
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The fabrication of small-sized semiconducting devices is usually achieved by so-called 

top-down methods like the etching or lithography of bulk silicon. Semiconductor grade 

amorphous bulk silicon (a-Si) is typically produced by chemical vapor deposition (CVD) 

of silane precursors (e.g. SiH4). The optical and electronic properties of the final 

deposited material are thought to be strongly dependent and thus principally tunable 

by the incorporation of partially hydrogenated, hence unsaturated silicon clusters of 

the general formula SinHm (n>m, n = 4 to ca. 100) that arise as transient intermediates 

during the gas-phase process.[59–65] As the experimental evaluation of this premise of 

an admittedly vague structure-property relationship is far from trivial simply due to the 

amorphous character of a-Si, numerous computational approaches tried to shed more 

light on this aspect from a theoretical point of view. Not only surprising structural motifs 

and stabilities of such unsaturated silicon clusters were computed, but also simulations 

of deposition dynamics of hydrogenated silicon clusters have been carried out.[66–75] 

Remarkably, in particular silicon atoms in surface-near regions of the bulk material 

show a trend to form cluster-like structures upon a change in their coordination number 

from four to three or five, respectively.[76] The chemical reactivity of silicon surfaces is 

demonstrably determined by unsaturated surface features such as the so-called 

“buckled dimer” and “dangling bonds” with their free valencies.[77–79] By definition, these 

surface atoms must exhibit a hemispheroidal coordination environment. With 

decreasing size of the components in silicon-based semiconductors the corresponding 

ratio of surface to volume constantly increases, hence the influence of surface-near 

incorporated clusters and dangling bonds on the physical and chemical properties 

becomes progressively more dominant. Therefore, the isolation of stable molecular 

silicon clusters is of distinctive interest as they serve as analytically accessible model 

systems for silicon surfaces. In this regard, siliconoids with their “naked”, 

hemispheroidally coordinated silicon vertices (see Chapter 1.4.1.) mimic the dangling 

bonds of bulk silicon surfaces and are therefore of particular interest. 

Nowadays, the sizes of transistors are typically within the nanoregime, where top-down 

processes such as etching become more and more technically demanding and 

expensive. As added complication, transistor sizes are soon expected to hit a limit not 

only because of excessive heat production on the chips but also due to quantum 

confinement effects that currently render electronic properties unpredictable and 

potentially unreliable.[56–58] A different approach is the targeted bottom-up synthesis of 

molecular Si-based systems or Si-nanoparticles[20,80,81] from suitable molecular 
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precursors resulting in strictly defined structural and (opto-)electronic properties. 

Although this approach does not remedy the general problem of quantum confinement 

effects, it might very well help to elucidate structure-property relationships of 

silicon-based nanomaterials more precisely and thus contribute to a better 

fundamental understanding of these. A second prospect is the development of more 

cost-efficient methods for the fabrication of Si-nanodevices. One notable bottom-up 

approach is the solution-phase preparation of nanoparticles by the reduction of silicon 

halides with metals.[82,83] The transient formation of small (poly-)anionic clusters 

appears to be self-evident during such procedures. The group of Kauzlarich provided 

firm evidence for this hypothesis and established the direct use of silicon-based Zintl 

ions (Chapter 1.3.) as a convenient starting material to silicon nanomaterials in a series 

of papers.[84–90]  

 

 

1.2. Saturated Silicon Cages  

Saturated polycyclic oligosilanes of the general formula SinRm (n≤m) are usually 

referred to as silicon cage compounds. Half a century ago in 1970, West reported on 

the first example of a cage polysilane, namely the bicyclo[2.2.2]octasilane Si8Me14 1, 

which was obtained by the reduction of a mixture of Me2SiCl2 and MeSiCl3 with 

sodium/potassium alloy in the presence of naphthalene (Scheme 1).[91]  

 

 

Scheme 1: West’s synthesis of the first bicyclo[2.2.2]octasilane 1, bicyclo[3.3.1]nonasilane 2 and other 
SinMem polysilanes (● = Si, R = Me, n/m = 6/12, 10/16, 10/18, 11/18, 13/22).[91–93]  

 

Only two years later West et al. disclosed an improved synthetic procedure, thus 

providing access to other polycyclic polysilanes consisting of 6 to 13 silicon atoms.[92] 

The molecular structure of the bicyclo[3.3.1]nonasilane Si9Me16 2 was elucidated by 

an X-Ray diffraction study on single crystals by Stallings in 1976 (Scheme 1).[93] 
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Inspired by West’s pioneering work, the groups of Masamune, Ishikawa, Marschner, 

Iwamoto, Sekiguchi and Scheschkewitz provided further important contributions in the 

field of saturated silicon cage compounds regarding synthesis and studies on structural 

and spectroscopic properties. The developed synthetic protocols mainly rely on three 

different approaches: (1) the Wurtz-type coupling of suitable halogenated precursors 

with reducing metals as in the case of 1 (Scheme 1); (2) salt elimination reactions 

between metallated and halogenated (cyclo-)silanes.; (3) aluminum chloride induced 

rearrangement of (poly)cyclic oligosilanes. Typical examples for the latter two are 

shown in Scheme 2. 

 

 

Scheme 2: Syntheses of bicyclo[3.3.1]nonasilane 4[94] and bicyclo[2.2.1]heptasilane 5[95] exemplary for 
the synthetic approaches (2): salt elimination reaction (top) and (3) aluminum chloride induced 
rearrangement (bottom, ● = Si, R = Me, TMS = SiMe3). 

 

To date, not only examples of alkyl-, aryl-, silyl- and even halide-substituted polysilanes 

with bicyclic (A-E),[91–100] tricyclic (F-K)[51,101–106] and tetracyclic (L)[102,107,108] cluster 

scaffolds are known, but also representatives of silicon-based polyhedra such as 

tetrahedra (M),[109,110] prismanes (N),[51,111] cubanes (O)[112–115] and a twenty-atomic 

silafullerane (P)[116] (Chart 1). 
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Figure 2: Schematic representation of the cluster scaffolds of reported saturated polycyclic polysilanes. 

 

While these compounds are very interesting from a fundamental point of view alone, 

permethylated polysilanes have been applied as thermal precursors for the fabrication 

of silicon carbide fibers.[117,118] The electronic structure of oligo- and polysilanes is 

usually determined by -conjugation between Si-Si single bonds, which has been 

extensively discussed in the literature, especially in the case of the corresponding 

linear and ladder congeners.[41,100,117–121] The resulting optical and photochemical 

properties (the -* transitions of oligo- an polysilanes result in UV/vis-absorptions at 

 = 250−400 nm) suggest possible applications in microlithography, 

electroluminescent diodes or as photoinitiators.[118,119,122,123]  In the case of cage 

oligosilanes, studies on their utilization in materials science has not yet been reported 

although initial efforts regarding their functionalization might pave the way to more 

applicable extended systems or the embedding of the corresponding clusters in 

materials: The chloro-functionalized pentasilatricyclo[2.1.0.02,5]pentane 7, for instance, 

can be reduced to the corresponding anionic cage 8.[101] A subsequent 

proof-of-principle substitution reaction with Me3SiCl demonstrated the potential of 8 to 

act as nucleophilic transfer reagent of the tricyclic silicon scaffold (Scheme 3).[101] 
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Scheme 3: Reduction of tricyclopentasilane 7 to the anionic species 8 and subsequent substitution with 
TMSCl (● = Si, SiR3 = SiMetBu2, TMS = SiMe3)[101] 

 

In addition to 7, other cages of the types G and J were directly obtained as the 

halide-functionalized derivatives. In addition, post-functionalization of type C 

octasilanes provides a reliable access to a variety of bridgehead-functionalized 

derivatives.[98–100,124] Interestingly, a phenyl-substituted bicyclo[2.2.2]octasilane 

exhibits intramolecular charge-transfer fluorescence, which hints at the potential of 

silicon clusters to possibly compete with their linear congeners in terms of 

photochemical properties.[125]  

As a first example of an extended chain of silicon clusters, the group of Iwamoto 

reported the successful stepwise synthesis of persilastaffanes with one, two and three 

catenated bicyclo[1.1.1]pentasilane units, respectively (Scheme 4).  

 

 

Scheme 4: Stepwise catenation of bicyclo[1.1.1]pentasilane units to give persilastaffanes 13 and 14 
(● = Si, R = iBu, TMS = SiMe3).[97] 

 

Particularly appealing from an aesthetic point of view are silicon cage compounds with 

polyhedral structure. In 1988, H. Matsumoto described the reduction of either 

2,2,3,3-tetrabromotetrasilane or 1,1,1-tribromodisilane with sodium in toluene to give 
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the very first octasilacubane cage compound 15.[112] Only five years later, the 

Sakurai/Sekiguchi and Wiberg groups obtained the even smaller hexasilaprismane 

16[111] and tetrasilatetrahedrane 17,[109] respectively (Scheme 5). Notably, the 

precursors employed for the preparation of 15-17 bear a close resemblance to one 

another, yet their reduction results in three different polyhedral cluster structures. 

Apparently, the shape and size of the reduction products strongly depend on the choice 

of stabilizing ligands, leaving groups, reducing agents and the solvent, which also 

holds true for the generation of saturated cage compounds of types A-J (Figure 2). In 

fact, this observation is a manifestation of the general rule that larger substituents 

enforce larger exohedral and therefore smaller endohedral bonding angles.  

 

 

Scheme 5: Syntheses of the first polyhedral silicon clusters: octasilacubane 15,[112] hexasilaprismane 
16[111] and tetrasilatetrahedron 17[109] (● = Si, R = SiMe2

tBu, R’ = Dip = 2,6-iPr2C6H3, R’’ = SitBu3). 

 

Later, the group of Lerner developed a convenient one-pot-synthesis for the generation 

of Wiberg’s tetrasilatetrahedrane 17[126] and a second example of a Si6R6 

hexasilaprismane was reported by the Scheschkewitz group.[51] Further 

representatives of Si8R8 octasilacubanes with varying ligands have been isolated and 

characterized by the groups of H. Matsumoto,[113] Sekiguchi[114] and N. Matsumoto.[115] 

The group of Unno demonstrated that octasilacubanes can be halogenated upon ring-

opening to give functionalized tetracyclic cages of type J (Figure 2).[107,108] Subsequent 



1.2. Saturated Silicon Cages 

19 

reduction results in the recovery of the intact octasilacubane system.[124] Similar 

reactivity was reported for the tetrasilahedrane 17, which can be oxidatively opened 

with iodine to the corresponding unsaturated cyclotetrasilene.[127]  

To date, only two examples of functionalized silicon clusters with uncompromised 

polyhedral scaffold were reported by the groups of Sekiguchi and Klapötke: The 

reductive cleavage of a silyl-substituent from tetrasilatetrahedranes 17 and 18 gives 

access to the corresponding anionic species 19 and 20 (Scheme 6).[110,128] Reactivity 

studies of 19 and 20, however, cast doubts on their capability of the nucleophilic 

transfer of the unperturbed tetrahedral Si4 cluster core, which is apparently rather 

prone to -bond cleavage.[128,129] 

 

 

Scheme 6: Generation of tetrasilatetrahedranides 19 and 20 by reductive cleavage of a silyl-substituent 
from the tetrasilahedranes 17 and 18 (● = Si, 17,19: R = SitBu3; 18,20: R = SiMe(CH(SiMe3)2)2).[110,128] 
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1.3. Zintl Ions of Silicon 

1.3.1. Historical Background 

Ligand-free, polyanionic clusters of p-block elements are known as Zintl ions. Their 

chemistry finds its beginning around 130 years ago in 1891, when Joannis reported on 

the generation of deep green solutions on mixing of the pure elements sodium and 

lead in liquid ammonia.[130] Shortly thereafter, in the early 20th century, especially the 

work of Kraus, Smyth and Peck contributed to the assumption that solutions of alkali 

metals and main-group elements contain highly reduced species of the more 

electronegative p-block element.[131–134] It was Eduard Zintl who finally shed more light 

on this hypothesis in 1931. In comprehensive studies, Zintl and co-workers reacted 

solutions of sodium in liquid ammonia with soluble salts of a huge variety of main group 

elements.[135] They observed that elements of the Groups 1 to 3 regularly form 

insoluble intermetallic phases or alloys. In contrast, the electronegativity difference 

between the alkali metal and the main group element of the Groups 4 to 7 exceeds a 

certain value so that they rather form soluble “salt-like” compounds with discrete 

anions. With the help of potentiometric titrations, they determined the composition of 

these salts. The deep green solution formed from sodium and lead in liquid ammonia 

(first described by Joannis around 40 years earlier) was found to mainly contain 

Na4Pb9.[135] Further corroboration was obtained from the dissolution of preformed solid 

alloys of sodium and lead in liquid ammonia, which results in the same solutions of 

Na4Pb9.[136] According to Zintl, the idealized complete electron transfer from the 

electropositive alkali metal to the electronegative p-block element must result in the 

formation of polyanionic species containing more than one atom. At this point, 

however, Zintl believed that the corresponding lead polyanion were a complex of a 

central Pb4− anion coordinated by eight additional neutral lead atoms. In the meantime, 

several reports on structure elucidations of nine-atomic polyanionic clusters of the 

tetrel elements have been published demonstrating the polyhedral nature of the 

species (see following chapters). In an obituary notice on Eduard Zintl in 1941, Fritz 

Laves proposed to refer to the above-mentioned border between the Groups 1-3 and 

the Groups 4-7 in the periodic table as the “Zintl border” in honor of Zintl's pioneering 

work. In analogy, the salt-like phases of alkali metals with elements right from the “Zintl 

border” are called “Zintl phases”.[137] Several review articles have already highlighted 

the manifold aspects of Zintl ion chemistry in past decades.[43–50] The following 
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chapters will mainly focus on the chemistry of silicon-based Zintl ions with some 

references to their heavier congeners of Group 14.  

 

 

1.3.2. Solid-State Zintl Phases of Group 14 

Solid Zintl phases of the tetrel elements can be easily synthesized by simple melting 

of the elements in the appropriate molar ratio. For a long time, only the composition of 

the resulting salt-like solids was known. In 1953, Shoemaker was finally able to identify 

the structure of the alleged polyanionic species in the alloy NaPb as an [Pb4]4− 

tetrahedron with the help of an X-ray diffraction study.[138] Somewhat surprisingly, the 

detection of the larger nine-atomic [E9]4− cluster (E = Group 14 element) in solid-state 

took another 44 years until Sevov accomplished the structure determination of the Zintl 

phase Cs4Ge9 in 1997.[139] Up to date, the [E4]4− and [E9]4− are the most frequently 

occurring Zintl clusters and typically present in solid binary phases of the general 

formula A4E4
[140–146] and A4E9,[139,147–151] respectively, while both can also be found 

coexistent in A12E17
[152–155] phases in a 2:1 ratio (A = alkali metal, E = Group 14 

element). Besides that, ternary Zintl phases A7A’E8
[156–159] and K6Rb6Si17

[160] with two 

different alkali metals incorporated are known. Notably, in the case of silicon the 

nine-atomic Zintl ions [Si9]4− are only found in A12Si17 phases, while phases of the type 

A4Si9 remain elusive.  

Despite the omnipresence of the [E4]4− and [E9]4− cluster species in solid Zintl phases 

of the tetrel elements, there are also few reports on phases containing polyanions of 

different charge and shape: In case of tin, the eight-atomic [Sn8]6− cluster with a 

square-antiprismatic shape was reported by Sevov.[161] Butterfly-shaped [E4]6− anions 

are present in Ba3E4 phases (E = Si, Ge).[162,163] Furthermore, Zintl phases containing 

“Y-shaped” [Si4]12− stars,[164,165] five-membered [E5]6− rings (E = Si-Pb)[164–169] or even 

six-membered [E6]10− rings (E = Si, Ge)[170,171] are known. 

 

 

1.3.3. Group 14 Zintl Ions in Solution 

While solid Zintl phases are insoluble in common organic solvents due to their strong 

polarity due to effective charge separation, they can be dissolved in liquid ammonia at 
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low temperatures. Phases of the types A4E9 and A12E17 show better solubility than the 

corresponding A4E4 phases owing to their lower charge per atom. In the early 1970’s, 

Kummer and Diehl employed ethylenediamine (en) as alternative solvent and were 

able to isolate and structurally characterize the compound Na4Sn9∙7en, which for the 

first time provided proof for the retention of the discrete polyanions of Zintl phases upon 

dissolution.[172–174] Higher quality crystalline material from solutions containing [E9]n− 

Zintl ions was later obtained by changing the solvent[175] and especially by employing 

cation sequestering agents such as cryptands[176,177] or crown-ethers.[178] It took almost 

another 40 years until Korber demonstrated that also the smaller [E4]4− species 

(E = Sn, Pb) can be preserved in solution.[179] In case of the heavier atoms tin and lead, 

solutions of their Zintl ions can be prepared directly by dissolving the pure elements in 

liquid ammonia at low temperatures. The corresponding germanium and silicon 

analogues are only available by the dissolution of the appropriate Zintl phases 

synthesized at high temperature that contain the precast cluster polyanions. 

For a long time, the silicon-based Zintl anions [Si4]4− and [Si9]4− remained elusive in 

solution. As A4Si4 phases are virtually insoluble in liquid ammonia or comparable 

solvents and A4Si9 phases do not exist, attempts to isolate the silicides from solution 

relied on the extraction of A12Si17 phases containing both [Si4]4− and [Si9]4− in a 2:1 ratio 

with liquid ammonia. First evidence for the presence of [Si4]4− and [Si9]4− in these 

solutions was provided by the isolation of corresponding transition-metal complexes 

(see Chapter 1.3.5.) and NMR-spectroscopical data (see Chapter 1.3.4.). The highly 

reduced tetrahedral [Si4]4− cluster exhibits a large ratio of charge per atom of −1, and 

is thus very prone to oxidation reactions, which is generally considered the main reason 

for the difficulties in the isolation of this species. In the larger [Si9]4− Zintl ion, every 

cluster vertex bears an average charge of only −0.44. [Si9]4− should therefore be viable 

in solution. In comparison to its heavier congeners [E9]4− (E = Ge, Sn, Pb), however, 

the four negative charges are distributed over a smaller volume due to the smaller 

atomic radius of the silicon atoms suggesting higher reactivity and thus lower stability 

in solution. Indeed, while reports on the first solvate crystal structures of [E9]4− date 

back to the 1970s (E = Ge[180], Sn[172]) and 1990s (E = Pb[181]), respectively, the 

isolation and structural characterization of the corresponding tetraanionic nonasilicide 

remained elusive until Korber’s reports on the ammoniates Rb4Si9∙(NH3)x (x = 4.75 and 

x = 5) in 2009 and 2010.[160,182] Very recently, the groups of Fässler and Korber also 

structurally characterized K8[Si9][Si4]∙(NH3)14.6 and Rb1.2K2.8Si4∙(NH3)7 providing further 
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direct evidence that also the smaller, highly charged [Si4]4− cluster is retained in 

solution.[183,184] 

Prior to these pioneering works, the dissolution of A12Si17 phases resulted in the loss 

of one electron and thus the isolation of the oxidized [Si9]3− cluster anion.[185] With mild 

oxidants such as Ph3GeCl, Me3SnCl or tBuCl the targeted generation of the 

corresponding dianionic species [Si9]2− is possible.[186] Furthermore, two examples of 

the isolation of a [Si5]2− species were reported, the formation mechanism of which 

remains obscure.[182,185] The structures of all known silicon-based polyhedral Zintl ions 

are depicted in Figure 3. 

 

 

Figure 3: Structures of silicon-based polyhedral Zintl ions (● = “naked” Si) detected in solid-state ([Si4]4− 
and [Si9]4−) and solution ([Si4]4−, [Si5]2− and [Si9]n− with n = 2−4). 

 

According to the so-called Zintl-Klemm concept,[46,48,50,187–189] the valence electrons of 

the electropositive alkali metal in Zintl phases are completely transferred to the more 

electronegative p-block element. In line with the (8-N) rule, the subtraction of the 

average concentration of valence electrons from 8 gives the average number of bonds 

per main-group atom. This allows for an electron-precise description of the resulting 

structure, which often resembles known allotropes of the corresponding isoelectronic 

element. As an example, in the case of [Si4]4− every silicon atom formally exhibits five 

valence electrons and thus forms three bonds to adjacent silicon atoms. The 

tetrahedral structure of the tetraanionic Si4 cluster is indeed reminiscent of the well-

known P4 tetrahedron. Alternatively, the cluster shapes of silicon-based Zintl ions can 

be rationalized by the Wade-Mingos Rules, which have been developed to describe 

bonding situations in borane and carborane cluster species by Kenneth Wade and 

expanded towards other main group and transition metal species by Mike Mingos.[190–

193] In this approach, every silicon atom provides two electrons for cluster bonding and 

thus for both the [Si4]4− and the [Si5]2− species 12 skeletal electrons are available. While 
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[Si5]2− forms a closo (2n+2) trigonal-bipyramidal framework, the nido (2n+4) cluster of 

[Si4]4− is derived by removal of one apical vertex, which results in a (pseudo-) 

tetrahedral appearance (Figure 3). Depending on the charge, the nine-atomic Zintl ions 

of silicon adopt either a closo tricapped trigonal antiprism with D3h symmetry ([Si9]2−, 

2n+2 = 20 electrons, Figure 3) or a nido monocapped square antiprism with C4v 

symmetry ([Si9]4−, 2n+4 = 22 electrons, Figure 3). Accordingly, the trianionic [Si9]3− Zintl 

cluster possesses 21 skeletal electrons and its structure should be somewhere in 

between the former two, which was experimentally confirmed by Sevov et al. in 

2004.[185] 

Unsurprisingly, the structurally characterized silicon-based Zintl clusters known to date 

regularly show slight to pronounced distortions from the perfect D3h and C4v 

symmetries, which can be regarded as a manifestation of the low energy barrier 

between the two conformations.[46,48]  

 

 

1.3.4. NMR spectroscopy 

In the context of the synthesis of silicon nanoparticles from the Zintl phase Na4Si4, the 

group of Kauzlarich reported the corresponding 29Si MAS NMR signal of the [Si4]4− 

tetrahedron in solid-state for the first time in 2001.[86] The high-field shift of the two 

resonances detected for the two independent crystallographic sites at  = −365.5 ppm 

and  = −361.2 ppm was explained by the donation of electrons from the electropositive 

sodium atoms to the electronegative silicon atoms, which is in line with the Zintl-Klemm 

concept described in the previous chapter. This explanation was adopted in several 

other reports on MAS NMR studies on solid-state Zintl phases and is nowadays widely 

accepted. The rationalization of the similarly high-field shifted 31P NMR resonance of 

the isoelectronic P4 tetrahedron by magnetically induced cluster currents,[194] however, 

casts doubt on the regularly cited explanation in the case of [Si4]4− and surely demands 

future in-depth theoretical investigations in this regard. All reported 29Si MAS NMR 

chemical shifts for silicon-based Zintl phases are summarized in Table 1.[86,159,195–200] 

The decreasing shielding of the silicides with increasing atomic number of the counter 

cation was tentatively attributed to the less efficient transfer of electrons from the alkali 

metal to silicon despite the increasing electronegativity difference.  
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Table 1: Reported 29Si MAS NMR data for silicon-based binary Zintl phases A4Si4, K12Si17 and ternary 

Zintl phases A7NaSi8, K6Rb6Si17 (A = alkali metal, iso = isotropic chemical shifts).[86,159,195–200] 

Zintl phase A iso
29Si [ppm] 

A4Si4 

Na −365.5 / −361.2 

Na −364 (broad) 

Na −365.5 / −361.2 

K −346.2 / −322.6 

Rb −304.3 / −292.0 

Cs −188.8 

A12Si17 K 
[Si4]4−: −326 / −317 / −316 

[Si9]4−: −344 / −331 / −322 / −320 

A7NaSi8 

K −369.7 / −357.2 

Rb −344.0 / −324.3 

Cs −279.4 / −234.6 

A6A’6Si17 K/Rb −311 (broad) 

 

In 2013, the groups of Korber and Gschwind characterized the bare silicide [Si4]4− in 

solution.[200] The 29Si NMR resonance at  = −323.0 ppm was detected using a 29Si 

isotopically enriched sample of the Zintl phase K6Rb6Si17. The moderate upfield shift 

of 12 ppm compared to the corresponding 29Si MAS NMR spectrum of the solid starting 

material was rationalized by dissociation of the ions and thus enhanced charge 

separation in solution. This assumption was corroborated by comparison with the 

situation in case of the analogous tetrastannide [Sn4]4−, which gives rise to an upfield 

shifted signal ( = −98 ppm) in the 119Sn NMR spectrum in the presence of 

[2.2.2]cryptand as cation sequestering agent in a similar manner.[200] In the last two 

years, the groups of Korber, Gschwind and Fässler extended the list of soluble Zintl 

ions detected by 29Si NMR spectroscopy with [Si5]2− and [Si9]2− as well as the 

protonated species [-HSi4]3−, [HSi9]3− and [H2Si9]2−[199,201,202] (Table 2). Almost without 

exception, all species show the typical high-field shifted resonances close to those 

observed for the corresponding solid Zintl phases (Table 1 and Table 2). Only the 

apical vertices in the dianionic Si5 species give rise to an extremely low-field shifted 

resonance at  = +348.7 ppm.[202] Unfortunately, this unusual offset of the 29Si NMR 

signals of two adjacent vertices in the same cluster core was not explained in more 

detail. While in the nine-atomic species, protonation takes place at a distinct vertex, 

the smaller four-atomic congener was found to be protonated at one edge of the 

tetrahedral scaffold under formation of a 3c-2e SiHSi bond.[202]  
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Table 2: Reported 29Si NMR data for silicon-based Zintl ions in solution.[199–202] 

Dissolved Zintl phase Detected Zintl ion Solvent 29Si [ppm] 

K6Rb6Si17 [Si4]4− NH3  −323.0 

K6Rb6Si17 [-HSi4]3− NH3  −404.5 / −327.8 

K6Rb6Si17 [Si5]2− NH3 −347.8 / +348.7 

K12Si17 [Si9]2− py-d5 / thf-d8 (1:1) −309.4 

K6Rb6Si17 [HSi9]3− NH3 −358.5 / −158.5 

K12Si17 [H2Si9]2− py-d5 / thf-d8 (1:1) −346.1 

 

 

1.3.5. Functionalization  

In principal, the multiple negative charges of Zintl anions could be expected to exhibit 

a certain nucleophilicity and thus be suitable starting materials to access partially 

substituted derivatives with reduced charge by treatment with appropriate 

electrophiles. The formal stepwise addition of n R+ substituents to the smallest 

silicon-based Zintl cluster [Si4]4− would result in the corresponding ligand-stabilized 

anionic cage compounds Si4Rn
(4-n)− (n = 1-3) or even the neutral tetrahedrane (n = 4). 

This hypothetical reaction would thus establish a link between the Zintl anion [Si4]4− 

and Wiberg’s iconic tetrasilatetrahedrane 17[109] as well as the corresponding 

monoanionic Si4R3
− species 19[128] (Scheme 7) and thus conceptually connect the 

fields of Zintl ion chemistry (Chapter 1.3.) and saturated silicon cage compounds 

(Chapter 1.2.). 

 

 

Scheme 7: Hypothetical stepwise replacement of the negative charges of the Zintl ion [Si4]4− with R+ 
substituents to give the anionic and neutral tetrasilahedranes 19,20 and 17,18, respectively. Conversely, 
the reductive cleavage of one R-substituent from 17,18 to give anionic 19,20 was successfully 
demonstrated (● = Si, ● = “naked” Si, 17,19: R = SitBu3; 18,20: R = SiMe(CH(SiMe3)2)2; remark: R+ could 
principally be any electrophile). 
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This intriguing concept has not been realized experimentally in the case of 

silicon-based Zintl anions until recently. The associated difficulties are generally 

attributed to the high negative charge of Zintl anions leading to the insolubility in 

common organic solvents and an exceptionally high reduction potential. A first step in 

the opposite direction has been taken by the groups of Sekiguchi and Klapötke, who 

were able to reductively cleave one R-substituent from neutral tetrasilatetrahedranes 

17 and 18 to give the corresponding monoanionic clusters 19 and 20.[110,128] Even 

though the strongly reduced charge in 19 and 20 as compared to the tetraanionic bare 

silicide [Si4]4− should alleviate the mentioned difficulties, even in these cases a 

successful electrophilic substitution upon retainment of the unperturbed silicon 

tetrahedron is still eagerly awaited. The only example of a rational chemical 

transformation of the smallest silicon-based Zintl ion [Si4]4− is the reaction of a solution 

of K6Rb6Si17 in liquid ammonia with mesityl copper, which results in the formation of 

the corresponding complex [(MesCu)2Si4]4− 21[203] (Figure 4). The central Si4 

tetrahedron in 21 is capped by to 3-coordinated CuMes fragments and thus retains its 

tetraanionic charge. The isolation of 21 provided initial evidence for the persistence of 

the highly charged [Si4]4− in solution prior to the first reports on crystal structures of 

solvates of [Si4]4− by Korber[184] and Fässler[183]. 

The lower charge per atom and the apparently somewhat higher stability in solution 

(see Chapter 1.3.3.) of the bigger [Si9]4− species suggest an improved control of its 

reaction behavior. Indeed, more examples of transition-metal complexes have been 

reported in comparison to [Si4]4−. Treatment of solutions of K12Si17
 with ZnPh2 and 

NHCDipCuCl resulted in the formation of the corresponding 4-coordinated transition-

metal complexes [Si9Zn-Ph]3− 22[204] and [Si9Cu-NHCDip]3− 23,[205] respectively (Figure 

4). A comparable reaction of K6Rb6Si17 with [Ni(CO)2(PPh3)2] in liquid ammonia yields 

the binuclear complex [Si9Ni(CO)2]28− 24.[206] Here, the nickel centers bridge two [Si9]4− 

moieties over a central Si4Ni2 six-membered ring (Figure 4). Recently, the group of 

Fässler finally reported on the first example of a successful threefold silylation of the 

[Si9]4− motif to give the anionic [Si9(SiH(tBu)2)3]− cluster 25[207] (Figure 4, see also 

Chapter 1.4.2.), which might pave the way for more extensive investigations regarding 

the functionalization of silicon-based Zintl ions in the future. 
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Figure 4: Reported transition-metal complexes of silicon-based Zintl ions (21-24) and the threefold 
silylated Si9R3

− siliconoid 25 (● = Si, ● = “naked” Si; 222-crypt = 4,7,13,16,21,24-hexaoxa-1,10-diaza-
bicyclo[8.8.8]hexacosane; R = SiH(tBu)2).[203–207] 

 

The reactivity of heavier Group 14 Zintl anions (in particular those of germanium) is 

much more widely explored and has been subject to various review articles.[45–49] 

Besides the herein described oxidative coupling reactions, the generation of transition-

metal complexes and the synthesis of endohedrally filled Zintl clusters, especially the 

targeted silylation,[208–212] arylation/alkenylation[213–216] and catenation[217–226] of 

germanium-based Zintl ions have moved into focus in recent years. 
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1.4. Siliconoids 

1.4.1. Definition 

Around the turn of the millennium the Schnöckel group pioneered a synthetic route to 

stable, molecular Group 13 clusters by treatment of metastable solutions of 

monohalides MX (M = Al, Ga; X = halide) with nucleophilic scavenging reagents.[227–

230] Remarkably, examples with up to 84 metal atoms in the cluster core and diameters 

of up to two nanometers have been reported.[231] In this regard, Schnöckel introduced 

the term “metalloid”[227–229] to describe these kind of clusters, which feature more metal-

metal than metal-ligand bonds and as well as exposed cluster atoms that are 

completely free of peripheral bonds.[229] As a consequence of these “naked” vertices 

with a formal oxidation state of zero, the average oxidation state of the cluster atoms 

is between 0 (as in the element) and +I (as in the low-valent precursors). Therefore, 

and due to the occasional resemblance of the scaffolds to excerpts of the neat metal's 

solid-state structure, they are regularly considered as molecular model systems for the 

elemental bulk.  

Initiated by various reports on the isolation of related cluster compounds of tin and 

germanium, Schnepf expanded Schnöckel's concept of “metalloid clusters” to Group 

14 elements in 2007.[232] Accordingly, in a Group 14 metalloid cluster of the general 

formula EnRm (n>m) “naked” and substituted tetrel atoms coexist. The average 

oxidation state is set between 0 and +I per definition despite the fact that the standard 

low-valent oxidation state in Group 14 is +II (rather than +I as in Group 13). This 

definition is backed by the fact that even Group 14 halides of the oxidation state +I 

become dominant in the gas phase at the high temperatures applied during the 

synthetic procedure. Nonetheless, the more recent isolation of Ge14Br8(PEt3)4 as one 

of the metastable germanium precursors derived from such a high temperature 

process provided strong hints at the intermediacy of germanium(II) bromide.[233] In 

order to emphasize their proposed intermediacy during the CVD fabrication of a-Si (see 

Chapter 1.1.), our group coined the notation “siliconoid” for unsaturated, molecular 

silicon clusters with at least one “naked” cluster vertex irrespective of the average 

oxidation state.[51] By employing the presence of such a hemispheroidally coordinated 

vertex as a sole criterion to decide whether a silicon cluster can be regarded as a 

siliconoid, we avoid ambiguities in case of systems containing electron-precise 
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moieties with silicon in the oxidation state +IV, potentially raising the average oxidation 

state above a certain threshold. 

With the empirical formula of Si5(Si(SitBuMe2)3)4 and the resulting average oxidation 

state of the silicon atoms within the bicyclic scaffold, Kira’s spiropentasiladiene 26[234] 

(Scheme 8), for instance, does fulfill the criteria of a metalloid cluster according to 

Schnöckel and Schnepf, but should not be referred to as a siliconoid according to our 

own definition due to its electron-precise nature and the resulting absence of a 

hemispheroidally coordinated silicon vertex. 

 

 

Scheme 8: Synthesis of spiropentasiladiene 26 as side product of cyclotrisilene 27 (● = Si, ● = “naked” 
Si; R = tBuMe2Si).[234] 

 

Due to the increasing importance of surface features at the nanoscale and below, the 

resemblance of “naked”, hemispheroidally coordinated vertices in siliconoids to the 

so-called dangling bonds of silicon surfaces, is an integral aspect of their use as 

molecular model systems in order to allow for a better understanding of the chemical 

reactivity of such surfaces at various scales by making use of the vast analytic toolbox 

of molecular chemistry. In many cases, hemispheroidal coordination of a vertex in a 

silicon cluster is obvious and can be readily distinguished from regular tetrahedral 

coordination environments by visual inspection. For borderline cases, we recently 

proposed a quantitative geometrical approach, which allows for the facile identification 

of hemispheroidal coordination environments and provides an index for the degree of 

hemispheroidality, the hemispheroidality parameter   

As per definition, (pseudo-)tricoordinate vertices must always be hemispheroidally 

coordinated with the trigonal planar case being the only exception. For tetracoordinate 

vertices, the procedure is slightly less straightforward (Figure 5). In a first step, a 

reference plane is defined by those three directly bonded cluster vertices for which the 

sum of angles about the atom in question is closest to 360° (step 1). The deviation d 

of the fourth atom of the coordination sphere from this plane is measured and arbitrarily 
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set to a negative value (step 2). As a consequence, the deviation  of the scrutinized 

atom from the plane is negative if it resides on the same side as the reference atom 

used in step 2 and positive if it is located on the other side. This value  is the called 

the hemispheroidality parameter. Positive  values indicate a hemispheroidal 

coordination environment, negative  values a (distorted) tetrahedral coordination 

environment and  = 0 the exceptional planar tetracoordinate case (step 3). 

 

 

Figure 5: Determination of the hemispheroidality parameter  in order to distinguish between 

tetrahedral (left,  negative) and hemispheroidal (right,  positive) coordination environments (● = 
“naked” Si, ● = bonded Si atoms, which span the reference plane, ● = residual Si atom of coordination 

sphere, d = deviation of ● from reference plane,  = deviation of ● from reference plane = 
hemispheroidality parameter). 
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1.4.2. Synthesis and Structure 

As already mentioned in the previous chapter, the syntheses of metalloid clusters of 

the Group 13 elements mainly rely on protocols involving metastable solutions of 

low-valent monohalides of the appropriate metal.[227–231] Comparable approaches 

allowed for the generation of numerous metalloids in the case of germanium,[232,235–237] 

tin[232,237,238] and lead.[232] In the case of silicon however, potential (meta-)stable low-

valent (pseudo-)halide precursors were not accessible before 2006, when Roesky 

reported on the successful isolation of the first monomeric amidinate-stabilized 

chlorosilylene.[239] Even though further representatives became available in the 

meantime,[240–246] synthetic protocols for the generation of siliconoids based on 

Si(II)(pseudo-)halide precursors are still unknown. Instead, three alternative synthetic 

strategies were established and have been proven convenient in recent years: (1) the 

usage of disilenide precursors, which are heavier analogues of vinyl anions, (2) the 

reductive coupling of two or more suitable halogenated precursors, which is highly 

reminiscent of the most popular approach towards saturated silicon cages (see 

Chapter 1.2.) and (3) the partial substitution of silicon-based Zintl anions.  

Method (1) lead to the first stable siliconoid with a hemispheroidally coordinated vertex, 

which could be successfully synthesized and isolated by Scheschkewitz in 2005.[247] 

The treatment of a fourfold excess of lithium disilenide 28 with SiCl4 affords the Si5 

siliconoid 30 in 37% yield (Scheme 9). The systematic formation of the by-product of 

the oxidation of 28, the peraryl-substituted tetrasilabutadiene, suggests that 28 

simultaneously acts as both nucleophile and reducing agent in this reaction. Notably, 

the disilenide 28 itself is accessible by reductive coupling of Tip2SiCl2,[248] which 

corresponds to method (2) for the synthesis of siliconoids. In a collaborative effort of 

the groups of Jutzi and Scheschkewitz, 30 was also detected as one of the products 

of the reaction of 28 with half an equivalent of the SiCp* cation (Scheme 9).[249] Notably, 

the hydrogen-substituted parent species 30H (R = R' = H) is only a transition state on 

the potential energy surface of Si5H6.[247] This computational result had initially cast 

doubts on the constitution of 30,[250] which, however, were rebutted by the identification 

of 30Dip (R = R' = 2,6-diisopropylphenyl) as a local minimum.[249] In addition, Iwamoto 

and co-workers later demonstrated that the five-atomic cluster core of 30 can also be 

stabilized by a different set of ligands. Accordingly, potassium disilenide 29[251] reacts 

with SiCl4 to give the closely related Si5 siliconoid 31 with two tert-Butyl and two 

1,4-butylene substituents in 63% yield (Scheme 9).[252] 
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Scheme 9: Syntheses of Si5 siliconoids 30[247,249] and 31[252] starting from disilenides 28[248] and 29 
(● = Si, ● = “naked” Si; Cp* = pentamethylcyclopentadienyl, A− = B(C6F5)4

−; tBu = tert-Butyl; 
TMS = SiMe3; 30: R = R’ = Tip = 2,4,6-iPr3C6H2; 31: R-R = C((SiMe3)2CH2)2, R’ = tBu). 

 

Both 30 and 31 feature an unsubstituted vertex that is hemispheroidally coordinated 

with relatively small  values of 0.1915 Å (30) and 0.1826 Å (31). The general 

procedure for the determination of  as outlined in Chapter 1.4.1., will be demonstrated 

in an exemplary manner on the solid-state structure of the first siliconoid 30 with a 

five-atomic scaffold (Figure 6). The vertices Si2/Si3 and Si1/Si4 are each substituted 

by one and two Tip-ligands, respectively. Only Si5 is completely free of bonds other 

than those to the adjacent vertices Si1 to Si4 and its coordination environment is thus 

to be determined as follows: as the largest sum of angles around Si5 is the one 

involving Si1, Si3 and Si4 (323.76°), the reference plane is defined by these three 

atoms (step 1). The distance d of the fourth atom of the coordination sphere of Si5 from 

the reference plane is arbitrarily set to a negative value (Si2, d = −1.4434 Å, step 2). 

As the “naked” silicon vertex Si5 is located on the other side of the reference plane it 

shows a positive deviation and thus a positive hemisperoidality parameter  (Si5, 

 = 0.1915 Å, step 3). Si5 therefore exhibits a hemispheroidal coordination 

environment (Figure 6). 
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Figure 6: Exemplary determination of the hemispheroidality parameter  for the “naked” vertex Si5 in 
the first siliconoid 30[247] reported by Scheschkewitz (Si1/Si4 = SiTip2, Si2/Si3 = SiTip, Si5 = “naked” Si). 

 

The silicon scaffolds of 30 and 31 appear to be highly distorted due to transannular 

interactions. Structural features are exemplary reproduced for 30: In fact, the mono 

substituted vertices of the central three-membered rings also show slight 

hemispheroidalities ( = +0.1243 Å and +0.1307 Å), despite the presence of a 

stabilizing ligand. While the bond length between the formally sp2-hybridized SiR 

vertices (2.306 Å) is expectedly somewhat shorter than a Si-Si single bond, the two 

transannular distances to the “naked” silicon vertex are somewhat longer (2.343 and 

2.337 Å) and fall within the usual range of a single bond. The two planes defined by 

R-SiR-SiR2 are almost perpendicular to one another with a torsion angle of 88.7°. 

Thermal treatment of Iwamoto’s Si5 siliconoid 31 at 40°C for 10 hours results in the 

extrusion of a dialkylsilylene, which readily isomerizes to the thermodynamically 

favored silene 33. Dimerization of the apparently unstable Si4 intermediate affords the 

Si8 siliconoid 32 with two “naked” Si vertices in 61% yield (Scheme 10).[252]  
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Scheme 10: Thermally induced fragmentation of 31 to give Si8 siliconoid 32 and silene 33 (● = Si, 
● = “naked” Si; R = SiMe3, R’ = tBu).[252] 

 

The ladderane-like siliconoid 32 seems to be a rather electron-precise species. The 

“naked” silicon atoms clearly do not interact with one another as indicated by the long 

distance of 3.149 Å between the two.[252] Despite the symmetrical substitution pattern 

in 32, only one of the two “naked” silicon vertices exhibits a hemispheroidal 

coordination sphere ( = + 0.0124), while the other is strongly distorted tetrahedral 

( = −0.0311). Notably, both only marginally deviate from the tetragonal-planar case. 

In 2018, the group of Iwamoto reported the thermal rearrangement of 32 into its Si8R8 

isomers 34 and 35 alongside the formation of siliconoid 36 with a contracted Si7R6 

cluster core (Scheme 11).[253] 1H-NMR monitoring suggested that 34 is initially formed, 

which after a longer period at higher temperatures is either rearranged to 35 or 

undergoes fragmentation to 36 and the corresponding silylene, which under these 

conditions rapidly isomerizes to silene 33 as previously observed during the generation 

of the starting material 32. Consequently, the yields strongly depend on the reaction 

time: After 3h at 70°C 34, 35 and 36 are observed in 26%, 3% and 28% yields, 

respectively. Heating for another 19 hours leads to the complete consumption of 34, 

while 35 and 36 are formed in 6% and 59% yields. All three species were isolated by 

fractionate recrystallization and subjected to X-ray diffraction analysis. 
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Scheme 11: Thermal treatment of Si8 siliconoid 32 results in the rearranged isomers 34 and 35 and the 
contracted Si7 siliconoid 36 (● = Si, ● = “naked” Si; R = SiMe3, R’ = tBu).[253] 

 

The Si8 siliconoid 34 exhibits two unsubstituted vertices, which are both part of a 

bicyclo[1.1.0]tetrasilane and a tricyclo[2.2.0.02,5]hexasilane moiety. They adopt the 

typical hemispheroidal coordination with  values of +0.6530 Å and +0.5293 Å, 

respectively and show an interatomic distance of 2.5477 Å, which is longer than the 

typical Si-Si single bond but much shorter than in the precursor 32 (3.149 Å), indicating 

the presence of a weak bonding interaction. The second Si8R8 isomer 35 is constituted 

of a central tricyclo[2.2.0.02,5]hexasilane moiety that is flanked by two almost 

perpendicular double bonds ( = 87,3°). As the substituent-free atoms of the cluster 

scaffold of 35 are part of electron-precise double bonds and exhibit perfectly trigonal-

planar coordination environments, 35 must not be called a siliconoid. In contrast, the 

Si7R6 cluster 36 with a contracted cluster core features two tetracoordinate, 

unsubstituted silicon vertices with large  values of +0.998 Å and +1.0191 Å, 

undoubtedly proving its status as siliconoid. The distance between the two is 2.6829 Å 

and thus intermediate between the corresponding distances in 32 (3.149 Å) and 34 

(2.5477 Å). The scaffold as a whole can either be seen as a hexasila[2.1.1]propellane 

with two of the propeller blades connected to each other or an edge-bridged 

hexasilaprismane.  

On grounds of the observed high thermal stability of the ligand-stabilized, polyhedral 

tetrasilatetrahedrane 17,[109] Wiberg postulated in 2005 that the catenation of two 

tetrahedrane moieties by a salt metathesis reaction between corresponding metallated 

and halogenated derivatives, comparable to the synthesis of Iwamoto's 

persilastaffanes 13 and 14,[97] should be within reach. While an electron-precise Si-Si 

single bond could be anticipated for such a bis(tetrasilatetrahedrane), related results 

suggest its likely instability: The full reductive dehalogenation of pentaiodinated 

cyclotetrasilane 37 (in turn obtained by complete iodination of tetrahedranide 17) with 



1.4. Siliconoids 

37 

supersilyl-sodium (Na(SitBu3)) results in the Si8R6 siliconoid 38 as dimerization product 

with a central dumbbell of two “naked” silicon vertices that is side-on sandwiched 

between two almost coplanar ligand-stabilized three-membered rings (Scheme 12).[254] 

The Si-Si bond between the unsubstituted vertices, albeit short (2.29 Å), still results in 

a hemispheroidal coordination environment with  values of +0.0984 Å and +0.1233 Å. 

 

 

Scheme 12: Reductive dimerization of pentaiodinated cyclotetrasilane 37 to yield Si8 siliconoid 38 
(● = Si, ● = “naked” Si; R = Si(tBu)3).[254] 

 

In the closing remarks of his 1991 review article about strained-ring and double-bond 

systems of Group 14 elements, Masamune pointed out that the synthesis of a 

pentasila[1.1.1]propellane, a disilyne and a tetrasilahedrane were the main challenges 

in silicon chemistry at the time.[255] While the latter was not long in coming with Wiberg’s 

tetrasilahedrane 17 of 1993,[109] the first structural characterization of a disilyne only 

dates back to 2004.[256] Almost 20 years after Masamune’s statement, Breher et al. 

finally obtained the first pentasila[1.1.1]propellane 39 by reduction of a mixture of 

Mes2SiCl2 and Si2Cl6 (ratio 3:1) with lithium/naphtalene, albeit in very low yields (10% 

spectroscopically, 1% crystalline; Scheme 13).[257] 

 

 

Scheme 13: Reductive heterocoupling of Mes2SiCl2 and Si2Cl6 to yield pentasila[1.1.1]propellane 39 
(● = Si, ● = “naked” Si; R = Mes = 2,4,6-Me3C6H2).[257] 

 



1.4. Siliconoids 

38 

The two “naked” bridgehead atoms show distinct hemispheroidal coordination 

environments with  values of + 1.3227 Å and +1.3134 Å and are bonded to three SiR2 

bridges arranged in a perfectly eclipsed manner. The nature of the bonding between 

bridgehead atoms at a distance of 2.636 Å has been the topic of numerous theoretical 

and experimental investigations and will be addressed in more detail in Chapter 1.4.3. 

The first isomer of the today still hypothetical hexasilabenzene was isolated by Sakurai 

and Sekiguchi as the hexasilaprismane 16 (see Chapter 1.2.).[51,111] While 16 can be 

considered as an electron-precise species, the product of reductive dimerization of the 

trichlorinated cyclotrisilane 40 is strongly delocalized. The tricyclic Si6R6 isomer 42 with 

a chair-like conformation was obtained in 52% yield by Scheschkewitz et al. 

(Scheme 14) and exhibits an unusual type of aromaticity due its dismutational 

substitution pattern.[258] Alternatively, 42 can be accessed by the reduction of a 

pentamethylcyclopentadienyl-substituted cyclotrisilene precursor 41.[249] The thermal 

or photolytically induced rearrangement of 42 results in the formation of the bridged-

propellane type siliconoid 43 (58% yield). As side product, the Si11 siliconoid 44 with 

two unsubstituted silicon vertices could be identified and isolated in very low yields of 

2.6% (Scheme 14).[51] Thus far, 44 represents the siliconoid with the highest number 

of silicon atoms in the cluster scaffold, that could be fully characterized, even though 

the mechanism of its formation remains obscure.  

 

 

Scheme 14: Reductive dimerization of trichlorinated cyclotrisilane 40 and Cp*-functionalized 
cyclotrisilene 41 to afford the dismutational isomer of hexasilabenzene 42 and its rearrangement to 
benzpolarene 43 and Si11 siliconoid 44, respectively (● = Si, ● = “naked” Si; R = Tip = 2,4,6-
iPr3C6H2).[51,249,258,259] 
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In a hypothetical hexasilabenzene, every silicon atom should bear one substituent and 

therefore exhibit the oxidation state +I. The less uniform substitution pattern in 

siliconoid 42 with two SiR2(+II), two SiR(+I) and two “naked” Si(0) atoms can be 

formally derived by a twofold dismutation. Consequently, the cluster scaffold features 

a central rhomboidal, unsaturated Si4 plane consisting of the two “naked” and the two 

monosubstituted vertices, which is bridged by two opposing saturated SiTip2 moieties 

in a chair-like manner. In order to give credit to the dismutated arrangement of 

substituents and the circumstance that 42 nevertheless shows a cyclic delocalization 

of electrons around the central four-membered ring, the term “dismutational isomer of 

hexasilabenzene" was coined (see also Chapter 1.4.3.). In contrast, the skeleton of the 

thermal isomerization product 43 is rather reminiscent of the pentasila[1.1.1]propellane 

39,[257] but with an additional SiTip2 silylene unit bridging two wings of the propellane 

motif. This “bridged propellane” scaffold was calculated to be the global minimum on 

the Si6R6 potential energy surface and is therefore validly regarded the 

thermodynamical analogue of benzene in the case of silicon.[259,260] Considering the 

fact that graphene is constituted of condensed benzene units, it might come as no 

surprise that the global minimum structure of 43 was subsequently suggested to be a 

preferred repeating motif in silicon nanosheets,[261] which obviously makes it 

particularly attractive regarding the desired access to the elusive[262–265] heavier 

graphene congener, silicene. The distances between the “naked” bridgehead vertices 

in 42 (2.7287 Å) and 43 (2.7076 Å) are unusually elongated, which indicates the 

absence of a direct bonding interaction between the two. This assumption is strongly 

supported by their electron densities that were determined by Stalke making use of 

X-ray diffraction at high 2 angles.[266] The resulting (pseudo-)tricoordinate 

coordination spheres allow for strong hemispheroidalization around the unsubstituted 

vertices as shown by their  values of +1.1151 Å (42) and +1.3535 Å (43). The 

considerably shorter bond length in 44 (2.4976 Å;  = +0.5361 Å and +0.3109 Å) was 

tentatively attributed to the staggered arrangement of the central propellane-like unit 

allowing for a stronger bonding interaction.[51] 

In 2013, Kyushin and co-workers reported the reductive tetramerization of the 

tetrachlorinated cyclotetrasilane 45 with sodium metal to give the C2-symmetric 

octasilacuneane 46 in 15% yield (Scheme 15).[267] Apparently, 46 represents a 

borderline case of a siliconoid as it does not feature an obviously “naked” silicon atom 

at first inspection. However, if the annulated disilane moieties are considered as part 
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of the cluster core, all eight vertices of the central cuneane motif are potential 

candidates for hemispheroidal coordination. While four of these exhibit more or less 

electron-precise distorted tetrahedral coordination environments ( = −0.1990 Å and 

 = −0.2426 Å), the other four are indeed hemispheroidally coordinated, albeit by very 

small margins ( = +0.0368 Å and  = +0.0555 Å). It is therefore legitimate to refer to 

46 as a siliconoid according to our definition. 

 

 

Scheme 15: Synthesis of cyclotetrasilane-fused persilacuneane 45 by reductive tetramerization of 
tetrachlorinated cyclotetrasilane 46 (● = Si, ● = “naked” Si; R = tBu). 

 

A similar borderline case appears to be the cyclopentasilane-fused 

hexasilabenzvalene 48, which was isolated by the same group (Scheme 16).[268] Once 

more, the six silicon atoms of the central benzvalene moiety can be regarded as 

unsubstituted vertices of the core if the annulated, stabilizing Si3 bridges are taken as 

part of the siliconoid scaffold. Obviously, the tricoordinate silicon atoms of the localized 

double bond, that show large trans-bent angles ( = 36.5° and 42.5°), must be 

hemispheroidally coordinated per definition and thus cannot be decisive for the 

classification of 48 as a siliconoid. Since all other “naked” silicon atoms in question are 

tetrahedrally coordinated with  values ranging from −0.0756 Å to −0.1677 Å, 48 

should not be referred to as a siliconoid. 
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Scheme 16: Synthesis of cyclopentasilane-fused hexasilabenzvalene 48 by reductive trimerization of 
tetrachlorinated cyclopentasilane 47 (● = Si, ● = “naked” Si; R = tBu).[268] 

 

The siliconoids discussed so far were prepared by the aforementioned synthetic 

methods (1) and (2), namely the usage of disilenides as starting materials or the full 

reductive dehalogenation of suitable precursors. Very recently, the group of Fässler 

succeeded for the first time in employing silicon-based Zintl anions as precursors to 

anionic siliconoids (see also Chapter 1.3.5.). Treatment of the activated Zintl phase 

K12Si17/222-crypt in thf solution with six equivalents of Si(tBu)2HCl allows for the 

isolation and characterization of the trisubstituted, monoanionic Si9 siliconoid 25.[207] 

An X-ray diffraction study on single crystals revealed the loss of one silyl-substituent 

during the crystallization process (possibly by disproportionation), which resulted in the 

formation of the corresponding disubstituted, dianionic species 49 (Scheme 17).[207] All 

seven exposed cluster atoms show distinct hemispheroidalization ( = +1.2680 Å to 

+1.5848 Å). The Si-Si bonds lengths within the dianionic siliconoid framework 

(2.405 Å to 2.7818 Å) are somewhat shorter than in the bare, tetraanionic Si94− Zintl 

cluster (2.423 Å to 2.881 Å),[160,183] presumably due to the much lower Coulomb 

repulsion of the two remaining negative charges. 
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Scheme 17: Syntheses of mono- and dianionic Si9 siliconoids 25 and 49 from the Zintl-phase K12Si17 
(● = Si, ● = “naked” Si; 222-crypt = 4,7,13,16,21,24-hexaoxa-1,10-diaza-bicyclo[8.8.8]hexacosane; 
R = SiH(tBu)2).[207] 

 

The hemispheroidalities  of the “naked” vertices of the discussed siliconoids and the 

hexasilabenzvalene species 48 are summarized in Table 3. In case of clusters with 

more than one exposed vertex, the distances between the unsubstituted vertices are 

also indicated.  

The “naked” bridgehead vertices in siliconoids with a central propellane motif (36, 39, 

43) and those in the dismutational isomer of hexasilabenzene 42 can be regarded as 

(pseudo-)tricoordinate due to their long interatomic distance. As a result, they regularly 

exhibit strongly hemispheroidal coordination environments with  values, typically 

being greater than 1 Å, which is only exceeded by the dianionic, disubstituted Zintl-

type siliconoid 49 with its greatest  value even surpassing 1.5 Å. Iwamoto’ and 

Kyushin’s Si8 clusters 32, 46 and 48 are to be considered as borderline cases as their 

“naked” vertices show only marginal deviation from the tetracoordinate planar case 

( = 0). However, since all unsubstituted vertices in 46 are distorted tetrahedrally 

coordinate as can be seen from negative  values, the status as siliconoid is not 

justified according to the hemispheroidality parameters. “Naked” cluster atoms with 

negative  values are also present in 32 and 48, yet they fulfill the criterion for 

siliconoids as they feature at least one slightly hemispheroidalized cluster atoms with 

a positive  value. 
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Table 3: Comparison of hemispheroidalities  and distances between unsubstituted vertices of given 
siliconoids. 

Siliconoid 

Number of 

“naked” 

vertices 

Siu-Siu [Å]  values [Å] 
Hemispheroidal 

coordination? 

30 1 ─ + 0.1915 ✓ 

31 1 ─ + 0.1826 ✓ 

32 2 3.149 + 0.0124/−0.0311 ✓ 

34 2 2.5477 + 0.6530/+0.5293 ✓ 

36 2 2.6829 + 0.998/+1.0191 ✓ 

38 2 2.29 + 0.0984/+0.1233  ✓ 

39 2 2.636 + 1.3227/+1.3134 ✓ 

42 2 2.7287 + 1.1151 ✓ 

43 2 2.7076 + 1.3535 ✓ 

44 2 2.4976 + 0.5361/+0.3109 ✓ 

46 8 2.3320 – 

2.4100 

+ 0.0555/+ 0.0368/  

− 0.1990/− 0.2426  
✓ 

48 6 2.3188 – 

2.3683 

− 0.0756/ −0.0959/ 

−0.1594/ −0.1677 
 

49 7 2.4292 – 

2.7818 

+1.5566/+1.2882/ 

+1.2850/+1.2680/ 

+1.2804/+1.5848/ 

+1.5807 

 

✓ 

 

 

1.4.3. Spectroscopic Data and Electronic Properties 

Siliconoids not only exhibit structural peculiarities but also unusual electronic 

properties, which in most cases are not to be individually considered but rather depend 

on each other. As a prime example, the hemispheroidally coordinated, “naked” vertices 

in siliconoids typically give rise to distinctively high-field shifted 29Si NMR signals, which 

is highly reminiscent of the NMR spectroscopic properties of silicon-based Zintl ions 

(see Chapter 1.3.4.). In contrast to [Si4]4− and [Si9]4− Zintl clusters, but in a similar 

manner as [Si5]2−, silicon vertices of one and the same siliconoid scaffold can also 

show 29Si NMR resonances at very low field. The resulting wide distributions of 29Si 

NMR chemical shifts (see Table 4) with differences between the two signals observed 
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at highest and lowest field of up to 448.8 ppm in the case of 43 reflect the characteristic 

electronic anisotropy of siliconoids and thus one of their main distinctive attributes.   

 

Table 4: Comparison of 29Si NMR chemical shifts of given siliconoids. 

Siliconoid 

Most low-field 

signal 

 (29Si) [ppm] 

Most high-field 

signal 

 (29Si) [ppm] 

Range  

(min-max) 

[ppm] 

30 7.4 −124.8 132.2 

31 60.0 −69.5 129.5 

32 24.6 −26.8 51.4 

34 64.7 −191.9 256.6 

36 123.3 −159.5 282.8 

38 ─ ─ ─ 

39 25.5 −273.2 298.7 

42 124.6 −89.3 213.9 

43 174.6 −274.2 448.8 

44 26.2 −78.7 104.9 

46 35.4 −71.8 107.2 

48 187.3 −84.6 271.9 

25 −175.2 −358.8 183.6 

 

While most reports on siliconoids lack explanations for the observed NMR 

spectroscopic peculiarities, they were rationalized in the case of the hexasilabenzene 

isomers 42 and 43 on the basis of theoretically calculated magnetically induced cluster 

currents in the corresponding parent species 42H and 43H.[259,269] In both cases, the 

“naked” bridgehead atoms are surrounded by a diatropic current vortex, which exerts 

a strong magnetic shielding effect resulting in the observed high-field shifted 

resonances in the 29Si NMR spectra (Figure 7, Table 4). In contrast, the 

monosubstituted vertices in 42 and the disubstituted vertex in 43, which are directly 

adjacent to the “naked” atoms, are surrounded by a paratropic current loop leading to 

a pronounced magnetic deshielding of their 29Si NMR signals (Figure 7, Table 4). This 

is particularly noteworthy as these vertices are tetracoordinate and would therefore be 

considered as electron-precise in a first approximation. Usually, tetracoordinate silicon 

atoms rarely display chemical shifts at lower field than about 90 ppm even in the case 
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of base-stabilized silylium cations.[270–273] The topologies of the frontier molecular 

orbitals in 43 and related species were discussed as complementary explanation for 

the observed low-field shifted resonances of the untethered propeller blades in the 

context of stable heterosiliconoids featuring germanium and tin atoms in the 

bridgehead positions, respectively (see Chapter 1.4.4.). 

 

 

Figure 7: Dominating current vortices in the parent hexasilabenzene isomers 42H and 43H. Diatropic 
vortices are clockwise, paratropic vortices are counterclockwise. The total ring current in 42H is diatropic 
and integrates to 9.9 nAT−1. The 29Si NMR checmical shifts are additionally given for 43H. Partially 
reproduced with permission from Berger et. al., Angew. Chem. Int. Ed. 2010, 49, 10006-10009[269] and 
Abersfelder et. al. Angew. Chem. Int. Ed. 2011, 50, 7936-7939.[259] 

 

The overall induced molecular current in both hexasilabenzene isomers is diamagnetic 

with around 10 nAT−1 and thus almost identical to what was found for the prototypical 

6-Hückel-aromatic benzene. However, planar Hückel-aromatic compounds must 

feature a central paramagnetic vortex, despite the overall diamagnetic ring current. 

Conversely, siliconoids 42 and 43 feature a central diatropic current loop, which is 

rather akin to the situation in compounds featuring spherical aromaticity such as P4.[194] 

Nevertheless, 42 shows delocalization of six electrons, albeit restricted to the central, 

planar four-membered ring according to theoretical investigations.[258] Whereas in 

benzene 6 -electrons contribute to the aromatic system, the cyclic delocalization in 

42 involves two -, two - and two nonbonding electrons.[258] As already outlined in 

Chapter 1.4.2., the term “dismutational aromaticity” was established for this 
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phenomenon based on the dismutated substitution pattern of the silicon scaffold in 

comparison to the highly symmetrical benzene. This novel type of aromaticity 

apparently results in a surprising stability as 42 can be exposed to air in its solid state 

for hours without any sign of decomposition. The global minimum framework of 

siliconoid 43 on the other hand decomposes within minutes when exposed to air, but 

shows extraordinary thermal stability allowing for its transfer into the gas-phase with 

only minor traces of decomposition. 

The structure and in particular the nature of the central bridgehead bond in 

[1.1.1]propellane and its heavier congeners were and still are thoroughly discussed in 

the literature. As early as 1972, theoretical investigations by Stohrer/Hoffmann[274] and 

Newton/Schulmann[275] on the carbon-derivative revealed the bonding situation 

between the bridgehead atoms to be far from trivial as seemingly contradictory results 

did not allow the unambiguous determination of the nature of their interaction as 

bonding or nonbonding: On the one hand, the calculated bond lengths and the 

symmetric appearance of the HOMO suggested the existence of a central bond in a 

closed-shell singlet ground state rather than a diradical. On the other hand, the total 

overlap population between the bridgehead vertices was found to be negative, which 

rather indicated a nonbonding interaction. More recent results by Shaik and co-workers 

suggested a so-called “charge-shift” bridgehead bond.[276,277] In the meantime, 

numerous other reports on both theoretical and experimental investigations with the 

intention to clarify the nature of the bridgehead bond were published and reviewed.[278–

280] This still ongoing discussion is not only restrained to the carbon-based 

[1.1.1]propellane but also focuses on the corresponding heavier homologues.[279,281–

284] The first successful synthesis of a pentasila[1.1.1]propellane 39 allowed the 

experimental evaluation of predicted properties for the first time. Here, the bridgehead 

bond was found to be 2.636 Å, which is unusually elongated (ca 13%) in comparison 

to a regular Si-Si single bond suggesting a rather weak bonding interaction. 

Considering the calculated reaction energy for the addition of dihydrogen to the 

bridgehead bond, the Si-Si bond strength was estimated to be around 174 kJ/mol and 

thus considerably weaker than in normal disilanes (ca. 306-322 kJ/mol).[257] The 

longest wavelength absorption observed at  = 396 nm was assigned to the electronic 

transition from the cluster-bonding HOMO to the LUMO on grounds of TD-DFT 

calculations. The fact, that 39 shows both closed-shell and biradicaloid reactivity (see 

Chapter 1.4.5.) underlines the abnormal, ambiguous nature of the central Si-Si bridge.  
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Theoretical investigations on the electronic structure of the highly distorted scaffold of 

the first ever reported Si5 siliconoid 30 revealed it to be a transition state in the case of 

the corresponding parent compound. In this case, the bis-homoaromatic isomer, where 

both SiR2 bridges are on the same side of the central three-membered ring represents 

the minimum structure being 14.8 kcal/mol lower in energy.[247] Apparently, the 

kinetically stabilizing effect of the sterically demanding Tip groups in 30 is sufficiently 

great to force the scaffold into a local energy minimum. The extreme distortion of the 

silicon skeleton results in an almost orthogonal set of two p-orbitals at the formally 

sp2-hybridized silicon atoms (Figure 8). The energetic separation of HOMO and 

HOMO−1 (0.14 eV) is only marginal, while the HOMO−2 is around 1.1 eV lower in 

energy.[247] Hence formally, the Heilbronner criterion for Möbius aromaticity (4n mobile 

electrons) is fulfilled.[285] Indeed, the topology of the HOMO−1 is reminiscent of a 

Möbius array (Figure 8) just as in the so called Möbius benzene, which was calculated 

by Johnson in 1996.[286]  

 

 

Figure 8: Molecular orbitals of the parent compound 30H (a) and schematic representation of the 
involved atomic orbitals (b) Picture reproduced with permission from D. Scheschkewitz, Angew. Chem. 
Int. Ed. 2005, 44, 2954-2956.[247] 

 

Surprisingly, an EI-MS experiment of 30 revealed a peak at m/z = 1415.9, which 

corresponds to a Si7Tip6 species. Apparently, the expansion of the cluster with two 

additional silicon atoms must take place upon heating prior to evaporation into the gas 

phase as a similar behavior could not be observed using milder ionization techniques. 

This assumption finds further corroboration in an exothermic process at 144°C 
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detected by DSC.[247] In stark contrast, siliconoid 31 does not show tendency for cluster 

expansion but rather releases a silylene unit upon heating in benzene (see Chapter 

1.4.2.). The resulting intermediate heavy bicyclic bridgehead alkene dimerizes to 

siliconoid 32 but can also be trapped with DMAP (= 4-dimethylaminopyridine). 

Unfortunately, no further information on the electronic structure of the dimerized Si8 

species 32 were given by the authors in this case.[252] According to DFT calculations 

on the thermal rearrangement product 34, the HOMO and LUMO are mainly 

represented by the  and * orbitals of the bridgehead bond between the “naked” 

silicon vertices, respectively (Figure 9). The corresponding orbitals of the cluster 

contraction product 36 rather contribute to the HOMO−1 and the LUMO, while the 

HOMO involves cluster bonding -orbitals,[253] comparable to what was found for the 

model compounds pentasila[1.1.1]propellane 39Dmp (Dmp = 2,6-Me2C6H3)[257] and its 

closely related bridged isomer 43Dip (Dip = 2,6-iPr2C6H3)[259] (Figure 9). 

 

 

Figure 9: Comparison of the frontier orbitals of Si8 siliconoids 34 and 36 and the model compounds 
39Dmp and 43Dip for pentasila[1.1.1]propellane 39 and its bridged isomer 43, respectively (● = Si, 
● = “naked” Si; R = SiMe3, R’ = tBu, R’’ = Dmp = 2,6-Me2C6H3, R’’’ = Dip = 2,6-iPr2C6H3). Pictures 
reproduced with permission from Akasaka et. al., Inorganics 2018, 6, 107,[253] Nied et. al., J. Am. Chem. 
Soc. 2010, 132, 10264-10265[257] and Abersfelder et. al. Angew. Chem. Int. Ed. 2011, 50, 7936-7939.[259] 

 

The large skeleton of siliconoid 46 with overall 16 silicon atoms and a central cuneane 

motif of eight vertices shows well-developed -conjugation. The UV/vis spectrum lacks 
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distinctive absorption bands, but tails to ca.  = 570 nm with small shoulders at  = 345 

nm and  = 380 nm, which was attributed to close energies of frontier orbitals and thus 

severe overlap of intrinsically discrete absorption bands.[267] The observed tailing is a 

characteristic feature of saturated polyhedral silicon cages and was also reported for 

hexasilaprismanes[51,111] and octasilacubanes.[112,113] On grounds of these findings, 

octasilacuneane 46 was labelled an “intermediate model between small organosilicon 

molecules and silicon semiconductors” in terms of electronic properties by the 

authors.[267] 

The extremely high-field shifted 29Si NMR signal ( = −358.8 ppm) of the unsubstituted 

vertices in the monoanionic siliconoid 25 is comparable to what was observed for the 

very recently reported protonated Zintl species [HSi9]3− ( = −358.5 ppm)[202] and 

[H2Si9]2− ( = −346.1 ppm),[199] which might be expected as both are derived from the 

bare, tetraanionic [Si9]4− Zintl cluster. Apparently, substitution of the scaffold with a 

proton in or silyl groups causes a considerable deshielding of the vertices in question 

([HSi9]3−:  = −158.5 ppm and 25:  = −175.2 ppm), even though the resonance still 

appears deep in the high-field region. An intrinsic atomic orbital charge analysis 

revealed that the negative charge in 25 is perfectly delocalized over the six 

unsubstituted silicon atoms, while the two negative charges in 49 are unsymmetrically 

distributed. 

 

 

1.4.4. Heterosiliconoids 

Unsaturated homonuclear clusters of germanium and tin were reported well before the 

first silicon derivatives became available. A complete account on these derivatives, is 

beyond the scope of this silicon-centered overview. The reader is referred to excellent 

and comprehensive reviews in this regard.[46,47,232,235–238] In order to provide suitable 

context for this sub-chapter on heterosiliconoids, i.e. siliconoids with partial 

replacement of the core atoms by atoms other than silicon, the developments in case 

of heavier propellanes and related species shall be briefly summarized by way of 

example.  

The report on the first pentastanna-propellane by Sita and Bickerstaff dates back to 

1989.[287] A second example could be generated by the group of Drost in 2002.[288] One 

year before the isolation of the iconic pentasila[1.1.1]propellane 39, the group of Breher 
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isolated the corresponding germanium species in 2009.[289] As concerns bridged 

propellanes, Wesemann isolated a hexastannabenzene Sn6R6 with a scaffold identical 

to the – in this case preceding – global minimum hexasilabenzene isomer 42.[290] With 

synthetic protocols for homonuclear siliconoids as well as their heavier congeners 

established, the question naturally arose whether heteronuclear derivatives would be 

accessible as well. Indeed, a few examples are known to date and discussed in the 

following.  

Breher’s heteronuclear [1.1.1]propellanes 50a,b of the general formula E2Si3Mes6 

were synthesized by the reductive heterocoupling of Mes2SiCl2 and the corresponding 

low-valent dichlorides of germanium and tin in a 3:2 ratio with 10 equivalents of 

lithium/naphthalene (Scheme 18).[291] The crystalline yields are with 4% (50a) and 12% 

(50b) rather low, yet still higher than for the homonuclear silicon analogue 39 (1%). 

Notably, no other [1.1.1]propellane species with an alternative occupancy of the cluster 

positions with E and Si atoms were observed in the reaction mixtures leading to the 

conclusion that the low-valent tetrylene(II)chlorides ECl2 were the sole source of the 

atoms in the bridgehead positions. The pronounced thermal stability of 50a,b without 

rearrangement of atoms or ligand scrambling was taken as another indication for the 

preference of heavier atoms to be located at a “naked” or unsubstituted position of the 

scaffold. 

 

 

Scheme 18: Synthesis of heteronuclear [1.1.1]propellanes 50a,b the reduction of a 3:2 mixture of 
Mes2SiCl2 and ECl2 with 10 equivalents of lithium napthalenide solution (● = Si; R = Mes = 2,4,6-
Me3C6H2; 50a: E = Ge; 50b: E = Sn).[291] 

 

The distances between the bridgehead vertices are 0.1 Å (50a) and 0.27 Å/0.342 Å 

(50b) shorter than in the corresponding homonuclear congeners Ge5Mes6
[289] and 

Sn5R6 (R = Dep = 2,6-Et2C6H3
[287] or R = 2,6-(OiPr)2C6H3

[288]) presumably due to the 

smaller size of the bridging SiMes2 propeller blades in the case of 50a,b. The thus 

indicated stronger bond interaction between the bridgehead atoms was confirmed by 

cyclic voltammetry, UV/vis spectroscopy and DFT calculations, which additionally 
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revealed a correlation with the singlet and triplet A2 transitions.[291] This corroborates 

the principal feasibility of manipulating the inherent structural and electronic properties 

of heavy Group 14 cluster species by the selective labelling with heteroatoms, which 

was initially demonstrated by Power in the context of his Ge2Sn3[1.1.1]propellane.[292] 

In 2013, Sekiguchi and co-workers reported the formation of the 

spirobis(pentagerma[1.1.1]propellane) species 52 in 18% yield by photolysis of the 

saturated tricyclic precursor 51 (Scheme 19). On grounds of DFT calculations and the 

typically long interatomic distance (2.8292 Å) between the bridgehead germanium 

vertices, which is comparable to the value found in Breher’s pentagermapropellane 

(2.869 Å), they classified 52 as a singlet tetraradicaloid. 

 

 

Scheme 19: Photolysis of the mixed heavy tricyclo[2.1.0.02,5]pentane precursor 51 to yield the 
spiro[bispentagerma[1.1.1]propellane 52 (● = Si, SiR3 = SiMetBu2, tBu = tert-Butyl) .[293] 

 

Treatment of disilenide 28 with an equimolar amount of GeCl2∙dioxane and subsequent 

reduction of the postulated intermediate, disilenyl-substituted chlorogermylene, with 

lithium/naphthalene solution affords the digermatetrasila-analogue 53a of the 

dismutational isomer of hexasilabenzene 42 in 42% yield (Scheme 20). In solution, 53a 

slowly isomerizes to its alleged global minimum isomer 54a at room temperature. This 

process can be accelerated by moderate heating to 65°C and is then complete after 

12 hours. Under identical reaction conditions the utilization of SnCl2 instead of GeCl2 

directly yields 54b with a bridged propellane scaffold in 22% yield (Scheme 20). The 

fact that the probable intermediate, dismutational Sn2Si4 isomer [53b], could not even 

be detected spectroscopically at −80°C suggests a very low thermal stability. 
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Scheme 20: Syntheses of dismutational (53a) and global minimum (54a,b) E2Si4 heterosiliconoids by 
treatment of disilenide 28 with low-valent dichlorotetrylenes (● = Si, R = Tip = 2,4,6-iPr3C6H2, 53: E = Ge; 
54: E = Sn).[294] 

 

Heteroatomic siliconoids feature electronic anisotropies similar to their all-silicon 

archetypes[258,259,269] as indicated by multinuclear NMR spectroscopy. The bridgehead 

tin vertices in 50b and 54b give rise to high-field shifted resonances in the 119Sn spectra 

(50b:  = −1348 ppm,[291] 54b:  = −1260 ppm[294]) just as the corresponding “naked” 

silicon vertices in the closely related 39[257] and 43[259] (see Table 4). Furthermore, the 

SiTip2 bridge directly adjacent to the bridgehead atoms in all E2Si4Tip6 species (E = Si, 

Ge, Sn) is strongly deshielded. However, somewhat surprisingly the deshielding effect 

enhances with increasing atomic number of the bridgehead atoms (Si6Tip6 43: 29Si = 

174.6 ppm; Ge2Si4Tip6 54a: 29Si  = 236.0 ppm; Sn2Si4Tip6 54b: 29Si = 284.5 ppm). In 

the case of the all-silicon global minimum isomer of hexasilabenzene 43, these large 

distributions of NMR chemical shifts were explained by the two nonbonding electrons 

at the bridgehead positions being involved in three-dimensional magnetically induced 

cluster currents (see Chapter 1.4.3.).[259,269] However, theoretical calculations on the 

homologous series of parent compounds E2Si4H6 (E = Si, Ge, Sn, Pb) revealed that 

the induced current strengths and topologies are almost identical in every case and 

therefore cannot explain the increasing deshielding going down the group. Additionally, 

relativistic effects were found to be negligible in this regard.[294] During more in-depth 

investigations the HOMOs and LUMOs were found to be primarily located at the 

bridgehead vertices and the directly adjacent untethered SiTip2 propeller blade with 

orthogonal symmetries, which is a geometrical prerequisite for the HOMO-LUMO 

excitation to contribute to the paramagnetic term of the chemical shielding tensor. With 

increasing atomic number of the bridgehead vertices, the HOMO-LUMO gap is 

narrowed. The paramagnetic term is progressively increasing, thus shifting the 

corresponding 29Si NMR signal of the untethered propeller blade downfield.[294] The 

overall downfield shift may thus be attributed to a synergy of magnetically induced 
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cluster currents (see Chapter 1.4.3.) and contributions of the HOMO-LUMO excitation 

to the paramagnetic term of the chemical shielding tensor. Heterosiliconoids 54a,b are 

further examples that validate the hypothesis of the tunability of electronic properties 

of siliconoids by the implementation of heteroatoms. 

All heteronuclear clusters discussed in this chapter do not feature a “naked”, 

hemispheroidally coordinated silicon atom as the “naked” vertices are occupied by the 

heavier germanium or tin atoms. Since they can be formally derived from their all-

silicon counterparts, the designation as “heterosiliconoids” seems nonetheless to be 

justified.  

 

 

1.4.5. Reactivity 

The chemistry of siliconoids is obviously still in its infancy as the report on the first 

example (31) dates back only to 2005. Accordingly, the initial focus rested on the 

exploration of synthetic pathways and the comprehensive characterization of these 

compounds regarding both structural (Chapter 1.4.2.) and electronic features 

(Chapters 1.4.3. and 1.4.4.). As a consequence, relatively few examples of their 

reactivity have been reported to date. While in many cases thermally or photolytically 

induced rearrangement reactions, including cluster contraction or expansion, were 

observed (see previous chapters), there are also few examples of siliconoids being 

employed as actual reactants.  

Preliminary reactivity studies on Breher’s pentasila[1.1.1]propellane 39 were 

performed on NMR-tube scales in order to gain further insight into the nature of the 

central bridgehead bond. On the one hand, 39 shows closed-shell reactivity as HR’ 

reagents (R’ = OH, OPh, SPh) are readily added across the bridgehead bond to give 

the corresponding bicyclo[1.1.1]pentasilanes 55a-c (Scheme 21). On the other hand, 

similar additions of the typical radical-type reagents Me3SnH and H2-sources such as 

9,10-dihydroanthracene (DHA) indicate that 39 can also react as biradicaloid 

(Scheme 21).[257] These findings provide experimental support for the theoretically 

manifested electronic ambiguity of the central bridgehead bonds in [1.1.1]propellanes. 
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Scheme 21: Closed-shell and biradical-type reactivity of the bridgehead bond in 
pentasila[1.1.1]propellane 39 (● = Si, ● = “naked” Si, R = Mes = 2,4,6-Me3C6H2, DHA = 9,10-
dihydroanthracene, 55a: R’ = OH, 55b: R’ = OPh, 55c: R’ = SPh, 55d: R’ = SnMe3).[257]  

 

In contrast, heterosiliconoids 50a,b with germanium and tin atoms in the bridgehead 

positions, respectively, are stable against H2O, PhOH and DHA. However, both show 

radical-type reactivity as their treatment with FcS-SFc (Fc = ferrocene) results in the 

corresponding addition of the disulfide across the bridge upon homolytic S-S bond 

cleavage. While the Sn2Si3 species 50b is inert towards Me3SnH, the germanium 

analogue 50a gives the corresponding addition product in quantitative yield.[291] Once 

more, these findings underline the impact of heteroatom doping on electronic 

properties and thus reactivity of siliconoids. 

Addition of neat bromine and iodine to the bridgehead bond of the global minimum 

bridged propellane isomer of hexasilabenzene 43 affords the corresponding 

dihalogenated derivatives 57a (X = Br) and 57b (X = I) in 27% and 64% yield, 

respectively (Scheme 22). Treatment of 43 with an excess of iodine in refluxing toluene 

results in the formation of the highly functionalized, hexaiodinated pentasilane 58 by 

the expulsion of one silicon vertex (Scheme 22). 

 

 

Scheme 22: Reaction of 43 with bromine and iodine to give the corresponding dihalgenated derivatives 
57a,b and its treatment with an excess of iodine to yield the hexaiodinated pentasilane 58 (● = Si, 
● = “naked” Si, R = Tip = 2,4,6-iPr3C6H2, 57a: X = Br, 57b: X = I).[259] 
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The somewhat counterintuitive shortening of the bridgehead bond upon the addition of 

Br2 (57a: 2.6547 Å) and I2 (57b: 2.6810 Å) as compared to the siliconoid precursor 43 

(2.7076 Å) was – following Bent’s rule – attributed to an increased s-character of the 

cluster bonds causing an overall contraction of the silicon framework. The vertices of 

the now saturated cluster unsurprisingly show a much narrower distribution of 29Si 

NMR chemical shifts ranging from  = −77.4 ppm to  = 21.2 ppm in the typical region 

for small saturated silicon rings, indicating the loss of the siliconoid-typical electronic 

anisotropy upon substitution of the former “naked” silicon vertices.  

In contrast to the findings for 43, the reaction of the dismutational isomer of 

hexasilabenzene 42 with bromine or iodine gives complex reaction mixtures, which 

could not be analyzed in further detail. Even with BiCl3 as comparably mild chlorination 

agent, no uniform conversion to a single product was observed. In this case, however, 

the individual compounds could be isolated by extraction of the reaction mixture with 

hexane and subsequent fractional crystallization (Scheme 23). 

 

 

Scheme 23: Reaction of 42 with BCl3; estimated yields in crude product are given in brackets (● = Si, 
● = “naked” Si, R = Tip = 2,4,6-iPr3C6H2).[51] 

 

The main product 59 displays a cluster scaffold reminiscent of the global minimum 

skeleton of 43. In contrast to the observed 1,3-substitution during the reaction of 43 

with bromine and iodine, the chlorine atoms end up adjacent to one another in 

1,2 position. The corresponding 1,3-derivative 57c is only formed as a side product in 

very low yield (3%). Further side products are the thermal rearrangement product of 
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42, the global minimum isomer of hexasilabenzene 43 (5% yield) and the 

tetrachlorinated bicyclohexasilane 60 (12% yield). Since 60 could not be generated by 

treatment of a pure sample of 59 with BiCl3, -bond chlorination during the formation 

of 59 must take place prior to the chlorine addition to the “naked” bridgehead vertices. 

These initial studies demonstrate that the reactivity of the dismutational isomer of 

hexasilabenzene 42 is far from trivial and suggest more in-depth future investigations. 

The distance between the unsubstituted silicon vertices in Wiberg’s Si8 siliconoid 38 

(2.29 Å) is distinctively shorter than in other examples (see Table 3) indicating a 

stronger bond interaction. It could therefore be expected to be less prone towards 

addition reactions to the central Si2 dumbbell. Indeed, treatment of 38 with mild 

halogenation reagents (CCl4, SnCl4, CBr4, I2) does not result in the simple addition of 

X2 (X = Cl, Br, I) to the bridgehead bond but rather results in multiple -bond 

oxidations.[295] The reactions with CCl4 and CBr4 proceed via the cleavage of the silicon 

scaffold but with preservation of the number of substituents to give a 

trichlorocyclotrisilane and a pentachlorohousane species in the case of CCl4 and the 

pentabrominated cyclotetrasilane 61 in the case CBr4 (Scheme 24). In contrast, 

treatment of 38 with SnCl4 and I2 results in the halogenative cleavage of substituents, 

while the eight-atomic silicon framework is preserved, yet with different connectivity 

and shape. Thus, a hexachlorinated tetracyclooctasilane, and the silyl-substituted 

bicycloheptasilane 62 were obtained (Scheme 24). 

 

 

Scheme 24: Reaction of Wiberg’s Si8 siliconoid 38 with CBr4 (cleavage of Si8 framework, preservation 
of substituents) and I2 (preservation of Si8 framework, cleavage of substituents) to give cyclotetrasilane 
61 and silyl-substituted bicycloheptasilane 62, respectively.[295] 
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1.4.6. Functionalized Siliconoids 

In order to apply molecular siliconoids as precursors for extended, possibly conjugated 

systems, the availability of functionalized derivatives is an inevitable prerequisite. As 

already discussed in the previous chapter, initial experimental investigations regarding 

the reactivity of siliconoids mainly involved addition reactions of suitable reagents 

across the bridgehead bonds between the “naked”, hemispheroidally coordinated 

vertices. As a consequence, the siliconoids are generally transformed into saturated, 

yet functionalized silicon clusters or rings that lack both typical structural and electronic 

features of siliconoids in all cases. In 2016, our group reported the reductive cleavage 

of a Tip-substituent from the dismutational hexasilabenzene isomer 42 to result in the 

anionic siliconoid 63 with a bridged propellane cluster scaffold identical to the global 

minimum hexasilabenzene isomer 43 in 62% yield (Scheme 25).[296] With the two 

“naked”, hemispheroidally coordinated vertices, which are remarkably not 

compromised by the reduction, and the newly generated negatively charged silicon 

center, 63 constitutes the – at the time – missing link between neutral siliconoids 

(Chapter 1.4.2.) and bare, polyanionic Zintl clusters (Chapter 1.3.). Notably, the use of 

an additional equivalent of reducing agent during the synthesis of 42 directly yields the 

anionic siliconoid 63 in 51% yield, thus conveniently avoiding the isolation of 42. 

 

 

Scheme 25: Synthesis of anionic siliconoid 63 by the reduction of the dismutational hexasilabenzene 
isomer 42 or alternatively the direct reduction of the trichlorinated cyclotrisilane precursor 40 (● = Si, 
● = “naked” Si, R = Tip = 2,4,6-iPr3C6H2).[296] 

 

The distance between the unsubstituted vertices in 63 (2.5506 Å) is remarkably shorter 

in comparison to its neutral all-Tip substituted congener 43 (2.7076 Å). The retention 

of the hallmark electronic anisotropy in 63 is reflected in the 29Si NMR data: While the 

signals for the “naked” silicon atoms expectedly appear at high field ( = −237.3 ppm 
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and  = −238.2 ppm), the adjacent deshielded SiTip2 moiety gives rise to a resonance 

at  = 159.6 ppm. In reactions with various electrophiles from the Groups 13 to 15, 

anionic siliconoid 63 was proven to be an excellent synthon for the transfer of the intact 

Si6 siliconoid framework to give the first representatives of functionalized siliconoids 

64a-d (Scheme 26). In addition, treatment of 63 with decamethylsilicocene SiCp*2 

yields the Si7 siliconoid 65 with three unsubstituted silicon vertices (Scheme 26), thus 

achieving the atomically precise expansion of the siliconoid cluster.[297]  

 

 

Scheme 26: Functionalization of the Si6 cluster scaffold of 63 with various electrophiles from the Groups 
13 to 15[296] and cluster expansion to the Si7 siliconoid 65 and the Si8 siliconoids 67 and 68[297] (● = Si, 
● = “naked” Si, R = Tip = 2,4,6-iPr3C6H2, Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl (a) BH3·SMe2, 

(b) tBuC(O)Cl, (c)SiCl4, (d) ClP(NMe2)2. 64a: E = BH3
−Li+; 64b: E = C(O)tBu; 64c: E = SiCl3; 64d: E = 

P(NMe2)2). 

 

Reductive cleavage of the Cp*-ligand in 65 and subsequent treatment of the 

corresponding anionic Si7 species 66 with SiCp*2 even lead to the Si8 species 67, 

which, however, could only be crystallized as the corresponding product of hydrolysis 

of the exohedral Si=Si bond 68. 
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2. Aims and Scope 

The report on the first isolation of an anionic siliconoid (64) provided two important 

pieces of information regarding the chemistry of siliconoids: (1) The reductive aryl-

group cleavage from neutral siliconoids is a powerful synthetic tool for the generation 

of anionic derivatives without compromising the “naked”, unsubstituted vertices and (2) 

the intact silicon scaffold can be subsequently transferred to a variety of electrophiles 

from the Groups 13 to 15 in simple salt metathesis reactions. Based on preliminary 

results,[298–300] a major objective of this work was the extension of the scope of the 

reductive cleavage of substituents to include other neutral siliconoid starting materials 

as well as the application of additional electrophilic main-group reagents to the anionic 

derivatives. The available data suggested that the electronic structure of the siliconoid 

cluster cores might be manipulated by peripheral functionalization. Therefore, the 

thorough investigation, comparison and possibly rationalization of the electronic 

influence of different peripherally attached functionalities were further central 

objectives of this thesis.  

As already outlined in the introduction, siliconoids can be regarded as molecular model 

systems for silicon surfaces as their hemispheroidally coordinated vertices are highly 

reminiscent of the so called “dangling bonds” (Chapter 1.1.). The successful 

attachment of a Group 13 and a Group 15 atom to a siliconoid cluster core in the borate 

and phosphine substituted Si6 siliconoids 64a and 64d is especially intriguing, as this 

represents a first step towards the extension of the given analogy to the industrially 

important technological process of silicon doping (Scheme 27). 

 

 

Scheme 27: Synthesis of borate and phosphine substituted Si6 siliconoids 64a and 64d 
(64a: E = BH3

−Li+, 64d: E = P(NMe2)2, ● = Si, ● = “naked” Si, R = Tip = 2,4,6-iPr3C6H2). 

 

 



2. Aims and Scope 

60 

The logical next step would be the incorporation of dopant atoms into the cluster core 

itself, which was therefore another main objective of this work. The dismutational 

isomer 42 and the global minimum isomer 43 of the hypothetical hexasilabenzene are 

readily available as neutral Si6 siliconoids by reduction of either the trichlorinated 

cyclotrisilane 40 or the Cp*-functionalized low-valent cyclotrisilene 41 (Scheme 28). 

 

 

Scheme 28: Syntheses of dismutational isomer 42 and global minimum isomer 43 of hexasilabenzene 
(● = Si, ● = “naked” Si, R = Tip = 2,4,6-iPr3C6H2). 

 

By analogy, one possibly expedient synthetic strategy towards a molecularly doped 

siliconoid is the synthesis and subsequent reductive dimerization of precursors that 

already contain the desired heteroatom. Particularly encouraging in this regard is the 

successful isolation of mixed Group 14 heterosiliconoids by a similar approach 

(Scheme 20, Chapter 1.4.4.). Preliminary results in our group provided first evidence 

that reactions of lithium disilenide 28 with low-valent phosphorus species in the formal 

oxidation state +I yield small Si2P rings, which could be appropriate precursor 

molecules.  
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3. Results and Discussion 

3.1. Site-selective functionalization of Si6R6 siliconoids 

Yannic Heider*, Nadine E. Poitiers*, Philipp Willmes, Kinga I. Leszczyńska, Volker 

Huch, David Scheschkewitz, Chem. Sci. 2019, 10, 4523-4530. 

https://doi.org/10.1039/C8SC05591B 

These authors contributed equally. 

The above cited article was published by the Royal Society of Chemistry (RSC) as an 

“Open Access” article and is licensed under a “Creative Commons Attribution-

NonCommercial 3.0 Unported (CC BY-NC 3.0)” License 

(https://creativecommons.org/licenses/by-nc/3.0/).  

 

The results described within this article are additionally concluded and put into context 

in Chapter 4. 
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3.2. A Three-Membered Cyclic Phosphasilene 

Reproduced with permission from Yannic Heider, Philipp Willmes, Daniel Mühlhausen, 

Lukas Klemmer, Michael Zimmer, Volker Huch, David Scheschkewitz, Angew. Chem. 

Int. Ed. 2019, 58, 1939-1944; Angew. Chem. 2019, 131, 1956-1964. 

Copyright © (2019) Wiley-VCH Verlag GmbH & Co. KGaA.  

English Version: https://doi.org/10.1002/anie.201811944 

German Version: http://dx.doi.org/10.1002/ange.201811944 

 

The results described within this communication are additionally concluded and put 

into context in Chapter 4. 
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3.3. Boron and Phosphorus Containing Heterosiliconoids: 

Stable p- and n-Doped Unsaturated Silicon Clusters 

Reprinted with permission from Yannic Heider, Philipp Willmes, Volker Huch, Michael 

Zimmer, David Scheschkewitz, J. Am. Chem. Soc. 2019, 141, 19498-19504. 

Copyright © (2019) American Chemical Society.  
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The results described within this article are additionally concluded and put into context 

in Chapter 4. 
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4. Conclusion, Context and Outlook 

The reductive cleavage of an aryl group from the dismutational isomer of 

hexasilabenzene 42 cleanly affords the anionic siliconoid ligato-63[296] with a tricyclic 

scaffold corresponding to that of the global minimum isomer 43, which in turn results 

in the anionic Si6 siliconoid privo-63 with the negative charge being located at a 

different vertex of the otherwise identical cluster scaffold, when reduced under identical 

conditions.  

In the first part of this PhD thesis, the experimental procedure for the synthesis of 

privo-63 was optimized so that it can now be routinely isolated in multigram scale as 

microcrystalline powder in good yields of up to 60%. Just as in the case of the reported 

anionic siliconoid ligato-63, the corresponding privo-lithiated derivative was proven to 

be capable of the nucleophilic transfer of the unperturbed Si6 framework towards a 

series of electrophiles from the Groups 13 to 15 (Scheme 29).  

During the course of these investigations, the term “benzpolarene” was coined for the 

six-atomic silicon scaffold of 43 and its derivatives in order to emphasize the 

thermodynamic analogy to benzene (global minimum structure on the Si6R6 potential 

energy surface) and the inherent pronounced polarization. Furthermore, with two 

anionic siliconoids and their derivatives in hand that feature the identical benzpolarene 

framework but are functionalized at two different vertices, we felt the need for a nominal 

distinction. Thus, we introduced a nomenclature in the style of the well-known ortho, 

meta, para prefixes generally used in the context of disubstituted benzenes in order to 

distinguish between the privo-, two nudo-, two ligato- and a remoto-position in the Si6 

benzpolarene scaffold.  
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 Reagent E 

(a) BH3∙SMe2 BH3
+Li− 

(b) tBuC(O)Cl C(O)tBu 

(c) SiCl4 SiCl3 

(d) (NMe2)2PCl P(NMe2)2 

(e) PhC(O)Cl C(O)Ph 

(f) Me3SiCl SiMe3 

Scheme 29: Synthetic routes to ligato- and privo-functionalized Si6 benzpolarenes (● = Si, ● = “naked” 
Si, R = Tip = 2,4,6-iPr3C6H2). 

 

The evaluation and comparison of the spectroscopic data of the functionalized 

siliconoids privo-63, ligato-63, 64a-f and 69a-f revealed the peripherally attached 

functionalities to have a strong influence on the inherent electronic structure of the 

siliconoid cluster core. This is primarily reflected in a substituent-dependent shift of the 

low-field 29Si NMR resonance of the privo-vertex, which is expectedly more 

pronounced in the case of the privo-functionalized derivatives with the substituent 

directly attached to the silicon atom in question. The observed effect was quantitatively 

rationalized making use of the Hammett parameters m, which represent a measure 

for the electronegativity or -positivity of a given pending moiety. Notably, the same 

substituent has an opposite effect, when attached in the privo- or ligato-position, 

respectively: While electronegative substituents in ligato-position cause a deshielding 

of the privo-Si vertex, a corresponding shielding effect can be observed upon direct 

attachment in privo-position. While the chemistry of the iconic benzene is probably one 

of the most comprehensively investigated research areas in organic chemistry, the 
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complete opposite was true for its thermodynamic counterpart in the case of silicon 

(43) until very recently. With the present work, we certainly do not only contribute to a 

better fundamental understanding in this regard but also provide synthetic tools, which 

might set a launch for a faster and more comprehensive development of this emerging 

research area. 

As already highlighted in the “Aims and Scope” section (Chapter 2), the successful 

attachment of boron and phosphorus as the prototypical dopant atoms in silicon 

industry to the benzpolarene Si6 cluster core in 64a/d and 69a/d can be regarded a 

first step towards doping at a molecular level. In order to achieve the major second 

goal of this work, namely the incorporation of one or more dopant atoms in the cluster 

core itself, the initial focus rested on the identification of suitable precursors, which 

already contain the desired heteroatom. Very recently, the NHC-stabilized cyclic 

phosphasilene 70 could be isolated in our group for the first time and was already 

proven to be capable of acting as a donor to transition metals in the iron complex 71. 

A subsequent thermally induced rearrangement afforded the Si2PFe species 72 with a 

central bicyclobutane motif (Scheme 30). As 70 bears a certain resemblance to the 

three-membered Si3 rings 40 and 41, which serve as precursors to Si6 siliconoids, it 

was considered as possible precursor to a Si4P2 cluster species. In a first step, the 

complete characterization of 70 was performed including X-ray diffraction studies on 

recrystallized samples, additional analytical methods like CP/MAS-NMR spectroscopy, 

2D NMR spectroscopy and theoretical calculations. The unsaturated three-membered 

Si2P ring was shown to exist as two rotational isomers in solution, of which only one is 

present in the solid state. The formal Si=P double bond exhibits a strong ylidic 

character due to the donation of the NHC-ligand to the unsaturated silicon center. In a 

next step, the Lewis-acid induced cleavage of the NHC-ligand was proven to indeed 

lead to the desired dimerization to the two Si4P2 cluster species 71 and 72 (Scheme 

30). Both cluster frameworks are highly reminiscent of the dismutational isomer of 

hexasilabenzene 42 and hexasilabenzpolarene 43, respectively. Owing to the 

additional valence electron of phosphorus in comparison to silicon, however, the Si4P2 

clusters are completely saturated and lack the typical electronic features of the related, 

unsaturated Si6 siliconoids as displayed by NMR and UV/vis spectroscopic data.  
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Scheme 30: Coordination of the NHC-stabilized three-membered cyclic phosphasilene 70 to iron as a 
transition-metal center and the Lewis-acid induced NHC-abstraction to yield the saturated Si4P2 cluster 
species 73 and 74 with frameworks reminiscent of the hexasilabenzene isomers 42 and 43 (● = Si, 
R = Tip = 2,4,6-iPr3C6H2, NHC = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene). 

 

A two-electron oxidation to the corresponding dicationic species would result in an 

isoelectronic species; a corresponding investigation was prevented by the poor 

selectivity of the NHC-abstraction and associated low yields of 71 and 72. A possible 

future approach could be the one-electron oxidation of the cyclic phosphasilene 

precursor 68, which is available in multigram scale. The subsequent dimerization of 

the intermediate radical species upon liberation of the NHC-ligand might directly lead 

to a desired dicationic, unsaturated and thus molecularly doped siliconoid cluster. An 

alternative synthetic pathway for the incorporation of dopant atoms in the cluster core 

of siliconoids itself became finally available with the isolation of the dianionic Si5 cluster 

species 75. 

Owing to the pronounced electron deficit in the privo-position of the 

hexasilabenzpolarene scaffold, the treatment of the anionic siliconoid privo-63 with two 

equivalents of lithium/naphthalene solution resulted in the formation of the dianionic 

Si5 cluster 75 upon cleavage of this exact vertex (Scheme 31). Notably, 75 is also 

accessible by direct reduction of the corresponding neutral precursor 43 with four 

equivalents of reductant, while the closely related, anionic ligato-63 isomer proved to 

be inert under comparable reaction conditions (Scheme 31).  
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Scheme 31: Syntheses of monanionic siliconoids ligato-63 and privo-63 and the dianionic Si5 cluster 75 
(● = Si, ● = “naked” Si, R = Tip = 2,4,6-iPr3C6H2). 

 

An X-ray diffraction study on single crystals and CP/MAS NMR studies revealed the 

existence of 75 as its dimer in the solid-state with a central Si4Li2 hexagon. 

Corresponding VT-NMR studies suggest an equilibrium of different aggregates in 

solution. The dianionic Si5 cluster species 75 is highly reminiscent of the smallest 

silicon-based Zintl ion [Si4]4− in terms of structural as well as electronic features. 

However, in contrast to Zintl ions, 75 can be readily dissolved in common organic 

solvents, which is a big advantage regarding the possible functionalization or even the 

construction of extended supramolecular systems based on siliconoids. Indeed, the 

facile twofold derivatization of 75 with Me3SiCl in benzene to give the neutral 

bis(trimethylsilyl)-substituted Si5 cluster 76 provided proof for the capability of the 

anionic charges in 75 to act as nucleophilic functionalities (Scheme 32). In a next step, 

the treatment of 75 with dichlorides of boron and phosphorus allowed for the isolation 

of the unprecedented heterosiliconoids 77 and 78 (Scheme 32). With the 

corresponding dopant atoms being directly incorporated in the cluster core and still 

featuring “naked” silicon vertices, they represent the first examples of molecularly 

doped, unsaturated siliconoid clusters and can therefore be regarded model systems 

for p-type or n-type doped silicon surfaces.  
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Scheme 32: Syntheses of bis(trimethylsilyl)-substituted Si5-Cluster 76 and boron- and phosphorus-
doped siliconoids 77 and 78 (● = Si, ● = “naked” Si, R = Tip = 2,4,6-iPr3C6H2 77: E = B; 78: E = P). 

 

Full characterization of 77 and 78, including X-ray diffraction studies on single crystals, 

multinuclear NMR spectroscopy, CP/MAS NMR spectroscopy, UV/vis spectroscopy 

and theoretical investigations confirmed both the structural and electronic analogy of 

the six-atomic scaffolds to the corresponding hexasila-species 43 irrespective of the 

nature of the atom in privo-position of the benzpolarene scaffold: The boron and the 

phosphorus atom in 77 and 78, respectively, are similarly deshielded as the privo-Si 

vertex in 43 and give rise to resonances in the low-field regions of the 11B NMR and 

31P NMR spectra, while the signals for the “naked” silicon vertices appear at the typical 

high-field in the 29Si NMR spectra. The appearance of the calculated frontier orbitals 

at the privo vertex is very similar in all cases and resemble those of free borylene, 

silylene and phosphinidene. The corresponding orbital energies suggest that the 

HOMO-LUMO gap of the benzpolarene framework might be tunable by targeted 

manipulation of not only the privo-atom itself but also the pending functionalities. A 

future priority will be the use of the novel Si5 dianionic cluster 75 as starting material to 

larger silicon-based systems. With two available nucleophilic functionalities, the 

linkage or catenation of two or more Si5 moieties as well as their attachment to or 

embedding in nanomaterials should be within reach.  
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