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3.1.4 Numerical examples for the ‘Fréchet derivative’ . . . . . . . . . . . . . . . . . 63

3.2 Terminal wealth optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1 Basic financial market model, and the target . . . . . . . . . . . . . . . . . . 65

3.2.2 Markov decision model, and optimal trading strategies . . . . . . . . . . . . . 67

3.2.3 Existence and computation of optimal trading strategies . . . . . . . . . . . . 68

3.2.4 ‘Lipschitz continuity’ and ‘Hadamard differentiability’ of the value functional 75

3.2.5 Numerical examples for the ‘Hadamard derivative’ . . . . . . . . . . . . . . . 80

4 Statistical estimation of the optimal value in a specific Markov decision model 85

4.1 Basic Markov decision model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Value function and optimal strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Regularity of the value function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.1 ‘Continuity’ in F of the value function . . . . . . . . . . . . . . . . . . . . . . 89

4.3.2 Differentiability in F of the value function . . . . . . . . . . . . . . . . . . . . 95

4.4 Nonparametric estimation of Wx0
0 (F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.1 Strong consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4.2 Asymptotic error distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4.3 Bootstrap consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5 Parametric estimation of Wx0
0 (F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.5.1 Strong consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5.2 Asymptotic error distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Application to the Markov decision optimization problems from Chapter 3 125

5.1 Stochastic inventory control problem (revisited) . . . . . . . . . . . . . . . . . . . . . 125

5.1.1 Basic inventory control model, and the Markov decision model . . . . . . . . 125

5.1.2 Regularity of the value function . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1.3 Nonparametric estimation of the optimal value . . . . . . . . . . . . . . . . . 132

5.1.4 Parametric estimation of the optimal value . . . . . . . . . . . . . . . . . . . 141

5.2 Terminal wealth optimization problem (revisited) . . . . . . . . . . . . . . . . . . . . 146

5.2.1 Basic financial market model, and the Markov decision model . . . . . . . . . 147

5.2.2 Regularity of the value function . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.2.3 Nonparametric estimation of the optimal value . . . . . . . . . . . . . . . . . 159

5.2.4 Parametric estimation of the optimal value . . . . . . . . . . . . . . . . . . . 166

II Statistical inference for risk measures of collective risks in an individual model175

6 Foundations of risk measures and risk functionals 177

6.1 Formal definition of risk measures and risk functionals . . . . . . . . . . . . . . . . . 177

6.2 Distortion risk measures and the Kusuoka representation . . . . . . . . . . . . . . . . 178

6.3 Regularity of risk functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.4 Examples of risk measures used in practice . . . . . . . . . . . . . . . . . . . . . . . 182

vi



7 Nonparametric estimation of risk measures of collective risks in the individual model 185

7.1 Nonparametric estimators for the individual premium . . . . . . . . . . . . . . . . . 186

7.2 Strong consistency and asymptotic error distribution for the individual premium

estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.3 Qualitative robustness of the sequence of empirical convolution estimators . . . . . . 197

Appendices

A Quasi-Hadamard differentiability and quasi-Lipschitz continuity 207

A.1 Definition of quasi-Hadamard differentiability . . . . . . . . . . . . . . . . . . . . . . 207

A.2 Definition of quasi-Lipschitz continuity, and an auxiliary lemma . . . . . . . . . . . . 208

B Lebesgue–Stieltjes integrals and an integration-by-parts formula 209

B.1 Definition of Lebesgue–Stieltjes integrals, and auxiliary lemmas . . . . . . . . . . . . 209

B.2 An integration-by-parts formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

References 213

vii



viii



Abstract

The first part of this thesis deals with the sensitivity and statistical estimation of the optimal value

of a Markov decision model (MDM) in the transition probability function, i.e. the family of all

transition probabilities. Such models are used for modelling stochastic optimization problems with

sequential decision making which appear in many application areas. Since in practice, the used

MDM is most often less complex than the underlying ‘true’ MDM, we first discuss the impact of

a reduction of the model complexity in the transition probability function on the optimal value

of the MDM, i.e. the solution of the underlying stochastic control problem. Besides a statement

on the continuity of the optimal value regarded as a real-valued functional on a set of transition

probability functions, we will in particular introduce a sort of derivative of this functional which

can be used to measure the (first-order) sensitivity of the optimal value w.r.t. deviations in the

transition probability function.

In addition, we perform a statistical analysis of the optimal value of a MDM where the underly-

ing transition probability function is unknown, a situation that often occurs in practice. By limiting

ourselves to a simple MDM in which the transition probability function is generated only by a single

distribution function, we show that the optimal value construed as a real-valued functional defined

on a set of distribution functions is continuous and functionally differentiable in a certain sense.

By means of these regularity properties, we discuss the asymptotics of suitable estimators for the

optimal value of the MDM in nonparametric and parametric statistical models. Our theoretical

findings in the first part of this thesis are illustrated by means of optimization problems in inventory

control and mathematical finance.

The second part of this thesis is devoted to the nonparametric estimation of risk measures of

collective risks in a non-homogeneous individual risk model in connection with the determination

of appropriate insurance premiums. We present two nonparametric candidates for the estimator of

the exact insurance individual premium and show several asymptotic properties for the estimated

premiums, such as strong consistency, asymptotic normality, and qualitative robustness, that are

applicable in ‘large’ insurance collectives.
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Zusammenfassung

Der erste Teil dieser Arbeit befasst sich mit der Sensitivität und statistischen Schätzung des opti-

malen Wertes eines Markov Entscheidungsmodells (MEMs) in der Übergangswahrscheinlichkeits-

funktion, d. h. der Familie aller Übergangswahrscheinlichkeiten. Solche Modelle werden zur Mod-

ellierung von stochastischen Optimierungsproblemen mit sequentieller Entscheidungsfindung ver-

wendet, die in vielen Anwendungsbereichen auftreten. Da das verwendete MEM in der Praxis

meist weniger komplex ist als das zugrundeliegende
”
wahre“ MEM, diskutieren wir zunächst den

Einfluss einer Reduktion der Modellkomplexität in der Übergangswahrscheinlichkeitsfunktion auf

den optimalen Wert des MEM, d.h. der Lösung des zugrundeliegenden stochastischen Kontrollprob-

lems. Neben einer Aussage über die Stetigkeit des optimalen Wertes, aufgefasst als ein reellwertiges

Funktional definiert auf einer Menge von Übergangswahrscheinlichkeitsfunktionen, werden wir ins-

besondere eine Art Ableitung dieses Funktionals vorstellen, die zur Messung der Sensitivität (ersten

Ordnung) des optimalen Wertes bezüglich Abweichungen in der Übergangswahrscheinlichkeitsfunk-

tion verwendet werden kann.

Darüber hinaus führen wir eine statistische Untersuchung des optimalen Wertes eines MEMs

durch, bei dem die zugrundeliegende Übergangswahrscheinlichkeitsfunktion unbekannt ist, eine

Situation, die in der Praxis häufig vorkommt. Indem wir uns auf ein einfaches MEMs beschränken,

in welchem die Übergangswahrscheinlichkeitsfunktion nur durch eine einzelne Verteilungsfunktion

erzeugt wird, zeigen wir, dass der optimale Wert, welcher als ein Funktional auf einer Menge

von Verteilungsfunktionen betrachtet wird, stetig und funktional differenzierbar in einem gewissen

Sinn ist. Mit Hilfe dieser Regularitätseigenschaften diskutieren wir in nichtparametrischen und

parametrischen statistischen Modellen die Asymptotiken geeigneter Schätzer für den optimalen

Wert des MEM. Unsere theoretischen Erkenntnisse im ersten Teil dieser Arbeit werden anhand von

Optimierungsproblemen in der Lagerbestandskontrolle und der Finanzmathematik veranschaulicht.

Der zweite Teil dieser Arbeit widmet sich der nichtparametrischen Schätzung von Risikomaßen

kollektiver Risiken in einem individuellen Risikomodell im Zusammenhang mit der Bestimmung

geeigneter Versicherungsprämien. Wir stellen zwei nichtparametrische Kandidaten für den Schätzer

der exakten individuellen Versicherungs -prämie vor und zeigen für die geschätzten Prämien mehrere

asymptotische Eigenschaften wie starke Konsistenz, asymptotische Normalität und qualitative Ro-

bustheit, welche in
”
großen“ Versicherungskollektiven anwendbar sind.
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Introduction

Markov decision models (MDMs), whose theoretical foundations can be traced back to the pioneer

works of Bellman [9, 10], Shapley [84], and Howard [43], are a common and widely used mathemati-

cal framework for modelling stochastic optimization problems with sequential decision making that

have a Markovian structure. These stochastic control problems, which may also be referred to as

Markov decision optimization problems, appear in a variety of application areas, such as economics

(e.g. optimal replacement, inventory control), finance (e.g. terminal wealth optimization), logistics

(e.g. dynamic routing problems), engineering (e.g. elevator control), computer science (e.g. robotic

control), and medicine (e.g. optimal cadaveric organ acceptance or rejection). The central object

of a Markov decision optimization problem is a stochastic system (modelled via a so-called Markov

decision process (MDP)) whose random transition mechanism, described by a family of transition

probabilities, can be controlled over time by a decision maker through a strategy, i.e. a sequence

of actions. The aim of the decision maker is to find a ‘good’ strategy so that the underlying

Markov decision optimization problem admits an optimal solution, the so-called optimal value of

the corresponding MDM.

The theory of MDMs has become increasingly important in recent decades, especially for the

reason that in practice robust procedures for the computation of the optimal value of a MDM are

highly demanded. This is based on the fact that, in contrast to the theory which usually assumes

that the model components of a MDM are known precisely, some of these components, such as

the transition probabilities, are unknown or difficult to determine in practice, for instance due to

the lack of historical observations. On the one hand, the corresponding model components can be

estimated by statistical methods to avoid this problem. On the other hand, in many applications,

the ‘true’ model is replaced by an approximate version of the ‘true’ model or by a variant which is

simplified and thus less complex. As a result, the optimal value of a MDM is often calculated in

practice on the basis of model components which differ from the underlying ‘true’ model elements.

Therefore, the sensitivity of the optimal value w.r.t. deviations in the model components of the

corresponding MDM is of interest and has become an important research field in the theory of

MDMs. Exemplary for these investigations, we refer to the works of Chin Hon and Hartman [24],

Kolonko [50], Mastin and Jaillet [66], Müller [68], Van Dijk and Puterman [88], and others.

In the first part of this thesis, we first of all deal with the sensitivity of the optimal value of a

finite horizon discrete time MDM w.r.t. deviations in the so-called transition probability function,

i.e. the family of all transition probabilities. Already in the 1990s, Müller [68] pointed out that

the impact of the transition probabilities of a MDP on the optimal value of a corresponding MDM

can not be ignored for practical issues. He showed that the optimal value of a time-homogeneous

MDM depends continuously on the transition probabilities, and he established bounds for the
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approximation error. Even earlier, Kolonko [50] obtained analogous bounds in a MDM in which the

transition probabilities depend on a parameter. Error bounds for the optimal value of a discrete

time MDM with countable state space and action spaces were also specified by Van Dijk and

Puterman [88]. Morever, Mastin and Jaillet [66] presented loss bounds for the optimal value of a

MDM with unknown transition probabilities.

In Chapter 2, we will focus on the situation where in the MDM the ‘true’ transition probability

function is replaced by a simplified and thus less complex version. We refer to Subsection 3.1.4 for

a simple example of this situation. The reduction of model complexity in practical applications is

common and performed for several reasons. Apart from computational aspects and the difficulty

of considering all relevant factors, one major point is that statistical inference for certain transition

probabilities can be costly in terms of both time and money. For this reason, it is obviously of

interest with regard to the optimal value to know what kind of model reduction is reasonable and

what not. To put it another way, we are interested in how a change from a simplified to a more

complex (more realistic) variant of the transition probability function affects the optimal value of

a MDM. In Section 2.2, we will show that the so-called value function specifying the optimal value

of a MDM is ‘Lipschitz continuous’ in a certain sense w.r.t. the transition probability function.

However, with the help of this result we are not able to quantify the effect of changing the less

complex version of a transition probability function to a more realistic version on the optimal value.

For this reason, in Section 2.3, we will present a sort of derivative of the value function regarded

as a real-valued functional defined on a set of transition probability functions which can be used to

measure the (first-order) sensitivity of the optimal value w.r.t. changes in the transition probability

function. Compared to the existing theory of MDMs, this approach is new and of interest for many

application areas.

Besides this, in the first part of this thesis, we also consider the situation where in a MDM

the underlying transition probability function is not known, but can be estimated with statistical

methods. The motivation for our investigations results from the fact that, as described above,

in many practical applications the transition probabilities (and thus the transition probability

function) of a MDM are completely or partially unknown so that, for a computation of the optimal

value of the corresponding MDM, the missing transition probabilities must first be determined. We

consider a simple finite horizon discrete time MDM in which the transition probability function is

generated only by a single distribution function, a situation that occurs in many real applications.

Subsections 5.1.1 and 5.2.1 will each describe such a situation by way of example. In Chapter 4,

we will present two methods which can be used to estimate the unknown transition probability

function (and thus the optimal value) of the corresponding MDM. These two approaches are based

on a nonparametric and a parametric estimation of the unknown distribution function and require

the knowledge of historical observations. As a consequence, we derive a reasonable estimator for the

unknown distribution function and thus the optimal value of the corresponding MDM within each

approach. This leads to the following questions: Under which assumptions on the underlying MDM

and the estimators for the unknown distribution function can we derive asymptotic properties for

the respective estimators of the optimal value? In this case, how does the estimation of the unknown

distribution function affects the estimation of the optimal value of the corresponding MDM? What

validity and conclusions do such asymptotic properties have? Sections 4.4 and 4.5 are devoted to

address these issues.
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The existing literature has already dealt with the statistical inference for the optimal value of a

MDM in which not only the transition probabilities are unknown on several occasions. Cooper and

Rangarajan [26] considered a MDM in which the expected cost functions as well as the transition

probabilities are not known, and assumed that the latter expressions are governed by a family of

(unknown) distribution functions. By means of a nonparametric approach, they estimated the un-

known family of distribution functions based on a sequence of i.i.d. random variables, and provided

under some structural assumptions on the corresponding MDM bounds for the probability that the

optimal value computed with estimated components is within a prescribed distance of the optimal

value with ‘true’ components. Loss bounds for the expected approximation error of the estimated

and the ‘true’ optimal value of a MDM with transition probabilities depending on an unknown

parameter were given by Kolonko [51]. Here the author used a Bayes estimator for the estimation

of the unknown parameter and thus the transition probabilities.

The second part of this thesis is concerned with the statistical estimation of an appropriate

individual premium for the next insurance period from a non-homogeneous insurance collective

consisting of a finite and deterministic number of independent risks. In the context of actuarial

practice, insurers are confronted with the task of calculating a premium for (insurable) risks that is

both competitive and sufficient to cover future claims. However, the observed single claim amounts

(and thus the corresponding distributions) of the individual risks in an insurance collective may

differ, sometimes considerably, so that the resulting premium based on each of these claims would

be unacceptable to the policyholder. For this reason, insurers group ‘similar’ risks together in ‘large’

collectives and take advantage of the effect that in such collectives the random risk is reduced and

thus a lower premium can be realised for each individual risk. To model this approach, we will

consider a so-called non-homogeneous individual model as a (standard) mathematical setting, in

which the individual risks from a non-homogeneous insurance collective are expressed by a sequence

of independent but not necessarily identically distributed random variables. Here we stress the

fact that such a non-homogeneous risk model can better reflect actual actuarial practice than a

homogeneous risk model, where the involved random variables modelling the individual risks in the

insurance collective are independent and additionally identically distributed.

Within this theoretical framework, in Chapter 7, we will present a candidate for the exact (col-

lective and) individual premium which is based on the total claim amount of the non-homogeneous

insurance collective evaluated at an appropriate risk measure. The choice of such a risk measure

describes to a certain extent the risk position from the insurer’s point of view and expresses its

so-called risk appetite, i.e. what level of risk the insurance company is prepared to accept insurable

risks in return for payment of a premium. In Section 6.4, we give examples of risk measures that

are frequently used in actuarial practice. For the estimation of the (distribution of the) future total

claim amount in the insurance collective we will present, with the normal approximation and a

convolution estimation method, two nonparametric approaches which are based on observed his-

torical individual claims. The use of historical data for estimating the distribution of future claims

is common in actuarial practice. By inserting the resulting nonparametric estimators for the total

claim distribution into a so-called risk functional, which is linked to the risk measure chosen by the

insurance company, one obtains two candidates for the estimator of the (collective and) individual

premium.

In the existing literature, there are several studies about the statistical estimation of the total
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claim distribution. On the one hand, Krätschmer and Zähle [54] as well as Lauer and Zähle

[61] used the normal approximation with estimated parameters to construct an estimator for the

distribution of the total claim in a homogeneous insurance collective with independent identically

distributed individual risks. On the other hand, Lauer and Zähle [61] showed that the convolution

of the empirical measure of independent and identically distributed individual risks is also a suitable

estimator for the total claim distribution.

The main task in the second part of this thesis is to investigate the asymptotics of the nonpara-

metric estimators for the exact individual premium. From the insurer’s point of view, it is on the

one hand interesting to know how the deviation of the estimated premiums from the exact premium

behaves asymptotically depending on, for example, the collective size, the choice of the risk measure

or the distributions of the observed single claims. Motivated by the works of [54, 61], Section 7.2

is devoted to these studies. There we will also see that both the estimated individual premiums

and the exact individual premium can be approximated on the basis of a premium principle, which

corresponds to a standard deviation principle widely used in actuarial practice. On the other hand,

insurers are confronted in practice with observed single claims from insurance collectives whose

distributions can sometimes differ considerably from each other. For pragmatic reasons, however,

insurers generally assume a homogeneous risk model with a hypothetical single claim distribution

to calculate the exact individual premium. In practice, it is therefore of interest how a deviation of

the observed single claim distributions from the hypothetically assumed single claim distribution

affects the (individual premium and the distribution of the) estimated individual premium based

on a homogeneous risk model, especially for ‘large’ insurance collectives. In Section 7.3, we will

deal with this issue in context of the convolution based premium estimator.

This thesis is organized as follows. Chapter 1 will provide a theoretical background in the

field of finite horizon discrete time MDMs based on the standard literature on MDMs, such as

Bäuerle and Rieder [5], Bertsekas and Shreve [11], Herández-Lerma and Lasserre [38], Hinderer

[39], and Puterman [73]. Since it is important to have an elaborate notation in order to formulate

our main results in Chapters 2 and 4, we are very precise in this chapter. In Sections 1.1–1.2,

we will formally introduce our finite horizon discrete time MDM used throughout the first part

of this thesis to model a stochastic optimization problem with sequential decision making based

on a specific performance criterion, and define the so-called value function specifying the solution

and thus the optimal strategy for the considered maximization problem. Afterwards, in Sections

1.3–1.4, we will also discuss under which conditions the value function and an optimal strategy

exist, and Section 1.5 is devoted to MDMs in a specific finite setting.

In Chapter 2, we will first introduce an appropriate distance between transition probability

functions based on so-called integral probability metrics which have already been discussed, for

example, in [68]. By means of this distance, we will introduce a reasonable notion of ‘continuity’

and ‘differentiability’ and show that the value function, regarded as a real-valued functional on some

set of transition probability functions, is ‘continuous’ and ‘differentiable’. This will be discussed in

detail in Sections 2.2 and 2.3. These investigations will justify in a way that the optimal value is

sensitive w.r.t. deviations in the transition probability function.

Our theoretical findings in Chapters 1–2 will be illustrated in Chapter 3 by means of clas-

sical Markov decision optimization problems in inventory control and mathematical finance. In
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particular, the numerical example presented in Subsection 3.1.4 shows that the ‘derivative’ of the

optimal value (known from Subsection 3.1.3) can be used to quantify the effect of a change from

simplified to a more complex variant of the transition probability function on the optimal value of

the corresponding MDM.

Chapter 4 deals with a study of a simple MDM, in which the underlying transition probability

function is generated only by an (unknown) single distribution function. There we will use the

general terminology and notations introduced in Chapter 1 to formulate our specific setting (see

Sections 4.1–4.2). In Section 4.3, we show that the value function construed as a real-valued

functional defined on a set of distribution functions is continuous and functionally differentiable in

a certain sense. Based on these notations and regularity results, in Sections 4.4–4.5, we will discuss

two approaches to estimate the unknown distribution function and thus the optimal value of the

MDM in a nonparametric and a parametric statistical model. In both sections, we will present

asymptotic properties of the corresponding estimators for the optimal value of the MDM, such as

strong consistency, asymptotic error distribution, and bootstrap consistency (in probability).

Exemplary for the theory presented in Chapter 4, in Chapter 5, we will take up the stochastic

inventory control problem as well as the terminal wealth problem already considered in Sections

3.1–3.2, and assume that the random transition mechanism of the corresponding Markov decision

optimization problems is now described by an unknown distribution function. Within this frame-

work, we will perform a nonparametric and a parametric estimation of the optimal value of both

Markov decision optimization problems in the unknown distribution function which will illustrate

the results presented in Sections 4.4–4.5.

In Chapter 6, we will first formally introduce the notion of a risk measure in the context of non-

life insurance mathematics and discuss, for certain classes of risk measures, regularity properties of

the associated risk functionals w.r.t. the so-called Wasserstein metric. Finally, in Section 6.4, we

will present examples of risk measures used in practice.

Chapter 7 is devoted to a nonparametric estimation of the individual premium in a non-

homogeneous insurance collective consisting of a finite number of independent but not identically

distributed risks. After motivating and introducing two nonparametric estimators for the indi-

vidual premium based on a normal approximation and a convolution approach in Section 7.1, we

will show asymptotic properties of these estimators, such as strong consistency and asymptotic

normality which is part of Section 7.2. Finally, in Section 7.3, we will investigate the sequence of

estimators which are based on the convolution approach for qualitative robustness. This investiga-

tion motivates somehow the choice of the latter estimator for the individual premium in a ‘slightly’

non-homogeneous insurance collective when the insurer assumes a homogeneous individual risk

model for the computation of future single premiums.

The majority of the results in the first part of this thesis can also be found in the article jointly

with Axel Simroth and Professor Henryk Zähle. The results of Chapters 1–3 are based on [48]:

Kern, P., Simroth, A. and Zähle, H. (2020). First-order sensitivity of the optimal value

in a Markov decision model with respect to deviations in the transition probability

function. Mathematical Methods of Operations Research, 92(1), 165–197.

The elaborations in Chapters 4–5 result from a joint project with Professor Henryk Zähle:
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Kern, P. and Zähle, H., project on the “Statistical estimation of the optimal value in a

specific Markov decision model”, work in progress.

Finally, the investigations in the second part of this thesis are based on joint work with Professor

Henryk Zähle. The results in Chapter 6–7 rely on:

Kern, P. and Zähle, H., project on the“Statistical inference for risk measures of collective

risks in an individual model with independent but not identically distributed observed

single claims”, work in progress.
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Part I

Sensitivity analysis and statistical

inference for the optimal value in a

Markov decision model
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Chapter 1

Foundations of finite horizon discrete time

Markov decision models

In this chapter we give a detailed introduction into the theory of finite horizon discrete time Markov

decision models (MDMs). As already mentioned in the main introduction, these mathematical

models are powerful tools that are used to model stochastic optimization problems with sequential

decision making which have a Markovian structure.

To explain such a stochastic control problem informally, suppose that we have a system of states

whose dynamic can be controlled or regulated at finitely many discrete points of time by a sequence

of decisions or actions. Moreover we assume that the transitions between different system states are

random and that the process describing the stochastic evolution of the system states is Markovian.

The latter means that transitions to future states of the process are not influenced by past states.

The evolution of the system can be described as follows:

Given a system state x at some point of time n, a decision maker (or controller) chooses

an (admissible) action a. If action a is applied, then the decision maker receives a

reward rn(x, a) and a random transition of the system occurs according to a probability

distribution (or law) Pn((x, a), • ) which leads to a new system state x′ at time n+ 1.

For the formulation of a reasonable optimization criterion, we suppose that at any point of time the

decision maker selects an action and receives a reward. The objective of the decision maker is now

to choose a suitable strategy (or policy), i.e. a sequence of actions, which leads to the fact that the

system state process perform optimally with respect to some specific predetermined performance

criterion based on the rewards. In Section 1.2, we will look at the so-called expected total reward

criterion in detail which is one of the most commonly used performance criterion in the classical

theory of MDMs.

All these quantities together characterize in an informal way some of the key features of a discrete

time MDM with finite time horizon. In Section 1.1, we will precisely introduce all basic model

components of a finite horizon discrete time MDM. There we will see that the stochastic evolution

of the system states will be modelled by a so-called Markov decision process (MDP). Figure 1.1

below illustrates the general evolution of a MDP.
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decision maker

state at time n:

x

chooses
action a

x′
Pn((x, a), • )

according to law
random transition

reward rn(x, a)
receives

state at time n+ 1:

Figure 1.1: Schematic evolution of a MDP.

The first chapter is organized as follows. In Section 1.1, we will formally introduce quite general

MDMs in the fashion of the standard monographs [5, 11, 38, 39, 73]. Later on, in Section 1.2 we

introduce the value function of a MDM which will be derived from a reward maximization problem,

and define subsequently the notion of an optimal strategy which corresponds to a solution of the

latter optimization problem. The existence (and computation) of optimal strategies in general

MDMs will be carried out in Section 1.3. Afterwards, in Section 1.4 we discuss some conditions

under which the value function is well-defined. Finally, Section 1.5 is devoted to the special case of

MDMs with finite state space and finite actions spaces.

1.1 Formal definition of a Markov decision model

In this section and elsewhere we will only consider finite horizon discrete time MDMs. Note that

discrete time MDMs with infinite time horizon can be approximated by discrete time MDMs with

finite but large time horizon; see, for example, [5, Chapter 7] or [12, Chapter 7]. Also note that

in the finite horizon case Howard [43, p. 124] showed that discrete time MDMs can be seen as

approximations for continuous time MDMs. As already mentioned in the main introduction, we

will carefully introduce in this section the required notations and terminologies in order to present

our main results in Chapter 2. As a result, this section is a little longer compared to the respective

sections in other works on MDMs.

1.1.1 Basic model components

In this subsection we will introduce the basic model components of a finite horizon discrete time

MDM which will be formally defined in Subsection 1.1.3.

Now, we let N ∈ N be a fixed number of discrete points of time at which the decision maker

may choose actions in order to influence the dynamics of the stochastic system. The number N

is also called time or planning horizon in discrete time. Moreover we will assume in the sequel

that an action is always applied at the very beginning of the period between time n and n + 1,

n = 0, . . . , N − 1. Therefore the set of points of time at which actions may be chosen is given by

{0, . . . , N − 1}.
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Since the probabilistic system occupies at each point of time a state, we denote by E the state

space of the system. Here we may and do assume that the state space E is a non-empty set, and

we will equip E with a σ-algebra E . The elements of the state space E represents the information

about the system that is available for the decision maker.

For each state x ∈ E and each time point n = 0, . . . , N − 1, we let An(x) be a non-empty set. The

elements of An(x) correspond to the admissible (or allowable) actions which the decision maker

may choose at time n = 0, . . . , N − 1 in state x ∈ E. Moreover, for each n = 0, . . . , N − 1, we let

An :=
⋃
x∈E

An(x) and Dn :=
{

(x, a) ∈ E ×An : a ∈ An(x)
}
. (1.1)

Note that the elements of An can be seen as the actions that may basically be selected at time n,

whereas the elements of Dn are the possible state-action combinations at time n. For our subsequent

analysis, we equip An with a σ-algebra An, and let Dn := (E ⊗An)∩Dn be the trace of the product

σ-algebra E ⊗ An in Dn.

Given some possible state-action combination (x, a) ∈ Dn at time n = 0, . . . , N − 1, the system

state visited at time n+1 will be drawn by the probability measure Pn((x, a), • ), where Pn refers to

a probability (or Markov) kernel from (Dn,Dn) to (E, E). By definition a map Pn : Dn ×E → [0, 1]

is said to be a probability kernel from (Dn,Dn) to (E, E) if Pn( · , B) is a (Dn,B([0, 1]))-measurable

map for any B ∈ E , and Pn((x, a), • ) ∈M1(E) for any (x, a) ∈ Dn. HereM1(E) stands for the set

of all probability measures on (E, E). In this context Pn will be referred to as one-step transition

(probability) kernel at time n (or from time n to n+ 1) and the probability measure Pn((x, a), • )

is referred to as one-step transition probability at time n (or from time n to n + 1) given state x

and action a. In particular, the transitions of the system at each point of time n = 0, . . . , N − 1

can be characterized by the N -tuple

P = (P0, . . . , PN−1)

whose n-th entry Pn is a probability kernel from (Dn,Dn) to (E, E). Therefore, the N -tuple

P = (Pn)N−1
n=0 will be referred to as (Markov decision) transition (probability) function. The set of

all transition functions will be denoted by P.

In the sequel, we will assume that the actions are performed by a so-called N -stage strategy (or

N -stage policy). An (N -stage) strategy is an N -tuple

π = (f0, . . . , fN−1)

of decision rules at times n = 0, . . . , N−1, where a decision rule at time n is an (E ,An)-measurable

map fn : E → An satisfying fn(x) ∈ An(x) for all x ∈ E. Note that fn(x) determines an admissible

action which is taken in state x at time n. Also note that a decision rule at time n is (deterministic

and) ‘Markovian’ since it only depends on the current state and is independent of previous states

and actions. We denote by Fn the set of all decision rules at time n, and assume that Fn is non-

empty. Hence a strategy is an element of the set Π := F0 × · · · × FN−1, and this set can be seen

as the set of all strategies. Moreover, we fix for any n = 0, . . . , N − 1 some Fn ⊆ Fn which can be

seen as the set of all admissible decision rules at time n. In particular, the set Π := F0×· · ·×FN−1

(⊆ Π) can be seen as the set of all admissible strategies.
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1.1.2 Markov decision process

Based on the notation and terminology from Subsection 1.1.1 we will present in this subsection

a formal definition of an E-valued (finite horizon discrete time) Markov decision process (MDP)

associated with a given initial state x0 ∈ E, a given transition function P ∈ P and a given strategy

π ∈ Π. We will see that the MDP describes the stochastic evolution of the system states.

To this end, let us consider in the following the measurable space

(Ω,F) := (EN+1, E⊗(N+1)).

Moreover, for any transition function P = (Pn)N−1
n=0 ∈ P, strategy π = (fn)N−1

n=0 ∈ Π, and time

point n ∈ {0, . . . , N − 1}, we can obviously derive from Pn a probability kernel P πn from (E, E) to

(E, E) through

P πn (x,B) := Pn
(
(x, fn(x)), B

)
, x ∈ E, B ∈ E . (1.2)

Note that the probability measure P πn (x, • ) can be seen as the one-step transition probability at

time n given state x when the transitions and actions are governed by P and π, respectively.

In virtue of (1.2), we may define for any x0 ∈ E, P = (Pn)N−1
n=0 ∈ P, and π ∈ Π a probability

measure Px0,P ;π on (Ω,F) by

Px0,P ;π := δx0 ⊗ P π0 ⊗ · · · ⊗ P πN−1, (1.3)

where x0 should be seen as the initial state of the MDP to be constructed and δx0 refers to the Dirac

measure at point x0. Note that the right-hand side of (1.3) is the usual product of the probability

measure δx0 and the kernels P π0 , . . . , P
π
N−1. That is, the precise meaning of the definition of the

probability measure Px0,P ;π in (1.3) is in view of (1.2)

Px0,P ;π[B] :=

ˆ
E

ˆ
E
· · ·
ˆ
E

ˆ
E
1B(y0, . . . , yN )P πN−1(yN−1, dyN )

P πN−2(yN−2, dyN−1) · · ·P π0 (y0, dy1) δx0(dy0)

=

ˆ
E

ˆ
E
· · ·
ˆ
E

ˆ
E
1B(y0, . . . , yN )PN−1

(
(yN−1, fN−1(yN−1)), dyN

)
PN−2

(
(yN−2, fN−2(yN−2)), dyN−1

)
· · ·P0

(
(y0, f0(y0)), dy1

)
δx0(dy0) (1.4)

for B ∈ F , for any given x0 ∈ E, P = (Pn)N−1
n=0 ∈ P, and π = (fn)N−1

n=0 ∈ Π.

Further let X = (X0, . . . , XN ) be the identity on Ω = EN+1, i.e.

Xn(x0, . . . , xN ) := xn, (x0, . . . , xN ) ∈ EN+1, n = 0, . . . , N. (1.5)

Note that for any x0 ∈ E, P = (Pn)N−1
n=0 ∈ P, and π ∈ Π the map X can be regarded as an

(EN+1, E⊗(N+1))-valued random variable on the probability space (Ω,F ,Px0,P ;π) with distribution

δx0 ⊗ P π0 ⊗ · · · ⊗ P πN−1.

In the following Px0,P ;π
X‖Y ( · , •) refers to the factorized conditional distribution of X given Y under

Px0,P ;π, whereX and Y correspond to any random variables on the probability space (Ω,F ,Px0,P ;π).

More precisely, by a (regular version of the) factorized conditional distribution of X given Y under

Px0,P ;π we mean a probability kernel Px0,P ;π
X‖Y ( · , •) for which for every B ∈ E the random variable
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ω 7→ Px0,P ;π
X‖Y (Y (ω), B) is a conditional probability of {X ∈ B} given Y under Px0,P ;π. This object

is only Px0,P ;π
Y -a.s. unique. Thus the formulation of parts (iii)–(ix) in the following Lemma 1.1.1

is somewhat sloppy. Assertion (vi) in fact means that the probability kernel Pn(( · , fn( · )), • )

provides a (regular version of the) factorized conditional distribution of Xn+1 given Xn under

Px0,P ;π, and analogously for parts (iii)–(v) and (vii)–(ix). Note that it is also customary to write

Px0,P ;π[{X ∈ • }] and Px0,P ;π[{X ∈ • }‖Y = · ] instead of Px0,P ;π
X [ • ] and Px0,P ;π

X‖Y ( · , •), respectively.

Lemma 1.1.1 For any P = (Pn)N−1
n=0 ∈ P, π = (fn)N−1

n=0 ∈ Π, x0, x̃0, x1, . . . , xn ∈ E and 1 ≤ n <

k ≤ N as well as xm ∈ E and m = 1, . . . , N we have

(i) Px0,P ;π[{X0 ∈ • }] = δx0 [ • ].

(ii) Px0,P ;π[{(X0, . . . , Xm) ∈ • }] = δx0 ⊗ P π0 ⊗ · · · ⊗ P πm−1[ • ].

(iii) Px0,P ;π[{X0 ∈ • }‖X0 = x̃0] = δx0 [ • ].

(iv) Px0,P ;π[{X1 ∈ • }‖X0 = x̃0] = P0

(
(x0, f0(x0)), •

)
.

(v) Px0,P ;π[{Xn+1 ∈ • }‖(X0, X1, . . . , Xn) = (x̃0, x1, . . . , xn)] = Pn
(
(xn, fn(xn)), •

)
.

(vi) Px0,P ;π[{Xn+1 ∈ • }‖Xn = xn] = Pn
(
(xn, fn(xn)), •

)
.

(vii) Px0,P ;π[{Xm ∈ • }‖X0 = x̃0] = Px0,P ;π[{Xm ∈ • }] = Px0,P ;π
X1‖X0

· · ·Px0,P ;π
Xm‖Xm−1

(x0, • ).

(viii) Px0,P ;π[{Xk ∈ • }‖Xn = xn] = Px0,P ;π
Xn+1‖Xn · · ·P

x0,P ;π
Xk‖Xk−1

(xn, • ).

(ix) Px0,P ;π[{Xm ∈ • }‖Xm = xm] = δxm [ • ].

Similarly to (1.4), the right-hand side of part (ii) of the preceding lemma is given by

δx0 ⊗ P π0 ⊗ · · · ⊗ P πm−1[B]

:=

ˆ
E

ˆ
E
· · ·
ˆ
E

ˆ
E
1B(y0, . . . , ym)P πm−1(ym−1, dym)

P πm−2(ym−2, dym−1) · · ·P π0 (y0, dy1) δx0(dy0)

=

ˆ
E

ˆ
E
· · ·
ˆ
E

ˆ
E
1B(y0, . . . , ym)Pm−1

(
(ym−1, fm−1(ym−1)), dym

)
Pm−2

(
(ym−2, fm−2(ym−2)), dym−1

)
· · ·P0

(
(y0, f0(y0)), dy1

)
δx0(dy0). (1.6)

Also note that for parts (vii) and (viii) in Lemma 1.1.1 the compositions on the right-hand side are

for every B ∈ E defined by

Px0,P ;π
X1‖X0

· · ·Px0,P ;π
Xm‖Xm−1

(x0, B)

:=

ˆ
E
· · ·
ˆ
E
1B(ym)Pm−1

(
(ym−1, fm−1(ym−1)), dym

)
· · ·P0

(
(x0, f0(x0)), dy1

)
(1.7)

and

Px0,P ;π
Xn+1‖Xn · · ·P

x0,P ;π
Xk‖Xk−1

(xn, B)

:=

ˆ
E
· · ·
ˆ
E
1B(yk)Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)
. (1.8)

Note that the factorized conditional distributions in parts (iii)–(iv) and (vii) of Lemma 1.1.1 are

constant w.r.t. x̃0 ∈ E and that the probability measure Px0,P ;π
Xk‖Xn(xn, • ) in part (viii) of Lemma
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1.1.1 can be seen in view of (1.8) as a (k − n)-step transition probability from stages n to k given

state xn.

Now, let us turn to the proof of Lemma 1.1.1. Note that Ex0,P ;π refers to the expectation w.r.t.

the probability measure Px0,P ;π as defined in (1.3)–(1.4).

Proof of Lemma 1.1.1: First of all it is clear that assertions (i)–(ii) hold. Thus it suffices to

show the claims in (iii)–(ix).

(iii): The claim holds true, because in view of (1.4) and part (i)

Ex0,P ;π
[
δX0 [B]1B1(X0)

]
=

ˆ
Ω
δX0(ω)[B]1B1(X0(ω))Px0,P ;π(dω)

=

ˆ
E

ˆ
E
· · ·
ˆ
E
δy0 [B]1B1(y0)

PN−1

(
(yN−1, fn(yN−1)), dyN

)
· · ·P0

(
(y0, f0(y0)), dy1

)
δx0(dy0)

=

ˆ
E
δy0 [B]1B1(y0) δx0(dy0) = δx0 [B]1B1(x0) = δx0 [B ∩B1]

= Px0,P ;π[{X0 ∈ B} ∩ {X0 ∈ B1}]

for any B ∈ E and B1 ∈ E .

(iv): The claim holds true, because in view of (1.4), (1.6), and part (ii)

Ex0,P ;π
[
P0

(
(X0, f0(X0)), B

)
1B1(X0)

]
=

ˆ
Ω
P0

(
(X0(ω), f0(X0(ω)), B

)
1B1(X0(ω))Px0,P ;π(dω)

=

ˆ
E

ˆ
E
· · ·
ˆ
E
P0

(
(y0, f0(y0)), B

)
1B1(y0)

PN−1

(
(yN−1, fN−1(yN−1)), dyN

)
· · ·P0

(
(y0, f0(y0)), dy1

)
δx0(dy0)

=

ˆ
E

ˆ
E
1B(y1)P0

(
(y0, f0(y0)), dy1

)
1B1(y0) δx0(dy0)

=

ˆ
E

ˆ
E
1B1×B(y0, y1)P0

(
(y0, f0(y0)), dy1

)
δx0(dy0)

= Px0,P ;π[{X1 ∈ B} ∩ {X0 ∈ B1}]

for any B ∈ E and B1 ∈ E .

(v): The claim holds true, because in view of (1.4), (1.6), and part (ii)

Ex0,P ;π
[
Pn
(
(Xn, fn(Xn)), B

)
1Bn+1(X0, . . . , Xn)

]
=

ˆ
Ω
Pn
(
(Xn(ω), fn(Xn(ω))), B

)
1Bn+1(X0(ω), . . . , Xn(ω))Px0,P ;π(dω)

=

ˆ
E

ˆ
E
· · ·
ˆ
E
Pn
(
(yn, fn(yn)), B

)
1Bn+1(y0, . . . , yn)

PN−1

(
(yN−1, fN−1(yN−1)), dyN

)
· · ·P0

(
(y0, f0(y0)), dy1

)
δx0(dy0)

=

ˆ
E

ˆ
E
· · ·
ˆ
E

ˆ
E
1B(yn+1)Pn

(
(yn, fn(yn)), dyn+1

)
1Bn+1(y0, . . . , yn)
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Pn−1

(
(yn−1, fn−1(yn−1)), dyn

)
· · ·P0

(
(y0, f0(y0)), dy1

)
δx0(dy0)

=

ˆ
E

ˆ
E
· · ·
ˆ
E

ˆ
E
1Bn+1×B(y0, . . . , yn, yn+1)Pn

(
(yn, fn(yn)), dyn+1

)
Pn−1

(
(yn−1, fn−1(yn−1)), dyn

)
· · ·P0

(
(y0, f0(y0)), dy1

)
δx0(dy0)

= Px0,P ;π[{Xn+1 ∈ B} ∩ {(X0, . . . , Xn) ∈ Bn+1}]

for any B ∈ E and Bn+1 ∈ E⊗(n+1).

(vi): As in the proof of (v) we obtain

Ex0,P ;π
[
Pn
(
(Xn, fn(Xn)), B

)
1B1(Xn)

]
= Px0,P ;π[{Xn+1 ∈ B} ∩ {Xn ∈ B1}]

for any B ∈ E and B1 ∈ E .

(vii): First of all, it is known from the Chapman–Kolmogorov relation (see, e.g., [46, p. 143]) that

the identity

Px0,P ;π
Xm‖Xj (xj , • ) =

ˆ
E
Px0,P ;π
Xm‖Xl(y, • )Px0,P ;π

Xl‖Xj (xj , dy) (1.9)

holds for any xj ∈ E and 0 ≤ j ≤ l < m ≤ N . Hence, by iterating (1.9), we obtain by means of

parts (iv) and (vi) as well as (1.7)

Px0,P ;π[{Xm ∈ B}‖X0 = x̃0] = Px0,P ;π
Xm‖X0

(x̃0, B)

=

ˆ
E

ˆ
E
· · ·
ˆ
E
Px0,P ;π
Xm‖Xm−1

(ym−1, B) · · ·Px0,P ;π
X2‖X1

(y1, dy2)Px0,P ;π
X1‖X0

(x̃0, dy1)

=

ˆ
E

ˆ
E
· · ·
ˆ
E
Pm−1

(
(ym−1, fm−1(ym−1)), B

)
· · ·P1

(
(y1, f1(y1)), dy2

)
P0

(
(x0, f0(x0)), dy1

)
= Px0,P ;π

X1‖X0
· · ·Px0,P ;π

Xm‖Xm−1
(x0, B) (1.10)

for any B ∈ E . Moreover, as an immediate consequence of the characterization of the (regular

version of the) factorized conditional distribution, we have in view of (1.10) and part (i)

Px0,P ;π[{Xm ∈ B}] = Px0,P ;π
Xm

[B]

=

ˆ
E
Px0,P ;π
Xm‖X0

(y,B)Px0,P ;π
X0

(dy) =

ˆ
E
Px0,P ;π
X1‖X0

· · ·Px0,P ;π
Xm‖Xm−1

(y,B) δx0(dy)

= Px0,P ;π
X1‖X0

· · ·Px0,P ;π
Xm‖Xm−1

(x0, B)

for any B ∈ E .

(viii): As in the proof of (vii) we obtain by iterating (1.9) along with part (vi) and (1.8)

Px0,P ;π[{Xk ∈ B}‖Xn = xn] = Px0,P ;π
Xk‖Xn(xn, B) = Px0,P ;π

Xn+1‖Xn · · ·P
x0,P ;π
Xk‖Xk−1

(xn, B)

for any B ∈ E .

(ix): Analogously to the proof of (iii) we obtain by means of (1.7) and part (vii)

Ex0,P ;π
[
δXm [B]1B1(Xm)

]
= Px0,P ;π[{Xm ∈ B} ∩ {Xm ∈ B1}]

for any B ∈ E and B1 ∈ E . This completes the proof of Lemma 1.1.1. 2
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Parts (v) and (vi) of Lemma 1.1.1 together imply that the temporal evolution of Xn is Markovian.

That is, Lemma 1.1.1 describe the so-called Markov property of the map X = (Xn)N−1
n=0 defined by

(1.5). Thus the following definition is justified:

Definition 1.1.2 (MDP) Under law Px0,P ;π the random variable X = (Xn)N−1
n=0 is called (fi-

nite horizon discrete time) Markov decision process (MDP) associated with initial state x0 ∈ E,

transition function P ∈ P, and strategy π ∈ Π.

1.1.3 Markov decision model

Maintain the notation and terminology introduced in Subsections 1.1.1–1.1.2. In the following we

will formally define our finite horizon discrete time Markov decision model (MDM).

For this reason, let for each point of time n = 0, . . . , N − 1

rn : Dn −→ R

be a (Dn,B(R))-measurable map, referred to as one-stage reward function. Here rn(x, a) specifies

the one-stage reward when action a is taken at time n in state x. Further let

rN : E −→ R

be an (E ,B(R))-measurable map, referred to as terminal reward function. The value rN (x) specifies

the reward of being in state x at terminal time N .

In the sequel, we use A to denote the family of all sets An(x), x ∈ E, n = 0, . . . , N − 1, and set

r := (rn)Nn=0. Moreover let X be defined as in (1.5), and recall Definition 1.1.2. Then we define

our finite horizon discrete time MDM as follows.

Definition 1.1.3 (MDM) The sextuple (E,A,P ,Π,X, r) is called (finite horizon discrete time)

Markov decision model (MDM) associated with state space E, the family of action spaces A, tran-

sition function P ∈ P, set of admissible strategies Π, and reward functions r.

Remark 1.1.4 (i) In Definition 1.1.3 we do not impose any assumptions on the state space E and

the action spaces An. So it is possible to consider E and An as finite (or countable) sets or as Borel

subsets of a complete, separable and metric space. In the latter case, the corresponding σ-fields E
and An are then given by B(E) and B(An), respectively. For an example of these situations, see

Sections 3.1 and 3.2. At this point we emphasize that our theoretical results in Chapters 2 and 4

will hold for arbitrary state space E and actions spaces An.

(ii) In the existing literature the sextuple (E,A,P ,Π,X, r) in Definition 1.1.3 is also referred to

as a Markov decision process; see, for instance, [44, 73]. However, the latter expression is in our

terminology reserved for the random variable X as defined in (1.5) which satisfies the Markov

property; see the discussion in Subsection 1.1.2.

(iii) We allow in a MDM (E,A,P ,Π,X, r) that the reward functions r = (rn)Nn=0 can take neg-

ative values, which are then interpreted as costs. This is be benificial when regarding stochastic

optimization problems with sequential decision making with a performance criterion based on cost

functions; see, for example, [38].
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(iv) If, within the framework of Definition 1.1.3, the action spaces An, the components of the

transition function P = (Pn)N−1
n=0 ∈ P, and the reward functions r = (rn)Nn=0 do not depend on

time n, then the MDM (E,A,P ,Π,X, r) will be called stationary. 3

1.2 Value function and optimal strategies

In this section we consider a specific sequential decision making optimization problem where the

expected total reward over a time horizon of N stages is maximized over all admissible strategies.

As motivated in the main introduction, maximization problems of this kind can be modelled via a

MDM (E,A,P ,Π,X, r) as introduced in Definition 1.1.3.

Now, fix P ∈ P. In the sequel, we will always assume that a MDM (E,A,P ,Π,X, r) satisfies

the following Assumption 1.2.1. In Section 1.4 we will discuss some conditions on the MDM under

which Assumption 1.2.1 holds. Denote by Ex0,P ;π
n,xn the expectation w.r.t. the factorized conditional

distribution Px0,P ;π[ • ‖Xn = xn]. Note that for n = 0 we clearly have Px0,P ;π[ • ‖X0 = x0] =

Px0,P ;π[ • ] for every x0 ∈ E; see Lemma 1.1.1. In what follows we will use the convention that the

sum over the empty set is zero.

Assumption 1.2.1 supπ=(fn)N−1
n=0 ∈Π Ex0,P ;π

n,xn [
∑N−1

k=n |rk(Xk, fk(Xk))|+|rN (XN )| ] <∞ for any xn ∈
E and n = 0, . . . , N .

Under Assumption 1.2.1 we may in particular define in a MDM (E,A,P ,Π,X, r) for any π =

(fn)N−1
n=0 ∈ Π and n = 0, . . . , N a map V P ;π

n : E → R through

V P ;π
n (xn) := Ex0,P ;π

n,xn

[N−1∑
k=n

rk(Xk, fk(Xk)) + rN (XN )
]
. (1.11)

The value V P ;π
n (xn) specifies the expected total reward from time n to N of X under Px0,P ;π when

strategy π is used and X is in state xn at time n. Therefore, in the following the map V P ;π
n defined

by (1.11) will be referred to as policy value function (at time n).

Remark 1.2.2 (i) It follows from the factorization lemma (see, e.g., [6, p. 62]) that the map

V P ;π
n (·) as a factorized conditional expectation is in particular (E ,B(R))-measurable for any π ∈ Π

and n = 0, . . . , N .

(ii) The policy value function V P ;π
n depends in view of the right-hand side of (1.11) only on the

last N − n components (fn, . . . , fN−1) of a strategy π = (fn)N−1
n=0 ∈ Π.

(iii) Note that for n = 1, . . . , N the right-hand side of (1.11) does not depend on x0; see Lemma

1.4.4 in Section 1.4. Therefore the map V P ;π
n (·) need not be equipped with an index x0. 3

Let us turn to our sequential decision making optimization problem. It is natural to ask for those

strategies π ∈ Π for which the policy value function at time 0 evaluated at x0 is maximal for all
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initial states x0 ∈ E. This results in the following (finite horizon discrete time Markov decision)

optimization problem:

V P ;π
0 (x0) −→ max (in π ∈ Π) ! (1.12)

If a solution πP to the optimization problem (1.12) (in the sense of Definition 1.2.5 ahead) exists,

then the corresponding maximal expected total reward is given by the so-called value function (at

time 0).

Definition 1.2.3 (Value function) For a MDM (E,A,P ,Π,X, r) the value function at time

n ∈ {0, . . . , N} is the map V Pn : E → R defined by

V Pn (xn) := sup
π∈Π

V P ;π
n (xn). (1.13)

The value V Pn (xn) specifies the maximal expected total reward from time n to N of X under

Px0,P ;π when strategy π is used and X is in state xn at time n. Note that the value function V Pn
is well-defined due to Assumption 1.2.1.

Remark 1.2.4 It follows from the right-hand side of (1.13) that the value function V Pn is not nec-

essarily (E ,B(R))-measurable. The measurability holds true, for example, if the sets Fn, . . . ,FN−1

are at most countable (by the right-hand side of (1.13) along with Remark 1.2.2(ii)) or if conditions

(a)–(c) of Theorem 1.3.3 in Section 1.3 are satisfied (see Remark 1.3.4(i) in Section 1.3). 3

Definition 1.2.5 (Optimal strategy) In a MDM (E,A,P ,Π,X, r) a strategy πP ∈ Π is called

optimal w.r.t. P if

V P ;πP

0 (x0) = V P0 (x0) for all x0 ∈ E. (1.14)

In this case V P ;πP

0 (x0) is called optimal value (function), and we denote by Π(P ) the set of all

optimal strategies w.r.t. P . Further, for any given δ > 0, a strategy πP ;δ ∈ Π is called δ-optimal

w.r.t. P in a MDM (E,A,P ,Π,X, r) if

V P0 (x0)− δ ≤ V P ;πP ;δ

0 (x0) for all x0 ∈ E, (1.15)

and we denote by Π(P ; δ) the set of all δ-optimal strategies w.r.t. P .

Note that condition (1.14) requires that πP ∈ Π is an optimal strategy for all possible initial states

x0 ∈ E. Though, in some situations it might be sufficient to ensure that πP ∈ Π is an optimal

strategy only for some fixed initial state x0. We refer to Section 1.3 for a brief discussion of the

existence and computation of optimal strategies.

Remark 1.2.6 (i) In practice, the choice of an (admissible) action can possibly be based on histori-

cal observations of states and actions. In particular one could relinquish the Markov property of the

decision rules and allow them to depend also on previous states and actions. Then one might hope

that the corresponding (deterministic) history-dependent strategies improve the optimal value of a

MDM (E,A,P ,Π,X, r). However, it is known that the optimal value of a MDM (E,A,P ,Π,X, r)

can not be enhanced by considering history-dependent strategies; see, e.g., Theorem 18.4 in [39] or

Theorem 4.5.1 in [73].
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(ii) Instead of considering the reward maximization problem (1.12) one could as well be interested

in minimizing expected total costs over the time horizon N . In this case, one can maintain the

previous notation and terminology when regarding the functions rn and rN as the one-stage costs

and the terminal costs, respectively. The only thing one has to do is to replace “sup” by “inf” in

the representation (1.13) of the value function. Accordingly, a strategy πP ;δ ∈ Π will be δ-optimal

for a given δ > 0 if in condition (1.15) “−δ” and “≤” are replaced by “+δ” and “≥”. 3

1.3 Existence of optimal strategies

Consider the setting of Sections 1.1 and 1.2, that is, let (E,A,P ,Π,X, r) be a MDM in the sense of

Definition 1.1.3 with fixed transition function P = (Pn)N−1
n=0 ∈ P. In this section we will recall from

[5] a statement on the existence of optimal strategies in the sense of Definition 1.2.5; see Theorem

1.3.3 below. Part (i) of the latter theorem will ensure that the maximization problem (1.12) can

be solved via dynamic programming using the so-called Bellman equation. Moreover Proposition

1.3.1 below recalls the so-called reward iteration from [5] which is used for the proof of Theorem

1.3.3 (see [5, p. 23]) and in our elaborations in Sections 2.2–2.3 and 3.2.

Recall that we used E to denote the state space of the MDP X and that E was equipped with a

σ-algebra E . For any n = 0, . . . , N − 1 we used Fn to denote the set of all decision rules at time n

and we fixed some Fn ⊆ Fn which was regarded as the set of all admissible decision rules at time

n. We referred to Π := F0 × · · · × FN−1 as the set of all admissible strategies.

In the following we denote by M(E) the set of all (E ,B(R))-measurable functions in RE . For any

n = 0, . . . , N − 1, let MP
n (E) be the set of all h ∈M(E) satisfying

ˆ
E
|h(y)|Pn

(
(x, fn(x)), dy

)
<∞ for all x ∈ E and fn ∈ Fn. (1.16)

Thus, for any h ∈ MP
n (E), n = 0, . . . , N − 1, and fn ∈ Fn, we may define maps T Pn,fnh : E → R

and T Pn h : E → (−∞,∞] by

T Pn,fnh(x) := rn(x, fn(x)) +

ˆ
E
h(y)Pn

(
(x, fn(x)), dy

)
and T Pn h(x) := sup

fn∈Fn
T Pn,fnh(x). (1.17)

Note that T Pn,fn and T Pn can be seen as maps from MP
n (E) to M(E) and from MP

n (E) to (−∞,∞]E

respectively, and that T Pn is also called maximal reward operator at time n.

Recall from (1.11) the definition of the policy value function V P ;π
n . The following proposition,

whose statements can be proven with the same arguments as in the proof of Theorem 2.3.4 in [5],

shows that the policy value function can be computed via the so-called reward iteration.

Proposition 1.3.1 Let π = (fn)N−1
n=0 ∈ Π be fixed. If V P ;π

n+1 (·) ∈ MP
n (E) for any n = 0, . . . , N − 1,

then the following two assertions hold.

(i) V P ;π
N = rN , and V P ;π

n = T Pn,fnV
P ;π
n+1 for n = 0, . . . , N − 1.

(ii) V P ;π
n = T Pn,fnT

P
n+1,fn+1

· · · T PN−1,fN−1
rN for n = 0, . . . , N − 1.

19



Note that the assumption V P ;π
n+1 (·) ∈MP

n (E) (for any n = 0, . . . , N−1) in the preceding proposition

is not trivially satisfied. It holds, for example, if the MDM (E,A,P ,Π,X, r) possesses a bounding

function ψ (in the sense of Definition 1.4.1 in Section 1.4 with P := {P }). This is ensured by

Proposition 1.4.3 ahead applied to P := {P }, taking into account that by condition (c) of Definition

1.4.1 we clearly have Mψ(E) ⊆ MP
n (E) (with Mψ(E) as in Section 1.4) for any n = 0, . . . , N − 1.

In some cases, however, the assumption in Proposition 1.3.1 can also be shown directly; see e.g. the

proof of Lemma 3.2.6 in Subsection 3.2.3.

Theorem 1.3.3 below is concerned with the existence of optimal strategies. It invokes the following

definition.

Definition 1.3.2 For any n = 0, . . . , N − 1, a decision rule fPn ∈ Fn is called a maximizer of

h ∈MP
n (E) w.r.t. P if T P

n,fPn
h(x) = T Pn h(x) for all x ∈ E.

The following theorem, which is also known as structure theorem, provides sufficient conditions for

the existence of optimal strategies. Its statements can be proven while using the same arguments

as in the proof of Theorem 2.3.8 in [5]. Recall from (1.13) the definition of the value function V Pn .

Theorem 1.3.3 (Existence of optimal strategies) Suppose that there are for any n = 0, . . . , N−
1 sets MP

n ⊆MP
n (E) and F′n ⊆ Fn such that the following three conditions hold.

(a) rN ∈MP
N−1.

(b) For any n = 1, . . . , N − 1 and h ∈MP
n , we have T Pn h ∈MP

n−1.

(c) For any n = 0, . . . , N − 1 and h ∈MP
n , there exists a maximizer fPn ∈ Fn of h w.r.t. P with

fPn ∈ F′n.

Then the following three assertions are valid:

(i) V P0 ∈ M(E), and V Pn+1 ∈ MP
n for any n = 0, . . . , N − 1. Moreover V PN = rN , and V Pn =

T Pn V Pn+1 for any n = 0, . . . , N − 1.

(ii) V Pn = T Pn T Pn+1 · · · T PN−1rN for any n = 0, . . . , N − 1.

(iii) For any n = 0, . . . , N − 1 there exists a maximizer fPn ∈ Fn of V Pn+1 w.r.t. P with fPn ∈ F′n.

Any such maximizers fP0 , . . . , f
P
N−1 form an optimal strategy πP := (fPn )N−1

n=0 ∈ Π w.r.t. P

in the MDM (E,A,P ,Π,X, r). In particular, πP is even an element of the subset Π′ :=

F′0 × · · · × F′N−1 of Π.

The iteration scheme in part (i) of Theorem 1.3.3 is known as Bellman equation. This backward

iteration scheme can be seen as a dynamic programming principle which is a general approach for

solving multi-stage Markov decision optimization problems. Therefore, part (i) of the preceding

theorem shows that the underlying idea for solving the (Markov decision) optimization problem

(1.12) is to reduce the complexity by using iteratively the Bellman equation, that is, solving N

(one-stage) optimization problems.

Note that conditions (a)–(c) of Theorem 1.3.3 are not trivially satisfied. It is discussed in Subsec-

tion 2.4 of the monograph [5] that these conditions hold in so-called structured MDMs. In some

situations, however, these conditions can be verified directly; see Subsection 3.2.3 (proof of Theo-

rem 3.2.5) for an example. For original work on the existence of optimal strategies in MDMs see,
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for instance, [39, 79].

Remark 1.3.4 (i) Under conditions (a)–(c) of Theorem 1.3.3, part (i) of the latter theorem implies

that the value function V Pn (·) is (E ,B(R))-measurable for any n = 0, . . . , N . The measurability of

the value function has been discussed in the literature several times; see, for instance, [39, 79].

(ii) It follows from Theorem 1.3.3 that any N -tuple (fPn )N−1
n=0 of maximizers provides an optimal

strategy πP w.r.t. P in the MDM (E,A,P ,Π,X, r) via πP := (fPn )N−1
n=0 . The reverse statement,

however, is not true since even under the assumptions of Theorem 1.3.3 optimal strategies are not

necessarily composed of maximizers; see, e.g., [5, Example 2.3.10]. Hence, Theorem 1.3.3 provides

only a sufficient criterion for the existence of optimal strategies.

(iii) In view of the second part of (ii), an optimal strategy in a MDM can in general be non-unique.

However, this does not exclude that in specific situations there is exactly one optimal strategy. For

an example see Theorem 3.2.5 in Subsection 3.2.3.

(iv) In the case where we are interested in minimizing expected total costs in the MDM (E,A,P ,Π,

X, r) (see Remark 1.2.6(ii)), the integral operator T Pn is given by (1.17) with “sup” replaced by

“inf” and in Definition 1.3.2 we have to replace “maximizer” by “minimizer”. 3

1.4 Bounding functions

In the following we will discuss some sufficient conditions under which Assumption 1.2.1 is fulfilled.

Throughout this section, we fix the components E, A, Π, and r of a MDM (E,A,P ,Π,X, r)

(introduced in Definition 1.1.3).

Recall from Section 1.1 that P stands for the set of all transition functions, i.e. of all N -tuples

P = (Pn)N−1
n=0 of probability kernels Pn from (Dn,Dn) to (E, E), and we defined M(E) to be the

set of all (E ,B(R))-measurable functions in RE . Let ψ : E → R≥1 be an (E ,B(R≥1))-measurable

map, referred to as gauge function, where R≥1 := [1,∞). Denote by Mψ(E) the set of all h ∈M(E)

satisfying

‖h‖ψ := sup
x∈E

|h(x)|
ψ(x)

< ∞. (1.18)

The following definition is adapted from [5, 68, 91]. Conditions (a)–(c) of this definition are sufficient

for the well-definiteness of the policy value function V P ;π
n and the value function V Pn introduced in

(1.11) and (1.13), respectively; see Proposition 1.4.3 ahead.

Definition 1.4.1 (Bounding function) Let P ⊆ P. A gauge function ψ : E → R≥1 is said to

be a bounding function for the family of MDMs {(E,A,P ,Π,X, r) : P ∈ P} if there exist finite

constants K1,K2,K3 > 0 such that the following three conditions hold for any n = 0, . . . , N − 1

and P = (Pn)N−1
n=0 ∈ P:

(a) |rn(x, a)| ≤ K1ψ(x) for all (x, a) ∈ Dn.

(b) |rN (x)| ≤ K2ψ(x) for all x ∈ E.

(c)
´
E ψ(y)Pn

(
(x, a), dy

)
≤ K3ψ(x) for all (x, a) ∈ Dn.
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If P = {P } for some P ∈ P, then ψ is called a bounding function for the MDM (E,A,P ,Π,X, r).

Note that the conditions in Definition 1.4.1 do not depend on the set Π. That is, the terminology

bounding function is independent of the set of all (admissible) strategies. Also note that conditions

(a) and (b) can be satisfied by unbounded reward functions.

Remark 1.4.2 (i) It is an immediate consequence of Definition 1.4.1 that ψ :≡ 1 provides a

bounding function for the family of MDMs {(E,A,P ,Π,X, r) : P ∈ P} (with P ⊆ P) if the

reward functions r = (rn)Nn=0 are bounded. This is the case, for example, when the state space E

as well as the actions spaces An at time n ∈ {0, . . . , N − 1} are finite. We refer to Section 1.5 for

further discussions when in a MDM the state space and the actions spaces are finite.

(ii) If ψ is a bounding function for the family of MDMs {(E,A,P ,Π,X, r) : P ∈ P} (with P ⊆ P)

then, for example, any gauge function ψ̃ that is a multiple of ψ provides also a bounding function

for the same family of MDMs {(E,A,P ,Π,X, r) : P ∈ P}. This means in particular that, in

general, a bounding function can not be unique. 3

The following proposition ensures that Assumption 1.2.1 is satisfied when the underlying MDM

possesses a bounding function.

Proposition 1.4.3 Let P ⊆ P. If the family of MDMs {(E,A,P ,Π,X, r) : P ∈ P} pos-

sesses a bounding function ψ, then Assumption 1.2.1 is satisfied for any P ∈ P. Moreover,

supπ∈Π ‖V
P ;π
n (·)‖ψ <∞ for every P ∈ P and n = 0, . . . , N . In particular, V P ;π

n (·) is contained in

Mψ(E) for any P ∈ P, π ∈ Π, and n = 0, . . . , N .

The proof of Proposition 1.4.3 avails the following lemma. Recall that Ex0,P ;π
n,xn refers to the expecta-

tion w.r.t. the factorized conditional distribution Px0,P ;π[ • ‖Xn = xn]. Finally, let L1(Ω,F ,Px0,P ;π)

be the usual L1-space on the probability space (Ω,F ,Px0,P ;π).

Lemma 1.4.4 Let x0 ∈ E, P = (Pn)N−1
n=0 ∈ P, and π = (fn)N−1

n=0 ∈ Π. Moreover let h ∈M(E) such

that h(Xn) ∈ L1(Ω,F ,Px0,P ;π) for all n = 0, . . . , N . Then for any x̃0, xn ∈ E and 1 ≤ n < k ≤ N

as well as xm ∈ E and m = 1, . . . , N we have

(i) Ex0,P ;π[h(X0)] = h(x0).

(ii) Ex0,P ;π
0,x̃0

[h(X0)] = h(x0).

(iii) Ex0,P ;π
m,xm [h(Xm)] = h(xm).

(iv) Ex0,P ;π
0,x̃0

[h(Xm)] = Ex0,P ;π[h(Xm)] =
´
E h(ym)Px0,P ;π

X1‖X0
· · ·Px0,P ;π

Xm‖Xm−1
(x0, dym).

(v) Ex0,P ;π
n,xn [h(Xk)] =

´
E h(yk)Px0,P ;π

Xn+1‖Xn · · ·P
x0,P ;π
Xk‖Xk−1

(xn, dyk).

Moreover the right-hand side of parts (iv) and (v) can be represented as

ˆ
E
h(ym)Px0,P ;π

X1‖X0
· · ·Px0,P ;π

Xm‖Xm−1
(x0, dym)

=

ˆ
E
· · ·
ˆ
E
h(ym)Pm−1

(
(ym−1, fm−1(ym−1)), dym

)
· · ·P0

(
(x0, f0(x0)), dy1

)
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and ˆ
E
h(yk)Px0,P ;π

Xn+1‖Xn · · ·P
x0,P ;π
Xk‖Xk−1

(xn, dyk)

=

ˆ
E
· · ·
ˆ
E
h(yk)Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)
.

Proof First of all, it is easily seen that the identities

Ex0,P ;π[h(Xm)] =

ˆ
E
h(y)Px0,P ;π

Xm
(dy) (1.19)

and

Ex0,P ;π
j,xj

[h(Xm)] =

ˆ
E
h(y)Px0,P ;π

Xm‖Xj (xj , dy) (1.20)

hold for any xj ∈ E and 0 ≤ j ≤ m ≤ N .

(i): The claim is an immediate consequence of (1.19) and part (i) of Lemma 1.1.1.

(ii)–(iii): The assertions follow from (1.20) along with parts (iii) and (ix) of Lemma 1.1.1, respec-

tively.

(iv): For the assertions it suffices in view of (1.19)–(1.20) to show that

ˆ
E
h(ym)Px0,P ;π

Xm‖X0
(x̃0, dym) =

ˆ
E
h(ym)Px0,P ;π

X1‖X0
· · ·Px0,P ;π

Xm‖Xm−1
(x0, dym) (1.21)

and ˆ
E
h(ym)Px0,P ;π

Xm
(dym) =

ˆ
E
h(ym)Px0,P ;π

X1‖X0
· · ·Px0,P ;π

Xm‖Xm−1
(x0, dym). (1.22)

Clearly, in view of part (vii) of Lemma 1.1.1, the assertions in (1.21) and (1.22) are valid for indicator

functions and thus by linearity for simple functions. The latter assertions can be extended by the

Monotone Convergence theorem to arbitrary nonnegative maps h ∈ M(E). Since the integrals on

the left-hand sides of (1.21) and (1.22) exist and are finite (recall that h(Xn) ∈ L1(Ω,F ,Px0,P ;π)

for all n = 0, . . . , N by assumption), it follows that the equalities in (1.21) and (1.22) hold even for

all h ∈M(E).

(v): Analogously to the proof of (1.21) we obtain by means of (1.20)

Ex0,P ;π
n,xn [h(Xk)] =

ˆ
E
h(yk)Px0,P ;π

Xn+1‖Xn · · ·P
x0,P ;π
Xk‖Xk−1

(xn, dyk).

The additional assertions can be verified easily by means of (1.7) and (1.8) with the same arguments

as in the proof of (1.21) and (1.22). 2

Note that (for any given x0 ∈ E, P ∈ P, and π ∈ Π) the assumption h(Xn) ∈ L1(Ω,F ,Px0,P ;π)

(for some h ∈ M(E) and any n = 0, . . . , N) in the preceding lemma is not trivially satisfied. It

holds, for example, if ψ provides a bounding function for the MDM (E,A,P ,Π,X, r) (in the sense

of Definition 1.4.1 with P := {P }) and if h ∈ Mψ(E). In this case it can be verified easily by

means of part (c) of Definition 1.4.1 (with P := {P }) that indeed h(Xn) ∈ L1(Ω,F ,Px0,P ;π) for all

n = 0, . . . , N .
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Now, we are in the position to prove Proposition 1.4.3.

Proof of Proposition 1.4.3: Fix x0 ∈ E. By assumption there exist finite constants K1,K3 > 0

such that in view of part (v) of Lemma 1.4.4 as well as parts (a) and (c) of Definition 1.4.1

Ex0,P ;π
n,xn

[
|rk(Xk, fk(Xk))|

]
≤ Ex0,P ;π

n,xn [K1ψ(Xk)]

= K1

ˆ
E
· · ·
ˆ
E

ˆ
E
ψ(yk)Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
Pk−2

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)
≤ K1K

k−n
3 ψ(xn)

for any xn ∈ E, P = (Pn)N−1
n=0 ∈ P, π = (fn)N−1

n=0 ∈ Π, and 1 ≤ n < k ≤ N − 1. Moreover, in view

of part (iii) of Lemma 1.4.4 and part (a) of Definition 1.4.1, we have

Ex0,P ;π
n,xn

[
|rn(Xn, fn(Xn))|

]
= |rn(xn, fn(xn))| ≤ K1ψ(xn)

for any xn ∈ E, P ∈ P, π = (fn)N−1
n=0 ∈ Π, and n = 1, . . . , N − 1. Similarly, we find by assumption

some finite constant K2 > 0 such that in view of parts (iii) and (v) of Lemma 1.4.4 as well as parts

(b) and (c) of Definition 1.4.1

Ex0,P ;π
n,xn

[
|rN (XN )|

]
≤ K2K

N−n
3 ψ(xn)

for any xn ∈ E, P ∈ P, π ∈ Π, and n = 1, . . . , N . In the same way we obtain with parts (ii) and

(iv) of Lemma 1.4.4 and the characteristic properties of the bounding function ψ

Ex0,P ;π
0,x0

[
|rk(Xk, fk(Xk))|

]
≤ K1K

k
3ψ(x0)

and

Ex0,P ;π
0,x0

[
|rN (XN )|

]
≤ K2K

N
3 ψ(x0)

for any P ∈ P, π = (fn)N−1
n=0 ∈ Π, and k = 0, . . . , N − 1. Then Assumption 1.2.1 holds for any P ∈

P. Moreover by choosing Cn := K1
∑N−1

k=n K
k−n
3 +K2K

N−n
3 (<∞) we have supπ∈Π ‖V

P ;π
n (·)‖ψ ≤

Cn for every P ∈ P, π ∈ Π, and n = 0, . . . , N . In particular the latter implies V P ;π
n (·) ∈Mψ(E) for

every P ∈ P, π ∈ Π, and n = 0, . . . , N . Take into account that V P ;π
n (·) is (E ,B(R))-measurable for

every P ∈ P, π ∈ Π, and n = 0, . . . , N by Remark 1.2.2(i). This completes the proof of Proposition

1.4.3. 2

In particular, Proposition 1.4.3 shows that in a MDM (E,A,P ,Π,X, r) (for some given P ∈ P) a

sufficient condition for the existence of the policy value function V P ;π
n as well as the value function

V Pn is that the MDM possesses a bounding function ψ (in the sense of Definition 1.4.1). In some

MDMs, however, it is sometimes cumbersome to find a suitable gauge function ψ that satisfies

conditions (a)–(c) of Definition 1.4.1.

1.5 Markov decision models with finite state space and finite action

spaces

In this section we will briefly discuss the special case when in the setting of Sections 1.1–1.4 the

state space E and the set An of all actions at time n ∈ {0, . . . , N − 1} are finite. The following
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elaborations will be beneficial for later purposes, in particular in Chapter 2 to present all definitions

and our theoretical results in a more intuitive and comprehensible way if both the state space as

well as the action spaces are finite. Finite horizon discrete time Markov decision optimization

problems in which the state space as well as the action spaces are finite often appear in practice

as, for example, for optimal stopping problems, bandit models or discrete time queueing systems.

We refer to Section 3 in [73] for further examples. In Section 3.1 we will exemplary discuss a

single-product stochastic inventory control problem which will be used throughout the first part of

this thesis to illustrate our theoretical results.

Now, let for some fixed e ∈ N the state space be equal to

E := {x1, . . . , xe}, (1.23)

and set E := P(E). Moreover, for any i = 1, . . . , e and n = 0, . . . , N − 1, let

An(xi) := {an,i;1, . . . , an,i;tn,i} (1.24)

be the finite set of all admissible actions that can be performed when the MDP is in state xi at

time n, where tn,i ∈ N is fixed. Therefore, the sets An =
⋃e
i=1An(xi) and Dn = {(xi, a) ∈ E×An :

a ∈ An(xi)} of all actions and possible state-action combinations at time n ∈ {0, . . . , N − 1}
are also finite. The set Fn of all decision rules at time n ∈ {0, . . . , N − 1} consists of all maps

fn : {x1, . . . , xe} → An which satisfy fn(xi) ∈ {an,i;1, . . . , an,i;tn,i} for every i = 1, . . . , e. Note that

in the finite setting the set Fn is clearly non-empty and finite. Finally, let Fn ⊆ Fn be a fixed

subset, and set as before Π := F0 × · · · × FN−1 for the finite set of all admissible strategies.

For any i = 1, . . . , e, n = 0, . . . , N−1, and a ∈ An(xi), the (one-step transition) probability measure

on E from which the state of the MDP at time n+ 1 is drawn, given that the MDP is in state xi
and action a is selected at time n, can be identified with an element

pn,i;a :=
(
pn,i;a(1), . . . , pn,i;a(e)

)
of Re

≥0,1. Here Re
≥0,1 is the set of all vectors from Re whose entries are nonnegative and sum up

to 1, and pn,i;a(j) specifies the probability that the MDP will be in state xj at time n + 1, given

it is in state xi and action a ∈ An(xi) is selected at time n. As the state space E as well as the

sets D0, . . . , DN−1 are finite, the set P of all transition functions can be represented in the finite

setting as a finite product of the set M1(E):

P = ×N−1
n=0 ×(x,a)∈DnM1(E). (1.25)

In particular, for any fixed i0 ∈ {1, . . . , e} (where x0 = xi0 ∈ E refers to the corresponding initial

state of the MDP), we may and do identify any transition function P from P with a vector p in

Rd defined by

p :=
(
⊕t0,i0
k=1 p0,i0;a0,i0;k

)
⊕
(
⊕N−1
n=1 ⊕

e
i=1 ⊕

tn,i
k=1 pn,i;an,i;k

)
(1.26)

with d := (t0,i0 +
∑N−1

n=1

∑e
i=1 tn,i)e. Here ⊕ is the ‘clueing operator’ defined by (α1, . . . , αs) ⊕

(β1, . . . , βt) := (α1, . . . , αs, β1, . . . , βt). In fact one can show that p is even an element of the

following subset of Rd:

P̃ :=
(
Re
≥0,1

)×(d/e)
. (1.27)
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If V p;π
n corresponds to the policy value function at time n ∈ {0, . . . , N − 1} associated with vector

p ∈ P̃ and strategy π ∈ Π (introduced in (1.11)), then for any fixed i0 ∈ {1, . . . , e} and p ∈ P̃ the

(Markov decision) optimization problem (1.12) reads as

V p;π
0 (xi0) −→ max (in π ∈ Π) ! (1.28)

(recall that xi0 ∈ E refers to the initial state). Here V p;π
n (·) can be obtained from the usual

backward iteration scheme (see, e.g., [39, Lemma 3.5] or [73, p. 80]):

V p;π
N (xi) := rN (xi),

V p;π
n (xi) := rn(xi, fn(xi)) +

e∑
j=1

V p;π
n+1(xj) pn,i;fn(xi)(j), n = 0, . . . , N − 1,

(1.29)

i = 1, . . . , e. Since in the finite setting above the gauge function ψ : E → R≥1 defined by

ψ :≡ 1 (1.30)

provides a bounding function for the family of MDMs {(E,A,P ,Π,X, r) : P ∈ P} (see part (i)

of Remark 1.4.2), we observe by iterating (1.29) from Definition 1.4.1 that the left-hand side in

(1.28) (and V p;π
n (·)) is well-defined. Moreover note that it follows from [73, Proposition 4.4.3] that

in the finite setting one can always find for any p ∈ P̃ an optimal strategy πp ∈ Π w.r.t. p which

solves the optimization problem (1.28). Therefore, the set Π(p) of all optimal strategies w.r.t. p is

non-empty and finite.
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Chapter 2

‘Continuity’ and ‘differentiability’ of the value

function in the transition probability function

In this chapter we use the notation and terminology introduced in Sections 1.1–1.4 to show that

the value function of a MDM, regarded as a real-valued functional defined on a set of transition

functions, is ‘continuous’ as well as ‘differentiable’ in a certain sense. Here we are particularly

interested in reasonable quantifying the effect of changing a less complex version of the transition

probability function to a more realistic version on the optimal value.

The motivation for our investigations comes from the field of optimal logistics transportation

planning, where ongoing projects like SYNCHRO-NET (https://www.synchronet.eu/) aim at

stochastic decision models based on transition probabilities estimated from historical route in-

formation. Due to the lack of historical data for unlikely events, transition probabilities are often

modelled in a simplified way. In fact, events with small probabilities are often ignored in the model.

However, the impact of these events on the optimal value (here the minimal expected transportation

costs) of the corresponding MDM may nevertheless be significant. The identification of unlikely

but potentially cost sensitive events is therefore a major challenge. In logistics planning operations

engineers have indeed become increasingly interested in comprehensibly quantifying the sensitivity

of the optimal value w.r.t. the incorporation of unlikely events into the model. For background see,

for instance, [41, 42]. The assessment of rare but risky events takes on greater importance also in

other areas of applications; see, for instance, [52, 92] and references cited therein.

By an incorporation of an unlikely event into the model we mean, for instance, that under perfor-

mance of an action a at some time n a previously impossible transition from one state x to another

state x′ gets now assigned small but strictly positive probability ε. Mathematically this means that

the transition probability Pn((x, a), • ) is replaced by a new transition probability

Pn;ε

(
(x, a), •

)
:= (1− ε)Pn

(
(x, a), •

)
+ εQn

(
(x, a), •

)
with Qn((x, a), • ) := δx′ [ • ], where δx′ is the Dirac measure at point x′. More generally one could

consider a change of the whole transition function, i.e. the family of all transition probabilities, P

to

P ε := (1− ε)P + εQ

with ε > 0 small. For operations engineers it is here interesting to know how this change affects

the (optimal) value Vx0
0 (P ) := V P0 (x0) (with V P0 introduced in (1.13)) for some fixed initial state

x0 ∈ E. If the effect is minor, then an incorporation can be seen as superfluous, at least from a
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pragmatic point of view. If on the other hand the effect is significant, then the engineer should

consider the option to extend the MDM and to make an effort to get access to statistical data for

the extended MDM.

At this point it is worth mentioning that a change of the transition function from P to P ε with ε > 0

small can also have a different interpretation than an incorporation of an (unlikely) new event. It

could also be associated with an incorporation of an (unlikely) divergence from the normal transition

rules. We refer to Subsection 3.2.5 for an example.

In Section 2.2, we will show that the value functional Vx0
0 is in some sense ‘continuous’ in the

transition function P . However, with this result we are not able to quantify the effect of changing

the transition function from P to P ε, with ε > 0 small, on the (optimal) value Vx0
0 (P ) of the MDM

(with x0 ∈ E fixed). For this reason, we will discuss in Section 2.3 an approach to measure this

effect. In view of P ε = P + ε(Q−P ), we feel that it is reasonable to quantify the above effect by

a sort of derivative of the value functional Vx0
0 at P evaluated at direction Q−P . To some extent

the ‘derivative’ V̇x0
0;P (Q− P ) specifies the first-order sensitivity of Vx0

0 (P ) w.r.t. a change of P as

above. Take into account that

Vx0
0 (P + ε(Q− P ))− Vx0

0 (P ) ≈ ε · V̇x0
0;P (Q− P ) for ε > 0 small. (2.1)

To be able to compare the first-order sensitivity for (infinitely) many different Q, it is favourable to

know that the approximation in (2.1) is uniform in Q ∈ K for preferably large sets K of transition

functions. Moreover, it is not always possible to specify the relevant Q exactly. For that reason it

would be also good to have robustness (i.e. some sort of continuity) of the ‘derivative’ V̇x0
0;P (Q−P ) in

Q. These two things induced us to focus on a variant of tangential S-differentiability as introduced

by Sebastião e Silva [82] and Averbukh and Smolyanov [4] (here S is a family of sets K of transition

functions). In Subsection 2.3.2, we present a result on ‘S-differentiability’ of the value functional

Vx0
0 for the family S of all relatively compact sets of admissible transition functions and a reasonably

broad class of MDMs, where we measure the distance between transition functions by means of

metrics based on probability metrics as in [68]; see Section 2.1 for further details.

The ‘derivative’ V̇x0
0;P (Q− P ) of the (optimal) value functional Vx0

0 at P quantifies the effect of a

change from P to P ε, with ε > 0 small, assuming that after the change the strategy π is chosen

such that it optimizes the target value Vx0;π
0 (P ε) := V P ε;π0 (x0) (with V P ε;π0 defined as in (1.11))

in π under the new transition function P ε. On the other hand, practitioners are also interested

in quantifying the impact of a change of P when the optimal strategy (under P ) is kept after the

change. Such a quantification would somehow answers the question: How much different does a

strategy derived in a simplified MDM perform in a more complex (more realistic) variant of the

MDM? Since the ‘derivative’ V̇x0;π
0;P (Q − P ) of the functional Vx0;π

0 under a fixed strategy π (and

initial state x0 ∈ E) turns out to be a building stone for the derivative V̇x0
0;P (Q−P ) of the (optimal)

value functional Vx0
0 at P (see Displays (2.29)–(2.30) ahead), our elaborations cover both situations

anyway. For fixed strategy π (and initial state x0 ∈ E), we obtain ‘S-differentiability’ of Vx0;π
0 even

for the broader family S of all bounded sets of admissible transition functions.

The rest of this chapter is organized as follows. Motivated by the works of Müller [68, 69], we will

first explain in Section 2.1 how we measure the distance between transition functions. In Section

2.2, we will show, using the distance measure between transition functions introduced in Section
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2.1, that (under some structural assumptions) the value function of a MDM regarded as a real-

valued functional defined on a set of transition functions is ‘Lipschitz continuous’ in a certain sense.

This statement is in line with a result in Müller [68] in the case of stationary MDMs. Afterwards

we carefully introduce in Section 2.3 our notion of ‘differentiability’ and state our main result

concerning the computation of the ‘derivative’ of the value functional. We stress the fact that this

result can be obtained with the same assumptions as the statement about the continuity of the

value functional. Throughout this chapter we fix the components E, A, Π, and r of a MDM.

2.1 Measuring the distance between transition functions

In this section we will introduce in Display (2.12) below a reasonable (semi-) metric defined on a

set of admissible transition functions which can be used to measure the distance between transition

functions. The motivation for this (semi-) metric comes from the work of Müller in [68] where the

author defines a distance between transition probabilities based on so-called integral probability

metrics. The latter concept will be explained in detail in Subsection 2.1.1. After introducing a

reasonable distance measure between transition functions in Subsection 2.1.2, we will discuss in

Subsection 2.1.3 how to measure the distance between transition functions in the setting of Section

1.5 where both the state space and the action spaces are finite.

2.1.1 Integral probability metrics

In Sections 2.2 and 2.3 we will work with a (semi-) metric (on a set of transition functions) to

be defined in (2.12) below. As it is common in the theory of probability metrics (see, e.g., p. 10 ff

in [74]), we allow the distance between two probability measures and the distance between two

transition functions to be infinite. That is, we adapt the axioms of a (semi-) metric but we allow

a (semi-) metric to take values in R≥0 := R≥0 ∪ {∞} rather than only in R≥0 := [0,∞).

Let ψ be any gauge function, and denote byMψ
1 (E) the set of all µ ∈M1(E) for which

´
E ψ dµ <

∞. Note that the integral
´
E h dµ exists and is finite for any h ∈ Mψ(E) and µ ∈ Mψ

1 (E), where

the set Mψ(E) is introduced in Section 1.4. For any fixed subset M ⊆Mψ(E), the distance between

two probability measures µ, ν ∈Mψ
1 (E) can be measured by

dM(µ, ν) := sup
h∈M

∣∣∣ˆ
E
h dµ−

ˆ
E
h dν

∣∣∣. (2.2)

Note that (2.2) indeed defines a map dM :Mψ
1 (E)×Mψ

1 (E)→ R≥0 which is symmetric and fulfills

the triangle inequality, i.e. dM provides a semi-metric. If M separates points in Mψ
1 (E) (i.e. if any

two µ, ν ∈ Mψ
1 (E) coincide when

´
E h dµ =

´
E h dν for all h ∈ M), then dM is even a metric. It is

sometimes called integral probability metric or probability metric with a ζ-structure; see [69, 95].

In some situations the (semi-) metric dM (with M ⊆Mψ(E) fixed) can be represented by the right-

hand side of (2.2) with M replaced by a different subset M′ of Mψ(E). Each such set M′ is said

to be a generator of dM. The largest generator of dM is called the maximal generator of dM and

denoted by M. That is, M is defined according to [69, Definition 3.1] as the set of all h ∈ Mψ(E)

for which |
´
E h dµ−

´
E h dν| ≤ dM(µ, ν) for all µ, ν ∈Mψ

1 (E).
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Below we will give some examples for the distance dM. The metrics in Examples 2.1.2–2.1.5 were

already mentioned in [68, 69]. In Examples 2.1.4–2.1.6 the metric dM generates the ψ-weak topology

Oψw. The latter is defined to be the coarsest topology onMψ
1 (E) for which all mappings µ 7→

´
E h dµ,

h ∈ Cψ(E), are continuous. Here Cψ(E) is the set of all continuous functions in Mψ(E). If

specifically ψ :≡ 1, then Mψ
1 (E) = M1(E) and the ψ-weak topology is nothing but the classical

weak topology Ow. In Section 2 in [58] one can find characterizations of those subsets of Mψ
1 (E)

on which the relative ψ-weak topology coincides with the relative weak topology.

In the sequel, we will say that a sequence (µm)m∈N in Mψ
1 (E) converges ψ-weakly to some µ ∈

Mψ
1 (E) (in symbol µm → µ ψ-weakly) if

´
E h dµm →

´
E h dµ for all h ∈ Cψ(E). Note that for

ψ :≡ 1 we will write µm
w−→ µ instead of µm → µ ψ-weakly.

The following result is a direct consequence of Lemma 2.1 in [58] and characterizes ψ-weak conver-

gence of probability measures.

Lemma 2.1.1 Assume that (E, dE) is a complete and separable metric space. Then the setMψ
1 (E)

equipped with the ψ-weak topology is a Polish space. Further the ψ-weak topology is metrizable by

the metric dψ defined by

dψ(µ, ν) := dw(µ, ν) +
∣∣∣ˆ

E
ψ dµ−

ˆ
E
ψ dν

∣∣∣, µ, ν ∈Mψ
1 (E), (2.3)

where dw refers to any metric onM1(E) which generates the weak topology. Additionally, for every

choice of µ, µ1, µ2, . . . ∈Mψ
1 (E) we have the following equivalent statements.

(i) µm −→ µ ψ-weakly.

(ii) µm
w−→ µ and

´
E ψ dµm −→

´
E ψ dµ.

The statements in Lemma 2.1.1 are used to prove Lemma 2.1.7 below. Now, let us turn to examples

for the (semi-) metric dM.

Example 2.1.2 (Total variation metric) Let ψ :≡ 1 and M := MTV, where MTV := {1B : B ∈
E} ⊆Mψ(E). Then dM equals the total variation metric dTV defined by

dTV(µ, ν) := sup
B∈E

∣∣µ[B]− ν[B]
∣∣, µ, ν ∈Mψ

1 (E). (2.4)

The set MTV clearly separates points in Mψ
1 (E) =M1(E). The maximal generator of dTV is the

set MTV of all h ∈M(E) with sp(h) := supx∈E h(x)− infx∈E h(x) ≤ 1; see Theorem 5.4 in [69]. 3

Example 2.1.3 (Kolmogorov metric) For E = R, let ψ :≡ 1 and M := MKolm, where MKolm :=

{1(−∞,t] : t ∈ R} ⊆Mψ(R). Then dM equals the Kolmogorov metric dKolm defined by

dKolm(µ, ν) := sup
t∈R

∣∣Fµ(t)− Fν(t)
∣∣, µ, ν ∈Mψ

1 (R),

where Fµ and Fν refer to the distribution functions of µ and ν, respectively. The set MKolm clearly

separates points inMψ
1 (R) =M1(R). The maximal generator of dKolm is the set MKolm of all maps

h ∈ RR with Vh(R) ≤ 1; see Theorem 5.2 in [69]. Recall from Display (B.2) in Section B.1 that

Vh(R) denotes the variation of h on R. 3

30



Example 2.1.4 (Bounded Lipschitz metric) Assume that (E, dE) is a metric space and let

E := B(E). Let ψ :≡ 1 and M := MBL, where MBL := {h ∈ RE : ‖h‖BL ≤ 1} ⊆ Mψ(E)

with ‖h‖BL := max{‖h‖∞, ‖h‖Lip} for ‖h‖∞ := supx∈E |h(x)| and ‖h‖Lip := supx,y∈E:x 6=y |h(x) −
h(y)|/dE(x, y). Then dM is nothing but the bounded Lipschitz metric dBL defined by

dBL(µ, ν) := sup
h∈MBL

∣∣∣ ˆ
E
h dµ−

ˆ
E
h dν

∣∣∣, µ, ν ∈Mψ
1 (E). (2.5)

The set MBL separates points inMψ
1 (E) =M1(E); see Lemma 9.3.2 in [32]. Moreover it is known

(see, e.g., Theorem 11.3.3 in [32]) that if E is separable then dBL generates the weak topology Ow

on Mψ
1 (E) =M1(E). 3

Example 2.1.5 (Kantorovich metric) Assume that (E, dE) is a metric space and let E := B(E).

For some fixed x′ ∈ E, let ψ(·) := 1+dE( · , x′) and M := MKant, where MKant := {h ∈ RE : ‖h‖Lip ≤
1} ⊆ Mψ(E) with ‖ · ‖Lip as in Example 2.1.4. Then dM is nothing but the Kantorovich metric

dKant defined by

dKant(µ, ν) := sup
h∈MKant

∣∣∣ ˆ
E
h dµ−

ˆ
E
h dν

∣∣∣, µ, ν ∈Mψ
1 (E). (2.6)

The set MKant separates points in Mψ
1 (E), because MBL (⊆ MKant) does. It is known (see, e.g.,

Theorem 7.12 in [89]) that if E is complete and separable then dKant generates the ψ-weak topology

Oψw on Mψ
1 (E).

Recall from [85] that for E = R the L1-Wasserstein metric dWass,1 given by

dWass,1(µ, ν) :=

ˆ ∞
−∞
|Fµ(t)− Fν(t)| dt, µ, ν ∈Mψ

1 (R)

coincides with the Kantorovich metric dKant. In this case the ψ-weak topology Oψw is also referred

to as L1-weak topology. Note that the L1-Wasserstein metric is a conventional metric for measuring

the distance between probability distributions; see, for instance, [28, 47, 85] for the general concept

and [8, 49, 55, 59] for recent applications. 3

Although the Kantorovich metric is a popular and well established metric, for the application in

Section 3.2 we will need the following generalization from α = 1 to α ∈ (0, 1].

Example 2.1.6 (Hölder-α metric) Assume that (E, dE) is a metric space and let E := B(E).

For some fixed x′ ∈ E and α ∈ (0, 1], let ψ(·) := 1 + dE( · , x′)α and M := MHöl,α, where

MHöl,α := {h ∈ RE : ‖h‖Höl,α ≤ 1} ⊆ Mψ(E) for ‖h‖Höl,α := supx,y∈E:x 6=y |h(x) − h(y)|/
dE(x, y)α. The set MHöl,α separates points in Mψ

1 (E) (this follows with similar arguments as

in the proof of Lemma 9.3.2 in [32]). Then dM provides a metric on Mψ
1 (E) which we denote by

dHöl,α, and refer to as Hölder-α metric. That is, the Hölder-α metric dHöl,α is defined by

dHöl,α(µ, ν) := sup
h∈MHöl,α

∣∣∣ˆ
E
h dµ−

ˆ
E
h dν

∣∣∣, µ, ν ∈Mψ
1 (E).

Especially when dealing with risk averse utility functions (as, e.g., in Section 3.2) this metric can

be beneficial. 3
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The following Lemma 2.1.7 shows that if in the setting of Example 2.1.6 the state space E is

complete and separable then the Hölder-α metric dHöl,α generates the ψ-weak topology Oψw on

Mψ
1 (E).

Lemma 2.1.7 Assume that (E, dE) is a complete and separable metric space, and let α ∈ (0, 1]

and x′ ∈ E be arbitrary but fixed. Then the Hölder-α metric dHöl,α introduced in Example 2.1.6

generates the ψ-weak topology Oψw on Mψ
1 (E) for ψ(·) := 1 + dE( · , x′)α.

Proof As the ψ-weak topology is metrizable (see, for example, Corollary A.45 in [35]), it suffices

to show that for any choice of µ, µ1, µ2 . . . ∈ Mψ
1 (E) we have µm → µ ψ-weakly if and only if

dHöl,α(µm, µ)→ 0.

First assume that dHöl,α(µm, µ)→ 0. As µm → µ ψ-weakly if and only if µm
w−→ µ and

´
E ψ dµm →´

E ψ dµ (by Lemma 2.1.1), it suffices to show that µm
w−→ µ and

´
E ψ dµm →

´
E ψ dµ. Any bounded

h ∈ RE with ‖h‖Lip <∞ satisfies ‖h‖Höl,α ≤ Ch := max{‖h‖Lip, 2‖h‖∞}. Since h/Ch lies in MHöl,α,

our assumption implies
´
E h dµm →

´
E h dµ. That is,

´
E h dµm →

´
E h dµ for any bounded and

Lipschitz continuous h ∈ RE . By the portmanteau theorem we can conclude µm
w−→ µ. Moreover,

as ψ lies in MHöl,α, our assumption also implies
´
E ψ dµm →

´
E ψ dµ.

Conversely, assume that µm → µ ψ-weakly. We have to show that for every ε > 0 there exists some

m0 ∈ N such that

sup
h∈MHöl,α

∣∣∣ ˆ
E
h dµm −

ˆ
E
h dµ

∣∣∣ ≤ ε for all m ≥ m0. (2.7)

For any K > 0, the left hand side of (2.7) is bounded above by

sup
h∈MHöl,α

∣∣∣ˆ
E
hK dµm −

ˆ
E
hK dµ

∣∣∣+ sup
h∈MHöl,α

∣∣∣ ˆ
E
hK dµm −

ˆ
E
hK dµ

∣∣∣ (2.8)

with hK := h1{|h|≤K} +K1{h>K} −K1{h<−K}, and hK := h− hK . Without loss of generality we

may and do assume that h(x′) = 0 for all h ∈ MHöl,α; take into account that |
´
E h dµm −

´
E h dµ|

remains unchanged when a constant is added to h. Then |h(x)| = |h(x)−h(x′)| ≤ dE(x, x′)α ≤ ψ(x)

for all h ∈ MHöl,α. In particular, |hK | ≤ |h|1{|h|>K} ≤ ψ1{ψ>K}. Thus the second summand in

(2.8) is bounded above by ˆ
E
ψ1{ψ>K} dµm +

ˆ
E
ψ1{ψ>K} dµ (2.9)

Now we can choose K > 0 so large that the second summand in (2.9) is at most ε/5. The first

summand in (2.9) is bounded above by∣∣∣ ˆ
E
ψ1{ψ>K} dµm −

ˆ
E
ψ1{ψ>K} dµ

∣∣∣+

ˆ
E
ψ1{ψ>K} dµ (2.10)

The second summand in (2.10) is at most ε/5 (see above) and the first summand in (2.10) is

bounded above by∣∣∣ ˆ
E
ψ dµm −

ˆ
E
ψ dµ

∣∣∣+
∣∣∣ˆ

E
ψ1{ψ≤K} dµm −

ˆ
E
ψ1{ψ≤K} dµ

∣∣∣. (2.11)

The first summand in (2.11) converges to 0 as m → ∞, because µm → µ ψ-weakly. Thus we can

find m0 ∈ N such that it is bounded above by ε/5 for every m ≥ m0. Since µ ◦ψ−1 as a probability
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measure on the real line has at most countably many atom, we may and do assume that K > 0 is

chosen such that µ[{ψ = K}] = 0. Since µm → µ ψ-weakly and thus µm
w−→ µ, it follows by the

portmanteau theorem that the second summand in (2.11) converges to 0 as m → ∞. By possibly

increasing m0 we obtain that the second summand in (2.11) is at most ε/5 for all m ≥ m0. So

far we have shown that the second summand in (2.8) is bounded above by 4ε/5 for all m ≥ m0.

As the functions of MHöl,α;K := {hK : h ∈ MHöl,α} are uniformly bounded and equicontinuous,

Corollary 11.3.4 in [32] ensures that one can increase m0 further such that the first summand in

(2.8) is bounded above by ε/5 for all m ≥ m0. That is, we arrive at (2.7). 2

2.1.2 Metric on set of transition functions

Maintain the notation and terminology introduced in Subsection 2.1.1. Fix M ⊆Mψ(E), and denote

by Pψ the set of all transition functions P = (Pn)N−1
n=0 ∈ P satisfying

´
E ψ(y)Pn((x, a), dy) < ∞

for all (x, a) ∈ Dn and n = 0, . . . , N − 1. That is, Pψ consists of those transition functions

P = (Pn)N−1
n=0 ∈ P with Pn((x, a), • ) ∈ Mψ

1 (E) for all (x, a) ∈ Dn and n = 0, . . . , N − 1. Hence,

for the elements P = (Pn)N−1
n=0 of Pψ all integrals of the shape

´
E h(y)Pn((x, a), dy), h ∈ Mψ(E),

(x, a) ∈ Dn, n = 0, . . . , N − 1, exist and are finite. In particular, for two transition functions

P = (Pn)N−1
n=0 and Q = (Qn)N−1

n=0 from Pψ the distance dM(Pn((x, a), • ), Qn((x, a), • )) is well-

defined for all (x, a) ∈ Dn and n = 0, . . . , N − 1.

Thus we may define the distance between two transition functions P = (Pn)N−1
n=0 and Q = (Qn)N−1

n=0

from Pψ by

dφ∞,M(P ,Q) := max
n=0,...,N−1

sup
(x,a)∈Dn

1

φ(x)
· dM

(
Pn
(
(x, a), •

)
, Qn

(
(x, a), •

))
(2.12)

for another gauge function φ : E → R≥1. Note that it follows from the discussion below of Display

(2.2) that (2.12) defines a semi-metric dφ∞,M : Pψ × Pψ → R≥0 on Pψ which is even a metric if M
separates points in Mψ

1 (E).

Maybe apart from the factor 1/φ(x), the definition of dφ∞,M(P ,Q) in (2.12) is quite natural and

in line with the definition of a distance introduced by Müller [68, p. 880]. In [68], Müller considers

stationary MDMs, so that the transition kernels do not depend on n. He fixed a state x and took

the supremum only over all admissible actions a in state x. That is, for any x ∈ E he defined

the distance between P ((x, · ), • ) and Q((x, · ), • ) by supa∈A(x) dM(P ((x, a), • ), Q((x, a), • )). To

obtain a reasonable distance between Pn and Qn it is however natural to take the supremum of the

distance between Pn((x, · ), • ) and Qn((x, · ), • ) w.r.t. dM uniformly over a and over x.

Remark 2.1.8 (i) The factor 1/φ(x) in Display (2.12) causes that the (semi-) metric dφ∞,M is less

strict compared to the (semi-) metric dφ
′
∞,M whenever the gauge function φ′ satisfies φ′ ≤ φ. To

put it another way, the ‘steeper’ the gauge function φ the less strict the (semi-) metric dφ∞,M. In

particular, the (semi-) metric d1
∞,M which is defined as in (2.12) with φ :≡ 1 is the most strict one.

For a motivation of considering the factor 1/φ(x), see Remark 2.2.2 as well as parts (iii)–(iv) of

Remark 2.3.3 and Remark 2.3.4.
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(ii) We note that the subset M of test functions from Mψ(E) also influences the shape of the (semi-)

metric dφ∞,M. In fact, in view of (2.2), the smaller the set M the less strict the (semi-) metric dφ∞,M.

3

2.1.3 The special case of finite state space and finite action spaces

In this subsection we will explain (using the general framework in Subsection 2.1.2) how the distance

between two transition functions can be measured if in the MDM both the state space and the action

spaces are finite. Here we will use the notation and the terminology introduced in Section 1.5.

Assume that the state space E as well as the set of all admissible actions An(x) for each point

of time n = 0, . . . , N − 1 and state x ∈ E are given by (1.23) and (1.24), respectively, where

e := #E ∈ N and tn,i := #An(xi) ∈ N. Let E := P(E), and note that the sets An as well as Dn

from Subsection 1.1.1 are finite for any n = 0, . . . , N − 1.

In this case, we measure the distance between two probability measures µ and ν from M1(E) by

the total variation metric dTV introduced in (2.4), i.e. by

dTV(µ, ν) = max
B∈P(E)

∣∣µ[B]− ν[B]
∣∣ =

1

2

∑
y∈E

∣∣µ[{y}]− ν[{y}]
∣∣.

This fits the setting of Subsection 2.1.1 with M := MTV and ψ :≡ 1; see Example 2.1.2. Since

E was assumed to be finite with e = #E ∈ N, we may and do identify any probability measure

µ ∈M1(E) with some element

pµ = (pµ(1), . . . , pµ(e)) (2.13)

of Re
≥0,1 (with Re

≥0,1 as in Section 1.5). Hence the total variation distance dTV between µ, ν ∈
M1(E) can be identified (up to the factor 1/2) with the `1-distance between pµ and pν :

dTV(µ, ν) =
1

2

e∑
i=1

∣∣pµ(i)− pν(i)
∣∣ =

1

2
‖pµ − pν‖`1 . (2.14)

For the distance between two transition functions we will employ the metric d1
∞,MTV

, which is

defined as in (2.12) with M := MTV and φ := ψ :≡ 1. As already mentioned in Section 1.5,

the set P of all transition functions can be represented in the finite setting through (1.25). In

particular, under the imposed assumptions, we may identify any transition function P = (Pn)N−1
n=0

from P1 = P (with P1 defined as in Subsection 2.1.2) with an element p as defined in (1.26) from

the set P̃ introduced in (1.27). Then, imposing (without loss of generality) the metric

d∞,`1(p, q) :=
1

2
max

{
max

k=1,...,t0,i0

‖p0,i0;a0,i0;k
− q0,i0;a0,i0;k

‖`1 ,

max
n=1,...,N−1

max
i=1,...,e

max
k=1,...tn,i

‖pn,i;an,i;k − qn,i;an,i;k‖`1
} (2.15)

on P̃, it is apparent that the metric d∞,`1 is a special case of the metric d1
∞,MTV

defined as in (2.12)

with M := MTV and φ := ψ :≡ 1. Recall i0 refers to the index of the initial state x0 = xi0 ∈ E.

That is, in the finite setting of Section 1.5 we will use the metric d∞,`1 given by (2.15) to measure

the distance between transition functions.
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2.2 ‘Continuity’ in P of the value function

In this section we will prove that the value function of a MDM regarded as a real-valued functional

on a suitable set of transition functions is ‘Lipschitz continuous’ in a certain sense. The notion of

‘Lipschitz continuity’ will be formally introduced in Subsection 2.2.1. We will also discuss the special

case of finite state space and finite action spaces. The motivation of our investigation comes from

the work of Müller in [68], where the author proved in [68, Theorem 4.2] that the value function

of a stationary MDM depends continuously on the transition probabilities, and he established

some bounds for the approximation error. In Subsection 2.2.2 we will formulate our main result

(see Theorem 2.2.8 ahead) concerning the ‘Lipschitz continuity’ of the so-called value functional

introduced in Display (2.16) below, which can be seen to some extent as a slight generalization of

Theorem 4.2 in [68] for non-stationary MDMs. Throughout this section we suppose that the model

components E, A, Π, and r of the MDM are fixed.

2.2.1 Definition of ‘Lipschitz continuity’

Let ψ be any gauge function, and fix a subset Pψ ⊆ Pψ, where Pψ is defined as in Subsection

2.1.2. In the following we equip the set Pψ with the distance dφ∞,M introduced in (2.12) for another

gauge function φ. In this subsection we present a reasonable notion of ‘Lipschitz continuity’ for

an arbitrary functional V : Pψ → R. Since this notion is weaker compared to the usual concept

of Lipschitz continuity, we will use inverted commas and write ‘Lipschitz continuity’ instead of

Lipschitz continuity.

Definition 2.2.1 (‘Lipschitz continuity’ in P ) Let M ⊆Mψ(E), φ be another gauge function,

and fix P ∈ Pψ. A map V : Pψ → R is said to be ‘Lipschitz continuous’ at P w.r.t. (M, φ) if∣∣V(Pm)− V(P )
∣∣ = O

(
dφ∞,M(Pm,P )

)
holds for every sequence (Pm) ∈ PN

ψ with dφ∞,M(Pm,P )→ 0.

Note that in the setting of Definition 2.2.1 the notation O(dφ∞,M(Pm,P )) refers to any real-valued

sequence (cm)m∈N for which the sequence (cm d
φ
∞,M(Pm,P )−1)m∈N is bounded.

Remark 2.2.2 (i) The subset M (⊆ Mψ(E)) and the gauge function φ can be considered to a

certain extent as factors which influence the ‘robustness’ of the map V w.r.t. changes in P . Indeed,

the smaller the set M and the ‘steeper’ the gauge function φ, the less strict the (semi-) metric dφ∞,M
given by (2.12) (see Remark 2.1.8), and hence the more robust the map V in P . Therefore it is

favorable to choose the set M as small as possible and the gauge function φ as ‘steep’ as possible.

However, the smaller M and the ‘steeper’ φ, the stricter the condition of ‘Lipschitz continuity’.

To be more precise, if M1 ⊆ M2 and φ1 ≥ φ2 then ‘Lipschitz continuity’ w.r.t. (M1, φ1) implies

‘Lipschitz continuity’ w.r.t. (M2, φ2).

(ii) Note that in our main result of this section (Theorem 2.2.8 below) we can not choose the gauge

function φ ‘steeper’ than the gauge function ψ which is in this framework the bounding function.

In fact, the (M, ψ)-‘Lipschitz continuity’ of the functionals V : Pψ → R in Theorem 2.2.8 can not

be proven if dψ∞,M is replaced by dφ∞,M in the case that φ is ‘steeper’ than ψ. 3

35



We conclude this subsection by discussing how the concept of ‘Lipschitz continuity’ introduced in

Definition 2.2.1 can be simplified for the case that in the MDM both the state space and the action

spaces are finite. The latter setting was already discussed in Section 1.5.

To this end, let E be the state space from (1.23) with e := #E ∈ N, and let An(xi) be for any

i = 1, . . . , e and n = 0, . . . , N − 1 the (finite) set of all admissible actions in state xi at time n given

by (1.24). As already discussed in Subsection 2.1.3, we may and do identify any transition function

P = (Pn)N−1
n=0 from P1 = P (with P1 defined as in Subsection 2.1.2) with a vector p ∈ P̃ given

by (1.26), where P̃ is defined as in (1.27). In particular, the metric d1
∞,MTV

on P1 = P introduced

in (2.12) with M := MTV and φ := ψ :≡ 1 can be identified with the metric d∞,`1 on P̃ given by

(2.15). Therefore the concept of ‘Lipschitz continuity’ (w.r.t. (MTV, φ)) stated in Definition 2.2.1

boils down in the finite setting of Section 1.5 to the following notion:

Definition 2.2.3 (‘Lipschitz continuity’ in p) Let p ∈ P̃. A map V : P̃ → R is said to be

‘Lipschitz continuous’ at p if ∣∣V(pm)− V(p)
∣∣ = O

(
d∞,`1(pm,p)

)
holds for every sequence (pm) ∈ P̃N with d∞,`1(pm,p)→ 0.

Analogously to the discussion subsequent to Definition 2.2.1, the notation O(d∞,`1(pm,p)) in

the setting of Definition 2.2.3 refers to any real-valued sequence (cm)m∈N for which the sequence

(cm d∞,`1(pm,p)−1)m∈N is bounded.

2.2.2 ‘Lipschitz continuity’ of the value functional

We now turn back to our general framework of Section 1.1. Recall that E, A, Π, and r are fixed,

and let V P ;π
n and V Pn be defined as in (1.11) and (1.13), respectively. Moreover let ψ be any gauge

function, and fix some Pψ ⊆ Pψ.

In view of Proposition 1.4.3 (with P := {P }), condition (a) of Assumption 2.2.5 below ensures that

Assumption 1.2.1 is satisfied for any P ∈ Pψ. Then for any xn ∈ E, π ∈ Π, and n = 0, . . . , N we

may define under condition (a) of Assumption 2.2.5 functionals Vxn;π
n : Pψ → R and Vxnn : Pψ → R

by

Vxn;π
n (P ) := V P ;π

n (xn) and Vxnn (P ) := sup
π∈Π
Vxn;π
n (P )

(
= V Pn (xn)

)
, (2.16)

respectively. Note that Vxnn (P ) specifies the maximal value for the expected total reward in the

MDM (given state xn at time n) when the underlying transition function is P . By analogy with

the name ‘value function’ we refer to Vxnn as value functional given state xn at time n. Part (ii)

of Theorem 2.2.8 below shows (under some conditions) that the value functional Vxnn is ’Lipschitz

continuous’ at any fixed P ∈ Pψ in the sense of Definition 2.2.1.

Conditions (b) and (c) of Assumption 2.2.5 involve the so-called Minkowski (or gauge) functional

ρM : Mψ(E)→ R≥0 (see, e.g., [76, p. 25]) defined by

ρM(h) := inf
{
λ ∈ R>0 : h/λ ∈M

}
, (2.17)

where we use the convention inf ∅ :=∞, M is any subset of Mψ(E), and we set R>0 := (0,∞). We

note that Müller [68] also used the Minkowski functional to formulate his assumptions.
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Example 2.2.4 (Minkowski functional) For the sets M (and the corresponding gauge functions

ψ) from Examples 2.1.2–2.1.6 we have ρMTV
(h) = sp(h), ρMKolm

(h) = Vh(R), ρMBL
(h) = ‖h‖BL,

ρMKant
(h) = ‖h‖Lip, and ρMHöl,α

(h) = ‖h‖Höl,α, where as before MTV and MKolm are used to denote

the maximal generator of dTV and dKolm, respectively. The latter three equations are trivial, for

the former two equations see [68, p. 880]. 3

Recall from Subsection 2.1.1 the definition of generators M′ of the (semi-) metric dM which were

introduced subsequent to (2.2). The following Assumption 2.2.5 will be illustrated in Remark 2.2.6

below.

Assumption 2.2.5 Let M ⊆ Mψ(E) and M′ be any generator of dM. Moreover let P ∈ Pψ, and

assume that the following three conditions hold.

(a) ψ is a bounding function for the MDM (E,A,Q,Π,X, r) for every Q ∈ Pψ.

(b) supπ∈Π ρM′(V
P ;π
n ) <∞ for any n = 1, . . . , N .

(c) ρM′(ψ) <∞.

Remark 2.2.6 (i) Condition (a) of Assumption 2.2.5 is in line with the existing literature. In fact,

similar conditions as in Definition 1.4.1 (with P := {P }) have been imposed many times before;

see, for instance, [5, Definition 2.4.1], [68, Definition 2.4], [73, p. 231 ff], and [91].

(ii) In some situations, condition (a) implies condition (b) in Assumption 2.2.5. This is the case, for

instance, in the following four settings (the involved sets M′, metrics, and norms were introduced

in Examples 2.1.2–2.1.6).

1) M′ := MTV and ψ :≡ 1.

2) M′ := MKolm and ψ :≡ 1, as well as for n = 1, . . . , N − 1

-
´
R V

P ;π
n+1 (y)Pn(( · , fn( · )), dy), π = (fn)N−1

n=0 ∈ Π, are increasing,

- rn( · , fn( · )), π = (fn)N−1
n=0 ∈ Π, and rN (·) are increasing.

3) M′ := MBL and ψ :≡ 1, as well as for n = 1, . . . , N − 1

- supπ=(fn)N−1
n=0 ∈Π supx 6=y dBL(Pn((x, fn(x)), • ), Pn((y, fn(y)), • ))/dE(x, y) <∞,

- supπ=(fn)N−1
n=0 ∈Π ‖rn( · , fn( · ))‖Lip <∞ and ‖rN‖Lip <∞.

4) M′ := MHöl,α and ψ(·) := 1 + dE( · , x′)α, as well as for n = 1, . . . , N − 1

- supπ=(fn)N−1
n=0 ∈Π supx 6=y dHöl,α(Pn((x, fn(x)), • ), Pn((y, fn(y)), • ))/dE(x, y)α <∞,

- supπ=(fn)N−1
n=0 ∈Π ‖rn( · , fn( · ))‖Höl,α <∞ and ‖rN‖Höl,α <∞,

for some fixed x′ ∈ E and α ∈ (0, 1]. Recall that MHöl,α = MKant for α = 1.

The proof of (a)⇒(b) relies in setting 1) on Proposition 1.4.3 (with P := {P }) and in settings 2)–4)

on Proposition 1.4.3 (with P := {P }) along with Proposition 1.3.1. The conditions in setting 2)

are similar to those in parts (ii)–(iv) of Theorem 2.4.14 in [5], and the conditions in settings 3) and

4) are motivated by the statements in [40, p. 11f].

(iii) In many situations, condition (c) of Assumption 2.2.5 holds trivially. This is the case, for

instance, if M′ ∈ {MTV,MKolm,MBL} and ψ :≡ 1, or if M′ := MHöl,α and ψ(·) := 1 + dE( · , x′)α,

for some fixed x′ ∈ E and α ∈ (0, 1].
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(iv) The conditions (b) and (c) of Assumption 2.2.5 can also be verified directly in some cases; see,

for instance, Lemma 3.2.10 in Subsection 3.2.4. 3

In applications it is not necessarily easy to verify condition (b) of Assumption 2.2.5. The following

remark may help in some situations; for an application see Subsection 3.2.4.

Remark 2.2.7 In some situations it turns out that for every P ∈ Pψ the solution of the optimiza-

tion problem (1.12) does not change if Π is replaced by a subset Π′ ⊆ Π (being independent of P ).

Then in the definition (1.13) of the value function (at time 0) the set Π can be replaced by the

subset Π′. Of course, in this case it suffices to ensure that conditions (a)–(b) of Assumption 2.2.5

are satisfied for the subset Π′ instead of Π. 3

The following theorem shows in particular that (under Assumption 2.2.5) the value functional

depends continuously on the transition functions.

Theorem 2.2.8 (‘Lipschitz continuity’ of Vxn;π
n and Vxnn in P ) Suppose that Assumption 2.2.5

holds for some M ⊆Mψ(E) and P ∈ Pψ. Then the following two assertions are valid.

(i) For any xn ∈ E, π ∈ Π, n = 0, . . . , N , the map Vxn;π
n : Pψ → R defined by (2.16) is ‘Lipschitz

continuous’ at P w.r.t. (M, ψ).

(ii) For any xn ∈ E and n = 0, . . . , N , the map Vxnn : Pψ → R defined by (2.16) is ‘Lipschitz

continuous’ at P w.r.t. (M, ψ).

Remark 2.2.9 (i) It follows from the proof of Theorem 2.2.8 ahead that (under the assumptions

of Theorem 2.2.8) the ‘Lipschitz continuity’ in part (i) of the latter theorem holds even uniformly

in π ∈ Π. That is, for any fixed P ∈ Pψ, we have

sup
π∈Π

∣∣Vxn;π
n (Pm)− Vxn;π

n (P )
∣∣ = O

(
dψ∞,M(Pm,P )

)
for every xn ∈ E and n = 0, . . . , N as well as any sequence (Pm) ∈ PN

ψ with dψ∞,M(Pm,P )→ 0.

(ii) In the case where we are interested in minimizing expected total costs in the MDM (E,A,P ,Π,

X, r) (see Remark 1.2.6(ii)), we obtain under the assumptions (and with similar arguments as in

the proof of part (ii)) of Theorem 2.2.8 that the ‘Lipschitz continuity’ of the corresponding value

functional holds. 3

In the following we provide a proof of Theorem 2.2.8.

Proof of Theorem 2.2.8: We will prove only the assertion in (ii). The claim in part (i) will

follow with similar arguments. Let xn ∈ E as well as n = 0, . . . , N be arbitrary but fixed. Further

let (Pm)m∈N be any sequence in Pψ with dψ∞,M(Pm,P ) → 0. At first, as a simple consequence of

the definition of the Minkowski functional ρM′ (see (2.17)) we have∣∣∣ˆ
E
h dµ−

ˆ
E
h dν

∣∣∣ ≤ ρM′(h) · dM(µ, ν) for all h ∈Mψ(E) and µ, ν ∈Mψ
1 (E), (2.18)
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because M′ (⊆Mψ(E)) is a generator of dM by assumption. Using (2.16), (1.11), and Lemma 1.4.4,

we obtain for any m ∈ N by rearranging the sums

∣∣Vxnn (Pm)− Vxnn (P )
∣∣

=
∣∣ sup
π∈Π
Vxn;π
n (Pm)− sup

π∈Π
Vxn;π
n (P )

∣∣
≤ sup

π∈Π

∣∣Vxn;π
n (Pm)− Vxn;π

n (P )
∣∣

= sup
π∈Π

∣∣Vxn;π
n (P + (Pm − P ))− Vxn;π

n (P )
∣∣

= sup
π=(fn)N−1

n=0 ∈Π

{∣∣∣N−1∑
k=n

(
Ex0,P+(Pm−P );π
n,xn

[
rk(Xk, fk(Xk))

]
− Ex0,P ;π

n,xn

[
rk(Xk, fk(Xk))

])
+ Ex0,P+(Pm−P );π

n,xn

[
rN (XN )

]
− Ex0,P ;π

n,xn

[
rN (XN )

]∣∣∣}
= sup

π=(fn)N−1
n=0 ∈Π

{∣∣∣ N−1∑
k=n+1

k−1∑
j=n

ˆ
E
· · ·
ˆ
E
rk(yk, fk(yk))Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · · (Pm;j − Pj)

(
(yj , fj(yj)), dyj+1

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)
+

N−1∑
k=n+2

∑
J⊆{n,...,k−1}
1<|J |≤k−n

ˆ
E
· · ·
ˆ
E

ˆ
E
rk(yk, fk(yk)) ξ

m;−
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
ξm;−
k−2,J

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · · ξm;−

n,J

(
(xn, fn(xn)), dyn+1

)
+

N−1∑
j=n

ˆ
E
· · ·
ˆ
E
rN (yN )PN−1

(
(yN−1, fN−1(yN−1)), dyN

)
· · · (Pm;j − Pj)

(
(yj , fj(yj)), dyj+1

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)
+

∑
J⊆{n,...,N−1}
1<|J |≤N−n

ˆ
E
· · ·
ˆ
E

ˆ
E
rN (yN ) ξm;−

N−1,J

(
(yN−1, fN−1(yN−1)), dyN

)
ξm;−
N−2,J

(
(yN−2, fN−2(yN−2)), dyN−1

)
· · · ξm;−

n,J

(
(xn, fn(xn)), dyn+1

)∣∣∣}
= sup

π=(fn)N−1
n=0 ∈Π

{∣∣∣N−1∑
k=n

ˆ
E
· · ·
ˆ
E

ˆ
E
V P ;π
k+1 (yk+1) (Pm;k − Pk)

(
(yk, fk(yk)), dyk+1

)
Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)
+

N−1∑
k=n+2

∑
J⊆{n,...,k−1}
1<|J |≤k−n

ˆ
E
· · ·
ˆ
E

ˆ
E
rk(yk, fk(yk)) ξ

m;−
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
ξm;−
k−2,J

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · · ξm;−

n,J

(
(xn, fn(xn)), dyn+1

)
+

∑
J⊆{n,...,N−1}
1<|J |≤N−n

ˆ
E
· · ·
ˆ
E

ˆ
E
rN (yN ) ξm;−

N−1,J

(
(yN−1, fN−1(yN−1)), dyN

)
ξm;−
N−2,J

(
(yN−2, fN−2(yN−2)), dyN−1

)
· · · ξm;−

n,J

(
(xn, fn(xn)), dyn+1

)∣∣∣}
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= sup
π=(fn)N−1

n=0 ∈Π

{∣∣∣N−1∑
k=n

ˆ
E
· · ·
ˆ
E

ˆ
E
V P ;π
k+1 (yk+1) (Pm;k − Pk)

(
(yk, fk(yk)), dyk+1

)
Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)
+

N−1∑
k=n+1

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

ˆ
E
· · ·
ˆ
E

ˆ
E
V P ;π
k+1 (yk+1) (Pm;k − Pk)

(
(yk, fk(yk)), dyk+1

)
ξm;−
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
· · · ξm;−

n,J

(
(xn, fn(xn)), dyn+1

)∣∣∣}
≤

N−1∑
k=n

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

∣∣∣ ˆ
E
V P ;π
k+1 (yk+1) (Pm;k − Pk)

(
(yk, fk(yk)), dyk+1

)∣∣∣
Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)}
+

N−1∑
k=n+1

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

∣∣∣ˆ
E
V P ;π
k+1 (yk+1) (Pm;k − Pk)

(
(yk, fk(yk)), dyk+1

)∣∣∣
ξm;+
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
· · · ξm;+

n,J

(
(xn, fn(xn)), dyn+1

)}
=: S1(m) + S2(m),

where ξm;±
j,J is for any subset J ⊆ {0, . . . , N − 1} given by

ξm;±
j,J :=

{
Pm;j ± Pj , j ∈ J
Pj , otherwise

.

It follows from (2.18), part (v) of Lemma 1.4.4 as well as (2.12) that for any k = n+ 1, . . . , N − 1

and m ∈ N

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

∣∣∣ˆ
E
V P ;π
k+1 (yk+1) (Pm;k − Pk)

(
(yk, fk(yk)), dyk+1

)∣∣∣
Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)}
≤ sup

π=(fn)N−1
n=0 ∈Π

{
ρM′
(
V P ;π
k+1

)
· sup
x∈E

1

ψ(x)
dM

(
Pm;k

(
(x, fk(x)), •

)
, Pk
(
(x, fk(x)), •

))
·
ˆ
E
· · ·
ˆ
E
ψ(yk)Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)}
≤ sup

fk∈Fk
sup
x∈E

1

ψ(x)
dM

(
Pm;k

(
(x, fk(x)), •

)
, Pk
(
(x, fk(x)), •

))
· sup
π∈Π

ρM′
(
V P ;π
k+1

)
· sup
π∈Π

Ex0,P ;π
n,xn

[
ψ(Xk)

]
≤ sup

(x,a)∈Dk

1

ψ(x)
dM

(
Pm;k

(
(x, a), •

)
, Pk
(
(x, a), •

))
· sup
π∈Π

ρM′
(
V P ;π
k+1

)
· sup
π∈Π

Ex0,P ;π
n,xn

[
ψ(Xk)

]
≤ dψ∞,M(Pm,P ) · sup

π∈Π
ρM′
(
V P ;π
k+1

)
· sup
π∈Π

Ex0,P ;π
n,xn

[
ψ(Xk)

]
(2.19)
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because V P ;π
k+1 (·) ∈Mψ(E) for any π ∈ Π due to Proposition 1.4.3 (applied to P := {P }). Similarly,

for any m ∈ N

sup
π=(fn)N−1

n=0 ∈Π

{∣∣∣ˆ
E
V P ;π
n+1 (yn+1) (Pm;n − Pn)

(
(xn, fn(xn)), dyn+1

)∣∣∣}
≤ sup

π=(fn)N−1
n=0 ∈Π

{
ρM′
(
V P ;π
n+1

)
· sup
x∈E

1

ψ(x)
dM

(
Pm;n

(
(x, fn(x)), •

)
, Pn

(
(x, fn(x)), •

))
· ψ(xn)

}
≤ sup

fn∈Fn
sup
x∈E

1

ψ(x)
dM

(
Pm;n

(
(x, fn(x)), •

)
, Pn

(
(x, fn(x)), •

))
· sup
π∈Π

ρM′
(
V P ;π
n+1

)
· ψ(xn)

≤ sup
(x,a)∈Dn

1

ψ(x)
dM

(
Pm;n

(
(x, a), •

)
, Pn

(
(x, a), •

))
· sup
π∈Π

ρM′
(
V P ;π
n+1

)
· sup
π∈Π

Ex0,P ;π
n,xn

[
ψ(Xn)

]
≤ dψ∞,M(Pm,P ) · sup

π∈Π
ρM′
(
V P ;π
n+1

)
· sup
π∈Π

Ex0,P ;π
n,xn

[
ψ(Xn)

]
(2.20)

by part (iii) of Lemma 1.4.4. The second factor in the last line of both (2.19) and (2.20) is

(independent of m and) finite due to condition (b) of Assumption 2.2.5. Moreover, the finiteness of

the third factor in the last line of both (2.19) and (2.20) (which is also independent of m) follows

from Lemma 1.4.4 along with condition (a) of Assumption 2.2.5. Thus S1(m) = O(dψ∞,M(Pm,P )).

Analogously to (2.19), in view of (2.18), condition (a) of Assumption 2.2.5, and part (c) of Definition

1.4.1 (applied to P := {P }), there exists a finite constant K3 > 0 such that for any k = n +

1, . . . , N − 1 and m ∈ N∑
J⊆{n,...,k−1}
1≤|J |≤k−n

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

∣∣∣ˆ
E
V P ;π
k+1 (yk+1) (Pm;k − Pk)

(
(yk, fk(yk)), dyk+1

)∣∣∣
ξm;+
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
· · · ξm;+

n,J

(
(xn, fn(xn)), dyn+1

)}
≤

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

dψ∞,M(Pm,P ) · sup
π∈Π

ρM′
(
V P ;π
k+1

)

· sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

ˆ
E
ψ(yk) ξ

m;+
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
ξm;+
k−2,J

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · · ξm;+

n,J

(
(xn, fn(xn)), dyn+1

)}
= dψ∞,M(Pm,P ) · sup

π∈Π
ρM′
(
V P ;π
k+1

)
·

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

ˆ
E
ψ(yk) ξ

m;+
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
ξm;+
k−2,J

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · · ξm;+

n,J

(
(xn, fn(xn)), dyn+1

)}
≤ dψ∞,M(Pm,P ) · sup

π∈Π
ρM′
(
V P ;π
k+1

)
·

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

(
k − n
|J |

)
K
k−n−|J |
3 ·

(
ρM′(ψ) · dψ∞,M(Pm,P ) + 2K3

)|J | · ψ(xn)

because ψ ∈ Mψ(E). Thus S2(m) = O(dψ∞,M(Pm,P )) by conditions (b) and (c) of Assumption

41



2.2.5. Hence the assertion follows. This completes the proof of Theorem 2.2.8. 2

Next, we reformulate in Corollary 2.2.10 below the statements of Theorem 2.2.8 in the setting

of Section 1.5 where in the corresponding MDM both the state space E (given by (1.23)) with

e := #E ∈ N and the action spaces are finite. In this corollary we will use the notion of ‘Lipschitz

continuity’ introduced in Definition 2.2.3.

Recall from Section 1.5 that in the finite setting any transition function P from the set P1 = P
(with P1 defined as in Subsection 2.1.2) can be identified with an element p as defined in (1.26)

from the set P̃ given by (1.27). Therefore, the functionals Vxn;π
n and Vxnn given by (2.16) can be

identified in the finite setting with maps Vxi;πn : P̃ → R and Vxin : P̃ → R defined by

Vxi;πn (p) := V p;π
n (xi) and Vxin (p) := max

π∈Π
Vxi;πn (p), (2.21)

where the policy value function V p;π
n (·) can be obtained from (1.29). Take into account that the

latter functionals are well-defined because ψ :≡ 1 is a bounding function for the family of MDMs

{(E,A,P ,Π,X, r) : P ∈ P} (with P given by (1.25)); see the discussion at end of Section 1.5.

Similarly, we will refer Vxin to as value functional given state xi at time n.

Corollary 2.2.10 (‘Lipschitz continuity’ of Vxi;πn and Vxin in p) Let p ∈ P̃. Then in the set-

ting of Section 1.5 the following two assertions hold.

(i) For any i = 1, . . . , e, π ∈ Π, n = 0, . . . , N , the map Vxi;πn : P̃ → R defined by (2.21) is

‘Lipschitz continuous’ at p.

(ii) For any i = 1, . . . , e and n = 0, . . . , N , the map Vxin : P̃ → R defined by (2.21) is ‘Lipschitz

continuous’ at p.

Proof We intend to apply Theorem 2.2.8. First of all, as discussed above, the gauge function

ψ :≡ 1 provides a bounding function for the MDM (E,A,P ,Π,X, r) for every P ∈ P (with P as

in (1.25)). Therefore, condition (a) of Assumption 2.2.5 holds. Thus parts (ii) and (iii) of Remark

2.2.6 entail that conditions (b)–(c) of Assumption 2.2.5 are satisfied for M := MTV, M′ := MTV,

and ψ :≡ 1, where the sets MTV as well as MTV are introduced in Example 2.1.2.

In particular, we have verified the assumptions of Theorem 2.2.8, and an application of parts (i)

and (ii) of the latter theorem leads to the assertions in (i) and (ii), respectively. Take into account

that it follows from the discussion in Subsection 2.2.1 that in the finite setting of Section 1.5 the

notion of ‘Lipschitz continuity’ (w.r.t. (MTV, ψ)) in Definition 2.2.1 boils down to the concept of

‘Lipschitz continuity’ introduced in Definition 2.2.3. 2

2.3 ‘Differentiability’ in P of the value function

In this section, we show that the value functional is ‘differentiable’ in a certain sense. The motivation

of our notion of ‘differentiability’ was discussed subsequent to (2.1). The ‘derivative’ of the value

functional which we propose to regard as a measure for the first-order sensitivity will formally be

introduced in Definition 2.3.2 in Subsection 2.3.1. This definition is applicable to quite general
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finite time horizon MDMs and might look somewhat cumbersome at first glance. However, in the

special case of a finite state space and finite action spaces, a situation one faces in many practical

applications, the proposed ‘differentiability’ boils down to a rather intuitive concept. This will be

explained in the second part of Subsection 2.3.1. In Subsection 2.3.2 we will specify the ‘Hadamard

derivative’ of the value functional, and we present a backward iteration scheme for the computation

of the ‘Hadamard derivative’.

2.3.1 Definition of ‘differentiability’

Let ψ be any gauge function, and fix some Pψ ⊆ Pψ (with Pψ defined as in Subsection 2.1.2) being

closed under mixtures. The latter means that (1−ε)P +εQ ∈ Pψ for any P ,Q ∈ Pψ and ε ∈ (0, 1).

We will consider the (semi-) metric space (Pψ, dφ∞,M), where (semi-) metric dφ∞,M is introduced in

(2.12) for another gauge function φ.

In Definition 2.3.2 below we will introduce a reasonable notion of ‘differentiability’ for an arbitrary

functional V : Pψ → L taking values in a normed vector space (L, ‖ ·‖L). It is related to the general

functional analytic concept of (tangential) S-differentiability introduced by Sebastião e Silva [82]

and Averbukh and Smolyanov [4]; see also [33, 36, 83] for applications. However, Pψ is not a

vector space. This implies that Definition 2.3.2 differs from the classical notion of (tangential) S-

differentiability. For that reason we will use inverted commas and write ‘S-differentiability’ instead

of S-differentiability. Due to the missing vector space structure, we in particular need to allow the

tangent space to depend on the point P ∈ Pψ at which V is differentiated. The role of the ‘tangent

space’ will be played by the set

PP ;±
ψ := {Q− P : Q ∈ Pψ} (2.22)

whose elements Q−P := (Q0 − P0, . . . , QN−1 − PN−1) can be seen as signed transition functions.

Before we introduce our notion of ‘S-differentiability’ in Definition 2.3.2 below, we first need the

following terminology.

Definition 2.3.1 Let M ⊆ Mψ(E), φ be another gauge function, and fix P ∈ Pψ. A map W :

PP ;±
ψ → L is said to be (M, φ)-continuous if the mapping Q 7→ W(Q − P ) from Pψ to L is

(dφ∞,M, ‖ · ‖L)-continuous.

Note for the following definition that P + ε(Q − P ) lies in Pψ for any P ,Q ∈ Pψ and ε ∈ (0, 1].

Recall that Pψ was assumed to be closed under mixtures.

Definition 2.3.2 (‘S-differentiability’ in P ) Let M ⊆ Mψ(E), φ be another gauge function,

and fix P ∈ Pψ. Moreover let S be a system of subsets of Pψ. A map V : Pψ → L is said to be

‘S-differentiable’ at P w.r.t. (M, φ) if there exists an (M, φ)-continuous map V̇P : PP ;±
ψ → L such

that

lim
m→∞

∥∥∥V(P + εm(Q− P ))− V(P )

εm
− V̇P (Q− P )

∥∥∥
L

= 0 uniformly in Q ∈ K (2.23)

for every K ∈ S and every sequence (εm) ∈ (0, 1]N with εm → 0. In this case, V̇P is called

‘S-derivative’ of V at P w.r.t. (M, φ).
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Note that in Definition 2.3.2 the derivative is not required to be linear (in fact the derivative is

not even defined on a vector space). This is another point where Definition 2.3.2 differs from the

functional analytic definition of (tangential) S-differentiability. However, non-linear derivatives are

common in the field of mathematical optimization; see, for instance, [75, 83].

Remark 2.3.3 (i) At least in the case L = R, the ‘S-derivative’ V̇P evaluated at Q − P , i.e.

V̇P (Q − P ), can be seen as a measure for the first-order sensitivity of the functional V : Pψ → R
w.r.t. a change of the argument from P to (1−ε)P +εQ, with ε > 0 small, for some given transition

function Q.

(ii) The prefix ‘S-’ in Definition 2.3.2 provides the following information. Since the convergence in

(2.23) is required to be uniform in Q ∈ K, the values of the first-order sensitivities V̇P (Q − P ),

Q ∈ K, can be compared with each other with clear conscience for any fixed K ∈ S. It is therefore

favorable if the sets in S are large. However, the larger the sets in S, the stricter the condition of

‘S-differentiability’.

(iii) The subset M (⊆ Mψ(E)) and the gauge function φ tell us in a way how ‘robust’ the ‘S-

derivative’ V̇P is w.r.t. changes in Q: The smaller the set M and the ‘steeper’ the gauge function φ,

the less strict the (semi-) metric dφ∞,M(P ,Q) given by (2.12) (see Remark 2.1.8), and therefore the

more robust V̇P (Q−P ) in Q. It is thus favorable if the set M is small and the gauge function φ is

‘steep’. However, the smaller M and the ‘steeper’ φ, the stricter the condition of (M, φ)-continuity

(and thus of ‘S-differentiability’ w.r.t. (M, φ)). More precisely, if M1 ⊆ M2 and φ1 ≥ φ2 then

(M1, φ1)-continuity implies (M2, φ2)-continuity.

(iv) In general the choice of S and the choice of the pair (M, φ) in Definition 2.3.2 do not necessarily

depend on each other. However in the specific settings (b) and (c) in Definition 2.3.5, and in

particular in the application in Section 3.2, they do.

(v) In the general framework of our main result (Theorem 2.3.11 ahead) we can not choose φ

‘steeper’ than the gauge function ψ which plays the role of a bounding function there. Indeed, the

proof of (M, ψ)-continuity of the map V̇P : PP ;±
ψ → R in Theorem 2.3.11 does not work anymore if

dψ∞,M is replaced by dφ∞,M for any gauge function φ ‘steeper’ than ψ. And here it does not matter

how exactly S is chosen. 3

Remark 2.3.4 In the numerical example for the ‘Hadamard derivative’ of the value functional

in Subsection 3.2.5, the set {Q∆,τ : ∆ ∈ [0, δ]} should be contained in S (for details see Remark

3.2.14). This set can be shown to be (relatively) compact w.r.t. dφ∞,M for M := MHöl,α and φ := ψ

but not for any ‘flatter’ gauge function φ, where MHöl,α is defined as in Example 2.1.6 and ψ is

given by (3.17). So, in this example, and certainly in many other examples, relatively compact

subsets of Pψ w.r.t. dφ∞,M should be contained in S. It is thus often beneficial to know that the

value functional is ‘differentiable’ in the sense of part (b) of the following Definition 2.3.5. 3

The terminology in Definition 2.3.5 below is motivated by the functional analytic analogues.

Bounded and relatively compact sets in the (semi-) metric space (Pψ, dφ∞,M) are understood in

the conventional way. A set K ⊆ Pψ is said to be bounded (w.r.t. dφ∞,M) if there exist P ′ ∈ Pψ
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and δ > 0 such that dφ∞,M(Q,P ′) ≤ δ for every Q ∈ K. It is said to be relatively compact (w.r.t.

dφ∞,M) if for every sequence (Qm) ∈ KN there exists a subsequence (Q′m)m∈N of (Qm)m∈N such that

dφ∞,M(Q′m,Q)→ 0 for some Q ∈ Pψ. Note that in view of Remark 2.1.8 the system of all bounded

sets and the system of all relatively compact sets (w.r.t. dφ∞,M) are the larger (the smaller the set

M and/or) the ‘steeper’ the gauge function φ is.

Definition 2.3.5 In the setting of Definition 2.3.2 we refer to ‘S-differentiability’ as

(a) ‘Gateaux–Lévy differentiability’ if S = Sf := {K ⊆ Pψ : K is finite}.

(b) ‘Hadamard differentiability’ if S = Src := {K ⊆ Pψ : K is relatively compact}.

(c) ‘Fréchet differentiability’ if S = Sb := {K ⊆ Pψ : K is bounded}.

Clearly, in the setting of Definition 2.3.5 we have Sf ⊆ Src ⊆ Sb. Therefore, ‘Fréchet differentiability’

(of a map V : Pψ → L at some fixed P ∈ Pψ w.r.t. (M, φ)) implies ‘Hadamard differentiability’

which in turn implies ‘Gateaux–Lévy differentiability’, each with the same ‘derivative’.

The last sentence before Definition 2.3.5 and the last sentence in part (iii) of Remark 2.3.3 together

imply that ‘Hadamard (resp. ‘Fréchet) differentiability’ w.r.t. (M, φ1) implies ‘Hadamard (resp.

‘Fréchet) differentiability’ w.r.t. (M, φ2) when φ1 ≥ φ2.

The following lemma provides an equivalent characterization of ‘Hadamard differentiability’ (in the

sense of Definitions 2.3.2 and 2.3.5(b)). Its statement will be used to prove (part (ii) of) Theorem

2.3.11 ahead.

Lemma 2.3.6 Let M ⊆ Mψ(E), φ be another gauge function, V : Pψ → L be any map, and fix

P ∈ Pψ. Then the following two assertions hold.

(i) If V is ‘Hadamard differentiable’ at P w.r.t. (M, φ) with ‘Hadamard derivative’ V̇P , then we

have for each triplet (Q, (Qm), (εm)) ∈ Pψ ×PN
ψ × (0, 1]N with dφ∞,M(Qm,Q)→ 0 and εm → 0 that

lim
m→∞

∥∥∥V(P + εm(Qm − P ))− V(P )

εm
− V̇P (Q− P )

∥∥∥
L

= 0. (2.24)

(ii) If there exists an (M, φ)-continuous map V̇P : PP ;±
ψ → L such that (2.24) holds for each triplet

(Q, (Qm), (εm)) ∈ Pψ × PN
ψ × (0, 1]N with dφ∞,M(Qm,Q) → 0 and εm → 0, then V is ‘Hadamard

differentiable’ at P w.r.t. (M, φ) with ‘Hadamard derivative’ V̇P .

Proof For (i), let V be ‘Hadamard differentiable’ at P w.r.t. (M, φ) with ‘Hadamard derivative’ V̇P .

To show that (2.24) holds, pick a triplet (Q, (Qm), (εm)) ∈ Pψ×PN
ψ×(0, 1]N with dφ∞,M(Qm,Q)→ 0

and εm → 0. Then, the set K := {Qm : m ∈ N} (⊆ Pψ) is clearly relatively compact. Using this

and the assumption we obtain

lim sup
m→∞

∥∥∥V(P + εm(Qm − P ))− V(P )

εm
− V̇P (Q− P )

∥∥∥
L

≤ lim sup
m→∞

∥∥∥V(P + εm(Qm − P ))− V(P )

εm
− V̇P (Qm − P )

∥∥∥
L

+ lim sup
m→∞

∥∥V̇P (Qm − P )− V̇P (Q− P )
∥∥
L
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= 0 + 0 = 0.

Hence the claim in (i) follows.

To prove (ii), assume that there exists an (M, φ)-continuous map V̇P : PP ;±
ψ → L such that (2.24)

holds for each triplet (Q, (Qm), (εm)) ∈ Pψ × PN
ψ × (0, 1]N with dφ∞,M(Qm,Q) → 0 and εm → 0.

Assume by way of contradiction that V̇P is not the ‘Hadamard derivative’ of V at P w.r.t. (M, φ),

i.e. that there is some relatively compact set K ⊆ Pψ and a sequence (εm) ∈ (0, 1]N with εm → 0

such that (2.23) does not hold uniformly in Q ∈ K. Then there exist δ > 0 and (Qm) ∈ KN such

that ∥∥∥V(P + εm(Qm − P ))− V(P )

εm
− V̇P (Qm − P )

∥∥∥
L
≥ δ for all m ∈ N. (2.25)

SinceK is relatively compact, we can find a subsequence (Q′m)m∈N of (Qm)m∈N such that dφ∞,M(Q′m,Q
′)→

0 for some Q′ ∈ Pψ. Along with the (M, φ)-continuity of the map V̇P : PP ;±
ψ → L and (2.25) (with

Qm replaced by Q′m), we obtain

lim inf
m→∞

∥∥∥V(P + εm(Q′m − P ))− V(P )

εm
− V̇P (Q′ − P )

∥∥∥
L

= lim inf
m→∞

∥∥∥V(P + εm(Q′m − P ))− V(P )

εm
− V̇P (Q′m − P )

∥∥∥
L

+ lim inf
m→∞

∥∥V̇P (Q′m − P )− V̇P (Q′ − P )
∥∥
L

= lim inf
m→∞

∥∥∥V(P + εm(Q′m − P ))− V(P )

εm
− V̇P (Q′m − P )

∥∥∥
L

+ 0 ≥ δ

which contradicts the assumption (2.24). In particular, this shows (ii). 2

Remark 2.3.7 In contrast to the elaborations in Section A in [57], according to which the no-

tion of quasi-Lipschitz continuity introduced in [57, Definition A.3] can be deduced (under some

conditions) by means of Lemma A.5 in [57] from the concept of quasi-Hadamard differentiabil-

ity introduced in [57, Definition A.1], it is easily seen that in view of Lemma 2.3.6(i) our notion

of ‘Hadamard differentiability’ (in the sense of Definitions 2.3.2 and 2.3.5(b)) does not imply the

notion of ‘Lipschitz continuity’ from Definition 2.2.1. 3

In the rest of this subsection we will consider the special case when in the MDM both the state

space as well as the action spaces are finite. By using the discrete setting introduced in Section

1.5, we are able to present the notion of ‘differentiability’ introduced in Definition 2.3.2 in a more

comprehensible way.

Let the state space E be as in (1.23) with e := #E ∈ N, and let An(xi) given by (1.24) with

tn,i := #An(xi) ∈ N be for any i = 1, . . . , e and n = 0, . . . , N − 1 the set of all admissible actions

in state xi at time n. Recall from Subsection 2.1.3 that we may identify any transition function

P = (Pn)N−1
n=0 from P1 = P (with P as in (1.25)) with an element p from P̃ given by (1.26), where

P̃ := (Re
≥0,1)×(d/e) (see (1.27)) with d := (t0,i0 +

∑N−1
n=1

∑e
i=1 tn,i)e.

In the finite setting it is desirable to consider the classical Fréchet (or total) derivative V̇p of a map

V : P̃ → R at p in order to obtain a tool for measuring the first-order sensitivity of V w.r.t. a
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change from p to (1− ε)p+ εq:

V̇p(q − p) = lim
m→∞

V(p+ hm(q − p))− V(p)

hm
uniformly in q ∈ B1(p) (2.26)

for any (hm) ∈ RN
0 with hm → 0, where B1(p) is the closed ball in Rd around p with radius 1 and

R0 := R \ {0}. This approach is indeed expedient to some extent. However, one has to note that

p + hm(q − p) may lie outside V’s domain P̃. To avoid this problem, we replace condition (2.26)

by the following variant of (2.26):

V̇p(q − p) = lim
m→∞

V(p+ εm(q − p))− V(p)

εm
uniformly in q ∈ P̃ (2.27)

for any (εm) ∈ (0, 1]N with εm → 0. Take into account that p+ ε(q − p) lies in P̃ for any p, q ∈ P̃
and ε ∈ (0, 1]. Also note that, if Rd is equipped with the max-norm, P̃ is contained in B1(p) for

any p ∈ P̃.

For classical Fréchet (or total) differentiability the derivative V̇p is required to be linear and con-

tinuous. On the one hand, for ‘Fréchet differentiability’ (see Definition 2.3.9 below) we will also

require a sort of continuity, namely that the mapping q 7→ V̇p(q − p) from P̃ to R is continuous,

where P̃ is equipped with the relative topology of Rd. On the other hand, the domain of V̇p is given

by P̃p;± := {q − p : q ∈ P̃} and thus not a linear space. Therefore linearity of V̇p is an indefinite

property.

Remark 2.3.8 Similarly to (2.1), the quantity V̇p(q − p) can be seen as a measure for the first-

order sensitivity of the map V : P̃ → R w.r.t. a change from p to (1− ε)p+ εq, with ε > 0 small.

For this interpretation it is actually not necessary to require that V̇p( · − p) is continuous or that

the convergence in (2.27) holds uniformly in q ∈ P̃. One can indeed be content with the directional

derivative, i.e. with the convergence in (2.27) for fixed q. Nevertheless continuity and uniformity

are natural wishes in this context, because they ensure stability of the first-order sensitivity w.r.t.

small modifications of q as well as comparability of the first-order sensitivity of (infinitely) many

different q. We refer to the discussion subsequent to (2.1). 3

It follows from the above discussion that in the case of finite state space and finite action spaces

Definition 2.3.9 below gives a suitable notion of ‘differentiability’.

Definition 2.3.9 (‘Fréchet differentiability’ in p) Let p ∈ P̃. A map V : P̃ → R is said to

be ‘Fréchet differentiable’ at p if there exists a map V̇p : P̃p;± → R for which (2.27) holds and for

which the mapping q 7→ V̇p(q − p) from P̃ to R is continuous. In this case V̇p is called ‘Fréchet

derivative’ of V at p.

The following remark justifies that in the finite setting of Section 1.5 the concept of ‘Fréchet

differentiability’ introduced in Definition 2.3.9 is only a special case of Definitions 2.3.2 and 2.3.5(b).

Remark 2.3.10 In the setting of Section 1.5, the notion of ‘Hadamard differentiability’ (w.r.t.

(MTV, φ)) as formulated in Definitions 2.3.2 and 2.3.5(b) boils down to the notion of ‘Fréchet

differentiability’ introduced in Definition 2.3.9 for L := R and φ :≡ 1, where MTV is defined as in

Example 2.1.2.
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Proof Since E is finite by assumption with e = #E ∈ N, it follows from the discussion in Subsection

2.1.3 that the distance between two probability measures µ, ν ∈ M1(E) w.r.t. the total variation

metric dTV (see (2.4)) can be identified in view of (2.14) with the `1-distance between the elements

pµ and pν as defined in (2.13). That is, the map χ : M1(E) → Re
≥0,1/2, µ 7→ pµ/2, provides a

surjective isometry (here Re
≥0,1/2 is the set of all vectors from Re whose entries are nonnegative and

sum up to 1/2), and therefore the metric spaces (M1(E), dTV) and (Re
≥0,1/2, ‖·‖`1) are isometrically

isomorphic. This implies in particular that the set M1(E) is compact w.r.t. dTV, because Re
≥0,1/2

is clearly compact w.r.t. ‖ · ‖`1 .

Thus, since the metric d1
∞,MTV

given by (2.12) (with M := MTV and φ := ψ :≡ 1) obviously

generates in view of (1.25) the product topology on P1 = P (with P1 defined as in Subsection

2.1.2), it follows from Tychonoff’s theorem (see, e.g., [32, Theorem 2.2.8]) that P is compact w.r.t.

d1
∞,MTV

and therefore in particular relatively compact w.r.t. d1
∞,MTV

. Hence, Definition 2.3.5(b) of

‘Hadamard differentiability’ (i.e. Definition 2.3.2 with S := Src) simplifies insofar as one can simply

require that the convergence in (2.23) holds uniformly in all Q ∈ P for every sequence (εm) ∈ (0, 1]N

with εm → 0. As the metric d1
∞,MTV

on P1 = P can be identified in finite setting with the metric

d∞,`1 on P̃ given by (2.15), it is apparent that Definition 2.3.9 is a special case of Definition 2.3.2

with S := Src, where Src is defined as in part (b) of Definition 2.3.5. Take into account that in the

finite setting ‘Fréchet differentiability’ and ‘Hadamard differentiability’ are equivalent. 3

2.3.2 ‘Differentiability’ of the value functional

We consider again the general framework of Section 1.1, and recall that the components E, A, Π,

and r of the MDM are fixed. Let ψ be any gauge function, and fix some subset Pψ ⊆ Pψ being

closed under mixtures. Moreover let the functionals Vxn;π
n : Pψ → R and Vxnn : Pψ → R be defined

as in (2.16). Take into account that in view of Proposition 1.4.3 (applied to P := {P }) the latter

functionals are well-defined under condition (a) of Assumption 2.2.5.

Part (ii) of Theorem 2.3.11 below provides (under Assumption 2.2.5) the ‘Hadamard derivative’ of

the value functional Vxnn in the sense of Definitions 2.3.2 and 2.3.5(b). Note that in view of Remark

2.2.6 the conditions in Assumption 2.2.5 are not very restrictive. Recall from Definition 1.2.5 that

for given P ∈ Pψ and δ > 0 the sets Π(P ; δ) and Π(P ) consist of all δ-optimal strategies w.r.t. P

and of all optimal strategies w.r.t. P , respectively.

Theorem 2.3.11 (‘Differentiability’ of Vxn;π
n and Vxnn in P ) Suppose that Assumption 2.2.5

holds for some M ⊆Mψ(E) and P = (Pn)N−1
n=0 ∈ Pψ. Then the following two assertions are valid.

(i) For any xn ∈ E, π = (fn)N−1
n=0 ∈ Π,d an n = 0, . . . , N , the map Vxn;π

n : Pψ → R defined by

(2.16) is ‘Fréchet differentiable’ at P w.r.t. (M, ψ) with ‘Fréchet derivative’ V̇xn;π
n;P : PP ;±

ψ → R
given by

V̇xn;π
n;P (Q− P ) :=

N−1∑
k=n+1

k−1∑
j=n

ˆ
E
· · ·
ˆ
E
rk(yk, fk(yk))Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · · (Qj − Pj)

(
(yj , fj(yj)), dyj+1

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)
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+
N−1∑
j=n

ˆ
E
· · ·
ˆ
E
rN (yN )PN−1

(
(yN−1, fN−1(yN−1)), dyN

)
· · · (Qj − Pj)

(
(yj , fj(yj)), dyj+1

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)
. (2.28)

(ii) For any xn ∈ E and n = 0, . . . , N , the map Vxnn : Pψ → R defined by (2.16) is ‘Hadamard

differentiable’ at P w.r.t. (M, ψ) with ‘Hadamard derivative’ V̇xnn;P : PP ;±
ψ → R given by

V̇xnn;P (Q− P ) := lim
δ↘0

sup
π∈Π(P ;δ)

V̇xn;π
n;P (Q− P ). (2.29)

If the set of optimal strategies Π(P ) is non-empty, then the ‘Hadamard derivative’ admits the

representation

V̇xnn;P (Q− P ) = sup
π∈Π(P )

V̇xn;π
n;P (Q− P ) for all Q ∈ Pψ. (2.30)

Note that in part (ii) of Theorem 2.3.11 the set Π(P ; δ) shrinks as δ decreases. Therefore the right-

hand side of (2.29) is well-defined. The supremum in (2.30) ranges over all optimal strategies w.r.t.

P . The following Remark 2.3.12 discusses two settings in which at least one optimal strategy can

easily be found. If there is even a unique optimal strategy πP ∈ Π w.r.t. P , then Π(P ) is nothing

but the singleton {πP }, and in this case the ‘Hadamard derivative’ V̇x0
0;P of the (optimal) value

functional Vx0
0 at P coincides with V̇x0;πP

0;P . For an evidence of the existence of a unique optimal

strategy, see, for instance, part (ii) of Theorem 3.2.5 in Subsection 3.2.3.

Remark 2.3.12 The existence of an optimal strategy is ensured, for instance, in the following two

settings:

1) If the sets of all admissible decision rules F0, . . . ,FN−1 are finite, then it follows from Proposition

4.4.3 in [73] that an optimal strategy can always be found. Note that this situation one often

faces in practical applications; see, for instance, the example discussed in Section 3.1.

2) If the MDM (E,A,P ,Π,X, r) satisfies conditions (a)–(c) of Theorem 1.3.3, then by part (iii)

of this theorem an optimal strategy can be found, i.e. Π(P ) is non-empty. For a verification of

these conditions, see Theorem 3.2.5 in the example discussed in Section 3.2.

Note that in setting 1) the ‘Hadamard derivative’ V̇xnn;P (Q−P ) of Vxnn at P can easily be determined

by computing the finitely many values V̇xn;π
n;P (Q − P ), π ∈ Π(P ), and taking their maximum; see

Corollary 2.3.21 ahead for details. 3

Remark 2.3.13 (i) The ‘Fréchet differentiability’ in part (i) of Theorem 2.3.11 holds even uni-

formly in π ∈ Π; see Theorem 2.3.17 for the precise meaning.

(ii) We do not know if it is possible to replace ‘Hadamard differentiability’ by ‘Fréchet differentia-

bility’ in part (ii) of Theorem 2.3.11. The following arguments rather cast doubt on this possibility.

The proof of part (ii) is based on the decomposition of the value functional Vxnn in Display (2.35)

ahead and a suitable chain rule, where the decomposition (2.35) involves the sup-functional Ψ in-

troduced in (2.36) below. However, Corollary 1 in [27] (see also Proposition 4.6.5 in [81]) shows
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that in normed vector spaces sup-functionals are in general not Fréchet differentiable. This could

be an indication that ‘Fréchet differentiable’ of the value functional indeed fails. We can not make

a reliable statement in this regard.

(iii) Recall that ‘Hadamard (resp. Fréchet) differentiability’ w.r.t. (M, ψ) implies ‘Hadamard (resp.

Fréchet) differentiability’ w.r.t. (M, φ) for any gauge function φ ≤ ψ. However, for any such

φ ‘Hadamard (resp. Fréchet) differentiability’ w.r.t. (M, φ) is less meaningful than w.r.t. (M, ψ).

Indeed, when using dφ∞,M with φ ≤ ψ instead of dψ∞,M, the sets K for whose elements the first-order

sensitivities can be compared with each other with clear conscience are smaller and the ‘derivative’

is less robust.

(iv) In the case where we are interested in minimizing expected total costs in the MDM (E,A,P ,Π

X, r) (see Remark 1.2.6(ii)), we obtain under the assumptions (and with the same arguments as

in the proof of part (ii)) of Theorem 2.3.11 that the ‘Hadamard derivative’ of the corresponding

value functional is given by (2.29) (resp. (2.30)) with “sup” replaced by “inf”. 3

In applications it is not necessarily easy to specify the set Π(P ) of all optimal strategies w.r.t. P .

While in most cases an optimal strategy can be found with little effort (one can use the Bellman

equation; see part (i) of Theorem 1.3.3 in Section 1.3), it is typically more involved to specify all

optimal strategies or to show that the optimal strategy is unique. The following remark may help

in some situations; for an application see Subsection 3.2.4.

Remark 2.3.14 In some situations it turns out that for every P ∈ Pψ the solution of the opti-

mization problem (1.12) does not change if Π is replaced by a subset Π′ ⊆ Π (being independent

of P ). Then in the definition (1.13) of the value function (at time 0) the set Π can be replaced by

the subset Π′, and it follows (under the assumptions of Theorem 2.3.11)) that in the representation

(2.30) of the ‘Hadamard derivative’ V̇x0
0;P of Vx0

0 at P the set Π(P ) can be replaced by the set Π′(P )

of all optimal strategies w.r.t. P from the subset Π′. Of course, in this case it suffices to guarantee

that conditions (a)–(b) of Assumption 2.2.5 hold for the subset Π′ instead of Π. 3

The following two Remarks 2.3.15 and 2.3.16 give two alternative representations (see (2.31) and

(2.32)) of the ‘Fréchet derivative’ V̇xn;π
n;P of Vxn;π

n at P in (2.28). Display (2.31) provides a more

compact representation compared to (2.28) and will be beneficial for the proof of Theorem 2.3.11

(see Lemma 2.3.18 below). Moreover the representation (2.32) offers a possibility to determine the

‘Fréchet derivative’ V̇xn;π
n;P recursively (which is of interest for practical purposes) and will be used to

derive the ‘Hadamard derivative’ of the value functional of the terminal wealth problem in Display

(3.20) (see the proof of Theorem 3.2.11 below).

Remark 2.3.15 (Representation I) By rearranging the sums in (2.28) and using the iteration

scheme in Display (2.34) below, we obtain under the assumptions of Theorem 2.3.11 that for every

fixed P = (Pn)N−1
n=0 ∈ Pψ the ‘Fréchet derivative’ V̇xn;π

n;P of Vxn;π
n at P can be represented as

V̇xn;π
n;P (Q− P ) =

N−1∑
k=n

ˆ
E
· · ·
ˆ
E

ˆ
E
V P ;π
k+1 (yk+1) (Qk − Pk)

(
(yk, fk(yk)), dyk+1

)
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Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)
(2.31)

for every xn ∈ E, Q = (Qn)N−1
n=0 ∈ Pψ, π = (fn)N−1

n=0 ∈ Π, and n = 0, . . . , N . 3

Note that it follows from the discussion below of Proposition 1.3.1 in Section 1.3 that under condi-

tion (a) of Assumption 2.2.5 we may apply the iteration scheme (2.34) ahead to get the represen-

tation (2.31).

Remark 2.3.16 (Representation II) For every fixed P = (Pn)N−1
n=0 ∈ Pψ, and under the as-

sumptions of Theorem 2.3.11, the ‘Fréchet derivative’ V̇xn;π
n;P of Vxn;π

n at P admits the representation

V̇xn;π
n;P (Q− P ) = V̇ P ,Q;π

n (xn) (2.32)

for every xn ∈ E, Q = (Qn)N−1
n=0 ∈ Pψ, π = (fn)N−1

n=0 ∈ Π, and n = 0, . . . , N , where (V̇ P ,Q;π
k )Nk=0 is

the solution of the following backward iteration scheme

V̇ P ,Q;π
N (·) := 0,

V̇ P ,Q;π
k (·) :=

ˆ
E
V̇ P ,Q;π
k+1 (y)Pk

(
( · , fk(·)), dy

)
+

ˆ
E
V P ;π
k+1 (y) (Qk − Pk)

(
( · , fk(·)), dy

)
, k = 0, . . . , N − 1.

(2.33)

Indeed, it is easily seen that V̇ P ,Q;π
n (xn) coincides with the right-hand side of (2.31). Note that it

can be verified iteratively by means of condition (a) of Assumption 2.2.5 and Proposition 1.4.3 (with

P := {Q}) that V̇ P ,Q;π
n (·) ∈ Mψ(E) for every Q ∈ Pψ, π ∈ Π, and n = 0, . . . , N . In particular,

this implies that the integrals on the right-hand side of (2.33) exist and are finite. Also note that

the iteration scheme (2.33) involves the family (V P ;π
k )Nk=1 which itself can be seen as the solution

of a backward iteration scheme:

V P ;π
N (·) := rN (·),

V P ;π
k (·) := rk( · , fk(·)) +

ˆ
E
V P ;π
k+1 (y)Pk

(
( · , fk(·)), dy

)
, k = 1, . . . , N − 1;

(2.34)

see Proposition 1.3.1 in Section 1.3. 3

Now, let us turn to the proof of Theorem 2.3.11. In virtue of condition (a) of Assumption 2.2.5, the

value functional Vxnn introduced in (2.16) admits for any xn ∈ E and n = 0, . . . , N the representation

Vxnn = Ψ ◦Υxn
n (2.35)

with maps Υxn
n : Pψ → `∞(Π) and Ψ : `∞(Π)→ R defined by

Υxn
n (P ) :=

(
Vxn;π
n (P )

)
π∈Π

and Ψ
(
(w(π))π∈Π

)
:= sup

π∈Π
w(π), (2.36)

where `∞(Π) stands for the space of all bounded real-valued functions on Π equipped with the sup-

norm ‖ · ‖∞. It is easily seen that condition (a) of Assumption 2.2.5 along with Proposition 1.4.3
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ensure that the map Υxn
n is well-defined for any xn ∈ E and n = 0, . . . , N , i.e. that (Vxn;π

n (P ))π∈Π ∈
`∞(Π) for any xn ∈ E, P ∈ Pψ, and n = 0, . . . , N .

Theorem 2.3.17 below shows that under the assumptions of Theorem 2.3.11 and for any xn ∈ E and

n = 0, . . . , N the map Υxn
n is ‘Fréchet differentiable’ at P w.r.t. (M, ψ) (in the sense of Definitions

2.3.2 and 2.3.5(c)) with ‘Fréchet derivative’ Υ̇xn
n;P : PP ;±

ψ → `∞(Π) given by

Υ̇xn
n;P (Q− P ) :=

(
V̇xn;π
n;P (Q− P )

)
π∈Π

. (2.37)

Note that the well-definiteness of Υ̇xn
n;P is ensured by condition (a) of Assumption 2.2.5 along with

Definition 1.4.1. Together with the Hadamard differentiability of the map Ψ (which is known from

[75]), we will see later that this implies assertion (ii) of Theorem 2.3.11. We emphasize that the

claim in part (i) of Theorem 2.3.11 is an immediate consequence of the following Theorem 2.3.17.

Theorem 2.3.17 Suppose that Assumption 2.2.5 holds for some M ⊆Mψ(E) and P ∈ Pψ. Then

for any xn ∈ E and n = 0, . . . , N , the map Υxn
n : Pψ → `∞(Π) defined by (2.36) is ‘Fréchet

differentiable’ at P w.r.t. (M, ψ) with ‘Fréchet derivative’ Υ̇xn
n;P : PP ;±

ψ → `∞(Π) given by (2.37).

The statement of Theorem 2.3.17 is a direct consequence of Lemmas 2.3.18 and 2.3.20 ahead.

Lemma 2.3.18 Under the assumptions of Theorem 2.3.17 (except condition (c) of Assumption

2.2.5) and for any fixed xn ∈ E and n = 0, . . . , N , the map Υ̇xn
n;P : PP ;±

ψ → `∞(Π) given by (2.37)

is (M, ψ)-continuous.

Proof Let (Qm)m∈N be any sequence in Pψ with dψ∞,M(Qm,Q)→ 0 for some Q ∈ Pψ. Using the

representation (2.31), we obtain for any m ∈ N

‖Υ̇xn
n;P (Qm − P )− Υ̇xn

n;P (Q− P )‖∞
= sup

π∈Π

∣∣V̇xn;π
n;P (Qm − P )− V̇xn;π

n;P (Q− P )
∣∣

= sup
π=(fn)N−1

n=0 ∈Π

{∣∣∣N−1∑
k=n

ˆ
E
· · ·
ˆ
E

ˆ
E
V P ;π
k+1 (yk+1) (Qm;k − Pk)

(
(yk, fk(yk)), dyk+1

)
Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)
−

N−1∑
k=n

ˆ
E
· · ·
ˆ
E

ˆ
E
V P ;π
k+1 (yk+1) (Qk − Pk)

(
(yk, fk(yk)), dyk+1

)
Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)∣∣∣}
= sup

π=(fn)N−1
n=0 ∈Π

{∣∣∣N−1∑
k=n

ˆ
E
· · ·
ˆ
E

ˆ
E
V P ;π
k+1 (yk+1) (Qm;k −Qk)

(
(yk, fk(yk)), dyk+1

)
Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)∣∣∣}
≤

N−1∑
k=n

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

∣∣∣ˆ
E
V P ;π
k+1 (yk+1) (Qm;k −Qk)

(
(yk, fk(yk)), dyk+1

)∣∣∣
Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)}
.
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Analogously to (2.19)–(2.20), we observe for any k = n, . . . , N − 1 and m ∈ N

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

∣∣∣ ˆ
E
V P ;π
k+1 (yk+1) (Qm;k −Qk)

(
(yk, fk(yk)), dyk+1

)∣∣∣
Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)}
≤ dψ∞,M(Qm,Q) · sup

π∈Π
ρM′
(
V P ;π
k+1

)
· sup
π∈Π

Ex0,P ;π
n,xn

[
ψ(Xk)

]
. (2.38)

The second factor in the last line of formula Display (2.38) is (independent of m and) finite due

to condition (b) of Assumption 2.2.5. Moreover, the finiteness of the third factor in the last line

of (2.38) (which is also independent of m) follows from Lemma 1.4.4 along with condition (a) of

Assumption 2.2.5. Therefore, we arrive at ‖Υ̇xn
n;P (Qm − P )− Υ̇xn

n;P (Q− P )‖∞ → 0 as m→∞. 2

Recall Definition 1.4.1 for the following lemma. Bounded sets in the (semi-) metric space (Pψ, dψ∞,M)

were introduced above of Definition 2.3.5.

Lemma 2.3.19 Under the assumptions of Theorem 2.3.17 (except condition (b) of Assumption

2.2.5) let K ⊆ Pψ be a bounded set (w.r.t. dψ∞,M). Then ψ is a bounding function for the family of

MDMs {(E,A,Q,Π,X, r) : Q ∈ K}.

Proof Note at first that conditions (a) and (b) of Definition 1.4.1 (which are independent of any

transition function) are satisfied due to condition (a) of Assumption 2.2.5. Thus it suffices for the

claim to show that condition (c) of Definition 1.4.1 is satisfied for any bounded set K which plays

the role of P there. For any bounded set K we can find by definition some P ′ = (P ′n)N−1
n=0 ∈ Pψ

and δ > 0 such that

dψ∞,M(Q,P ′) ≤ δ for every Q ∈ K. (2.39)

Letting K3 > 0 denote the finite constant in condition (c) of Definition 1.4.1 for the singleton

P := {P ′}, and using (2.18), (2.39) as well as condition (c) of Assumption 2.2.5, we obtain for any

(x, a) ∈ Dn, Q = (Qn)N−1
n=0 ∈ K, and n = 0, . . . , N − 1

ˆ
E
ψ(y)Qn

(
(x, a), dy

)
≤

∣∣∣ ˆ
E
ψ(y) (Qn − P ′n)

(
(x, a), dy

)∣∣∣+

ˆ
E
ψ(y)P ′n

(
(x, a), dy

)
≤ ρM′(ψ) · 1

ψ(x)
dM

(
Qn
(
(x, a), •

)
, P ′n

(
(x, a), •

))
· ψ(x) +K3ψ(x)

≤ ρM′(ψ) · dψ∞,M(Q,P ′) · ψ(x) +K3ψ(x) ≤ K̃3ψ(x)

for K̃3 := ρM′(ψ) · δ + K3, because ψ ∈ Mψ(E). Thus condition (c) of Definition 1.4.1 holds for

P := K. 2

Lemma 2.3.20 Under the assumptions of Theorem 2.3.17 and for any fixed xn ∈ E and n =

0, . . . , N ,

lim
m→∞

∥∥∥Υxn
n (P + εm(Q− P ))−Υxn

n (P )

εm
− Υ̇xn

n;P (Q− P )
∥∥∥
∞

= 0 uniformly in Q ∈ K

for every bounded set K ⊆ Pψ and every sequence (εm) ∈ (0, 1]N with εm → 0.
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Proof Let K ⊆ Pψ be a fixed bounded set and (εm) ∈ (0, 1]N such that εm → 0. First of all,

note that it can be verified easily by means of condition (a) of Assumption 2.2.5 and Lemma 2.3.19

that Υxn
n (P + εm(Q − P )) (= (Vxn;π

n (P + εm(Q − P )))π∈Π) ∈ `∞(Π) as well as Υ̇xn
n;P (Q − P ) (=

(V̇xn;π
n;P (Q− P ))π∈Π) ∈ `∞(Π) for any m ∈ N and Q ∈ K. In view of Lemma 1.4.4, we get for any

m ∈ N, Q = (Qn)N−1
n=0 ∈ K, and π = (fn)N−1

n=0 ∈ Π

∣∣∣Vxn;π
n (P + εm(Q− P ))− Vxn;π

n (P )

εm
− V̇xn;π

n;P (Q− P )
∣∣∣

=
∣∣∣ 1

εm

N−1∑
k=n

(
Ex0,P+εm(Q−P );π
n,xn

[
rk(Xk, fk(Xk))

]
− Ex0,P ;π

n,xn

[
rk(Xk, fk(Xk))

])
+

1

εm

(
Ex0,P+εm(Q−P );π
n,xn

[
rN (XN )

]
− Ex0,P ;π

n,xn

[
rN (XN )

])
− V̇xn;π

n;P (Q− P )
∣∣∣

=
∣∣∣ N−1∑
k=n+1

k−1∑
j=n

ˆ
E
· · ·
ˆ
E
rk(yk, fk(yk))Pk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · · (Qj − Pj)

(
(yj , fj(yj)), dyj+1

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)
+

1

εm

N−1∑
k=n+2

∑
J⊆{n,...,k−1}
1<|J |≤k−n

ε|J |m

ˆ
E

ˆ
E
· · ·
ˆ
E
rk(yk, fk(yk)) ξ

Q
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
· · · ξQn+1,J

(
(yn+1, fn+1(yn+1)), dyn+2

)
ξQn,J

(
(xn, fn(xn)), dyn+1

)
+

N−1∑
j=n

ˆ
E

ˆ
E
· · ·
ˆ
E
rN (yN )PN−1

(
(yN−1, fN−1(yN−1)), dyN

)
· · · (Qj − Pj)

(
(yj , fj(yj)), dyj+1

)
· · ·Pn

(
(xn, fn(xn)), dyn+1

)
+

1

εm

∑
J⊆{n,...,N−1}
1<|J |≤N−n

ε|J |m

ˆ
E

ˆ
E
· · ·
ˆ
E
rN (yN ) ξQN−1,J

(
(yN−1, fN−1(yN−1)), dyN

)
· · · ξQn+1,J

(
(yn+1, fn+1(yn+1)), dyn+2

)
ξQn,J

(
(xn, fn(xn)), dyn+1

)
− V̇xn;π

n;P (Q− P )
∣∣∣

≤
∣∣V̇xn;π
n;P (Q− P )− V̇xn;π

n;P (Q− P )
∣∣

+
N−1∑
k=n+2

∑
J⊆{n,...,k−1}
1<|J |≤k−n

ε|J |−1
m

∣∣∣ ˆ
E

ˆ
E
· · ·
ˆ
E
rk(yk, fk(yk)) ξ

Q
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
· · · ξQn+1,J

(
(yn+1, fn+1(yn+1)), dyn+2

)
ξQn,J

(
(xn, fn(xn)), dyn+1

)∣∣∣
+

∑
J⊆{n,...,N−1}
1<|J |≤N−n

ε|J |−1
m

∣∣∣ˆ
E

ˆ
E
· · ·
ˆ
E
rN (yN ) ξQN−1,J

(
(yN−1, fN−1(yN−1)), dyN

)
· · · ξQn+1,J

(
(yn+1, fn+1(yn+1)), dyn+2

)
ξQn,J

(
(xn, fn(xn)), dyn+1

)∣∣∣
=: S1(Q, π) + S2(m,Q, π) + S3(m,Q, π),
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where S1(Q, π) = 0 and ξQj,J is for any subset J ⊆ {0, . . . , N − 1} given by

ξQj,J :=

{
Qj − Pj , j ∈ J
Pj , otherwise

.

In view of condition (a) of Assumption 2.2.5 and Lemma 2.3.19 we find finite constantsK1,K3, K̃3 >

0 such that for every m ∈ N, Q ∈ K, and π ∈ Π

S2(m,Q, π) ≤ εm ·

{
K1

N−1∑
k=n+2

∑
J⊆{n,...,k−1}
1<|J |≤k−n

ε|J |−2
m

(
k − n
|J |

)
K
k−n−|J |
3 ·

|J |∑
l=0

(
|J |
l

)
K l

3K̃
|J |−l
3 ψ(xn)

}
.

Hence limm→∞ S2(m,Q, π) = 0 uniformly in Q ∈ K and π ∈ Π. Analogously we find some finite

constant K2 > 0 such that

S3(m,Q, π) ≤ εm ·

{
K2

∑
J⊆{n,...,N−1}
1<|J |≤N−n

ε|J |−2
m

(
N − n
|J |

)
K
N−n−|J |
3 ·

|J |∑
l=0

(
|J |
l

)
K l

3K̃
|J |−l
3 ψ(xn)

}

for every m ∈ N, Q ∈ K, and π ∈ Π, and thus limm→∞ S3(m,Q, π) = 0 uniformly in Q ∈ K and

π ∈ Π. Hence, the assertion follows. 2

So far we have shown that the claim in part (i) of Theorem 2.3.11 holds. In the following we

will prove the assertion in part (ii) of Theorem 2.3.11, that is, we intend to show that the value

functional Vxnn is ‘Hadamard differentiable’ at P w.r.t. (M, ψ) with ‘Hadamard derivative’ V̇xnn;P

given by (2.29).

Proof of part (ii) of Theorem 2.3.11: The key of the proof will be (2.35) which says that Vxnn
can be represented as a composition of the functionals Ψ and Υxn

n defined in (2.36). Proposition 1

in [75] ensures that Ψ is Hadamard differentiable (in the sense of [75]) at every (w(π))π∈Π ∈ `∞(Π)

with (possibly nonlinear) Hadamard derivative Ψ̇(w(π))π∈Π
: `∞(Π)→ R given by

Ψ̇(w(π))π∈Π

(
(z(π))π∈Π

)
:= lim

δ↘0
sup

π∈Π((w(π))π∈Π;δ)
z(π), (2.40)

where Π((w(π))π∈Π; δ) denotes the set of all π ∈ Π for which supσ∈Πw(σ) − δ ≤ w(π). Moreover

Theorem 2.3.17 implies that Υxn
n is in particular ‘Hadamard differentiable’ at P w.r.t. (M, ψ) with

‘Hadamard derivative’ Υ̇xn
n;P given by (2.37).

In view of (2.35) and the shape of Ψ̇(w(π))π∈Π
and Υ̇xn

n;P , ‘Hadamard differentiability’ of Vxnn at P

w.r.t. (M, ψ) with ‘Hadamard derivative’ V̇xnn;P given by (2.29) (resp. (2.30)) can be identified with

‘Hadamard differentiability’ of the map Ψ ◦ Υxn
n : Pψ → R at P w.r.t. (M, ψ) with ‘Hadamard

derivative’ ˙(Ψ ◦Υxn
n )P : PP ;±

ψ → R given by

˙(
Ψ ◦Υxn

n

)
P

(Q− P ) := Ψ̇Υxnn (P ) ◦ Υ̇xn
n;P (Q− P ). (2.41)

Take into account that by (2.37) and (2.40)

˙(
Ψ ◦Υxn

n

)
P

(Q− P ) = Ψ̇(Vxn;π
n (P ))π∈Π

((
V̇xn;π
n;P (Q− P )

)
π∈Π

)
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= lim
δ↘0

sup
π∈Π(P ;δ)

V̇xn;π
n;P (Q− P )

for all Q ∈ Pψ, and that, if in addition the set Π(P ) is non-empty,

˙(
Ψ ◦Υxn

n

)
P

(Q− P ) = sup
π∈Π(P )

V̇xn;π
n;P (Q− P )

for every Q ∈ Pψ.

In the remainder of the proof we will show that the composite map Ψ ◦ Υxn
n is ‘Hadamard differ-

entiable’ at P w.r.t. (M, ψ) with ‘Hadamard derivative’ ˙(Ψ ◦Υxn
n )P given by (2.41). We first note

that the map ˙(Ψ ◦Υxn
n )P is (M, ψ)-continuous by Lemma 2.3.18 and the (‖ · ‖∞, | · |)-continuity of

the mapping (z(π))π∈Π 7→ Ψ̇Υxnn (P )((z(π))π∈Π). In view of part (ii) of Lemma 2.3.6, for the desired

‘Hadamard differentiability’ of Ψ ◦Υxn
n at P it therefore suffices to show that

lim
m→∞

∣∣∣Ψ ◦Υxn
n (P + εm(Qm − P ))−Ψ ◦Υxn

n (P )

εm
− ˙(

Ψ ◦Υxn
n

)
P

(Q− P )
∣∣∣ = 0

for any fixed triplet (Q, (Qm), (εm)) ∈ Pψ ×PN
ψ × (0, 1]N with dψ∞,M(Qm,Q)→ 0 and εm → 0. For

any such fixed triplet and any m ∈ N we have

Ψ ◦Υxn
n (P + εm(Qm − P ))−Ψ ◦Υxn

n (P )

εm
=

Ψ(Υxn
n (P ) + εmvm)−Ψ(Υxn

n (P ))

εm
,

where vm := ε−1
m (Υxn

n (P + εm(Qm − P )) − Υxn
n (P )) (∈ `∞(Π)). If we set v := Υ̇xn

n;P (Q − P ) (∈
`∞(Π)), then by Theorem 2.3.17 and part (i) of Lemma 2.3.6

lim
m→∞

‖vm − v‖∞ = lim
m→∞

∥∥∥Υxn
n (P + εm(Qm − P ))−Υxn

n (P )

εm
− Υ̇xn

n;P (Q− P )
∥∥∥
∞

= 0.

Thus, since Ψ is Hadamard differentiable at (in particular) Υxn
n (P ) (∈ `∞(Π)) (see the discussion

above), we obtain

lim
m→∞

∣∣∣Ψ ◦Υxn
n (P + εm(Qm − P ))−Ψ ◦Υxn

n (P )

εm
− ˙(

Ψ ◦Υxn
n

)
P

(Q− P )
∣∣∣

= lim
m→∞

∣∣∣Ψ(Υxn
n (P ) + εmvm)−Ψ(Υxn

n (P ))

εm
− Ψ̇Υxnn (P )(v)

∣∣∣ = 0.

This finishes the proof of part (ii) of Theorem 2.3.11. 2

The following Corollary 2.3.21 presents the statements in Theorem 2.3.11 in the special case of

finite state space and finite action spaces. In this corollary we will use the notion of ‘Fréchet

differentiability’ introduced in Definition 2.3.9. Let Vxi;πn and Vxin be the functionals defined as in

(2.21). Recall from Section 1.5 that in the finite setting for given p ∈ P̃ (with p as in (1.26)) the

set Π(p) of all optimal strategies w.r.t. p is non-empty (and finite).

Corollary 2.3.21 (‘Fréchet differentiability’ of Vxi;πn and Vxin in p) Let p ∈ P̃. Then in the

setting of Section 1.5 the following two assertions hold.
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(i) For any i = 1, . . . , e, π ∈ Π, and n = 0, . . . , N , the map Vxi;πn : P̃ → R defined by (2.21) is

‘Fréchet differentiable’ at p with ‘Fréchet derivative’ V̇xi;πn;p : P̃p;± → R given by

V̇xi;πn;p (q − p) :=
N−1∑
k=n+1

k−1∑
j=n

( e∑
in+1=1

· · ·
e∑

ik=1

rk(xik , fk(xik)) pk−1,ik−1;fk−1(xik−1
)(ik)

· · ·
(
qj,ij ;fj(xij )(ij+1)− pj,ij ;fj(xij )(ij+1)

)
· · · pn,i;fn(xi)(in+1)

)
+

N−1∑
j=n

( e∑
in+1=1

· · ·
e∑

iN=1

rN (xiN ) pN−1,iN−1;fN−1(xiN−1
)(iN )

· · ·
(
qj,ij ;fj(xij )(ij+1)− pj,ij ;fj(xij )(ij+1)

)
· · · pn,i;fn(xi)(in+1)

)
. (2.42)

(ii) For any i = 1, . . . , e and n = 0, . . . , N , the map Vxin : P̃ → R defined by (2.21) is ‘Fréchet

differentiable’ at p with ‘Fréchet derivative’ V̇xin;p : P̃p;± → R given by

V̇xin;p(q − p) := max
π∈Π(p)

V̇xi;πn;p (q − p). (2.43)

Proof At first, it follows from the discussion in Section 1.5 that in the finite setting any transition

function P from the set P1 = P (with P as in (1.25)) can be identified with a vector p ∈ P̃ (with

P̃ as in (1.27)) given by (1.26). In the same section we discussed that the gauge function ψ given

by (1.30) is in particular a bounding function for the MDM (E,A,Q,Π,X, r) for any Q ∈ P.

Therefore condition (a) of Assumption 2.2.5 is satisfied. According to Remark 2.2.6(ii), conditions

(b) and (c) of Assumption 2.2.5 hold for M := MTV, M′ := MTV, and ψ :≡ 1. Hence, in the finite

setting, the conditions of Assumption 2.2.5 (with M := MTV, M′ := MTV, and ψ :≡ 1) are always

fulfilled.

Thus the assumptions of Theorem 2.3.11 hold, and an application of parts (i) and (ii) of the latter

theorem entails that the assertions in parts (i) and (ii) hold, respectively. Take into account that

in the finite setting in view of Remark 2.3.10 the notion of ‘Hadamard differentiability’ (w.r.t.

(MTV, ψ)) introduced in Definitions 2.3.2 and 2.3.5(b) boils down to the concept of ‘Fréchet differ-

entiability’ from Definition 2.3.9. Also note that in the finite setting ‘Fréchet differentiability’ and

‘Hadamard differentiability’ are equivalent. 2

We conclude this subsection with the following two Remarks 2.3.22 and 2.3.23 which are immediate

consequences of Remarks 2.3.15 and 2.3.16 as well as (the proof of) Corollary 2.3.21, respectively.

Remark 2.3.22 For any fixed p ∈ P̃ the ‘Fréchet derivative’ V̇xi;πn;p of Vxin at p admits in the finite

setting of Section 1.5 the representation

V̇xi;πn;p (q − p) =
N−1∑
k=n

( e∑
in+1=1

· · ·
e∑

ik=1

e∑
ik+1=1

V p;π
k+1(xik+1

)
(
qk,ik;fk(xik )(ik+1)− pk,ik;fk(xik )(ik+1)

)
pk−1,ik−1;fk−1(xik−1

)(ik) · · · pn,i;fn(xi)(in+1)
)

for every i = 1, . . . , e, q ∈ P̃, π = (fn)N−1
n=0 ∈ Π, and n = 0, . . . , N . Note that V p;π

n (·) can be

computed by the backward iteration scheme (1.29). 3
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Remark 2.3.23 For any fixed p ∈ P̃ the ‘Fréchet derivative’ V̇xi;πn;p of Vxin at p can be computed

in the finite setting of Section 1.5 via a iteration scheme. Indeed, according to Remark 2.3.16, for

every i = 1, . . . , e, π = (fn)N−1
n=0 ∈ Π, and n = 0, . . . , N , we have

V̇xi;πn;p (q − p) = V̇ p,q;π
n (xi)

for

V̇ p,q;π
N (xi) := 0,

V̇ p,q;π
n (xi) :=

e∑
j=1

V̇ p,q;π
n+1 (xj) pn,i;fn(xi)(j)

+
e∑

j=1

V p;π
n+1(xj)

(
qn,i;fn(xi)(j)− pn,i;fn(xi)(j)

)
, n = 0, . . . , N − 1,

(2.44)

i = 1, . . . , e, where the V p;π
n (·) is given by the iteration scheme (1.29). 3

58



Chapter 3

Examples of finite horizon discrete time Markov

decision optimization problems

In this chapter we will apply the theory and results of Chapters 1–2 to the so-called stochastic

inventory control problem and the terminal wealth problem. These two stochastic control problems

can be seen as two examples of finite horizon discrete time Markov decision optimization problems.

The terminal wealth problem in Section 3.2 motivates the general set-up chosen in Chapters 1–2,

while the stochastic inventory control problem presented in Section 3.1 justifies the consideration

of the special case of finite state space and finite action spaces in the framework of Chapters 1–2.

3.1 Stochastic inventory control problem

In this section we will consider an inventory control problem, which is a classical example in discrete

dynamic optimization; see, e.g., [12, 38, 73] and references cited therein. At first, we introduce in

Subsection 3.1.1 a (simple) inventory control model and formulate the corresponding inventory

control problem. Thereafter, in Subsection 3.1.2, we will explain how the inventory control model

can be embedded into the finite setting of Section 1.5. In Subsection 3.1.3 we show that the value

functional of the inventory control problem is ‘Lipschitz continuous’ and ‘Fréchet differentiable’.

Finally, Subsection 3.1.4 is devoted to some numerical examples for the ‘Fréchet derivative’ of the

value functional. As already motivated in the main introduction, we will illustrate in this subsection

a situation where in the MDM the ‘true’ transition function is replaced by a less complex variant.

3.1.1 Basic inventory control model, and the target

Consider an N -period inventory control system (with N ∈ N fixed) where a supplier of a single

product seeks optimal inventory management to meet random commodity demand in such a way

that a measure of profit over a time horizon of N periods is maximized. For the formulation of

the model, let I1, . . . , IN be N0-valued independent random variables on some probability space

(Ω,F ,P) with known probability distributions m1, . . . ,mN . The random variable In+1 can be seen

as the random demand of the single product in the period between time n and time n+ 1. Denote

by pn+1 = (pn+1;k)k∈N0 the counting density of In+1, i.e.

pn+1;k := mn+1[{k}], k ∈ N0, (3.1)
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and note that pn+1 ∈ RN0
≥0,1. Here RN0

≥0,1 stands for the space of all real-valued sequences whose

entries are nonnegative and sum up to 1. Let F0 be the trivial σ-algebra, and set Fn := σ(I1, . . . , In),

n = 1, . . . , N .

We suppose that within each period of time the available inventory level of the single product is

restricted to K units (for some fixed K ∈ N) and that there is no backlogging of unsatisfied demand

at the end of each period. The latter means that if at the end of a period the demand exceeds the

current inventory, then the whole inventory is sold and the surplus demand gets lost.

Given an initial inventory level y0 ∈ {0, . . . ,K}, the supplier intends to find optimal order quantities

according to an order strategy to maximize some measure of profit. By order strategy we mean an

(Fn)-adapted {0, . . . ,K}-valued stochastic process ϕ = (ϕn)N−1
n=0 , where ϕn specifies the amount of

ordered units of the single product at the beginning of period n. Here we suppose that the delivery

of any order occurs instantaneously. Since excess demand is lost by assumption, the corresponding

inventory (level) process Y ϕ = (Y ϕ
0 , . . . , Y

ϕ
N ) associated with ϕ = (ϕn)N−1

n=0 is defined by

Y ϕ
0 := y0 and Y ϕ

n+1 := Y ϕ
n + ϕn −min{In+1, Y

ϕ
n + ϕn}, n = 0, . . . , N − 1. (3.2)

Note that min{In+1, Y
ϕ
n +ϕn} corresponds to the amount of units of the single product sold in the

period between time n and time n+ 1. Hence we refer to the process Zϕ := (Zϕ0 , . . . , Z
ϕ
N ) given by

Zϕ0 := 0 and Zϕn+1 := min{In+1, Y
ϕ
n + ϕn}, n = 0, . . . , N − 1 (3.3)

as sales process associated with ϕ = (ϕn)N−1
n=0 .

In view of (3.2) and since the inventory capacity is restricted to K units, we may and do identify any

order strategy with an (Fn)-adapted {0, . . . ,K}-valued stochastic process ϕ = (ϕn)N−1
n=0 satisfying

ϕ0 ∈ {0, . . . ,K − y0} and ϕn ∈ {0, . . . ,K − Y ϕ
n } for all n = 1, . . . , N − 1. We restrict ourselves to

Markovian order strategies ϕ = (ϕn)N−1
n=0 which means that ϕn only depends on n and (Y ϕ

n , Z
ϕ
n ). To

put it another way, we suppose that for any n = 0, . . . , N −1 there is some map fn : {0, . . . ,K}2 →
{0, . . . ,K} such that ϕn = fn(Y ϕ

n , Z
ϕ
n ). Hence, for given strategy ϕ = (ϕn)N−1

n=0 (resp. π = (fn)N−1
n=0 )

the process Xϕ := (Y ϕ, Zϕ) is a {0, . . . ,K}2-valued (Fn)-Markov process whose one-step transition

probability for the transition from state x = (y, z) ∈ {0, . . . ,K}2 at time n ∈ {0, . . . , N − 1} to

state x′ = (y′, z′) ∈ {0, . . . ,K}2 at time n+ 1 is given by

mn+1 ◦ η−1
(y,fn(x))[{z

′}] · 1{y′=y+fn(x)−z′},

where

η(y,fn(x))(t) := min{t, y + fn(x)}, t ∈ N0. (3.4)

The supplier’s aim is to find an order strategy ϕ = (ϕn)N−1
n=0 (resp. π = (fn)N−1

n=0 ) for which the

expected total profit is maximized. Here the profit can be seen as the difference between the sales

revenue and the costs for ordering and holding the single product. For the sake of simplicity, we

suppose that the sales revenue as well as the ordering and holding costs are known and linear in

each period. Hence, we are interested in those order strategies ϕ = (ϕn)N−1
n=0 (resp. π = (fn)N−1

n=0 )

for which the expectation of

N−1∑
k=0

{
urev(Zϕk )− uord(fk(Y

ϕ
k , Z

ϕ
k ))− uhol(Y ϕ

k , fk(Y
ϕ
k , Z

ϕ
k ))
}

+
{
urev(ZϕN )− uhol(Y ϕ

N , 0)
}

(3.5)
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under P is maximized, where urev, uord : {0, . . . ,K} → N0 and uhol : {0, . . . ,K}2 → N0 are for some

fixed srev, cord, cfix, chol ∈ N defined by

urev(z) := srev · z, uord(a) := (cfix + cord · a)1{a>0}, uhol(y, a) := chol · (y + a).

Note here that srev, cord, cfix, and chol denote the sales revenue, the ordering costs, the fixed ordering

costs, and the holding costs per unit of the single product, respectively.

3.1.2 Markov decision model, and optimal order strategies

The setting introduced in Subsection 3.1.1 can be embedded into the setting of Section 1.5 as

follows. Let

(E, E) :=
(
{x1, . . . , xe},P({x1, . . . , xe})

)
with e = (K + 1)2 as well as

An(xi) := {an,i;1, . . . , an,i;tn,i}

with an,i;k := k − 1 and tn,i = ti := K − yi + 1 for any i = 1, . . . , e and n = 0, . . . , N − 1. Here

{x1, . . . , xe} corresponds to the enumeration x1, . . . , xe of {0, . . . ,K}2 given by xi = (yi, zi) with

yi := di/(K + 1)e − 1 and zi := i − (K + 1)di/(K + 1)e + K (here d·e is the ceiling function),

i = 1, . . . , e. Then An = {0, . . . ,K} for every n = 0, . . . , N − 1. The set Fn of all decision rules

consists of maps fn : {x1, . . . , xe} → {0, . . . ,K} satisfying

fn(xi) = fn(yi, zi) ∈ {0, . . . ,K − yi} for all i = 1, . . . , e (3.6)

(in particular Fn is independent of n). For any n = 0, . . . , N − 1, let the set Fn of all admissible

decision rules at time n be equal to Fn, and set Π := F0 × · · · × FN−1.

For any i = 1, . . . , e, k = 1, . . . , ti, and n = 0, . . . , N−1, let the component pn,i;an,i;k = (pn,i;an,i;k(1),

. . . , pn,i;an,i;k(e)) of the vector p from (1.26) be given by

pn,i;an,i;k(j) := mn+1 ◦ η−1
(yi,an,i;k)[{zj}] · 1{yj=yi+an,i;k−zj}, j = 1, . . . , e (3.7)

for some mn+1 ∈M1(R,N0), where the map η(yi,an,i;k) : N0 → {0, . . . ,K} is defined as in (3.4) and

M1(R,N0) refers to the set of all µ ∈M1(R) satisfying µ[N0] = 1. In virtue of (3.1) and (3.4) it is

easily seen that the one-step transition probability in (3.7) can be represented as

pn,i;an,i;k(j) = η
pn+1

(y,an,i;k)(zj) · 1{yj=yi+an,i;k−zj} (3.8)

for any i, j = 1, . . . , e, k = 1, . . . , ti, and n = 0, . . . , N − 1, where pn+1 = (mn+1[{k}])k∈N0 and

η
pn+1

(y,a) (z′) :=


0 , z′ > y + a

pn+1;z′ , z′ < y + a∑∞
`=z′ pn+1;` , z′ = y + a

. (3.9)

Thus p ∈ P̃, where the set P̃ is introduced in (1.27). Note that any element p of P̃ is generated via

(3.8)–(3.9) by some N -tuple p = (p1, . . . , pN ) of counting densities p1, . . . , pN on N0; here p1, . . . , pN
should be seen as the counting densities of I1, . . . , IN . The value in (3.7) should be seen as the
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probability of a transition from state (yi, zi) to state (yj , zj) in time between n and n + 1 (this

transition probability is even independent of zi).

For any i = 1, . . . , e and k = 1, . . . , ti, set

r0(xi, a0,i;k) := −uord(a0,i;k)− uhol(yi, a0,i;k),

rn(xi, an,i;k) := urev(zi)− uord(an,i;k)− uhol(yi, an,i;k), n = 1, . . . , N − 1,

rN (xi) := urev(zi)− uhol(yi, 0).

(3.10)

Then for every fixed i0 ∈ {1, . . . , e} and p ∈ P̃, the stochastic inventory control problem introduced

at the very end of Subsection 3.1.1 reads as

V p;π
0 (xi0) −→ max (in π ∈ Π) ! (3.11)

where V p;π
0 (xi0) is given by (1.29) along with (3.10) (xi0 ∈ E is the initial state). A strategy πp ∈ Π

is called an optimal order strategy w.r.t. p if it solves the maximization problem (3.11). Note that

it follows from the discussion in Section 1.5 that there exists for every p ∈ P̃ an optimal order

strategy πp ∈ Π w.r.t. p.

Recall that in the finite setting of Section 1.5 the gauge function ψ :≡ 1 (see also (1.30)) provides

in view of Remark 1.4.2(i) a bounding function for the family of MDMs {(E,A,P ,Π,X, r) : P ∈
P} (with P given by (1.25)). Note here that X plays the role of the process Xϕ = (Y ϕ, Zϕ)

introduced in (3.2)–(3.3), and that any order strategy ϕ = (ϕn)N−1
n=0 may be identified with some

π = (fn)N−1
n=0 ∈ Π through ϕn = fn(Y ϕ

n , Z
ϕ
n ). Also note that in the setting above any transition

function P from P1 = P (with P1 defined as in Subsection 2.1.2) can be identified with a vector

p ∈ P̃ given by (1.26) whose components are of the form (3.7).

Remark 3.1.1 In the inventory control model introduced in Subsection 3.1.1 we only consider

Markovian order strategies ϕ = (ϕn)N−1
n=0 which may be identified with some π = (fn)N−1

n=0 ∈ Π

via ϕn = fn(Y ϕ
n , Z

ϕ
n ). Of course, one could suppose that the decision rules of an order strategy π

also depend on past actions and past values of the inventory process Y ϕ and the sales process Zϕ.

However, in view of Remark 1.2.6(i), the corresponding history-dependent order strategies would

not improve the optimal value of the inventory control problem (3.11). 3

3.1.3 ‘Lipschitz continuity’ and ‘Fréchet differentiability’ of the value functional

Maintain the notation and terminology introduced in Subsections 3.1.1–3.1.2. In this subsection we

will show that the value function of the inventory control problem (3.11) regarded as a real-valued

functional is ‘Lipschitz continuous’ as well as ‘Fréchet differentiable’ at (fixed) p ∈ P̃ (with p as in

Subsection 3.1.2); see part (ii) of Theorems 3.1.2 and 3.1.3 below.

Since the setting of Subsections 3.1.1–3.1.2 matches the finite setting of Subsection 2.1.3, we may

use the metric d∞,`1 defined in (2.15) to measure the distance between transition functions.

For the formulation of Theorems 3.1.2 and 3.1.3 recall from (2.21) the definition of the functionals

Vxi0 ;π
0 and Vxi00 . In the finite setting of Subsection 3.1.2 we know that

Vxi0 ;π
0 (p) = V p;π

0 (xi0) and Vxi00 (p) = max
π∈Π
Vxi0 ;π

0 (p) (3.12)
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for every i0 = 1, . . . , e, p ∈ P̃, and π ∈ Π. Here V p;π
0 (·) can be computed via (1.29) with (3.10).

Note that i0 ∈ {1, . . . , e} refers to the index of the initial state xi0 ∈ E.

Part (ii) of the following Theorem 3.1.2 shows that the value functional Vxi00 of the inventory control

problem (3.11) is ‘Lipschitz continuous’ at fixed p ∈ P̃ in the sense of Definition 2.2.3. Its statement

is an immediate consequence of Corollary 2.2.10.

Theorem 3.1.2 (‘Lipschitz continuity’ of Vxi0 ;π
0 and Vxi00 in p) In the setting above let i0 ∈

{1, . . . , e}, π ∈ Π, and p ∈ P̃. Then the following two assertions hold.

(i) The map Vxi0 ;π
0 : P̃ → R defined by (3.12) is ‘Lipschitz continuous’ at p.

(ii) The map Vxi00 : P̃ → R defined by (3.12) is ‘Lipschitz continuous’ at p.

Next, part (ii) of Theorem 3.1.3 specifies the ‘Fréchet derivative’ of the value functional Vxi00 of the

inventory control problem (3.11). In this theorem we will use the notion of ‘Fréchet differentiability’

introduced in Definition 2.3.9. The assertions in Theorem 3.1.3 can be deduced from Corollary

2.3.21.

Theorem 3.1.3 (‘Fréchet differentiability’ of Vxi0 ;π
0 and Vxi00 in p) In the setting above let

i0 ∈ {1, . . . , e}, π ∈ Π, and p ∈ P̃. Then the following two assertions hold.

(i) The map Vxi0 ;π
0 : P̃ → R defined by (3.12) is ‘Fréchet differentiable’ at p with ‘Fréchet

derivative’ V̇xi0 ;π
0;p : P̃p;± → R given by (2.42) along with (3.10).

(ii) The map Vxi00 : P̃ → R defined by (3.12) is ‘Fréchet differentiable’ at p with ‘Fréchet deriva-

tive’ V̇xi00;p : P̃p;± → R given by (2.43) along with (3.10).

If there exists for some given p ∈ P̃ a unique optimal trading strategy πp ∈ Π w.r.t. p, then

Π(p) = {πp} and part (ii) of Theorem 3.1.3 implies that in this case the ‘Fréchet derivative’ V̇xi00;p

of the optimal value (functional) Vxi00 at p coincides with V̇xi0 ;πp

0;p .

3.1.4 Numerical examples for the ‘Fréchet derivative’

In this subsection we quantify by means of the ‘Fréchet derivative’ of the value functional Vxi00

(given by Theorem 3.1.3(ii)) the effect of incorporating an unlikely but significant change in the

demand of the single product on the optimal value of the corresponding stochastic inventory control

problem (3.11).

To this end, let us take up the numerical example at p. 41 in [73] where N := 3, K := 4, srev :=

8, cord := 2, cfix := 4, and chol := 1. We fix i0 ∈ {1, . . . , e} (with e := (K + 1)2) as well as

p := (p•, p•, p•) with p• := (0, 1
4 ,

1
2 ,

1
4 , 0, 0 . . .), and denote by p the unique element of P̃ generated

by p through (3.8)–(3.9). This choice of p means that in each period the demand is 1, 2, or 3

with probability 1
4 , 1

2 , and 1
4 , respectively. Table 3.1 provides the (unique) optimal order strategy

πp = (fp0 , f
p
1 , f

p
2 ), and the second column of Table 3.2 displays the maximal expected total reward

Vxi0 ;πp

0 (p) of the inventory control problem (3.11) for all possible initial inventory levels y0 := yi0 ∈
{0, . . . , 4}. Moreover, the last two columns in Table 3.2 display the ‘Fréchet derivative’ V̇xi0 ;πp

0;p (·) of

Vxi0 ;πp

0 at p evaluated at direction q(0) − p and at direction q(4) − p (calculated with the iteration
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scheme (2.44)), again for all possible initial inventory levels y0. Here q(0) and q(4) are generated

through (3.8) and (3.9) by q(0) := (q(0)•, q(0)•, q(0)•) and q(4) := (q(4)•, q(4)•, q(4)•) respectively,

where q(0)• := (1, 0, 0, . . .) and q(4)• := (0, 0, 0, 0, 1, 0, 0, . . .). As the optimal strategy πp is unique

in our example, this implies Π(p) = {πp} and thus in view of part (ii) of Theorem 3.1.3 we even

have V̇xi00;p (·) = V̇xi0 ;πp

0;p (·).

(y, z) (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (2, 0) · · · (4, 4)

fp0 4 4 4 4 4 3 3 3 3 3 0 · · · 0

fp1 4 4 4 4 4 3 3 3 3 3 0 · · · 0

fp2 2 2 2 2 2 0 0 0 0 0 0 · · · 0

Table 3.1: Optimal order strategy πp = (fp0 , f
p
1 , f

p
2 ) for p as above.

Note that for j ∈ {0, 4} the ‘Fréchet derivative’ V̇xi00;p evaluated at q(j) − p, i.e. V̇xi00;p (q(j) − p) (in

our case it equals V̇xi0 ;πp

0;p (q(j) − p)), quantifies the first-order sensitivity of Vxi00 (p) (respectively

of Vxi0 ;πp

0 (p)) w.r.t. a change of the underlying probability transition function from p to p(j) :=

(1 − ε)p + εq(j) with ε ∈ (0, 1) small. It can be easily seen that p(j) is generated via (3.8)–(3.9)

through p := (p•, p•, p•) replaced by p(j) := (p(j)•, p(j)•, p(j)•), where p(j)• := (1 − ε)p• + εq(j)•.

That is, the change from p to p(j) means that the formerly impossible demand j now gets assigned

small but strictly positive probability ε in each period.

xi0 = (yi0 , zi0) Vxi0 ;πp

0 (p) V̇xi0 ;πp

0;p (q(0) − p) V̇xi0 ;πp

0;p (q(4) − p)

(0, · ) 16.5313 −34.0938 16.0313

(1, · ) 18.5313 −34.0938 16.0313

(2, · ) 23.1250 −39.8125 14.0000

(3, · ) 26.1094 −37.3906 15.6094

(4, · ) 28.5313 −34.0938 16.0313

Table 3.2: Optimal value Vxi0 ;πp

0 (p) and the value V̇xi0 ;πp

0;p (q(j) − p) (in our example it equals

V̇xi00;p (q(j) − p)) of the ‘Fréchet derivative’ V̇xi0 ;πp

0;p evaluated at q(j) − p with q(j) as

above, j ∈ {0, 4}, in dependence of the initial inventory level yi0 .

As appears from Table 3.2, the negative effect of incorporating demand 0 into the counting density

p• with small probability ε is roughly twice as large as the positive effect of incorporating demand

4 into p• with the same small probability ε, no matter what the initial inventory level looks like.

So, when worrying about robustness of the optimal value w.r.t. changes in the demand’s counting

density p•, it seems to be somewhat more important to analyse in detail the adequacy of the

assumption that an absent demand is impossible than the adequacy of the assumption that a

demand of 4 is impossible.
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3.2 Terminal wealth optimization problem

In this section we illustrate the theory and results from Chapters 1–2 to assess the impact of

one or more than one unlikely but substantial shock in the dynamics of an asset on the optimal

value of a terminal wealth problem in a (simple) financial market model free of shocks. Shocks in

(discrete time) financial market models in the context of a terminal wealth problem have already

been discussed several times in the existing literature, see for instance [23] and [53], where in the

latter reference the authors even considered the continuous time case. At first, we introduce in

Subsection 3.2.1 the basic financial market model and formulate subsequently the terminal wealth

problem as a classical optimization problem in mathematical finance. The market model is in

line with standard literature as [5, Chapter 4] or [35, Chapter 5]. To keep the presentation as

clear as possible we restrict ourselves to a simple variant of the market model (only one risky

asset). In Subsection 3.2.2 we will see that the market model can be embedded into the MDM of

Section 1.1. It turns out that the existence (and computation) of an optimal (trading) strategy

can be obtained by solving iteratively N one-stage investment problems; see Subsection 3.2.3. In

Subsection 3.2.4 we will show that the (optimal) value functional of the terminal wealth problem

is ‘Lipschitz continuous’ as well as ‘Hadamard differentiable’, and Subsection 3.2.5 provides some

numerical examples for the ‘Hadamard derivative’ of the (optimal) value functional.

3.2.1 Basic financial market model, and the target

Consider an N -period financial market (with N ∈ N fixed) consisting of one riskless bond S0 =

(S0
0 , . . . , S

0
N ) and one risky asset S = (S0, . . . , SN ). Further we assume that the value of the bond

evolves deterministically according to

S0
0 = 1, S0

n+1 = rn+1S
0
n, n = 0, . . . , N − 1

for some fixed constants r1, . . . , rN ∈ R≥1, and that the value of the asset evolves stochastically

according to

S0 = s0, Sn+1 = Rn+1Sn, n = 0, . . . , N − 1

for some fixed constant s0 ∈ R>0 and independent R≥0-valued random variables R1, . . . ,RN on

some probability space (Ω,F ,P) with known probability distributions m1, . . . ,mN , respectively.

Note that the constants r1, . . . , rN and the random variables R1, . . . ,RN can be interpreted as

deterministic and stochastic interest rates, respectively.

Throughout this section we will assume that the financial market satisfies the following Assumption

3.2.1, where uα (with α ∈ (0, 1) fixed) is introduced in (3.16) below. In Examples 3.2.7 and 3.2.8

we will discuss specific financial market models which satisfy Assumption 3.2.1.

Assumption 3.2.1 The following three assertions hold for any n = 0, . . . , N − 1.

(a)
´
R≥0

uα dmn+1 <∞.

(b) Rn+1 > 0 P-a.s.

(c) P[Rn+1 6= rn+1] = 1.
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Note that condition (a) of Assumption 3.2.1 requires that the expectation of uα(Rn+1) under P is

finite. Also note that condition (b) of Assumption 3.2.1 is in line with the existing literature; see,

for instance, [5, p. 61]. Condition (c) of Assumption 3.2.1 is used to ensure the uniqueness of a

solution to the reduced optimization problem in (3.21) ahead; see Lemma 3.2.4 below.

We emphasize that for any n = 0, . . . , N −1 the value rn+1 (resp. Rn+1) corresponds to the relative

price change S0
n+1/S

0
n (resp. Sn+1/Sn) of the bond (resp. asset) in the period between time n and

n+ 1. In the sequel, we let F0 be the trivial σ-algebra, and set Fn := σ(S0, . . . , Sn), n = 1, . . . , N .

Note that Fn = σ(R1, . . . ,Rn) for any n = 1, . . . , N .

Now, an agent invests a given amount of capital x0 ∈ R≥0 in the bond and the asset according

to some self-financing trading strategy. By trading strategy we mean an (Fn)-adapted R2
≥0-valued

stochastic process ϕ = (ϕ0
n, ϕn)N−1

n=0 , where ϕ0
n (resp. ϕn) specifies the amount of capital that is

invested in the bond (resp. asset) during the time interval [n, n+ 1). Here we require that both ϕ0
n

and ϕn are nonnegative for any n, which means that taking loans and short sellings of the asset

are excluded. The corresponding portfolio (or wealth) process Xϕ = (Xϕ
0 , . . . , X

ϕ
N ) associated with

ϕ = (ϕ0
n, ϕn)N−1

n=0 is given by

Xϕ
0 := ϕ0

0 + ϕ0 and Xϕ
n+1 := ϕ0

nrn+1 + ϕnRn+1, n = 0, . . . , N − 1. (3.13)

A trading strategy ϕ = (ϕ0
n, ϕn)N−1

n=0 is said to be self-financing w.r.t. the initial capital x0 if x0 =

ϕ0
0 +ϕ0 and Xϕ

n = ϕ0
n +ϕn for all n = 1, . . . , N . It is easily seen that for any self-financing trading

strategy ϕ = (ϕ0
n, ϕn)N−1

n=0 w.r.t. x0 the corresponding portfolio process admits the representation

Xϕ
0 = x0 and Xϕ

n+1 = rn+1X
ϕ
n + ϕn(Rn+1 − rn+1) for n = 0, . . . , N − 1. (3.14)

Note that Xϕ
n − ϕn corresponds to the amount of capital which is invested in the bond during the

time interval [n, n+1). Also note that it can be verified easily by means of Remark 3.1.6 in [5] that

under condition (c) of Assumption 3.2.1 the financial market introduced above is free of arbitrage

opportunities.

In view of (3.14), we may and do identify a self-financing trading strategy w.r.t. x0 with an (Fn)-

adapted R≥0-valued stochastic process ϕ = (ϕn)N−1
n=0 satisfying ϕ0 ∈ [0, x0] and ϕn ∈ [0, Xϕ

n ] for all

n = 1, . . . , N − 1. We restrict ourselves to Markovian self-financing trading strategies ϕ = (ϕn)N−1
n=0

w.r.t. x0 which means that ϕn only depends on n and Xϕ
n . To put it another way, we assume

that for any n = 0, . . . , N − 1 there exists some Borel measurable map fn : R≥0 → R≥0 such

that ϕn = fn(Xϕ
n ). Then, in particular, Xϕ is an R≥0-valued (Fn)-Markov process whose one-step

transition probability at time n ∈ {0, . . . , N − 1} given state x ∈ R≥0 and strategy ϕ = (ϕn)N−1
n=0

(resp. π = (fn)N−1
n=0 ) is given by

mn+1 ◦ η−1
n,(x,fn(x)),

where

ηn,(x,fn(x))(y) := rn+1x+ fn(x)(y − rn+1), y ∈ R≥0. (3.15)

The agent’s aim is to find a self-financing trading strategy ϕ = (ϕn)N−1
n=0 (resp. π = (fn)N−1

n=0 ) w.r.t.

x0 for which her expected utility of the discounted terminal wealth is maximized. We assume that

the agent is risk averse and that her attitude towards risk is set via the power utility function

uα : R≥0 → R≥0 defined by

uα(y) := yα (3.16)
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for some fixed α ∈ (0, 1) (as in condition (a) of Assumption 3.2.1). The coefficient α determines the

degree of risk aversion of the agent: the smaller the coefficient α, the greater her risk aversion. Hence

the agent is interested in those self-financing trading strategies ϕ = (ϕn)N−1
n=0 (resp. π = (fn)N−1

n=0 )

w.r.t. x0 for which the expectation of uα(Xϕ
N/S

0
N ) under P is maximized.

Remark 3.2.2 In the following we will assume for notational simplicity that r1, . . . , rN are fixed

and that m1, . . . ,mN are a sort of model parameters. In this case the factor 1/S0
N in uα(Xϕ

N/S
0
N ) in

Display (3.19) ahead is superfluous; it indeed does not influence the maximization problem or any

‘derivative’ of the optimal value. On the other hand, if also the (Dirac-) distributions of r1, . . . , rN
would be allowed to be variable, then this factor could matter for the derivative of the optimal

value w.r.t. changes in the (deterministic) dynamics of the bond S0. 3

3.2.2 Markov decision model, and optimal trading strategies

The setting introduced in Subsection 3.2.1 can be embedded into the setting of Chapters 1–2 as

follows. Let r1, . . . , rN ∈ R≥1 be a priori fixed constants. Further let

(E, E) := (R≥0,B(R≥0)) and An(x) := [0, x], x ∈ R≥0, n = 0, . . . , N − 1,

and note that An(x) does not depend on n. Then An = R≥0 and Dn = D := {(x, a) ∈ R2
≥0 : a ∈

[0, x]} for any n = 0, . . . , N − 1. Let An := B(R≥0). In particular, Dn = B(R2
≥0) ∩ D and the

set Fn of all decision rules at time n consists of all those Borel measurable maps fn : R≥0 → R≥0

which satisfy fn(x) ∈ [0, x] for all x ∈ R≥0 (in particular Fn is independent of n). For any

n = 0, . . . , N − 1, let the set Fn of all admissible decision rules at time n be equal to Fn. Let as

before Π := F0 × · · · × FN−1.

Consider the gauge function ψ : R≥0 → R≥1 defined by

ψ(x) := 1 + uα(x). (3.17)

Let Pψ be the set of all transition functions P = (Pn)N−1
n=0 ∈ P consisting of transition kernels of

the shape

Pn
(
(x, a), •

)
:= mn+1 ◦ η−1

n,(x,a) [ • ], (x, a) ∈ Dn, n = 0, . . . , N − 1 (3.18)

for some mn+1 ∈ Mα
1 (R,R≥0), where the map ηn,(x,a) : R≥0 → R≥0 is defined as in (3.15) and

Mα
1 (R,R≥0) is the set of all µ ∈ M1(R) satisfying µ[R≥0] = 1 as well as

´
R≥0

uα dµ < ∞. It is

easily seen that Pψ ⊆ Pψ (with Pψ defined as in Subsection 2.1.2) and that (1 − ε)P + εQ ∈ Pψ
for any P ,Q ∈ Pψ and ε ∈ (0, 1). In particular, Pψ is closed under mixtures.

Moreover, set
rn(x, a) :≡ 0, (x, a) ∈ Dn, n = 0, . . . , N − 1,

rN (x) := uα(x/S0
N ), x ∈ R≥0.

(3.19)

Then, for every fixed x0 ∈ R≥0 and P ∈ Pψ the terminal wealth problem introduced in the

paragraph above Remark 3.2.2 reads as

Ex0,P ;π[rN (XN )] −→ max (in π ∈ Π) ! (3.20)
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A strategy πP ∈ Π is called an optimal (self-financing) trading strategy w.r.t. P (and x0) if it solves

the maximization problem (3.20). Note that it follows from Lemma 3.2.10(i) below that the gauge

function ψ given by (3.17) provides a bounding function for the MDM (E,A,P ,Π,X, r) for every

P ∈ Pψ. Note here that X plays the role of the portfolio process Xϕ introduced in (3.13), and

that for some fixed x0 ∈ R≥0 any self-financing trading strategy ϕ = (ϕn)N−1
n=0 w.r.t. x0 may be

identified with some π = (fn)N−1
n=0 ∈ Π through ϕn = fn(Xϕ

n ).

Remark 3.2.3 In the financial market model introduced in Subsection 3.2.1 we restrict ourselves

to Markovian self-financing trading strategies ϕ = (ϕn)N−1
n=0 w.r.t. x0 which may be identified with

some π = (fn)N−1
n=0 ∈ Π via ϕn = fn(Xϕ

n ). Of course, one could also assume that the decision rules

of a trading strategy π also depend on past actions and past values of the portfolio process Xϕ.

However, as already discussed in part (i) of Remark 1.2.6, the corresponding history-dependent

trading strategies do not lead to an improved optimal value of the terminal wealth problem (3.20).

3

3.2.3 Existence and computation of optimal trading strategies

In the following we discuss the existence and computation of solutions to the terminal wealth

problem (3.20), maintaining the notation introduced in Subsections 3.2.1–3.2.2. We will adapt the

arguments of Section 4.2 in [5]. As before r1, . . . , rN ∈ R≥1 are fixed constants.

Basically the existence of an optimal trading strategy of the terminal wealth problem (3.20) can be

ensured with the help of a suitable analogue of Theorem 4.2.2 in [5]. In order to specify the optimal

trading strategy explicitly one has to determine the local maximizers in the Bellman equation; see

Theorem 1.3.3(i) in Section 1.3. However this is not necessarily easy. On the other hand, part (ii)

of Theorem 3.2.5 ahead (a variant of Theorem 4.2.6 in [5]) shows that, for our particular choice of

the utility function (recall (3.16)), the optimal investment in the asset at time n ∈ {0, . . . , N − 1}
has a rather simple form insofar as it depends linearly on the wealth. The respective coefficient

can be obtained by solving the one-stage optimization problem in (3.21) ahead. That is, instead

of finding the optimal amount of capital (possibly depending on the wealth) to be invested in the

asset, it suffices to find the optimal fraction of the wealth (being independent of the wealth itself)

to be invested in the asset.

For the formulation of the one-stage optimization problem, we note that every transition function

P ∈ Pψ is generated through (3.18) by some (m1, . . . ,mN ) ∈ Mα
1 (R,R≥0)N . For every P ∈ Pψ,

we use (mP1 , . . . ,m
P
N ) to denote any such set of ‘parameters’. Now, consider for any P ∈ Pψ and

n = 0, . . . , N − 1 the optimization problem

vP ;γ
n :=

ˆ
R≥0

(uα ◦ ηγn)(y)mPn+1(dy) −→ max (in γ ∈ [0, 1]) ! (3.21)

where the map ηγn : R≥0 → R≥0 is for any γ ∈ [0, 1] and n = 0, . . . , N − 1 defined by

ηγn(y) := 1 + γ(y/rn+1 − 1). (3.22)

Note that the integral on the left-hand side in (3.21) (exists and) is finite (this follows from Displays

(3.23)–(3.24) ahead) and should be seen as the expectation of uα ◦ ηγn(Rn+1) under P.
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The following lemma shows in particular that

vPn := sup
γ∈[0,1]

vP ;γ
n

is the maximal value of the optimization problem (3.21).

Lemma 3.2.4 For any P ∈ Pψ and n = 0, . . . , N − 1, there exists a unique solution γPn ∈ [0, 1] to

the optimization problem (3.21).

Proof Let P ∈ Pψ and n = 0, . . . , N − 1. Define a map fPn : R≥0 × [0, 1]→ R≥0 through

fPn (y, γ) := (uα ◦ ηγn)(y). (3.23)

Note that fPn ( · , γ) (= uα(1 + γ( · /rn+1 − 1))) is clearly Borel measurable for any γ ∈ [0, 1], and it

is easily seen that in view of (3.22)

|fPn (y, γ)| = uα
(
(1− γ) + γ(y/rn+1)

)
≤ uα(1 + y)

for every y ∈ R≥0 and γ ∈ [0, 1]. Therefore, the function fPn is absolutely dominated by the

Borel measurable function h : R≥0 → R≥0 defined by h(y) := uα(1 + y). Moreover set mP :=

maxk=0,...,N−1

´
R≥0

uα dm
P
k+1, and note that mP ∈ R>0 (by conditions (a)–(b) of Assumption 3.2.1).

Since h satisfies

ˆ
R≥0

h(y)mPn+1(dy) ≤ 1 +

ˆ
R≥0

uα(y)mPn+1(dy) ≤ 1 + mP < ∞ (3.24)

(i.e. h is mPn+1-integrable) and fPn (y, · ) is continuous on [0, 1] for any y ∈ R≥0, we may apply the

continuity lemma (see, e.g., [6, Lemma 16.1]) to obtain that the mapping FPn : [0, 1] → R>0 given

by FPn (γ) :=
´
R≥0

fPn (y, γ)mPn+1(dy) is continuous. Along with the compactness of the set [0, 1],

this ensures the existence of a solution γPn ∈ [0, 1] to the optimization problem (3.21).

Moreover it can be verified easily by means of condition (c) of Assumption 3.2.1 that FPn is strictly

concave; take into account that
´
R≥0

fPn (y, γ)mPn+1(dy) can be seen for any γ ∈ [0, 1] as the expec-

tation of uα ◦ ηγn(Rn+1) under P. This implies that the solution γPn is even unique. 2

Part (i) of the following Theorem 3.2.5 involves the value function introduced in (1.13). In the

present setting this function has in view of (3.19) a comparatively simple form:

V Pn (xn) = sup
π∈Π

Ex0,P ;π
n,xn [rN (XN )] (3.25)

for any xn ∈ R≥0, P ∈ Pψ, and n = 0, . . . , N . Part (ii) of this theorem involves the subset Πlin of

Π which consists of all linear trading strategies, i.e. of all π ∈ Π of the form π = (fγn )N−1
n=0 for some

γ = (γn)N−1
n=0 ∈ [0, 1]N , where

fγn (x) := γn ·x, x ∈ R≥0, n = 0, . . . , N − 1. (3.26)

In part (i) and elsewhere we will use the convention that the product over the empty set is 1.
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Theorem 3.2.5 (Optimal trading strategy) Let P ∈ Pψ. Then the following two assertions

hold.

(i) The value function V Pn given by (3.25) admits the representation

V Pn (xn) = vPn uα(xn/S
0
n)

for any xn ∈ R≥0 and n = 0, . . . , N − 1, where vPn :=
∏N−1
k=n v

P
k .

(ii) For any n = 0, . . . , N − 1, let γPn ∈ [0, 1] be the unique solution to the optimization problem

(3.21) and define a decision rule fPn : R≥0 → R≥0 at time n through

fPn (x) := γPn x, x ∈ R≥0. (3.27)

Then πP := (fPn )N−1
n=0 ∈ Π with πP ∈ Πlin forms an optimal trading strategy w.r.t. P .

Moreover, there is no further optimal trading strategy w.r.t. P which belongs to Πlin.

The second assertion of part (ii) of Theorem 3.2.5 will be beneficial for the proof of Theorem 3.2.11

below; for details see Remark 3.2.12.

For the proof of Theorem 3.2.5 we need the following Lemma 3.2.6. Note that the policy value

function introduced in (1.11) admits in view of (3.19) the representation

V P ;π
n (xn) = Ex0,P ;π

n,xn [rN (XN )] (3.28)

for any xn ∈ R≥0, P ∈ Pψ, π ∈ Π, and n = 0, . . . , N . Also note that any γ = (γn)N−1
n=0 ∈ [0, 1]N

induces a linear trading strategy πγ := (fγn )N−1
n=0 ∈ Πlin through (3.26). Finally, let vP ;γn

n be defined

as on the left-hand side of (3.21), and set vP ;γ
n := vP ;γn

n for any n = 0, . . . , N − 1.

Lemma 3.2.6 Let P ∈ Pψ and γ = (γn)N−1
n=0 ∈ [0, 1]N . Then the policy value function V

P ;πγ
n

given by (3.28) admits the representation

V
P ;πγ
n (xn) = v

P ;πγ
n uα(xn/S

0
n) (3.29)

for any xn ∈ R≥0 and n = 0, . . . , N , where v
P ;πγ
n :=

∏N−1
k=n v

P ;γ
k =

∏N−1
k=n v

P ;γk
k .

Proof We prove the assertion in (3.29) by (backward) induction on n. For n = N we obtain by

means of (3.28), part (iii) of Lemma 1.4.4, and (3.19)

V
P ;πγ
N (xN ) = rN (xN ) = v

P ;πγ
N uα(xN/S

0
N )

for any xN ∈ R≥0, where v
P ;πγ
N := 1. Now, suppose that the assertion in (3.29) holds for k ∈

{n+1, . . . , N}. Note that V
P ;πγ
n+1 (·) ∈M′ (with M′ defined as in (3.31) ahead) by choosing ϑ := v

P ;πγ
n+1

(∈ R>0) as well as κ := S0
n+1 (∈ R≥1), and that M′ ⊆MP

n (R≥0) (with MP
n (R≥0) as in Section 1.3);

see the proof of Theorem 3.2.5 below. Then, in view of part (i) of Proposition 1.3.1, (3.15), and

(3.22), for any xn ∈ R≥0 we get

V
P ;πγ
n (xn) = T Pn,fγn V

P ;πγ
n+1 (xn) =

ˆ
R≥0

V
P ;πγ
n+1 (y)Pn

(
(xn, f

γ
n (xn)), dy

)
=

ˆ
R≥0

v
P ;πγ
n+1 uα(y/S0

n+1)mPn+1 ◦ η−1
n,(xn,f

γ
n (xn))

(dy)
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= v
P ;πγ
n+1 ·

ˆ
R≥0

uα

(rn+1xn + fγn (xn)(y − rn+1)

S0
n+1

)
mPn+1(dy)

= v
P ;πγ
n+1 ·

ˆ
R≥0

uα

(rn+1xn + γn xn(y − rn+1)

rn+1S0
n

)
mPn+1(dy)

= v
P ;πγ
n+1 uα(xn/S

0
n) ·
ˆ
R≥0

uα

(
1 + γn

( y

rn+1
− 1
))

mPn+1(dy)

= v
P ;πγ
n+1 uα(xn/S

0
n) vP ;γ

n = v
P ;πγ
n uα(xn/S

0
n), (3.30)

where we used for the fifth “=” the definition of the map fγn in (3.26). For the last step we employed

v
P ;πγ
n = v

P ;πγ
n+1 v

P ;γ
n . Thus we have verified the representation of the map V

P ;πγ
n in (3.29). 2

Now, we are in the position to prove Theorem 3.2.5.

Proof of Theorem 3.2.5: (i): We intend to apply Theorem 1.3.3 (see Section 1.3). Let MP
n := M′

and F′n := F′ for any n = 0, . . . , N − 1, where

M′ :=
{
h ∈ RR≥0 : h(x) = ϑuα(x/κ), x ∈ R≥0, for some ϑ ∈ R>0, κ ∈ R≥1

}
, (3.31)

F′ :=
{
f ∈ F : f(x) = γ x, x ∈ R≥0, for some γ ∈ [0, 1]

}
with F := Fn (recall that Fn = Fn and that Fn is independent of n). It can be verified easily

by means of condition (a) of Assumption 3.2.1 that MP
n = M′ is a subset of MP

n (R≥0) for any

n = 0, . . . , N − 1, where MP
n (R≥0) is defined as in (1.16) in Section 1.3. Moreover we obviously

have F′n = F′ ⊆ F = Fn for any n = 0, . . . , N − 1.

Below we will show that conditions (a)–(c) of Theorem 1.3.3 are met. Thus we may apply part (i)

of Theorem 1.3.3 (Bellman equation) to obtain part (i) of Theorem 3.2.5. In fact, for n = N we

have

V PN (xN ) = rN (xN ) = vPN uα(xN/S
0
N )

for any xN ∈ R≥0 (by (3.19)), where vPN := 1. Now, suppose that the assertion holds for k ∈
{n + 1, . . . , N}. Then, using again part (i) of Theorem 1.3.3, we have in view of (3.15) for any

xn ∈ R≥0

V Pn (xn) = T Pn V Pn+1(xn) = sup
fn∈Fn

T Pn,fnV
P
n+1(xn)

= sup
fn∈Fn

ˆ
R≥0

V Pn+1(y)Pn
(
(xn, fn(xn)), dy

)
= sup

fn∈Fn

ˆ
R≥0

vPn+1 uα(y/S0
n+1)mPn+1 ◦ η−1

n,(xn,fn(xn))(dy)

= vPn+1 · sup
fn∈Fn

ˆ
R≥0

uα

(rn+1xn + fn(xn)(y − rn+1)

rn+1S0
n

)
mPn+1(dy). (3.32)

For xn = 0 we have fn(xn) = 0 for any fn ∈ Fn and therefore (in view of (3.32)) V Pn (xn) = 0. For

xn ∈ R>0 we obtain from (3.32)

V Pn (xn) = vPn+1 uα(xn/S
0
n) · sup

fn∈Fn

ˆ
R≥0

uα

(
1 +

fn(xn)

xn

( y

rn+1
− 1
))

mPn+1(dy)
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= vPn+1 uα(xn/S
0
n) · sup

γ∈[0,1]

ˆ
R≥0

uα

(
1 + γ

( y

rn+1
− 1
))

mPn+1(dy)

= vPn+1 uα(xn/S
0
n) vPn = vPn uα(xn/S

0
n), (3.33)

where we used for the second “=” that the value of fn(xn) ranges over the interval [0, xn] when fn
ranges over Fn; we can then indeed replace fn(xn) by γxn when“supfn∈Fn”is replaced by“supγ∈[0,1]”.

For the last step we employed vPn = vPn+1v
P
n . Hence we have verified the representation of the value

function asserted in part (i). It remains to show that conditions (a)–(c) of Theorem 1.3.3 (in Section

1.3) are indeed satisfied.

(a): In view of (3.19) we obtain rN ∈ M′ by choosing ϑ := 1 (∈ R>0) and κ := S0
N (∈ R≥1). In

particular, rN ∈MP
N−1.

(b): Let n ∈ {1, . . . , N − 1} and h ∈ MP
n = M′, i.e. h(x) = ϑuα(x/κ), x ∈ R≥0, for some ϑ ∈ R>0

and κ ∈ R≥1. Then as in (3.32) we obtain for any x ∈ R≥0

T Pn h(x) = sup
fn∈Fn

T Pn,fnh(x)

= ϑ · sup
fn∈Fn

ˆ
R≥0

uα

(rn+1x+ fn(x)(y − rn+1)

κ

)
mPn+1(dy). (3.34)

For x = 0 we have fn(x) = 0 for any fn ∈ Fn and therefore (in view of (3.34)) T Pn h(x) = 0. For

x ∈ R>0 we obtain from (3.34) (analogously to (3.33))

T Pn h(x) = ϑ rαn+1 uα(x/κ) · sup
fn∈Fn

ˆ
R≥0

uα

(
1 +

fn(x)

x

( y

rn+1
− 1
))

mPn+1(dy)

= ϑ rαn+1 uα(x/κ) · sup
γ∈[0,1]

ˆ
R≥0

uα

(
1 + γ

( y

rn+1
− 1
))

mPn+1(dy)

= ϑ rαn+1 uα(x/κ) vPn = ϑ̃ uα(x/κ), (3.35)

where ϑ̃ := ϑrαn+1v
P
n ∈ R>0 is finite due to (3.23)–(3.24). Altogether we have shown that T Pn h ∈M′.

In particular, T Pn h ∈MP
n−1.

(c): Let n ∈ {0, . . . , N − 1} and h ∈ MP
n = M′ (with corresponding ϑ and κ as in (b)). Moreover,

let fPn be the map as defined in (3.27), and note that fPn ∈ Fn. Then, similarly to (3.34), we have

for any x ∈ R≥0 and fn ∈ Fn

T Pn,fnh(x) = ϑ ·
ˆ
R≥0

uα

(rn+1x+ fn(x)(y − rn+1)

κ

)
mPn+1(dy).

For x = 0 we obviously have T Pn,fnh(x) = 0 and thus T P
n,fPn

h(x) = T Pn h(x). For x ∈ R>0 we have

similarly to (3.35) that for any fn ∈ Fn

T Pn,fnh(x) = ϑ rαn+1 uα(x/κ) ·
ˆ
R≥0

uα

(
1 +

fn(x)

x

( y

rn+1
− 1
))

mPn+1(dy).

By Lemma 3.2.4, the map γ 7→
´
R≥0

(uα ◦ ηγn)(y)mPn+1(dy) has exactly one maximal point, γPn , in

[0, 1]. Thus, since the second line in (3.35) coincides with T Pn h(x), we obtain T P
n,fPn

h(x) = T Pn h(x)
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also for any x ∈ R>0. Therefore the map fPn provides a maximizer fPn ∈ Fn of h w.r.t. P with

fPn ∈ F′ (= F′n).

(ii): In the proof of (i) we have seen that the assumptions of Theorem 1.3.3 are fulfilled. Thus, part

(i) of this theorem gives V Pn+1 ∈MP
n for any n = 0, . . . , N −1. In particular, the above elaborations

under (c) show that for any n = 0, . . . , N − 1 the map fPn defined by (3.27) provides a maximizer

fPn ∈ Fn of V Pn+1 w.r.t. P with fPn ∈ F′ (= F′n). Hence, part (iii) of Theorem 1.3.3 ensures that the

strategy πP := (fPn )N−1
n=0 ∈ Πlin forms an optimal trading strategy w.r.t. P .

For the second part of the assertion we assume that there exists another optimal trading strategy

π̃P w.r.t. P with π̃P ∈ Πlin. Then, by definition of Πlin, there exists γ̃P = (γ̃Pn )N−1
n=0 ∈ [0, 1]N such

that π̃P = πγ̃P := (f γ̃
P

n )N−1
n=0 . In particular, we have V P0 (x0) = V

P ;π
γ̃P

0 (x0) for any x0 ∈ R≥0.

Along with part (i) of this theorem and Lemma 3.2.6 (recall that S0
0 = 1), this implies vP0 uα(x0) =

v
P ;π

γ̃P

0 uα(x0) for every x0 ∈ R>0 and thus vP0 = v
P ;π

γ̃P

0 , i.e.

N−1∏
k=0

vPk =

N−1∏
k=0

v
P ;γ̃Pk
k . (3.36)

Below we will show that (3.36) implies

vPn = vP ;γ̃Pn
n for all n = 0, . . . , N − 1. (3.37)

Then it follows from (3.37) that for any n = 0, . . . , N − 1 the fraction γ̃Pn ∈ [0, 1] is a solution to

the optimization problem (3.21). However, according to Lemma 3.2.4, this optimization problem

has exactly one solution, γPn , in [0, 1]. Hence γ̃Pn = γPn for any n = 0, . . . , N − 1 and we arrive at

π̃P = πP which implies that πP is unique among all π ∈ Πlin(P ).

It remains to show that (3.36) implies (3.37). Assume by way of contradiction that (3.37) does not

hold, i.e. there exists n ∈ {0, . . . , N − 1} such that vPn 6= v
P ;γ̃Pn
n . Then

vPn = sup
γ∈[0,1]

vP ;γ
n > vP ;γ̃Pn

n

because the reverse inequality would lead to a contradiction of the maximality of vPn . By assumption

(3.36), this implies that there exists k ∈ {0, . . . , N − 1} with k 6= n such that

vPk = sup
γ∈[0,1]

vP ;γ
k < v

P ;γ̃Pk
k .

This, however, contradicts the maximality of vPk . Hence (3.36) indeed implies (3.37). This completes

the proof of Theorem 3.2.5. 2

We conclude this subsection with the following two Examples 3.2.7 and 3.2.8 which illustrate part

(ii) of Theorem 3.2.5.

Example 3.2.7 (Cox–Ross–Rubinstein model) In the setting of Subsection 3.2.2 let r1 =

· · · = rN = r for some r ∈ R≥1. Moreover let P ∈ P be any transition function defined as in

(3.18) with m1 = · · · = mN = mP for some mP := pP δuP + (1 − pP )δdP , where pP ∈ [0, 1] and
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dP , uP ∈ R>0 are some given constants (depending on P ) satisfying dP < r < uP . Then the

corresponding MDM (E,A,P ,Π,X, r) is stationary, and we have P ∈ Pψ. Moreover conditions

(a)–(c) of Assumption 3.2.1 are clearly satisfied. In particular, the corresponding financial market

is arbitrage-free and the optimization problem (3.21) simplifies to (up to the factor r−α){
pP uα(r + γ(uP − r)) + (1− pP )uα(r + γ(dP − r))

}
−→ max (in γ ∈ [0, 1]) ! (3.38)

Lemma 3.2.4 ensures that (3.38) has a unique solution, γPCRR, and it can be checked easily (see, e.g.,

[5, p. 86]) that this solution admits the representation

γPCRR =


0 , pP ∈ [0, pP ,0]

r
(r−dP )(uP−r) ·

pκαP (uP−r)κα−(1−pP )κα (r−dP )κα

pκαP (uP−r)καα+(1−pP )κα (r−dP )καα
, pP ∈ (pP ,0, pP ,1)

1 , pP ∈ [pP ,1, 1]

, (3.39)

where κα := (1− α)−1 and

pP ,0 :=
r− dP
uP − dP

(> 0) and pP ,1 :=
u1−α
P (r− dP )

u1−α
P (r− dP ) + d1−α

P (uP − r)
(< 1).

Note that only fractions from the interval [0, 1] are admissible, and that the expression in the middle

line in (3.39) lies in (0, 1) when pP ∈ (pP ,0, pP ,1). Thus, part (ii) of Theorem 3.2.5 shows that the

strategy πPCRR defined by (3.27) (with γPn replaced by γPCRR) is optimal w.r.t. P and unique among

all π ∈ Πlin(P ). 3

In the following example the bond and the asset evolve according to the ordinary differential

equation and the Itô stochastic differential equation

de0
t = νe0

t dt and det = µet dt+ σet dBt,

respectively, where ν, µ ∈ R≥0 and σ ∈ R>0 are constants and B is a one-dimensional standard

Brownian motion. We assume that the trading period is (without loss of generality) the unit

interval [0, 1] and that the bond and the asset can be traded only at N equidistant time points in

[0, 1], namely at tN,n := n/N , n = 0, . . . , N − 1. Then, in particular, the relative price changes

rn+1 := S0
n+1/S

0
n = e0

tN,n+1
/e0
tN,n

and Rn+1 := Sn+1/Sn = etN,n+1/etN,n are given by

exp
{
ν(tN,n+1 − tN,n)

}
and

exp
{

(µ− σ2/2)(tN,n+1 − tN,n) + σ(BtN,n+1 −BtN,n)
}
,

respectively. In particular, rn+1 = exp(ν/N) and Rn+1 is distributed according to the log-normal

distribution LN(µ−σ2/2)/N,σ2/N for any n = 0, . . . , N − 1.

Example 3.2.8 (Black–Scholes–Merton model) In the setting of Subsection 3.2.2 let r1 =

· · · = rN = r for r := exp(ν/N), where ν ∈ R≥0. Moreover let P ∈ P be any transition function

defined as in (3.18) with m1 = · · · = mN = mP for mP := LN(µP−σ2
P /2)/N,σ2

P /N
, where µP ∈ R≥0

and σP ∈ R>0 are some given constants (depending on P ) satisfying µP > (1 − α)σ2
P . Then the
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corresponding MDM (E,A,P ,Π,X, r) is stationary, and we have P ∈ Pψ. Moreover it is easily

seen that conditions (a)–(c) of Assumption 3.2.1 hold. In particular, the corresponding financial

market is arbitrage-free and the optimization problem (3.21) now reads asˆ
R≥0

uα

(
1 + γ

(y
r
− 1
))
ϕLN

(µP−σ2
P /2)/N,σ2

P /N
(y) `(dy) −→ max (in γ ∈ [0, 1]) ! (3.40)

where ϕLN
(µP−σ2

P /2)/N,σ2
P /N

stands for the standard Lebesgue density of the log-normal distribution

LN(µP−σ2
P /2)/N,σ2

P /N
defined as in Display (5.71) in Subsection 5.2.4. Lemma 3.2.4 ensures that

(3.40) has a unique solution, γPBSM, and it is known (see, e.g., [67, 72]) that this solution is given by

γPBSM =


0 , ν ∈ [µP ,∞)

1
1−α

µP−ν
σ2
P

, ν ∈ (νP ,α, µP )

1 , ν ∈ [0, νP ,α]

, (3.41)

where νP ,α := µP − (1 − α)σ2
P (∈ (0, µP )). Note that only fractions from the interval [0, 1] are

admissible, and that the expression in the middle line in (3.41) is called Merton ratio and lies in

(0, 1) when ν ∈ (νP ,α, µP ). Thus, part (ii) of Theorem 3.2.5 shows that the strategy πPBSM defined

by (3.27) (with γPn replaced by γPBSM) is optimal w.r.t. P and unique among all π ∈ Πlin(P ). 3

3.2.4 ‘Lipschitz continuity’ and ‘Hadamard differentiability’ of the value functional

Maintain the notation and terminology introduced in Subsections 3.2.1–3.2.3. In the following we

will show that the value function of the terminal wealth problem (3.20) regarded as a real-valued

functional is ‘Lipschitz continuous’ as well as ‘Hadamard differentiable’ at (fixed) P ∈ Pψ; see part

(ii) of Theorems 3.2.9 and 3.2.11 below. Recall that α ∈ (0, 1) introduced in (3.16) is fixed and

determines the degree of risk aversion of the agent.

By the choice of the gauge function ψ (see (3.17)) we may choose M := M′ := MHöl,α (with MHöl,α

introduced in Example 2.1.6) in the setting of Subsections 2.2.2 and 2.3.2. Note that ψ given by

(3.17) coincides with the corresponding gauge function in Example 2.1.6 for x′ := 0. That is, in

the end the metric dψ∞,MHöl,α
(as defined in (2.12)) on Pψ is used to measure the distance between

transition functions.

For the formulation of Theorems 3.2.9 and 3.2.11 recall from (2.16) the definition of the functionals

Vx0;π
0 and Vx0

0 , where the maps V P ;π
0 and V P0 are given by (1.11) and (1.13), respectively. In the

specific setting of Subsection 3.2.2 we know from (3.25) and (3.28) that

Vx0;π
0 (P ) = V P ;π

0 (x0) = Ex0,P ;π[rN (XN )] and Vx0
0 (P ) = sup

π∈Π
Vx0;π

0 (P ) (3.42)

for any x0 ∈ R≥0, P ∈ Pψ, and π ∈ Π.

Part (ii) of Theorem 2.2.8 shows that the value functional of the terminal wealth problem (3.20) is

‘Lipschitz continuous’ in the sense of Definition 2.2.1. Note that any γ = (γn)N−1
n=0 ∈ [0, 1]N induces

a linear trading strategy πγ := (fγn )N−1
n=0 ∈ Πlin through (3.26).

Theorem 3.2.9 (‘Lipschitz continuity’ of Vx0;πγ
0 and Vx0

0 in P ) In the setting above let x0 ∈
R≥0, γ ∈ [0, 1]N , and P ∈ Pψ. Then the following two assertions hold.
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(i) The map Vx0;πγ
0 : Pψ → R defined by (3.42) is ‘Lipschitz continuous’ at P w.r.t. (MHöl,α, ψ).

(ii) The map Vx0
0 : Pψ → R defined by (3.42) is ‘Lipschitz continuous’ at P w.r.t. (MHöl,α, ψ).

The proof of Theorem 3.2.9 relies on the following lemma. Recall Definition 1.4.1, and note that

ρMHöl,α
refers to the Minkowski functional introduced in (2.17) with M := MHöl,α. Also note that we

used (mP1 , . . . ,m
P
N ) to denote any set of ‘parameters’ which generates through (3.18) the transition

function P ∈ Pψ.

Lemma 3.2.10 In the setting above the following two assertions hold.

(i) ψ is a bounding function for the MDM (E,A,P ,Π,X, r) for every P ∈ Pψ.

(ii) For any fixed P ∈ Pψ we have supπ∈Πlin
ρMHöl,α

(V P ;π
n ) <∞ for every n = 1, . . . , N .

(iii) ρMHöl,α
(ψ) <∞.

Proof For (i) let P = (Pn)N−1
n=0 ∈ Pψ be arbitrary but fixed. Since rn ≡ 0 for any n = 0, . . . , N −1

(by (3.19)), there exists a finite constant K1 > 0 such that

|rn(x, a)| ≤ K1 ≤ K1

(
1 + uα(x)

)
= K1ψ(x)

for every (x, a) ∈ Dn and n = 0, . . . , N − 1.

Moreover, in view of (3.19), we can find some finite constant K2 > 0 such that

|rN (x)| =
(
1/uα(S0

N )
)
· uα(x) ≤ uα(x) ≤ K2

(
1 + uα(x)

)
= K2ψ(x)

for every x ∈ R≥0 and n = 0, . . . , N − 1.

Next, set r := maxk=0,...,N−1 rk+1, and note that r ∈ R≥1. Using equations (3.15)–(3.19), we find

some finite constant K3 > 0 (depending on P ) such thatˆ
R≥0

ψ(y)Pn
(
(x, a), dy

)
= 1 +

ˆ
R≥0

uα(y)mn+1 ◦ η−1
n,(x,a) [dy]

= 1 +

ˆ
R≥0

uα
(
rn+1x+ a(y − rn+1)

)
mPn+1(dy) = 1 + rαn+1 ·

ˆ
R≥0

uα

(
x+ a

( y

rn+1
− 1
))

mPn+1(dy)

≤ 1 + rα uα(x) ·
ˆ
R≥0

uα(1 + y)mPn+1(dy) ≤ 1 + rα uα(x) ·
(

1 +

ˆ
R≥0

uα(y)mPn+1(dy)
)

≤ 1 + rα uα(x) · (1 + mP ) ≤ K3ψ(x)

for every (x, a) ∈ Dn and n = 0, . . . , N − 1, where mP is defined as in the proof of Lemma 3.2.4.

Take into account that α ∈ (0, 1) introduced in (3.16) is fixed. Consequently, conditions (a)–(c) of

Definition 1.4.1 are satisfied for P := {P }.

To prove (ii) let n ∈ {1, . . . , N} be arbitrary but fixed. Since any γ = (γn)N−1
n=0 ∈ [0, 1]N induces

a linear trading strategy π = πγ := (fγn )N−1
n=0 ∈ Πlin through (3.26), it suffices in view of Example

2.2.4 to show that

sup
γ=(γn)N−1

n=0 ∈[0,1]N
‖V P ;πγ

n ‖Höl,α <∞. (3.43)

First of all, it is easily seen that the terminal reward function rN given by (3.19) is contained in

MHöl,α. Thus ‖rN‖Höl,α ≤ 1. Moreover, in view of Lemma 3.2.6 and (3.19), we have V
P ;πγ
n (·) =
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v
P ;πγ
n rN (·) for any γ = (γn)N−1

n=0 ∈ [0, 1]N , where v
P ;πγ
n :=

∏N−1
k=n v

P ;γ
k . Then in view of (3.23)–

(3.24)

‖V P ;πγ
n ‖Höl,α = ‖vP ;πγ

n rN‖Höl,α = |vP ;πγ
n | ‖rN‖Höl,α =

N−1∏
k=n

|vP ;γ
k | ‖rN‖Höl,α

≤
N−1∏
k=n

ˆ
R≥0

uα

(
1 + γk

( y

rPk+1

− 1
))

mPk+1(dy) ≤ (1 + mP )N−n

for any γ = (γn)N−1
n=0 ∈ [0, 1]N , where we used in the second “=” the absolute homogeneity of the

semi-norm ‖ · ‖Höl,α (as defined in Example 2.1.6). Hence, we arrive at (3.43).

For (iii) note that it can be shown easily that the gauge function ψ belongs to MHöl,α, i.e. ‖ψ‖Höl,α ≤
1. Thus, in view of Example 2.2.4, we have ρMHöl,α

(ψ) = ‖ψ‖Höl,α ≤ 1 <∞. 2

Let us turn to the proof of Theorem 3.2.9.

Proof of Theorem 3.2.9: We intend to apply Theorem 2.2.8. At first, note that the first assertion

of part (ii) of Theorem 3.2.5 along with Remark 2.2.7 entail that the value functional Vx0
0 given by

(3.42) admits the representation

Vx0
0 (P ) = sup

π∈Πlin

Vx0;π
0 (P ). (3.44)

Therefore it suffices to verify conditions (a)–(b) of Assumption 2.2.5 for Πlin in place of Π.

By Lemma 3.2.10(i) we know that ψ given by (3.17) provides a bounding function for the MDM

(E,A,Q,Πlin,X, r) for any Q ∈ Pψ. Take into account that a bounding function (see Definition

1.4.1) is independent of the set of all (admissible) strategies. Moreover parts (ii) and (iii) of Lemma

3.2.10 ensure that conditions (b)–(c) of Assumption 2.2.5 are satisfied for M := M′ := MHöl,α, ψ

given by (3.17), and Πlin instead of Π.

Therefore, the assumptions of Theorem 2.2.8 hold, and an application of parts (i) and (ii) of the

latter theorem implies the claims in parts (i) and (ii), respectively. Thus we have proved Theorem

3.2.9. 2

The following Theorem 3.2.11 specifies the ‘Hadamard derivative’ of the optimal value functional

of the terminal wealth problem (3.20) at (fixed) P . For the formulation of this theorem, let vP ;γn
n

be defined as on the left-hand side of (3.21), and set vP ;γ
n := vP ;γn

n for any n = 0, . . . , N − 1.

Moreover, for any n = 0, . . . , N − 1 denote by γPn the unique solution to the optimization problem

(3.21) (Lemma 3.2.4 ensures the existence of a unique solution), and set γP := (γPn )N−1
n=0 . Finally

recall Definitions 2.3.2 and 2.3.5(b)–(c).

Theorem 3.2.11 (‘Differentiability’ of Vx0;πγ
0 and Vx0

0 in P ) In the setting above let x0 ∈
R≥0, γ ∈ [0, 1]N , and P ∈ Pψ. Then the following two assertions hold.

(i) The map Vx0;πγ
0 : Pψ → R defined by (3.42) is ‘Fréchet differentiable’ at P w.r.t. (MHöl,α, ψ)

with ‘Fréchet derivative’ V̇x0;πγ
0;P : PP ;±

ψ → R given by

V̇x0;πγ
0;P (Q− P ) = v̇

P ,Q;πγ
0 · uα(x0),
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where

v̇
P ,Q;πγ
0 :=

N−1∑
k=0

vP ;γ
N−1 · · · (v

Q;γ
k − vP ;γ

k ) · · · vP ;γ
0 .

(ii) The map Vx0
0 : Pψ → R defined by (3.42) is ‘Hadamard differentiable’ at P w.r.t. (MHöl,α, ψ)

with ‘Hadamard derivative’ V̇x0
0;P : PψP ;± → R given by

V̇x0
0;P (Q− P ) = sup

π∈Πlin(P )
V̇x0;π

0;P (Q− P ) = V̇
x0;π

γP

0;P (Q− P ). (3.45)

Remark 3.2.12 Basically, part (ii) of Theorem 2.3.11 yields the first “=” in (3.45) with Πlin(P )

replaced by Π(P ). Since part (ii) of Theorem 3.2.5 ensures that for any P ∈ Pψ there exists an

optimal trading strategy which belongs to Πlin, we may replace for any P ∈ Pψ in the representation

(3.25) of the value function V P0 (x0) the set Π by Πlin (⊆ Π). Therefore one can use Theorem 2.3.11

to derive the first “=” in (3.45). In the proof of Theorem 3.2.11 we will see that the second “=” in

(3.45) is ensured by the second assertion in part (ii) of Theorem 3.2.5. 3

For the evidence of Theorem 3.2.11 we will need the following lemma.

Lemma 3.2.13 In the setting above let P ∈ Pψ and γ ∈ [0, 1]N . Then the solution (V̇
P ,Q;πγ
k )Nk=0

of the backward iteration scheme (2.33) admits the representation

V̇
P ,Q;πγ
n (xn) = v̇

P ,Q;πγ
n · uα(xn/S

0
n) (3.46)

for any xn ∈ R≥0, Q ∈ Pψ, and n = 0, . . . , N , where

v̇
P ,Q;πγ
n :=

N−1∑
k=n

vP ;γ
N−1 · · · (v

Q;γ
k − vP ;γ

k ) · · · vP ;γ
n .

Proof We prove the assertion in (3.46) by (backward) induction on n. Note that in view of

Lemma 3.2.10(i) and Proposition 1.4.3 (with P := {Q}) all occurring integrals in the following

(exist and) are finite; see the discussion in Remark 2.3.16. For n = N , the assertion in (3.46) is

valid because of (2.33) and by the choice v̇
P ,Q;πγ
N := 0. Now, assume that the assertion in (3.46)

holds for k ∈ {n+ 1, . . . , N}. Then, analogously to equation (3.30), we obtain by means of (2.33)

and Lemma 3.2.6

V̇
P ,Q;πγ
n (xn)

=

ˆ
R≥0

V̇
P ,Q;πγ
n+1 (y)Pn

(
(xn, f

γ
n (xn)), dy

)
+

ˆ
R≥0

V
P ;πγ
n+1 (y) (Qn − Pn)

(
(xn, f

γ
n (xn)), dy

)
=

ˆ
R≥0

v̇
P ,Q;πγ
n+1 uα(y/S0

n+1)mPn+1◦ η−1
n,(xn,f

γ
n (xn))

(dy)

+

ˆ
R≥0

v
P ;πγ
n+1 uα(y/S0

n+1)mQn+1◦ η
−1
n,(xn,f

γ
n (xn))

(dy)−
ˆ
R≥0

v
P ;πγ
n+1 uα(y/S0

n+1)mPn+1◦ η−1
n,(xn,f

γ
n (xn))

(dy)

= v̇
P ,Q;πγ
n+1 · uα(xn/S

0
n) vP ;γ

n + v
P ;πγ
n+1 uα(xn/S

0
n) (vQ;γ

n − vP ;γ
n ) = v̇

P ,Q;πγ
n · uα(xn/S

0
n)
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for every xn ∈ R≥0, where

v̇
P ,Q;πγ
n := v̇

P ,Q;πγ
n+1 vP ;γ

n + v
P ;πγ
n+1 (vQ;γ

n − vP ;γ
n )

=

N−1∑
k=n+1

vP ;γ
N−1 · · · (v

Q;γ
k − vP ;γ

k ) · · · vP ;γ
n+1 v

P ;γ
n +

N−1∏
k=n+1

vP ;γ
k (vQ;γ

n − vP ;γ
n )

=
N−1∑
k=n

vP ;γ
N−1 · · · (v

Q;γ
k − vP ;γ

k ) · · · vP ;γ
n .

This shows the assertion. 2

With the help of Lemma 3.2.13 we are now able to prove Theorem 3.2.11.

Proof of Theorem 3.2.11: We intend to apply Theorem 2.3.11. First of all, note that Lemma

3.2.10 ensures that conditions (a)–(c) of Assumption 2.2.5 are satisfied for M := M′ := MHöl,α, ψ

given by (3.17), and Πlin instead of Π. Take into account that a bounding function (see Definition

1.4.1) is independent of the set of all (admissible) strategies. In particular, we have verified the

assumptions of Theorem 2.3.11.

(i): It is an immediate consequence of part (i) of Theorem 2.3.11 that the functional Vx0;πγ
0 defined

as in (3.42) is ‘Fréchet differentiable’ at P w.r.t. (MHöl,α, ψ). The corresponding ‘Fréchet derivative’

V̇x0;πγ
0;P of Vx0;πγ

0 at P admits in view of Remark 2.3.16 and Lemma 3.2.13 (recall that S0
0 = 1) the

representation

V̇x0;πγ
0;P (Q− P ) = V̇

P ,Q;πγ
0 (x0) = v̇

P ,Q;πγ
0 · uα(x0)

for every Q ∈ Pψ, where v̇
P ,Q;πγ
0 :=

∑N−1
k=0 vP ;γ

N−1 · · · (v
Q;γ
k − vP ;γ

k ) · · · vP ;γ
0 .

(ii): For any n = 0, . . . , N − 1 let γPn ∈ [0, 1] be the unique solution to the optimization problem

(3.21), and set γP := (γPn )N−1
n=0 ∈ [0, 1]N . Then it follows from the first assertion in part (ii) of

Theorem 3.2.5 that the linear trading strategy πP = πγP := (fγ
P

n )N−1
n=0 ∈ Πlin defined by (3.26) is

optimal w.r.t. P . Therefore, the value functional Vx0
0 defined by (3.42) admits in view of Remark

2.3.14 the representation (3.44). As a consequence, part (ii) of Theorem 2.3.11 implies that the

value functional Vx0
0 is ‘Hadamard differentiable’ at P w.r.t. (MHöl,α, ψ) with ‘Hadamard derivative’

V̇x0
0;P given by

V̇x0
0;P (Q− P ) = sup

π∈Πlin(P )
V̇x0;π

0;P (Q− P ) (3.47)

for any Q ∈ Pψ. By the second assertion in part (ii) of Theorem 3.2.5 we have Πlin(P ) = {πγP }
and therefore the representation of the ‘Hadamard derivative’ V̇x0

0;P in (3.47) simplifies to

V̇x0
0;P (Q− P ) = sup

π∈Πlin(P )
V̇x0;π

0;P (Q− P ) = V̇
x0;π

γP

0;P (Q− P )

for every Q ∈ Pψ. This completes the proof of Theorem 3.2.11. 2
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3.2.5 Numerical examples for the ‘Hadamard derivative’

In this subsection we quantify by means of the ‘Hadamard derivative’ of the optimal value functional

Vx0
0 (given by Theorem 3.2.11(ii)) the effect of incorporating an unlikely but significant jump in the

dynamics S = (S0, . . . , SN ) of an asset price on the optimal value of the corresponding terminal

wealth problem (3.20). At the end of this subsection we will also study the effect of incorporating

more than one price jump.

We specifically focus on the setting of the time discretized Black–Scholes–Merton model from

Example 3.2.8 with (mainly) N = 12. That is, we let r1 = · · · = rN = r for r := exp(ν/N), where

ν ∈ R≥0. Moreover let P correspond to m1 = · · · = mN = mP for mP := LN(µP−σ2
P /2)/N,σ2

P /N
,

where µP ∈ R≥0 and σP ∈ R>0 are chosen such that µP > (1 − α)σ2
P . In fact we let specifically

µP = 0.05 and σP = 0.2. This set of parameters is often used in numerical examples in the field

of mathematical finance; see, e.g., [64, p. 898]. For the initial state we choose x0 = 1. For the drift

ν of the bond we will consider different values, all of them lying in {0.01, 0.02, 0.03, 0.035, 0.04}.
Moreover, we let (mainly) α ∈ {0.25, 0.5, 0.75}. Recall that α determines the degree of risk aversion

of the agent; a small α corresponds to high risk aversion.

By a price jump at a fixed time n ∈ {0, . . . , N − 1} we mean that the asset’s return Rn+1 is not

anymore drawn from mP but is given by a deterministic value ∆ ∈ R≥0 esstentially ‘away’ from

1. As appears from Table 3.3, in the case N = 12 it seems to be reasonable to speak of a ‘jump’

at least if ∆ ≤ 0.8 or ∆ ≥ 1.25. The probability under mP for a realized return smaller than

0.8 (resp. larger than 1.25) is smaller than 0.0001. A realized return of ≤ 0.5 (resp. ≥ 1.5) is

practically impossible; its probability under mP is smaller than 10−30 (resp. 10−10). That is, the

choice ∆ = 0.5 or ∆ = 1.5 doubtlessly corresponds to a significant price jump.

t 10−30 10−10 0.0001 0.0005 0.005 0.01 0.025 0.05

F−1
mP

(t) 0.5172 0.6944 0.8088 0.8290 0.8639 0.8765 0.8952 0.9116

F−1
mP

(1− t) 1.9433 1.4474 1.2426 1.2126 1.1632 1.1466 1.1226 1.1024

Table 3.3: Some quantiles of the distribution mP of the asset’s return in the time discretized (N =

12) Black–Scholes–Merton model (µP = 0.05, σP = 0.2).

If at a fixed time τ ∈ {0, . . . , N − 1} a formerly nearly impossible ‘jump’ ∆ can now occur with

probability ε, then instead of mτ+1 = mP one has mτ+1 = (1− ε)mP + εδ∆. That is, instead of P

the transition function is now given by (1 − ε)P + εQ∆,τ with Q∆,τ generated through (3.18) by

mn+1 = mQ∆,τ ;n
, n = 0, . . . , N − 1, where

mQ∆,τ ;n
:=

{
δ∆ , n = τ

mP , otherwise
. (3.48)

By part (ii) of Theorem 3.2.11 the ‘Hadamard derivative’ V̇x0
0;P of the optimal value functional Vx0

0

evaluated at Q∆,τ − P can be written as

V̇x0
0;P (Q∆,τ − P ) =

N−1∑
k=0

v
P ;γPBSM
N−1 · · · (vQ∆,τ ;γPBSM

k − vP ;γPBSM
k ) · · · vP ;γPBSM

0
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= v
P ;γPBSM
N−1 · · · (vQ∆,τ ;γPBSM

τ − vP ;γPBSM
τ ) · · · vP ;γPBSM

0 (3.49)

with γPBSM := (γPBSM, . . . , γ
P
BSM), where γPBSM is given by (3.41). The involved factors are

v
P ;γPBSM
n =


1 , ν ∈ [µP ,∞)´
R≥0

uα
(
1 + 1

1−α
µP−ν
σ2
P

(yr − 1)
)
ϕLN

(µP−σ2
P /2)/N,σ2

P /N
(y) `(dy) , ν ∈ (νP ,α, µP )

r−α exp
{
α
N (µP −

σ2
P
2 ) + (ασP )2

2N

}
, ν ∈ [0, νP ,α],

v
Q∆,τ ;γPBSM
n =


1 , ν ∈ [µP ,∞)´
R≥0

uα
(
1 + 1

1−α
µP−ν
σ2
P

(yr − 1)
)
mQ∆,τ ;n

(dy) , ν ∈ (νP ,α, µP )

r−α
´
R≥0

uα(y)mQ∆,τ ;n
(dy) , ν ∈ [0, νP ,α]

(3.50)

for n = 0, . . . , N − 1, where νP ,α := µP − (1− α)σ2
P (∈ (0, µP )).

Note that V̇x0
0;P (Q∆,τ − P ) is independent of τ , which can be seen from (3.48)–(3.50). That is,

the effect of a jump is independent of the time at which the jump takes place. Also note that

V̇x0
0;P (Q∆,τ − P ) ≡ 0 when ν ∈ [µP ,∞). This is not surprising, because in this case the optimal

fraction γPBSM to be invested into the asset is equal to 0 (see (3.41)) and the agent performs a

complete investment in the bond at each trading time n.

Remark 3.2.14 As mentioned before, the ‘Hadamard derivative’ V̇x0
0;P evaluated at Q∆,τ − P

can be seen as the first-order sensitivity of the optimal value Vx0
0 (P ) w.r.t. a change of P to

(1 − ε)P + εQ∆,τ , with ε > 0 small. It is a natural wish to compare these values for different

∆ ∈ R≥0. Lemma 3.2.15 below shows that the family {Q∆,τ : ∆ ∈ [0, δ]} is relatively compact

w.r.t. dψ∞,MHöl,α
(the proof does not work if dψ∞,MHöl,α

is replaced by dφ∞,MHöl,α
for any gauge function

φ ‘flatter’ than ψ) for any fixed δ ∈ R>0 (and τ ∈ {0, . . . , N − 1}, α ∈ (0, 1)). As a consequence

the approximation (2.1) with Q = Q∆,τ holds uniformly in ∆ ∈ [0, δ], and therefore the values

V̇x0
0;P (Q∆,τ −P ), ∆ ∈ [0, δ], can be compared in view of Remark 2.3.3(ii) with each other with clear

conscience. 3

Recall for the following lemma that relatively compact sets in the metric space (Pψ, dψ∞,MHöl,α
) were

introduced above of Definition 2.3.5.

Lemma 3.2.15 In the setting above, the family {Q∆,τ : ∆ ∈ [0, δ]} is relatively compact (w.r.t.

dψ∞,MHöl,α
) for any fixed δ ∈ R>0, τ ∈ {0, . . . , N − 1}, and α ∈ (0, 1).

Proof We will show that the set Kτ,δ := {Q∆,τ = (Q∆,τ ;n)N−1
n=0 : ∆ ∈ [0, δ]} (⊆ Pψ) is compact

(w.r.t. dψ∞,MHöl,α
). In particular, this implies that Kτ,δ is relatively compact (w.r.t. dψ∞,MHöl,α

).

Consider any sequence in Kτ,δ. That is, in other words, pick any sequence (∆m) ∈ [0, δ]N and

consider the sequence (Q∆m,τ ) ∈ KN
τ,δ. Since [0, δ] is compact and thus sequentially compact (w.r.t.

the Euclidean distance), we can find a subsequence (∆′m)m∈N of (∆m)m∈N and some ∆0 ∈ [0, δ]

such that ∆′m → ∆0. Then (Q∆′m,τ )m∈N is a subsequence of (Q∆m,τ )m∈N, and Q∆0,τ ∈ Kτ,δ. Thus

in view of equations (3.15)–(3.18) and (3.48)∣∣∣ ˆ
R≥0

h(y)Q∆′m,τ ;n

(
(x, a), dy

)
−
ˆ
R≥0

h(y)Q∆0,τ ;n

(
(x, a), dy

)∣∣∣
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=
∣∣∣ˆ

R≥0

h(y) δ∆′m ◦ η
−1
τ,(x,a)(dy)−

ˆ
R≥0

h(y) δ∆0 ◦ η−1
τ,(x,a)(dy)

∣∣∣
=
∣∣∣ˆ

R≥0

h
(
ητ,(x,a)(y)

)
δ∆′m(dy)−

ˆ
R≥0

h
(
ητ,(x,a)(y)

)
δ∆0(dy)

∣∣∣ =
∣∣h(ητ,(x,a)(∆

′
m)
)
− h
(
ητ,(x,a)(∆0)

)∣∣
≤
∣∣ητ,(x,a)(∆

′
m)− ητ,(x,a)(∆0)

∣∣α = aα |∆′m −∆0|α ≤ xα |∆′m −∆0|α ≤ ψ(x) |∆′m −∆0|α

for any h ∈ MHöl,α, (x, a) ∈ Dn, n = 0, . . . , N − 1, and m ∈ N. In view of (2.12), this implies

dψ∞,MHöl,α
(Q∆′m,τ ,Q∆0,τ )→ 0. Hence, the assertion follows. 2

By Remark 3.2.14 and (3.49) we are able to compare the effect of incorporating different ‘jumps’

∆ in the dynamics S = (S0, . . . , SN ) of an asset price on the optimal value Vx0
0 (P ).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α

0

0.1

0.2

0.3

0.4

0.5

0.6

∆ = 0.5

∆ = 1.5

Figure 3.1: ‘Hadamard derivative’ V̇x0
0;P (Q∆,τ−P ) (for ∆ = 1.5) and negative ‘Hadamard derivative’

−V̇x0
0;P (Q∆,τ − P ) (for ∆ = 0.5) for N = 12, ν = 0.01, µP = 0.05, and σP = 0.2 in

dependence of the risk aversion parameter α.

As appears from Figure 3.1 the negative effect of incorporating a ‘jump’ ∆ = 0.5 in the dynamics

S = (S0, . . . , SN ) of an asset price on Vx0
0 (P ) is larger than the positive effect of incorporating a

‘jump’ ∆ = 1.5 for every choice of the agent’s degree of risk aversion. Figure 3.1 also shows the

unsurprising effect that a high risk aversion (small value of α) leads to a negligible sensitivity.

Next we compare the values of V̇x0
0;P (Q∆,τ−P ) for trading horizons N ∈ {4, 12, 52} in dependence of

the drift ν of the bond and the ‘jump’ ∆. This choices of N correspond respectively to a quarterly,

monthly, and weekly time discretization. We will restrict ourselves to ‘jumps’ ∆ ≤ 0.8. On the one

hand, this ensures that the ‘jumps’ are significant; see the discussion above. On the other hand, as

just discerned from Figure 3.1, the effect of jumps ‘down’ are more significant than jumps ‘up’.
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Figure 3.2: ‘Hadamard derivative’ V̇x0
0;P (Q∆,τ − P ) for α = 0.5, µP = 0.05, and σP = 0.2 in

dependence of the ‘jump’ ∆ and the drift ν of the bond, showing N = 4 in the first,

N = 12 in the second, and N = 52 in the third column.

From Figure 3.2 one can see that for each trading time N and any ∆ ∈ [0, 0.8] the (negative) effect

of incorporating a ‘jump’ ∆ in the dynamics S = (S0, . . . , SN ) of an asset price on Vx0
0 (P ) is the

smaller the smaller the spread between the drift µP of the asset and the drift ν of the bond. There

is only a tiny (nearly invisible) difference between the ‘Hadamard derivative’ V̇x0
0;P (Q∆,τ − P ) for

the trading times N ∈ {4, 12, 52}. So the fineness of the discretization seems to play a minor part.

Next we compare the values of V̇x0
0;P (Q∆,τ − P ) for the drift ν ∈ {0.02, 0.03, 0.04} of the bond in

dependence of the risk aversion parameter α and the ‘jump’ ∆.
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Figure 3.3: ‘Hadamard derivative’ V̇x0
0;P (Q∆,τ − P ) for N = 12, µP = 0.05, and σP = 0.2 in

dependence of the ‘jump’ ∆ and risk aversion parameter α, showing ν = 0.02 in the

first, ν = 0.03 in the second, and ν = 0.04 in the third column.

As appears from Figure 3.3, for any ∆ ∈ [0, 0.8] the (negative) effect of incorporating a ‘jump’ ∆

in the dynamics S = (S0, . . . , SN ) of an asset price on Vx0
0 (P ) is the smaller the higher the agent’s

risk aversion (i.e. the smaller the value of α), no matter what the drift ν ∈ {0.02, 0.03, 0.04} of the

bond looks like. Take into account that the extent of this effect is influenced via (3.49)–(3.50) by

the optimal fraction γPBSM to be invested into the asset which in turn depends on the risk aversion

parameter α (see (3.41)).

To conclude this subsection, let us briefly touch on the case where more than one jump may appear.

More precisely, instead of Q∆,τ (with τ ∈ {0, . . . , N − 1}) consider the transition function Q∆,τ (`)
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(with 1 ≤ ` ≤ N , τ (`) = (τ1, . . . , τ`), τ1, . . . , τ` ∈ {0, . . . , N − 1} pairwise distinct) which is still

generated by means of (3.48) but with the difference that at the ` different times τ1, . . . , τ` the

distribution mP is replaced by δ∆. Just as in the case ` = 1, it turns out that it does not matter at

which times τ1, . . . , τ` exactly these ` jumps occur. Figure 3.4 shows the value of V̇x0
0;P (Q∆,τ (`)−P )

in dependence on ` and ∆.
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Figure 3.4: ‘Hadamard derivative’ V̇x0
0;P (Q∆,τ (`) − P ) for N = 12 in dependence on ` ∈ {1, . . . , N}

and ∆ ∈ [0, 0.8] showing α = 0.25 and ν = 0.02 (left), α = 0.5 and ν = 0.03 (middle),

and α = 0.75 and ν = 0.04 (right).

As appears figure 3.4 it seems that for any ∆ ∈ [0, 0.8] the first-order sensitivity of Vx0
0 (P ) w.r.t. a

change of P to (1− ε)P + εQ∆,τ (`) (with ε > 0 small) increases approximately linearly in `,
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Chapter 4

Statistical estimation of the optimal value in a

specific Markov decision model

In the last chapters we have considered the situation where in the MDM the ‘true’ transition

function is replaced by a less complex version. In this framework our elaborations in Chapter

2 showed that the (optimal) value function of a MDM regarded as a real-valued functional on

some set of transition functions is sensitive w.r.t. changes in the underlying transition function,

and we used these results (more precisely the ‘derivative’ of the value functional) to evaluate

model reductions in the transition function with respect to their influences on the optimal value

of the MDM. These elaborations are motivated by the fact that in many real applications the

transition probabilities (and thus the corresponding transition function) are unknown and must be

estimated using statistical methods which can lead to incorrect estimates for the optimal value of

the corresponding MDM, for example due to the lack of missing historical data. Detached from

these investigations, users, such as operations engineers, become also increasingly interested in a

concrete and easy to handle statistical estimation of the optimal value of a MDM with unknown

transition function. In this chapter we would like to go into this in more detail.

The objective of our following elaborations is the statistical estimation of the optimal value Vx0
0 (P )

(for some given initial state x0 ∈ E) of a MDM in which the corresponding transition function P

is not known. Therefore our main task is to find a suitable estimator for the unknown transition

function P . If P̂m corresponds to an appropriate estimator for the transition function P , then a

natural choice for an estimator for the optimal value Vx0
0 (P ) will be the plug-in estimator Vx0

0 (P̂m).

In the sequel, we want to establish asymptotic properties of the (plug-in) estimator Vx0
0 (P̂m).

One possible approach to determine the asymptotics of the estimator Vx0
0 (P̂m) is to make use of

the regularity results from Chapter 2. In fact, by means of the ‘Lipschitz continuity’ property of

the value functional (known from Theorem 2.2.8 in Subsection 2.2.2) we obtain strong consistency

of the sequence of estimators (Vx0
0 (P̂m))m∈N for the optimal value Vx0

0 (P ) if (under Assumption

2.2.5 for some gauge function ψ and M ⊆ Mψ(E)) the sequence (P̂m)m∈N satisfies a strong law

w.r.t. the (semi-) metric dψ∞,M given by (2.12) with φ := ψ. However, a verification of such a strong

law for the sequence (P̂m)m∈N is in general difficult, as this property depends on the choice of the

set M (and gauge function ψ). Besides this, for the asymptotic error distribution of the sequence of

estimators (Vx0
0 (P̂m))m∈N, we can not apply part (ii) of Theorem 2.3.11 and an adapted functional
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delta method because in view of

√
m
(
Vx0

0 (P̂m)− Vx0
0 (P )

)
=
Vx0

0 (P + 1√
m

(
√
m(P̂m − P )))− Vx0

0 (P )

1/
√
m

the expression
√
m(P̂m − P ) is in general not contained in the ‘tangent space’ PP ;±

ψ (see (2.22))

which corresponds to the domain of the ‘Hadamard derivative’ V̇x0
0;P of the (optimal) value functional

Vx0
0 . Therefore we can not determine in general the asymptotic distribution of the sequence of plug-

in estimator (Vx0
0 (P̂m))m∈N.

However, in order to be able to carry out a meaningful statistical inference for the optimal value

in the unknown transition function, we will restrict ourselves in the following to a specific MDM in

which the corresponding transition function is generated only by some (unknown) single distribution

function F . In this particular case we are in the position to perform a detailed study of the

asymptotics of the corresponding estimator for the optimal value of the simple MDM. That is,

if P F denotes the (unknown) transition function whose corresponding transition probabilities are

governed by F , it suffices for the statistical investigation of the optimal value Vx0
0 (P F ) to estimate

the (unknown) distribution function F . If F̂m is a reasonable estimator for F , then P
F̂m

can be a

reasonable estimator for P F . In this case, a canonical estimator for the optimal value Wx0
0 (F ) :=

Vx0
0 (P F ) is given by the plug-in estimator Wx0

0 (F̂m) := Vx0
0 (P

F̂m
). In Sections 4.4–4.5, we will

describe in detail two methods by which the (unknown) distribution function and thus the optimal

value Wx0
0 (F ) of a simple MDM can be statistically estimated, and we present some asymptotic

properties of the corresponding estimator Wx0
0 (F̂m).

The rest of this chapter is organized as follows. At first, in Sections 4.1–4.2 we will introduce based

on the elaborations in Section 1.1 the underlying Markov decision model in which the corresponding

transition probability function is governed by some single distribution function, and define the value

function which specifies the optimal value of a simplified version of the optimization problem (1.12),

where P is replaced by P F . Afterwards, in Section 4.3, we will show that the (optimal) value

functional Wx0
0 is continuous and functionally differentiable in a certain sense. These regularity

results will be used in Sections 4.4–4.5 to derive asymptotic properties of the plug-in estimator

Wx0
0 (F̂m) for the optimal value Wx0

0 (F ) in a nonparametric and a parametric framework.

4.1 Basic Markov decision model

Based on the elaborations in Section 1.1 we formally introduce in this section our discrete time

Markov decision model (MDM) with finite time horizon in which the transition function (and thus

the transition probabilities) are governed by an (unknown) single distribution function. The model

components of the underlying MDM will be analogously defined as in Subsections 1.1.1–1.1.3.

Let N ∈ N be again a fixed time horizon in discrete time, and let E be a non-empty set referred

to as state space which is equipped with a σ-algebra E . Let A be the family of all non-empty sets

An(x), x ∈ E, n = 0, . . . , N − 1, where An(x) consists of all admissible actions in state x at time

n. Moreover let An and Dn be for every n = 0, . . . , N − 1 the sets of all (allowable) actions and

possible state-action combinations at time n as defined in (1.1).
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Further let F be the set of all distribution functions on R, and fix a subset F ⊆ F . Let P F =

(PFn )N−1
n=0 ∈ P be for any F ∈ F a fixed transition function (as introduced in Subsection 1.1.1) which

consists of (one-step) transition probabilities PFn ((x, a), • ), (x, a) ∈ Dn, n = 0, . . . , N − 1, that are

parametrized by the distribution function F . Recall from Subsection 1.1.1 that P stands for the

set of all transition functions. Let Fn be for every n = 0, . . . , N − 1 a non-empty set consisting of

all (deterministic and Markovian) decision rules at time n as defined in Subsection 1.1.1, and fix

Fn ⊆ Fn. Note that the elements of Fn can be seen as admissible decision rules at time n. Further,

we set Π := F0 × · · · × FN−1, and recall that any element π = (fn)N−1
n=0 of Π is an (admissible)

strategy.

Let (Ω,F) := (EN+1, E⊗(N+1)) andX = (Xn)Nn=0 be the map defined on Ω through (1.5). It follows

from Lemma 1.1.1 that the random variableX corresponds for any initial state x0 ∈ E, distribution

function F ∈ F , and strategy π ∈ Π to the (finite horizon discrete time) Markov decision process

(MDP) under law Px0,PF ,π, where the probability measure Px0,PF ,π on (Ω,F) is defined as in

(1.4). Moreover, the vector r := (rn)Nn=0 contains of (Dn,B(R))- and (E ,B(R))-measurable maps

rn : Dn → R, n = 0, . . . , N − 1, and rN : E → R, respectively. As before, rn and rN correspond to

the one-stage- and the terminal reward function, respectively.

Then, similarly to Definition 1.1.3, the sextuple

(E,A,P F ,Π,X, r) (4.1)

is called (finite horizon discrete time) Markov decision model (MDM) associated with state space

E, the family of all action spaces A, transition function P F ∈ P, set of admissible strategies Π,

and reward functions r.

4.2 Value function and optimal strategies

Using the notation of Section 4.1 we introduce in this section the value function of the MDM

(E,A,P F ,Π,X, r) which can be derived from an analogous sequential optimization control prob-

lem as in Section 1.2 based on the expected total reward criterion.

Let F ⊆ F be a fixed subset, and let ν be any measure on B(R). Denote by F (ν) the subset of all

F ∈ F satisfying ˆ
R<0

F dν <∞ and

ˆ
R≥0

(1− F ) dν <∞. (4.2)

For our subsequent analysis we let P F = (PFn )N−1
n=0 ∈ P be for any F ∈ F (ν) a fixed transition

function. In the following P F will be referred to as transition function associated with F ∈ F (ν).

Moreover let ψ : E → R≥1 be any gauge function (as introduced in Section 1.4), and fix some

subset Pψ ⊆ Pψ, where the set Pψ is defined as in Subsection 2.1.2.

In the sequel, we will always assume that the following Assumption 4.2.1 holds. Recall Definition

1.4.1, and note that the conditions in Assumption 4.2.1 will be illustrated later in the examples of

Chapter 5. It follows from the discussion in Remark 2.2.6(i) that condition (a) of Assumption 4.2.1

is in line with the classical literature on MDMs.

Assumption 4.2.1 The following two assertions hold for any F ∈ F (ν).
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(a) ψ is a bounding function for the MDM (E,A,P F ,Π,X, r).

(b) P F ∈ Pψ.

Under Assumption 4.2.1, it follows from Proposition 1.4.3 (applied to P := {P F }) that we may

define in a MDM (E,A,P F ,Π,X, r) for any F ∈ F (ν), π = (fn)N−1
n=0 ∈ Π, and n = 0, . . . , N a

map V F ;π
n : E → R via

V F ;π
n (xn) := Ex0,PF ;π

n,xn

[N−1∑
k=n

rk(Xk, fk(Xk)) + rN (XN )
]
. (4.3)

Recall that Ex0,PF ;π
n,xn corresponds to the expectation w.r.t. the factorized conditional distribution

Px0,PF ;π[ • ‖Xn = xn]; see Lemma 1.1.1. Similarly to Section 1.2, the value V F ;π
n (xn) specifies the

expected total reward from time n to N of X under Px0,PF ;π when strategy π is used and X is in

state xn at time n. Hence the map V F ;π
n given by (4.3) will be referred to as policy value function

(at time n).

Then similarly to (1.12) and for any fixed F ∈ F (ν), we are looking for those strategies π ∈ Π for

which the policy value function V F ;π
0 (x0) at time 0 is maximal for all initial states x0 ∈ E:

V F ;π
0 (x0) −→ max (in π ∈ Π) ! (4.4)

In particular, the maximal expected total reward from time n to N of X under Px0,PF ;π when

strategy π is used and X is in state xn at time n will be described by the map V F
n : E → R defined

by

V F
n (xn) := sup

π∈Π
V F ;π
n (xn) (4.5)

which will be referred to as value function (at time n). Note that it follows from Proposition

1.4.3 (applied to P := {P F }) that under Assumption 4.2.1 the value function V F
n is well-defined.

Also note that the value function V F
n is in general not (E ,B(R))-measurable. It follows from the

discussion in Remark 1.2.4 that in some situations the measurability holds true.

Moreover we will say that for any fixed F ∈ F (ν) a strategy πF ∈ Π is optimal w.r.t. F if

V F ;πF

0 (x0) = V F
0 (x0) for all x0 ∈ E. In this case V F ;πF

0 (x0) is called optimal value (function), and

the set of all optimal strategies w.r.t. F will be denoted by Π(F ). Moreover, for given δ > 0, a

strategy πF ;δ ∈ Π is said to be δ-optimal w.r.t. F if V F
0 (x0) − δ ≤ V F ;πF ;δ

0 (x0) for all x0 ∈ E,

and we denote by Π(F ; δ) the set of all δ-optimal strategies w.r.t. F . To conclude this section we

note that the discussion subsequent to Definition 1.2.5 and the elaborations in Remark 1.2.6 can

be transferred in an analogous way to the setting introduced in Section 4.1.

4.3 Regularity of the value function

Maintain the notation and terminology introduced in Sections 4.1–4.2. Let ν be any measure on

B(R), and fix F ⊆ F . Moreover let F (ν) be the subset of all F ∈ F satisfying (4.2), and let ψ be

any gauge function. Note that we fixed for any F ∈ F (ν) a transition function P F ∈ P, and recall

Assumption 4.2.1.
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In this section we will investigate the (policy) value function of the MDM (E,A,P F ,Π,X, r) (with

F ∈ F (ν)) regarded as a real-valued functional on a set of distribution functions for continuity and

differentiability. By means of these regularity results, we are able to derive asymptotic properties

of certain plug-in estimators for the value function in nonparametric and parametric statistical

models, respectively; see Sections 4.4 and 4.5.

To this end, we consider in the following for any xn ∈ E, π ∈ Π, and n = 0, . . . , N maps Wxn;π
n :

F (ν)→ R and Wxn
n : F (ν)→ R defined by

Wxn;π
n (F ) := V F ;π

n (xn) and Wxn
n (F ) := sup

π∈Π
Wxn;π
n (F )

(
= V F

n (xn)
)
, (4.6)

where V F ;π
n as well as V F

n are introduced in (4.3) and (4.5), respectively. Note that it follows from

the discussion in Section 4.2 that (under Assumption 4.2.1) the maps Wxn;π
n and Wxn

n given by

(4.6) are well-defined for any xn ∈ E, π ∈ Π, and n = 0, . . . , N , respectively. Also note that

under Assumption 4.2.1) we have Wxn;π
n (F ) = Vxn;π

n (P F ) as well as Wxn
n (F ) = Vxnn (P F ) for every

F ∈ F (ν), xn ∈ E, π ∈ Π, and n = 0, . . . , N , where the functionals Vxn;π
n and Vxnn are introduced

in (2.16). Analogously to the notion ‘value function’ we will refer in the sequel to Wxn
n as value

functional given state xn at time n. If πF ∈ Π is for some given F ∈ F (ν) an optimal strategy

w.r.t. F , then Wx0
0 (F ) (=Wx0;πF

0 (F )) corresponds (for any x0 ∈ E) to the optimal value.

Let L0(ν) be the space of all Borel measurable maps h ∈ RR modulo the equivalence relation of

ν-almost sure identity. Furthermore, let L1(ν) be the subspace of all h ∈ L0(ν) for which

‖h‖1,ν :=

ˆ
|h(y)| ν(dy) (4.7)

is finite. Here and in the sequel we will suppress the range of integration if it is the whole real

line. It follows from Corollary 4.1.2 and Theorem 4.1.3 in [20] that the map ‖ · ‖1,ν : L1(ν)→ R≥0

defined by (4.7) provides a complete norm on L1(ν). That is, the vector space L1(ν) equipped with

the norm ‖ · ‖1,ν is a Banach space.

4.3.1 ‘Continuity’ in F of the value function

In this subsection we will use the notion of ‘Lipschitz continuity’ introduced in Definition 4.3.1

below. Since this notion is weaker compared to the usual concept of Lipschitz continuity, we will

use inverted commas and write ‘Lipschitz continuity’ in place of Lipschitz continuity.

To explain our concept of ‘Lipschitz continuity’ more explicitly, we note that we use in the sequel

the norm ‖ · ‖1,ν to measure the distance between distribution functions from F (ν). Take into

account that F −G ∈ L1(ν) holds for every F,G ∈ F (ν). Let (L, ‖ · ‖L) be a normed vector space.

Definition 4.3.1 (‘Lipschitz continuity’ in F ) Let F ∈ F (ν). A map W : F (ν) → L is said

to be ‘Lipschitz continuous’ at F w.r.t. (‖ · ‖1,ν , ‖ · ‖L) if∥∥W(Fm)−W(F )
∥∥
L

= O
(
‖Fm − F‖1,ν

)
holds for every sequence (Fm) ∈ F (ν)N with ‖Fm − F‖1,ν → 0.
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Similarly to the elaborations in Subsection 2.2.1, the notation O(‖Fm−F‖1,ν) refers in the setting

of Definition 4.3.1 to any real-valued sequence (cm)m∈N for which the sequence (cm ‖Fm−F‖−1
1,ν)m∈N

is bounded.

Remark 4.3.2 We note that the concept of quasi-Lipschitz continuity (along L1(ν)) in the sense

of Definition A.3(iii) in Section A is more general compared to the notion of ‘Lipschitz continuity’

introduced in Definition 4.3.1. 3

For any fixed F ∈ F (ν) as well as any x ∈ E, π = (fn)N−1
n=0 ∈ Π, and n = 0, . . . , N − 1, we will

consider in the following the maps Λ
F ;(π,x)
n : F (ν)→ R and Φ

(π,x)
n : F (ν)→ R defined by

ΛF ;(π,x)
n (G) :=

ˆ
E
V F ;π
n+1(y)PGn

(
(x, fn(x)), dy

)
and Φ(π,x)

n (G) :=

ˆ
E
ψ(y)PGn

(
(x, fn(x)), dy

)
.

(4.8)

It follows from conditions (a)–(b) of Assumption 4.2.1 along with Definition 1.4.1 as well as Propo-

sition 1.4.3 (applied to P := {P F }) that the maps Λ
F ;(π,x)
n and Φ

(π,x)
n in (4.8) are well-defined.

Using the same arguments one can even show that

sup
π∈Π
‖ΛF ;(π, · )

n (G)‖ψ <∞ and sup
π∈Π
‖Φ(π, · )

n (G)‖ψ <∞ (4.9)

for any fixed F ∈ F (ν), and every n = 0, . . . , N − 1 and G ∈ F (ν). Recall from Section 1.4 that

‖ · ‖ψ refers to the weighted sup-norm introduced in (1.18).

Part (ii) of Theorem 4.3.3 shows that the value functional Wxn
n is ‘Lipschitz continuous’ at fixed

F ∈ F (ν) w.r.t. (‖ · ‖1,ν , | · |). Conditions (a)–(b) of this theorem involve for any fixed F ∈ F (ν)

as well as any n = 0, . . . , N − 1 the maps ΛF
n : F (ν) → `∞ψ (Π × E) and Φn : F (ν) → `∞ψ (Π × E)

defined by

ΛF
n (G) :=

(
ΛF ;(π,x)
n (G)

)
(π,x)∈Π×E and Φn(G) :=

(
Φ(π,x)
n (G)

)
(π,x)∈Π×E , (4.10)

where Λ
F ;(π,x)
n and Φ

(π,x)
n are given by (4.8) and `∞ψ (Π × E) stands for the space of all bounded

real-valued functions on Π×E equipped with the norm ‖ · ‖∞,ψ defined by (4.11). It is easily seen

that the assignment

‖h‖∞,ψ := sup
π∈Π
‖h(π, · )‖ψ, h = (h(π, x))(π,x)∈Π×E ∈ `∞ψ (Π× E) (4.11)

defines a map ‖ · ‖∞,ψ : `∞ψ (Π×E)→ R≥0 which indeed provides a norm on `∞ψ (Π×E). It follows

from (4.9) and (4.11) that the maps ΛF
n and Φn given by (4.10) are well-defined for any fixed

F ∈ F (ν) and any n = 0, . . . , N − 1.

Theorem 4.3.3 (‘Lipschitz continuity’ of Wxn;π
n and Wxn

n in F ) Under Assumption 4.2.1 let

F ∈ F (ν), and assume that the following two conditions hold for any n = 0, . . . , N − 1.

(a) The map ΛF
n : F (ν) → `∞ψ (Π × E) defined by (4.10) is ‘Lipschitz continuous’ at F w.r.t.

(‖ · ‖1,ν , ‖ · ‖∞,ψ).

(b) The map Φn : F (ν) → `∞ψ (Π × E) defined by (4.10) is ‘Lipschitz continuous’ at F w.r.t.

(‖ · ‖1,ν , ‖ · ‖∞,ψ).
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Then the following two assertions hold.

(i) For any xn ∈ E, π ∈ Π, and n = 0, . . . , N , the map Wxn;π
n : F (ν) → R defined by (4.6) is

‘Lipschitz continuous’ at F w.r.t. (‖ · ‖1,ν , | · |).

(ii) For any xn ∈ E and n = 0, . . . , N , the map Wxn
n : F (ν) → R defined by (4.6) is ‘Lipschitz

continuous’ at F w.r.t. (‖ · ‖1,ν , | · |).

If F̂m is a reasonable estimator for the unknown distribution function F , then by the ‘Lipschitz

continuity’ of the value functionalWxn
n (known from part (ii) Theorem 4.3.3) we are in the position

to easily derive in several situations a strong law of the (plug-in) estimatorWxn
n (F̂m) for the aspect

Wxn
n (F ); see Subsections 4.4.1 and 4.5.1 for details.

Remark 4.3.4 (i) It follows from the proof of Theorem 4.3.3 below that (under the assumptions

of Theorem 4.3.3) the ‘Lipschitz continuity’ of the map Wxn;π
n in part (i) of Theorem 4.3.3 holds

even uniformly in π ∈ Π. That is, for any fixed F ∈ F (ν), we have

sup
π∈Π

∣∣Wxn;π
n (Fm)−Wxn;π

n (F )
∣∣ = O

(
‖Fm − F‖1,ν

)
for every xn ∈ E and n = 0, . . . , N as well as any sequence (Fm) ∈ F (ν)N with ‖Fm − F‖1,ν → 0.

(ii) The proof of Theorem 4.3.3 below reveals that (under the assumptions of Theorem 4.3.3) the

claims in (i) and (ii) of the latter theorem are also valid if in conditions (a)–(b) of Theorem 4.3.3 the

norm ‖ · ‖∞,ψ is replaced by the norm ‖ · ‖∞,1 which is defined as in (4.11) with ψ :≡ 1. However,

the shape of the norm ‖ · ‖∞,ψ is motivated by the elaborations in Section 5.2. More precisely,

we can not verify the statements in Theorem 5.2.2 in Subsection 5.2.2 if in conditions (a)–(b) of

Theorem 4.3.3 this norm is replaced by the (stricter) norm ‖ · ‖∞,1. 3

In applications, conditions (a) and (b) of Theorem 4.3.3 may be difficult to verify. Against this back-

ground, the following remark might be helpful in some situations; for an illustration see Subsection

5.2.2.

Remark 4.3.5 In some situations it turns out that for every F ∈ F (ν) the solution of the opti-

mization problem (4.4) does not change if Π is replaced by a subset Π′ ⊆ Π (being independent of

F ). Then in the definition (4.5) of the value function (at time 0) the set Π can be replaced by the

subset Π′. Of course, in this case it suffices to ensure that conditions (a)–(b) of Theorem 4.3.3 are

satisfied for the subset Π′ instead of Π. 3

Now, let us turn to the proof of Theorem 4.3.3.

Proof of Theorem 4.3.3: We will prove only the assertion in (ii). The claim in part (i) will follow

with similar arguments. Let xn ∈ E as well as n = 0, . . . , N be arbitrary but fixed. Moreover let

(Fm)m∈N be any sequence in F (ν) with ‖Fm − F‖1,ν → 0. Using analogous arguments as in the

proof of Theorem 2.2.8, we obtain by means of (4.6), (4.3), and (4.8) for any m ∈ N∣∣Wxn
n (Fm)−Wxn

n (F )
∣∣
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=
∣∣ sup
π∈Π
Wxn;π
n (Fm)− sup

π∈Π
Wxn;π
n (F )

∣∣
≤ sup

π∈Π

∣∣Wxn;π
n (Fm)−Wxn;π

n (F )
∣∣

= sup
π=(fn)N−1

n=0 ∈Π

{∣∣∣N−1∑
k=n

(
Ex0,PF+(PFm−PF );π
n,xn

[
rk(Xk, fk(Xk))

]
− Ex0,PF ;π

n,xn

[
rk(Xk, fk(Xk))

])
+ Ex0,PF+(PFm−PF );π

n,xn

[
rN (XN )

]
− Ex0,PF ;π

n,xn

[
rN (XN )

]∣∣∣}
= sup

π=(fn)N−1
n=0 ∈Π

{∣∣∣N−1∑
k=n

ˆ
E
· · ·
ˆ
E

ˆ
E
V F ;π
k+1 (yk+1) (PFmk − PFk )

(
(yk, fk(yk)), dyk+1

)
PFk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)
+

N−1∑
k=n+1

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

ˆ
E
· · ·
ˆ
E

ˆ
E
V F ;π
k+1 (yk+1) (PFmk − PFk )

(
(yk, fk(yk)), dyk+1

)
ξF,m;−
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
· · · ξF,m;−

n,J

(
(xn, fn(xn)), dyn+1

)∣∣∣}
= sup

π=(fn)N−1
n=0 ∈Π

{∣∣∣N−1∑
k=n

ˆ
E
· · ·
ˆ
E

ˆ
E

(
Λ
F ;(π,yk)
k (Fm)− Λ

F ;(π,yk)
k (F )

)
PFk−1

(
(yk−1, fk−1(yk−1)), dyk

)
PFk−2

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)
+

N−1∑
k=n+1

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

ˆ
E
· · ·
ˆ
E

ˆ
E

(
Λ
F ;(π,yk)
k (Fm)− Λ

F ;(π,yk)
k (F )

)
ξF,m;−
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
ξF,m;−
k−2,J

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · · ξF,m;−

n,J

(
(xn, fn(xn)), dyn+1

)∣∣∣}
≤

N−1∑
k=n

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

ˆ
E

∣∣ΛF ;(π,yk)
k (Fm)− Λ

F ;(π,yk)
k (F )

∣∣PFk−1

(
(yk−1, fk−1(yk−1)), dyk

)
PFk−2

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)}
+

N−1∑
k=n+1

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

ˆ
E

∣∣ΛF ;(π,yk)
k (Fm)− Λ

F ;(π,yk)
k (F )

∣∣ξF,m;+
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
ξF,m;+
k−2,J

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · · ξF,m;+

n,J

(
(xn, fn(xn)), dyn+1

)}
= sup

π∈Π

∣∣ΛF ;(π,xn)
n (Fm)− ΛF ;(π,xn)

n (F )
∣∣

+

N−1∑
k=n+1

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

ˆ
E

∣∣ΛF ;(π,yk)
k (Fm)− Λ

F ;(π,yk)
k (F )

∣∣PFk−1

(
(yk−1, fk−1(yk−1)), dyk

)
PFk−2

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)}
+

N−1∑
k=n+1

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

ˆ
E

∣∣ΛF ;(π,yk)
k (Fm)− Λ

F ;(π,yk)
k (F )

∣∣ξF,m;+
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
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ξF,m;+
k−2,J

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · · ξF,m;+

n,J

(
(xn, fn(xn)), dyn+1

)}
=: S1(m) + S2(m) + S3(m),

where ξF,m;±
j,J is for any subset J ⊆ {0, . . . , N − 1} given by

ξF,m;±
j,J :=

{
PFmj ± PFj , j ∈ J
PFj , otherwise

.

By condition (a) there exists a finite constant CΛ > 0 such that in view of (4.10)–(4.11)

sup
π∈Π

∣∣ΛF ;(π,xn)
n (Fm)− ΛF ;(π,xn)

n (F )
∣∣ ≤ sup

π∈Π
sup
x∈E

1

ψ(x)
·
∣∣ΛF ;(π,x)

n (Fm)− ΛF ;(π,x)
n (F )

∣∣ · ψ(xn)

= ‖ΛF
n (Fm)−ΛF

n (F )‖∞,ψ ≤ CΛ‖Fm − F‖1,ν · ψ(xn)

for every m ∈ N. Thus S1(m) = O(‖Fm − F‖1,ν).

Further, in view of condition (a), Lemma 1.4.4(v), and (4.10)–(4.11), we obtain for any k = n +

1, . . . , N − 1 and m ∈ N

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

ˆ
E

∣∣ΛF ;(π,yk)
k (Fm)− Λ

F ;(π,yk)
k (F )

∣∣PFk−1

(
(yk−1, fk−1(yk−1)), dyk

)
PFk−2

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)}
≤ sup

π∈Π
sup
x∈E

1

ψ(x)
·
∣∣ΛF ;(π,x)

k (Fm)− Λ
F ;(π,x)
k (F )

∣∣
· sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E
ψ(yk)P

F
k−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)}
= ‖ΛF

n (Fm)−ΛF
n (F )‖∞,ψ · sup

π∈Π
Ex0,PF ;π
n,xn

[
ψ(Xk)

]
≤ CΛ‖Fm − F‖1,ν · sup

π∈Π
Ex0,PF ;π
n,xn

[
ψ(Xk)

]
. (4.12)

Note that the second factor in the last line of (4.12) is (independent of m and) bounded by condition

(a) of Assumption 4.2.1 along with part (c) of Definition 1.4.1 (applied to P := {P F }). Therefore

we have S2(m) = O(‖Fm − F‖1,ν).

In view of conditions (a)–(b), condition (a) of Assumption 4.2.1, part (c) of Definition 1.4.1 (applied

to P := {P F }), and (4.10)–(4.11), for every k = n+1, . . . , N−1 we find some finite constant CΦ > 0

such that∑
J⊆{n,...,k−1}
1≤|J |≤k−n

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

ˆ
E

∣∣ΛF ;(π,yk)
k (Fm)− Λ

F ;(π,yk)
k (F )

∣∣ ξF,m;+
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
ξF,m;+
k−2,J

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · · ξF,m;+

n,J

(
(xn, fn(xn)), dyn+1

)}
≤ sup

π∈Π
sup
x∈E

1

ψ(x)
·
∣∣ΛF ;(π,x)

k (Fm)− Λ
F ;(π,x)
k (F )

∣∣
·

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

ˆ
E
ψ(yk) ξ

F,m;+
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
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ξF,m;+
k−2,J

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · · ξF,m;+

n,J

(
(xn, fn(xn)), dyn+1

)}
≤ ‖ΛF

n (Fm)−ΛF
n (F )‖∞,ψ

·
∑

J⊆{n,...,k−1}
1≤|J |≤k−n

(
k − n
|J |

)
K
k−n−|J |
3

(
‖Φn(Fm)−Φn(F )‖∞,ψ + 2K3

)|J | · ψ(xn)

≤ CΛ‖Fm − F‖1,ν

·
∑

J⊆{n,...,k−1}
1≤|J |≤k−n

(
k − n
|J |

)
K
k−n−|J |
3

(
CΦ‖Fm − F‖1,ν + 2K3

)|J | · ψ(xn)

for every m ∈ N. Hence S3(m) = O(‖Fm − F‖1,ν). Thus the assertion follows. This completes the

proof of Theorem 4.3.3. 2

The following Corollary 4.3.6 reduces the statements in Theorem 4.3.3 to the case when in the

setting of Sections 4.1–4.2 both the state space as well as the action spaces are finite. That is, let

E be given by (1.23) with e := #E ∈ N, and let An(xi) given by (1.24) be for any i = 1, . . . , e and

n = 0, . . . , N − 1 the finite set of all admissible actions in state xi at time n. Note that it follows

from the discussion in Section 1.5 that in the finite setting for any F ∈ F (ν) the transition function

P F from P1 = P (with P given by (1.25)) can be identified with some vector pF ∈ P̃ defined as in

(1.26) whose components are parametrized by F . Recall that the set P̃ is defined as in (1.27).

Therefore, the functionalsWxn;π
n andWxn

n given by (4.6) can be identified in the finite setting with

maps Wxi;π
n : F (ν)→ R and Wxi

n : F (ν)→ R defined by

Wxi;π
n (F ) := V F ;π

n (xi) and Wxi
n (F ) := max

π∈Π
Wxi;π
n (F ) (4.13)

for every i = 1, . . . , e, π ∈ Π, and n = 0, . . . , N , where the policy value function V F ;π
n (·) := V

pF ;π
n (·)

can be computed by (1.29) (with pF in place of p). Take into account that (under condition (a) of

Corollary 4.3.6 below) the latter functionals are well-defined because it follows from the discussion

at end of Section 1.5 that ψ :≡ 1 is a bounding function for the MDM (E,A,P F ,Π,X, r) for any

F ∈ F (ν).

Moreover the maps Λ
F ;(π,xi)
n : F (ν) → R and Φ

(π,xi)
n : F (ν) → R defined as in (4.8) admit (under

condition (a) of Corollary 4.3.6) in the finite setting above the representations

ΛF ;(π,xi)
n (G) =

e∑
j=1

V F ;π
n+1(xj) p

G
n,i;fn(xi)

(j) and Φ(π,xi)
n (G) =

e∑
j=1

pGn,i;fn(xi)
(j) ≡ 1 (4.14)

for fixed F ∈ F (ν), for any i = 1, . . . , e, π = (fn)N−1
n=0 ∈ Π, n = 0, . . . , N − 1, and G ∈ F (ν).

Corollary 4.3.6 (‘Lipschitz continuity’ of Wxi;π
n and Wxi

n in F ) Let F ∈ F (ν), and assume

that in the finite setting above the following two conditions hold.

(a) pG ∈ P̃ for every G ∈ F (ν).

(b) For any i = 1, . . . , e, π ∈ Π, and n = 0, . . . , N − 1, the map Λ
F ;(π,xi)
n : F (ν) → R defined by

(4.14) is ‘Lipschitz continuous’ at F w.r.t. (‖ · ‖1,ν , | · |).

94



Then the following two assertions hold.

(i) For any i = 1, . . . , e, π ∈ Π, and n = 0, . . . , N , the map Wxi;π
n : F (ν)→ R defined by (4.13)

is ‘Lipschitz continuous’ at F w.r.t. (‖ · ‖1,ν , | · |).

(ii) For any i = 1, . . . , e and n = 0, . . . , N , the mapWxi
n : F (ν)→ R defined by (4.13) is ‘Lipschitz

continuous’ at F w.r.t. (‖ · ‖1,ν , | · |).

Proof First of all, it follows from the above discussion that in the finite setting ψ :≡ 1 provides a

bounding function for the MDM (E,A,PG,Π,X, r) for every G ∈ F (ν). In particular, condition

(a) of Assumption 4.2.1 holds. Further condition (a) matches condition (b) of Assumption 4.2.1 in

the finite setting. Moreover, in view of (4.10), (4.11), (1.18), (4.14), and the choice of the bounding

function ψ :≡ 1, condition (b) corresponds to condition (a) of Theorem 4.3.3 in the finite setting.

By (4.10) and (4.14) we observe that condition (b) of Theorem 4.3.3 is satisfied. Thus the assertions

in (i) and (ii) follow from parts (i) and (ii) of the latter theorem, respectively. 2

4.3.2 Differentiability in F of the value function

We will use in the following the notion of quasi-Hadamard differentiability in Definition 4.3.7 below.

The latter concept of differentiability, which was introduced by [13, 15], is stronger compared to

the classical notion of tangential Hadamard differentiability; see, for instance, [83, 87].

The following definition can be deduced from Definition A.1(iii) (and Remark A.2) in Section A.

Take into account that ‖ · ‖1,ν does not provide a norm on all of L0(ν) but only on L1(ν). Let

(L, ‖ · ‖L) be a normed vector space.

Definition 4.3.7 (Quasi-Hadamard differentiability in F ) Let F ∈ F (ν). A mapW : F (ν)→
L is said to be quasi-Hadamard differentiable at F tangentially to L1(ν)〈L1(ν)〉 if there exists a

continuous map ẆF : L1(ν)→ L such that

lim
m→∞

∥∥∥W(F + εm hm)−W(F )

εm
− ẆF (h)

∥∥∥
L

= 0

holds for every triplet (h, (hm), (εm)) ∈ L1(ν)×L1(ν)N ×RN
>0 satisfying ‖hm − h‖1,ν → 0, εm → 0

as well as (F + εmhm) ⊆ F (ν). In this case, the map ẆF is called quasi-Hadamard derivative of

W at F tangentially to L1(ν)〈L1(ν)〉.

Part (ii) of Theorem 4.3.8 provides (under some assumptions) the quasi-Hadamard derivative of

the value functional Wxn
n . Recall from (4.10) the definitions of the maps ΛF

n : F (ν)→ `∞ψ (Π× E)

and Φn : F (ν)→ `∞ψ (Π× E). Also recall that for given F ∈ F (ν) and δ > 0 the sets Π(F ; δ) and

Π(F ) consists of all δ-optimal strategies w.r.t. F and of all optimal strategies w.r.t. F , respectively.

Let 0L0(ν) be the null in L0(ν), and recall that M(E) consists of all (E ,B(R))-measurable maps

h ∈ RE . Finally, let ‖ · ‖∞,ψ be the norm introduced in (4.11).

Theorem 4.3.8 (Quasi-Hadamard differentiability of Wxn;π
n and Wxn

n in F ) Under Assump-

tion 4.2.1 let F ∈ F (ν), and assume that the following three conditions hold.
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(a) For any x ∈ E, π ∈ Π, and n = 0, . . . , N − 1 there exists a map Λ̇
F ;(π,x)
n;F : L1(ν) → R

satisfying Λ̇
F ;(π,x)
n;F (0L0(ν)) = 0, Λ̇

F ;(π, · )
n;F (h) ∈M(E) as well as supπ∈Π ‖Λ̇

F ;(π, · )
n;F (h)‖ψ ≤ CΛ̇ for

all h ∈ L1(ν), where CΛ̇ > 0 is a finite constant (depending on n and h).

(b) For any n = 0, . . . , N − 1, the map ΛF
n : F (ν) → `∞ψ (Π × E) defined by (4.10) is quasi-

Hadamard differentiable at F tangentially to L1(ν)〈L1(ν)〉 with quasi-Hadamard derivative

Λ̇
F
n;F : L1(ν)→ `∞ψ (Π× E) given by

Λ̇
F
n;F (h) :=

(
Λ̇
F ;(π,x)
n;F (h)

)
(π,x)∈Π×E , (4.15)

where Λ̇
F ;(π,x)
n;F is as in condition (a).

(c) The map Φn : F (ν) → `∞ψ (Π × E) defined by (4.10) is ‘Lipschitz continuous’ at F w.r.t.

(‖ · ‖1,ν , ‖ · ‖∞,ψ).

Then the following two assertions hold.

(i) For any xn ∈ E, π = (fn)N−1
n=0 ∈ Π, and n = 0, . . . , N , the map Wxn;π

n : F (ν)→ R defined by

(4.6) is quasi-Hadamard differentiable at F tangentially to L1(ν)〈L1(ν)〉 with quasi-Hadamard

derivative Ẇxn;π
n;F : L1(ν)→ R given by

Ẇxn;π
n;F (h) :=

N−1∑
k=n

ˆ
E
· · ·
ˆ
E

ˆ
E

Λ̇
F ;(π,yk)
k;F (h)PFk−1

(
(yk−1, fk−1(yk−1)), dyk

)
PFk−2

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)
. (4.16)

(ii) For any xn ∈ E and n = 0, . . . , N , the map Wxn
n : F (ν) → R defined by (4.6) is quasi-

Hadamard differentiable at F tangentially to L1(ν)〈L1(ν)〉 with quasi-Hadamard derivative

Ẇxn
n;F : L1(ν)→ R given by

Ẇxn
n;F (h) := lim

δ↘0
sup

π∈Π(F ;δ)
Ẇxn;π
n;F (h). (4.17)

If the set of optimal strategies Π(F ) is non-empty, then the quasi-Hadamard derivative admits

the representation

Ẇxn
n;F (h) = sup

π∈Π(F )
Ẇxn;π
n;F (h) for all h ∈ L1(ν). (4.18)

Note that the representation of the quasi-Hadamard derivative Ẇxn;π
n;F in (4.16) has a certain analogy

to the representation of the ‘Fréchet derivative’ V̇xn;π
n;P given by (2.31). Also note that in part (ii) of

Theorem 4.3.8 the set Π(F ; δ) becomes the smaller the smaller δ is. In particular, this implies that

the right-hand side of (4.17) is well-defined. We point out that the supremum in (4.18) ranges over

all optimal strategies w.r.t. F . Remark 2.3.12 discusses (for P F in place of P ) two settings in which

one can find at least one optimal strategy. If there exists even a unique optimal strategy πF ∈ Π

w.r.t. F , then the set Π(F ) reduces to the singleton {πF }, and in this case the quasi-Hadamard

derivative Ẇx0
0;F of the (optimal) value functional Wx0

0 at F is equal to Ẇx0;πF

0;F . It is discussed in

the example of Section 5.2 that there exists a unique optimal strategy.
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Note that the quasi-Hadamard differentiability of the value functional shown in Theorem 4.3.8(ii)

provides a key tool to easily derive results on the asymptotic of the (plug-in) estimatorWxn
n (F̂m) for

the aspectWxn
n (F ), where F̂m corresponds to a reasonable estimator for the (unknown) distribution

function F ; see Subsections 4.4.2, 4.4.3, and 4.5.2 for details.

Remark 4.3.9 (i) Note that the quasi-Hadamard differentiability in part (i) of Theorem 4.3.8

holds even uniformly in π ∈ Π. We refer to Theorem 4.3.12 for the precise meaning.

(ii) In the case that in the setting (and under the assumptions) of Theorem 4.3.8 the map Λ̇
F ;(π,x)
n;F :

L1(ν) → R in condition (a) is linear for any x ∈ E, π ∈ Π, and n = 0, . . . , N − 1, then it follows

from the representation (4.16) that the quasi-Hadamard derivative Ẇxn;π
n;F (·) of Wxn;π

n at F is also

linear. The linearity of the quasi-Hadamard derivative Ẇxn
n;F (·) ofWxn

n at F in part (ii) of Theorem

4.3.8 is ensured if in addition the set of all optimal strategies Π(F ) is unique. The latter property

becomes important for deriving the so-called bootstrap consistency (in probability) of a certain

point estimator based on the map Wxn
n ; for an example, see Subsection 4.4.3.

(iii) It follows from the proof of Theorem 4.3.12 below that (under the assumptions of Theorem

4.3.8) the assertions in part (i) and (ii) of Theorem 4.3.8 also hold if condition (a) of the latter

theorem holds for the usual sup-norm ‖ · ‖∞ in place of the weighted sup-norm ‖ · ‖ψ (given by

(1.18)) and if in conditions (b)–(c) of Theorem 4.3.8 the norm ‖ · ‖∞,ψ (on `∞ψ (Π×E)) is replaced

by the norm ‖ · ‖∞,1 as defined in (4.11) with ψ :≡ 1. The choice of the norms ‖ · ‖ψ as well as

‖ · ‖∞,ψ is motivated by the fact that in the example of Section 5.2 conditions (a)–(c) of Theorem

4.3.8 can not be verified for the (stricter) norms ‖·‖∞ as well as ‖·‖∞,1; see (the proof of) Theorem

5.2.6 in Subsection 5.2.2 for further details.

(iv) Note that condition (c) of Theorem 4.3.8 is nothing but condition (b) of Theorem 4.3.3.

Moreover it can be deduced from Lemma A.5 along with Definition A.3 (and Remark 4.3.2) that

conditions (a)–(b) of Theorem 4.3.8 imply condition (a) of Theorem 4.3.3. 3

In practice it can be cumbersome to determine the set Π(F ) of all optimal strategies w.r.t. F .

While in many cases an optimal strategy can easily be found by means of the Bellman equation

(see part (i) of Theorem 1.3.3 in Section 1.3), it is more difficult to specify all optimal strategies

or to prove that an optimal strategy is unique. The following remark may help in some situations;

see Subsection 5.2.2 for an application.

Remark 4.3.10 In some situations it turns out that for every F ∈ F (ν) the solution of the

optimization problem in Display (4.4) does not change if Π is replaced by a subset Π′ ⊆ Π (being

independent of F ). Then in the definition (4.5) of the value function (at time 0) the set Π can

be replaced by the subset Π′, and it follows (under the assumptions of Theorem 4.3.8) that in the

representation (4.18) of the quasi-Hadamard derivative Ẇx0
0;F of Wx0

0 at F the set Π(F ) can be

replaced by the set Π′(F ) of all optimal strategies w.r.t. F from the subset Π′. Of course, in this

case it suffices to ensure that conditions (a)–(c) of Theorem 4.3.8 are satisfied for the subset Π′

instead of Π. 3

It is an immediate consequence of Theorem 4.3.8 that for every xn ∈ E, π ∈ Π, and n = 0, . . . , N the

functionalWxn;π
n (resp.Wxn

n ) is even quasi-Hadamard differentiable at some F ∈ F (ν) tangentially
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to any subspace of L1(ν) which is equipped with a norm dominating the norm ‖ · ‖1,ν given by

(4.7). The following example (an analogue of Example 2.5 in [59]) illustrates this statement. Note

that a map φ : R→ R≥1 is called a weight function if φ is continuous as well as non-increasing on

R≤0 and non-decreasing on R≥0, where R≤0 := (−∞, 0].

Example 4.3.11 Let φ be any weight function. Moreover let D be the space of all bounded

càdlàg functions on R, and denote by Dφ the subspace of all h ∈ D satisfying ‖h‖1/φ < ∞ and

lim|x|→∞ |h(x)| = 0. Note that ‖h‖1/φ = ‖hφ‖∞ (by (1.18)), where ‖ · ‖∞ stands for the usual

sup-norm. Also note that lim|x|→∞ |h(x)| = 0 clearly holds for all h ∈ D with ‖h‖1/φ < ∞ when

lim|x|→∞ φ(x) =∞. If Cφ :=
´

1/φ dν <∞, then in view of

‖h‖1,ν =

ˆ
|h(y)| ν(dy) ≤ Cφ‖h‖1/φ

for all h ∈ Dφ, we have Dφ ⊆ L1(ν). That is, on the space Dφ, the norm ‖ · ‖1/φ is stricter than

the norm ‖ · ‖1,ν . Hence, for every xn ∈ E, π ∈ Π, and n = 0, . . . , N the map Wxn;π
n (resp. Wxn

n )

given by (4.6) is quasi-Hadamard differentiable at some F ∈ F (ν) tangentially to Dφ〈Dφ〉 with

quasi-Hadamard derivative Ẇxn;π
n;F : Dφ → R (resp. Ẇxn

n;F : Dφ → R) given by (4.16) (resp. (4.17))

restricted to h ∈Dφ. 3

In the following we will prove Theorem 4.3.8. Analogously to the proof of Theorem 2.3.11, we note

that under Assumption 4.2.1 the functional Wxn
n : F (ν)→ R given by (4.6) can be represented for

any xn ∈ E and n = 0, . . . , N as a composition

Wxn
n = Ψ ◦Υxn

n (4.19)

with maps Υxn
n : F (ν)→ `∞(Π) and Ψ : `∞(Π)→ R defined by

Υxn
n (F ) :=

(
Wxn;π
n (F )

)
π∈Π

and Ψ
(
(w(π))π∈Π

)
:= sup

π∈Π
w(π). (4.20)

Recall that `∞(Π) refer to the space of all bounded real-valued functions on Π equipped with the

sup-norm ‖ · ‖∞. It can be verified easily by means of (4.6), condition (a) of Assumption 4.2.1,

and Proposition 1.4.3 (with P := {P F }) that the map Υxn
n is well-defined for any xn ∈ E and

n = 0, . . . , N , i.e. that (Wxn;π
n (F ))π∈Π ∈ `∞(Π) for every xn ∈ E, n = 0, . . . , N , and F ∈ F (ν).

Take into account that P F ∈ Pψ (⊆ P) for every F ∈ F (ν) by condition (b) of Assumption 4.2.1.

In Theorem 4.3.12 we will show that under the assumptions of Theorem 4.3.8 and for any xn ∈ E
and n = 0, . . . , N the map Υxn

n is quasi-Hadamard differentiable at F tangentially to L1(ν)〈L1(ν)〉
(in the sense of Definition 4.3.7) with quasi-Hadamard derivative Υ̇xn

n,F : L1(ν)→ `∞(Π) given by

Υ̇xn
n,F (h) :=

(
Ẇxn;π
n;F (h)

)
π∈Π

(4.21)

(the well-definiteness of Υ̇xn
n,F will be proven in Lemma 4.3.13 below). In view of the Hadamard

differentiability of the map Ψ (which is known from [75, Proposition 1]) we claim that this is

sufficient for the proof of part (ii) of Theorem 4.3.8; see below. Assertion (i) of Theorem 4.3.8

can be deduced from the following Theorem 4.3.12. Its statement is an immediate consequence of

Lemmas 4.3.13–4.3.14 below.

98



Theorem 4.3.12 Let F ∈ F (ν), and suppose that the assumptions of Theorem 4.3.8 hold. Then

for any xn ∈ E and n = 0, . . . , N , the map Υxn
n : F (ν) → `∞(Π) defined by (4.20) is quasi-

Hadamard differentiable at F tangentially to L1(ν)〈L1(ν)〉 with quasi-Hadamard derivative Υ̇xn
n,F :

L1(ν)→ `∞(Π) given by (4.21).

Lemma 4.3.13 Under the assumptions of Theorem 4.3.12 (except condition (c) of Theorem 4.3.8)

and for any fixed xn ∈ E and n = 0, . . . , N , the map Υ̇xn
n,F : L1(ν) → `∞(Π) given by (4.21) is

(‖ · ‖1,ν , ‖ · ‖∞)-continuous.

Proof First of all, note that (Ẇxn;π
n;F (h))π∈Π ∈ `∞(Π) holds for every h ∈ L1(ν) by conditions (a)–

(b) of Assumption 4.2.1, the second part of condition (a) of Theorem 4.3.8, and the representation

of the quasi-Hadamard derivative Ẇxn;π
n;F in (4.16).

Now, let (hm)m∈N be any sequence in L1(ν) with ‖hm − h‖1,ν → 0 for some h ∈ L1(ν). Using the

representation (4.16), we first get for every m ∈ N∥∥Υ̇xn
n,F (hm)− Υ̇xn

n,F (h)
∥∥
∞ = sup

π∈Π

∣∣Ẇxn;π
n;F (hm)− Ẇxn;π

n;F (h)
∣∣

= sup
π=(fn)N−1

n=0 ∈Π

{∣∣∣N−1∑
k=n

ˆ
E
· · ·
ˆ
E

ˆ
E

(
Λ̇
F ;(π,yk)
k;F (hm)− Λ̇

F ;(π,yk)
k;F (h)

)
PFk−1

(
(yk−1, fk−1(yk−1)), dyk

)
PFk−2

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)∣∣∣}
≤

N−1∑
k=n

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

ˆ
E

∣∣Λ̇F ;(π,yk)
k;F (hm)− Λ̇

F ;(π,yk)
k;F (h)

∣∣PFk−1

(
(yk−1, fk−1(yk−1)), dyk

)
PFk−2

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)}
= sup

π∈Π

∣∣Λ̇F ;(π,xn)
n;F (hm)− Λ̇

F ;(π,xn)
n;F (h)

∣∣
+
N−1∑
k=n+1

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

ˆ
E

∣∣Λ̇F ;(π,yk)
k;F (hm)− Λ̇

F ;(π,yk)
k;F (h)

∣∣PFk−1

(
(yk−1, fk−1(yk−1)), dyk

)
PFk−2

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)}
=: S1(m) + S2(m).

By conditions (a)–(b) of Theorem 4.3.8, we know that the map ΛF
n : F (ν) → `∞ψ (Π × E) defined

by (4.10) is quasi-Hadamard differentiable at F tangentially to L1(ν)〈L1(ν)〉 with quasi-Hadamard

derivative Λ̇
F
n;F : L1(ν) → `∞ψ (Π × E) given by (4.15). In particular, this implies that the map

Λ̇
F
n;F is continuous w.r.t. (‖ · ‖1,ν , ‖ · ‖∞,ψ), that is, we get

‖Λ̇F
n;F (hm)− Λ̇

F
n;F (h)‖∞,ψ → 0 as m→∞. (4.22)

Using (4.22), (4.15), and (4.11) along with the estimate

sup
π∈Π

∣∣Λ̇F ;(π,xn)
n;F (hm)− Λ̇

F ;(π,xn)
n;F (h)

∣∣ ≤ sup
π∈Π

sup
x∈E

1

ψ(x)

∣∣Λ̇F ;(π,x)
n;F (hm)− Λ̇

F ;(π,x)
n;F (h)

∣∣ · ψ(xn)

= ‖Λ̇F
n;F (hm)− Λ̇

F
n;F (h)‖∞,ψ · ψ(xn),
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we obtain limm→∞ S1(m) = 0. Moreover, for any k = n + 1, . . . , N − 1 and m ∈ N we obtain by

means of part (v) of Lemma 1.4.4 (applied to P F )

sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E

ˆ
E

∣∣Λ̇F ;(π,yk)
k;F (hm)− Λ̇

F ;(π,yk)
k;F (h)

∣∣PFk−1

(
(yk−1, fk−1(yk−1)), dyk

)
PFk−2

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)}
≤ sup
π=(fn)N−1

n=0 ∈Π

{
sup
x∈E

1

ψ(x)

∣∣Λ̇F ;(π,x)
k;F (hm)− Λ̇

F ;(π,x)
k;F (h)

∣∣ (4.23)

·
ˆ
E
· · ·
ˆ
E
ψ(yk)P

F
k−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)}
≤ sup

π∈Π
sup
x∈E

1

ψ(x)

∣∣Λ̇F ;(π,x)
k;F (hm)− Λ̇

F ;(π,x)
k;F (h)

∣∣
· sup
π=(fn)N−1

n=0 ∈Π

{ˆ
E
· · ·
ˆ
E
ψ(yk)P

F
k−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)}
.

= ‖Λ̇F
n;F (hm)− Λ̇

F
n;F (h)‖∞,ψ · sup

π∈Π
Ex0,PF ;π
n,xn

[
ψ(Xk)

]
. (4.24)

The second factor in the last line of formula display (4.23) is (independent of m and) finite due

to Assumption 4.2.1 along with Lemma 1.4.4(v) (applied to P F ) and part (c) of Definition 1.4.1

(with P := {P F }). Thus limm→∞ S2(m) = 0 by (4.22). Hence the assertion follows. 2

Lemma 4.3.14 Under the assumptions of Theorem 4.3.12 and for any fixed xn ∈ E and n =

0, . . . , N ,

lim
m→∞

∥∥∥Υxn
n (F + εmhm)−Υxn

n (F )

εm
− Υ̇xn

n;F (h)
∥∥∥
∞

= 0

for each triplet (h, (hm), (εm)) ∈ L1(ν)×L1(ν)N×RN
>0 satisfying ‖hm−h‖1,ν → 0, εm → 0 as well

as (F + εmhm) ⊆ F (ν).

Proof Let (h, (hm), (εm)) ∈ L1(ν)×L1(ν)N×RN
>0 be any triplet with ‖hm−h‖1,ν → 0, εm → 0 as

well as (F+εmhm) ⊆ F (ν). At first, note that Υxn
n (F+εmhm) (= (Wxn;π

n (F+εmhm))π∈Π) ∈ `∞(Π)

holds for every m ∈ N by Proposition 1.4.3 (with P := {P F+εmhm}). Take into account that the

latter result is applicable by conditions (a)–(b) of Assumption 4.2.1 because P F+εmhm ∈ Pψ for

every m ∈ N. Proceeding as in the proof Theorem 2.2.8, we obtain in view of (4.6), (4.3), (4.8) as

well as (4.16) for any m ∈ N and π ∈ Π∣∣∣Wxn;π
n (F + εmhm)−Wxn;π

n (F )

εm
− Ẇxn;π

n;F (h)
∣∣∣

=
∣∣∣ 1

εm

(N−1∑
k=n

(
Ex0,PF+(PF+εmhm−PF );π
n,xn

[
rk(Xk, fk(Xk))

]
− Ex0,PF ;π

n,xn

[
rk(Xk, fk(Xk))

])
+ Ex0,PF+(PF+εmhm−PF );π

n,xn

[
rN (XN )

]
− Ex0,PF ;π

n,xn

[
rN (XN )

])
− Ẇxn;π

n;F (h)
∣∣∣

=
∣∣∣ 1

εm

(N−1∑
k=n

ˆ
E
· · ·
ˆ
E

ˆ
E
V F ;π
k+1 (yk+1) (PF+εmhm

k − PFk )
(
(yk, fk(yk)), dyk+1

)
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PFk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)
+

N−1∑
k=n+1

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

ˆ
E
· · ·
ˆ
E

ˆ
E
V F ;π
k+1 (yk+1) (PF+εmhm

k − PFk )
(
(yk, fk(yk)), dyk+1

)
ξF,m;−
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
· · · ξF,m;−

n,J

(
(xn, fn(xn)), dyn+1

))
− Ẇxn;π

n;F (h)
∣∣∣

=
∣∣∣N−1∑
k=n

ˆ
E
· · ·
ˆ
E

ˆ
E

(Λ
F ;(π,yk)
k (F + εmhm)− Λ

F ;(π,yk)
k (F )

εm

)
PFk−1

(
(yk−1, fk−1(yk−1)), dyk

)
PFk−2

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)
+

N−1∑
k=n+1

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

ˆ
E
· · ·
ˆ
E

ˆ
E

(Λ
F ;(π,yk)
k (F + εmhm)− Λ

F ;(π,yk)
k (F )

εm

)
ξF,m;−
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
ξF,m;−
k−2,J

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · · ξF,m;−

n,J

(
(xn, fn(xn)), dyn+1

)
−
N−1∑
k=n

ˆ
E
· · ·
ˆ
E

ˆ
E

Λ̇
F ;(π,yk)
k;F (h)PFk−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)∣∣∣
≤

N−1∑
k=n

ˆ
E
· · ·
ˆ
E

ˆ
E

∣∣∣ΛF ;(π,yk)
k (F + εmhm)− Λ

F ;(π,yk)
k (F )

εm
− Λ̇

F ;(π,yk)
k;F (h)

∣∣∣PFk−1

(
(yk−1, fk−1(yk−1)), dyk

)
PFk−2

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)
+

N−1∑
k=n+1

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

ˆ
E
· · ·
ˆ
E

ˆ
E

∣∣∣ΛF ;(π,yk)
k (F + εmhm)− Λ

F ;(π,yk)
k (F )

εm

∣∣∣ ξF,m;+
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
ξF,m;+
k−2,J

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · · ξF,m;+

n,J

(
(xn, fn(xn)), dyn+1

)
=
∣∣∣ΛF ;(π,xn)

n (F + εmhm)− Λ
F ;(π,xn)
n (F )

εm
− Λ̇

F ;(π,xn)
n;F (h)

∣∣∣
+

N−1∑
k=n+1

ˆ
E
· · ·
ˆ
E

ˆ
E

∣∣∣ΛF ;(π,yk)
k (F + εmhm)− Λ

F ;(π,yk)
k (F )

εm
− Λ̇

F ;(π,yk)
k;F (h)

∣∣∣PFk−1

(
(yk−1, fk−1(yk−1)), dyk

)
PFk−2

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)
+

N−1∑
k=n+1

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

ˆ
E
· · ·
ˆ
E

ˆ
E

∣∣∣ΛF ;(π,yk)
k (F + εmhm)− Λ

F ;(π,yk)
k (F )

εm

∣∣∣ξF,m;+
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
ξF,m;+
k−2,J

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · · ξF,m;+

n,J

(
(xn, fn(xn)), dyn+1

)
=: S1(m,π) + S2(m,π) + S3(m,π),

where ξF,m;±
j,J is for any subset J ⊆ {0, . . . , N − 1} given by

ξF,m;±
j,J :=

{
PF+εmhm
j ± PFj , j ∈ J
PFj , otherwise

.

In view of condition (a)–(b) of Theorem 4.3.8, the map ΛF
n : F (ν)→ `∞ψ (Π×E) defined by (4.10) is
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quasi-Hadamard differentiable at F tangentially to L1(ν)〈L1(ν)〉 with quasi-Hadamard derivative

Λ̇
F
n;F : L1(ν)→ `∞ψ (Π× E) given by (4.15). As a consequence

sup
π∈Π

∥∥∥Λ
F ;(π, · )
n (F + εmhm)− Λ

F ;(π, · )
n (F )

εm
− Λ̇

F ;(π, · )
n;F (h)

∥∥∥
ψ
→ 0 as m→∞ (4.25)

by (4.11), (4.10), and (4.15). Using (4.25) and the estimate

∣∣∣ΛF ;(π,xn)
n (F + εmhm)− Λ

F ;(π,xn)
n (F )

εm
− Λ̇

F ;(π,xn)
n;F (h)

∣∣∣
≤ sup

x∈E

1

ψ(x)
·
∣∣∣ΛF ;(π,x)

n (F + εmhm)− Λ
F ;(π,x)
n (F )

εm
− Λ̇

F ;(π,x)
n;F (h)

∣∣∣ · ψ(xn)

=
∥∥∥Λ

F ;(π, · )
n (F + εmhm)− Λ

F ;(π, · )
n (F )

εm
− Λ̇

F ;(π, · )
n;F (h)

∥∥∥
ψ
· ψ(xn)

for every π ∈ Π and m ∈ N, we obtain limm→∞ S1(m,π) = 0 uniformly in π ∈ Π.

Moreover we observe for any π ∈ Π, k = n+ 1, . . . , N − 1, and m ∈ N

ˆ
E
· · ·
ˆ
E

ˆ
E

∣∣∣ΛF ;(π,yk)
k (F + εmhm)− Λ

F ;(π,yk)
k (F )

εm
− Λ̇

F ;(π,yk)
k;F (h)

∣∣∣PFk−1

(
(yk−1, fk−1(yk−1)), dyk

)
PFk−2

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)
≤ sup

x∈E

1

ψ(x)
·
∣∣∣ΛF ;(π,x)

k (F + εmhm)− Λ
F ;(π,x)
k (F )

εm
− Λ̇

F ;(π,x)
k;F (h)

∣∣∣
·
ˆ
E
· · ·
ˆ
E
ψ(yk)P

F
k−1

(
(yk−1, fk−1(yk−1)), dyk

)
· · ·PFn

(
(xn, fn(xn)), dyn+1

)
=

∥∥∥Λ
F ;(π, · )
k (F + εmhm)− Λ

F ;(π, · )
k (F )

εm
− Λ̇

F ;(π, · )
k;F (h)

∥∥∥
ψ
· Ex0,PF ;π

n,xn

[
ψ(Xk)

]
(4.26)

by part (v) of Lemma 1.4.4 (applied to P F ). Since the second factor in the last line of (4.26)

is uniformly bounded in π ∈ Π due to Assumption 4.2.1 along with Lemma 1.4.4(v) (applied to

P F ) and Definition 1.4.1(c) (with P := {P F }), Display (4.25) implies that limm→∞ S2(m,π) = 0

uniformly in π ∈ Π.

As a consequence of condition (c) of Theorem 4.3.8 and (4.10), there exists a finite constant CΦ > 0

such that

sup
π∈Π

∥∥Φ(π, · )
n (F + εmhm)− Φ(π, · )

n (F )
∥∥
ψ
≤ CΦ ‖(F + εmhm)− F‖1,ν ≤ CΦεm · sup

`∈N
‖h`‖1,ν (4.27)

for every m ∈ N. Note that the latter bound is finite because ‖hm − h‖1,ν → 0 (by assumption).

In view of the second part of condition (a) of Theorem 4.3.8, (4.8), (4.27), conditions (a)–(b)

of Assumption 4.2.1 along with Definition 1.4.1 (applied to P := {P F }), for every π ∈ Π, k =

n+ 1, . . . , N − 1, and m ∈ N we get

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

ˆ
E
· · ·
ˆ
E

ˆ
E

∣∣∣ΛF ;(π,yk)
k (F + εmhm)− Λ

F ;(π,yk)
k (F )

εm

∣∣∣ ξF,m;+
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
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ξF,m;+
k−2,J

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · · ξF,m;+

n,J

(
(xn, fn(xn)), dyn+1

)
≤ sup

x∈E

1

ψ(x)
·
∣∣∣ΛF ;(π,x)

k (F + εmhm)− Λ
F ;(π,x)
k (F )

εm

∣∣∣
·

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

ˆ
E
· · ·
ˆ
E

ˆ
E
ψ(yk) ξ

F,m;+
k−1,J

(
(yk−1, fk−1(yk−1)), dyk

)
ξF,m;+
k−2,J

(
(yk−2, fk−2(yk−2)), dyk−1

)
· · · ξF,m;+

n,J

(
(xn, fn(xn)), dyn+1

)
≤ sup

x∈E

1

ψ(x)
·
∣∣∣ΛF ;(π,x)

k (F + εmhm)− Λ
F ;(π,x)
k (F )

εm
− Λ̇

F ;(π,x)
k;F (0L0(ν))

∣∣∣
·

∑
J⊆{n,...,k−1}
1≤|J |≤k−n

(
k − n
|J |

)
K
k−n−|J |
3

(∥∥Φ(π, · )
n (F + εmhm)− Φ(π, · )

n (F )
∥∥
ψ

+ 2K3

)|J | · ψ(xn)

≤
∥∥∥Λ

F ;(π, · )
k (F + εmhm)− Λ

F ;(π, · )
k (F )

εm
− Λ̇

F ;(π, · )
k;F (0L0(ν))

∥∥∥
ψ

·
∑

J⊆{n,...,k−1}
1≤|J |≤k−n

(
k − n
|J |

)
K
k−n−|J |
3

(
CΦεm · sup

`∈N
‖h`‖1,ν + 2K3

)|J | · ψ(xn). (4.28)

By conditions (a)–(b) of Theorem 4.3.8 along with (4.11), (4.10), and (4.15), the first factor in the

last line of (4.28) converges to 0 as m → ∞ uniformly in π ∈ Π. Thus, since sup`∈N ‖h`‖1,ν < ∞
(recall ‖hm − h‖1,ν → 0), we may conclude limm→∞ S3(m,π) = 0 uniformly in π ∈ Π. Thus the

assertion follows. 2

It remains to show that the claim in part (ii) of Theorem 4.3.8 holds.

Proof of part (ii) of Theorem 4.3.8: Let xn ∈ E and n = 0, . . . , N be arbitrary but fixed.

In the sequel, we will verify that the map Wxn
n : F (ν) → R defined by (4.6) is quasi-Hadamard

differentiable at F tangentially to L1(ν)〈L1(ν)〉 with quasi-Hadamard derivative Ẇxn
n,F : L1(ν)→ R

given by (4.17).

For the proof we will use (4.19) which says that Wxn
n can be represented as a composition of

the functionals Ψ and Υxn
n given by (4.20). Note that Proposition 1 in [75] guarantees that Ψ is

Hadamard differentiable (in the sense of [75]) at every (w(π))π∈Π ∈ `∞(Π) with (possibly nonlinear)

Hadamard derivative Ψ̇(w(π))π∈Π
: `∞(Π) → R given by (2.40). Further it follows from Theorem

4.3.12 that Υxn
n is quasi-Hadamard differentiable at F tangentially to L1(ν)〈L1(ν)〉 with quasi-

Hadamard derivative Υ̇xn
n given by (4.21).

In view of (4.19) and the shape of Ψ̇(w(π))π∈Π
and Υ̇xn

n,F , quasi-Hadamard differentiability of Wxn
n

at F tangentially to L1(ν)〈L1(ν)〉 can be identified with quasi-Hadamard differentiability of the

map Ψ ◦ Υxn
n : F (ν) → R at F tangentially to L1(ν)〈L1(ν)〉 with quasi-Hadamard derivative

˙(Ψ ◦Υxn
n )F : L1(ν)→ R given by

˙(Ψ ◦Υxn
n )F (h) := Ψ̇Υxnn (F ) ◦ Υ̇xn

n,F (h). (4.29)

Indeed, using (4.21) and (2.40) we observe

˙(Ψ ◦Υxn
n )F (h) = Ψ̇(Wxn;π

n (F ))π∈Π

((
Ẇxn;π
n;F (h)

)
π∈Π

)
= lim

δ↘0
sup

π∈Π(F ;δ)
Ẇxn;π
n;F (h)
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for every h ∈ L1(ν), and that if in addition the set Π(F ) is non-empty

˙(Ψ ◦Υxn
n )F (h) = sup

π∈Π(F )
Ẇxn;π
n;F (h)

for all h ∈ L1(ν).

Now, an application of the chain rule in the form of Lemma A.2 in [57] yields that the map

Ψ ◦ Υxn
n : F (ν) → R is quasi-Hadamard differentiable at F tangentially to L1(ν)〈L1(ν)〉 with

quasi-Hadamard derivative ˙(Ψ ◦Υxn
n )F : L1(ν) → R given by (4.29). This completes the proof of

Theorem 4.3.8. 2

Corollary 4.3.15 below is a special case of Theorem 4.3.8 when in the MDM in (4.1) the state space

E as well as the action spaces are finite. That is, let E be given by (1.23) with e := #E ∈ N and let

An(xi) be the (finite) set of all admissible actions in state xi ∈ E at time n = 0, . . . , N −1 given by

(1.24). The latter framework is discussed in detail in Section 1.5 for general MDMs. Let the set P̃
be introduced as in (1.27), and recall the definitions of the functionals Wxi;π

n and Wxi
n from (4.13).

Finally, let Π(F ) be the set of all optimal strategies w.r.t. F which solves the optimization problem

(1.28) (with pF in place of p), and note that this set is non-empty and finite (see the discussion in

Section 1.5).

Corollary 4.3.15 (Quasi-Hadamard differentiability of Wxi;π
n and Wxi

n in F ) Let F ∈ F (ν),

and assume that in the setting above the following two conditions hold.

(a) pG ∈ P̃ for every G ∈ F (ν).

(b) For any i = 1, . . . , e, π ∈ Π, and n = 0, . . . , N − 1, the map Λ
F ;(π,xi)
n : F (ν) → R

defined by (4.14) is quasi-Hadamard differentiable at F tangentially to L1(ν)〈L1(ν)〉 with

quasi-Hadamard derivative Λ̇
F ;(π,xi)
n;F : L1(ν) → R satisfying Λ̇

F ;(π,xi)
n;F (0L0(ν)) = 0 as well as

|Λ̇F ;(π,xi)
n;F (h)| ≤ CΛ̇ for all h ∈ L1(ν), where CΛ̇ > 0 is a finite constant (depending on n and

h).

Then the following two assertions hold.

(i) For any i = 1, . . . , e, π ∈ Π, and n = 0, . . . , N , the mapWxi;π
n : F (ν)→ R defined by (4.13) is

quasi-Hadamard differentiable at F tangentially to L1(ν)〈L1(ν)〉 with quasi-Hadamard deriva-

tive Ẇxi;π
n;F : L1(ν)→ R given by

Ẇxi;π
n;F (h) :=

N−1∑
k=n

e∑
in+1=1

· · ·
e∑

ik−1=1

e∑
ik=1

Λ̇
F ;(π,xik )

k;F (h) pFk−1,ik−1;fk−1(xik−1
)(ik)

pFk−2,ik−2;fk−2(xik−2
)(ik−1) · · · pFn,i;fn(xi)

(in+1). (4.30)

(ii) For any i = 1, . . . , e and n = 0, . . . , N , the map Wxi
n : F (ν) → R defined by (4.13) is quasi-

Hadamard differentiable at F tangentially to L1(ν)〈L1(ν)〉 with quasi-Hadamard derivative

Ẇxn
n;F : L1(ν)→ R given by

Ẇxi
n;F (h) := max

π∈Π(F )
Ẇxi;π
n;F (h).
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Proof At first, it follows from the proof of Corollary 4.3.6 that conditions (a)–(b) of Assumption

4.2.1 are satisfied in the finite setting. Take into account that condition (a) of Corollary 4.3.15

coincides with condition (a) of Corollary 4.3.6. In the same proof we have shown that condition

(b) of Theorem 4.3.3 holds in the finite setting. Thus, in view of Remark 4.3.9(iv), condition (c) of

Theorem 4.3.8 is also satisfied. Finally, in virtue of (4.10), (4.11), (1.18), (4.14), and the choice of

the bounding function ψ :≡ 1, condition (b) clearly matches conditions (a)–(b) of Theorem 4.3.8

in the finite setting. Therefore, an application of the latter theorem entails that the assertions in

part (i) and (ii) hold. 2

In the following two Sections 4.4 and 4.5 we will use the regularity results from Theorems 4.3.3

and 4.3.8 to perform a statistical estimation of the optimal value (function) of a simple MDM in

which the transition function is generated only by an (unknown) single distribution function F .

Therefore the objective of these sections is the estimation of the unknown distribution function F

which in turn provides an estimate for the (optimal) valueWx0
0 (F ) of the (simple) MDM from (4.1)

for some given initial state x0 ∈ E.

Recall from (4.6) the definitions of the functionals Wxn;π
n : F (ν)→ R and Wxn

n : F (ν)→ R. If F̂m
corresponds to a reasonable estimator for the unknown distribution function F (∈ F (ν)) satisfying

F̂m ∈ F (ν), then for any xn ∈ E, π ∈ Π, and n = 0, . . . , N the plug-in estimator Wxn;π
n (F̂m)

(resp. Wxn
n (F̂m)) can be regarded as a reasonable (point) estimator for the aspect Wxn;π

n (F ) (resp.

Wxn
n (F )). In Sections 4.4–4.5 we show for the estimatorsWxn;π

n (F̂m) andWxn
n (F̂m) several asymp-

totic properties, such as strong consistency, asymptotic error distribution, and bootstrap consis-

tency (in probability).

4.4 Nonparametric estimation of Wx0
0 (F )

In this section, we will deal with a nonparametric statistical model and consider the empirical

distribution function F̂m as the canonical estimator for the unknown distribution function F . As

already mentioned in the main introduction, a similar estimation approach in a MDM whose tran-

sition probabilities are governed by a family of (unknown) distribution functions has already been

performed in [26].

Let (Yi)i∈N be a sequence of i.i.d. real-valued random variables on some probability space (Ω,F ,P),

and denote by F the common distribution function of Y1, Y2, . . .. In particular F is an element

of the set F of all distribution functions on R. The random variables Yi can be seen as historical

observations (or simulated data) drawn from the unknown distribution function F which in turn

governs the random transition mechanism of the MDP at all decision epochs. In practice this means

that the Yi’s can be extracted from the observations of the transition probabilities of the MDP.

The estimator for the marginal distribution function F of the sequence (Yi)i∈N based on sample

size m ∈ N will be in the following the empirical distribution function F̂m of Y1, . . . , Ym defined by

F̂m(ω) :=
1

m

m∑
i=1

1[Yi(ω),∞), ω ∈ Ω. (4.31)

Note that (4.31) clearly defines a map F̂m : Ω → F . In this case, for any xn ∈ E, π ∈ Π, and
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n = 0, . . . , N , the plug-in estimator Wxn;π
n (F̂m) (resp. Wxn

n (F̂m)) can be regarded as a reason-

able nonparametric estimator for Wxn;π
n (F ) (resp. Wxn

n (F )) if we can ensure that F ∈ F (ν) and

F̂m(ω, · ) ∈ F (ν) for every ω ∈ Ω and m ∈ N.

4.4.1 Strong consistency

The following theorem gives a strong law for the sequences of plug-in estimators (Wxn;π
n (F̂m))m∈N

and (Wxn
n (F̂m))m∈N for the aspects Wxn;π

n (F ) and Wxn
n (F ), respectively. Its assertions are (under

some assumptions) an immediate consequence of Theorem 4.3.3 along with an appropriate strong

law for the sequence of empirical distribution functions (F̂m)m∈N (see condition (c) of Theorem

4.4.1). Recall again the definition of the norm ‖·‖1,ν introduced in (4.7), and note that F−G ∈ L1(ν)

if F,G ∈ F (ν).

Theorem 4.4.1 (Strong consistency of (Wxn;π
n (F̂m)) and (Wxn

n (F̂m))) Let (Yi)i∈N be an i.i.d.

sequence of real-valued random variables on some probability space (Ω,F ,P), and denote by F the

common distribution function of the Yi. Moreover let F̂m be for every m ∈ N the empirical distri-

bution function of Y1, . . . , Ym as defined in (4.31), and assume that the following three conditions

hold.

(a) F ∈ F , and
´
R<0

F dν <∞ as well as
´
R≥0

(1− F ) dν <∞ (that is F ∈ F (ν)).

(b) F̂m(ω, · ) ∈ F (ν) for every ω ∈ Ω and m ∈ N.

(c) ‖F̂m − F‖1,ν → 0 P-a.s.

Then under the assumptions of Theorem 4.3.3 the following two assertions hold.

(i) For any xn ∈ E, π ∈ Π, and n = 0, . . . , N , the sequence of estimators (Wxn;π
n (F̂m))m∈N is

strongly consistent for Wxn;π
n (F ) under P in the sense that

Wxn;π
n (F̂m)→Wxn;π

n (F ) P-a.s.

(ii) For any xn ∈ E and n = 0, . . . , N , the sequence of estimators (Wxn
n (F̂m))m∈N is strongly

consistent for Wxn
n (F ) under P in the sense that

Wxn
n (F̂m)→Wxn

n (F ) P-a.s.

Note that for the statements in parts (i) and (ii) of Theorem 4.4.1 it is not necessary that the

estimators Wxn;π
n (F̂m) and Wxn

n (F̂m) are (F ,B(R))-measurable.

Part (ii) of Theorem 4.4.1 provides the following information. If there exists an optimal strategy

πF ∈ Π w.r.t. F , then under conditions (a)–(b) of Theorem 4.4.1 and the assumptions of Theorem

4.3.3, the sequence of estimators (Wx0
0 (F̂m))m∈N is strongly consistent (under P) for the optimal

valueWx0;πF

0 (F ) of the optimization problem (4.4) whenever the sequence of empirical distribution

functions (F̂m)m∈N is strongly consistent (under P) for F w.r.t. the norm ‖ · ‖1,ν . However, the

existence of an optimal strategy w.r.t. F and the latter convergence are not trivially satisfied in

general. In the examples of Chapter 5 it is shown that these conditions hold; see Subsections 5.1.3

and 5.2.3 for details.
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The following remark discusses an approach that could help in practice to estimate the (exact)

optimal strategy πF ∈ Π w.r.t. F .

Remark 4.4.2 In the nonparametric setting above an optimal strategy could be calculated ap-

proximately using the Bellman equation in part (i) of Theorem 1.3.3 in Section 1.3 (applied to

P F ), where the corresponding transition probabilities are computed by means of the empirical dis-

tribution function F̂m based on the observed data (Yi)i∈N. As a consequence, the resulting strategy

πF̂m ∈ Π can be seen as an approximate solution to the optimization problem (4.4) and thus an

estimator for an exact (but unknown) optimal strategy πF ∈ Π w.r.t. F . At this point it could be of

interest how well the estimated optimal strategy πF̂m approximates the true optimal strategy πF .

To answer this question, one needs to know how sensitive the optimal strategy is w.r.t. changes in

the transition probabilities. However, to the best of my knowledge there is no result which shows

this sensitivity. 3

Remark 4.4.3 (i) It follows from the discussion in Remark 4.3.4(i) that (under the assumptions

of Theorem 4.4.1) the assertion in part (i) of Theorem 4.4.1 holds even uniformly in π ∈ Π. That

is, for every xn ∈ E and n = 0, . . . , N we have supπ∈Π |W
xn;π
n (F̂m)−Wxn;π

n (F )| → 0 P-a.s.

(ii) Note that we get even stronger results in parts (i) and (ii) of Theorem 4.4.1 if condition (c) of

the latter theorem is replaced by the following slightly stronger condition:

(c’) mr‖F̂m − F‖1,ν → 0 P-a.s. for every r < 1
2 .

In fact, we obtain by means of Theorem 4.3.3 that under the assumptions of Theorem 4.4.1 with

(c’) in place of (c) the statements

(i’) mr
(
Wxn;π
n (F̂m)−Wxn;π

n (F )
)
→ 0 P-a.s.

(ii’) mr
(
Wxn
n (F̂m)−Wxn

n (F )
)
→ 0 P-a.s.

hold for any xn ∈ E, π ∈ Π, n = 0, . . . , N , and r < 1
2 . 3

4.4.2 Asymptotic error distribution

In this subsection we determine in Theorem 4.4.4 below the asymptotic error distribution of the

sequences of the (plug-in) estimators (Wxn;π
n (F̂m))m∈N and (Wxn

n (F̂m))m∈N. The key will be a

special functional delta-method in the form of [59]. In fact, we will derive the asymptotic error

distribution of the latter sequences of estimators by applying this functional delta-method along

with Theorem 4.3.8 and a central limit theorem for the empirical process (see Theorem 4.4.6 ahead).

Let L1(ν) again be the space of all maps h ∈ L0(ν) with ‖h‖1,ν < ∞, where the norm ‖ · ‖1,ν is

defined by (4.7). In this subsection we will assume that the Borel measure ν is locally finite. Recall

that any locally finite measure on B(R) is finite on bounded intervals and thus clearly σ-finite. Note

that it follows from Corollary 4.2.2 in [20] that the Banach space (L1(ν), ‖ · ‖1,ν) is separable. In

the following, let B(L1(ν)) be the Borel σ-algebra on L1(ν) w.r.t. the norm ‖ · ‖1,ν .

For the formulation of Theorem 4.4.4, recall from [2, 62] that an (L1(ν),B(L1(ν)))-valued random

variable B on some probability space (Ω̌, F̌ , P̌) is called an L1(ν)-valued Gaussian random variable
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if Ξ(B) is a real-valued Gaussian random variable for any (‖ · ‖1,ν , | · |)-continuous linear functional

Ξ : L1(ν) → R, that is, if
´
h(t)B( · , t) ν(dt) is a real-valued Gaussian random variable for every

h ∈ L∞(ν). Here L∞(ν) denotes the space of all bounded maps in L0(ν). We note that the

covariance operator of an L1(ν)-valued Gaussian random variable B is the map ΓB,ν(h1, h2) :

L∞(ν)×L∞(ν)→ R defined by

ΓB,ν(h1, h2)

:= Ě
[( ˆ

h1(t1)(B( · , t1)− Ě[B( · , t1)]) ν(dt1)
)( ˆ

h2(t2)(B( · , t2)− Ě[B( · , t2)]) ν(dt2)
)]

;

see, for example, [2]. Also note that an L1(ν)-valued random variable B on some probability space

(Ω̌, F̌ , P̌) is said to be centred if Ě[B( · , t)] ≡ 0 for all t ∈ R.

Part (ii) of Theorem 4.4.4 determines (under some assumptions) the asymptotic error distribution

of the sequence of estimators (Wx0
0 (F̂m))m∈N for the aspect Wx0

0 (F ). Here and in the sequel

convergence in distribution will be denoted by , where we refer to Section 2 in [19] for the notion

of weak convergence in metric spaces that are equipped with a Borel σ-algebra.

Theorem 4.4.4 (Asymptotic error distribution of (Wxn;π
n (F̂m)) and (Wxn

n (F̂m))) Let (Yi)i∈N
be an i.i.d. sequence of real-valued random variables on some probability space (Ω,F ,P), and de-

note by F the common distribution function of the Yi. Moreover let F̂m be for every m ∈ N the

empirical distribution function of Y1, . . . , Ym as defined in (4.31), and assume that the following

three conditions hold.

(a) F ∈ F , and
´ √

F (1− F ) dν <∞ (in particular F ∈ F (ν)).

(b) F̂m(ω, · ) ∈ F (ν) for every ω ∈ Ω and m ∈ N.

(c) For every xn ∈ E, π ∈ Π, n = 0, . . . , N , and m ∈ N, the estimatorsWxn;π
n (F̂m) andWxn

n (F̂m)

are (F ,B(R))-measurable.

Then under the assumptions of Theorem 4.3.8 the following two assertions hold.

(i) For any xn ∈ E, π ∈ Π, and n = 0, . . . , N , we have that Ẇxn;π
n;F (BF ) is (F̌ ,B(R))-measurable

and √
m
(
Wxn;π
n (F̂m)−Wxn;π

n (F )
)
 Ẇxn;π

n;F (BF ) in (R,B(R), | · |),

where Ẇxn;π
n;F is given by (4.16) and BF is an L1(ν)-valued centred Gaussian random variable

on some probability space (Ω̌, F̌ , P̌) with covariance operator given by

ΓBF ,ν(h1, h2) =

ˆ
R2

h1(t1)CF (t1, t2)h2(t2) (ν ⊗ ν)(d(t1, t2)) for all h1, h2 ∈ L∞(ν),

(4.32)

where

CF (t1, t2) := F (t1 ∧ t2)(1− F (t1 ∨ t2)), t1, t2 ∈ R. (4.33)

(ii) For any xn ∈ E and n = 0, . . . , N , we have that Ẇxn
n;F (BF ) is (F̌ ,B(R))-measurable and

√
m
(
Wxn
n (F̂m)−Wxn

n (F )
)
 Ẇxn

n;F (BF ) in (R,B(R), | · |),

where Ẇxn
n;F is given by (4.17) and BF is as in (i).
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The measurability assumption in condition (c) of the latter theorem is not very restrictive. We

refer to Subsections 5.1.3 and 5.2.3 for a verification of this condition.

In the examples of Chapter 5 we will see that part (ii) of Theorem 4.4.4 can be used to construct an

asymptotic confidence interval for the (optimal) valueWx0
0 (F ). However, since (in these examples)

the asymptotic error distribution of the corresponding plug-in estimator Wx0
0 (F̂m) depends on the

unknown distribution function F in a rather complex manner, it is therefore expected that the

bootstrap results presented in the next subsection could lead to a more efficient method than the

method based on a nonparametric estimation of the distribution of Ẇx0
0;F (BF ) in the unknown

distribution function F .

Now, we intend to prove Theorem 4.4.4. Its proof relies on Theorem 4.4.6 below. For the latter

theorem, however, we need an additional lemma.

Recall that a real-valued stochastic process ξ on some probability space (Ω,F ,P) with index set R is

a map ξ : Ω×R→ R such that the coordinate ω 7→ ξ(ω, t) is (F ,B(R))-measurable for all t ∈ R. The

process ξ will be called measurable if the map ξ : Ω×R→ R is (F ⊗B(R),B(R))-measurable. Note

that any real-valued stochastic process with right-continuous paths is measurable. In particular, the

empirical distribution function F̂m defined by (4.31) may be regarded as a real-valued measurable

stochastic process on (Ω,F ,P).

The statement of the following lemma can be proven in the same way as Lemma C.1 in [59].

Lemma 4.4.5 Suppose that the stochastic process ξ is measurable and that ξ(ω, ·) ∈ L1(ν) for

every ω ∈ Ω. Then the mapping ω 7→ ξ(ω, · ) from Ω to L1(ν) is (F ,B(L1(ν)))-measurable. In

particular, the process ξ can be seen as an (L1(ν),B(L1(ν)))-valued random variable on (Ω,F ,P).

The following Theorem 4.4.6, which can be deduced from Corollary 2.4 in [29], provides a central

limit theorem for the empirical process
√
m(F̂m − F ).

Theorem 4.4.6 With the notation and under the assumptions of Theorem 4.4.4 (except condition

(c) of Theorem 4.4.4) we have

√
m(F̂m − F )  BF in (L1(ν),B(L1(ν)), ‖ · ‖1,ν) (4.34)

for an L1(ν)-valued centred Gaussian random variable BF on some probability space (Ω̌, F̌ , P̌) with

covariance operator ΓBF ,ν given by (4.32).

Note that in the setting of Theorem 4.4.6 the L1(ν)-valued centred Gaussian random variable BF
jumps where F jumps. Also note that the integrability condition

´ √
F (1− F ) dν <∞ in condition

(a) of Theorem 4.4.4 clearly implies that
´
R<0

F dν < ∞ as well as
´
R≥0

(1 − F ) dν < ∞. Thus

F ∈ F (ν) by the first part of condition (a) of Theorem 4.4.4. Therefore it follows from Lemma

4.4.5 that under conditions (a)–(b) of Theorem 4.4.4 the empirical process
√
m(F̂m − F ) can be

seen as an (L1(ν),B(L1(ν)))-valued random variable on (Ω,F ,P) for every m ∈ N. Recall that

F −G ∈ L1(ν) if F,G ∈ F (ν).

Proof of Theorem 4.4.6: For the assertions in (4.32) and (4.34) we intend to apply Corollary

2.4 in [29]. First, we may define an i.i.d. sequence (Zi)i∈N0 of real-valued random variables by
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Zi := Yi+1, and it follows from Lemma 10.2 in [46] that the latter sequence can be extended to

an i.i.d. sequence (Zi)i∈Z. Take into account that every sequence of identically distributed random

variables is clearly stationary in the sense of [46, p. 179]. Now, let Xi : Ω×R→ R be for any i ∈ Z
a real-valued stochastic process defined by

Xi(ω, t) := 1[Zi(ω),∞)(t)− F (t).

Note that F is the common distribution function of the random variables Zi, i ∈ Z, and that the

mapping t 7→ Xi(ω, t) is right-continuous and thus (B(R),B(R))-measurable for every i ∈ Z and

ω ∈ Ω. In particular, Xi is measurable for any i ∈ Z. Moreover, we get

‖Xi(ω, · )‖1,ν

=

ˆ
R<0

∣∣1[Zi(ω),∞)(t)− F (t)
∣∣ ν(dt) +

ˆ
R≥0

∣∣1[Zi(ω),∞)(t)− F (t)
∣∣ ν(dt)

≤
ˆ
R<0

1[Zi(ω),∞)(t) ν(dt) +

ˆ
R<0

F (t) ν(dt) +

ˆ
R≥0

(1− F (t)) ν(dt)

+

ˆ
R≥0

(
1− 1[Zi(ω),∞)(t)

)
ν(dt)

= ν
[
[Zi(ω),∞) ∩ R<0

]
+

ˆ
R<0

F (t) ν(dt) +

ˆ
R≥0

(1− F (t)) ν(dt)

+

ˆ
R≥0

(
1− 1[Zi(ω),∞)(t)

)
ν(dt)1{Zi(ω)<0} +

ˆ
R≥0

(
1− 1[Zi(ω),∞)(t)

)
ν(dt)1{Zi(ω)>0}

+

ˆ
R≥0

(
1− 1[Zi(ω),∞)(t)

)
ν(dt)1{Zi(ω)=0}

= ν
[
[Zi(ω), 0)

]
1{Zi(ω)<0} +

ˆ
R<0

F (t) ν(dt) +

ˆ
R≥0

(1− F (t)) ν(dt)

+

ˆ
R≥0

1[Zi(ω),0)(t) ν(dt)1{Zi(ω)<0} +

ˆ
R≥0

1[0,Zi(ω))(t) ν(dt)1{Zi(ω)>0} + 0

= ν
[
[Zi(ω), 0)

]
1{Zi(ω)<0} +

ˆ
R<0

F (t) ν(dt) +

ˆ
R≥0

(1− F (t)) ν(dt)

+ ν
[
[Zi(ω), 0) ∩ R≥0

]
1{Zi(ω)<0} + ν

[
[0, Zi(ω))

]
1{Zi(ω)>0}

=

ˆ
R<0

F (t) ν(dt) +

ˆ
R≥0

(1− F (t)) ν(dt)

+ ν
[
[Zi(ω), 0)

]
1{Zi(ω)<0} + ν

[
[0, Zi(ω))

]
1{Zi(ω)>0}

< ∞

for any ω ∈ Ω and i ∈ Z because F ∈ F (ν) (by condition (a)) and ν is locally finite. Hence

Xi(ω, · ) ∈ L1(ν) for every ω ∈ Ω and i ∈ Z. As a consequence and in view of

E[Xi( · , t)] = E[1[Zi( · ),∞)(t)]− F (t) = P
[{
Zi( · ) ∈ (−∞, t]

}]
− F (t) = F (t)− F (t) = 0 (4.35)

for every i ∈ Z and t ∈ R, Lemma 4.4.5 implies that Xi is for any i ∈ Z a centred L1(ν)-valued

random variable on (Ω,F ,P).
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Setting F0 := σ(Zi : i ∈ Z \ N) for the σ-algebra on Ω generated by the random variables Zi,

i ∈ Z \ N, and in view of
ˆ
‖X0( · , t)‖2 ν(dt) =

ˆ ∥∥1[Z0(·),∞)(t)− F (t)
∥∥

2
ν(dt) =

ˆ √
E
[(
1[Z0(·),∞)(t)− F (t)

)2]
ν(dt)

=

ˆ √
E[1[Z0(·),∞)(t)]− 2E[1[Z0(·),∞)(t)]F (t) + F (t)2 ν(dt)

=

ˆ √
P
[{
Z0(·) ∈ (−∞, t]

}]
− 2P

[{
Z0(·) ∈ (−∞, t]

}]
F (t) + F (t)2 ν(dt)

=

ˆ √
F (t)− F (t)2 ν(dt) =

ˆ √
F (t)(1− F (t)) ν(dt) < ∞

(by condition (a)) as well as (4.35), the sequence (Xi)i∈Z of random variables satisfies conditions

(2.1) and (2.5)–(2.6) in [29]. Here ‖ · ‖2 refers to the L2-norm on the usual L2 = L2(Ω,F ,P) space

on (Ω,F ,P). Therefore the assumptions of Corollary 2.4 in [29] are fulfilled, and an application of

this corollary entails that (4.34) holds.

To end the proof, it remains to show (4.32). At first, we observe for any i ∈ Z and t1, t2 ∈ R

Cov(X0( · , t1), Xi( · , t2))

= Cov
(
1[Z0(·),∞)(t1)− F (t1),1[Zi(·),∞)(t2)− F (t2)

)
= Cov

(
1[Z0(·),∞)(t1),1[Zi(·),∞)(t2)

)
= E[1[Z0(·),∞)(t1)1[Zi(·),∞)(t2)]− E[1[Z0(·),∞)(t1)]E[1[Zi(·),∞)(t2)]

= P
[{
Z0(·) ∈ (−∞, t1]

}
∩
{
Zi(·) ∈ (−∞, t2]

}]
− P

[{
Z0(·) ∈ (−∞, t1]

}]
P
[{
Zi(·) ∈ (−∞, t2]

}]
=


P
[{
Z0(·) ∈ (−∞, t1]

}]
P
[{
Zi(·) ∈ (−∞, t2]

}]
− P

[{
Z0(·) ∈ (−∞, t1]

}]
P
[{
Zi(·) ∈ (−∞, t2]

}]
, i 6= 0

P
[{
Z0(·) ∈ (−∞, t1 ∧ t2]

}]
− P

[{
Z0(·) ∈ (−∞, t1]

}]
P
[{
Z0(·) ∈ (−∞, t2]

}]
, i = 0

=

{
0 , i 6= 0

F (t1 ∧ t2)− F (t1)F (t2) , i = 0

=

{
0 , i 6= 0

CF (t1, t2) , i = 0

because the sequence (Zi)i∈Z is independent and each Zi has distribution function F (by construc-

tion), where the last “=” follows from (4.33). Therefore

Cov(X0( · , t1), Xi( · , t2)) = CF (t1, t2)1{i=0} for all i ∈ Z and t1, t2 ∈ R. (4.36)

Moreover since h(Xi) corresponds for any h ∈ L∞(ν) and i ∈ Z to a bounded linear functional, it

follows from [20, Theorem 4.4.1] as well as Fubini’s theorem that for all h1, h2 ∈ L∞(ν) and i ∈ Z

Cov(h1(X0), h2(Xi)) = E
[( ˆ

h1(t1)X0( · , t1) ν(dt1)
)(ˆ

h2(t2)Xi( · , t2) ν(dt2)
)]

− E
[ˆ

h1(t1)X0( · , t1) ν(dt1)
]
E
[ ˆ

h2(t2)Xi( · , t2) ν(dt2)
]

=

ˆ
R2

h1(t1)h2(t2)E
[
X0( · , t1)Xi( · , t2)

]
(ν ⊗ ν)(d(t1, t2))

−
ˆ
h1(t1)E[X0( · , t1)] ν(dt1)

ˆ
h2(t2)E[Xi( · , t2)] ν(dt2)

111



=

ˆ
R2

h1(t1)h2(t2)Cov(X0( · , t1), Xi( · , t2)) (ν ⊗ ν)(d(t1, t2)).

Take into account that Xi is centred for any i ∈ Z. Hence, in view of equation (2.4) in [29] as well

as (4.36), we end up with

ΓBF ,ν(h1, h2) =
∑
i∈Z

Cov(h1(X0), h2(Xi))

=
∑
i∈Z

ˆ
R2

h1(t1)h2(t2)Cov(X0( · , t1), Xi( · , t2)) (ν ⊗ ν)(d(t1, t2))

=

ˆ
R2

h1(t1)CF (t1, t2)h2(t2) (ν ⊗ ν)(d(t1, t2))

for every h1, h2 ∈ L∞(ν). This shows (4.32). This completes the proof of Theorem 4.4.6. 2

Now, we are in the position to verify the assertions in Theorem 4.4.4.

Proof of Theorem 4.4.4: We will only prove the claim in part (i). The assertion in part (ii)

will follow with analogous arguments. Let xn ∈ E, π ∈ Π, and n = 0, . . . , N . First, part (i) of

Theorem 4.3.8 ensures that the map Wxn;π
n defined by (4.6) is quasi-Hadamard differentiable at

F tangentially to L1(ν)〈L1(ν)〉 with quasi-Hadamard derivative Ẇxn;π
n;F given by (4.16). Note that

Theorem 4.3.8 is applicable because F ∈ F along with
´ √

F (1− F ) dν < ∞ (by condition (a))

implies F ∈ F (ν); see the discussion below of Theorem 4.4.6. Second, it follows from condition

(c) that the expression
√
m(Wxn;π

n (F̂m)−Wxn;π
n (F )) corresponds to an (F ,B(R))-measurable map

from Ω to R for every m ∈ N. Thus, in view of Theorem 4.4.6, the functional delta-method in the

form of Theorem B.3(i) in [59] implies that Ẇxn;π
n;F (BF ) is (F̌ ,B(R))-measurable and that

√
m
(
Wxn;π
n (F̂m)−Wxn;π

n (F )
)
 Ẇxn;π

n;F (BF ) in (R,B(R), | · |),

where BF is an L1(ν)-valued centred Gaussian random variable on some probability space (Ω̌, F̌ , P̌)

with covariance operator ΓBF ,ν given by (4.32). This completes the proof of Theorem 4.4.4. 2

The following Remark 4.4.7 provides a criterion which ensures that the integrability condition´ √
F (1− F ) dν < ∞ in condition (a) of Theorem 4.4.4 is satisfied; see Subsection 4.4.3 for an

application. Recall from Subsection 4.3.2 that a weight function φ is a continuous map φ : R→ R≥1

which is non-increasing on R≤0 and non-decreasing on R≥0.

Remark 4.4.7 The integrability condition
´ √

F (1− F ) dν <∞ in condition (a) of Theorem 4.4.4

holds if
´
φ2 dF < ∞ for some weight function φ satisfying

´
1/φ dν < ∞. In this case and under

the first part of condition (a) of Theorem 4.4.4, we even have F ∈ F (ν).

Proof First of all, note that the finiteness of the integral
´
φ2 dF entails that we can find some

finite constant C > 0 such that 1 − F (x) ≤ Cφ−2(x) for all x ∈ R≥0 and F (x) ≤ Cφ−2(x) for all

x ∈ R<0. Hence in view of Cφ :=
´

1/φ dν <∞, this implies

ˆ √
F (1− F ) dν =

ˆ
R<0

√
F (1− F ) dν +

ˆ
R≥0

√
F (1− F ) dν
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≤
ˆ
R<0

√
F dν +

ˆ
R≥0

√
1− F dν ≤

√
C

ˆ
R<0

1/φ dν +
√
C

ˆ
R≥0

1/φ dν

=
√
C

ˆ
1/φ dν =

√
CCφ < ∞.

This shows the first assertion. It is discussed subsequent to Theorem 4.4.6 that the integrability

condition
´ √

F (1− F ) dν <∞ entails that
´
R<0

F dν <∞ as well as
´
R≥0

(1− F ) dν <∞. Hence

the additional claim follows and completes the proof. 3

We conclude this subsection with the following remark.

Remark 4.4.8 The asymptotic error distribution of the sequences of estimators (Wxn;π
n (F̂m))m∈N

and (Wxn
n (F̂m))m∈N can also be obtained if, instead of Theorem 4.4.6, a central limit theorem for

the empirical process in the (normed) space (Dφ, ‖ · ‖1/φ) (introduced in Example 4.3.11) is used;

see, for instance, Example 4.3 in [15]. We note that it follows from the discussion in Example 4.3.11

that the maps Wxn;π
n and Wxn

n as defined in (4.6) are also quasi-Hadamard differentiable at any

fixed F ∈ F (ν) tangentially to Dφ〈Dφ〉 with quasi-Hadamard derivatives Ẇxn;π
n;F : Dφ → R and

Ẇxn
n;F : Dφ → R given by (4.16) and (4.17) restricted to h ∈Dφ, respectively. 3

4.4.3 Bootstrap consistency

In this subsection we will present in Theorem 4.4.9 below a result concerning the bootstrap con-

sistency (in probability) of the sequences of estimators (Wxn;π
n (F̂m))m∈N and (Wxn

n (F̂m))m∈N. For

the latter asymptotic results we will use a functional delta method (for the bootstrap) in the form

of [59] along with Theorem 4.3.8 and a bootstrap version of the central limit theorem for the em-

pirical process in the Banach space (L1(ν), ‖ · ‖1,ν) (see Theorem 4.4.10 ahead), where we assume

throughout this subsection that the Borel measure ν is locally finite.

To explain the bootstrap method more explicitly, let (Wmi)m∈N,1≤i≤m be a triangular array of

nonnegative real-valued random variables on another probability space (Ω′,F ′,P′) such that one of

the following settings is met.

(B1) (Efron’s bootstrap) The random vector (Wm1, . . . ,Wmm) is multinomially distributed accord-

ing to the parameters m and p1 = · · · = pm = 1
m for every m ∈ N.

(B2) (Bayesian bootstrap) Wmi = Zi/Zm for every i = 1, . . . ,m and m ∈ N, where Zm :=
1
m

∑m
j=1 Zj and (Zj)j∈N is any sequence of nonnegative i.i.d. random variables on (Ω′,F ′,P′)

with common distribution function G satisfying
´
R>0

√
1−Gd` < ∞, and whose standard

deviation coincides with its mean and is strictly positive.

Now, extend the given probability space (Ω,F ,P) to the product space

(Ω,F ,P) := (Ω× Ω′,F ⊗ F ′,P⊗ P′),

and note that the sequences (Yi)i∈N and (Wmi)m∈N,1≤i≤m regarded as families of random variables

on (Ω,F ,P) are independent. Moreover define for every m ∈ N

F̂ ∗m(ω, ω′) :=
1

m

m∑
i=0

Wmi(ω
′)1[Yi(ω),∞), (ω, ω′) ∈ Ω. (4.37)
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Note that F̂ ∗m is defined to be the distribution function of the empirical measure of Y1, . . . , Ym,

where the Dirac measure at point Yi is weighted by the random variable Wmi. Since the mapping

t 7→ F̂ ∗m((ω, ω′), t) is clearly right-continuous, the bootstraped empirical distribution function F̂ ∗m
can be seen as a real-valued measurable stochastic process on (Ω,F ,P). Hence (4.37) indeed defines

a map F̂ ∗m : Ω → F which we will regard in the sequel as a bootstrap version of the empirical

distribution function F̂m given by (4.31).

The assertion in part (ii) of Theorem 4.4.9 can be used to construct an asymptotic bootstrap

confidence interval for the optimal value of the optimization problem (4.4); see Remark 4.4.13

below. Let dBL be the bounded Lipschitz metric on M1(R) as introduced in Example 2.1.4 (with

E := R). Finally, recall that for some given F ∈ F (ν) the set Π(F ) consists of all optimal strategies

w.r.t. F , and note that by P̌ξ we mean the distribution of a random variable ξ on some probability

space (Ω̌, F̌ , P̌) under P̌.

Theorem 4.4.9 (Bootstrap consistency of (Wxn;π
n (F̂m)) and (Wxn

n (F̂m))) Let (Yi)i∈N be an

i.i.d. sequence of real-valued random variables on some probability space (Ω,F ,P), and denote by

F the common distribution function of the Yi. Moreover let F̂m be for every m ∈ N the empiri-

cal distribution function of Y1, . . . , Ym as defined in (4.31). Let (Wmi)m∈N,1≤i≤m be a triangular

array of nonnegative real-valued random variables on another probability space (Ω′,F ′,P′), and set

(Ω,F ,P) := (Ω × Ω′,F ⊗ F ′,P ⊗ P′). Finally, let F̂ ∗m be for every m ∈ N given by (4.37), and

assume that the following conditions hold.

(a) F ∈ F , and
´
φ2 dF < ∞ for some weight function φ with

´
1/φ dν < ∞ (in particular

F ∈ F (ν)).

(b) F̂m(ω, · ) ∈ F (ν) for every ω ∈ Ω and m ∈ N.

(c) F̂ ∗m((ω, ω′), · ) ∈ F (ν) for every (ω, ω′) ∈ Ω and m ∈ N .

(d) For every xn ∈ E, π ∈ Π, n = 0, . . . , N , and m ∈ N, the estimators Wxn;π
n (F̂m) and

Wxn;π
n (F̂m) are (F ,B(R))-measurable.

(e) For every xn ∈ E, π ∈ Π, n = 0, . . . , N , and m ∈ N, the estimators Wxn;π
n (F̂ ∗m) and

Wxn;π
n (F̂ ∗m) are (F ,B(R))-measurable.

(f) For every x ∈ E, π ∈ Π, and n = 0, . . . , N − 1, the map Λ̇
F ;(π,x)
n;F : L1(ν) → R in condition

(a) of Theorem 4.3.8 is linear.

If one of the settings (B1)–(B2) is met, then under the assumptions of Theorem 4.3.8 the following

two assertions hold.

(i) For every xn ∈ E, π ∈ Π, n = 0, . . . , N , and δ > 0, we have that Ẇxn;π
n;F (BF ) is (F̌ ,B(R))-

measurable and

lim
m→∞

P
[{
ω ∈ Ω : dBL(P′√

m(Wxn;π
n (F̂ ∗m(ω,·))−Wxn;π

n (F̂m(ω)))
, P̌Ẇxn;π

n;F (BF )) ≥ δ
}]

= 0, (4.38)

where BF is an L1(ν)-valued centred Gaussian random variable on some probability space

(Ω̌, F̌ , P̌) with covariance operator ΓBF ,ν given by (4.32) and Ẇxn;π
n;F is given by (4.16).

(ii) If there exists a unique optimal strategy πF ∈ Π(F ) w.r.t. F , then for every xn ∈ E, n =
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0, . . . , N , and δ > 0, we have that Ẇxn
n;F (BF ) is (F̌ ,B(R))-measurable and

lim
m→∞

P
[{
ω ∈ Ω : dBL(P′√

m(Wxn
n (F̂ ∗m(ω,·))−Wxn

n (F̂m(ω)))
, P̌Ẇxn

n;F (BF )) ≥ δ
}]

= 0,

where BF is as in (i) and Ẇxn
n;F is given by (4.18).

For part (i) in Theorem 4.4.9 note that the mapping ω′ 7→
√
m(Wxn;π

n (F̂ ∗m(ω, ω′))−Wxn;π
n (F̂m(ω)))

is (F ′,B(R))-measurable for every fixed ω ∈ Ω by conditions (d)–(e) of this theorem. Take

into account that the latter conditions ensure that
√
m(Wxn;π

n (F̂ ∗m) − Wxn;π
n (F̂m)) is (F ,B(R))-

measurable. That means that
√
m(Wxn;π

n (F̂ ∗m(ω, · )) − Wxn;π
n (F̂m(ω))) can be seen as a real-

valued random variable on (Ω′,F ′,P′) for every fixed ω ∈ Ω. Therefore one can argue as in [15,

p. 1186] that the mapping ω 7→ dBL(P′√
m(Wxn;π

n (F̂ ∗m(ω,·))−Wxn;π
n (F̂m(ω)))

, P̌Ẇxn;π
n;F (BF )) is (F ,B(R≥0))-

measurable. In particular, the expression in (4.38) is well-defined. Analogously, we may regard√
m(Wxn

n (F̂ ∗m(ω, · ))−Wxn
n (F̂m(ω))) as a real-valued random variable on (Ω′,F ′,P′) for every fixed

ω ∈ Ω, and that the mapping ω 7→ dBL(P′√
m(Wxn

n (F̂ ∗m(ω,·))−Wxn
n (F̂m(ω)))

, P̌Ẇxn
n;F (BF )) is (F ,B(R≥0))-

measurable. This matters for the formulation of part (ii) of the preceding theorem.

The proof of Theorem 4.4.9 avails the following theorem which is a consequence of Theorem 5.2

in [15]. Recall that B(L1(ν)) refers to the Borel σ-algebra on the separable Banach space (L1(ν),

‖ · ‖1,ν).

Theorem 4.4.10 With the notation and under the assumptions of Theorem 4.4.9 (except condi-

tions (d)–(f) of Theorem 4.4.9) suppose that one of the settings (B1)–(B2) is met. Then

√
m
(
F̂ ∗m(ω, ·)− F̂m(ω)

)
 BF in (L1(ν),B(L1(ν)), ‖ · ‖1,ν), P-a.e. ω, (4.39)

where BF is as in Theorem 4.4.6.

Note that conditions (b)–(c) of Theorem 4.4.9 along with an analogue of Lemma 4.4.5 imply that the

process
√
m(F̂ ∗m − F̂m) is (F ,B(L1(ν)))-measurable. That is, the mapping ω′ 7→

√
m(F̂ ∗m(ω, ω′) −

F̂m(ω)) is (F ′,B(L1(ν)))-measurable for every fixed ω ∈ Ω. Hence we may regard
√
m(F̂ ∗m(ω, · )−

F̂m(ω)) as an (L1(ν)),B(L1(ν))))-valued random element on (Ω′,F ′,P′) for every fixed ω ∈ Ω.

Proof of Theorem 4.4.10: Under the imposed assumptions, Theorem 5.2 in [15] shows that (4.39)

holds with and (L1(ν),B(L1(ν)), ‖·‖1,ν) replaced by 
◦

and (Dφ,Dφ, ‖·‖1/φ), respectively. Here

Dφ is the space of all càdlàg functions h ∈ RR with ‖h‖1/φ = ‖hφ‖∞ <∞ and lim|x|→∞ |h(x)| = 0,

Dφ is the open-ball σ-algebra on (Dφ, ‖ · ‖1/φ) generated by the open balls of Dφ, and  
◦

denotes

convergence in distribution for the open-ball σ-algebra (see Appendix B in [15] for this concept).

Note that ‖·‖1,ν ≤ Cφ‖·‖1/φ with Cφ :=
´

1/φ dν <∞ (by condition (a) of Theorem 4.4.9) and thus

Dφ ⊆ L1(ν). Hence the embedding map Dφ → L1(ν), h 7→ h is (‖ · ‖1/φ, ‖ · ‖1,ν)-continuous, and

the continuous mapping theorem (see, for example, [19, Theorem 6.4]) entails that the convergence

in (4.39) holds. This completes the proof of Theorem 4.4.10. 2

Let us turn to the proof of Theorem 4.4.9.

Proof of Theorem 4.4.9: Since the evidence of the claim in part (ii) will follow with similar

arguments as the proof of the assertion in (i), we will focus only on the proof of part (i). Let
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xn ∈ E, π ∈ Π, n = 0, . . . , N , and δ > 0. Under the imposed assumptions, part (i) of Theorem

4.3.8 shows that the mapWxn;π
n defined by (4.6) is quasi-Hadamard differentiable at F tangentially

to L1(ν)〈L1(ν)〉 with linear quasi-Hadamard derivative Ẇxn;π
n;F given by (4.16). Take into account

that the latter theorem may be applied because in view of Remark 4.4.7 condition (a) implies that

F ∈ F (ν). It follows from conditions (d)–(e) that the expressions
√
m(Wxn;π

n (F̂m)−Wxn;π
n (F )) as

well as
√
m(Wxn;π

n (F̂ ∗m)−Wxn;π
n (F̂m)) are for every m ∈ N real-valued random variables on (Ω,F ,P)

and (Ω,F ,P), respectively. Moreover, in virtue of conditions (b)–(c), an analogue of Lemma 4.4.5

ensures that
√
m(F̂ ∗m−F ) as well as

√
m(F̂ ∗m−F̂m) are L1(ν)-valued and (F ,B(L1(ν)))-measurable

for every m ∈ N.

Hence, in view of Theorems 4.4.6 and 4.4.10, the functional delta-method in the form of Theorem

B.3(ii) in [59] entails that Ẇxn;π
n;F (BF ) is (F̌ ,B(R))-measurable and that (4.38) holds. Take into

account that Theorem 4.4.6 is applicable because in view of Remark 4.4.7 the integrability condition´ √
F (1− F ) dν < ∞ is implied by the assumptions

´
φ2 dF < ∞ and

´
1/φ dν < ∞. This

completes the proof of Theorem 4.4.9. 2

In view of part (i) (resp. (ii)) (and under the assumptions) of Theorems 4.4.4 and 4.4.9, the se-

quence of estimators (Wxn;π
n (F̂ ∗m))m∈N (resp. (Wxn

n (F̂ ∗m))m∈N) can be seen as a bootstrap version

(in probability) of (Wxn;π
n (F̂m))m∈N (resp. (Wxn

n (F̂m))m∈N) in the sense of [15, Definition 2.3].

Remark 4.4.11 (i) Note that checking conditions (b)–(f) in Theorem 4.4.9 may be difficult in

some situations. However, in the examples of Chapter 5 we will see that the latter conditions can

be verified easily; see Subsections 5.1.3 and 5.2.3.

(ii) As already discussed in Remark 4.4.2, an optimal strategy w.r.t. the unknown distribution

function F can be obtained approximately (in the setting of Theorem 4.4.9) by applying the Bellman

equation (see part (i) of Theorem 1.3.3 in Section 1.3) to the transition function P
F̂m

w.r.t. the

empirical distribution function F̂m. However, this approach does not ensure that the resulting

strategy πF̂m solving the optimization problem (4.4) is unique. In some situations the uniqueness

of an optimal strategy w.r.t. the unknown distribution function F is given; for an example, see

Subsection 5.2.3. 3

Remark 4.4.12 For any given xn ∈ E and n = 0, . . . , N , the statement in part (ii) of Theorem

4.4.9 can be improved in view of Theorem A.4 in [16] in the following way

√
m
(
Wxn
n (F̂ ∗m(ω, ·))−Wxn

n (F̂m(ω))
)
 Ẇxn

n;F (BF ) in (R,B(R), | · |), P-a.e. ω, (4.40)

if (under some additional assumptions) the value functional Wxn
n defined by (4.6) is uniformly

quasi-Hadamard differentiable at any fixed F ∈ F (ν) in the sense of [16, Definition A.1]. However,

this regularity property of the value functional Wxn
n is probably not fulfilled, as our following

considerations suggest. The proof of the quasi-Hadamard differentiability of Wxn
n shown in part

(ii) of Theorem 4.3.8 in Subsection 4.3.2 is based on the decomposition (4.19) and an appropriate

chain rule, where the latter decomposition (4.19) involves the sup-functional Ψ as defined in (4.20).

To the best of our knowledge, this sup-functional Ψ is not known to be uniformly Hadamard

differentiable (in the sense of [16, Definition A.1]). Therefore we may not apply a chain rule for the
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uniform quasi-Hadamard differentiability in the form of Lemma A.1 in [16] to derive the uniform

quasi-Hadamard differentiability of the value functional Wxn
n . As a consequence, (almost sure)

bootstrap consistency of the sequence of estimators (Wxn
n (F̂m))m in the sense of (4.40) does not

apply. 3

Remark 4.4.13 For any fixed x0 ∈ E and under the assumptions of Theorems 4.4.4 and 4.4.9,

part (ii) of the latter theorems reveals that

P ◦
{√

m
(
Wx0

0 (F̂m)−Wx0;πF

0 (F )
)}−1 ≈ P̌ ◦

{
Ẇx0;πF

0;F (BF )
}−1

as well as

P′ ◦
{√

m
(
Wx0

0 (F̂ ∗m(ω, ·))−Wx0
0 (F̂m(ω))

)}−1 ≈ P̌ ◦
{
Ẇx0;πF

0;F (BF )
}−1

for “large m” and every ω ∈ B for some event B with P[B] “large”, where πF ∈ Π corresponds to

the unique optimal strategy w.r.t. F . That is, informally

P ◦
{√

m
(
Wx0

0 (F̂m)−Wx0;πF

0 (F )
)}−1 ≈ P′ ◦

{√
m
(
Wx0

0 (F̂ ∗m(ω, ·))−Wx0
0 (F̂m(ω))

)}−1
(4.41)

for “large m” and every ω ∈ B for some event B with P[B] “large”. Therefore, using the right-

hand side of (4.41), we can approximate the asymptotic error distribution of (Wx0
0 (F̂m))m without

estimating the distribution of Ẇx0;πF

0;F (BF ) in the unknown distribution function F . Especially when

one is interested in an asymptotic bootstrap confidence interval for the optimal value Wx0;πF

0 (F )

of the optimization problem (4.4) at a given level κ ∈ (0, 1), this approximation can be beneficial.

This is particularly the case when the estimated distribution of Ẇx0;πF

0;F (BF ) based on the empirical

distribution function F̂m depends on F̂m in a complex way. In the latter situation, however,[
Wx0

0 (F̂m(ω))− 1√
m
q̂∗1−κ/2(ω),Wx0

0 (F̂m(ω)) +
1√
m
q̂∗κ/2(ω)

]
(4.42)

can be seen for fixed ω ∈ Ω as an asymptotic bootstrap confidence interval for Wx0;πF

0 (F ) at level

κ ∈ (0, 1) which could have a better performance than an asymptotic confidence interval based on

a nonparametric estimation of the distribution of Ẇx0;πF

0;F (BF ), but probably at the expense of a

higher computation effort. Here q̂∗t (ω) refers to a t-quantile of (a Monte Carlo approximation of)

the right-hand side of (4.41) for fixed ω ∈ Ω. In this thesis we will not investigate the performance

of the asymptotic bootstrap interval in (4.42) for the optimal value. 3

4.5 Parametric estimation of Wx0
0 (F )

In this section we will consider a parametric approach to estimate (the unknown distribution func-

tion F and thus) the (optimal) value Wx0
0 (F ), and provide statistical quality criteria for the cor-

responding estimator, such as strong consistency and asymptotic error distribution. Here we will

assume that the distribution function F generating the transition function of the MDM in (4.1)

belongs to some class of distribution functions parametrized by some unknown parameter θ. To

this end, we consider in the following a parametric statistical model (Ω,F , {Pθ : θ ∈ Θ}), where
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the parameter set Θ is any subspace of Rd (with d ∈ N fixed), and let in the sequel Fθ ∈ F (ν) be

for every θ ∈ Θ a fixed distribution function. For any m ∈ N, let θ̂m : Ω → Θ be a map which

can be seen as an estimator for the unknown parameter θ. Therefore F̂m := F
θ̂m

can be seen as

an estimator for Fθ. In particular, this implies that for any xn ∈ E, π ∈ Π, and n = 0, . . . , N the

(plug-in) estimator Wxn;π
n (F

θ̂m
) (resp. Wxn

n (F
θ̂m

)) is a reasonable (point) estimator for the aspect

Wxn;π
n (Fθ) (resp. Wxn

n (Fθ)) if θ ∈ Θ.

4.5.1 Strong consistency

In the following Theorem 4.5.1 we show that the sequences of plug-in estimators (Wxn;π
n (F

θ̂m
))m∈N

and (Wxn
n (F

θ̂m
))m∈N satisfy a strong law. These statements are guaranteed under a certain regu-

larity assumption to the mapping θ 7→ Fθ (see condition (b) of Theorem 4.5.1) along with Theorem

4.3.3 if the sequence of estimators (θ̂m)m∈N again satisfies a strong law. In what follows we equip

the parameter set Θ with the usual Euclidean norm ‖ · ‖ on Rd. Finally, let ‖ · ‖1,ν be the norm

introduced in (4.7).

Theorem 4.5.1 (Strong consistency of (Wxn;π
n (F

θ̂m
)) and (Wxn

n (F
θ̂m

))) Let θ0 ∈ Θ. Further

let θ̂m : Ω→ Θ be a map for every m ∈ N, and assume that the following two conditions hold.

(a) The sequence of estimators (θ̂m)m∈N is strongly consistent for θ0 under Pθ0 in the sense that

‖θ̂m − θ0‖ → 0 Pθ0-a.s.

(b) The mapping θ 7→ Fθ from Θ to F (ν) is continuous at θ0 w.r.t. (‖ · ‖, ‖ · ‖1,ν).

Then under the assumptions of Theorem 4.3.3 (with Fθ0 in place of F ) the following two assertions

hold.

(i) For any xn ∈ E, π ∈ Π, and n = 0, . . . , N , the sequence of estimators (Wxn;π
n (F

θ̂m
))m∈N is

strongly consistent for Wxn;π
n (Fθ0) under Pθ0 in the sense that

Wxn;π
n (F

θ̂m
)→Wxn;π

n (Fθ0) Pθ0-a.s.

(ii) For any xn ∈ E and n = 0, . . . , N , the sequence of estimators (Wxn
n (F

θ̂m
))m∈N is strongly

consistent for Wxn
n (Fθ0) under Pθ0 in the sense that

Wxn
n (F

θ̂m
)→Wxn

n (Fθ0) Pθ0-a.s.

Note that in Theorem 4.5.1 the estimators Wxn;π
n (F

θ̂m
) and Wxn

n (F
θ̂m

) need not to be measurable.

If we find an optimal strategy πFθ0 ∈ Π w.r.t. Fθ0 , then it follows from part (ii) of Theorem 4.5.1 that

under condition (b) of Theorem 4.5.1 and the assumptions of Theorem 4.3.3 the sequence of plug-in

estimators (Wx0
0 (F

θ̂m
))m∈N is strongly consistent (under Pθ0) for the optimal valueWx0;π

Fθ0

0 (Fθ0) of

the optimization problem (4.4) (with Fθ0 playing the role of F ) whenever the sequence of estimators

(θ̂m)m∈N is strongly consistent (under Pθ0) for the (unknown) parameter θ0 w.r.t. the norm ‖ · ‖.
However, in some situations the validity of conditions (a)–(b) in Theorem 4.5.1 is not trivially

satisfied. In the examples of Chapter 5 these conditions can be checked easily; see Subsections 5.1.4

and 5.2.4 for details.
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The following Remark 4.5.2 shows how an optimal strategy can be achieved approximately by

means of a statistical estimation of the unknown parameter.

Remark 4.5.2 In the parametric setting above an approximate optimal strategy can be achieved

by make use of the Bellman equation in part (i) of Theorem 1.3.3 in Section 1.3 (applied to

P Fθ). Here the corresponding transition probabilities are computed by means of the estimated

parametrized distribution function F
θ̂m

for some (suitable) estimator θ̂m for the unknown parameter

θ0. Therefore, we obtain a strategy πFθ̂m ∈ Π which is an approximate solution to the optimization

problem (4.4) (with F replaced by Fθ0) and can be regarded as an estimator for an exact (but

unknown) optimal strategy πFθ0 ∈ Π w.r.t. Fθ0 . However, as already discussed in Remark 4.4.2,

we are not in the position to derive asymptotic properties of the estimated strategy for the (true)

optimal strategy πFθ0 . 3

Remark 4.5.3 (i) It is an immediate consequence of part (i) of Remark 4.3.4 that (under the

assumptions of Theorem 4.5.1) the claim in part (i) of Theorem 4.5.1 holds even uniformly in

π ∈ Π, that is, for every xn ∈ E and n = 0, . . . , N we have supπ∈Π |W
xn;π
n (F

θ̂m
)−Wxn;π

n (Fθ0)| → 0

Pθ0-a.s.

(ii) If conditions (a) and (b) in Theorem 4.5.1 are replaced by the following two stronger conditions

(a’) mr‖θm − θ0‖ → 0 Pθ0-a.s. for every r < 1
2 ,

(b’) The mapping θ 7→ Fθ from Θ to F (ν) is Lipschitz continuous at θ0 w.r.t. (‖ · ‖, ‖ · ‖1,ν),

then we achieve even stronger results in parts (i) and (ii) of the latter theorem. In fact, it can be

verified easily by means of Theorem 4.3.3 that under the assumptions of Theorem 4.5.1 with (a’)

and (b’) in place of (a) and (b), respectively, the statements

(i’) mr
(
Wxn;π
n (F

θ̂m
)−Wxn;π

n (Fθ0)
)
→ 0 Pθ0-a.s.

(ii’) mr
(
Wxn
n (F

θ̂m
)−Wxn

n (Fθ0)
)
→ 0 Pθ0-a.s.

hold for any xn ∈ E, π ∈ Π, n = 0, . . . , N , and r < 1
2 . 3

4.5.2 Asymptotic error distribution

Throughout this subsection we assume that the parameter set Θ (⊆ Rd) is open, and that the

measure ν on B(R) is locally finite. Theorem 4.5.4 below determines the asymptotic error dis-

tribution of the sequences of estimators (Wxn;π
n (F

θ̂m
))m∈N and (Wxn

n (F
θ̂m

))m∈N. The central tool

for this will be a specific functional delta-method in the form of [59]. Specifically, we will apply

Theorem 4.3.8 along with this functional delta method to derive these asymptotic results from the

asymptotic error distribution of the sequence of estimators (θ̂m)m∈N for the unknown parameter

θ0 (provided in condition (a) of Theorem 4.5.4) and a suitable regularity property of the mapping

θ 7→ Fθ (provided in condition (b) of Theorem 4.5.4).

In condition (b) of Theorem 4.5.4 we will assume that for any fixed θ0 ∈ Θ the map F : Θ→ F (ν)

(⊆ L0(ν)) defined by

F(θ) := Fθ (4.43)
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is Hadamard differentiable at θ0 with trace L1(ν) (in the sense of Definition A.1(ii) in Section A).

That is, there exists a continuous map Ḟθ0 : Rd → L1(ν) (⊆ L0(ν)) (the Hadamard derivative)

such that

lim
m→∞

∥∥∥F(θ0 + εmτm)− F(θ0)

εm
− Ḟθ0(τ)

∥∥∥
1,ν

= 0

holds for each triplet (τ, (τm), (εm)) ∈ Rd × (Rd)N × RN
>0 satisfying ‖τm − τ‖ → 0, εm → 0 as well

as (θ0 + εmτm) ⊆ Θ. Recall that F − G ∈ L1(ν) holds for every F,G ∈ F (ν). Finally, let 0Rd be

the null in Rd, and recall that 0L0(ν) stands for the null in L0(ν).

Theorem 4.5.4 (Asymptotic error distribution of (Wxn;π
n (F

θ̂m
)) and (Wxn

n (F
θ̂m

))) Let θ0 ∈
Θ and (cm)m∈N be any sequence in R>0 tending to ∞. Moreover, let θ̂m : Ω → Θ be a map for

every m ∈ N, and assume that the following two conditions hold.

(a) cm(θ̂m − θ0) is (F ,B(Rd))-measurable for every m ∈ N, and

cm(θ̂m − θ0)  Zθ0 in (Rd,B(Rd), ‖ · ‖)

for some (Rd,B(Rd))-valued random element Zθ0 on some probability space (Ω̌, F̌ , P̌).

(b) The map F : Θ → F (ν) defined by (4.43) is Hadamard differentiable at θ0 with trace L1(ν)

and Hadamard derivative Ḟθ0 : Rd → L1(ν) satisfying Ḟθ0(0Rd) = 0L0(ν).

Then under the assumptions of Theorem 4.3.8 (with Fθ0 in place of F ) the following two assertions

hold.

(i) For any xn ∈ E, π ∈ Π, and n = 0, . . . , N , we have that Ẇxn;π
n;Fθ0

(Ḟθ0(Zθ0)) is (F̌ ,B(R))-

measurable and

cm
(
Wxn;π
n (F

θ̂m
)−Wxn;π

n (Fθ0)
)
 Ẇxn;π

n;Fθ0
(Ḟθ0(Zθ0)) in (R,B(R), | · |),

where Ẇxn;π
n;Fθ0

is given by (4.16).

(ii) For any xn ∈ E and n = 0, . . . , N , we have that Ẇxn
n;Fθ0

(Ḟθ0(Zθ0)) is (F̌ ,B(R))-measurable

and

cm
(
Wxn
n (F

θ̂m
)−Wxn

n (Fθ0)
)
 Ẇxn

n;Fθ0
(Ḟθ0(Zθ0)) in (R,B(R), | · |),

where Ẇxn
n;Fθ0

is given by (4.17).

Note that for part (i) of Theorem 4.5.4 the measurability of the mapping ω 7→ cm(Wxn;π
n (F

θ̂m(ω)
)−

Wxn;π
n (Fθ0)) is ensured (under the assumptions of the latter theorem) by part (i) of Lemma 4.5.6

below. Similarly, it can be shown for (ii) of Theorem 4.5.4 that the mapping ω 7→ cm(Wxn
n (F

θ̂m(ω)
)−

Wxn
n (Fθ0)) is (F ,B(R))-measurable.

If one is interested in an asymptotic confidence interval for the (optimal) value Wx0
0 (Fθ0), part (ii)

of Theorem 4.5.4 provides an approach. In fact, the examples of Chapter 5 will show that one can

use the asymptotic error distribution of the corresponding plug-in estimatorWx0
0 (F

θ̂m
) to construct

such an interval. Since in each of these examples we will see that Ẇx0
0;Fθ0

(Ḟθ0(Zθ0)) depends on the

unknown parameter θ0 in a complex way, an analogous bootstrap result as in the nonparametric

case could lead to a more efficient method than the method which is based on an estimation of the
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distribution of Ẇx0
0;Fθ0

(Ḟθ0(Zθ0)) in the unknown parameter θ0. However, in this thesis we will not

deal with a parametric version of the bootstrap results from Theorem 4.4.9.

We now turn to the proof of Theorem 4.5.4. It needs the following two lemmas.

Lemma 4.5.5 Let θ0 ∈ Θ, and assume that condition (b) of Theorem 4.5.4 holds. Then the

following two assertions hold.

(i) The mapping θ 7→ Fθ from Θ to F (ν) is (‖ · ‖, ‖ · ‖1,ν)-continuous at θ0.

(ii) The mapping θ 7→ Fθ − Fθ0 from Θ to L1(ν) is (‖ · ‖, ‖ · ‖1,ν)-continuous at θ0.

If in addition the assumptions of Theorem 4.3.8 (or Theorem 4.3.3) are satisfied (with Fθ0 in place

of F ) then the following two assertions are valid.

(iii) For any xn ∈ E, π ∈ Π, and n = 0, . . . , N , the mapping θ 7→ Wxn;π
n (Fθ) from Θ to R is

(‖ · ‖, | · |)-continuous at θ0.

(iv) For any xn ∈ E and n = 0, . . . , N , the mapping θ 7→ Wxn
n (Fθ) from Θ to R is (‖ · ‖, | · |)-

continuous at θ0.

Proof For part (i), let (θm)m∈N be any sequence in Θ with ‖θm − θ0‖ → 0. By assumption, the

map F defined by (4.43) is Hadamard differentiable at θ0 with trace L1(ν) and Hadamard derivative

Ḟθ0 : Rd → L1(ν) satisfying Ḟθ0(0Rd) = 0L0(ν). Then it follows from Lemma A.5 in Section A that

the map F is Lipschitz continuous at θ0 with trace L1(ν) (in the sense of Definition A.3(ii)). This

implies that there exists a finite constant C > 0 such that the expression

‖Fθm − Fθ0‖1,ν = ‖F(θm)− F(θ0)‖1,ν = ‖F(θ0 + (θm − θ0))− F(θ0)‖1,ν

is for every m ∈ N bounded from above by C‖θm − θ0‖. Hence the assertion in part (i) follows.

Moreover, the claim in part (ii) is an immediate consequence of part (i). Take into account that

for every θ ∈ Θ we have Fθ − Fθ0 ∈ L1(ν) because Fθ, Fθ0 ∈ F (ν) (by assumption).

For the claims in parts (iii) and (iv) note at first that under the additional assumptions it follows

from Remark 4.3.9(iv) that the assumptions of Theorem 4.3.3 (with Fθ0 playing the role of F ) are

satisfied. Then an application of parts (i) and (ii) of the latter theorem along with part (i) yields

the assertions in (iii) and (iv), respectively. Note that the statements in (iii) and (iv) can also be

derived directly from Theorem 4.3.3 using part (i). This completes the proof. 2

In the sequel, we denote by B(Θ) the Borel σ-algebra on (Θ, ‖ · ‖). Note that B(Θ) coincides in

view of [80, Problem 3.10(ii)] with the trace σ-algebra B(Rd) ∩ Θ because Θ (⊆ Rd) was assumed

to be open. Recall that B(L1(ν)) refers to the Borel σ-algebra on the separable Banach space

(L1(ν), ‖ · ‖1,ν).

Lemma 4.5.6 Let θ0 ∈ Θ and θ̂m : Ω → Θ be for every m ∈ N an (F ,B(Θ))-measurable map.

Moreover let (cm)m∈N be any sequence in R>0, and assume that condition (b) of Theorem 4.5.4

holds. Then we have:

(i) cm(F
θ̂m
− Fθ0) takes values only in L1(ν) and is (F ,B(L1(ν)))-measurable for every m ∈ N.

If in addition the assumptions of Theorem 4.3.8 (or Theorem 4.3.3) are satisfied (with Fθ0 in place

of F ) then the following two assertions hold.
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(ii) For any xn ∈ E, π ∈ Π, n = 0, . . . , N , and m ∈ N, the estimator Wxn;π
n (F

θ̂m
) is (F ,B(R))-

measurable.

(iii) For any xn ∈ E, n = 0, . . . , N , and m ∈ N, the estimator Wxn
n (F

θ̂m
) is (F ,B(R))-measurable.

Proof First, it follows from part (ii) of Lemma 4.5.5 that the mapping θ 7→ Fθ − Fθ0 from

Θ to L1(ν) is in particular (B(Θ),B(L1(ν)))-measurable. Since θ̂m is (F ,B(Θ))-measurable by

assumption, the expression cm(F
θ̂m
− Fθ0) is indeed (F ,B(L1(ν)))-measurable for every m ∈ N.

This shows the assertion in (i).

To prove (ii), let xn ∈ E, π ∈ Π, n = 0, . . . , N , and m ∈ N. Note at first that under the additional

assumptions it follows from part (iii) of Lemma 4.5.5 that the mapping θ 7→ Wxn;π
n (Fθ) from Θ to

R is (B(Θ),B(R))-measurable. In particular, in view of the (F ,B(Θ))-measurability of the map θ̂m
(by assumption), the estimator Wxn;π

n (F
θ̂m

) is (F ,B(R))-measurable. This shows (ii). Since the

proof of the claim in (iii) can be obtained with analogous arguments, this completes the proof. 2

Now we are in the position to prove Theorem 4.5.4.

Proof of Theorem 4.5.4: We intend to apply the functional delta-method in the form of Theorem

B.3(i) in [59]. Since the proof of assertion (ii) can be carried out with analogous arguments as the

proof of part (i), we will prove only the claim in part (i). Let xn ∈ E, π ∈ Π, and n = 0, . . . , N .

First, the map F defined by (4.43) is Hadamard differentiable at θ0 with trace L1(ν) and Hadamard

derivative Ḟθ0 : Rd → L1(ν) satisfying Ḟθ0(0Rd) = 0L0(ν) (by condition (b)). Second, in view of

condition (a), cm(θ̂m−θ0) is (F ,B(Rd))-measurable for every m ∈ N and satisfies cm(θ̂m−θ0) Zθ0
under Pθ0 for some (Rd,B(Rd))-valued random element Zθ0 on some probability space (Ω̌, F̌ , P̌).

Thus an application of part (i) of Theorem B.3 in [59] implies that Ḟθ0(Zθ0) is (F̌ ,B(L1(ν)))-

measurable and that

cm(F
θ̂m
− Fθ0)  Ḟθ0(Zθ0) in (L1(ν),B(L1(ν)), ‖ · ‖1,ν) (4.44)

holds. Take into account that the latter theorem is applicable because cm(F
θ̂m
− Fθ0) takes values

only in L1(ν) and is (F ,B(L1(ν)))-measurable for every m ∈ N by part (i) of Lemma 4.5.6.

Moreover, under the imposed assumptions, part (i) of Theorem 4.3.8 implies that the functional

Wxn;π
n defined by (4.6) is quasi-Hadamard differentiable at Fθ0 tangentially to L1(ν)〈L1(ν)〉 (w.r.t.

the norm ‖ · ‖1,ν) with quasi-Hadamard derivative Ẇxn;π
n;Fθ0

given by (4.16). As a consequence of

part (ii) of Lemma 4.5.6 as well as the first part of condition (a), the expression cm(Wxn;π
n (F

θ̂m
)−

Wxn;π
n (Fθ0)) is (F ,B(R))-measurable for every m ∈ N. Take into account that the first part of

condition (a) clearly implies the (F ,B(Θ))-measurability of the map θ̂m : Ω→ Θ for every m ∈ N.

Thus the convergence in (4.44) and another application of the functional delta-method in the form

of part (i) of Theorem B.3 in [59] yield that Ẇxn;π
n;Fθ0

(Ḟθ0(Zθ0)) is (F̌ ,B(R))-measurable and that

cm
(
Wxn;π
n (F

θ̂m
)−Wxn;π

n (Fθ0)
)
 Ẇxn;π

n;Fθ0
(Ḟθ0(Zθ0)) in (R,B(R), | · |).

This completes the proof of Theorem 4.5.4. 2

In practice, condition (a) of Theorem 4.5.4 is easy to prove; we refer to Subsections 5.1.4 and 5.2.4

for a verification. In contrast, condition (b) of Theorem 4.5.4 is more difficult to verify. However,
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the following Lemma 4.5.7, which is a slight generalization of Lemma 4.6 in [59], provides a criterion

based on the map f : Θ× R→ [0, 1] defined by

f(θ, t) := Fθ(t) (4.45)

which ensures that the Hadamard differentiability of the map F defined by (4.43) in condition (b)

of Theorem 4.5.4 holds. Its statement will be used in the examples of Chapter 5 to verify condition

(b) of Theorem 4.5.4 in order to determine the asymptotic distribution of certain estimators for

the optimal value of the MDM in (4.1) in the case of parametric statistical models; see Subsections

5.1.4 and 5.2.4.

Recall that Θ (⊆ Rd) is open, and note that 〈·, ·〉 stands for the Euclidean scalar product on Rd.
Further we denote by ∇θf(θ, t) the gradient of the map f( · , t) at some θ ∈ Θ for every fixed t ∈ R
(provided this expression exists).

Lemma 4.5.7 Let θ0 ∈ Θ and Θ̃ be some open neighbourhood of θ0 in Θ such that for every t ∈ R
the map f( · , t) is continuously differentiable on Θ̃. Moreover let h : R → R be a ν-integrable map

such that

sup
θ∈Θ̃

‖∇θf(θ, t)‖ ≤ h(t) for ν-a.e. t ∈ R. (4.46)

Then the map F : Θ → F (ν) defined by (4.43) is Hadamard differentiable at θ0 with trace L1(ν)

and Hadamard derivative Ḟθ0 : Rd → L1(ν) given by

Ḟθ0(τ)( · ) :=
〈
∇θf(θ0, · ), τ

〉
, τ ∈ Rd. (4.47)

In particular, we have Ḟθ0(0Rd) = 0L0(ν).

Proof We will adapt arguments of the proof of Lemma 4.6 in [59]. First of all, note that it follows

from the estimate (4.48) below that Ḟθ0(τ)( · ) ∈ L1(ν) holds for every τ ∈ Rd. In particular, this

implies that the map Ḟθ0 defined by (4.47) is well-defined. Moreover the map Ḟθ0 is (‖ · ‖, ‖ · ‖1,ν)-

continuous because∥∥Ḟθ0(τ1)( · )− Ḟθ0(τ2)( · )
∥∥

1,ν
=

ˆ ∣∣〈∇θf(θ0, t), τ1 − τ2

〉∣∣ ν(dt)

≤
ˆ

sup
θ∈Θ̃

‖∇θf(θ, t)‖ · ‖τ1 − τ2‖ ν(dt)

≤
ˆ

h(t) ν(dt) · ‖τ1 − τ2‖ = C ‖τ1 − τ2‖ (4.48)

holds for every τ1, τ2 ∈ Rd, where C :=
´
h(t) ν(dt) < ∞. Take into account that h is ν-integrable

by assumption.

Now, let (τ, (τm), (εm)) ∈ Rd × (Rd)N × RN
>0 be a triplet with ‖τm − τ‖ → 0, εm → 0 as well as

(θ0 + εmτm) ⊆ Θ. It remains to show that

lim
m→∞

∥∥∥F(θ0 + εmτm)( · )− F(θ0)( · )
εm

− Ḟθ0(τ)( · )
∥∥∥

1,ν
= 0,

that is,

lim
m→∞

ˆ ∣∣∣ f(θ0 + εmτm, t)− f(θ0, t)

εm
−
〈
∇θf(θ0, t), τ

〉∣∣∣ ν(dt) = 0. (4.49)
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Since the map f( · , t) is continuously differentiable on Θ̃ for every x ∈ R (by assumption), we obtain

lim
m→∞

f(θ0 + εmτm, t)− f(θ0, t)

εm
=
〈
∇θf(θ0, t), τ

〉
for every t ∈ R. Note that we may assume without loss of generality that θ0 + εmτm ∈ Θ̃ for every

m ∈ N because Θ̃ (⊆ Rd) is open and contains θ0. Further, assumption (4.46) along with the mean

value theorem in several variables entail that∣∣∣ f(θ0 + εmτm, t)− f(θ0, t)

εm

∣∣∣ ≤ sup
θ∈Θ̃

‖∇θf(θ, t)‖ · ‖τm‖ ≤ h(t) · sup
k∈N
‖τk‖

for every m ∈ N and ν-a.e. t ∈ R. Since supk∈N ‖τk‖ <∞ (recall ‖τm−τ‖ → 0) and h is ν-integrable

by assumption, the dominated convergence theorem implies the convergence in (4.49). This shows

the claimed Hadamard differentiability of the map F.

For the additional assertion note that it is easily seen that Ḟθ0(0Rd)(t) = 0 is valid for any t ∈ R.

Hence Ḟθ0(0Rd) = 0L0(ν). The proof is now complete. 2
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Chapter 5

Application to the Markov decision optimization

problems from Chapter 3

This chapter is devoted to an application of the theory and results of Chapter 4 to the specific

Markov decision optimization problems introduced in Chapter 3, where the corresponding transition

probabilities are now determined by some single distribution function F . Further we will assume

that the distribution function F is unknown and must be estimated by means of statistical methods.

Therefore one could be interested how the estimation of the distribution function F effects the

estimation of the optimal value of the corresponding reward maximization problems from Chapter

3.

5.1 Stochastic inventory control problem (revisited)

We consider again the stochastic inventory control problem introduced in Section 3.1, where the

transition probabilities are now specified by the common distribution function F of the random

variables describing the random commodity demand. Since in practice the future random demand

is not known from the supplier’s point of view, we will here assume the distribution function F

is unknown and must be estimated. In Subsection 5.1.1 we reformulate the stochastic inventory

control problem from Section 3.1 based on the above situation, and explain how the (adapted)

inventory control model can be embedded into the setting of Section 1.5. Later on we will present

in Subsection 5.1.2 regularity properties of the value function of the (adapted) stochastic inventory

control problem. In Subsections 5.1.3–5.1.4 we will deal with the statistical estimation of the

optimal value of the (adapted) stochastic inventory control problem in a nonparametric and a

parametric statistical model.

5.1.1 Basic inventory control model, and the Markov decision model

We take up the setting of Section 3.1, that is, we consider an N -period inventory control system

(with N ∈ N fixed) in which a supplier of a single product seeks optimal inventory level management

to meet random demand in such a way that the expected total reward over the N periods is

maximized. The random demand of the single product within the N periods will be modelled

by N0-valued i.i.d. random variables I1, . . . , IN on some probability space (Ω,F ,P) with common

but unknown distribution function F , where In+1 corresponds to the random demand of the single
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product in the period between time n and n+1. Note that for any n = 0, . . . , N−1 the distribution

function F induces the counting density of the random variable In+1 through P[{In+1 = · }] = pF (·)
for the map pF : R→ [0, 1] given by

pF (x) := SF (x). (5.1)

Here Sh refers for any map h ∈ RR to the sum operator defined by

Sh(x) := h(0)1{x=0} + ∆x
x−1h1{x∈N}, x ∈ R (5.2)

with ∆x
x−1h := h(x) − h(x − 1). In particular, the distribution function F defines a probability

measure µF ∈M1(R,N0) via

µF [B] :=

ˆ
B
pF (x) ζN0(dx) =

∑
`∈N0

pF (`) δ`[B], B ∈ B(R), (5.3)

where ζN0 :=
∑

`∈N0
δ` is the (locally finite) counting measure on P(N0) and δ` refers to the Dirac

measure at point `. Recall thatM1(R,N0) stands for the set of all µ ∈M1(R) satisfying µ[N0] = 1.

Note that that µF corresponds to the probability distribution of the random variables I1, . . . , IN .

In view of F (x) = F (bxc) for every x ∈ R (here b·c is the floor function), we may and do assume

that F is an element of the subset F 0 of all distribution functions on R whose discontinuity points

all belong to N0 and which are supported on R≥0.

In the sequel, we will always assume that the inventory control model satisfies the following As-

sumption 5.1.1. This additional assumption compared to Subsection 3.1.1 is not very restrictive, as

it only assumes that the expected random demand of the single product is finite, which is (often)

true for distributions occurring in practice; see Subsection 5.1.4 for an example.

Assumption 5.1.1
´
R≥0

y dF (y)
(

=
∑

`∈N0
` pF (`)

)
<∞.

Under Assumption 5.1.1 it follows from Lemma 5.1.9 below (applied to M := 0) along with (5.3)

that F is even an element of F 0(ζN0). Here F 0(ζN0) refers to the set of all distribution functions

F ∈ F 0 which satisfy ˆ
R≥0

(1− F ) dζN0

(
=
∑
`∈N0

(1− F (`))
)
< ∞.

Now, if K ∈ N is a fixed available inventory level of the single product within each period and if

there is no backlogging of unsatisfied demand at the end of each period, the supplier intends to

find for some given initial inventory level y0 ∈ {0, . . . ,K} optimal order quantities according to an

order strategy to maximize the expected profit. It follows from the discussion in Subsection 3.1.1

that the latter maximization problem can be modelled via a {0, . . . ,K}2-valued process Xϕ :=

(Y ϕ, Zϕ), where Y ϕ := (Y ϕ
n )Nn=0 and Zϕ := (Zϕn )Nn=0 refer to the inventory and the sales process

defined by (3.2) and (3.3), respectively, and ϕ = (ϕn)N−1
n=0 is a {0, . . . ,K}-valued stochastic process

corresponding to a Markovian order strategy. The latter means that for any n = 0, . . . , N −1 there

exists a map fn : {0, . . . ,K}2 → {0, . . . ,K} such that ϕn = fn(Y ϕ
n , Z

ϕ
n ).

Analogously to the elaborations in Subsection 3.1.1, the supplier is interested in those order strate-

gies ϕ = (ϕn)N−1
n=0 (resp. π = (fn)N−1

n=0 ) for which the expectation of the expression in (3.5) under
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P is maximized. Note that for given order strategy ϕ = (ϕn)N−1
n=0 (resp. π = (fn)N−1

n=0 ) the process

Xϕ can be seen as a {0, . . . ,K}2-valued (Fn)-Markov process (with Fn as in Subsection 3.1.1)

whose one-step transition probability for the transition from state x = (y, z) ∈ {0, . . . ,K}2 at time

n ∈ {0, . . . , N − 1} to state x′ = (y′, z′) ∈ {0, . . . ,K}2 at time n+ 1 is given by

µF ◦ η−1
(y,fn(x))[{z

′}] · 1{y′=y+fn(x)−z′}

with η(y,fn(x)) defined as in (3.4).

Since the above optimization problem has a Markovian structure it can be modelled (similarly

to the elaborations in Subsection 3.1.2) by a (finite horizon discrete time) MDM in the variant

introduced in Section 1.5.

To this end, let E be as in (1.23) with e := (K + 1)2, and let An(xi) be given by (1.24) with

an,i;k := k − 1 and tn,i = ti := K − yi + 1 for any i = 1, . . . , e and n = 0, . . . , N − 1. Set

Π := F0×· · ·×FN−1, where Fn is equal to the set Fn of all decision rules satisfying (3.6). Moreover

let the components of the vector r = (rn)Nn=0 be given by (3.10).

Let p be the vector given by (1.26) whose components pn,i;an,i;k = (pn,i;an,i;k(1), . . . , pn,i;an,i;k(e)) are

for any i = 1, . . . , e, k = 1, . . . , ti, and n = 0, . . . , N − 1 of the shape

pn,i;an,i;k(j) := µF ◦ η−1
(yi,an,i;k)[{zj}] · 1{yj=yi+an,i;k−zj}, j = 1, . . . , e (5.4)

for some F ∈ F 0(ζN0), where η(yi,an,i;k) is introduced in (3.4). Note that it is easily seen that p is

an element of the set P̃ defined in (1.27).

Since any element p of P̃ is generated through (5.4) by some F ∈ F 0(ζN0), we write pF for the

vector defined as in (1.26) whose components pFn,i;an,i;k = (pFn,i;an,i;k(1), . . . , pFn,i;an,i;k(e)) are defined

as on the right-hand side of (5.4). In virtue of

pFn,i;an,i;k(j) =
∑

`∈η−1
(yi,an,i;k)

(zj)

pF (`) · 1{yj=yi+an,i;k−zj} (5.5)

for all i, j = 1, . . . , e, k = 1, . . . , ti, and n = 0, . . . , N − 1 (by (5.3)), we have immediately the

following lemma.

Lemma 5.1.2 pF ∈ P̃ for every F ∈ F 0(ζN0)

Note that it follows from the discussion in Section 1.5 that in the finite setting for any F ∈ F 0(ζN0)

the transition function P F = (PFn )N−1
n=0 from P = P1 (with P given by (1.25)) can be identified

with the vector pF ∈ P̃ as defined in (1.26) with (5.4). Also note that in the finite setting

ψ :≡ 1 provides a bounding function for the MDM (E,A,P F ,Π,X, r) for every F ∈ F 0(ζN0). In

particular, conditions (a)–(b) of Assumptions 4.2.1 are satisfied (with F (ν) replaced by F 0(ζN0)).

Thus, for every fixed i0 ∈ {1, . . . , e} and F ∈ F 0(ζN0), the inventory control problem above reads

as

V F ;π
0 (xi0) −→ max (in π ∈ Π)! (5.6)

where V F ;π
0 (xi0) := V

pF ;π
0 (xi0) can be obtained from (1.29) (with pF in place of p) along with

(3.10), and xi0 = (yi0 , zi0) refers to the initial state. A strategy πF ∈ Π is called an optimal
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order strategy w.r.t. F if it solves the maximization problem (5.6). Note that it follows from [73,

Proposition 4.4.3] that in the finite setting there exists for every F ∈ F 0(ζN0) an optimal order

strategy πF ∈ Π.

5.1.2 Regularity of the value function

Maintain the notation and terminology introduced in Subsection 5.1.1. In this subsection we

will show that the value function of the stochastic inventory control problem (5.6) regarded as

a real-valued functional defined on a set of distribution functions is ‘Lipschitz continuous’ and

quasi-Hadamard differentiable in the sense of Definitions 4.3.1 and 4.3.7.

We emphasize that the regularity properties of the value function are not relevant (except the shape

of the quasi-Hadamard derivatives in parts (i) and (ii) of Theorem 5.1.5 ahead) for the investigation

of the asymptotics of certain estimators for the optimal value of the stochastic inventory control

problem, which is part of Subsections 5.1.3–5.1.4. The purpose of the following elaborations is

merely to illustrate the results presented in Section 4.3 in the context of the setting of Subsection

5.1.1. For a reader who is only interested in the statistical estimation of the optimal value of

the stochastic inventory control problem, we recommend skipping this subsection and going to

Subsections 5.1.3–5.1.4.

In the sequel, let the functionals Wxi0 ;π
0 : F 0(ζN0) → R and Wxi0

0 : F 0(ζN0) → R be defined as in

(4.13). Note that in the setting of Subsection 5.1.1 these functionals admit the representations

Wxi0 ;π
0 (F ) = V F ;π

0 (xi0) and Wxi0
0 (F ) = max

π∈Π
Wxi0 ;π

0 (F ) (5.7)

for every i0 = 1, . . . , e, π ∈ Π, and F ∈ F 0(ζN0). Part (ii) of the following theorem shows that the

value functional of the stochastic inventory control problem (5.6) is ‘Lipschitz continuous’ w.r.t.

(‖·‖1,ζN0
, | · |). Note that it follows from Display (4.7) (with ζN0 in place of ν) that the norm ‖·‖1,ζN0

admits the representation

‖h‖1,ζN0

(
=

ˆ
|h(y)| ζN0(dy)

)
=
∑
`∈N0

|h(`)| for all h ∈ L1(ζN0),

where L1(ζN0) is defined as in Section 4.3.

Theorem 5.1.3 (‘Lipschitz continuity’ of Wxi0 ;π
0 and Wxi0

0 in F ) In the setting above let i0 ∈
{1, . . . , e}, π ∈ Π, and F ∈ F 0(ζN0). Then the following two assertions hold.

(i) The mapWxi0 ;π
0 : F 0(ζN0)→ R defined by (5.7) is ‘Lipschitz continuous’ at F w.r.t. (‖·‖1,ζN0

,

| · |).

(ii) The map Wxi0
0 : F 0(ζN0)→ R defined by (5.7) is ‘Lipschitz continuous’ at F w.r.t. (‖ · ‖1,ζN0

,

| · |).

The statement in part (ii) of Theorem 5.1.3 will be used in Subsections 5.1.3 and 5.1.4 to derive

asymptotic properties of plug-in estimators for the optimal value of the inventory control problem

(5.6).
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The proof of Theorem 5.1.3 needs the following Lemma 5.1.4. Recall that pF introduced in (5.1)

refers for any F ∈ F 0 to the counting density of the probability measure µF associated with F as

defined in (5.3). Note that F − G ∈ L1(ζN0) for any F,G ∈ F 0(ζN0) (with L1(ζN0) defined as in

Section 4.3).

Lemma 5.1.4 ‖pF − pG‖1,ζN0
≤ 2‖F −G‖1,ζN0

for every F,G ∈ F 0(ζN0).

Proof In view of (4.7) (with ζN0 in place of ν) and (5.1)–(5.2) we obtain

‖pF − pG‖1,ζN0
=

ˆ
|pF (x)− pG(x)| ζN0(dx) =

∑
`∈N0

∣∣pF (`)− pG(`)
∣∣

=
∑
`∈N0

∣∣(F (0)−G(0))1{`=0} + ∆`
`−1(F −G)1{`∈N}

∣∣
≤ |F (0)−G(0)|+

∑
`∈N

∣∣F (`)−G(`)
∣∣+
∑
`∈N

∣∣F (`− 1)−G(`− 1)
∣∣

= 2
∑
`∈N0

∣∣F (`)−G(`)
∣∣ = 2

ˆ
|F (x)−G(x)| ζN0(dx) = 2‖F −G‖1,ζN0

for every F,G ∈ F 0(ζN0). 2

Now, we are in the position to prove Theorem 5.1.3.

Proof of Theorem 5.1.3: We intend to apply Corollary 4.3.6. First, it follows from Lemma 5.1.2

that condition (a) of Corollary 4.3.6 holds. It remains to verify condition (b) of Corollary 4.3.6.

That is, we will show in the sequel that for any i = 1, . . . , e, π ∈ Π, and n = 0, . . . , N − 1 the map

Λ
F ;(π,xi)
n : F 0(ζN0)→ R defined by (4.14) is ‘Lipschitz continuous’ at F w.r.t. (‖ · ‖1,ζN0

, | · |) (in the

sense of Definition 4.3.1).

Now, let (Fm)m∈N be any sequence in F 0(ζN0) satisfying ‖Fm − F‖1,ζN0
→ 0. Note that the map

Λ
F ;(π,xi)
n admits in view of (5.5) the representation

ΛF ;(π,xi)
n (G) =

e∑
j=1

V F ;π
n+1(xj) · pGn,i;fn(xi)

(j)

=
e∑

j=1

V F ;π
n+1(xj) ·

∑
`∈η−1

(yi,fn(xi))
(zj)

pG(`) · 1{yj=yi+fn(xi)−zj} (5.8)

for all i = 1, . . . , e, π = (fn)N−1
n=0 ∈ Π, n = 0, . . . , N − 1, and G ∈ F 0(ζN0), where η(yi,fn(xi)) is given

by (3.4). In virtue of (5.8), (1.29) (applied to pF ), and Lemma 5.1.4, for every n = 0, . . . , N − 1

there exists a finite constant CF ;n > 0 such that for any i = 1, . . . , e, π ∈ Π, n = 0, . . . , N − 1, and

m ∈ N ∣∣ΛF ;(π,xi)
n (Fm)− ΛF ;(π,xi)

n (F )
∣∣

=
∣∣∣ e∑
j=1

V F ;π
n+1(xj) ·

∑
`∈η−1

(yi,fn(xi))
(zj)

(
pFm(`)− pF (`)

)∣∣∣ · 1{yj=yi+fn(xi)−zj}
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≤ CF ;n ·
e∑

j=1

∑
`∈η−1

(yi,fn(xi))
(zj)

∣∣pFm(`)− pF (`)
∣∣ ≤ CF ;n e ·

∑
`∈N0

∣∣pFm(`)− pF (`)
∣∣

= CF ;n e · ‖pFm − pF ‖1,ζN0
≤ 2CF ;n e · ‖Fm − F‖1,ζN0

= CΛ,F ;n ‖Fm − F‖1,ζN0
,

where CΛ,F ;n := 2CF ;n e ∈ R>0 (is independent of i and π). Take into account that ψ :≡ 1 is a

bounding function for the MDM (E,A,P F ,Π,X, r). Thus∣∣ΛF ;(π,xi)
n (Fm)− ΛF ;(π,xi)

n (F )
∣∣ = O

(
‖Fm − F‖1,ζN0

)
for every i = 1, . . . , e, π ∈ Π, and n = 0, . . . , N − 1. Hence condition (b) of Corollary 4.3.6 holds.

Therefore, the assumptions of Corollary 4.3.6 are satisfied (for ζN0 in place of ν), and the assertions

in parts (i) and (ii) of Theorem 5.1.3 follow from parts (i) and (ii) of the latter corollary, respectively.

This completes the proof of Theorem 5.1.3. 2

The following Theorem 5.1.5 illustrates Corollary 4.3.15 in the setting of Subsection 5.1.1. Part (ii)

of this theorem specifies the quasi-Hadamard derivative of the value functional of the stochastic

inventory control problem (5.6). This derivative will be used later in Subsections 5.1.3 and 5.1.4

to establish the asymptotic error distribution of suitable estimators for the optimal value of the

latter optimization problem. Recall from (5.2) the definition of the sum operator Sh for some map

h ∈ RR, and note that Π(F ) contains all optimal strategies which solves the stochastic inventory

control problem (5.6). Take into account that Π(F ) is non-empty (and finite) in the setting of

Subsection 5.1.1.

Theorem 5.1.5 (Quasi-Hadamard differentiability of Wxi;π
0 and Wxi

0 in F ) In the setting

above let i0 ∈ {1, . . . , e}, π = (fn)N−1
n=0 ∈ Π, and F ∈ F 0(ζN0). Then the following two assertions

hold.

(i) The map Wxi0 ;π
0 : F 0(ζN0) → R defined by (5.7) is quasi-Hadamard differentiable at F tan-

gentially to L1(ζN0)〈L1(ζN0)〉 with quasi-Hadamard derivative Ẇxi0 ;π

0;F : L1(ζN0) → R given

by

Ẇxi0 ;π

0;F (h)

=
N−1∑
k=0

e∑
i1=1

· · ·
e∑

ik=1

e∑
ik+1=1

V F ;π
k+1 (xik+1

) ·
∑

`∈η−1
(yik

,fk(xik
))

(zik+1
)

Sh(`) · 1{yik+1
= yik+fk(xik )−zik+1

}

· pFk−1,ik−1;fk−1(xik−1
)(ik) · · · p

F
0,i0;f0(xi0 )(i1), (5.9)

where η(yik ,fk(xik )) is defined as in (3.4).

(ii) The map Wxi0
0 : F 0(ζN0) → R defined by (5.7) is quasi-Hadamard differentiable at F tan-

gentially to L1(ζN0)〈L1(ζN0)〉 with quasi-Hadamard derivative Ẇxi0
0;F : L1(ζN0) → R given

by

Ẇxi0
0;F (h) = max

π∈Π(F )
Ẇxi0 ;π

0;F (h). (5.10)

Proof We intend to apply Corollary 4.3.15. First of all, condition (a) of Corollary 4.3.15 holds by

Lemma 5.1.2. Therefore it suffices to verify condition (b) of Corollary 4.3.15. In the sequel, we will
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first show that for any i = 1, . . . , e, π ∈ Π, and n = 0, . . . , N − 1 the map Λ
F ;(π,xi)
n : F 0(ζN0) → R

defined by (4.14) is quasi-Hadamard differentiable at F tangentially to L1(ζN0)〈L1(ζN0)〉 (in the

sense of Definition 4.3.7) with quasi-Hadamard derivative Λ̇
F ;(π,xi)
n;F : L1(ζN0)→ R given by

Λ̇
F ;(π,xi)
n;F (h) :=

e∑
j=1

V F ;π
n+1(xj) ·

∑
`∈η−1

(yi,fn(xi))
(zj)

Sh(`) · 1{yj=yi+fn(xi)−zj}. (5.11)

Let (h, (hm), (εm)) ∈ L1(ζN0)×L1(ζN0)N×RN
>0 be any triplet satisfying ‖hm−h‖1,ζN0

→ 0, εm → 0

as well as (F + εmhm) ⊆ F 0(ζN0). Proceeding as in the proof of Lemma 5.1.4, we obtain by means

of (5.11), (5.2), and (1.29) (applied to pF ) for any i = 1, . . . , e, π = (fn)N−1
n=0 ∈ Π, n = 0, . . . , N − 1,

and m ∈ N∣∣Λ̇F ;(π,xi)
n;F (hm)− Λ̇

F ;(π,xi)
n;F (h)

∣∣
=

∣∣∣ e∑
j=1

V F ;π
n+1(xj) ·

∑
`∈η−1

(yi,fn(xi))
(zj)

(
(hm − h)(0)1{`=0} + ∆`

`−1(hm − h)1{`∈N}
)
·1{yj=yi+fn(xi)−zj}

∣∣∣
≤ CF ;n ·

e∑
j=1

∑
`∈N0

∣∣(hm − h)(0)1{`=0} + ∆`
`−1(hm − h)1{`∈N}

∣∣ ≤ 2CF ;n e · ‖hm − h‖1,ζN0
, (5.12)

where CF ;n > 0 is a finite constant (depending on n). Recall that ψ :≡ 1 is a bounding function

for the MDM (E,A,P F ,Π,X, r). Thus

lim
m→∞

∣∣Λ̇F ;(π,xi)
n;F (hm)− Λ̇

F ;(π,xi)
n;F (h)

∣∣ = 0 (5.13)

for every i = 1, . . . , e, π ∈ Π, and n = 0, . . . , N − 1. In particular, for every i = 1, . . . , e, π ∈ Π, and

n = 0, . . . , N −1 the map Λ̇
F ;(π,xi)
n;F : L1(ζN0)→ R given by (5.11) is continuous w.r.t. (‖ · ‖1,ζN0

, | · |).

Similarly, we obtain in view of (5.8), (5.11) and (5.1)–(5.2) for every i = 1, . . . , e, π = (fn)N−1
n=0 ∈ Π,

n = 0, . . . , N − 1, and m ∈ N∣∣∣ΛF ;(π,xi)
n (F + εmhm)− Λ

F ;(π,xi)
n (F )

εm
− Λ̇

F ;(π,xi)
n;F (h)

∣∣∣
=

∣∣∣ e∑
j=1

V F ;π
n+1(xj) ·

∑
`∈η−1

(yi,fn(xi))
(zj)

pF+εmhm(`)− pF (`)

εm
· 1{yj=yi+fn(xi)−zj} − Λ̇

F ;(π,xi)
n;F (h)

∣∣∣
=

∣∣∣ e∑
j=1

V F ;π
n+1(xj) ·

∑
`∈η−1

(yi,fn(xi))
(zj)

(
hm(0)1{`=0} + ∆`

`−1hm1{`∈N}
)
· 1{yj=yi+fn(xi)−zj} − Λ̇

F ;(π,xi)
n;F (h)

∣∣∣
=

∣∣Λ̇F ;(π,xi)
n;F (hm)− Λ̇

F ;(π,xi)
n;F (h)

∣∣.
Hence in view of (5.13)

lim
m→∞

∣∣∣ΛF ;(π,xi)
n (F + εmhm)− Λ

F ;(π,xi)
n (F )

εm
− Λ̇

F ;(π,xi)
n;F (h)

∣∣∣ = 0.

for any i = 1, . . . , e, π ∈ Π, and n = 0, . . . , N − 1. This shows the quasi-Hadamard differentiability

of the map Λ
F ;(π,xi)
n : F 0(ζN0)→ R defined by (4.14).
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Moreover it follows from the representation (5.11) along with (5.2) that Λ̇
F ;(π,xi)
n;F (0L0(ζN0

)) = 0 for all

i = 1, . . . , e, π ∈ Π, and n = 0, . . . , N − 1. Analogously to (5.12) one can show that |Λ̇F ;(π,xi)
n;F (h)| ≤

CΛ̇ for all i = 1, . . . , e, π ∈ Π, n = 0, . . . , N − 1, and h ∈ L1(ζN0), where CΛ̇ := 2CF ;n e ‖h‖1,ζN0

is a finite constant (depending on n and h). Thus, condition (b) of Corollary 4.3.15 holds too. In

particular, we have verified the conditions of Corollary 4.3.15 for ν := ζN0 .

(i): An application of part (i) of Corollary 4.3.15 entails that the mapWxi0 ;π
0 : F 0(ζN0)→ R defined

by (5.7) is quasi-Hadamard differentiable at F tangentially to L1(ζN0)〈L1(ζN0)〉. The corresponding

quasi-Hadamard derivative Ẇxi0 ;π

0;F : L1(ζN0)→ R is in view of (4.30) as well as (5.11) given by

Ẇxi0 ;π

0;F (h) =
N−1∑
k=0

e∑
i1=1

· · ·
e∑

ik=1

Λ̇
F ;(π,xik )

k;F (h) · pFk−1,ik−1;fk−1(xik−1
)(ik) · · · p

F
0,i0;f0(xi0 )(i1)

=

N−1∑
k=0

e∑
i1=1

· · ·
e∑

ik=1

e∑
ik+1=1

V F ;π
k+1 (xik+1

) ·
∑

`∈η−1
(yik

,fk(xik
))

(zik+1
)

Sh(`) · 1{yik+1
= yik+fk(xik )−zik+1

}

· pFk−1,ik−1;fk−1(xik−1
)(ik) · · · p

F
0,i0;f0(xi0 )(i1).

(ii): It follows from part (ii) of Corollary 4.3.15 that the map Wxi0
0 : F 0(ζN0) → R defined by

(5.7) is quasi-Hadamard differentiable at F tangentially to L1(ζN0)〈L1(ζN0)〉 with quasi-Hadamard

derivative Ẇxi0
0;F : L1(ζN0)→ R given by (5.10). 2

The statement of the following remark is not relevant for the further investigations and is therefore

only mentioned here in passing.

Remark 5.1.6 Using similar arguments as in the proof of Theorem 5.1.5 one can show that for

any given x ∈ R the map T x : F 0(ζN0)→ R defined by

T x(F ) := pF (x)

with pF given by (5.1) is quasi-Hadamard differentiable at any fixed F ∈ F 0(ζN0) tangentially to

L1(ζN0)〈L1(ζN0)〉 with quasi-Hadamard derivative Ṫ xF : L1(ζN0)→ R given by

Ṫ xF (h) := Sh(x), (5.14)

where Sh is introduced in (5.2). In particular, this means that the counting density pF of the

probability measure µF given by (5.3) regarded as a real-valued map defined on F 0(ζN0) is for any

x ∈ R quasi-Hadamard differentiable at any fixed F ∈ F 0(ζN0) tangentially to L1(ζN0)〈L1(ζN0)〉
with quasi-Hadamard derivative given by the right-hand side of (5.14). Take into account that in

view of (5.2) the latter derivative is independent of the distribution function F . 3

5.1.3 Nonparametric estimation of the optimal value

This subsection is concerned with the nonparametric estimation of the optimal value of the inventory

control problem (5.6) in the unknown distribution function F .
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To this end, let (Yi)i∈N be a sequence of i.i.d. random variables on some probability space (Ω,F ,P)

with values in N0, and denote by F the common distribution function of the random variables

Y1, Y2, . . . which is assumed to be unknown. Thus we have F ∈ F 0 (with F 0 defined as in Subsection

5.1.1). The random variables Yi can be seen as observed historical demands of the single product

in the inventory control model from Subsection 5.1.1. Therefore, a natural choice for the estimator

of F will be the empirical distribution function F̂m of Y1, . . . , Ym based on sample size m ∈ N as

defined in (4.31).

Remark 5.1.7 (i) Note that the empirical distribution function F̂m of the N0-valued random

variables Y1, . . . , Ym is a very simple object as it is nothing but a step function with support on

R≥0 and jump discontinuities in N0.

(ii) In the setting of Subsection 5.1.1, the random transition mechanism of the MDP is determined

by the (unknown) probability distribution µF (given by (5.3)) of the random demands I1, . . . , IN .

In view of (5.3), it would be more obvious to estimate the counting density pF (given by (5.1–5.2))

of µF than the distribution function F of µF . However, since in the discrete case there is a one-

to-one correspondence between the distribution function and its counting density, we will estimate

the (unknown) counting density pF (and thus the probability distribution µF ) by the empirical

distribution function F̂m. 3

As a consequence, the expression Wxi0 ;π
0 (F̂m) (resp. Wxi0

0 (F̂m)) can be seen as a reasonable (plug-

in) estimator for Wxi0 ;π
0 (F ) (resp. Wxi0

0 (F )) if F ∈ F 0(ζN0), where the functional Wxi0 ;π
0 (resp.

Wxi0
0 ) is defined as in (5.7). Take into account that it follows from Lemma 5.1.10(i) below that

F̂m(ω, · ) ∈ F 0(ζN0) for every ω ∈ Ω and m ∈ N.

In the sequel, we will apply the regularity results from Subsection 5.1.2 to obtain consistency,

asymptotic normality, and bootstrap consistency (in probability) of the nonparametric estimator

Wxi0
0 (F̂m) for the optimal value Wxi0

0 (F ) of the inventory control problem (5.6).

The following Theorem 5.1.8 illustrates Theorem 4.4.1 in the setting of Subsection 5.1.1.

Theorem 5.1.8 (Strong consistency of (Wxi0 ;π
0 (F̂m)) and (Wxi0

0 (F̂m))) In the setting of Sub-

section 5.1.1 let i0 ∈ {1, . . . , e} and π ∈ Π. Let (Yi)i∈N be an i.i.d. sequence of N0-valued random

variables on some probability space (Ω,F ,P) with common distribution function F , and suppose

that
´
R≥0

(1 − F ) dζN0 < ∞ (in particular F ∈ F 0(ζN0)). Moreover let F̂m be for every m ∈ N the

empirical distribution function of Y1, . . . , Ym as defined in (4.31). Then the following two assertions

hold.

(i) The sequence of estimators (Wxi0 ;π
0 (F̂m))m∈N is strongly consistent for Wxi0 ;π

0 (F ) under P in

the sense that

Wxi0 ;π
0 (F̂m)→Wxi0 ;π

0 (F ) P-a.s.

(ii) The sequence of estimators (Wxi0
0 (F̂m))m∈N is strongly consistent for Wxi0

0 (F ) under P in the

sense that

Wxi0
0 (F̂m)→Wxi0

0 (F ) P-a.s.
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The statement in part (ii) of Theorem 5.1.8 can be interpreted in the following sense. If πF ∈ Π

corresponds in the setting of Theorem 5.1.8 to an optimal order strategy w.r.t. F (the existence of

such a strategy is ensured), then (under the assumptions of Theorem 5.1.8) part (ii) of the latter

theorem implies that (for every initial inventory level xi0 = (yi0 , · ) ∈ E) the sequence of estimators

(Wxi0
0 (F̂m))m∈N is strongly consistent (under P) for the optimal value Wxi0 ;πF

0 (F ) of the inventory

control problem (5.6).

Let us turn to the proof of Theorem 5.1.8. It avails the following two Lemmas 5.1.9–5.1.10.

Lemma 5.1.9
´

[M,∞)(1−F (x)) ζN0(dx) =
´

(y−M)1{y≥M} dF (y) for every M ∈ N0 and F ∈ F 0.

Proof Note that Fubini’s theorem entails thatˆ
[M,∞)

(1− F (x)) ζN0(dx) =
∑

`∈N0∩[M,∞)

(1− F (`))(`− (`− 1)) =

ˆ
[M,∞)

(1− F (x)) `(dx)

=

ˆ
[M,∞)

ˆ
[x,∞)

µF (dy) `(dx) =

ˆ
[M,∞)

ˆ
[M,y)

`(dx)µF (dy)

=

ˆ
[M,∞)

(y −M) dF (y) =

ˆ
(y −M)1{y≥M} dF (y)

for every F ∈ F 0 and M ∈ N0, where we used for the second “=” the fact that F is in particular

right-continuous and that the discontinuity points of F all belong to N0. 2

Lemma 5.1.10 With the notation of Theorem 5.1.8 the following two assertions hold.

(i) F̂m(ω, · ) ∈ F 0(ζN0) for every ω ∈ Ω and m ∈ N.

(ii) If
´
R≥0

(1− F ) dζN0 <∞, then ‖F̂m − F‖1,ζN0
→ 0 P-a.s.

Proof Since trivially F̂m(ω, · ) ∈ F 0 for every ω ∈ Ω and m ∈ N, the claim in (i) is an immediate

consequence of Lemma 5.1.9 (applied to M := 0) as well as the representation (4.31).

To prove part (ii), we observe at first∥∥F̂m(ω, ·)− F (·)
∥∥

1,ζN0

=

ˆ
R≥0

∣∣F̂m(ω, x)− F (x)
∣∣ ζN0(dx)

≤
ˆ

[0,M)

∣∣F̂m(ω, x)− F (x)
∣∣ ζN0(dx) +

ˆ
[M,∞)

(1− F̂m(ω, x)) ζN0(dx)

+

ˆ
[M,∞)

(1− F (x)) ζN0(dx)

≤ M ·
∥∥F̂m(ω, ·)− F (·)

∥∥
∞ +

ˆ
[M,∞)

(
1− F̂m(ω, x)

)
ζN0(dx)

+

ˆ
[M,∞)

(1− F (x)) ζN0(dx)

=: S1(m,ω,M) + S2(m,ω,M) + S3(M)

for every m ∈ N, ω ∈ Ω, and M ∈ N. Take into account that F̂m(ω, · )− F (·) ∈ L1(ζN0) for every

ω ∈ Ω and m ∈ N by part (i). In view of the classical Glivenko–Cantelli theorem (e.g. in the form

of [86, Theorem 19.1]), we have limm→∞ S1(m,ω,M) = 0 for P-a.e. ω ∈ Ω and every M ∈ N.
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Moreover, in view of Lemma 5.1.9, we get

ˆ
[M,∞)

(
1− F̂m(ω, x)

)
ζN0(dx) =

1

m

m∑
k=1

(Yk(ω)−M)1{Yk(ω)≥M}

for every m ∈ N, ω ∈ Ω, and M ∈ N. Hence the strong law of large numbers yields that

limm→∞ S2(m,ω,M) = E[(Y1 − M)1{Y1≥M}] for P-a.e. ω ∈ Ω and every M ∈ N. Take into

account that E[|Y1|] < ∞ by the integrability assumption
´
R≥0

(1 − F ) dζN0 < ∞, Lemma 5.1.9

(applied to M := 0), and the fact that F is supported on R≥0.

Similarly, we obtain

ˆ
[M,∞)

(1− F (x)) ζN0(dx) =

ˆ
R≥0

(y −M)1{y≥M} dF (y)

and thus S3(M) = E[(Y1 −M)1{Y1≥M}] for every M ∈ N by Lemma 5.1.9. Therefore we have

shown that for P-a.e. ω and every M ∈ N

lim sup
m→∞

‖F̂m(ω, ·)− F (·)‖1,ζN0
≤ 2E[(Y1 −M)1{Y1≥M}]. (5.15)

Hence the assertion follows by letting M →∞ in (5.15) (recall E[|Y1|] <∞). This shows (ii). 2

Now, we are able to prove Theorem 5.1.8.

Proof of Theorem 5.1.8: We intend to apply Theorem 4.4.1. First, it is discussed in the proof of

Theorem 5.1.3 that the assumptions of Corollary 4.3.6 are satisfied. Note that the assumptions of

Corollary 4.3.6 matches the assumptions of Theorem 4.3.3 in the finite setting. Second, it follows

from part (i) of Lemma 5.1.10 that F̂m(ω, · ) ∈ F 0(ζN0) for any ω ∈ Ω and m ∈ N. Third, part (ii)

of Lemma 5.1.10 entails that ‖F̂m − F‖1,ζN0
→ 0 P-a.s.

Thus the assumptions of Theorem 4.4.1 hold (with ζN0 playing the role of ν), and an application of

parts (i) and (ii) of the latter theorem yield the claims in (i) and (ii) of Theorem 5.1.8, respectively.

This completes the proof of Theorem 5.1.8. 2

The following Theorem 5.1.11 illustrates Theorem 4.4.4 in the setting of Subsection 5.1.1. Part (ii)

of this theorem can be used to construct an asymptotic confidence interval for the optimal value

of inventory control problem (5.6); see Remark 5.1.14 below. Note that N0,s2 refers to the normal

distribution with zero mean and variance s2, and that ξ ∼ N0,s2 means that the random variable ξ

has law N0,s2 . Recall that  refers to the convergence in distribution.

Theorem 5.1.11 (Asymptotic error distribution of (Wxi0 ;π
0 (F̂m)) and (Wxi0

0 (F̂m))) In the

setting of Subsection 5.1.1 let i0 ∈ {1, . . . , e} and π = (fn)N−1
n=0 ∈ Π. Let (Yi)i∈N be an i.i.d. se-

quence of N0-valued random variables on some probability space (Ω,F ,P) with common distribution

function F , and suppose that
´ √

F (1− F ) dζN0 < ∞ (in particular F ∈ F 0(ζN0)). Moreover let

F̂m be for every m ∈ N the empirical distribution function of Y1, . . . , Ym as defined in (4.31). Then

the following two assertions hold.
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(i) We have √
m
(
Wxi0 ;π

0 (F̂m)−Wxi0 ;π
0 (F )

)
 ZF ;i0,π in (R,B(R), | · |) (5.16)

for ZF ;i0,π ∼ N0,s2 with

s2 = s2
F ;i0,π :=

ˆ
R2

hi0,πF (t1)CF (t1, t2)hi0,πF (t2) (ζN0 ⊗ ζN0)(d(t1, t2)), (5.17)

where

hi0,πF (t) := h̃i0,πF (t)− h̃i0,πF (t+ 1), t ∈ R (5.18)

for

h̃i0,πF (t) :=
N−1∑
k=0

( e∑
i1=1

· · ·
e∑

ik=1

e∑
ik+1=1

V F ;π
k+1 (xik+1

) · 1{t∈η−1
(yik

,fk(xik
))

(zik+1
)} (5.19)

·1{yik+1
= yik+fk(xik )−zik+1

} · pFk−1,ik−1;fk−1(xik−1
)(ik) · · · p

F
0,i0;f0(xi0 )(i1)

)
,

and CF is given by (4.33).

(ii) If there exists a unique optimal order strategy πF ∈ Π w.r.t. F , then

√
m
(
Wxi0

0 (F̂m)−Wxi0
0 (F )

)
 ZF ;i0 in (R,B(R), | · |) (5.20)

for ZF ;i0 ∼ N0,s2 with s2 = s2
F ;i0,πF

given by (5.17) (with π replaced by πF ).

The proof of Theorem 5.1.11 requires the following lemma.

Lemma 5.1.12 With the notation and under the assumptions of Theorem 5.1.11 the following two

assertions hold for any i0 = 1, . . . , e, π ∈ Π, and m ∈ N.

(i) The estimator Wxi0 ;π
0 (F̂m) is (F ,B(R))-measurable.

(ii) The estimator Wxi0
0 (F̂m) is (F ,B(R))-measurable.

Proof For (i), note at first that the backward induction scheme in Display (1.29) admits in the

setting of Subsection 5.1.1 in view of (5.7), (5.5), and (5.1)–(5.2) the representation

Wxi;π
N (F̂m(ω, · )) = rN (xi)

and

Wxi;π
n (F̂m(ω, · )) = rn(xi, fn(xi)) +

e∑
j=1

Wxj ;π
n+1 (F̂m(ω, · )) · pF̂m(ω, · )

n,i;fn(xi)
(j)

= rn(xi, fn(xi)) +

e∑
j=1

Wxj ;π
n+1 (F̂m(ω, · )) ·

( ∑
`∈η−1

(yi,fn(xi))
(zj)

p
F̂m(ω, · )(`) · 1{yj= yi+fn(xi)−zj}

)

= rn(xi, fn(xi)) +
e∑

j=1

Wxj ;π
n+1 (F̂m(ω, · ))

·
( ∑
`∈N0

(
F̂m(ω, 0)1{`=0} + ∆`

`−1F̂m(ω, · )1{`∈N}
)
· 1{`∈η−1

(yi,fn(xi))
(zj)} · 1{yj= yi+fn(xi)−zj}

)
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= rn(xi, fn(xi)) +

e∑
j=1

Wxj ;π
n+1 (F̂m(ω, · ))

·
(

lim
M→∞

{ M∑
`=0

(
F̂m(ω, 0)1{`=0} + ∆`

`−1F̂m(ω, · )1{`∈N}
)
·1{`∈η−1

(yi,fn(xi))
(zj)}

}
·1{yj= yi+fn(xi)−zj}

)
for every i = 1, . . . , e, n = 0, . . . , N − 1, and ω ∈ Ω. Take into account that F̂m(ω, · ) ∈ F 0(ζN0) for

every ω ∈ Ω by Lemma 5.1.10(i). Thus it can be verified by (backward) induction on n that the

mapping

ω 7→ Wxi;π
n (F̂m(ω, · ))

is (F ,B(R))-measurable for any i = 1, . . . , e and n = 0, . . . , N because ω 7→ F̂m(ω, t) is clearly

(F ,B(R))-measurable for all t ∈ R. In particular this implies that Wxi0 ;π
0 (F̂m) is (F ,B(R))-

measurable. This shows (i).

The assertion in (ii) follows from part (i) along with the representation (5.7). Note that in the

setting of Subsection 5.1.1 the set Π (of all admissible strategies) is finite. 2

Let us turn to the proof of Theorem 5.1.11.

Proof of Theorem 5.1.11: We intend to apply Theorem 4.4.4. At first, part (i) of Lemma 5.1.10

entails that F̂m(ω, · ) ∈ F 0(ζN0) for every ω ∈ Ω and m ∈ N. Therefore condition (b) of Theorem

4.4.4 holds. Moreover, Lemma 5.1.12 ensures that condition (c) of Theorem 4.4.4 is satisfied. Since

it follows from the proof of Theorem 5.1.5 that the assumptions of Corollary 4.3.15 hold, we have

verified the assumptions of Theorem 4.4.4 (with ζN0 in place of ν). Take into account that in

the finite setting of Subsection 5.1.1 the assumptions of Corollary 4.3.15 imply the assumptions of

Theorem 4.3.8 (with ζN0 in place of ν).

(i): It follows from part (i) of Theorem 4.4.4 that Ẇxi0 ;π

0;F (BF ) is (F̌ ,B(R))-measurable and

√
m
(
Wxi0 ;π

0 (F̂m)−Wxi0 ;π
0 (F )

)
 Ẇxi0 ;π

0;F (BF ) in (R,B(R), | · |), (5.21)

where Ẇxi0 ;π

0;F is given by (5.9) and BF is an L1(ζN0)-valued centred Gaussian random variable on

some probability space (Ω̌, F̌ , P̌) with covariance operator ΓBF ,ζN0
given by (4.32). Further it is

easily seen that the right-hand side of (5.21) admits in view of (5.9) and (5.2) the representation

Ẇxi0 ;π

0;F (BF )

=
N−1∑
k=0

e∑
i1=1

· · ·
e∑

ik=1

e∑
ik+1=1

V F ;π
k+1 (xik+1

) ·
∑
`∈N0

(
BF ( · , 0)1{`=0} + ∆`

`−1BF ( · , •)1{`∈N}
)

·1{`∈η−1
(yik

,fk(xik
))

(zik+1
)} · 1{yik+1

= yik+fk(xik )−zik+1
} · pFk−1,ik−1;fk−1(xik−1

)(ik) · · · p
F
0,i0;f0(xi0 )(i1)

=
∑
`∈N0

h̃i0,πF (`) ·
(
BF ( · , 0)1{`=0} + ∆`

`−1BF ( · , •)1{`∈N}
)

=
∑
`∈N0

h̃i0,πF (`)BF ( · , `)−
∑
`∈N

h̃i0,πF (`)BF ( · , `− 1) =
∑
`∈N0

(
h̃i0,πF (`)− h̃i0,πF (`+ 1)

)
BF ( · , `)

=
∑
`∈N0

hi0,πF (`)BF ( · , `) =

ˆ
hi0,πF (t)BF ( · , t) ζN0(dt) (5.22)
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with h̃i0,πF and hi0,πF given by (5.19) and (5.18), respectively. Hence, since hi0,πF (·) ∈ L∞(ζN0) and

since BF is a centred Gaussian random variable with values in L1(ζN0), the real-valued random

variable ZF ;i0,π := Ẇxi0 ;π

0;F (BF ) is normally distributed with mean

Ě
[
Ẇxi0 ;π

0;F (BF )
]

=

ˆ
hi0,πF (t) Ě[BF ( · , t)] ζN0(dt) = 0

(by Fubini’s theorem) and variance

V̌ar
[
Ẇxi0 ;π

0;F (BF )
]

= Ě
[
Ẇxi0 ;π

0;F (BF )2
]

= Ě
[( ˆ

hi0,πF (t1)BF ( · , t1) ζN0(dt1)
)( ˆ

hi0,πF (t2)BF ( · , t2) ζN0(dt2)
)]

= ΓBF ,ζN0
(hi0,πF , hi0,πF ),

where the latter expression is in view of Theorem 4.4.6 (with ν and F replaced by ζN0 and F 0,

respectively) equal to the right-hand side of (5.17). This shows (5.16).

(ii): By part (ii) of Theorem 4.4.4 we obtain that Ẇxi0
0;F (BF ) is (F̌ ,B(R))-measurable as well as

√
m
(
Wxi0

0 (F̂m)−Wxi0
0 (F )

)
 Ẇxi0

0;F (BF ) in (R,B(R), | · |), (5.23)

where Ẇxi0
0;F is given by (5.10) and BF is as in (i). If in addition there exists a unique optimal order

strategy πF ∈ Π w.r.t. F , then Π(F ) = {πF } and the right-hand side of (5.23) admits in view of

(5.10) and (5.22) the representation

Ẇxi0
0;F (BF ) = max

π∈Π(F )
Ẇxi0 ;π

0;F (BF ) = Ẇxi0 ;πF

0;F (BF ) =

ˆ
hi0;πF

F (t)BF ( · , t) ζN0(dt).

Hence, using similar arguments as in the proof of (i), one can show that the real-valued random

variable ZF ;i0 := Ẇxi0
0;F (BF ) is normally distributed with zero mean and variance V̌ar[Ẇxi0

0;F (BF )] =

ΓBF ,ζN0
(hi0;πF

F , hi0;πF

F ), where the latter is equal to the right-hand side of (5.17) (with π replaced

by πF ). In particular, this shows (5.20) and completes the proof of Theorem 5.1.11. 2

Remark 5.1.13 An easy computation shows that in the setting (and under the assumptions) of

Theorem 5.1.11 the variance s2
F ;i0,π

in (5.17) (and thus the variance s2
F ;i0,πF

in part (ii) of Theorem

5.1.11) admits the representation

s2
F ;i0,π =

N−1∑
k=0

( e∑
i1,j1=1

· · ·
e∑

ik,jk=1

e∑
ik+1,jk+1=1

V F ;π
k+1 (xik+1

)V F ;π
k+1 (xjk+1

)

·
∑

tik∈η
−1
(yik

,fk(xik
))

(zik+1
)

∑
tjk∈η

−1
(xjk

,fk(xjk
))

({zjk+1
})

CF (tik , tjk) · 1{yik+1
= yik+fk(xik )−zik+1

}

·1{yjk+1
= yjk+fk(xjk )−zjk+1

} · pFk−1,ik−1;fk−1(xik−1
)(ik) p

F
k−1,jk−1;fk−1(xjk−1

)(jk)

· · · pF0,i0;f0(xi0 )(i1) pF0,i0;f0(xi0 )(j1)
)

+

N−1∑
k,`=0

k 6=`

( e∑
i1=1

e∑
j1=1

· · ·
e∑

ik=1

e∑
j`=1

e∑
ik+1=1

e∑
j`+1=1

V F ;π
k+1 (xik+1

)V F ;π
`+1 (xj`+1

)
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·
∑

tik∈η
−1
(yik

,fk(xik
))

(zik+1
)

∑
tj`∈η

−1
(xj`

,f`(xj`
))

({zj`+1
})

CF (tik , tj`) · 1{yik+1
= yik+fk(xik )−zik+1

}

·1{yj`+1
= yj`+f`(xj` )−zj`+1

} · pFk−1,ik−1;fk−1(xik−1
)(ik) p

F
`−1,j`−1;f`−1(xj`−1

)(j`)

· · · pF0,i0;f0(xi0 )(i1) pF0,i0;f0(xi0 )(j1)
)

for any i0 = 1, . . . , e and π ∈ Π, where

CF (ti, tj) :=



CF (0, 0) , ti, tj = 0

CF (0, tj)− CF (0, tj − 1) , ti = 0, tj ∈ N
CF (ti, 0)− CF (ti − 1, 0) , ti ∈ N, tj = 0

CF (ti, tj)− CF (ti, tj − 1)

− CF (ti − 1, tj) + CF (ti − 1, tj − 1) , ti ∈ N, tj ∈ N

with CF given by (4.33). 3

In the following Remark 5.1.14 we will discuss the significance of the statement in part (ii) of

Theorem 5.1.11 for the estimation of the optimal value of the inventory control problem (5.6).

Remark 5.1.14 In view of part (ii) of Theorem 5.1.11 we can derive (under the assumptions of

the latter theorem and the additional assumption that there exists a unique optimal order strategy

πF ∈ Π w.r.t. F ) from equation (5.20) an asymptotic confidence interval at a given level κ ∈ (0, 1)

for the optimal value Wxi0 ;πF

0 (F ) of the inventory control problem (5.6). In this case, however, one

has to perform a nonparametric estimation of the variance s2 = s2
F ;i0;πF

in (5.17) (with π replaced

by πF ) which is of the form

ŝ2
m = s2

F̂m;i0,πF̂m
:=

ˆ
R2

hi0,π
F̂m

F̂m
(s)C

F̂m
(s, t)hi0,π

F̂m

F̂m
(t) (ζN0 ⊗ ζN0)(d(t1, t2)) (5.24)

with hi0,π
F̂m

F̂m
and C

F̂m
defined as in (5.18)–(5.19) and (4.33), respectively. Here πF̂m ∈ Π corresponds

to an optimal order strategy w.r.t. F̂m (computed via [73, p. 92]). Since the estimator ŝ2
m in (5.24)

for s2 depends on F̂m in a quite complex manner, it is not clear how good the performance of the

asymptotic confidence interval based on ŝ2
m is. In order to handle this problem, we will show in

the next theorem a bootstrap result (in probability) with its help we are able to derive a so-called

bootstrap confidence interval for the optimal value Wxi0 ;πF

0 (F ); see Remark 4.4.13. 3

Part (ii) of the following Theorem 5.1.15 shows that the sequence (Wxi0
0 (F̂ ∗m))m∈N is a bootstrap

version (in probability) of the sequence of estimators (Wxi0
0 (F̂m))m∈N for the optimal valueWxi0

0 (F )

of the inventory control problem (5.6). Recall that dBL introduced in Example 2.1.4 (with E := R)

refers to the bounded Lipschitz-metric onM1(R). Also note that a weight function φ is continuous

on R as well as non-decreasing on R≥0 and non-increasing on R≤0.

Theorem 5.1.15 (Bootstrap consistency of (Wxi0 ;π
0 (F̂m)) and (Wxi0

0 (F̂m))) In the setting of

Subsection 5.1.1 let i0 ∈ {1, . . . , e} and π ∈ Π. Let (Yi)i∈N be an i.i.d. sequence of N0-valued random
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variables on some probability space (Ω,F ,P) with common distribution function F , and assume that´
φ2 dF < ∞ for some weight function φ satisfying

´
1/φ dζN0 < ∞ (in particular F ∈ F 0(ζN0)).

Let F̂m be for every m ∈ N the empirical distribution function of Y1, . . . , Ym as defined in (4.31).

Moreover let (Wmi)m∈N,1≤i≤m be a triangular array of nonnegative real-valued random variables on

another probability space (Ω′,F ′,P′), set (Ω,F ,P) := (Ω×Ω′,F ⊗F ′,P⊗P′), and let F̂ ∗m be defined

as in (4.37). If one of the settings (B1)–(B2) in Subsection 4.4.3 is met, then the following two

assertions hold.

(i) For every δ > 0 we have

lim
m→∞

P
[{
ω ∈ Ω : dBL(P′√

m(W
xi0

;π

0 (F̂ ∗m(ω,·))−W
xi0

;π

0 (F̂m(ω)))
,N0,s2) ≥ δ

}]
= 0, (5.25)

where s2 = s2
F ;i0,π

is given by (5.17).

(ii) If there exists a unique optimal order strategy πF ∈ Π w.r.t. F , then for any δ > 0 we have

lim
m→∞

P
[{
ω ∈ Ω : dBL(P′√

m(W
xi0
0 (F̂ ∗m(ω,·))−W

xi0
0 (F̂m(ω)))

,N0,s2) ≥ δ
}]

= 0, (5.26)

where s2 = s2
F ;i0,πF

is given by (5.17) (with π replaced by πF ).

Proof We intend to apply Theorem 4.4.9. First, Lemma 5.1.10(i) ensures that F̂m(ω, · ) ∈ F 0(ζN0)

for every ω ∈ Ω and m ∈ N. Second, it follows from Lemma 5.1.9 (applied to M := 0) along with

the representation (4.37) that F̂ ∗m((ω, ω′), · ) ∈ F 0(ζN0) for every (ω, ω′) ∈ Ω and m ∈ N. Third,

Lemma 5.1.12 implies that the estimators Wxi0 ;π
0 (F̂m) and Wxi0

0 (F̂m) are (F ,B(R))-measurable for

every m ∈ N. Using similar arguments as in the proof of Lemma 5.1.12 it is easily seen that the

estimators Wxi0 ;π
0 (F̂ ∗m) as well as Wxi0

0 (F̂ ∗m) are (F ,B(R))-measurable for any m ∈ N. Moreover,

it follows from the proof of Theorem 5.1.5 and Display (5.2) that the map Λ̇
F ;(π,xi)
n;F : L1(ζN0)→ R

given by (5.11) is linear for any i = 1, . . . , e and n = 0, . . . , N − 1, and satisfies condition (a) of

Theorem 4.3.8. That is, in the setting of Subsection 5.1.1 conditions (b)–(f) of Theorem 4.4.9 are

satisfied, and condition (a) of Theorem 4.4.9 holds by assumption. Finally, note that it is discussed

in the proof of Theorem 5.1.11 that in the above setting the assumptions of Theorem 4.3.8 hold.

Hence this implies that the assumptions of Theorem 4.4.9 are satisfied for ν := ζN0 . In particular,

it follows from the discussion subsequent to Theorem 4.4.9 that the expressions in (5.25) and (5.26)

are well-defined.

(i): Part (i) of Theorems 4.4.9 and 5.1.5 entails that (5.25) holds for every δ > 0 with N0,s2 replaced

by P̌Ẇxi0
;π

0;F (BF )
, where Ẇxi0 ;π

0;F is given by (5.9) and BF refers to an L1(ζN0)-valued centred Gaussian

random variable on some probability space (Ω̌, F̌ , P̌) with covariance operator ΓBF ,ζN0
defined as

in (4.32). Since ZF ;i0;π := Ẇxi0 ;π

0;F (BF ) ∼ N0,s2 (under P̌) with s2 = s2
F ;i0,π

defined in (5.17) by (the

proof of) part (i) of Theorem 5.1.11, the assertion in (5.25) follows. Take into account that we may

apply Theorem 5.1.11 because
´ √

F (1− F ) dζN0 <∞ is implied by the assumptions
´
φ2 dF <∞

and
´

1/φ dζN0 <∞; see Remark 4.4.7 (applied to ν := ζN0).

(ii): If there exists a unique optimal strategy πF ∈ Π w.r.t. F , then part (ii) of Theorem 4.4.9

along with Theorem 5.1.5 imply that (5.26) holds for every δ > 0 with N0,s2 replaced by P̌Ẇxi0
0;F (BF )

,

where Ẇxi0
0;F is given by (5.10) and BF is as in (i). Since Π(F ) = {πF } and thus Ẇxi0

0;F = Ẇxi0 ;πF

0;F
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(by (5.10)), we obtain as in the proof of Theorem 5.1.11 that Ẇxi0
0;F (BF ) ∼ N0,s2 (under P̌) with

s2 = s2
F ;i0,πF

defined in (5.17) (with π replaced by πF ). Therefore the assertion in (5.26) follows.

2

5.1.4 Parametric estimation of the optimal value

The objective of this subsection is the parametric estimation of the optimal value of the inventory

control problem (5.6) in which the distribution function F describing the random demands of the

single product within each period is unknown. Here we assume that the distribution of the (i.i.d.)

random demands of the single product is drawn from a Poisson distribution whose parameter is

not known. Note that in practice the Poisson distribution is an appropriate choice to model the

random demand. In this case the distribution function F corresponds to the distribution function

of the Poisson distribution with unknown parameter.

To this end, we consider the parametric statistical infinite product model

(Ω,F , {Pθ : θ ∈ Θ}) :=
(
RN,B(RN), {Pλ := Poiss⊗Nλ : λ ∈ Θ}

)
(5.27)

for the (open) parameter set Θ := R>0 (⊆ R), where the Poisson distribution Poissλ with parameter

λ ∈ Θ is given by the standard counting density

pλ(x) :=

{
λx

x! e
−λ , x ∈ N0

0 , otherwise
. (5.28)

Moreover let Fλ be for every λ ∈ Θ the distribution function of the Poisson distribution Poissλ.

Note that Fλ admits in view of (5.28) the representation

Fλ(x) =

bxc∑
`=0

pλ(`) for all x ∈ R and λ ∈ Θ. (5.29)

Using this along with Lemma 5.1.9 we immediately obtain the following lemma.

Lemma 5.1.16 Fλ ∈ F 0(ζN0) for every λ ∈ Θ.

Now, a reasonable estimator for the parameter λ ∈ Θ based on sample size m ∈ N will be the map

λ̂m : Ω→ Θ defined by

λ̂m(y1, y2, . . .) = λ̂m(y1, . . . , ym) :=

{
1
m

∑m
i=1 yi , y1, . . . , ym ∈ N0

λ′ , otherwise
(5.30)

for some fixed λ′ ∈ Θ. We note that the case differentiation in (5.30) guarantees that the estimator

λ̂m takes values only in the parameter set Θ.

As a consequence of Lemma 5.1.16, the expression Wxi0 ;π
0 (F

λ̂m
) (resp. Wxi0

0 (F
λ̂m

) can be regarded

as a suitable (plug-in) estimator for Wxi0 ;π
0 (Fλ) (resp. Wxi0

0 (Fλ)). In the rest of this subsection we

will investigate the asymptotics of the latter estimators.

The following Theorem 5.1.17 illustrates Theorem 4.5.1 in the setting of Subsection 5.1.1.

141



Theorem 5.1.17 (Strong consistency of (Wxi0 ;π
0 (F

λ̂m
)) and (Wxi0

0 (F
λ̂m

))) In the setting of

Subsection 5.1.1 let i0 ∈ {1, . . . , e}, π ∈ Π, and λ0 ∈ Θ. Then the following two assertions hold.

(i) The sequence of estimators (Wxi0 ;π
0 (F

λ̂m
))m∈N is strongly consistent for Wxi0 ;π

0 (Fλ0) under

Pλ0 in the sense that

Wxi0 ;π
0 (F

λ̂m
)→Wxi0 ;π

0 (Fλ0) Pλ0-a.s.

(ii) The sequence of estimators (Wxi0
0 (F

λ̂m
))m∈N is strongly consistent for Wxi0

0 (Fλ0) under Pλ0

in the sense that

Wxi0
0 (F

λ̂m
)→Wxi0

0 (Fλ0) Pλ0-a.s.

If πFλ0 ∈ Π is in the setting of Subsection 5.1.1 an optimal order strategy w.r.t. Fλ0 (such a

strategy exists), then it follows from part (ii) of Theorem 5.1.17 that (for any initial inventory

level xi0 = (yi0 , · ) ∈ E) the sequence of plug-in estimators (Wxi0
0 (F

λ̂m
))m∈N is strongly consistent

(under Pλ0) for the optimal value Wxi0 ;π
Fλ0

0 (Fλ0) of the inventory control problem (5.6) (with Fλ0

in place of F ).

We now devote ourselves to the proof of Theorem 5.1.17.

Proof of Theorem 5.1.17: For the proof of parts (i) and (ii) we intend to apply Theorem 4.5.1.

First of all, in the infinite product model (RN,B(RN), {Pλ := Poiss⊗Nλ : λ ∈ Θ}) (see (5.27)), the

sequence of estimators (λ̂m)m∈N given by (5.30) is in view of the ordinary strong law of large

numbers strongly consistent for λ0 under Pλ0 (w.r.t. | · |). Thus condition (a) of Theorem 4.5.1 is

satisfied.

In the following, we will verify that the mapping λ→ Fλ from Θ to F 0(ζN0) defined by (5.28)–(5.29)

is continuous at λ0 w.r.t. (| · |, ‖ · ‖1,ζN0
), where ‖ · ‖1,ζN0

is defined as in (4.7) (with ζN0 in place of

ν).

Now, let (λm)m∈N be any sequence in Θ with λm → λ0. Set λ := infm∈N λm and λ := supm∈N λm,

and note that 0 < λ < λ <∞. At first, in view of (5.28), we observe for any k ∈ N0 and m ∈ N

∣∣pλm(k)− pλ0(k)
∣∣ =

1

k!

∣∣∣ λkm
eλm
− λk0
eλ0

∣∣∣ =
1

k!

∣∣((λkm − λk0) + λk0
)
eλ0 − λk0eλm

∣∣ · e−(λm+λ0)

≤ |λkm − λk0| e−λm + |eλm − eλ0 |λk0 e−(λm+λ0) ≤ |λkm − λk0| e−λ + |eλm − eλ0 |λk0 e−(λ+λ0).

Thus pλm(k)→ pλ0(k) for every k ∈ N0. In view of (5.28)–(5.29), this implies

1− Fλm(x)→ 1− Fλ0(x) for every x ∈ R≥0.

Moreover, we obtain by means of (5.28)–(5.29)

1− Fλm(x) = 1−
bxc∑
k=0

pλm(k) = 1−
bxc∑
k=0

λkm
k!
e−λm = 1 + (−e−λm) ·

bxc∑
k=0

λkm
k!

≤ 1 + (−e−λ) ·
bxc∑
k=0

λ
k

k!
= 1−

bxc∑
k=0

λ
k

k!
e−λ = 1− Fλ(x)
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for any x ∈ R≥0 and m ∈ N. Hence the map h : R→ R defined by

h(x) :=

{
1− Fλ(x) , x ∈ R≥0

1 , otherwise

is in view of

‖h‖1,ζN0
=

ˆ
R≥0

(
1− Fλ(x)

)
ζN0(dx) =

ˆ
R≥0

y dFλ(y) =
∑
`∈N0

` pλ(`) = λ < ∞

(by Lemma 5.1.9) a ζN0-integrable majorant. Then an application of the dominated convergence

theorem entails that

lim
m→∞

‖Fλm − Fλ0‖1,ζN0
= lim

m→∞

∥∥(1− Fλm)− (1− Fλ0)
∥∥

1,ζN0

= lim
m→∞

ˆ
R≥0

∣∣(1− Fλm(x))− (1− Fλ0(x))
∣∣ ζN0(dx) = 0.

Thus the mapping λ→ Fλ defined by (5.28)–(5.29) is indeed continuous at λ0 w.r.t. (| · |, ‖ · ‖1,ζN0
).

In particular, condition (b) of Theorem 4.5.1 holds, too.

Further it follows from the proof of Theorem 5.1.3 that the assumptions of Corollary 4.3.6 and thus

of Theorem 4.3.3 (with ζN0 and Fλ0 instead of ν and F , respectively) hold in the finite setting of

Subsection 5.1.1. Take into account that Fλ0 ∈ F 0(ζN0) by Lemma 5.1.16. As a consequence the

assumptions of Theorem 4.5.1 are satisfied (for ζN0 in place of ν), and the claims in (i) and (ii) of

Theorem 5.1.17 are immediate consequences of parts (i) and (ii) of the Theorem 4.5.1, respectively.

This completes the proof of Theorem 5.1.17. 2

Part (ii) of Theorem 5.1.18 provides the asymptotic error distribution of the sequence of plug-in

estimators (Wxi0
0 (F

λ̂m
))m∈N for the optimal valueWxi0

0 (Fλ0) of the inventory control problem (5.6)

(with Fλ0 playing the role of F ). Recall that in the setting of Subsection 5.1.1 the set Π(Fλ0)

consisting for some given λ0 ∈ Θ of all optimal order strategies πFλ0 ∈ Π w.r.t. Fλ0 is non-empty

and finite.

Theorem 5.1.18 (Asymptotic error distribution of (Wxi0 ;π
0 (F

λ̂m
)) and (Wxi0

0 (F
λ̂m

))) In the

setting of Subsection 5.1.1 let i0 ∈ {1, . . . , e}, π ∈ Π, and λ0 ∈ Θ. Then the following two assertions

hold.

(i) We have √
m
(
Wxi0 ;π

0 (F
λ̂m

)−Wxi0 ;π
0 (Fλ0)

)
 Zλ0;i0,π in (R,B(R), | · |)

for Zλ0;i0,π ∼ N0,s2, where

s2 = s2
λ0;i0,π = λ2

0 ·
(
Ẇxi0 ;π

0;Fλ0
(pλ0(·))

)2
(5.31)

with Ẇxi0 ;π

0;Fλ0
and pλ0 given by (5.9) and (5.28), respectively.

(ii) We have √
m
(
Wxi0

0 (F
λ̂m

)−Wxi0
0 (Fλ0)

)
 Zλ0;i0 in (R,B(R), | · |)
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for Zλ0;i0 ∼ N0,s2, where

s2 = s2
λ0;i0 := λ2

0 ·
(

min
π∈Π(Fλ0

)
Ẇxi0 ;π

0;Fλ0
(pλ0(·))

)2
(5.32)

with Ẇxi0 ;π

0;Fλ0
and pλ0 given by (5.9) and (5.28), respectively.

For parts (i) and (ii) of the preceding theorem note that for any fixed λ0 ∈ Θ we clearly have

pλ0(·) ∈ L1(ζN0) by (4.7) (with ν replaced by ζN0) and the shape of (the counting density) pλ0

defined in (5.28). Therefore, the expressions on the right-hand side of (5.31) and (5.32) are well-

defined.

Proof of Theorem 5.1.18: We intend to apply Theorem 4.5.4. First, the expression
√
m(λ̂m−λ0)

is clearly (F ,B(R))-measurable for every m ∈ N. Moreover it is easily seen that the family {Poissλ :

λ ∈ Θ} fulfils the assumptions of Theorem 6.5.1 in [63]. Therefore, the latter theorem implies that

the estimator λ̂m given by (5.30) in the corresponding infinite product model (RN,B(RN), {Pλ :=

Poiss⊗Nλ : λ ∈ Θ}) (see also (5.27)) satisfies

√
m(λ̂m − λ0)  Z̃λ0 in (R,B(R), | · |),

where Z̃λ0 corresponds to a normally distributed random variable on some probability space

(Ω̌, F̌ , P̌) with zero mean and variance I(λ0)−1. Note that I(λ0) refers to the Fisher informa-

tion matrix at λ0, and it is easily seen that I(λ0)−1 = λ0. Thus condition (a) of Theorem 4.5.4

holds.

In the next step we will verify condition (b) of Theorem 4.5.4. To this end, we consider the map

F : Θ→ F 0(ζN0) defined by

F(λ) := Fλ. (5.33)

Take into account that the latter map is well-defined by Lemma 5.1.16. In the sequel, we will

prove by means of Lemma 4.5.7 that the map F defined by (5.33) is Hadamard differentiable at

λ0 with trace L1(ζN0) (in the sense of Definition A.1(ii) in Section A) and Hadamard derivative

Ḟλ0 : R→ L1(ζN0) given by

Ḟλ0(τ)(x) :=

{
−pλ0(x) · τ , x ∈ N0

0 , otherwise
(5.34)

with pλ0 as in (5.28).

In order to apply Lemma 4.5.7, let the map f : Θ× R→ R from (4.45) be defined by

f(λ, x) := Fλ(x).

For any fixed x ∈ R, it is easily seen that in view of (5.28)–(5.29) the map λ 7→ f(λ, x) is continuously

differentiable on Θ with gradient

∇λf(λ, x) =

{
−pλ(x) , x ∈ N0

0 , otherwise
(5.35)

for all λ ∈ Θ.
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Now, let λ0 ∈ Θ be fixed, and define for some given δ > 0 a map hδ : R→ R by

hδ(x) :=

{
(λ0+δ)x

x! e−(λ0−δ) , x ∈ N0

0 , otherwise
.

In the sequel, we claim that

|∇λf(λ, x)| ≤ hδ(x) for all (λ, x) ∈ (λ0 − δ, λ0 + δ)× R (5.36)

for some sufficiently small δ > 0. For any (λ, x) ∈ (λ0 − δ, λ0 + δ)× R, we get

|∇λf(λ, x)| = pλ(x) =
λx

x!
e−λ1{x∈N0} ≤

(λ0 + δ)x

x!
e−(λ0−δ)1{x∈N0} = hδ(x).

Hence the map hδ satisfies (5.36). Moreover since

‖hδ‖1,ζN0
=
∑
`∈N0

|hδ(`)| =
∑
`∈N0

(λ0 + δ)`

`!
e−(λ0−δ) = eλ0+δe−(λ0−δ) = e2δ < ∞,

the map hδ is ζN0-integrable.

Thus the assumptions of Lemma 4.5.7 are satisfied and an application of this lemma along with

(5.35) ensure that the map F given by (5.33) is Hadamard differentiable at λ0 with trace L1(ζN0) and

Hadamard derivative Ḟλ0 : R → L1(ζN0) given by (5.34). In particular, condition (b) of Theorem

4.5.4 holds.

Moreover it follows from the proofs of Theorem 5.1.5 and Corollary 4.3.15 along with Lemma

5.1.16 that the assumptions of Theorem 4.3.8 are fulfilled (with ν := ζN0 and F replaced by Fλ0).

Therefore we have verified the assumptions of Theorem 4.5.4.

(i): Part (i) of Theorem 4.5.4 entails that Ẇxi0 ;π

0;Fλ0
(Ḟλ0(Z̃λ0)) is (F̌ ,B(R))-measurable and that

√
m
(
Wxi0 ;π

0 (F
λ̂m

)−Wxi0 ;π
0 (Fλ0)

)
 Ẇxi0 ;π

0;Fλ0
(Ḟλ0(Z̃λ0)) in (R,B(R), | · |),

where Ẇxi0 ;π

0;Fλ0
is defined as in (5.9). Since in view of (5.2), (5.9), and (5.34)

Ẇxi0 ;π

0;Fλ0
(Ḟλ0(τ))

=

N−1∑
k=0

e∑
i1=1

· · ·
e∑

ik=1

e∑
ik+1=1

V
Fλ0

;π

k+1 (xik+1
) ·

∑
`∈η−1

(yik
,fk(xik

))
(zik+1

)

(
Ḟλ0(τ)(0)1{`=0}

+ ∆`
`−1Ḟλ0(τ)(·)1{`∈N}

)
· 1{yik+1

= yik+fk(xik )−zik+1
} · p

Fλ0

k−1,ik−1;fk−1(xik−1
)(ik) · · · p

Fλ0

0,i0;f0(xi0 )(i1)

=
N−1∑
k=0

e∑
i1=1

· · ·
e∑

ik=1

e∑
ik+1=1

V
Fλ0

;π

k+1 (xik+1
) ·

∑
`∈η−1

(yik
,fk(xik

))
(zik+1

)

(
(−pλ0(0) · τ)1{`=0}

+ ∆`
`−1(−pλ0 · τ)1{`∈N}

)
· 1{yik+1

= yik+fk(xik )−zik+1
} · p

Fλ0

k−1,ik−1;fk−1(xik−1
)(ik)

· · · pFλ0

0,i0;f0(xi0 )(i1)
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= (−τ) ·
N−1∑
k=0

e∑
i1=1

· · ·
e∑

ik=1

e∑
ik+1=1

V
Fλ0

;π

k+1 (xik+1
) ·

∑
`∈η−1

(yik
,fk(xik

))
(zik+1

)

(
pλ0(0)1{`=0}

+ ∆`
`−1pλ01{`∈N}

)
· 1{yik+1

= yik+fk(xik )−zik+1
} · p

Fλ0

k−1,ik−1;fk−1(xik−1
)(ik) · · · p

Fλ0

0,i0;f0(xi0 )(i1)

= (−τ) · Ẇxi0 ;π

0;Fλ0
(pλ0(·)) (5.37)

for any τ ∈ R, the real-valued random variable Zλ0;i0,π := Ẇxi0 ;π

0;Fλ0
(Ḟλ0(Z̃λ0)) is normally distributed

with zero mean and variance as in (5.31).

(ii): In view of part (ii) of Theorem 4.5.4 we have that Ẇxi0
0;Fλ0

(Ḟλ0(Zλ0)) is (F̌ ,B(R))-measurable

and √
m
(
Wxi0

0 (F
λ̂m

)−Wxi0
0 (Fλ0)

)
 Ẇxi0

0;Fλ0
(Ḟλ0(Z̃λ0)) in (R,B(R), | · |),

where Ẇxi0
0;Fλ0

is defined as in (5.10). By (5.10) and (5.37) we get

Ẇxi0
0;Fλ0

(Ḟλ0(τ)) = max
π∈Π(Fλ0

)
Ẇxi0 ;π

0;Fλ0
(Ḟλ0(τ)) = max

π∈Π(Fλ0
)
(−τ) · Ẇxi0 ;π

0;Fλ0
(pλ0(·))

= (−τ) · min
π∈Π(Fλ0

)
Ẇxi0 ;π

0;Fλ0
(pλ0(·))

for every τ ∈ R. Thus the real-valued random variable Zλ0;i0 := Ẇxi0
0;Fλ0

(Ḟλ0(Z̃λ0)) is normally

distributed with zero mean and variance as in (5.32). This completes the proof of Theorem 5.1.18.

2

The following remark concludes this subsection. It discusses a conclusion of the statement in part

(ii) of Theorem 5.1.18 with regard to the statistical estimation of the optimal value of the inventory

control problem.

Remark 5.1.19 Part (ii) of Theorem 5.1.18 can be used to construct an asymptotic confidence

interval at a given level κ ∈ (0, 1) for the optimal valueWxi0
0 (Fλ0) of the inventory control problem

(5.6) (with F replaced by Fλ0). For this construction, however, we have to estimate the variance

s2 = s2
λ0;i0

in (5.32) in the unknown parameter λ0. Since λ̂m given by (5.30) provides a suitable

estimator for λ0, the expression ŝ2
m given by

ŝ2
m = s2

λ̂m;i0
:= λ̂2

m ·
(

min
π∈Π(F

λ̂m
)
Ẇxi0 ;π

0;F
λ̂m

(p
λ̂m

(·))
)2

can be regarded as an estimator for the variance s2. However, this estimator depends on λ̂m in a

quite complex manner so that the actual performance of the asymptotic confidence interval based

on ŝ2
m is not clear. A parametric bootstrap technique for the asymptotic error distribution of

Wxi0
0 (F

λ̂m
), which we will not discuss in this thesis, could probably lead to an improvement. 3

5.2 Terminal wealth optimization problem (revisited)

In this section we will again look at the terminal wealth problem which was introduced in Section

3.2. Here we will assume that the transition probabilities of the portfolio process are now governed
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by some single distribution function F which describes the dynamics of the asset. Since the asset

returns are not predictable for the controller we will suppose that the distribution F is unknown

and must be estimated by means of statistical methods. At first, we will reformulate in Subsection

5.2.1 the (adapted) terminal wealth problem from Section 3.2 in the new setting and embed subse-

quently the market model into the MDM from Section 4.1. Thereafter we establish in Subsection

5.2.2 regularity properties of the value functional of the (adapted) terminal wealth problem. In

Subsections 5.2.3–5.2.4 we will perform a nonparametric as well as a parametric estimation of the

optimal value of the (adapted) terminal wealth problem.

5.2.1 Basic financial market model, and the Markov decision model

Let us take up the setting of Section 3.2, that is, we consider an N -period financial market (with

N ∈ N fixed) consisting of one riskless bond S0 = (S0
0 , . . . , S

0
N ) and one risky asset S = (S0, . . . , SN ).

Here we assume that the value of the bond evolves deterministically according to

S0
0 = 1, S0

n+1 = rn+1S
0
n, n = 0, . . . , N − 1

for some fixed constants r1, . . . , rN ∈ R≥1, and that the value of the asset evolves stochastically

according to

S0 = s0, Sn+1 = Rn+1Sn, n = 0, . . . , N − 1

for some fixed constant s0 ∈ R>0 and R≥0-valued i.i.d. random variables R1, . . . ,RN on some

probability space (Ω,F ,P) with common but unknown distribution function F .

In the sequel, we will always assume that the financial market satisfies conditions (b)–(c) of As-

sumption 3.2.1 as well as the following Assumption 5.2.1. It can be deduced from Examples 3.2.7

and 3.2.8 that the respective financial market models satisfy conditions (b)–(c) of Assumption 3.2.1

and Assumption 5.2.1. Recall from (3.16) the definition of the power utility function uα, where

α ∈ (0, 1) is fixed.

Assumption 5.2.1
´
R≥0

uα dF <∞.

Under condition (b) of Assumption 3.2.1 we may assume without loss of generality that F belongs

to the subset F>0 of all distribution functions on R which are supported on R>0. Moreover

Assumption 5.2.1 along with part (i) of Lemma 5.2.4 below ensure that F is even an element of

F>0(µuα). Here F>0(µuα) denotes the set of all F ∈ F>0 satisfying
ˆ
R≥0

(1− F ) dµuα < ∞,

and µuα refers to the (locally finite) Stieltjes measure w.r.t. uα on B(R≥0) (see Proposition B.1).

Take into account that the power utility function uα is clearly non-decreasing and right-continuous,

and that the measure µuα can be considered as a (locally finite) measure defined on B(R) which is

supported on R≥0.

Now, an agent intends to find for some given initial amount of capital x0 ∈ R≥0 a self-financing

trading strategy w.r.t. x0 in such a way that the expected utility of the discounted terminal wealth

over N periods is maximized. It is discussed in the elaborations of Subsection 3.2.1 that the latter
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optimization problem can be modelled via an R≥0-valued stochastic process Xϕ = (Xϕ
n )Nn=0 defined

as in (3.13), where ϕ = (ϕn)N−1
n=0 regarded as an R≥0-valued stochastic process corresponds to a

self-financing trading strategy w.r.t. x0 which is Markovian. The latter property means that we may

find for any n = 0, . . . , N − 1 some Borel measurable map fn : R≥0 → R≥0 such that ϕn = fn(Xϕ
n ).

If the agent’s attitude towards risk is described by the power utility uα, then objective of the agent

is to find a self-financing trading strategy ϕ = (ϕn)N−1
n=0 (resp. π = (fn)N−1

n=0 ) w.r.t. x0 for which the

expectation of uα(Xϕ
N/S

0
N ) under P is maximized. Note that for given trading strategy ϕ = (ϕn)N−1

n=0

(resp. π = (fn)N−1
n=0 ) the process Xϕ can be seen as an R≥0-valued (Fn)-Markov process (with Fn

as in Subsection 3.2.1) whose one-step transition probability at time n ∈ {0, . . . , N −1} given state

xn ∈ R≥0 is given by

µF ◦ η−1
n,(xn,fn(xn)),

where µF corresponds to the Stieltjes measure w.r.t. F on B(R) (see Remark B.2) and ηn,(xn,fn(xn))

is given by (3.15).

Since the above optimization problem has a Markovian structure it can be modelled (similarly

to the elaborations in Subsection 3.2.2) via a (finite horizon discrete time) MDM in the sense of

Display (4.1) in Section 4.1.

Let (E, E) := (R≥0,B(R≥0)) and An(x) := [0, x] for any x ∈ R≥0 and n = 0, . . . , N − 1. Hence

An = R≥0 and Dn = D := {(x, a) ∈ R2
≥0 : a ∈ [0, x]}. Set An := B(R≥0) and note that

Dn = B(R2
≥0) ∩D. Further let Π := F0 × · · · × FN−1, where the set Fn of all admissible decision

rules is equal to the set Fn of all decision rules at time n consisting of all Borel measurable maps

fn : R≥0 → R≥0 satisfying fn(x) ∈ [0, x] for all x ∈ R≥0 (in particular Fn is independent of n).

Moreover let the components of the vector r = (rn)Nn=0 be given by (3.19), and let the gauge function

ψ : R≥0 → R≥1 be as in (3.17). Let Pψ be the set of all transition functions P = (Pn)N−1
n=0 ∈ P

consisting of transition kernels of the shape

Pn
(
(x, a), •

)
:= µF ◦ η−1

n,(x,a)[ • ], (x, a) ∈ Dn, n = 0, . . . , N − 1 (5.38)

for some F ∈ F>0(µuα), where the map ηn,(x,a) is defined as in (3.15). Note that µF ∈Mα
1 (R,R≥0)

for every F ∈ F>0(µuα) by Assumption 5.2.1 and part (i) of Lemma 5.2.4 below, where the set

Mα
1 (R,R≥0) is defined as in Subsection 3.2.2. Also note that it is easily seen that Pψ ⊆ Pψ with

Pψ defined as in Subsection 2.1.2.

Since any P ∈ Pψ is generated through (5.38) by some F ∈ F>0(µuα), we write P F = (PFn )N−1
n=0

for the transition function whose transition kernels are defined by the right-hand side of (5.38).

Thus P F ∈ Pψ for any F ∈ F>0(µuα), and it follows from Lemma 3.2.10(i) that ψ given by (3.17)

provides a bounding function for the MDM (E,A,P F ,Π,X, r) for every F ∈ F>0(µuα). Take

into account that X plays the role of the stochastic process Xϕ and that for some fixed x0 ∈ R≥0

any self-financing Markovian trading strategy ϕ = (ϕn)N−1
n=0 w.r.t. x0 may be identified with some

π = (fn)N−1
n=0 ∈ Π via ϕn = fn(Xϕ

n ). In particular, the conditions in Assumption 4.2.1 hold (with ν

replaced by µuα).

Therefore, for every fixed x0 ∈ R≥0 and F ∈ F>0(µuα), the terminal wealth problem above reads

as

Ex0,PF ;π[rN (XN )] −→ max (in π ∈ Π)! (5.39)
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A strategy πF ∈ Π is called an optimal (self-financing) trading strategy w.r.t. F (and x0) if it solves

the maximization problem (5.39). It follows from part (i) of Theorem 3.2.5 (applied to P F ) that

the strategy πF := (fFn )N−1
n=0 ∈ Π defined by fFn (x) := γFn x, x ∈ R≥0, forms an optimal trading

strategy w.r.t. F , where γFn is in view of Lemma 3.2.4 (with P F in place of P ) the unique solution

of the optimization problem

vF ;γ
n :=

ˆ
R≥0

(uα ◦ ηγn)(y)µF (dy) −→ max (in γ ∈ [0, 1])! (5.40)

with ηγn defined as in (3.22); see also (3.21) (with P and mPn+1 replaced by P F and µF , respectively).

Note that it can be deduced from the second part of Theorem 3.2.5(ii) (applied to P F ) that the

optimal trading strategy πF belongs to Πlin and is unique among all π ∈ Πlin(F ). Recall that Πlin

refers to the set of all linear trading strategies π = (fn)N−1
n=0 ∈ Π defined by (3.26).

5.2.2 Regularity of the value function

Maintain the notation and terminology introduced in Subsection 5.2.1. In this subsection we will

investigate the value function of the terminal wealth problem (5.39) regarded as a real-valued

functional defined on a set of distribution functions for ‘Lipschitz continuity’ and quasi-Hadamard

differentiability in the sense of Definitions 4.3.1 and 4.3.7. Recall that α ∈ (0, 1) introduced in

(3.16) as well as r1, . . . , rN ∈ R≥1 are fixed.

We point out that the regularity results of the value function are not relevant (except the shape of

the quasi-Hadamard derivatives in parts (i) and (ii) of Theorem 5.2.6 ahead) for the investigation of

the asymptotics of certain estimators for the optimal value of the terminal wealth problem (5.39),

which is discussed in Subsections 5.2.3–5.2.4. The purpose of the following elaborations is merely

to illustrate the results presented in Section 4.3 in the context of the setting of Subsection 5.2.1.

For a reader who is only interested in the statistical estimation of the optimal value of the terminal

wealth problem, we recommend skipping this subsection and going to Subsections 5.2.3–5.2.4.

For the formulation of Theorems 5.2.2 and 5.2.6 below recall from (4.6) the definitions of the

functionals Wx0;π
0 : F>0(µuα) → R and Wx0

0 : F>0(µuα) → R, where the maps V F ;π
0 and V F

0 are

given by (4.3) and (4.5), respectively. In the setting of Subsection 5.2.1 these functionals admit the

representations

Wx0;π
0 (F ) = V F ;π

0 (x0) = Ex0,PF ;π[rN (XN )] and Wx0
0 (F ) = sup

π∈Π
Wx0;π

0 (F ) (5.41)

for any x0 ∈ R≥0, π ∈ Π, and F ∈ F>0(µuα).

The following Theorem 5.2.2 illustrates Theorem 4.3.3 in the setting of Subsection 5.2.1. Part (ii) of

this theorem will be used in Subsections 5.2.3–5.2.4 to show strong consistency of plug-in estimators

for the optimal value of the terminal wealth problem (5.39). Note that any γ = (γn)N−1
n=0 ∈ [0, 1]N

induces a linear trading strategy πγ := (fγn )N−1
n=0 ∈ Πlin through (3.26). Further let the norm

‖ · ‖1,µuα be defined as in (4.7) (with µuα instead of ν). Note that ‖ · ‖1,µuα can be represented as

‖h‖1,µuα =

ˆ
R≥0

|h(y)|µuα(dy) for all h ∈ L1(µuα),
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where L1(µuα) is defined as in Section 4.3. Take into account that µuα can be considered as a

measure on B(R) that is supported on R≥0. Finally recall Definition 4.3.1.

Theorem 5.2.2 (‘Lipschitz continuity’ of Wx0;πγ
0 and Wx0

0 in F ) In the setting above let x0 ∈
R≥0, γ ∈ [0, 1]N , and F ∈ F>0(µuα). Then the following two assertions hold.

(i) The map Wx0;πγ
0 : F>0(µuα) → R defined by (5.41) is ‘Lipschitz continuous’ at F w.r.t.

(‖ · ‖1,µuα , | · |).

(ii) The mapWx0
0 : F>0(µuα)→ R defined by (5.41) is ‘Lipschitz continuous’ at F w.r.t. (‖·‖1,µuα ,

| · |).

The proof of Theorem 5.2.2 relies on the following three lemmas. Let the map ηγnn be defined as

on the right-hand side of (3.22), and set ηγn := ηγnn for any n = 0, . . . , N − 1. Here and elsewhere

we denote by (uα ◦ ηγn )′ the first derivative of the (continuously differentiable) map (uα ◦ ηγn )(·).

Lemma 5.2.3 Let h ∈ L1(µuα), γ ∈ [0, 1]N , and n = 0, . . . , N − 1. Then

ˆ
R≥0

∣∣h(y)(uα ◦ ηγn )′(y)
∣∣ `(dy) ≤ r1−α ‖h‖1,µuα ,

where r := maxk=0,...,N−1 rk+1 ∈ R≥1.

Proof In view of (3.16), (3.22), and (4.7) (with ν replaced by µuα), we get

ˆ
R≥0

∣∣h(y)(uα ◦ ηγn )′(y)
∣∣ `(dy) =

ˆ
R≥0

|h(y)|α (γn/rn+1) · uα−1(ηγn (y)) `(dy)

≤
ˆ
R≥0

|h(y)|αγn ·
(
(1− γn) + γn(y/rn+1)

)α−1
`(dy) ≤

ˆ
R≥0

|h(y)|αγαn r1−αn+1 y
α−1 `(dy)

≤ r1−α
ˆ
R≥0

|h(y)|u′α(y) `(dy) = r1−α
ˆ
R≥0

|h(y)|µuα(dy) = r1−α ‖h‖1,µuα . (5.42)

Take into account that for the second last “=” in (5.42) we have used Lemma B.3 (which may be

applied because h ∈ L1(µuα)) and the fact that µuα can be taken as a measure on B(R) which is

supported on R≥0. 2

Recall for the next lemma the definition of the gauge function ψ given by (3.17).

Lemma 5.2.4 The following two assertions hold.

(i)
´
R≥0

uα dF =
´
R≥0

(1− F ) dµuα for every F ∈ F>0.

(ii) For every F ∈ F>0(µuα) we have limx→∞(1− F (x))ψ(x) = 0.

Proof For the claim in (i), we observe by means of Fubini’s theorem and Lemma B.3

ˆ
R≥0

uα(y) dF (y) =

ˆ
[0,∞)

ˆ
[0,uα(y))

`(dx)µF (dy) =

ˆ
[0,∞)

ˆ
[0,y)

u′α(z) `(dz)µF (dy)

=

ˆ
[0,∞)

ˆ
[0,y)

µuα(dz)µF (dy) =

ˆ
[0,∞)

ˆ
[z,∞)

µF (dy)µuα(dz) =

ˆ
R≥0

(1− F (z))µuα(dz)
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for any F ∈ F>0. This shows (i).

To prove part (ii), let F ∈ F>0(µuα) be arbitrary but fixed. Note at first that for any x ∈ R>0

ˆ
R≥0

uα(y) dF (y) =

ˆ
R≥0

uα(y)µF (dy) =

ˆ
[0,x)

uα(y)µF (dy) +

ˆ
[x,∞)

uα(y)µF (dy)

≥
ˆ

[0,x)
uα(y)µF (dy) + uα(x) ·

ˆ
[x,∞)

µF (dy) =

ˆ
[0,x)

uα(y)µF (dy) + uα(x) (1− F (x)).

(5.43)

Recall that µF refers to the Stieltjes measure w.r.t. F on B(R) (see Remark B.2). By rearranging

the expressions in (5.43), we obtain

0 ≤ (1− F (x))uα(x) ≤
ˆ
R≥0

uα(y)µF (dy)−
ˆ

[0,x)
uα(y)µF (dy) (5.44)

for any x ∈ R>0. Since
´
R≥0

uα(y)µF (dy) (=
´
R≥0

uα(y) dF (y)) < ∞ (by assumption), it follows

from the continuity from below of the finite measure
´
· uα(y)µF (dy) on R≥0 that the right-hand

side in (5.44) converges to 0 as x → ∞. Thus limx→∞(1 − F (x))uα(x) = 0. In view of the shape

of the gauge function ψ, this implies the assertion in (ii). 2

Lemma 5.2.5 Let F,G ∈ F>0(µuα), γ ∈ [0, 1]N , and n = 0, . . . , N − 1. Then we have

ˆ
R≥0

uα ◦ ηγn d(F −G) = −
ˆ
R≥0

(F −G) (uα ◦ ηγn )′ d`.

Proof Since in view of Lemma B.3ˆ
R≥0

(F −G) d(uα ◦ ηγn ) =

ˆ
R≥0

(F −G) (uα ◦ ηγn )′ d`,

it suffices for the claim to show thatˆ
R≥0

uα ◦ ηγn d(F −G)|R≥0
= −

ˆ
R≥0

(F −G)|R≥0
d(uα ◦ ηγn ), (5.45)

where (F −G)|R≥0
denotes the restriction of F −G to R≥0. Note that F −G coincides on R≥0 with

(F −G)|R≥0
(by definition), and that the latter lemma may be applied because in view of Lemma

5.2.3 we have ˆ
R≥0

∣∣(F −G)(y) (uα ◦ ηγn )′(y)
∣∣ `(dy) ≤ r1−α ‖F −G‖1,µuα < ∞, (5.46)

where r := maxk=0,...,N−1 rk+1 ∈ R≥1. Take into account that F −G ∈ L1(µuα).

Now, we will verify (5.45). For this reason, we intend to apply the integration-by-parts formula in

the form of Lemma B.5 in Section B.1. At first, it is easily seen that (F −G)|R≥0
(·) ∈ BVloc,r(R≥0)

as well as uα ◦ ηγn (·) ∈ BVloc,r(R≥0). Recall that BVloc,r(R≥0) stands for the (linear) space of all

right-continuous maps v ∈ RR≥0 that are of locally bounded variation.
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Since [(F − G)|R≥0
] = F + G on R≥0 (with [ · ] defined as in Section B.1), we observe in view of

part (i) of Lemma 5.2.4

ˆ
R≥0

∣∣(uα ◦ ηγn )(y)
∣∣ d[(F −G)|R≥0

](y) =

ˆ
R≥0

(uα ◦ ηγn )(y) d(F +G)(y)

=

ˆ
R≥0

uα
(
(1− γn) + γn(y/rk+1)

)
dF (y) +

ˆ
R≥0

uα
(
(1− γn) + γn(y/rk+1)

)
dG(y)

≤
ˆ
R≥0

uα(1 + y) dF (y) +

ˆ
R≥0

uα(1 + y) dG(y) ≤ 2 +

ˆ
R≥0

uα(y) dF (y) +

ˆ
R≥0

uα(y) dG(y)

= 2 +

ˆ
R≥0

(1− F (y))µuα(dy) +

ˆ
R≥0

(1−G(y))µuα(dy) < ∞.

Moreover, in view of (5.46), we get

ˆ
R≥0

∣∣(F −G)|R≥0
(y)
∣∣ d[uα ◦ ηγn ](y) =

ˆ
R≥0

∣∣(F −G)(y)
∣∣ duα ◦ ηγn (y)

=

ˆ
R≥0

∣∣(F −G)(y)
∣∣ (uα ◦ ηγn )′(y) `(dy) ≤ r1−α ‖F −G‖1,µuα < ∞,

where we used Lemma B.3 (which may be applied in view of (5.46)) for the last “=”. Since F and

G are right-continuous as well as supported on R>0, we have

lim
x↘0

(F −G)|R≥0
(x) · (uα ◦ ηγn )(x) =

(
F (0)−G(0)

)
· (uα ◦ ηγn )(0) = 0.

Moreover, in view of∣∣(F −G)|R≥0
(x) · (uα ◦ ηγn )(x)

∣∣ ≤ ∣∣(F −G)(x)
∣∣ · uα(1 + x) ≤ (1− F (x))ψ(x) + (1−G(x))ψ(x)

for any x ∈ R≥0, we obtain by means of part (ii) of Lemma 5.2.4 (applied to F and G) that the

latter bound converges to 0 as x→∞. Thus an application of the integration-by-parts formula in

Lemma B.5 yields (5.45). 2

We are now in the position to prove Theorem 5.2.2. Let vF ;γn
n be defined as on the left-hand side

of (5.40), and set vF ;γ
n := vF ;γn

n for any n = 0, . . . , N − 1.

Proof of Theorem 5.2.2: We intend to apply Theorem 4.3.3. At first, it is discussed in Subsection

5.2.1 that conditions (a)–(b) of Assumption 4.2.1 hold (with µuα in place of ν). Further note that

the value functionalWx0
0 given by (5.41) can be represented in view of the first assertion in Theorem

3.2.5(i) (applied to P F ) along with (4.6) by

Wx0
0 (F ) = sup

π∈Πlin

Wx0;π
0 (F ). (5.47)

Recall that Πlin stands for the set of all linear trading strategies. Hence, in view of Remark 4.3.5,

we only have to ensure that the assumptions of Theorem 4.3.3 hold for Πlin instead of Π.

In the remainder of the proof we will verify conditions (a) and (b) of Theorem 4.3.3 (with Πlin

replaced by Π). That is, we will show that for any n = 0, . . . , N − 1 the maps ΛF
n : F>0(µuα) →
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`∞ψ (Πlin ×E) and Φn : F>0(µuα)→ `∞ψ (Πlin ×E) defined by (4.10) are ‘Lipschitz continuous’ at F

w.r.t. (‖ · ‖1,µuα , ‖ · ‖∞,ψ) (in the sense of Definition 4.3.1). Here the norm ‖ · ‖∞,ψ is introduced in

(4.11).

Now, let (Fm)m∈N be any sequence in F>0(µuα) with ‖Fm−F‖1,µuα → 0. Since any γ = (γn)N−1
n=0 ∈

[0, 1]N induces a linear trading strategy πγ := (fγn )N−1
n=0 ∈ Πlin through (3.26) it suffices for the

‘Lipschitz continuity’ of the maps ΛF
n and Φn in view of Definition 4.3.1 and (4.11) to show that

for any n = 0, . . . , N − 1

sup
γ∈[0,1]N

∥∥Λ
F ;(πγ , · )
n (Fm)− Λ

F ;(πγ , · )
n (F )

∥∥
ψ

= O
(
‖Fm − F‖1,µuα

)
(5.48)

as well as

sup
γ∈[0,1]N

∥∥Φ
(πγ , · )
n (Fm)− Φ

(πγ , · )
n (F )

∥∥
ψ

= O
(
‖Fm − F‖1,µuα

)
, (5.49)

where the maps Λ
F ;(πγ ,x)
n : F>0(µuα)→ R and Φ

(πγ ,x)
n : F>0(µuα)→ R are defined as in (4.8).

First of all, note that the maps Λ
F ;(πγ ,x)
n and Φ

(πγ ,x)
n given by (4.8) admit for any x ∈ R≥0,

γ = (γn)N−1
n=0 ∈ [0, 1]N , G ∈ F>0(µuα), and n = 0, . . . , N − 1 in view of Lemma 3.2.6 (applied to

P F ), equations (5.38), (3.26), and (3.22) as well as the shape of the bounding function ψ := 1 +uα
(see (3.17)) the representations

Λ
F ;(πγ ,x)
n (G) =

ˆ
R≥0

V
F ;πγ
n+1 (y)PGn

(
(x, fγn (x)), dy

)
=

ˆ
R≥0

N−1∏
j=n+1

vF ;γ
j · uα(y/S0

n+1)µG ◦ η−1
n,(x,fγn (x))

(dy)

=
N−1∏
j=n+1

vF ;γ
j ·

ˆ
R≥0

uα

(rn+1x+ fγn (x)(y − rn+1)

rn+1S0
n

)
µG(dy)

=

N−1∏
j=n+1

vF ;γ
j ·

ˆ
R≥0

uα

(rn+1x+ γn x · (y − rn+1)

rn+1S0
n

)
µG(dy)

=
N−1∏
j=n+1

vF ;γ
j ·

ˆ
R≥0

uα(x/S0
n) · uα

(
1 + γn

( y

rn+1
− 1
))

µG(dy)

=

N−1∏
j=n+1

vF ;γ
j · uα(x/S0

n) ·
ˆ
R≥0

(uα ◦ ηγn )(y) dG(y) (5.50)

and

Φ
(πγ ,x)
n (G) =

ˆ
R≥0

ψ(y)PGn
(
(x, fγn (x)), dy

)
= 1 +

ˆ
R≥0

uα(y)µG ◦ η−1
n,(x,fγn (x))

(dy)

= 1 +

ˆ
R≥0

uα
(
rn+1x+ fγn (x)(y − rn+1)

)
µG(dy)

= 1 +

ˆ
R≥0

uα
(
rn+1x+ γn x · (y − rn+1)

)
µG(dy)
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= 1 +

ˆ
R≥0

uα(rn+1)uα(x) · uα
(

1 + γn

( y

rn+1
− 1
))

µG(dy)

= 1 + uα(rn+1)uα(x) ·
ˆ
R≥0

(uα ◦ ηγn )(y) dG(y), (5.51)

respectively.

In virtue of (5.50), Lemmas 5.2.3 and 5.2.5, and Displays (3.23)–(3.24) (with P F in place of P ),

we observe for every x ∈ R≥0, γ = (γn)N−1
n=0 ∈ [0, 1]N , n = 0, . . . , N − 1, and m ∈ N

1

ψ(x)
·
∣∣ΛF ;(πγ ,x)

n (Fm)− Λ
F ;(πγ ,x)
n (F )

∣∣
=

1

ψ(x)
·
∣∣∣ N−1∏
j=n+1

vF ;γ
j · uα(x/S0

n) ·
ˆ
R≥0

(uα ◦ ηγn )(y) d(Fm − F )(y)
∣∣∣

=
1

ψ(x)
·
∣∣∣ N−1∏
j=n+1

vF ;γ
j · uα(x/S0

n) ·
ˆ
R≥0

(Fm − F )(y) (uα ◦ ηγn )′(y) `(dy)
∣∣∣

=
uα(x)

ψ(x)
·
N−1∏
j=n+1

vF ;γ
j · uα(1/S0

n) ·
∣∣∣ˆ

R≥0

(Fm − F )(y) (uα ◦ ηγn )′(y) `(dy)
∣∣∣

≤ (1 + mF )N−n−1 ·
ˆ
R≥0

∣∣(Fm − F )(y) (uα ◦ ηγn )′(y)
∣∣ `(dy)

≤ (1 + mF )N−n−1 · r1−α ‖Fm − F‖1,µuα ,

where mF :=
´
R≥0

uα dF ∈ R>0 (by condition (b) of Assumption 3.2.1 and Assumption 5.2.1) and

r := maxk=0,...,N−1 rk+1 ∈ R≥1. Take into account that Fm − F ∈ L1(µuα) for any m ∈ N. Hence

sup
γ∈[0,1]N

∥∥Λ
F ;(πγ , · )
n (Fm)− Λ

F ;(πγ , · )
n (F )

∥∥
ψ

= sup
γ∈[0,1]N

sup
x∈R≥0

1

ψ(x)
·
∣∣ΛF ;(πγ ,x)

n (Fm)− Λ
F ;(πγ ,x)
n (F )

∣∣
≤ CΛ‖Fm − F‖1,µuα

for every n = 0, . . . , N − 1 and m ∈ N (by (1.18)), where CΛ := (1 + mF )N−n−1 · r1−α ∈ R≥1 (is

independent of x and γ). In particular, this shows (5.48) and thus condition (a) of Theorem 4.3.3

(with Πlin playing the role of Π).

To prove (5.49), note that it follows from (5.51) as well as Lemmas 5.2.3 and 5.2.5

1

ψ(x)
·
∣∣Φ(πγ ,x)

n (Fm)− Φ
(πγ ,x)
n (F )

∣∣
=

1

ψ(x)
·
∣∣∣uα(rn+1)uα(x) ·

ˆ
R≥0

(uα ◦ ηγn )(y) d(Fm − F )(y)
∣∣∣

=
uα(x)

ψ(x)
uα(rn+1) ·

∣∣∣ˆ
R≥0

(Fm − F )(y) (uα ◦ ηγn )′(y) `(dy)
∣∣∣

≤ rα ·
ˆ
R≥0

∣∣(Fm − F )(y) (uα ◦ ηγn )′(y)
∣∣ `(dy)

≤ rα · r1−α ‖Fm − F‖1,µuα = r ‖Fm − F‖1,µuα
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for any x ∈ R≥0, γ ∈ [0, 1]N , n = 0, . . . , N − 1, and m ∈ N. Then

sup
γ∈[0,1]N

∥∥Φ
(πγ , · )
n (Fm)− Φ

(πγ , · )
n (F )

∥∥
ψ

= sup
γ∈[0,1]N

sup
x∈R≥0

1

ψ(x)
·
∣∣Φ(πγ ,x)

n (F )− Φ
(πγ ,x)
n (G)

∣∣
≤ CΦ‖Fm − F‖1,µuα

for n = 0, . . . , N − 1 and m ∈ N (by (1.18)), where CΦ := r (∈ R≥1) (is independent of x and γ).

Thus (5.49) holds and we have shown that condition (b) of Theorem 4.3.3 (with Πlin in place of Π)

holds, too.

In particular, the assumptions of Theorem 4.3.3 are satisfied (with Π and ν replaced by Πlin and

µuα , respectively), and an application of parts (i) and (ii) of the latter theorem yields the assertions

in (i) and (ii) of Theorem 5.2.2, respectively. This completes the proof of Theorem 5.2.2. 2

Part (ii) of the following Theorem 5.2.6 uses Theorem 4.3.8 to specify the quasi-Hadamard derivative

of the value functional of the terminal wealth problem (5.39). In Subsections 5.2.3–5.2.4 this

derivative plays a key role to derive the asymptotic error distribution of suitable estimators for the

optimal value of the terminal wealth problem (5.39). For the formulation of the following theorem,

note that the component γFn of γF := (γFn )N−1
n=0 corresponds to the unique solution to the reduced

optimization problem (5.40). Take into account that it follows from Lemma 3.2.4 (applied to P F )

that there exists a unique solution of the latter optimization problem. Recall that vF ;γ
n := vF ;γn

n ,

n = 0, . . . , N − 1, for vF ;γn
n be defined as on the left-hand side of (5.40), and that (uα ◦ ηγn )′ refers

to the first derivative of the (continuously differentiable) map (uα ◦ ηγn )(·).

Theorem 5.2.6 (Quasi-Hadamard differentiability of Wx0;πγ
0 and Wx0

0 in F ) In the setting

of Subsection 5.2.1 let x0 ∈ R≥0, γ ∈ [0, 1]N , and F ∈ F>0(µuα). Then the following two assertions

hold.

(i) The map Wx0;πγ
0 : F>0(µuα) → R defined by (5.41) is quasi-Hadamard differentiable at F

tangentially to L1(µuα)〈L1(µuα)〉 with quasi-Hadamard derivative Ẇx0;πγ
0;F : L1(µuα) → R

given by

Ẇx0;πγ
0;F (h) = −

N−1∑
k=0

N−1∏
j=0

j 6=k

vF ;γ
j uα(x0) ·

ˆ
R≥0

h(y)(uα ◦ ηγk )′(y) `(dy). (5.52)

(ii) The map Wx0
0 : F>0(µuα) → R defined by (5.41) is quasi-Hadamard differentiable at F

tangentially to L1(µuα)〈L1(µuα)〉 with quasi-Hadamard derivative Ẇx0
0;F : L1(µuα)→ R given

by

Ẇx0
0;F (h) = sup

π∈Πlin(F )
Ẇx0;π

0;F (h) = Ẇ
x0;π

γF

0;F (h). (5.53)

Note that the first “=” in (5.53) is ensured by Theorem 4.3.8 (with Π(F ) replaced by Πlin(F )) along

with the representation (5.47) of the value functionalWx0
0 . The validity of the second “=” in (5.53)

will be carried out in the proof of (part (ii) of) Theorem 5.2.6.

Proof of Theorem 5.2.6: We intend to apply Theorem 4.3.8. First of all, as already discussed in

Subsection 5.2.1, Assumption 4.2.1 is satisfied (with µuα playing the role of ν). Moreover in view
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of (5.47) and Remark 4.3.10 it suffices to verify the assumptions of Theorem 4.3.8 for Πlin instead

of Π. Recall that Πlin consists of all linear trading strategies given by (3.26).

In the sequel, we will show that conditions (a)–(c) of Theorem 4.3.8 hold (with Πlin in place of Π).

Since condition (c) of Theorem 4.3.8 is nothing but condition (b) of Theorem 4.3.3, and since we

have already shown in the proof of Theorem 5.2.2 that condition (b) of Theorem 4.3.3 is fulfilled

(with Πlin in place of Π), it remains to show that conditions (a)–(b) of Theorem 4.3.8 hold for Πlin

instead of Π.

To verify condition (a), let Λ̇
F ;(πγ ,x)
n;F : L1(µuα) → R be for any x ∈ R≥0, γ ∈ [0, 1]N , and n =

0, . . . , N − 1 a map defined by

Λ̇
F ;(πγ ,x)
n;F (h) := −

N−1∏
j=n+1

vF ;γ
j · uα(x/S0

n) ·
ˆ
R≥0

h(y) (uα ◦ ηγn )′(y) `(dy). (5.54)

Note that for any x ∈ R≥0, γ ∈ [0, 1]N , and n = 0, . . . , N − 1 the map Λ̇
F ;(πγ ,x)
n;F is well-defined

by equations (3.23)–(3.24) (applied to P F ) along with Lemma 5.2.3. Also note that in view of

(5.54) we clearly have Λ̇
F ;(πγ ,x)
n;F (0L0(µuα )) = 0 as well as Λ̇

F ;(πγ , · )
n;F (h) ∈ M(R≥0) for all x ∈ R≥0,

γ ∈ [0, 1]N , n = 0, . . . , N − 1, and h ∈ L1(µuα). Proceeding as in Display (5.58) below we get

supγ∈[0,1]N ‖Λ̇
F ;(πγ , · )
n;F (h)‖ψ ≤ CΛ̇ for every h ∈ L1(µuα) and n = 0, . . . , N − 1 (by (1.18)), where

CΛ̇ := (1 + mF )N−n−1 r1−α ‖h‖1,µuα (with mF and r as in the proof of Theorem 5.2.2). Since any

γ = (γn)N−1
n=0 ∈ [0, 1]N induces a linear trading strategy πγ := (fγn )N−1

n=0 ∈ Πlin through (3.26), this

shows that condition (a) of Theorem 4.3.8 holds (with Πlin in place of Π).

In the remainder of the proof we will verify condition (b) of Theorem 4.3.8 for Πlin instead of Π.

That is, we will prove that for any n = 0, . . . , N − 1 the map ΛF
n : F>0(µuα) → `∞ψ (Πlin × E)

defined by (4.10) is quasi-Hadamard differentiable at F tangentially to L1(µuα)〈L1(µuα)〉 (in the

sense of Definition 4.3.7) with quasi-Hadamard derivative Λ̇
F
n;F : L1(µuα)→ `∞ψ (Πlin×E) given by

Λ̇
F
n;F (h) :=

(
Λ̇
F ;(πγ ,x)
n;F

)
(γ,x)∈[0,1]N×E . (5.55)

with Λ̇
F ;(πγ ,x)
n;F as in (5.54). Take into account that (as discussed above) any linear trading strategy

π ∈ Πlin can be identified with some γ ∈ [0, 1]N .

Now, let (h, (hm), (εm)) ∈ L1(µuα)×L1(µuα)N ×RN
>0 be any triplet satisfying ‖hm − h‖1,µuα → 0,

εm → 0 as well as (F+εmhm) ⊆ F>0(µuα). Since any γ = (γn)N−1
n=0 ∈ [0, 1]N induces a linear trading

strategy πγ := (fγn )N−1
n=0 ∈ Πlin through (3.26) it suffices for the quasi-Hadamard differentiability of

the map ΛF
n in view of Definition 4.3.7, (4.11), and (5.55) to show that for any n = 0, . . . , N − 1

lim
m→∞

sup
γ∈[0,1]N

∥∥Λ̇
F ;(πγ , · )
n;F (hm)− Λ̇

F ;(πγ , · )
n;F (h)

∥∥
ψ

= 0 (5.56)

as well as

lim
m→∞

sup
γ∈[0,1]N

∥∥∥Λ
F ;(πγ , · )
n (F + εmhm)− Λ

F ;(πγ , · )
n (F )

εm
− Λ̇

F ;(πγ , · )
n;F (h)

∥∥∥
ψ

= 0, (5.57)

where the map Λ
F ;(πγ ,x)
n : F>0(µuα)→ R is defined as in (4.8).
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First, in view of (5.54), Lemma 5.2.3, and Displays (3.23)–(3.24) (applied to P F ), we get for any

x ∈ R≥0, γ = (γn)N−1
n=0 ∈ [0, 1]N , n = 0, . . . , N − 1, and m ∈ N

1

ψ(x)
·
∣∣Λ̇F ;(πγ ,x)

n;F (hm)− Λ̇
F ;(πγ ,x)
n;F (h)

∣∣
=

1

ψ(x)
·
∣∣∣ N−1∏
j=n+1

vF ;γ
j · uα(x/S0

n) ·
ˆ
R≥0

(hm − h)(y) (uα ◦ ηγn )′(y) `(dy)
∣∣∣

=
uα(x)

ψ(x)
·
N−1∏
j=n+1

vF ;γ
j · uα(1/S0

n) ·
∣∣∣ ˆ

R≥0

(hm − h)(y) (uα ◦ ηγn )′(y) `(dy)
∣∣∣

≤ (1 + mF )N−n−1 ·
ˆ
R≥0

∣∣(hm − h)(y) (uα ◦ ηγn )′(y)
∣∣ `(dy)

≤ (1 + mF )N−n−1 · r1−α ‖hm − h‖1,µuα . (5.58)

By (1.18) this implies

sup
γ∈[0,1]N

∥∥Λ̇
F ;(πγ , · )
n;F (hm)− Λ̇

F ;(πγ , · )
n;F (h)

∥∥
ψ

= sup
γ∈[0,1]N

sup
x∈R≥0

1

ψ(x)
·
∣∣Λ̇F ;(πγ ,x)

n;F (hm)− Λ̇
F ;(πγ ,x)
n;F (h)

∣∣
≤ CΛ̇,1 ‖hm − h‖1,µuα

for any n = 0, . . . , N − 1 and m ∈ N, where CΛ̇,1 := (1 + mF )N−n−1 r1−α ∈ R≥1 (is independent of

x and γ). Thus (5.56) follows.

To prove (5.57), we observe at first in virtue of (5.50), (5.54) as well as Lemma 5.2.5

1

ψ(x)
·
∣∣∣ΛF ;(πγ ,x)

n (F + εmhm)− Λ
F ;(πγ ,x)
n (F )

εm
− Λ̇

F ;(πγ ,x)
n;F (h)

∣∣∣
=

1

ψ(x)
·
∣∣∣ N−1∏
j=n+1

vF ;γ
j · uα(x/S0

n)
1

εm
·
ˆ
R≥0

(uα ◦ ηγn )(y) d
(
(F + εmhm)− F

)
(y)− Λ̇

F ;(πγ ,x)
n;F (h)

∣∣∣
=

1

ψ(x)
·
∣∣∣− N−1∏

j=n+1

vF ;γ
j · uα(x/S0

n)
1

εm
·
ˆ
R≥0

(
(F + εmhm)− F

)
(y) (uα ◦ ηγn )′(y) `(dy)− Λ̇

F ;(πγ ,x)
n;F (h)

∣∣∣
=

1

ψ(x)
·
∣∣∣(− N−1∏

j=n+1

vF ;γ
j · uα(x/S0

n) ·
ˆ
R≥0

hm(y) (uα ◦ ηγn )′(y) `(dy)
)
− Λ̇

F ;(πγ ,x)
n;F (h)

∣∣∣
=

1

ψ(x)
·
∣∣Λ̇F ;(πγ ,x)

n;F (hm)− Λ̇
F ;(πγ ,x)
n;F (h)

∣∣
for every x ∈ R≥0, γ ∈ [0, 1]N , n = 0, . . . , N − 1, and m ∈ N. Thus

sup
γ∈[0,1]N

∥∥∥Λ
F ;(πγ , · )
n (F + εmhm)− Λ

F ;(πγ , · )
n (F )

εm
− Λ̇

F ;(πγ , · )
n;F (h)

∥∥∥
ψ

= sup
γ∈[0,1]N

sup
x∈R≥0

1

ψ(x)
·
∣∣∣ΛF ;(πγ ,x)

n (F + εmhm)− Λ
F ;(πγ ,x)
n (F )

εm
− Λ̇

F ;(πγ ,x)
n;F (h)

∣∣∣
= sup

γ∈[0,1]N
sup
x∈R≥0

1

ψ(x)
·
∣∣Λ̇F ;(πγ ,x)

n;F (hm)− Λ̇
F ;(πγ ,x)
n;F (h)

∣∣ ≤ CΛ̇,1 ‖hm − h‖1,µuα
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for any n = 0, . . . , N − 1 and m ∈ N by (1.18) and (5.58). Therefore we arrive at (5.57). This

shows condition (b) of Theorem 4.3.8 (with Πlin in place of Π).

In particular, we have verified the assumptions of Theorem 4.3.8 for ν := µuα and Πlin instead of

Π.

(i): It follows from part (i) of Theorem 4.3.8 that the map Wx0;πγ
0 : F>0(µuα) → R defined as in

(4.6) is quasi-Hadamard differentiable at F tangentially to L1(µuα)〈L1(µuα)〉. The related quasi-

Hadamard derivative Ẇx0;πγ
0;F of Wx0;πγ

0 at F is in view of (4.16), (5.54), and (5.38) given by (recall

that S0
0 = 1)

Ẇx0;πγ
0;F (h) =

N−1∑
k=0

ˆ
R≥0

· · ·
ˆ
R≥0

Λ̇
F ;(πγ ,yk)
k;F (h)PFk−1

(
(yk−1, f

γ
k−1(yk−1)), dyk

)
· · ·PF0

(
(x0, f

γ
0 (x0)), dy1

)
= −

N−1∑
k=0

ˆ
R≥0

· · ·
ˆ
R≥0

N−1∏
j=k+1

vF ;γ
j · uα(yk/Bk) ·

ˆ
R≥0

h(yk+1) (uα ◦ ηγk )′(yk+1) `(dyk+1)

PFk−1

(
(yk−1, f

γ
k−1(yk−1)), dyk

)
· · ·PF0

(
(x0, f

γ
0 (x0)), dy1

)
= −

N−1∑
k=0

N−1∏
j=k+1

vF ;γ
j ·

ˆ
R≥0

h(yk+1) (uα ◦ ηγk )′(yk+1) `(dyk+1)

·
ˆ
R≥0

· · ·
ˆ
R≥0

uα(yk/Bk)P
F
k−1

(
(yk−1, f

γ
k−1(yk−1)), dyk

)
· · ·PF0

(
(x0, f

γ
0 (x0)), dy1

)
= −

N−1∑
k=0

N−1∏
j=k+1

vF ;γ
j ·

ˆ
R≥0

h(yk+1) (uα ◦ ηγk )′(yk+1) `(dyk+1)

·
k−1∏
j=0

vF ;γ
j · uα(x0/S

0
0)

= −
N−1∑
k=0

N−1∏
j=0

j 6=k

vF ;γ
j uα(x0) ·

ˆ
R≥0

h(yk+1) (uα ◦ ηγk )′(yk+1) `(dyk+1)

for all h ∈ L1(µuα).

(ii): For every n = 0, . . . , N −1, let γFn ∈ [0, 1] be the unique solution to the (reduced) optimization

problem (5.40). Set γF := (γFn )N−1
n=0 ∈ [0, 1]N and note that it follows from the first assertion in part

(ii) of Theorem 3.2.5 (applied to P F ) that the linear trading strategy πF = πγF := (fγ
F

n )N−1
n=0 ∈ Πlin

defined as in (3.26) is optimal w.r.t. F . Take into account that P F ∈ Pψ. Also note that the value

functional Wx0
0 admits the representation (5.47). Therefore, an application of part (ii) of Theorem

4.3.8 entails that the value functional Wx0
0 given by (5.47) is quasi-Hadamard differentiable at F

tangentially to L1(µuα)〈L1(µuα)〉 with quasi-Hadamard derivative Ẇx0
0;F given by

Ẇx0
0;F (h) = sup

π∈Πlin(F )
Ẇx0;π

0;F (h) (5.59)

for every h ∈ L1(µuα). Since Πlin(F ) = {πγF } by the second assertion in part (ii) of Theorem 3.2.5

(applied to P F ), the representation of the quasi-Hadamard derivative Ẇx0
0;F in (5.59) simplifies to

Ẇx0
0;F (h) = sup

π∈Πlin(F )
Ẇx0;π

0;F (h) = Ẇ
x0;π

γF

0;F (h)
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for any h ∈ L1(µuα). This completes the proof of Theorem 5.2.6. 2

5.2.3 Nonparametric estimation of the optimal value

In this subsection we will deal with the nonparametric estimation of the optimal value of the

terminal wealth problem (5.39) in the unknown distribution function F .

For this reason, let (Yi)i∈N be a sequence of i.i.d. random variables on some probability space

(Ω,F ,P) taking values in R>0, and denote by F the common distribution function of the random

variables Y1, Y2, . . . which is supposed to be unknown. Therefore we have F ∈ F>0 (with F>0

defined as in Subsection 5.2.1). Note that the random variables Yi can be regarded as observed

historical (or simulated) asset returns in the setting of the financial market model from Subsection

5.2.1. As a consequence, a canonical choice for an estimator for F will be the empirical distribution

function F̂m of Y1, . . . , Ym based on sample sizem ∈ N as defined in (4.31). Therefore, the expression

Wx0;πγ
0 (F̂m) (resp. Wx0

0 (F̂m)) is a reasonable (plug-in) estimator for Wx0;πγ
0 (F ) (resp. Wx0

0 (F ))

if F ∈ F>0(µuα), where the functional Wx0;πγ
0 (resp. Wx0

0 ) is defined as in (5.41). Note that

F̂m(ω, · ) ∈ F>0(µuα) for every ω ∈ Ω and m ∈ N by part (i) of Lemma 5.2.8 below. Throughout

this subsection we fix α ∈ (0, 1) as well as the constants r1, . . . , rN ∈ R≥1. Recall that α determines

the degree of risk aversion of the agent.

In the sequel, we present based on the elaborations from Subsection 5.2.2 asymptotic properties,

such as consistency, asymptotic normality, and bootstrap consistency (in probability) of the non-

parametric estimatorWx0
0 (F̂m) for the optimal valueWx0

0 (F ) of the terminal wealth problem (5.39).

At first, Theorem 5.2.7 illustrates Theorem 4.4.1 in the setting of Subsection 5.2.1. Recall that

any γ = (γn)N−1
n=0 ∈ [0, 1]N induces a linear trading strategy πγ := (fγn )N−1

n=0 ∈ Πlin through (3.26),

and let µuα be the locally finite Stieltjes measure w.r.t. uα. Note that µuα can be considered as a

(locally finite) measure on B(R) which is supported on R≥0.

Theorem 5.2.7 (Strong consistency of (Wx0;πγ
0 (F̂m)) and (Wx0

0 (F̂m))) In the setting of Sub-

section 5.2.1 let x0 ∈ R≥0 and γ ∈ [0, 1]N . Let (Yi)i∈N be an i.i.d. sequence of R>0-valued random

variables on some probability space (Ω,F ,P) with common distribution function F , and suppose

that
´
R≥0

(1−F ) dµuα <∞ (in particular F ∈ F>0(µuα)). Moreover let F̂m be for every m ∈ N the

empirical distribution function of Y1, . . . , Ym as defined in (4.31). Then the following two assertions

hold.

(i) The sequence of estimators (Wx0;πγ
0 (F̂m))m∈N is strongly consistent for Wx0;πγ

0 (F ) under P
in the sense that

Wx0;πγ
0 (F̂m)→Wx0;πγ

0 (F ) P-a.s.

(ii) The sequence of estimators (Wx0
0 (F̂m))m∈N is strongly consistent for Wx0

0 (F ) under P in the

sense that

Wx0
0 (F̂m)→Wx0

0 (F ) P-a.s.

Part (ii) of the latter theorem provides the following information. If πγF := (fγ
F

n )N−1
n=0 ∈ Πlin

corresponds in the setting of Theorem 5.2.7 to the optimal (linear) trading strategy w.r.t. F (the
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existence is ensured by part (ii) of Theorem 3.2.5 (applied to P F )), then (under the assumptions

of Theorem 5.2.7) the assertion (ii) of this theorem implies that for any initial amount of capital

x0 ∈ R≥0 the sequence of estimators (Wx0
0 (F̂m))m∈N is strongly consistent (under P) for the optimal

value W
x0;π

γF

0 (F ) of the terminal wealth problem (5.39).

The proof of Theorem 5.2.7 avails the following lemma.

Lemma 5.2.8 With the notation of Theorem 5.2.7 the following two assertions hold.

(i) F̂m(ω, · ) ∈ F>0(µuα) for every ω ∈ Ω and m ∈ N.

(ii) If
´
R≥0

(1− F ) dµuα <∞ then ‖F̂m − F‖1,µuα → 0 P-a.s.

Proof For part (i), note that at first that F̂m(ω, · ) ∈ F>0 clearly holds for every ω ∈ Ω and m ∈ N.

Then the assertion can be deduced from part (i) of Lemma 5.2.4 as well as the representation (4.31).

To show (ii), let Xi : Ω× R→ R be for any i ∈ N a real-valued stochastic process defined by

Xi(ω, t) := 1[Yi(ω),∞)(t)− F (t).

Note that it is easily seen that the process Xi is measurable for any i ∈ N. Since
´
R≥0

(1−F ) dµuα <

∞ (by assumption), we get in view of equations (4.7) and (B.1)

‖Xi(ω, · )‖1,µuα =

ˆ
R≥0

∣∣1[Yi(ω),∞)(t)− F (t)
∣∣µuα(dt)

≤
ˆ
R≥0

(
1− 1[Yi(ω),∞)(t)

)
µuα(dt) +

ˆ
R≥0

(1− F (t))µuα(dt)

=

ˆ
R≥0

1[0,Yi(ω))(t)µuα(dt) +

ˆ
R≥0

(1− F (t))µuα(dt)

= µuα
[
(0, Yi(ω)]

]
+

ˆ
R≥0

(1− F (t))µuα(dt)

= uα(Yi(ω)) +

ˆ
R≥0

(1− F (t))µuα(dt) < ∞

for any i ∈ N and ω ∈ Ω. Take into account that µuα [{t}] = 0 for every t ∈ R≥0. Hence

Xi(ω, ·) ∈ L1(µuα) for every i ∈ N and ω ∈ Ω. Therefore Lemma 4.4.5 ensures that Xi can be seen

for any i ∈ N as an (L1(µuα),B(L1(µuα)))-valued random variable on (Ω,F ,P).

Moreover, we observe

E[Xi( • , t)] = E
[
1[Yi(•),∞)(t)

]
− F (t) = P

[{
Yi(•) ∈ (∞, t]

}]
− F (t) = F (t)− F (t) = 0

for any i ∈ N and t ∈ R as well as

E
[
‖Xi( • , · )‖1,µuα

]
= E

[ ˆ
R≥0

∣∣1[Yi(•),∞)(t)− F (t)
∣∣µuα(dt)

]
≤ E

[ ˆ
R≥0

((
1− 1[Yi(•),∞)(t)

)
+ (1− F (t))

)
µuα(dt)

]
= E

[ ˆ
R≥0

(
1− 1[Yi(•),∞)(t)

)
µuα(dt)

]
+

ˆ
R≥0

(1− F (t))µuα(dt)
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=

ˆ
R≥0

(
1− E

[
1[Yi(•),∞)(t)

])
µuα(dt) +

ˆ
R≥0

(1− F (t))µuα(dt)

= 2

ˆ
R≥0

(1− F (t))µuα(dt) < ∞

for every i ∈ N (by Fubini’s theorem) because
´
R≥0

(1 − F ) dµuα < ∞ (by assumption). Then, in

view of (4.31), an application of Corollary 7.10 in [62] yields

∥∥F̂m(ω, · )− F (·)
∥∥

1,µuα
=
∥∥∥ 1

m

m∑
i=1

Xi(ω, · )
∥∥∥

1,µuα
→ 0

for P-a.e. ω. This shows (ii). 2

Now, let us turn to the proof of Theorem 5.2.7.

Proof of Theorem 5.2.7: We intend to apply Theorem 4.4.1. Note at first that it follows from

the proof of Theorem 5.2.2 that the assumptions of Theorem 4.3.3 are fulfilled (with Πlin playing

the role of Π). Moreover, part (i) of Lemma 5.2.8 implies that F̂m(ω, · ) ∈ F>0(µuα) for every

ω ∈ Ω and m ∈ N. Finally, part (ii) of Lemma 5.2.8 ensures that ‖F̂m − F‖1,µuα → 0 P-a.s.

In particular, this shows that the assumptions of Theorem 4.4.1 are satisfied for ν := µuα and Πlin

in place of Π, and an application of parts (i) and (ii) of the latter theorem ensures the assertions

in (i) and (ii) of Theorem 5.2.7, respectively. This completes the proof of Theorem 5.2.7. 2

Next, the assertion in part (ii) of the following Theorem 5.2.9 determines the asymptotic error distri-

bution of the sequence of estimators (Wx0
0 (F̂m))m∈N which can be used to construct an asymptotic

confidence interval for the optimal valueWx0
0 (F ) of the terminal wealth problem (5.39); see Remark

5.2.12 ahead. Note that N0,s2 refers to the normal distribution with zero mean and variance s2, and

that ξ ∼ N0,s2 refers to any random variable ξ with distribution N0,s2 . Set γF := (γFn )N−1
n=0 ∈ [0, 1]N

and note that γFn corresponds in view of Lemma 3.2.4 (applied to P F ) to the unique solution to the

reduced optimization problem (5.40). Finally, set as before vF ;γ
n := vF ;γn

n for any n = 0, . . . , N − 1

(with vF ;γn
n defined as on the left-hand side of (5.40), and recall that  stands for the convergence

in distribution.

Theorem 5.2.9 (Asymptotic error distribution of (Wx0;πγ
0 (F̂m)) and (Wx0

0 (F̂m))) In the set-

ting of Subsection 5.2.1 let x0 ∈ R≥0 and γ = (γn)N−1
n=0 ∈ [0, 1]N . Let (Yi)i∈N be an i.i.d. sequence of

R>0-valued random variables on some probability space (Ω,F ,P) with common distribution function

F , and suppose that
´ √

F (1− F ) dµuα < ∞ (in particular F ∈ F>0(µuα)). Moreover let F̂m be

for every m ∈ N the empirical distribution function of Y1, . . . , Ym as defined in (4.31). Then the

following two assertions hold.

(i) We have √
m
(
Wx0;πγ

0 (F̂m)−Wx0;πγ
0 (F )

)
 ZF ;x0,γ in (R,B(R), | · |)

for ZF ;x0,γ ∼ N0,s2 with

s2 = s2
F ;x0,γ :=

ˆ
R2

hx0,γ
α,F (t1)CF (t1, t2)hx0,γ

α,F (t2) (µuα ⊗ µuα)(d(t1, t2)), (5.60)
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where

hx0,γ
α,F (t) := −

N−1∑
k=0

N−1∏
j=0

j 6=k

vF ;γ
j uα(x0) ·

( γk
rk+1

)α+1
1[

rk+1
γk−1

γk
,∞
)(t)1{γk 6=0}, t ∈ R (5.61)

and CF is given by (4.33).

(ii) We have √
m
(
Wx0

0 (F̂m)−Wx0
0 (F )

)
 ZF ;x0 in (R,B(R), | · |)

for ZF ;x0 ∼ N0,s2 with s2 = s2
F ;x0,γF

given by (5.60) (with γ replaced by γF ).

The proof of Theorem 5.2.9 relies on the following lemma.

Lemma 5.2.10 With the notation and under the assumptions of Theorem 5.2.9 the following two

assertions hold for every x0 ∈ R≥0, γ ∈ [0, 1]N , and m ∈ N.

(i) The estimator Wx0;πγ
0 (F̂m) is (F ,B(R))-measurable.

(ii) The estimator Wx0
0 (F̂m) is (F ,B(R))-measurable.

Proof We will only prove the claim in (i). The verification of the assertion in (ii) will follow with

analogous arguments. At first it can be verified easily that the mapping ω → F̂m(ω, · ) from Ω

to F>0(µuα) is (F ,B(F>0(µuα)))-measurable for the Borel σ-algebra B(F>0(µuα)) on (F>0(µuα),

‖ · ‖1,µuα ), where ‖ · ‖1,µuα refers to the (separable) norm defined as in (4.7) (with ν replaced by

µuα). Note here that the mapping Rm>0 → F>0(µuα), (y1, . . . , ym) 7→ 1
m

∑m
i=1 1[yi,∞) is easily seen

to be (‖ · ‖, ‖ · ‖1,µuα )-continuous. As a consequence of part (i) of Theorem 5.2.2, the functional

Wx0;πγ
0 : F>0(µuα) → R given by (5.41) is (‖ · ‖1,µuα , | · |)-continuous and thus in particular

(B(F>0(µuα)),B(R))-measurable. Therefore the estimator Wx0;πγ
0 (F̂m) is a real-valued random

variable on (Ω,F ,P). 2

Thus we are in the position to prove Theorem 5.2.9.

Proof of Theorem 5.2.9: We intend to apply Theorem 4.4.4. First, we note that in view of

Lemma 5.2.8(i) we have F̂m(ω, · ) ∈ F>0(µuα) for every ω ∈ Ω and m ∈ N. Second, it follows from

the proof of Theorem 5.2.6 that the assumptions of Theorem 4.3.8 are satisfied for Πlin in place of

Π. Thus, in view of Lemma 5.2.10, the assumptions of Theorem 4.4.4 hold for ν := µuα and Πlin

instead of Π. Note in the following that any π ∈ Πlin is induced by some γ ∈ [0, 1]N through (3.26).

(i): As a consequence of part (i) of Theorem 4.4.4 we have that Ẇx0;πγ
0;F (BF ) is (F̌ ,B(R))-measurable

and √
m
(
Wx0;πγ

0 (F̂m)−Wx0;πγ
0 (F )

)
 Ẇx0;πγ

0;F (BF ) in (R,B(R), | · |), (5.62)

where Ẇx0;πγ
0;F is given by (5.52) and BF is an L1(µuα)-valued centred Gaussian random variable

on some probability space (Ω̌, F̌ , P̌) with covariance operator ΓBF ,µuα defined as in (4.32).

Similarly to (5.42) we get for every n = 0, . . . , N − 1 and γ = (γn)N−1
n=0 ∈ [0, 1]N with γn = 0

ˆ
R≥0

BF ( · , y)(uα ◦ ηγn )′(y) `(dy) =

ˆ
R≥0

BF ( · , y)α (γn/rn+1) · uα−1(ηγn (y)) `(dy) = 0 (5.63)
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by (3.22). Moreover, in view of Lemmas B.3 and B.4, the change of variable formula yields

ˆ
R≥0

BF ( · , y)(uα ◦ ηγn )′(y) `(dy) =

ˆ
R≥0

BF ( · , y) d(uα ◦ ηγn )(y) =

ˆ
R≥0

BF ◦ (ηγn )−1( · , y) duα(y)

=

ˆ
R≥0

BF

(
· , rn+1

γn

(
y + (γn − 1)

))
u′α(y) `(dy)

=

ˆ
R≥0

BF

(
· , t+

rn+1

γn
(γn − 1)

)
u′α

( γn
rn+1

t
)
· γn
rn+1

`(dt)

=

ˆ
R≥0

( γn
rn+1

)α+1
BF

(
· , t+ rn+1

γn − 1

γn

)
u′α(t) `(dt)

=

ˆ
R≥0

( γn
rn+1

)α+1
BF

(
· , t+ rn+1

γn − 1

γn

)
duα(t)

=

ˆ ( γn
rn+1

)α+1
1[

rn+1
γn−1
γn

,∞
)(t)BF ( · , t)µuα(dt) (5.64)

for every n = 0, . . . , N − 1 and γ = (γn)N−1
n=0 ∈ [0, 1]N with γn 6= 0. Take into account that

in this case Lemmas B.3 and B.4 may be applied by Lemma 5.2.3 as well as the facts that BF
is an L1(µuα)-valued random element and that ηγn (·) is a strictly increasing, (right-) continuous

map. Using (5.52) and (5.63)–(5.64), it is easily seen that the right-hand side of (5.62) admits the

representation

Ẇx0;πγ
0;F (BF ) = −

N−1∑
k=0

N−1∏
j=0

j 6=k

vF ;γ
j uα(x0) ·

ˆ
R≥0

BF ( · , y)(uα ◦ ηγk )′(y) `(dy)

= −
N−1∑
k=0

N−1∏
j=0

j 6=k

vF ;γ
j uα(x0) ·

ˆ ( γk
rk+1

)α+1
1[

rk+1
γk−1

γk
,∞
)(t)1{γk 6=0}BF ( · , t)µuα(dt)

=

ˆ
hx0,γ
α,F (t)BF ( · , t)µuα(dt) (5.65)

for any γ = (γn)N−1
n=0 ∈ [0, 1]N with hx0,γ

α,F given by (5.61). Therefore, since hx0,γ
α,F (·) ∈ L∞(µuα) for

every γ ∈ [0, 1]N (by equations (3.23)–(3.24) (applied to P F )) and since BF is a centred Gaussian

random element in L1(µuα), the real-valued random variable ZF ;x0,γ := Ẇx0;πγ
0;F (BF ) is for any

γ ∈ [0, 1]N normally distributed with mean

Ě
[
Ẇx0;πγ

0;F (BF )
]

=

ˆ
hx0,γ
α,F (t)Ě[BF ( · , t)]µuα(dt) = 0

(by Fubini’s theorem) and variance

V̌ar
[
Ẇx0;πγ

0;F (BF )
]

= Ě
[
Ẇx0;πγ

0;F (BF )2
]

= Ě
[(ˆ

hx0,γ
α,F (t1)BF ( · , t1)µuα(dt1)

)( ˆ
hx0,γ
α,F (t2)BF ( · , t2)µuα(dt2)

)]
= ΓBF ,µuα (hx0,γ

α,F , h
x0,γ
α,F ),

where the latter expression is in view of Theorem 4.4.6 (with ν replaced by µuα) equal to the

right-hand side of (5.60).
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(ii): It follows from part (ii) of Theorem 4.4.4 that Ẇx0
0;F (BF ) is (F̌ ,B(R))-measurable and

√
m
(
Wx0

0 (F̂m)−Wx0
0 (F )

)
 Ẇx0

0;F (BF ) in (R,B(R), | · |) (5.66)

with Ẇx0
0;F given by (5.53) and BF as above. Now, the right-hand side of (5.66) admits in view of

(5.53) and (5.65) the representation

Ẇx0
0;F (BF ) = Ẇ

x0;π
γF

0;F (BF ) =

ˆ
hx0,γF

α,F (t)BF (t)µuα(dt),

where γF := (γFn )N−1
n=0 ∈ [0, 1]N consists in view of Lemma 3.2.4 (with P replaced by P F ) of all

unique solutions γFn to the optimization problem (5.40) and hx0,γF

α,F is defined as in (5.61) (with γ

replaced by γF ). Therefore it can be verified easily with similar arguments as in the proof of (i)

that the real-valued random variable ZF ;x0 := Ẇx0
0;F (BF ) is normally distributed with zero mean

and variance V̌ar[Ẇx0
0;F (BF )] = ΓBF ,µuα (hx0,γF

α,F , hx0,γF

α,F ), where the latter is equal to the right-hand

side of (5.60) (with γ replaced by γF ). The proof of Theorem 5.2.9 is now complete. 2

Remark 5.2.11 An easy computation shows that in the setting (and under the assumptions) of

Theorem 5.2.9 the variance s2
F ;x0,γ

in (5.60) (and thus the variance s2
F ;x0,γF

in part (ii) of Theorem

5.2.9) admits the representation

s2
F ;x0,γ =

N−1∑
k=0

ˆ
R2
≥0

hF ;γ
α;k (s)CF (t1, t2)hF ;γ

α;k (t) (`⊗ `)(d(t1, t2))

+
N−1∑
i,k=0

i 6=k

ˆ
R2
≥0

hF ;γ
α;i (s)CF (t1, t2)hF ;γ

α;k (t) (`⊗ `)(d(t1, t2))

for any x0 ∈ R≥0 and γ = (γn)N−1
n=0 ∈ [0, 1]N with

hF ;γ
α; · (•) :=

N−1∏
j=0

j 6= ·

vF ;γ
j uα(x0) (uα ◦ ηγk )′(•),

where ηγn is defined as in (3.22) and CF is given by (4.33). 3

In Remark 5.2.12 we discuss the utility of the statement in part (ii) of Theorem 5.1.18 with regard

to the statistical estimation of the optimal value of the terminal wealth problem.

Remark 5.2.12 In view of part (ii) of Theorem 5.2.9 we can derive (under the assumptions of the

latter theorem) from equation (5.2.9) an asymptotic confidence interval at a given level κ ∈ (0, 1)

for the optimal valueW
x0;π

γF

0 (F ) of the terminal wealth problem (5.39). In this case, however, one

has to perform a nonparametric estimation of the variance s2 = s2
F ;x0;γF

in (5.60) (with γ replaced

by γF ) which is of the form

ŝ2
m = s2

F̂m;x0,γF̂m
:=

ˆ
R2

hx0,γF̂m

α,F̂m
(s)C

F̂m
(s, t)hx0,γF̂m

α,F̂m
(t) (µuα ⊗ µuα)(d(t1, t2)) (5.67)
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with hx0,γF̂m

α,F̂m
and C

F̂m
defined as in (5.61) and (4.33). Here the vector γF̂m = (γF̂mn )N−1

n=0 ∈ [0, 1]N

consists of components γF̂mn which are the solutions to the reduced optimization problem (5.40)

with F replaced by F̂m (the existence is ensured by Lemma 3.2.4 (with P replaced by P
F̂m

)). As

the estimator ŝ2
m in (5.67) for s2 depends on F̂m in a quite complex way, it is not clear how good

the performance of the asymptotic confidence interval based on ŝ2
m is. To get around this problem,

we will present in the following Theorem 5.2.13 a bootstrap result (in probability) with its help we

are able to construct a so-called bootstrap confidence interval (see Remark 4.4.13) for the optimal

value W
x0;π

γF

0 (F ) of the terminal wealth problem (5.39). 3

Next, Theorem 5.2.13 illustrates Theorem 4.4.9 in the setting of Subsection 5.2.1. Part (ii) of this

theorem reveals that the sequence (Wx0
0 (F̂ ∗m))m∈N is a bootstrap version (in probability) of the

sequence of estimators (Wx0
0 (F̂m))m∈N for the optimal value of the terminal wealth problem (5.39).

Note that dBL introduced in Example 2.1.4 (with E := R) stands for the bounded Lipschitz-metric

on M1(R). Finally, recall from Subsection 4.3.2 that a map φ : R → R≥1 is said to be a weight

function if it is continuous as well as non-decreasing on R≥0 and non-increasing on R≤0.

Theorem 5.2.13 (Bootstrap consistency of (Wx0;πγ
0 (F̂m)) and (Wx0

0 (F̂m))) In the setting of

Subsection 5.2.1 let x0 ∈ R≥0 and γ ∈ [0, 1]N . Let (Yi)i∈N be an i.i.d. sequence of R>0-valued

random variables on some probability space (Ω,F ,P) with common distribution function F , and

assume that
´
φ2 dF < ∞ for some weight function φ satisfying

´
1/φ dµuα < ∞ (in particular

F ∈ F>0(µuα)). Let F̂m be for every m ∈ N the empirical distribution function of Y1, . . . , Ym as

defined in (4.31). Moreover let (Wmi)m∈N,1≤i≤m be a triangular array of nonnegative real-valued

random variables on another probability space (Ω′,F ′,P′), set (Ω,F ,P) := (Ω×Ω′,F ⊗F ′,P⊗ P′),
and let F̂ ∗m be defined as in (4.37). If one of the settings (B1)–(B2) in Subsection 4.4.3 is met,

then the following two assertions hold.

(i) For every δ > 0 we have

lim
m→∞

P
[{
ω ∈ Ω : dBL(P′√

m(Wx0;πγ
0 (F̂ ∗m(ω,·))−Wx0;πγ

0 (F̂m(ω)))
,N0,s2) ≥ δ

}]
= 0, (5.68)

where s2 = s2
F ;x0,γ

is given by (5.60).

(ii) For every δ > 0 we have

lim
m→∞

P
[{
ω ∈ Ω : dBL(P′√

m(Wx0
0 (F̂ ∗m(ω,·))−Wx0

0 (F̂m(ω)))
,N0,s2) ≥ δ

}]
= 0, (5.69)

where s2 = s2
F ;x0;γF

is given by (5.60) (with γ replaced by γF ).

Proof For the proof we intend to apply Theorem 4.4.9. At first, Lemma 5.2.8(i) ensures that

F̂m(ω, · ) ∈ F>0(µuα) for every ω ∈ Ω and m ∈ N. It follows from part (i) of Lemma 5.2.4 along

with the representation (4.37) that F̂ ∗m((ω, ω′), · ) ∈ F>0(µuα) for every (ω, ω′) ∈ Ω and m ∈ N.

Moreover Lemma 5.2.10 implies that the estimators Wx0;πγ
0 (F̂m) and Wx0

0 (F̂m) are (F ,B(R))-

measurable for every m ∈ N. Using similar arguments as in the proof of Lemma 5.2.10 it is easily

seen that the estimators Wx0;πγ
0 (F̂ ∗m) as well as Wx0

0 (F̂ ∗m) are (F ,B(R))-measurable for any m ∈ N.

By the proof of Theorem 5.2.6 the map Λ̇
F ;(πγ ,x)
n;F : L1(µuα) → R given by (5.54) is linear for any
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x ∈ R≥0 and n = 0, . . . , N − 1 and satisfies condition (a) of Theorem 4.3.8 (with Π replaced by

Πlin). Finally, note that in view of proof of Theorem 5.2.6 conditions (b)–(c) of Theorem 4.3.8 hold

with ψ given by (3.17) and Πlin playing the role of Π. Thus, we have verified the assumptions of

Theorem 4.4.9 for Πlin in place of Π. Take into account that any γ ∈ [0, 1]N induces a linear trading

strategy π ∈ Πlin by (3.26). In particular, it follows from the discussion subsequent to Theorem

4.4.9 that the expressions in (5.68) and (5.69) are well-defined.

(i): In view of part (i) of Theorem 4.4.9 and part (i) of Theorem 5.2.6, Display (5.68) holds for

every δ > 0 with N0,s2 replaced by P̌Ẇx0;πγ
0;F (BF ), where Ẇx0;πγ

0;F is defined in (5.52) and BF refers

to an L1(µuα)-valued centred Gaussian random variable on some probability space (Ω̌, F̌ , P̌) with

covariance operator ΓBF ,µuα given by (4.32) (with ν replaced by µuα). Since by (the proof of) part

(i) of Theorem 5.2.9 we have ZF ;x0,γ := Ẇx0;πγ
0;F (BF ) ∼ N0,s2 (under P̌) with s2 = s2

F ;x0,γ
given by

(5.60), the claim in (5.68) follows. We note that Theorem 5.2.9 is applicable because in view of

Remark 4.4.7 (applied to ν := µuα) the assumptions
´
φ2 dF <∞ and

´
1/φ dµuα <∞ ensure that´ √

F (1− F ) dµuα <∞.

(ii): By parts (ii) of Theorems 4.4.9 and 5.2.6, the claim in (5.69) holds for every δ > 0 with N0,s2

replaced by P̌Ẇx0
0;F (BF ), where Ẇx0

0;F is given by (5.53) and BF is as in (i). In view of (the proof of)

part (ii) of Theorem 5.2.9 we have ZF ;x0 := Ẇx0
0;F ∼ N0,s2 (under P̌) with s2 = s2

F ;x0,γF
given by

(5.60) (with γ replaced by γF ). Therefore the assertion in (5.69) holds. 2

5.2.4 Parametric estimation of the optimal value

In the following we deal with a parametric estimation of the optimal value of the terminal wealth

problem (5.39) in which the distribution function F describing the dynamics of the risky asset

is not known. Throughout this section we will assume that the distribution of the (i.i.d.) asset

returns follow a log-normal distribution with unknown parameters. This setting is motivated by

the standard (time discretized) Black–Scholes–Merton model which is discussed in Example 3.2.8

in Subsection 3.2.3. Therefore the distribution function F corresponds to the distribution function

of the log-normal distribution.

To this end, we consider the parametric statistical infinite product model

(Ω,F , {Pθ : θ ∈ Θ}) :=
(
RN,B(RN), {P(m,s2) := LN⊗N

(m,s2)
: (m, s2) ∈ Θ}

)
, (5.70)

for the (open) parameter set Θ := R×R>0 (⊆ R2), where the log-normal distribution LN(m,s2) with

parameter (m, s2) ∈ Θ is given by the standard Lebesgue density

ϕLN
(m,s2)(x) :=

{
(2πs2)−1/2x−1e−(log(x)−m)2/(2s2) , x ∈ R>0

0 , otherwise
. (5.71)

Further, let F(m,s2) be for every (m, s2) ∈ Θ the distribution function of the log-normal distribution

LN(m,s2). It is known that F(m,s2) can be represented as

F(m,s2)(x) =

{
Φ0,1((log(x)−m)/s) , x ∈ R>0

0 , otherwise
, (5.72)
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for every (m, s2) ∈ Θ, where Φ0,1 stands for the distribution function of the standard normal

distribution. Thus the following lemma is a direct conclusion of Lemma 5.2.4(i).

Lemma 5.2.14 F(m,s2) ∈ F>0(µuα) for every (m, s2) ∈ Θ.

Now, a suitable estimator for the parameter (m, s2) ∈ Θ based on sample size m ∈ N will be the

map (m̂m, ŝ
2
m) : Ω→ Θ defined by

m̂m(y1, y2, . . .) = m̂m(y1, . . . , ym)

:=

{
1
m

∑m
i=1 log(yi) , mini=1,...,m yi > 0

m , otherwise
,

ŝ2
m(y1, y2, . . .) = ŝ2

m(y1, . . . , ym)

:=

{
1
m

∑m
i=1

(
log(yi)− m̂m(y1, . . . , ym)

)2
, mini=1,...,m yi > 0

s2 , otherwise

(5.73)

for some fixed (m, s2) ∈ Θ. Take into account that the case differentiations in (5.73) ensure that

the estimator (m̂m, ŝ
2
m) takes values only in Θ.

By Lemma 5.2.14, we have thatWx0;πγ
0 (F(m̂m ,̂s2m)) (resp.Wx0

0 (F(m̂m ,̂s2m))) can be seen as a reasonable

(plug-in) estimator for Wx0;πγ
0 (F(m,s2)) (resp. Wx0

0 (F(m,s2))). In what follows we will investigate the

sequences of estimators (Wx0;πγ
0 (F(m̂m ,̂s2m)))m∈N and (Wx0

0 (F(m̂m ,̂s2m)))m∈N for strong consistency and

asymptotic normality.

The following Theorem 5.2.15 illustrates Theorem 4.5.1 in the setting of Subsection 5.2.1.

Theorem 5.2.15 (Strong consistency of (Wx0;πγ
0 (F(m̂m ,̂s2m))) and (Wx0

0 (F(m̂m ,̂s2m)))) In the set-

ting of Subsection 5.2.1 let x0 ∈ R≥0, γ ∈ [0, 1]N , and (m0, s
2
0) ∈ Θ. Then the following two

assertions hold.

(i) The sequence of estimators (Wx0;πγ
0 (F(m̂m ,̂s2m)))m∈N is strongly consistent for Wx0;πγ

0 (F(m0,s20))

under P(m0,s20) in the sense that

Wx0;πγ
0 (F(m̂m ,̂s2m))→W

x0;πγ
0 (F(m0,s20)) P(m0,s20)-a.s.

(ii) The sequence of estimators (Wx0
0 (F(m̂m ,̂s2m)))m∈N is strongly consistent forWx0

0 (F(m0,s20)) under

P(m0,s20) in the sense that

Wx0
0 (F(m̂m ,̂s2m))→Wx0

0 (F(m0,s20)) P(m0,s20)-a.s.

If π(m0,s20) := (f
γ

(m0,s
2
0)

n )N−1
n=0 ∈ Πlin corresponds to an optimal (linear) trading strategy w.r.t. F(m0,s20)

(the existence is ensured by part (ii) of Theorem 3.2.5 (applied to P F
(m0,s

2
0)

), then part (ii) of the

latter theorem yields that (for any initial amount of capital x0 ∈ R≥0) the sequence of estimators

(Wx0
0 (F(m̂m ,̂s2m)))m∈N is strongly consistent (under P(m0,s20)) for the optimal W

x0;π
(m0,s

2
0)

0 (F(m0,s20)) of

the terminal wealth problem (5.39) (with F replaced by F(m0,s20)). Take into account that the

component γ
F

(m0,s
2
0)

n of the vector γ(m0,s20) := (γ
F

(m0,s
2
0)

n )N−1
n=0 corresponds to the unique solution to

167



the reduced optimization problem (5.40) with F replaced by F(m0,s20). Note that it follows from

Lemma 3.2.4 (applied to P F
(m0,s

2
0)

) that the latter optimization problem admits a unique solution.

Proof of Theorem 5.2.15: For the claims in (i) and (ii) we intend to apply Theorem 4.5.1. At

first, in the corresponding infinite product model (RN,B(RN), {P(m,s2) := LN⊗N
(m,s2)

: (m, s2) ∈ Θ})
(see (5.70)), we obtain by means of the ordinary strong law of large numbers that the sequence of

estimators ((m̂m, ŝ
2
m))m∈N given by (5.73) is strongly consistent for (m0, s

2
0) under P(m0,s20) (w.r.t.

‖ · ‖). Hence condition (a) of Theorem 4.5.1 holds.

Next, we will show that the mapping (m, s2) 7→ F(m,s2) from Θ to F>0(µuα) is continuous at (m0, s
2
0)

w.r.t. (‖ · ‖, ‖ · ‖1,µuα ), where the norm ‖ · ‖1,µuα is introduced in (4.7) (with µuα playing the role of

ν).

To this end, let (mm, s
2
m)m∈N be any sequence in Θ with ‖(mm, s

2
m)− (m0, s

2
0)‖ → 0. In particular

this implies mm → m0 and sm → s0. Set m := supm∈Nmm, s := supm∈N sm, and note that m <∞
as well as 0 < s <∞. In view of (5.72) and the continuity of x 7→ Φ0,1(x) we observe

1− F(mm,s2m)(x) = 1− Φ0,1((log(x)−mm)/sm) −→ 1− Φ0,1((log(x)−m0)/s0) = 1− F(m0,s20)(x)

for every x ∈ R>0. Using (5.72) and the monotonicity of the mapping x 7→ Φ0,1(x) we obtain

1− F(mm,s2m)(x) = 1− Φ0,1((log(x)−mm)/sm) ≤ 1− Φ0,1((log(x)−m)/s) = 1− F(m,s2)(x)

for any x ∈ R>0 and m ∈ N. Thus the mapping h : R→ R defined by

h(x) :=

{
1− F(m,s2)(x) , x ∈ R>0

1 , otherwise

is in view of

‖h‖1,µuα =

ˆ
R≥0

(
1− F(m,s2)(x)

)
µuα(dx) =

ˆ
R≥0

uα(y) dF(m,s2)(y) = eαm+(αs)2/2 < ∞

(by Lemma 5.2.4(i)) a µuα-integrable majorant. Hence an application of the dominated convergence

theorem yields

lim
m→∞

‖F(mm,s2m) − F(m0,s20)‖1,µuα = lim
m→∞

∥∥(1− F(mm,s2m))− (1− F(m0,s20))
∥∥

1,µuα

= lim
m→∞

ˆ
R>0

∣∣(1− F(mm,s2m)(x))− (1− F(m0,s20)(x))
∣∣µuα(dx) = 0.

Therefore the mapping (m, s2) 7→ F(m,s2) from Θ to F>0(µuα) is continuous at (m0, s
2
0) w.r.t.

(‖ · ‖, ‖ · ‖1,µuα ). Thus condition (b) of Theorem 4.5.1 is also satisfied.

Finally, it follows from the proof of Theorem 5.2.2 that the assumptions of Theorem 4.3.3 are

fulfilled with ν := µuα , F(m0,s20) in place of F , and Π replaced by Πlin. Take into account that

F(m0,s20) ∈ F>0(µuα) by Lemma 5.2.14. In particular, we have verified the assumptions of Theorem

4.5.1 for ν := µuα and Πlin playing the role of Π. Thus the assertions in (i) and (ii) of Theorem

5.2.15 are direct consequences of parts (i) and (ii) of Theorem 4.5.1, respectively. This completes

the proof of Theorem 5.2.15. 2
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Part (ii) of Theorem 5.2.16 indicates the asymptotic error distribution of the sequence of estimators

(Wx0
0 (F(m̂m ,̂s2m)))m∈N for the optimal valueWx0

0 (F(m0,s20)) of the terminal wealth problem (5.39) (with

F(m0,s20) in place of F ). For the formulation of this theorem we set as before v
(m0,s20);γ
n := v

F
(m0,s

2
0)

;γn

n

for any n = 0, . . . , N − 1 with v
F

(m0,s
2
0)

;γn

n defined as on the left-hand side of (5.40), and recall that

(uα ◦ ηγn )′ denotes the first derivative of the (continuously differentiable) map (uα ◦ ηγn )(·). Finally

set as above γ(m0,s20) := (γ
F

(m0,s
2
0)

n )N−1
n=0 for the vector whose components are the unique solutions to

the reduced optimization problem (5.40) (with F replaced by F(m0,s20)).

Theorem 5.2.16 (Asymptotic error distribution of (Wx0;πγ
0 (F(m̂m ,̂s2m))) and (Wx0

0 (F(m̂m ,̂s2m))))

In the setting of Subsection 5.2.1 let x0 ∈ R≥0, γ ∈ [0, 1]N , and (m0, s
2
0) ∈ Θ. Then the following

two assertions hold.

(i) We have

√
m
(
Wx0;πγ

0 (F(m̂m ,̂s2m))−W
x0;πγ
0 (F(m0,s20))

)
 Z(m0,s20);x0,γ in (R,B(R), | · |)

for Z(m0,s20);x0,γ ∼ N0,s2, where

s2 = s2
(m0,s20);x0,γ

:=

(
s2

0 ·
{N−1∑
k=0

N−1∏
j=0

j 6=k

v
(m0,s20);γ
j · Iγ1;k

}2

+ 2(s2
0)2 ·

{N−1∑
k=0

N−1∏
j=0

j 6=k

v
(m0,s20);γ
j · Iγ2;k

}2
)
· uα(x0)2 (5.74)

with

Iγ1;k :=

ˆ
R≥0

y (uα ◦ ηγk )′(y)ϕLN
(m0,s20)(y) `(dy),

Iγ2;k :=

ˆ
R≥0

y (log(y)−m0)/(2s2
0) (uα ◦ ηγk )′(y)ϕLN

(m0,s20)(y) `(dy).

(5.75)

(ii) We have

√
m
(
Wx0

0 (F(m̂m ,̂s2m))−Wx0
0 (F(m0,s20))

)
 Z(m0,s20);x0

in (R,B(R), | · |)

for Z(m0,s20);x0
∼ N0,s2, where s2 := s2

(m0,s20);x0,γ(m0,s
2
0)

is given by (5.74) (with γ replaced by

γ(m0,s20)).

Proof We intend to apply Theorem 4.5.4. At first, it can be verified easily that the family

{LN(m,s2) : (m, s2) ∈ Θ} satisfies the assumptions of Theorem 6.5.1 in [63]. Hence an application of

the latter theorem ensures that the estimator (m̂m, ŝ
2
m) given by (5.73) in the corresponding infinite

product model (RN,B(RN), {P(m,s2) := LN⊗N
(m,s2)

: (m, s2) ∈ Θ}) satisfies

√
m

([
m̂m

ŝ2
m

]
−

[
m0

s2
0

])
 Z̃(m0,s20) in (R2,B(R2), ‖ · ‖), (5.76)
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where Z̃(m0,s20) is a bivariate normally distributed random variable with zero mean vector and

covariance matrix I(m0, s
2
0)−1. Here, I(m0, s

2
0) denotes the Fisher information matrix at (m0, s

2
0),

and it can be easily shown that

I(m0, s
2
0)−1 =

[
s2

0 0

0 2(s2
0)2

]
.

In particular, condition (a) of Theorem 4.5.4 is satisfied. Take into account that the expression on

the left-hand side in (5.76) is clearly (F ,B(R2))-measurable.

Next, we will verify condition (b) of Theorem 4.5.4. Consider the map F : Θ→ F>0(µuα) defined

by

F(m, s2) := F(m,s2). (5.77)

note that the map F is well-defined by Lemma 5.2.14. In the following we will show (using Lemma

4.5.7) that the map F : Θ → F>0(µuα) defined by (5.77) is Hadamard differentiable at (m0, s
2
0)

with trace L1(µuα) (in the sense of Definition A.1(ii) in Section A) and Hadamard derivative

Ḟ(m0,s20) : R2 → L1(µuα) given by

Ḟ(m0,s20)(τ1, τ2)(x) :=

{
−
(
τ1
s0

+ τ2(log(x)−m0)
2s30

)
ϕN

0,1

( log(x)−m0

s0

)
, x ∈ R>0

0 , otherwise
, (5.78)

where ϕN
0,1 refers to the standard Lebesgue density of the standard normal distribution N0,1. For

this proof, we will adapt arguments of the proof of Example 4.7 in [59].

For an application of Lemma 4.5.7, let the map f : Θ× R→ R from (4.45) be defined by

f((m, s2), x) := F(m,s2)(x). (5.79)

From (5.72) we observe that for any fixed x ∈ R the map f( · , x) given by (5.79) is continuously

differentiable on Θ with gradient

∇(m,s2)f((m, s
2), x) =

{
−
(

1
s ,

log(x)−m
2s3

)
ϕN

0,1

( log(x)−m
s

)
, x ∈ R>0

(0, 0) , otherwise

for all (m, s2) ∈ Θ.

Now, let (m0, s
2
0) ∈ Θ be fixed, and define a map hδ : R→ R by

hδ(x) :=



0 , x ∈ R≤0
1√

π(s20−δ)

(
1 + 2

δ

)
, x ∈ (0, em0−2δ)

1√
π

(
1√
s20−δ

+ Cδ+|m0|+δ√
s20−δ

3

)
, x ∈ [em0−2δ, em0+δ]

1√
π
e
− (log(x)−m0−δ)2

2(s20+δ)

(
1√
s20−δ

+ | log(x)−m0+δ|√
s20−δ

3

)
, x ∈ (em0+δ,∞)

, (5.80)

where Cδ := supx∈[em0−2δ,em0+δ] | log(x)| ∈ R≥0, and δ > 0 is chosen such that s2
0 − δ > 0 (see also

[59, p. 444]). Using the same line of argumentation as in the proof of Example 4.7 in [59] we get

‖∇(m,s2)f((m, s
2), x)‖ ≤ hδ(x) for all ((m, s2), x) ∈ ((m0 − δ,m0 + δ)× (s2

0 − δ, s2
0 + δ))× R.
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Next, we show that the map hδ is µuα-integrable. Note that the Stieltjes measure µuα w.r.t. uα has

Lebesgue density u′α (by Lemma B.3). At first, we have

ˆ
(0,em0−2δ)

|hδ(y)|µuα(dy) =

ˆ
(0,em0−2δ)

1√
π(s2

0 − δ)

(
1 +

2

δ

)
u′α(y) `(dy)

=
1√

π(s2
0 − δ)

(
1 +

2

δ

)
·
ˆ em0−2δ

0
u′α(y) dy =

1√
π(s2

0 − δ)

(
1 +

2

δ

)
uα(em0−2δ) < ∞.

Further ˆ
[em0−2δ,em0+δ]

|hδ(y)|µuα(dy)

=

ˆ
[em0−2δ,em0+δ]

1√
π

( 1√
s2

0 − δ
+
Cδ + |m0|+ δ√

s2
0 − δ

3

)
u′α(y) `(dy)

=
1√
π

( 1√
s2

0 − δ
+
Cδ + |m0|+ δ√

s2
0 − δ

3

)
·
ˆ em0+δ

em0−2δ
u′α(y) dy

=
1√
π

( 1√
s2

0 − δ
+
Cδ + |m0|+ δ√

s2
0 − δ

3

)
·
(
uα(em0+δ)− uα(em0−2δ)

)
< ∞.

For any λ > em0+δ, the change of variable formula entails that (recall that α ∈ (0, 1) is fixed)

ˆ
(em0+δ,λ)

|hδ(y)|µuα(dy)

=

ˆ
(em0+δ,λ)

1√
π
e
− (log(y)−m0−δ)2

2(s20+δ)

( 1√
s2

0 − δ
+
| log(y)−m0 + δ|√

s2
0 − δ

3

)
u′α(y) `(dy)

=

ˆ λ

em0+δ

1√
π
e
− (log(y)−m0−δ)2

2(s20+δ)

( 1√
s2

0 − δ
+
| log(y)−m0 + δ|√

s2
0 − δ

3

)
u′α(y) dy

=

ˆ log(λ)

m0+δ

1√
π
e
− (z−m0−δ)2

2(s20+δ)

( 1√
s2

0 − δ
+
|z −m0 + δ|√

s2
0 − δ

3

)
u′α(ez) ez dz

=

ˆ log(λ)−m0−δ

0

1√
π
e
− z̃2

2(s20+δ)

( 1√
s2

0 − δ
+
|z̃ + 2δ|√
s2

0 − δ
3

)
α eα(z̃+m0+δ) dz̃

≤
ˆ log(λ)−m0−δ

0

1√
π
e
− z̃2

2(s20+δ)

( 1√
s2

0 − δ
+
|z̃ + 2δ|√
s2

0 − δ
3

)
ez̃+m0+δ dz̃

= e(2m0+s20+δ)/2 ·
ˆ log(λ)−m0−δ

0

1√
π
e
− (z̃−s20+δ)2

2(s20+δ)

( 1√
s2

0 − δ
+
|z̃ + 2δ|√
s2

0 − δ
3

)
dz̃.

Then proceeding as in [59, p. 446] we get

ˆ
(em0+δ,∞)

|hδ(y)|µuα(dy)

= lim
λ→∞

ˆ λ

em0+δ

1√
π
e
− (log(y)−m0−δ)2

2(s20+δ)

( 1√
s2

0 − δ
+
| log(y)−m0 + δ|√

s2
0 − δ

3

)
u′α(y) dy
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≤
√

2(s2
0 + δ) e(2m0+s20+δ)/2 E

[ 1√
s2

0 − δ
+
|Z + 2δ|√
s2

0 − δ
3

]
< ∞,

where Z denotes any normally distributed random variable on some probability space (Ω,F ,P)

with mean s2
0 − δ and variance s2

0 + δ. Hence hδ given by (5.80) is indeed µuα-integrable.

Therefore, the assumptions of Lemma 4.5.7 are satisfied and an application of this lemma yields

that the map F given by (5.77) is Hadamard differentiable at (m0, s
2
0) with trace L1(µuα) and

Hadamard derivative Ḟ(m0,s20) : R2 → L1(µuα) given by (5.78). Hence, condition (b) of Theorem

4.5.4 holds, too.

Since it follows from the proof of Theorem 5.2.6 as well as Lemma 5.2.14 that the assumptions of

Theorem 4.3.8 are satisfied for ν := µuα , F(m0,s20) in place of F , Πlin instead of Π, we have verified

the assumptions of Theorem 4.5.4.

(i): As a consequence of part (i) of Theorem 4.5.4, Ẇx0;πγ
0;F

(m0,s
2
0)

(Ḟ(m0,s20)(Z̃(m0,s20))) is (F̌ ,B(R))-

measurable and

√
m
(
Wx0;πγ

0 (F(m̂m ,̂s2m))−W
x0;πγ
0 (F(m0,s20))

)
 Ẇx0;πγ

0;F
(m0,s

2
0)

(Ḟ(m0,s20)(Z̃(m0,s20))) in (R,B(R), | · |),

where Ẇx0;πγ
0;F

(m0,s
2
0)

is defined as in (5.52). Further in view of (5.52) and (5.78) we observe

Ẇx0;πγ
0;F

(m0,s
2
0)

(Ḟ(m0,s20)(τ))

= −
N−1∑
k=0

(ˆ
R≥0

−
{τ1

s0
+
τ2(log(y)−m0)

2s3
0

}
ϕN

0,1

( log(y)−m0

s0

)
(uα ◦ ηγk )′(y) `(dy)

·
N−1∏
j=0

j 6=k

v
(m0,s20);γ
j

)
· uα(x0)

=
N−1∑
k=0

({
τ1 ·
ˆ
R≥0

1

s0
(uα ◦ ηγk )′(y)ϕN

0,1

( log(y)−m0

s0

)
`(dy)

+ τ2 ·
ˆ
R≥0

log(y)−m0

2s3
0

(uα ◦ ηγk )′(y)ϕN
0,1

( log(y)−m0

s0

)
`(dy)

}
·
N−1∏
j=0

j 6=k

v
(m0,s20);γ
j

)
· uα(x0)

=

N−1∑
k=0

({
τ1 · Iγ1;k + τ2 · Iγ2;k

}
·
N−1∏
j=0

j 6=k

v
(m0,s20);γ
j

)
· uα(x0)

=

(
τ1 ·

{
N−1∑
k=0

N−1∏
j=0

j 6=k

v
(m0,s20);γ
j · Iγ1;k

}
+ τ2 ·

{
N−1∑
k=0

N−1∏
j=0

j 6=k

v
(m0,s20);γ
j · Iγ2;k

})
· uα(x0) (5.81)

for any τ = (τ1, τ2) ∈ R2 with Iγ1;k and Iγ2;k given by (5.75). Take into account that we clearly have

ϕN
0,1

( log(y)−m0

s0

)
= y s0 ϕ

LN
(m0,s20)(y)
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for every y ∈ R>0. Thus it is easily seen that the real-valued random variable

Z(m0,s20);x0,γ := Ẇx0;πγ
0;F

(m0,s
2
0)

(Ḟ(m0,s20)(Z̃(m0,s20)))

is centred normal with variance as in (5.74).

(ii): By part (ii) of Theorem 4.5.4 we get that that Ẇx0
0;F

(m0,s
2
0)

(Z̃(m0,s20)) is (F̌ ,B(R))-measurable

and

√
m
(
Wx0

0 (F(m̂m ,̂s2m))−Wx0
0 (F(m0,s20))

)
 Ẇx0

0;F
(m0,s

2
0)

(Ḟ(m0,s20)(Z̃(m0,s20))) in (R,B(R), | · |),

where Ẇx0
0;F

(m0,s
2
0)

is defined as in (5.53). Hence it follows from (5.53) and (5.81) that the real-valued

random variable

Z(m0,s20);x0
:= Ẇx0

0;F
(m0,s

2
0)

(Ḟ(m0,s20)(Z̃(m0,s20))) = Ẇ
x0;π

(m0,s
2
0)

0;F
(m0,s

2
0)

(Ḟ(m0,s20)(Z̃(m0,s20)))

is centred normal with variance s2 := s2
(m0,s20);x0,γ(m0,s

2
0)

given by (5.74) (with γ replaced by γ(m0,s20)).

This completes the proof. 2

The following remark concludes this subsection.

Remark 5.2.17 Part (ii) of Theorem 5.2.16 can be used to construct an asymptotic confidence

interval at a given level κ ∈ (0, 1) for the optimal value W
x0;π

(m0,s
2
0)

0 (F(m0,s20)) of the terminal wealth

problem (5.39) (with F(m0,s20) playing the role of F ). However, for this construction the variance

s2 := s2
(m0,s20);x0,γ(m0,s

2
0)

given by (5.74) (with γ replaced by γ(m0,s20)) must be estimated. As seen

above, (m̂m, ŝ
2
m) given by (5.73) provides a reasonable estimator for (m0, s

2
0). Thus the expression

ŝ2
m given by

ŝ2
m := s2

(m̂m ,̂s2m);x0,γ(m̂m,ŝ
2
m)

defined as in (5.74) can be seen as a suitable estimator for the unknown variance s2. Note that the

vector γ(m̂m ,̂s2m) = (γ
F

(m̂m,ŝ
2
m)

n )N−1
n=0 ∈ [0, 1]N consists of components γ

F
(m̂m,ŝ

2
m)

n which are the solutions

to the reduced optimization problem (5.40) with F replaced by F(m̂m ,̂s2m) (the existence is ensured

by Lemma 3.2.4 (with P replaced by P F
(m̂m,ŝ

2
m)

). This estimator depends on (m̂m, ŝ
2
m) in a rather

complex manner so that the actual performance of the asymptotic confidence interval based on ŝ2
m

is not known. We note that a parametric bootstrap technique for the asymptotic error distribution

of Wx0
0 (F(m0,s20)), which we will not discuss in this thesis, could improve the performance. 3
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Chapter 6

Foundations of risk measures and risk functionals

Risk measurement is a major task of risk management in financial institutions, such as insurance

companies, banks and others. Therefore, risk measurement techniques are becoming increasingly

important for the process of managing and assessing financial risks in practice. In most cases, it

is useful to assess risks with a real number that can interpreted as an amount of capital which is

required to financially secure these risks. A popular tool that maps a financial risks expressed by a

random variable to a capital requirement expressed by a real number is a risk measure. Here and

below we will only consider risks in an insurance context, that is, a risk corresponds to a financial

claim resulting from an insurance contract.

In this chapter we will first give a short introduction into the theory of risk measures and associated

risk functionals. A formal definition of risk measures and associated risk functionals is part of

Section 6.1. Subsequently, we study in Section 6.2 so-called distortion risk measures as an important

class of risk measures. In Section 4.3 we will present regularity properties of risk functionals

associated with a large class of risk measures, and Section 6.4 is devoted to examples of risk

measures used in actuarial practice.

6.1 Formal definition of risk measures and risk functionals

In order to give a formal definition of risk measures, we let in the following (Ω,F ,P) be an atomless

probability space in the sense of Definition A.26 in [35]. Let L0 be the space of all finite-valued

random variables on (Ω,F ,P) modulo the equivalence relation of P-a.s. identity, and let X ⊆ L0 be

a fixed vector space containing the constants. Note that the Lp-space (construed as the space of all

p-fold integrable random elements from L0) is for some given p ∈ R≥1 a standard example for X.

In the sequel, any element X of the space X will be interpreted as a financial risk (i.e. a possible

claim) resulting from an insurance contract.

Now, let ρ : X → R be a map, referred to as risk measure. Note that in actuarial practice the

expression ρ(X) specifies the amount of capital (i.e. premium) needed for covering the risk X ∈ X.

The assessment of financial risks with regard to an appropriate risk measure is of crucial importance,

especially for insurers. In particular from an insurer’s point of view, one could therefore ask what

characteristics a risk measure should have in order to adequately quantify these risks. The following

terminologies in (i)–(iv) below has proved to be appropriate.

A risk measure ρ : X→ R is said to be
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(i) monotone, if ρ(X1) ≤ ρ(X2) for every X1, X2 ∈ X with X1 ≤ X2,

(ii) cash additive, if ρ(X +m) = ρ(X) +m for every X ∈ X and m ∈ R,

(iii) subadditive, if ρ(X1 +X2) ≤ ρ(X1) + ρ(X2) for every X1, X2 ∈ X,

(iv) positively homogeneous, if ρ(λX) = λ ρ(X) for every X ∈ X and λ ≥ 0.

Following Definition 2.4 in [3], we will say that ρ is coherent if it satisfies conditions (i)–(iv).

For statistical investigations it is favorable to assess the risk X ∈ X in terms of its distribution

(under P) using a so-called risk functional associated with a suitable risk measure. In this case,

however, one has to ensure that risks with the same distribution always have the same capital

requirement measured by the corresponding risk measure. For this reason, we will restrict ourselves

in the following to so-called law-invariant risk measures. Formally, a risk measure ρ is said to

be law-invariant if ρ(X1) = ρ(X2) whenever the elements X1 and X2 of X have the same law

under P. Hence, we may and do associate with any law-invariant risk measure ρ a risk functional

Rρ :M(X)→ R through

Rρ(µ) := ρ(Xµ). (6.1)

Here M(X) stands for the set of all distributions of elements of X, and Xµ is any random variable

from X with law µ.

6.2 Distortion risk measures and the Kusuoka representation

In this section we will introduce with the distortion risk measure a typical example of a risk measure

which is widely used in theory and applications; see, for example, [7, 31, 54, 56, 57, 60, 90] and

references cited therein. In the second part of this section we will present the so-called Kusuoka

representation which says that general law-invariant coherent risk measures can be expressed by

distortion risk measures in a certain way.

Let g : [0, 1]→ [0, 1] be a right-continuous distortion function, that is, a right-continuous and non-

decreasing function satisfying g(0) = 0 and g(1) = 1. Since the left-sided limits of any monotonic

function exist, a right-continuous distortion function is even càdlàg. Now, the distortion risk

measure associated with g is the map ρg : Xg → R defined by

ρg(X) :=

ˆ ∞
−∞

y d(g ◦ FX)(y), (6.2)

where Xg denotes the set of all real-valued random variables X on (Ω,F ,P) for which
´∞
−∞ |y| d(g ◦

FX)(y) <∞, and FX corresponds to the distribution function of X. Note that Xg ⊆ L0 is a linear

subspace of L1. In particular, M(Xg) ⊆M(L1).

The value ρg(X) can be seen for some given X ∈ Xg as the expectation w.r.t. the distorted

distribution function g ◦ FX . Thus it is easily seen that the right-hand side of (6.2) admits the

representation

ρg(X) = −
ˆ 0

−∞
g(FX(y)) dy +

ˆ ∞
0

(
1− g(FX(y))

)
dy for all X ∈ Xg. (6.3)
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It can be deduced from [90] that ρg is a law-invariant coherent risk measure on Xg if and only if g

is convex. Note that any convex distortion function g is continuous on [0, 1) and might jump at 1.

Moreover it follows from [35, Theorem 4.70] that for some convex distortion function g the corre-

sponding distortion risk measure ρg admits the representation

ρg(X) =

ˆ 1

0
F←X (y) g′+(y) dy for all X ∈ Xg, (6.4)

where g′+ refers to the right-sided derivative of g, and F←X denotes the left-continuous inverse of

FX defined by F←X (·) := inf{z ∈ R : FX(z) ≥ · }. Note that every convex distortion function g

admits a right-sided derivative g′+; see, for example, Proposition A.4 in [35]. As a consequence of

Proposition 2.22 in [56] and for convex g, the space Lp is for any p > 1 contained in Xg if and only

if
´ 1

0 g
′
+(y)p/(p−1) dy <∞. In this case we have M(Lp) ⊆M(Xg) for every p > 1.

Next we will present in part (i) of Theorem 6.2.1 below the so-called Kusuoka representation. This

representation goes back to the pioneer work of [60], where the author showed that distortion risk

measures ρg w.r.t. convex distortion functions g build blocks of general law-invariant risk measures

ρ on X = L∞(Ω,F ,P) with L∞(Ω,F ,P) denoting the space of all bounded random variables from

L0. This result was extended to law-invariant coherent risk measures on more general spaces X
under some additional (technical) assumptions; see [54].

The first part and the statement in part (i) of the following Theorem 6.2.1 is, in a special case,

already known from [54, Theorem 2.12] for concave distortion functions. Part (ii) of this theorem,

which can be deduced from Theorem 2.2(iii) in [57], involves for some given law-invariant coherent

risk measure ρ the map gρ : [0, 1]→ [0, 1] defined by

gρ(y) := 1− ρ(B1−y), (6.5)

where B1−y corresponds to any Bernoulli distributed random variable with expectation 1−y. Note

that gρ is clearly a distortion function, and we will refer to gρ as the distortion function associated

with ρ. Finally, recall that g′+ denotes the right-sided derivative of g.

Theorem 6.2.1 (Kusuoka representation) Fix p ∈ R≥1, and let ρ : Lp → R be a law-invariant

coherent risk measure. Then there exists a set Gρ of continuous convex distortion functions such

that the following two assertions hold:

(i) ρ(X) = supg∈Gρ ρg(X) for all X ∈ Lp.

(ii) supg∈Gρ g
′
+(y) ≤ (1− gρ(1− γy))/(γy) for all γ, y ∈ (0, 1).

The statements in part (i) and (ii) of Theorem 6.2.1 will be used in the next section to verify

regularity properties of risk functionals associated with certain risk measures.

6.3 Regularity of risk functionals

In the sequel, we will show regularity properties of certain risk functionals w.r.t. the so-called Lp-

Wasserstein metric dWass,p introduced in (6.7) below. Theorem 6.3.1 ahead recalls a statement
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from [56] which says that for a large class of risk measures on Lp the associated risk functional is

continuous w.r.t. dWass,p. The main concern in this section is to verify that for a suitable class of

risk measures on some X the associated risk functional is even Lipschitz continuous w.r.t. dWass,p;

see Theorems 6.3.2 and 6.3.3 below.

Now, consider for some given p ∈ R≥1 the gauge function ψp : R→ R≥1 defined by

ψp(y) := 1 + |y|p. (6.6)

In this case, the set Mψp
1 (R) (defined as in Subsection 2.1.1) can be identified with the set M(Lp)

of all distributions of random variables from Lp (and vice versa). For brevity, we will write in

the following Mp
1(R) instead of Mψp

1 (R). Moreover, for any given µ ∈ M1(R), we denote by

F−1
µ (·) := inf{y ∈ R : Fµ(y) ≥ · } the generalized inverse of the distribution function Fµ of µ. Then

for some given p ∈ R≥1, the Lp-Wasserstein distance dWass,p between µ, ν ∈Mp
1(R) is defined by

dWass,p(µ, ν) :=
(ˆ 1

0

∣∣F−1
µ (y)− F−1

ν (y)
∣∣p dy)1/p

. (6.7)

It is known from [28, 65] that dWass,p admits for any µ, ν ∈ Mp
1(R) the following equivalent repre-

sentation

dWass,p(µ, ν) = inf
(X1,X2)∈Ξ(µ,ν)

E
[
|X1 −X2|p

]1/p
, (6.8)

where Ξ(µ, ν) denotes the set of all vectors (Z1, Z2) of real-valued random variables Z1 and Z2 on

(Ω,F ,P) having distributions µ and ν, respectively. Therefore, it follows from [17, Lemma 8.1] that

(6.7) defines a map dWass,p :Mp
1(R)×Mp

1(R)→ R≥0 which provides a metric onMp
1(R). Moreover,

it is shown in [17, Lemma 8.3] that dWass,p generates the ψp-weak topology Oψpw onMp
1(R). Recall

from Subsection 2.1.1 that the latter topology is defined to be the coarsest topology on Mp
1(R)

such that all mappings µ 7→
´
h dµ, h ∈ Cψp(R), are continuous. Here Cψp(R) stands for the set of

all continuous maps h ∈Mψp(R) (with Mψp(R) defined as in Section 1.4).

Further note that the L1-Wasserstein metric admits for any µ, ν ∈M1
1(R) the representation

dWass,1(µ, ν) =

ˆ ∞
−∞

∣∣Fµ(y)− Fν(y)
∣∣ dy. (6.9)

Recall from Example 2.6 that the L1-Wasserstein metric dWass,1 coincides with the Kantorovich

metric dKant on M1
1(R) given by (2.6).

The statement of the following theorem is an immediate consequence of Theorem 2.8 along with

Remark 2.9 in [56].

Theorem 6.3.1 Let p ∈ R≥1. Moreover let ρ : Lp → R be a law-invariant coherent risk measure,

and let Rρ : M(Lp) → R be the associated risk functional introduced in (6.1). Then Rρ is con-

tinuous w.r.t. (dWass,p, | · |). In particular, Rρ is even continuous for the ψp-weak topology Oψpw on

Mp
1(R).

The following result gives sufficient conditions for a convex distortion function g under which the

risk functional Rρg associated with the (law-invariant coherent) distortion risk measure ρg is even

Lipschitz continuous w.r.t. (dWass,p, | · |). Note that this regularity result was already shown in [93,

Lemma 3.1] (under different assumptions) for some weighted sup-norm in place of dWass,p. Recall

that g′+ refers to the right-sided derivative of g.
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Theorem 6.3.2 Let g be a convex distortion function. Moreover let ρg : Xg → R be the distortion

risk measure associated with g as defined in (6.2), and let Rρg :M(Xg)→ R be the associated risk

functional introduced in (6.1). Finally, suppose that there exists a finite constant K > 0 such that

1− g(y) ≤ K(1− y) for all y ∈ [0, 1]. (6.10)

Then the following two assertions hold.

(i) Rρg is Lipschitz continuous w.r.t. (dWass,1, | · |).

(ii) If in addition
´ 1

0 g
′
+(y)p/(p−1) dy < ∞ for every p > 1, then the restriction of Rρg to M(Lp)

is Lipschitz continuous w.r.t. (dWass,p, | · |) for any p > 1.

Proof We first prove the assertion in (i). By condition (6.10) and the convexity of the distortion

function g, we observe that |g(y) − g(y′)| ≤ K|y − y′| for all y, y′ ∈ [0, 1]. Using this as well as

Display (6.1) as well as the representations (6.3) and (6.9), we obtain∣∣Rρg(µ)−Rρg(ν)
∣∣

=
∣∣∣ˆ 0

−∞

(
g(Fν(y))− g(Fµ(y))

)
dy +

ˆ ∞
0

(
g(Fν(y))− g(Fµ(y))

)
dy
∣∣∣

≤
ˆ 0

−∞

∣∣g(Fµ(y))− g(Fν(y))
∣∣ dy +

ˆ ∞
0

∣∣g(Fµ(y))− g(Fν(y))
∣∣ dy

=

ˆ ∞
−∞

∣∣g(Fµ(y))− g(Fν(y))
∣∣ dy ≤ ˆ ∞

−∞
K
∣∣Fµ(y)− Fν(y)

∣∣ dy = K dWass,1(µ, ν) (6.11)

for every µ, ν ∈ M(Xg) (⊆ M(L1)). Thus Rρg is Lipschitz continuous w.r.t. (dWass,1, | · |) (with

Lipschitz constant K). This shows (i).

To prove (ii), note at first that it is discussed below of Display (6.4) that M(Lp) ⊆ M(Xg) holds

for every p > 1 if (and only if)
´ 1

0 g
′
+(y)p/(p−1) dy <∞. Therefore, the claim in (ii) can be deduced

from (6.11) along with the fact that dWass,1 ≤ dWass,λ for every λ ≥ 1; see, for instance, [78, p. 163].

2

There are some popular law-invariant coherent risk measures which are not distortion risk measures

as, for instance, the Expectile-based risk measure discussed in Example 6.4.5 in Section 6.4. In

particular, Theorem 6.3.2 can not be used to verify the Lipschitz continuity (w.r.t. the Wasserstein

metric) of the risk functional Rρ for general law-invariant coherent risk measures ρ. For this reason,

the following Theorem 6.3.3 will give a general device if ρ is not a distortion risk measure. Recall

from (6.5) the definition of distortion function gρ associated with some (law-invariant) coherent

risk measure ρ.

Theorem 6.3.3 Let p ∈ R≥1. Moreover let ρ : Lp →∞ be a law-invariant coherent risk measure,

and let Rρ :M(Lp)→ R be the associated risk functional introduced in (6.1). Finally, suppose that

there exist finite constants K,β > 0 such that

1− gρ(y) ≤ K(1− y)β for all y ∈ [0, 1]. (6.12)

Then the restriction of Rρ to M(Lλ) is Lipschitz continuous w.r.t. (dWass,λ, | · |) for every λ > p

with λβ > 1.
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Proof Let λ > p with λβ > 1 be arbitrary but fixed. Since ρ is a law-invariant coherent risk

measure, there exists in view of Theorem 6.2.1 a set Gρ of continuous convex distortion functions

such that in view of part (ii) of this theorem and (6.12) we obtain

ˆ 1

0
g′+(y)

λ
λ−1 dy ≤

ˆ 1

0

(
sup
g∈Gρ

g′+(y)
) λ
λ−1 dy ≤

ˆ 1

0

(1− gρ(1− γy)

γy

) λ
λ−1

dy

≤
ˆ 1

0

(K( 1− (1− γy))β

γy

) λ
λ−1

dy = K
λ
λ−1 · γ

(β−1)λ
λ−1 ·

ˆ 1

0
y

(β−1)λ
λ−1 dy = Cλ (6.13)

for some fixed γ ∈ (0, 1), where Cλ := Kλ/(λ−1) · γ(β−1)λ/(λ−1) · λ−1
λβ−1 > 0 is clearly finite. In

particular, this impliesM(Lλ) ⊆M(Xg). Hence and in view of part (i) of Theorem 6.2.1, Hölder’s

inequality as well as Displays (6.1), (6.4), (6.7), and (6.13) we have∣∣Rρ(µ)−Rρ(ν)
∣∣ =

∣∣ sup
g∈Gρ
Rρg(µ)− sup

g∈Gρ
Rρg(ν)

∣∣
≤ sup

g∈Gρ

∣∣Rρg(µ)−Rρg(ν)
∣∣ ≤ sup

g∈Gρ

ˆ 1

0

∣∣F←Xµ(y)− F←Xν (y)
∣∣ g′+(y) dy

≤ sup
g∈Gρ

{(ˆ 1

0

∣∣F←Xµ(y)− F←Xν (y)
∣∣λ dy)1/λ

·
(ˆ 1

0
g′+(y)

λ
λ−1 dy

)λ−1
λ
}

≤ C
λ−1
λ

λ · dWass,λ(µ, ν)

for every µ, ν ∈ M(Lλ) (⊆ M(Xg)). Consequently, the restriction of Rρ to M(Lλ) is Lipschitz

continuous w.r.t. (dWass,λ, | · |) (with Lipschitz constant C
(λ−1)/λ
λ ). 2

Note that if ρ is a distortion risk measure associated with a convex distortion function g, then

gρ = g and condition (6.12) (with β = 1) boils down to condition (6.10).

6.4 Examples of risk measures used in practice

In this section we present several examples of risk measures which are widely used in economic

practice and illustrate with these examples the terminologies and results from Sections 6.1–6.3.

Example 6.4.1 introduces the so-called mean value-based risk measure which can be interpreted in

the insurance context as a net risk premium for future claims.

Example 6.4.1 (Mean value-based risk measure) The mean value-based risk measure is the

map MV : L1 → R defined by

MV(X) := E[X].

Clearly, MV is law-invariant and easily seen to be coherent. Moreover, it can be deduced from (6.2)

that MV coincides with the distortion risk measure ρgMV associated with the (convex) distortion

function gMV := Id, where Id refers to the identity map on [0, 1].

Since XgMV = L1 and gMV satisfied condition (6.10) for K := 1, it follows from part (i) of Theorem

6.3.2 that the risk functional RMV :M(L1)→ R associated with MV defined as in (6.1) is Lipschitz

continuous w.r.t. (dWass,1, | · |). Further, in view of (gMV)′+ ≡ 1, we observe
´ 1

0 g
′
+(y)p/(p−1) dy =
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1 < ∞ for every p > 1. Hence part (ii) of Theorem 6.3.2 ensures that the restriction of RMV to

M(Lp) (⊆M(L1)) is Lipschitz continuous w.r.t. (dWass,p, | · |) for any p > 1. 3

Note that for insurance companies the downside risk of future claims is highly relevant for de-

termining a risk premium. In contrast to the mean value-based risk measure, this risk is taken

into account by the so-called Value-at-Risk at level α ∈ (0, 1) which is frequently used in actuarial

practice. In particular, the premium based on the Value-at-Risk is sufficient to cover losses from

future claims in (1-α)·100 percent of the cases.

Example 6.4.2 (Value-at-Risk) The Value-at-Risk at level α ∈ (0, 1) is the map V@Rα : L0 →
R defined by

V@Rα(X) := F←X (α) = inf{y ∈ R : FX(y) ≥ α}.

Clearly, V@Rα is law-invariant, and it can be verified easily that it is monotone, cash additive, and

positively homogeneous. According to [3, p. 216] V@Rα is not subadditive in general and therefore

not coherent. It is known that V@Rα corresponds to the distortion risk measure ρgα associated with

the distortion function gα := 1[α,1]; see, for instance, [31, p. 590]. Since gα does not satisfy condition

(6.10), we can not apply Theorem 6.3.2 to ensure that the risk functional RV@Rα : M(L0) → R
associated with V@Rα defined as in (6.1) is Lipschitz continuous w.r.t. the Wasserstein metric.

However, it follows from (6.7) (for p = 1) as well as the estimate dWass,1 ≤ dWass,p for every p ∈ R≥1

(see, for example, [78, p. 163]) that the restriction of RV@Rα to M(Lp) (⊆ M(L0)) is Lipschitz

continuous w.r.t. (dWass,p, | · |) for any p ∈ R≥1. 3

The Value-at-Risk is often criticized for a number of two reasons. On the one hand, its lack

of subadditivity penalizes diversification effects of risks. On the other hand, the Value-at-Risk

completely ignores the severity of losses in the far tail of the claim distribution. In order to solve

these issues, the so-called Average Value-at-Risk at level α ∈ (0, 1) was introduced. It is sometimes

also referred to as Tail Value-at-Risk.

Example 6.4.3 (Average Value-at-Risk) The Average Value-at-Risk at level α ∈ (0, 1) is the

map AV@Rα : L1 → R defined by

AV@Rα(X) :=
1

1− α

ˆ 1

α
V@Ry(X) dy.

Clearly, AV@Rα is law-invariant, and it follows from Propositions 3.1 and 3.2 in [1] that AV@Rα

is coherent. If FX is continuous at V@Rα(X), then it can be deduced from [1, Corollary 5.3] that

AV@Rα admits the representation

AV@Rα(X) = E[X |X ≥ V@Rα(X)] for all X ∈ L1.

Moreover it is known that AV@Rα corresponds to the distortion risk measure ρgα associated with

the (convex) distortion function gα(·) := 1
1−α max{ · − α; 0}; see, for instance, [31, p. 591].

Since Xgα = L1 and gα satisfies condition (6.10) for K := 1
1−α , it follows from part (i) of Theorem

6.3.2 that the risk functional RAV@Rα : M(L1) → R associated with AV@Rα defined as in (6.1)
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is Lipschitz continuous w.r.t. (dWass,1, | · |). Further, in view of (gα)′+ = 1
1−α1(α,1], it is easily seen

that
´ 1

0 (gα)′+(y)p/(p−1) dy = (1 − α)1/(1−p) < ∞ for every p > 1. Thus an application of Theorem

6.3.2(ii) yields that the restriction of RAV@Rα to M(Lp) (⊆M(L1)) is Lipschitz continuous w.r.t.

(dWass,p, | · |) for every p > 1. 3

It is known in the insurance context that the premium for future claims based on the mean value-

based risk measure introduced in Example 6.4.1 is not suitable because it does not take into account

fluctuations in the risks. The risk measure presented in the following example is more appropriate

in this respect.

Example 6.4.4 (One-sided pth moment risk measure) The one-sided pth moment risk mea-

sure associated with p ∈ R≥1 and α ∈ (0, 1] is the map OMp,α : Lp → R defined by

OMp,α(X) := E[X] + αE
[(

(X − E[X])+
)p]1/p

,

where y+ := max{y, 0}, y ∈ R. Clearly, OMp,α is law-invariant, and it follows from Lemma 4.1

in [34] that OMp,α is also coherent. However, OMp,α is not a distortion risk measure according to

Lemma A.5 in [54]. Moreover it is easily seen that the distortion function gOMp,α associated with

OMp,α as defined in (6.5) can be represented as gOMp,α(y) = y − αy(1− y)1/p for every y ∈ [0, 1].

Since gOMp,α satisfies condition (6.12) for K := 1 + α and β := 1
p , it follows from Theorem 6.3.3

that restriction of the risk functional ROMp,α : M(Lp) → R associated with OMp,α defined as in

(6.1) to M(Lλ) (⊆M(Lp)) is Lipschitz continuous w.r.t. (dWass,λ, | · |) for every λ > p. 3

We conclude this section with the following Example 6.4.5. It introduces the so-called expectile-

based risk measure (defined on L2) which is increasingly finding interest in actuarial practice.

Example 6.4.5 (Expectile-based risk measure) The expectile-based risk measure associated

with α ∈ [1/2, 1) is the map Eα : L2 → R defined by

Eα(X) := argminz∈R
{
αE
[(

(X − z)+
)2]

+ (1− α)E
[(

(z −X)+
)2]}

.

Clearly, Eα is law-invariant, and it is shown in [8, Proposition 6] that Eα is coherent. It follows

from Theorem 8 in [30] that Eα is not a distortion risk measure unless α = 1
2 . In the latter case,

however, we even get Eα = MV, where MV refers to the mean value-based risk measure introduced

in Example 6.4.1. Moreover it is easily seen that the distortion function gEα associated with Eα as

defined in (6.5) can be represented as gEα(y) = (1−α)y
1−α+(1−y)(2α−1) for every y ∈ [0, 1].

Since gEα satisfies condition (6.12) for K := α
1−α and β := 1, it follows from Theorem 6.3.3 that

the restriction of the risk functional REα : M(L2) → R associated with Eα defined as in (6.1) to

M(Lλ) (⊆M(L2)) is Lipschitz continuous w.r.t. (dWass,λ, | · |) for every λ > 2. 3
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Chapter 7

Nonparametric estimation of risk measures of

collective risks in the individual model

In this chapter we deal (using the notation and terminology introduced in Section 6.1) with the

statistical estimation of an appropriate individual premium for an insurance contract from a not

necessarily homogeneous insurance collective using observed historical claims. As mentioned in

the main introduction, the consideration of such insurance collectives is motivated by actuarial

practice. In the following we will present candidates for the estimator of the individual premium

based on a fixed number of observations of past claims which coincides with the collective size,

and investigate their performance for a sufficiently large collective size in terms of consistency,

asymptotic normality, and qualitative robustness. The main focus for constructing such estimators

will be on suitable estimates of the distribution of the total claim of the insurance collective. If these

estimates are plugged into a suitable risk functional associated with a risk measure (determined by

the insurer), we derive candidates for the estimator of the (collective and) individual premium in

the insurance collective.

Throughout this chapter we consider a so-called non-homogeneous individual risk model in the

course of non-life insurance mathematics, where the involved random variables describing the indi-

vidual risks are independent but not necessarily identically distributed. For the sake of simplicity,

we will assume that the size m ∈ N of an insurance collective coincides with number of observed

historically claims. Since in actuarial practice there can be deviations in the distributions of the

observed claims despite collective formation, we will not assume that the corresponding risks re-

sulting from these contracts are identically distributed according to some common law. However,

we will suppose that these risks are independent since insurers often use this assumption in their

risk models. As a consequence, the estimators for the distribution of the total claim (and thus

for the individual premium) will be therefore based on independent but non identically distributed

random variables. This approach should be of interest from insurer’s point of view and extends the

setting in [54, 61].

In Section 7.1 we will take up the nonparametric setting in [54, 61] to establish two candidates

for the estimator of the sought (but unknown) total claim distribution and thus for the individual

premium for each insurance contract for the next insurance period. Afterwards, in Section 7.2,

we will present asymptotic properties of the corresponding estimators for the individual premium,

such as strong consistency and asymptotic normality, which are in line with some results in [54, 61].

Finally, Section 7.3 is devoted to the so-called qualitative robustness of the sequence of estimators for

individual premium which are based on the convolution of the empirical measure. The investigations
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in this section will justify (under certain assumptions) the choice of the latter estimator for the

individual premium in a ‘slightly’ non-homogeneous insurance collective when the insurer assumes

a homogeneous individual risk model for the computation of future single premiums, a procedure

which is common in actuarial practice.

7.1 Nonparametric estimators for the individual premium

As already mentioned in the introduction above, we deal in the sequel with a non-homogeneous

individual model in the context of non-life insurance mathematics. That is, we let (Xi)i∈N be a

sequence of independent real-valued random variables on a common probability space, where each

random variable Xi has some distribution µi, and set for every m ∈ N

Sm :=
m∑
i=1

Xi.

Note that it is easily seen that the distribution of Sm is given by the m-fold convolution ∗mi=1 µi
of µ1, . . . , µm. In actuarial practice, the random variables X1, . . . , Xm can be interpreted as the m

individual risks in a (non-homogeneous) insurance collective of size m with single claim distributions

µ1, . . . , µm. In particular, the random variable Sm refers to the total claim of this collective and

∗mi=1 µi corresponds to the total claim distribution. Thus Rρ(∗mi=1 µi) corresponds to the total

premium for the insurance collective for an appropriate choice of a law-invariant risk measure ρ (in

the sense of Section 6.1) describing the insurer’s risk position. If we divide the total premium by

the collective size m, then

Rm :=
1

m
Rρ(∗mi=1 µi) (7.1)

can be considered as a candidate for the premium of each insurance contract. Note that the ex-

pression on the right-hand side of (7.1) is in any case justified as a premium for each individual

risk in a homogeneous insurance collective, where all single claim distributions µ1, . . . , µm coincide.

However, due to the small data base, we are not in the position to estimate the single claim distribu-

tions µ1, . . . , µm individually but only approximately their convolution ∗mi=1 µi. As a consequence,

no capital allocation is possible, and the only feasible individual premium in the non-homogeneous

insurance collective can be obtained by dividing the total premium Rρ(∗mi=1 µi) equally by the

collective size m. We note that Display (7.1) reflects the so-called balancing of risks in ‘large’ insur-

ance collectives because the quantity 1
mRρ(∗mi=1 µi) is frequently essentially smaller than Rρ(µi),

i = 1, . . . ,m.

Motivated by the studies in [54, 61], we will present below to possibilities to estimate the individual

premiumRm for future claims in the insurance collective based on observed data of size m ∈ N from

the previous insurance period(s). In view of the right-hand side of (7.1), a suitable estimator for

the individual premium Rm will be based on a statistical estimation of the total claim distribution

∗mi=1 µi. To explain our approach more explicitly, let (Yi)i∈N be a sequence of independent random

variables on some probability space (Ω,F ,P), where each Yi has law µi under P. The random

variable Yi can be interpreted as the observed historical claim of the ith insurance contract from

the previous insurance period(s).
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At first, one way to construct an estimator for the total claim distribution ∗mi=1 µi is to apply

(under a suitable moment assumption) a central limit theorem to the total claim Sm; see, for

example, Corollary 7.2.11(i) below. In fact, as the latter result implies that random variable Sm is

asymptotically normally distributed, we could approximate its distribution by a normal distribution

with the same mean and the same variance as Sm. Therefore, the normal distribution Nmm̂m,mŝ2m

with estimated parameters can be seen as a nonparametric estimator for the total claim distribution

∗mi=1 µi. Here m̂m and ŝ2
m correspond to the empirical mean and the empirical variance based on the

observed historical claims Y1, . . . , Ym; see Display (7.6) ahead. Note that the expressions mm̂m and

mŝ2
m can only be considered (under a suitable moment assumption) as reasonable estimators for

the mean and the variance of Sm in ‘large’ insurance collectives, respectively (this can be deduced

from parts (i)–(ii) of Lemma 7.2.12 in Section 7.2). Consequently, the plug-in estimator

R̂NA
m :=

1

m
Rρ(Nmm̂m,mŝ2m

) (7.2)

can (asymptotically) be regarded as a reasonable nonparametric estimator for the individual pre-

mium Rm = 1
mRρ(∗mi=1 µi). In the sequel, we refer to R̂NA

m as the normal approximation estimator.

This estimation approach of the individual premium was already discussed in the works of [54, 61]

in the case of i.i.d. observed historical claims.

Besides this, the total claim distribution can be estimated directly by using the convolution of

the nonparametric estimators for the single claim distributions µ1, . . . , µm. In actuarial practice,

there is insufficient data on observed historical claims for some individual risks within the insurance

collective. For this reason, we will use in the following the empirical probability measure µ̂m based

on all observed claims Y1, . . . , Ym given by

µ̂m :=
1

m

m∑
i=1

δYi (7.3)

as a nonparametric estimator for each of the single claim distributions µ1, . . . , µm. Note that µ̂m
is generally not an obvious choice for an estimator for each single claim distribution µi because

it is based on data from all observed historical claims. In ‘large’ insurance collectives, however,

this choice is justified (this can be deduced from Lemma 7.3.5 in Section 7.3). Thus the m-fold

convolution

µ̂∗mm := (µ̂m)∗m (7.4)

of µ̂m can be seen as an estimator for the total claim distribution ∗mi=1 µi. In this case, the plug-in

estimator

R̂CE
m :=

1

m
Rρ(µ̂∗mm ), (7.5)

which we refer to in the following as empirical convolution estimator, provides (asymptotically)

a reasonable nonparametric estimator for the individual premium Rm = 1
mRρ(∗mi=1 µi). This

approach for estimating the total claim distribution is already known from [61] in the case of i.i.d.

claims.

In comparison to the normal approximation estimator R̂NA
m in (7.2), which is basically based on an

evaluation of a normal distribution with estimated parameters, the determination of the empirical

convolution estimator R̂CE
m in (7.5) is (significantly) more complex. This is due to the fact that the
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computation of the m-fold convolution µ̂∗mm of the empirical measure µ̂m can not be carried out

exactly but only approximately, for instance, by an iteration scheme based on the so-called Panjer

recursion (see [70]). We refer to the Appendix A in [61] for an iteration scheme for µ̂∗mm in the case

of i.i.d. claims.

In Section 7.2 we will show (under some assumptions) in Theorems 7.2.5 and 7.2.6 several asymp-

totic properties of the normal approximation estimator R̂NA
m and the empirical convolution estimator

R̂CE
m , such as strong consistency and asymptotic normality. In contrast to [54, 61], where the results

concerning the asymptotic behaviour of these estimators are based on (i.i.d. claims and) a regular-

ity assumption for a large class of risk measures ρ w.r.t. some nonuniform weighted sup-norm, our

results provide similar asymptotic properties for the respective estimators under (slightly) different

assumptions.

Moreover, we will present in Displays (7.8) and (7.9) below asymptotic confidence intervals for the

individual premium based on the nonparametric estimators R̂NA
m and R̂CE

m . Moreover we will see in

Remark 7.2.8(ii) in Section 7.2 that both the estimated individual premiums R̂NA
m and R̂CE

m as well

as the exact individual premium Rm can be approximated on the basis of a premium principle,

which corresponds to a standard deviation principle.

7.2 Strong consistency and asymptotic error distribution for the

individual premium estimators

In this section, we assume that (Yi)i∈N is a sequence of independent random variables on some

probability space (Ω,F ,P) such that each Yi has law µi. Recall that the random variables Y1, . . . , Ym
represents the observed historical claims in the insurance collective of size m from the last period(s).

Moreover let the estimators µ̂m and µ̂∗mm be defined as in (7.3) and (7.4), respectively, and set

mm :=
1

m

m∑
i=1

E[Yi] and s2
m :=

1

m

m∑
i=1

Var[Yi].

Note that the latter expressions are well-defined under condition (a) of Assumption 7.2.1 below.

The corresponding canonical nonparametric estimators for mm and s2
m are of the form

m̂m :=
1

m

m∑
i=1

Yi and ŝ2
m :=

1

m

m∑
i=1

(Yi − m̂m)2 (7.6)

respectively.

Theorems 7.2.5 and 7.2.6 below show that under the following Assumption 7.2.1 the normal ap-

proximation estimator R̂NA
m = 1

mRρ(Nmm̂m,mŝ2m
) and the empirical convolution estimator R̂CE

m =
1
mRρ(µ̂

∗m
m ) for the individual premium Rm = 1

mRρ(∗mi=1 µi) are strongly consistent and asymptot-

ically normal.

Condition (a) of Assumption 7.2.1 assumes that the sequence (Yi)i∈N is L2λ-bounded for some λ > 2

in the sense that

sup
i∈N

E[|Yi|2λ] <∞
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(for a motivation of this condition, see part (i) of Remark 7.2.2 ahead). In particular, we note that

the sequence (Yi)i∈N is L2λ-bounded if and only if (µi) ∈M∞((L2λ)N), whereM∞((L2λ)N) stands

for the set of the distributions of the elements (Zi) ∈ (L2λ)N satisfying supi∈N
´
|z|2λ PZi(dz) <∞.

For the formulation of the remaining conditions in Assumption 7.2.1, recall the notation and ter-

minology introduced in Section 6.1. Let dWass,p again be the Lp-Wasserstein metric on Mp
1(R)

introduced in (6.7), and note thatMp
1(R) can be identified for any p ∈ R≥1 with the setM(Lp) of

all distributions of random variables from Lp (and vice versa). Finally, let X ⊆ L0 be a fixed vector

space containing the constants, and recall that N0,1 refers to the standard normal distribution.

Assumption 7.2.1 Let ρ : X→ R be a law-invariant risk measure. Moreover let Rρ :M(X)→ R
be the associated risk functional introduced in (6.1), and assume that the following four conditions

hold for some λ > 2.

(a) (µi) ∈M∞((L2λ)N), that is, the sequence (Yi)i∈N is L2λ-bounded.

(b) s2
m > 0 for every m ∈ N, and limm→∞ sm = s for some s ∈ R>0.

(c) ρ is cash additive and positively homogeneous, and M(Lλ) ⊆M(X).

(d) The restriction of Rρ to M(Lλ) is (dWass,λ, | · |)-continuous at N0,1.

The following Remark 7.2.2 as well as Examples 7.2.3–7.2.4 discuss and illustrate conditions (a)–(d)

of Assumption 7.2.1.

Remark 7.2.2 (i) The proofs of Theorems 7.2.5 and 7.2.6 ahead reveal that the assertions of

the latter theorems can be verified if we apply an appropriate strong law of large numbers and

a suitable central limit theorem to the sequence (Yi)i∈N; see Lemma 7.2.12 and Corollary 7.2.11

ahead. However, since the random variables Y1, Y2, . . . are assumed to be independent but not

identically distributed, it turns out that for an application of these asymptotic results condition (a)

of Assumption 7.2.1 is sufficient for (Yi)i∈N.

(ii) If the random variables Y1, Y2, . . . are additionally identically distributed according to some

common law µ, then it can be deduced from the proofs of Theorems 7.2.5 and 7.2.6 below that

condition (a) of Assumption 7.2.1 can be replaced by the condition µ ∈M(Lλ), that is E[|Y1|λ] <∞.

3

Example 7.2.3 (i) If the random variables Y1, Y2, . . . are additionally identically distributed ac-

cording to some common law µ such that Var[Y1] > 0, then condition (b) of Assumption 7.2.1 is

always fulfilled for s := Var[Y1]1/2.

(ii) If Var[Yi] > 0 for any i = 1, . . . ,m and (km)m∈N is any sequence satisfying km = o(m), skm =

O(1) as well as ( 1
m

∑m
i=km+1 Var[Yi])

1/2 → s for some s ∈ R>0, then condition (b) of Assumption

7.2.1 holds (with this s). Note that the last condition is satisfied, for example, if Var[Ykm+1] =

· · · = Var[Ym] =: σ2 with s := σ > 0. 3

In view of Remark 7.2.3(ii) the convergence of sm in the second part of condition (b) of Assumption

7.2.1 is ensured even if there is a subsequence (Ykm)m∈N of observed single claims with km/m→ 0

whose (cumulated) variances are bounded but which may assume large values. In particular, the

setting allows (under some assumptions) a finite number of (extreme) outliers in the observed
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historical claims whose variances may differ significantly from the variances of the other observed

historical claims.

Example 7.2.4 (i) If in the setting of Assumption 7.2.1 the risk measure ρ defined on X = Lp is

additionally coherent, then condition (c) holds trivially and condition (d) of Assumption 7.2.1 is

satisfied by Theorem 6.3.1.

(ii) Note that conditions (c)–(d) of Assumption 7.2.1 are not very restrictive. Indeed, it is discussed

in the examples of Section 6.4 that there are some popular law-invariant risk measures which satisfy

the corresponding conditions. We refer by way of example to the Value-at-Risk, the Average

Value-at-Risk, and the Expectile-based risk measure introduced in Examples 6.4.2, 6.4.3, and 6.4.5,

respectively. 3

Theorem 7.2.5 below shows the asymptotic behaviour of the normal approximation estimator R̂NA
m =

1
mRρ(Nmm̂m,mŝ2m

) for the individual premium Rm = 1
mRρ(∗mi=1 µi). Its statements are basically

known from [54, 61] in the case of i.i.d. observed claims. Note for part (v) of this theorem that the

estimator Rρ(Nmm̂m,mŝ2m
) is clearly (F ,B(R))-measurable for any m ∈ N due to the representation

in equation (7.7) below. Recall that
w−→ refers to the weak convergence of probability measures.

Here and in the sequel, oP-a.s.(m
−1/2) refers to any sequence (ξm)m∈N of random variables on

(Ω,F ,P) for which the expression m1/2ξm converges P-a.s. to 0.

Theorem 7.2.5 (Asymptotics of R̂NA
m ) Suppose that Assumption 7.2.1 holds for some λ > 2.

Then the following assertions hold.

(i) 1
mRρ(Nmm̂m,mŝ2m

)− 1
mRρ(Nmmm,ms2m

) = (m̂m −mm) + oP-a.s.(m
−1/2).

(ii) 1
mRρ(Nmmm,ms2m

)− 1
mRρ(∗mi=1 µi) = o(m−1/2).

(iii) 1
mRρ(Nmm̂m,mŝ2m

)− 1
mRρ(∗mi=1 µi) = (m̂m −mm) + oP-a.s.(m

−1/2).

(iv) mr
(

1
mRρ(Nmm̂m,mŝ2m

)− 1
mRρ(∗mi=1 µi)

)
−→ 0 P-a.s. for every r < 1

2 .

(v) P ◦
{√

m
(

1
mRρ(Nmm̂m,mŝ2m

)− 1
mRρ(∗mi=1 µi)

)}−1 w−→ N0,s2.

The following theorem gives analogue asymptotic results for the empirical convolution estimator

R̂CE
m = 1

mRρ(µ̂
∗m
m ) introduced in (7.5) for the individual premium Rm = 1

mRρ(∗mi=1 µi) given by

(7.1). It extends in some way Theorem 2.3 in [61] for the case of non identically distributed observed

claims.

Theorem 7.2.6 (Asymptotics of R̂CE
m ) Suppose that Assumption 7.2.1 holds for some λ > 2

and that Rρ(µ̂∗mm ) is (F ,B(R))-measurable for every m ∈ N. Then the following assertions hold.

(i) 1
mRρ(Nmm̂m,mŝ2m

)− 1
mRρ(µ̂

∗m
m ) = oP-a.s.(m

−1/2).

(ii) 1
mRρ(µ̂

∗m
m )− 1

mRρ(∗mi=1 µi) = (m̂m −mm) + oP-a.s.(m
−1/2).

(iii) mr
(

1
mRρ(µ̂

∗m
m )− 1

mRρ(∗mi=1 µi)
)
−→ 0 P-a.s. for every r < 1

2 .

(iv) P ◦
{√

m
(

1
mRρ(µ̂

∗m
m )− 1

mRρ(∗mi=1 µi)
)}−1 w−→ N0,s2.

The following remark shows that the measurability of the estimator Rρ(µ̂∗mm ) assumed in Theorem

7.2.6 is not very restrictive.
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Remark 7.2.7 It can be verified easily that for ρ equals the Value at Risk (see Example 6.4.2)

or the distortion risk measure (see Section 6.2) the estimator Rρ(µ̂∗mm ) is (F ,B(R))-measurable for

every m ∈ N. Moreover, it follows from Remark 2.4 in [61] that the measurability also holds when

ρ is a law-invariant coherent risk measures on X = Lp for some given p ∈ R≥1. 3

Remark 7.2.8 (i) Under Assumption 7.2.1, part (iii) of Theorem 7.2.5 and part (ii) of Theo-

rem 7.2.6 reveal that the asymptotic behaviour of the normal approximation estimator R̂NA
m =

1
mRρ(Nmm̂m,mŝ2m

) and the empirical convolution estimator R̂CE
m = 1

mRρ(µ̂
∗m
m ) for the individual pre-

mium Rm = 1
mRρ(∗mi=1 µi) is exactly the same and determined by the asymptotics of the empirical

and the average mean, regardless of the underlying law-invariant risk measure ρ.

(ii) As a consequence of (the proofs of) Theorems 7.2.5 and 7.2.6, the nonparametric estimators

R̂NA
m and R̂CE

m given by (7.2) and (7.5) admit the following more useful representations

R̂NA
m = m̂m +

1√
m
Rρ(N0,1)ŝm, (7.7)

R̂CE
m = m̂m +

1√
m
Rρ(N0,1)ŝm + oP-a.s.(m

−1/2),

respectively. Moreover, the individual premium can be represented as

Rm = mm +
1√
m
Rρ(N0,1)sm + o(m−1/2).

Hence, these identities show that for a large collective size the individual premium can be approxi-

mated by the premium (with estimated parameters) which is determined according to the standard

deviation principle with safety loading 1√
m
Rρ(N0,1). Note that the latter expression reflects the

balancing of risks in ‘large’ insurance collectives. 3

Remark 7.2.9 Under Assumption 7.2.1, we derive by means of part (ii) of Corollary 7.2.11, Lemma

7.2.12(iii) as well as Slutzky’s lemma from part (iii) of Theorem 7.2.5 as well as part (ii) of Theorem

7.2.6 the following asymptotic confidence intervals at level κ ∈ (0, 1) for the individual premium

Rm in (7.1): [
R̂NA
m −

ŝm√
m

Φ−1
0,1

(
1− κ

2

)
, R̂NA

m +
ŝm√
m

Φ−1
0,1

(
1− κ

2

)]
(7.8)

and [
R̂CE
m −

ŝm√
m

Φ−1
0,1

(
1− κ

2

)
, R̂CE

m +
ŝm√
m

Φ−1
0,1

(
1− κ

2

)]
, (7.9)

where Φ0,1 refers to the distribution function of the standard normal distribution. 3

Let us turn to the proofs of Theorems 7.2.5 and 7.2.6. In addition to Corollary 7.2.11 as well

as Lemma 7.2.12 below, they rely on the following Wasserstein inequality in Display (7.10). It

provides an upper bound for the distance between a suitable centred sum of random variables and

the standard normal distribution w.r.t. the Wasserstein metric dWass,λ. The proof of this inequality

is basically based on an invariance principle in the form of Theorem 5 in [77]; see also Theorem 1

in [37].
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Theorem 7.2.10 (Wasserstein inequality) Let (Xi)i∈N be a sequence of independent random

variables on some probability space (Ω,F ,P) such that supi∈N E[|Xi|λ] < ∞ for some λ > 2 and

s2
m :=

∑m
i=1 Var[Xi] > 0 for any m ∈ N. Moreover assume that limm→∞ sm/

√
m = s for some

s ∈ R>0, and let for any m ∈ N

Zm :=

∑m
i=1(Xi − E[Xi])√∑m

i=1 Var[Xi]
.

Then there exists a finite constant Cλ > 0 such that

dWass,λ(PZm ,N0,1) ≤ Cλm
1/λ−1/2 for all m ∈ N. (7.10)

Proof At first, for any fixed m ∈ N, set Zm;i := (Xi − E[Xi])/sm, i = 1, . . . ,m. Note that the

random variables Zm;1, . . . , Zm;m are independent and satisfy E[Zm;i] = 0 as well as

E[Z2
m;i] =

E
[
(Xi − E[Xi])

2
]

s2
m

=
Var[Xi]

s2
m

≤ 1 (< ∞) (7.11)

for every i = 1, . . . ,m. Moreover, by assumption we find some cλ,1 ∈ R>0 such that E[|Xi −
E[Xi]|λ] ≤ cλ,1 for all i ∈ N. In view of limm→∞ sm/

√
m = s for some s ∈ R>0 (by assumption),

there exists a constant cλ,2 ∈ R>0 such that

m∑
i=1

E
[
|Zm;i|λ

]
=

m∑
i=1

E
[
|Xi − E[Xi]|λ

]
sλm

≤ cλ,1 ·m1−λ/2 · (m−1/2sm)−λ ≤ cλ,1cλ,2 ·m1−λ/2 (7.12)

for any m ∈ N. Note that the latter bound is clearly finite. Therefore it can be deduced from

Theorem 1 in [37] that there exist independent real-valued random variables ξ1, . . . , ξm on (Ω,F ,P)

with law Pξi = PZm;i , i = 1, . . . ,m, and independent real-valued random variables η1, . . . , ηm on

(Ω,F ,P) with Pηi = N0,E[Z2
m;i]

, i = 1, . . . ,m, such that

E
[(

max
k=1,...,m

∣∣∣ k∑
i=1

ξi −
k∑
i=1

ηi

∣∣∣)λ] ≤ cλ,3

m∑
i=1

E
[
|Zm;i|λ

]
, (7.13)

where cλ,3 ∈ R>0 is a constant depending only on λ. Take into account that E[ηi] = 0 and

E[ξ2
i ] = E[Z2

m;i] = E[η2
i ] for every i = 1, . . . ,m. For any fixed m ∈ N, let Z̃m :=

∑m
i=1 ηi, and note

that P
Z̃m

= N0,1 because

Var[Z̃m] =

m∑
i=1

Var[ηi] =

m∑
i=1

E[Z2
m;i] =

m∑
i=1

Var[Xi]

s2
m

= 1

by (7.11). Hence, in virtue of Zm =
∑m

i=1 Zm;i
d
=
∑m

i=1 ξi, we obtain by means of the representation

(6.8) of the Wasserstein metric dWass,λ as well as the estimates in (7.12)–(7.13)

dWass,λ(PZm ,N0,1)λ ≤ E
[∣∣∣ m∑

i=1

ξi −
m∑
i=1

ηi

∣∣∣λ] ≤ E
[(

max
k=1,...,m

∣∣∣ k∑
i=1

ξi −
k∑
i=1

ηi

∣∣∣)λ]
≤ cλ,3

m∑
i=1

E
[
|Zm;i|λ

]
≤ cλ,3 cλ,1cλ,2 ·m1−λ/2 (7.14)
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for any m ∈ N. Thus the assertion follows. 2

Part (i) of the following Corollary 7.2.11 provides a central limit theorem for independent random

variables satisfying a suitable moment assumption. The statement in (i) can also be deduced from

the Lyapunov central limit theorem (see, for instance, [18, Theorem 27.3]), and part (ii) will be

used to verify the assertions in Theorem 7.2.5(v) as well as Theorem 7.2.6(iv).

Corollary 7.2.11 With the notation and under the assumptions of Theorem 7.2.10 the following

two assertions hold.

(i) P ◦
{

1
sm

∑m
i=1(Xi − E[Xi])

}−1 w−→ N0,1.

(ii) P ◦
{√

m 1
m

∑m
i=1(Xi − E[Xi])

}−1 w−→ N0,s2.

Proof The claim in (i) is an immediate consequence of Theorem 7.2.10 and Lemma 2.1.1(ii)⇒(i).

Take into account that the Lλ-Wasserstein metric dWass,λ defined as in (6.7) generates in view of

[17, Lemma 8.3] the ψλ-weak topology Oψλw onMλ
1(R), where ψλ is given by (6.6). This shows (i).

For (ii), note at first that

√
m

1

m

m∑
i=1

(Xi − E[Xi]) = smm
−1/2 1

sm

m∑
i=1

(Xi − E[Xi])

holds for any m ∈ N. Thus, in virtue of limm→∞ sm/
√
m = s for some s ∈ R>0 (by assumption),

the assertion in (ii) can be deduced from Slutzky’s lemma as well as part (i). 2

To verify Theorems 7.2.5 and 7.2.6, we finally need the following Lemma 7.2.12. Here and in the

sequel, we set

mλ,m :=
1

m

m∑
i=1

E[|Yi|λ],

and consider

m̂λ,m :=
1

m

m∑
i=1

|Yi|λ

as the corresponding nonparametric estimator. Note that under condition (a) of Assumption 7.2.1

(for some λ > 2) the expectation E[|Ym|λ̃] (and thus m
λ̃,m

) is clearly finite for any λ̃ ∈ [1, 2λ]

and m ∈ N. Part (i) of the following lemma provides a strong law for the sequence of estimators

(m̂m)m∈N and (m̂λ,m)m∈N.

Lemma 7.2.12 Suppose that condition (a) of Assumption 7.2.1 holds for some λ > 2. Then the

following three assertions hold.

(i) m̂m −mm → 0 P-a.s. Moreover m̂
λ̃,m
−m

λ̃,m
→ 0 P-a.s. for every λ̃ ∈ [1, λ].

(ii) ŝm − sm → 0 P-a.s.

(iii) If in addition limm→∞ sm = s for some s ∈ R>0, then ŝm → s P-a.s.
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Proof At first, the claims in (i) are an immediate consequence of Theorem 6.7 in [71] along with

condition (a) of Assumption 7.2.1.

To prove (ii), we observe at first for every m ∈ N and ω ∈ Ω∣∣̂sm(ω)2 − (sm)2
∣∣ =

∣∣(m̂2,m(ω)− m̂m(ω)2
)
−
(
m2,m − (mm)2

)∣∣
≤

∣∣m̂2,m(ω)−m2,m

∣∣+
∣∣m̂m(ω)2 − (mm)2

∣∣
=

∣∣m̂2,m(ω)−m2,m

∣∣+
∣∣m̂m(ω)−mm

∣∣ · ∣∣m̂m(ω) + mm

∣∣
=

∣∣m̂2,m(ω)−m2,m

∣∣+
∣∣m̂m(ω)−mm

∣∣ · ∣∣(m̂m(ω)−mm

)
+ 2mn

∣∣
≤

∣∣m̂2,m(ω)−m2,m

∣∣+
∣∣m̂m(ω)−mm

∣∣2 + 2m1,m

∣∣m̂m(ω)−mm

∣∣
=: S1(m,ω) + S2(m,ω) + S3(m,ω).

Then limm→∞ S1(m,ω) + S2(m,ω) = 0 for P-a.e. ω by part (i). Finally, in view of condition (a)

of Assumption 7.2.1, there exists a finite constant C > 0 such that the summand S3(m,ω) is

bounded above by 2C|m̂m(ω)−mm| for every ω ∈ Ω and m ∈ N. Using part (i) again, this implies

limm→∞ S3(m,ω) = 0 for P-a.e. ω. Thus we have shown∣∣̂sm(ω)2 − (sm)2
∣∣→ 0 P-a.e. ω. (7.15)

Since for any ω ∈ Ω and m ∈ N∣∣̂sm(ω)− sm
∣∣ ≤ ∣∣̂sm(ω)2 − (sm)2

∣∣1/2,
the assertion in (ii) follows from (7.15).

For (iii), note that

|̂sm(ω)− s| ≤ |̂sm(ω)− sm|+ |sm − s|

for every ω ∈ Ω and m ∈ N. In view of limm→∞ sm = s (by assumption) and part (ii), we end up

with limm→∞ ŝm(ω) = s for P-a.e. ω. This shows (iii). 2

We are now in the position to proof Theorems 7.2.5 and 7.2.6.

Proof of Theorem 7.2.5: We will adapt arguments of the proof of Theorem 2.2 in [61].

(i): By condition (c) of Assumption 7.2.1 and the representation (6.1), for any m ∈ N we have

Rρ(Nmm̂m,mŝ2m
) =

√
mŝmRρ(N0,1) +mm̂m,

Rρ(Nmmm,ms2m
) =

√
msmRρ(N0,1) +mmm.

Thus, we obtain for any m ∈ N

1

m

(
Rρ(Nmm̂m,mŝ2m

)−Rρ(Nmmm,ms2m
)
)

= m−1/2(ŝm − sm)Rρ(N0,1) + (m̂m −mm).

Hence, the claim follows from part (ii) of Lemma 7.2.12.

(ii): For every m ∈ N, let Sm and Nm be random variables on (Ω,F ,P) which are distributed

according to ∗mi=1 µi and Nmmm,ms2m
, respectively. Moreover, for any m ∈ N we set

Zm :=
Sm −mmm√

msm
and Z̃m :=

Nm −mmm√
msm

.
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Note that
√
msmZm + mmm and Z̃m has law ∗mi=1 µi and N0,1, respectively. Then, in view of

condition (c) of Assumption 7.2.1, we observe

Rρ(Nmmm,ms2m
)−Rρ(∗mi=1 µi) = ρ(

√
msmZ̃m +mmm)− ρ(

√
msmZm +mmm)

=
√
msm

(
ρ(Z̃m)− ρ(Zm)

)
=
√
msm

(
Rρ(N0,1)−Rρ(zm)

)
(7.16)

for any m ∈ N, where zm denotes the law of Zm. By Theorem 7.2.10, we find some finite constant

Cλ > 0 such that dWass,λ(N0,1, zm) ≤ Cλm
1/λ−1/2 for all m ∈ N. In virtue of (7.16) as well as

conditions (b) and (d) of Assumption 7.2.1 this implies

1

m

∣∣Rρ(Nmmm,ms2m
)−Rρ(∗mi=1 µi)

∣∣ = m−1/2sm
∣∣Rρ(N0,1)−Rρ(zm)

∣∣ = o(m−1/2).

This shows the assertion in (ii).

(iii): The claim follows immediately from parts (i)–(ii) of Theorem 7.2.5.

(iv): In view of condition (a) of Assumption 7.2.1, Theorem 6.7 in [71] entails that mr(m̂m −mm)

converges P-a.s. to 0 for any r < 1
2 . Hence the assertion arises from part (iii) of Theorem 7.2.5.

(v): Under conditions (a)–(b) of Assumption 7.2.1, part (ii) of Corollary 7.2.11 implies that the

law of
√
m(m̂m − mm) converges weakly to the normal distribution N0,s2 , where s ∈ R>0 is as in

condition (b) of Assumption 7.2.1. Thus the assertion follows from part (iii) of Theorem 7.2.5 and

Slutzky’s lemma. This completes the proof of Theorem 7.2.5. 2

Proof of Theorem 7.2.6: We will adapt arguments of the proof of Theorem 2.3 in [61].

(i): Analogously to (7.16), for every ω ∈ Ω and m ∈ N we have

Rρ(Nmm̂m(ω),mŝ2m(ω))−Rρ(µ̂∗mm (ω; •)) =
√
mŝm(ω)

(
Rρ(N0,1)−Rρ(zm(ω; •))

)
(7.17)

with zm(ω; •) denoting the law of the random variable

Ẑωm(·) :=
Ŝωm(·)−mm̂m(ω)√

mŝm(ω)
,

where Ŝωm(·) is any random variable on some probability space (Ωω,Fω,Pω) with law µ̂∗mm (ω; •).
Note that it is easily seen that zm(ω; •) ∈M(Lλ) for every ω ∈ Ω and m ∈ N. Also note for (7.17)

that µ̂m(ω; •) has mean m̂m(ω) and standard deviation ŝm(ω) for every fixed ω ∈ Ω and any m ∈ N.

Then, similarly to (7.12) and (7.14), we obtain for all m ∈ N

dWass,λ(N0,1, zm(ω; •))λ ≤ Cλ

´
|x− m̂m(ω)|λ µ̂m(ω; dx)( ´

(x− m̂m(ω))2 µ̂m(ω; dx)
)λ/2 m1−λ/2

≤ Cλ 2λ
m̂λ,m(ω)

ŝm(ω)λ
m1−λ/2, (7.18)

where Cλ ∈ R>0 is a constant depending only on λ and being independent of m and ω. By condition

(a) of Assumption 7.2.1 there exists some finite constant cλ > 0 such that mλ,m ≤ cλ for all m ∈ N.

In view of part (i) of Lemma 7.2.12, this implies

lim sup
m→∞

|m̂λ,m(ω)| ≤ lim sup
m→∞

|m̂λ,m(ω)−mλ,m|+ lim sup
m→∞

mλ,m ≤ 0 + cλ = cλ < ∞ (7.19)
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for P-a.e. ω. Hence the numerator of
m̂λ,m(ω)

ŝm(ω)λ
(7.20)

is bounded above by a finite constant for P-a.e. ω. Moreover it follows from part (iii) of Lemma

7.2.12 that the denominator of (7.20) converges to sλ for P-a.e. ω. In particular, the expression in

(7.20) converges to a positive constant for P-a.e. ω. Hence the right-hand side of (7.18) converges

to 0 for P-a.e. ω which entails that

dWass,λ(N0,1, zm(ω; •))→ 0 P-a.e. ω. (7.21)

Thus, in view of the (dWass,λ, | · |)-continuity of Rρ at N0,1 (by condition (d) of Assumption 7.2.1),

Lemma 7.2.12(iii), and (7.17), we arrive at

1

m

∣∣Rρ(Nmm̂m(ω),mŝ2m(ω))−Rρ(µ̂∗mm (ω; •))
∣∣ = m−1/2ŝm(ω)

∣∣Rρ(N0,1)−Rρ(zm(ω; •))
∣∣ = o(m−1/2)

for P-a.e. ω. This shows (i).

(ii): The claim follows from part (i) of Theorem 7.2.6 along with part (iii) of Theorem 7.2.5.

(iii)–(iv): Analogously to the proof of parts (iv)–(v) of Theorem 7.2.5, we get the assertions just

by replacing part (iii) of Theorem 7.2.5 by part (ii) of Theorem 7.2.6. This completes the proof of

Theorem 7.2.6. 2

It can be deduced from the proofs of Theorems 7.2.5 and 7.2.6 that the statements in part (ii) of

Theorem 7.2.5 and part (i) of Theorem 7.2.6 can be improved if the risk functional Rρ is Lipschitz

continuous in a certain sense. This will be shown in the following remark.

Remark 7.2.13 The rates of convergence in part (ii) of Theorem 7.2.5 and part (i) of Theorem

7.2.6 can be improved if condition (d) of Assumption 7.2.1 is replaced by the following slightly

stronger condition:

(d’) For every sequence (zm)m∈N inM(Lλ) with dWass,λ(zm,N0,1)→ 0, there exists a finite constant

Cρ > 0 such that |Rρ(zm)−Rρ(N0,1)| ≤ Cρ dWass,λ(zm,N0,1) for all m ∈ N.

Indeed, we obtain (under Assumption 7.2.1 for some λ > 2 with (d’) in place of (d)) the following

two assertions.

(i) 1
mRρ(Nmmm,ms2m

)− 1
mRρ(∗mi=1 µi) = O(m1/λ−1).

(ii) 1
mRρ(Nmm̂m,mŝ2m

)− 1
mRρ(µ̂

∗m
m ) = OP-a.s.(m

1/λ−1).

Note that OP-a.s.(m
1/λ−1) refers to any sequence (ξm)m∈N of random variables on (Ω,F ,P) for

which the sequence (m1−1/λξm)m∈N is bounded P-a.s.

Proof Maintain the notation introduced in the proofs of Theorems 7.2.5 and 7.2.6.

For the claim in (i), note that we obtain by means of (7.16), condition (d’), Theorem 7.2.10, and

condition (b) of Assumption 7.2.1

1

m

∣∣Rρ(Nmmm,ms2m
)−Rρ(∗mi=1 µi)

∣∣ = m−1/2sm
∣∣Rρ(N0,1)−Rρ(zm)

∣∣
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≤ m−1/2smCρ dWass,λ(N0,1, zm) ≤ m−1/2CsCρCλm
1/λ−1/2 = CsCρCλm

1/λ−1

for every m ∈ N, where Cs, Cρ, Cλ > 0 are finite constants (independent of m). Take into account

that condition (d’) is applicable because under the imposed assumptions Theorem 7.2.10 implies

that dWass,λ(zm,N0,1)→ 0. This shows (i).

To prove (ii), we observe at first in view of condition (d’), (7.17)–(7.18), and (7.19)

1

m

∣∣Rρ(Nmm̂m(ω),mŝ2m(ω))−Rρ(µ̂∗mm (ω; •))
∣∣ =
√
mŝm(ω)

∣∣Rρ(N0,1)−Rρ(zm(ω; •))
∣∣

≤ m−1/2ŝm(ω)Cρ dWass,λ(N0,1, zm(ω; •)) ≤ CρCλm
1/λ−1m̂λ,m(ω)1/λ ≤ CρCλc

1/λ
λ m1/λ−1

for any m ∈ N and P-a.e. ω, where Cρ, Cλ, cλ > 0 are finite constants being independent of ω and

m. Take into account that an application of condition (d’) is justified by (7.21). Thus the assertion

in (ii) follows. 3

Note that condition (d’) in Remark 7.2.13 is also not very restrictive. Examples 6.4.1–6.4.5 in

Section 6.4 reveal that the respective law-invariant risk measures satisfy the latter condition.

7.3 Qualitative robustness of the sequence of empirical convolution

estimators

In this section we will show for some suitable class of risk measures that the sequence (R̂CE
m )m∈N of

empirical convolution estimators introduced in (7.5) is qualitatively robust in the sense of Definition

7.3.1 below. Our investigation is motivated by the fact that, in contrast to our approach in Section

7.1, in actuarial practice insurers generally assume a homogeneous individual model (in which the

individual risks from an insurance collective are modelled by a sequence of i.i.d. random variables

with a common law µ) in order to calculate a future premium for each insurance contract for

pragmatic reasons. Then analogously to our elaborations in Section 7.1, an appropriate individual

premium (for the next insurance period) in such a homogeneous risk model based on collective size

m ∈ N is of the form

Rm;µ :=
1

m
Rρ(µ∗m) (7.22)

for some predetermined law-invariant risk measure ρ that describes the insurer’s risk position, and

the empirical convolution estimator R̂CE
m introduced in (7.5) is in this setting a reasonable estimator

for Rm;µ. Since in practice the actually observed distributions µ1, . . . , µm of the single claims in an

insurance collective of size m differ, sometimes considerably, from the hypothetically assumed law µ,

the quantity Rm given by (7.1) based on µ1, . . . , µm can also be seen as a candidate for the (exact)

individual premium. However, if (under certain topological assumptions) the distance between each

law µi and µ is ‘small’ in some ‘weak’ sense, then by Display (7.29) below, the distance between

the individual premiums based on Rm;µ and Rm is also ‘small’ whenever the corresponding risk

functional associated with ρ is Lipschitz continuous w.r.t. some Wasserstein metric. Under these

conditions, the quantity Rm;µ in (7.22) may be regarded as an appropriate individual premium in

a ‘slightly’ non-homogeneous insurance collective.
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In the following we want to deal with the question whether an analogous statement for the empirical

convolution estimator R̂CE
m can be transferred. To put it another way, under which conditions does

the quantity R̂CE
m from (7.5) provide a reasonable estimator for the individual premium in a ‘slightly’

non-homogeneous insurance collective if the insurer assumes a homogeneous risk model and if the

distance between all observed claim distributions and the hypothetically assumed law is ‘small’ in

some ‘weak’ sense? In Definition 7.3.1 below we will introduce a notion of qualitatively robustness

of the sequence (R̂CE
m )m∈N which formulates our intention mathematically, and Theorem 7.3.4 ahead

will provide sufficient conditions under which the sequence (R̂CE
m )m∈N is qualitatively robust. The

latter result justifies (under certain conditions) to some extent the choice of R̂CE
m for estimating the

individual premium in ‘large’ insurance collectives with ‘small’ nonhomogeneities when the insurer

assumes a homogeneous individual model for calculating the future single premium.

To formulate our considerations mathematically more precisely, we consider in the sequel the non-

parametric statistical infinite product model

(Ω,F , {Pθ : θ ∈ Θ}) :=
(
RN,B(R)⊗N, {P(µi) : (µi) ∈MN}

)
, (7.23)

where M⊆M1(R) is any set of Borel probability measures on (R,B(R)) and

P(µi) := ⊗i∈Nµi

is the infinite product measure of µ1, µ2, . . . ∈ M. Hence, the coordinate projections Y1, Y2, . . . on

Ω = RN are independent (under P(µi)) and each Yi has law µi under P(µi) for every µi ∈M, i ∈ N.

Note that the random variables Y1, . . . , Ym can be seen as observed historical single claims with

laws µ1, . . . , µm (under P(µi)) in an insurance collective of size m ∈ N.

Fix p ∈ R≥1, and let ρ : Lp → R be a law-invariant coherent risk measure with associated risk

functional Rρ : M(Lp) → R introduced in (6.1). In the sequel, we consider the empirical convo-

lution estimator R̂CE
m = 1

mRρ(µ̂
∗m
m ) as defined in (7.5), where µ̂∗mm is introduced in (7.4). As seen

in Theorem 7.2.6, R̂CE
m provides (under Assumption 7.2.1) a suitable estimator for the individual

premium Rm = 1
mRρ(∗mi=1 µi) given by (7.1). Also note that it follows from Remark 7.2.7 that the

latter estimator is (F ,B(R))-measurable for any m ∈ N.

The following definition is in line with Definition 1.1 in [58]. For a motivation of this definition, see

the discussion in the paragraph above of Display (7.23). Recall from Theorem 2.14 in [45] that the

so-called Prohorov metric dProh as defined in [45, p. 27]) generates the weak topology on M1(R).

Definition 7.3.1 (Qualitative robustness) Let M ⊆ M and µ ∈ M . The sequence of estima-

tors (R̂CE
m )m∈N is said to be (asymptotically) robust at µ if for every ε > 0 there exist m0 ∈ N and

an open neighbourhood U = U(µ, ε;M) of µ for the relative weak topology Ow ∩M such that

µi ∈ U, i ∈ N =⇒ dProh

(
P(µ) ◦ {R̂CE

m}−1,P(µi) ◦ {R̂CE
m}−1

)
≤ ε for all m ≥ m0.

The sequence (R̂CE
m )m∈N is said to be robust on M if it is M -robust at every µ ∈M .

The notion of qualitative robustness of the sequence of estimators (R̂CE
m )m∈N introduced in Definition

7.3.1 can be interpreted as follows. Let µ be some arbitrary law from a setM of probability measures

which is assumed to be the single-claim distribution ‘used’ to determine the (exact) individual
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premium. If the observed single claim distributions µ1, µ2, . . . in the insurance collective all lie in

M and are ‘close’ to µ in a weak sense, then qualitative robustness of the sequence (R̂CE
m )m∈N at

µ means that the laws of the empirical convolution estimator R̂CE
m w.r.t. P(µ) and P(µi) are ‘close’

(w.r.t. the Prohorov distance) for ‘large’ insurance collectives.

Conditions (a)–(b) of Theorem 7.3.4 ahead use the terminologies introduced in the following Def-

initions 7.3.2–7.3.3. Let ψp be the gauge function introduced in (6.6), and set µm := 1
m

∑m
i=1 µi

(⊆ M1(R)) for the average measure of µ1, . . . , µm ∈ M1(R), m ∈ N. The following definition is

motivated by [21, Definition 2.1] as well as [22, Remark 1], and generalizes to some extent Definition

2.2 in [58] and Definition 3.1 in [94].

Definition 7.3.2 Fix p ∈ R≥1, and let M ⊆M1(R). The set M is said to be locally uniformly p-

integrating if for every µ ∈M and ε > 0 there exist a > 0, m0 ∈ N, and a weakly open neighbourhood

U of µ such that

µi ∈ U ∩M, i ∈ N =⇒
ˆ
ψp1{ψp≥a} dµm ≤ ε for all m ≥ m0. (7.24)

Note that a locally uniformly p-integrating set M is a subset of Mp
1(R). Also note that every

locally uniformly p′-integrating set M is also locally uniformly p-integrating whenever p ≤ p′. For

the statement of Theorem 7.3.4 below it is necessary to restrict oneself to those subsets of Mp
1(R)

on which the relative ψp-weak topology and the relative weak topology coincide.

Definition 7.3.3 Fix p ∈ R≥1, and let M ⊆Mp
1(R). The set M is said to be a w-set inMp

1(R) if

Oψpw ∩M = Ow ∩M .

According to Lemma 3.4 in [94], every locally uniformly p-integrating set M ⊆ Mp
1(R) is a w-set

in Mp
1(R). In our general setting, however, we do not know if the reverse statement is true. If the

distribution class considered in the statistical model in (7.23) is given by {P(µ) : µ ∈ M} for some

M⊆M1(R), then the coordinate projections Y1, Y2, . . . on Ω = RN are i.i.d. according to µ under

P(µ) = µ⊗N for every µ ∈ M. In this case we may replace in condition (7.24) any µi ∈ U ∩M by

some ν ∈ U ∩M and skip the suffix ‘for all m ≥ m0’, and it follows from Theorem 2.3 in [58] that

every locally uniformly p-integrating set M ⊆ Mp
1(R) is a w-set in Mp

1(R). We refer to Examples

7.3.11–7.3.12 below for an illustration of w-sets in Mp
1(R).

The following theorem shows (under suitable assumptions) the qualitative robustness of the se-

quence (R̂CE
m )m∈N of empirical convolution estimators. Recall from (6.7) the definition of the Lp-

Wasserstein metric dWass,p, and that there is a one-to-one correspondence between the setsMp
1(R)

and M(Lp), where the latter is defined as in Section 6.1.

Theorem 7.3.4 (Qualitative robustness of (R̂CE
m )) Fix p ∈ R≥1, and let M ⊆Mp

1(R) as well

as M ⊆M. Let ρ : Lp → R be a law-invariant coherent risk measure. Moreover let Rρ :M(Lp)→
R be the associated risk functional introduced in (6.1), and assume that the following two conditions

hold.

(a) M is locally uniformly p-integrating.

(b) Rρ is Lipschitz continuous w.r.t. (dWass,p, | · |).
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Then the sequence of estimators (R̂CE
m )m∈N is robust on M .

Note that assumption (b) of Theorem 7.3.4 is similar to condition (d’) of Remark 7.2.13 which was

already illustrated at the end of the last section. An illustration of condition (a) of Theorem 7.3.4

is in general difficult and is therefore omitted.

The proof of Theorem 7.3.4 avails Lemmas 7.3.5–7.3.8 below. The following lemma involve the

metric

dvag(µ, ν) :=
∞∑
k=1

2−k
(

1 ∧
∣∣∣ˆ hk dµ−

ˆ
hk dν

∣∣∣), µ, ν ∈M1(R),

where (hk)k∈N is a sequence of real-valued continuous functions on R with compact support. Note

that the latter sequence exists because (R, | · |) is a locally compact, separable and complete metric

space. It follows from the proof of Theorem 31.5 in [6] that dvag generates the weak topology Ow

on M1(R). In particular, we may assume without loss of generality that the metric dw in Display

(2.3) is given by dvag, i.e. we have

dψp(µ, ν) = dvag(µ, ν) +
∣∣∣ ˆ ψp dµ−

ˆ
ψp dν

∣∣∣ (7.25)

for any µ, ν ∈Mp
1(R).

Lemma 7.3.5 For every η > 0 we have

lim
m→∞

sup
(µi)∈MN

P(µi)
[
dvag(µ̂m, µm) ≥ η

]
= 0.

Proof Let η > 0, and choose k0 = k0(η) ∈ N such that
∑∞

k=k0+1 2−k < η/2. Then

P(µi)
[
dvag(µ̂m, µm) ≥ η

]
≤ P(µi)

[ k0∑
k=1

∣∣∣ˆ hk dµ̂m −
ˆ
hk dµm

∣∣∣ ≥ η

2

]

≤
k0∑
k=1

P(µi)
[∣∣∣ˆ hk dµ̂m −

ˆ
hk dµm

∣∣∣ ≥ η

2k0

]
=

k0∑
k=1

P(µi)
[∣∣∣ 1

m

m∑
i=1

(
hk(Yi)− E(µi)[hk(Yi)]

)∣∣∣ ≥ η

2k0

]

≤
k0∑
k=1

16 k2
0 ‖hk‖2∞
η2

· 1

m
≤

16 k3
0 maxk=1,...,k0 ‖hk‖2∞

η2
· 1

m
=: C(k0, η) · 1

m
(7.26)

for all m ∈ N and µi ∈ M, i ∈ N, where we used Chebyshev’s inequality for the second last “≤”

in (7.26). The constant C(k0, η) is (independent of m as well as the sequence (µi)i∈N and) finite

because every hk is clearly bounded. Thus the expression in the last line of (7.26) converges to 0

as m→∞ uniformly in (µi) ∈MN. Hence the assertion follows. 2

Note for the following lemma that the bounded Lipschitz metric dBL on M1(R) introduced in

Example 2.1.4 (with E := R) generates the weak topology Ow on M1(R).

Lemma 7.3.6 Let µ, µm ∈ M1(R) for every m ∈ N. Then the following two assertions hold for

any m ∈ N.
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(i) dBL(µ, µm) ≤ 1
m

∑m
i=1 dBL(µ, µi).

If in addition µ, µm ∈Mp
1(R) for some fixed p ∈ R≥1 and every m ∈ N then

(ii) d̃ψp(µ, µm) ≤ 1
m

∑m
i=1 d̃ψp(µ, µi), where d̃ψp is defined as in (2.3) with dBL in place of dw.

Proof To verify (i), note that in view of (2.5) we have

dBL(µ, µm) = sup
h∈MBL

∣∣∣ ˆ h dµ−
ˆ
h dµm

∣∣∣ =
1

m
· sup
h∈MBL

∣∣∣ m∑
i=1

(ˆ
h dµ−

ˆ
h dµi

)∣∣∣
≤ 1

m
· sup
h∈MBL

m∑
i=1

∣∣∣ˆ h dµ−
ˆ
h dµi

∣∣∣ ≤ 1

m

m∑
i=1

sup
h∈MBL

∣∣∣ˆ h dµ−
ˆ
h dµi

∣∣∣ =
1

m

m∑
i=1

dBL(µ, µi)

for any m ∈ N. This shows (i).

For (ii), it follows from (2.3) along with part (i)

d̃ψp(µ, µm) = dBL(µ, µm) +
∣∣∣ ˆ ψp dµ−

ˆ
ψp dµm

∣∣∣ = dBL(µ, µm) +
1

m

∣∣∣ m∑
i=1

( ˆ
ψp dµ−

ˆ
ψp dµi

)∣∣∣
≤ 1

m

m∑
i=1

(
dBL(µ, µi) +

∣∣∣ ˆ ψp dµ−
ˆ
ψp dµi

∣∣∣) =
1

m

m∑
i=1

d̃ψp(µ, µi).

Thus shows the claim in (ii). 2

Lemma 7.3.7 Fix p ∈ R≥1, and let M ⊆ M be a locally uniformly p-integrating set. Then for

every µ ∈M , ε > 0 and η > 0 there exist δ > 0 and m0 ∈ N such that

µi ∈M, dψp(µ, µi) ≤ δ, i ∈ N =⇒ P(µi)
[∣∣∣ ˆ ψp dµ̂m −

ˆ
ψp dµm

∣∣∣ ≥ η] ≤ ε for all m ≥ m0.

Proof Let µ ∈ M , ε > 0, and η > 0 be arbitrary but fixed. Since M is locally uniformly

p-integrating, we find in view of Definition 7.3.2 some δ > 0, a > 0, and m1 ∈ N such that´
ψp1{ψp≥a} dµm < min{η/3, ηε/6} for all m ≥ m1 and all µi ∈ M with dvag(µ, µi) ≤ δ. Then,

using a truncation argument, we obtain for every m ≥ m1 and µi ∈M with dvag(µ, µi) ≤ δ that

P(µi)
[∣∣∣ˆ ψp dµ̂m −

ˆ
ψp dµm

∣∣∣ ≥ η] ≤ P(µi)
[∣∣∣ˆ ψp1{ψp<a} dµ̂m −

ˆ
ψp1{ψp<a} dµm

∣∣∣ ≥ η

3

]
+ P(µi)

[ˆ
ψp1{ψp≥a} dµ̂m ≥

η

3

]
+ P(µi)

[ˆ
ψp1{ψp≥a} dµm ≥

η

3

]
=: S1(m, (µi)) + S2(m, (µi)) + S3(m, (µi)),

where S3(m, (µi)) = 0 and S2(m, (µi)) ≤ (3/η)
´
ψp1{ψp≥a} dµm ≤ ε/2 (by Markov’s inequality).

Moreover, by Chebyshev’s inequality we find some m2 ∈ N such that S1(m, (µi)) ≤ 9η−2a2m−1 ≤
ε/2 for all m ≥ m2 and µi ∈M , i ∈ N. Setting m0 := max{m1,m2}, this shows the claim with dψp
replaced by dvag. Since dvag ≤ dψp (by (7.25)), the proof is now complete. 2

Recall for the following lemma that δx refers to the Dirac measure at point x.
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Lemma 7.3.8 Under the assumptions of Theorem 7.3.4 and for every µ ∈ M and ε > 0 there

exist δ > 0 and m0 ∈ N such that

µi ∈M, dψp(µ, µi) ≤ δ, i ∈ N =⇒ dProh

(
δRρ(∗mi=1 µi)/m

,P(µi) ◦ {R̂CE
m}−1

)
≤ ε for all m ≥ m0.

Proof Due to Strassen’s theorem (see, e.g., [45, Theorem 2.13]) it suffices for the assertion to show

that for every µ ∈M and ε > 0 there exist δ > 0 and m0 ∈ N such that

µi ∈M, dψp(µ, µi) ≤ δ, i ∈ N =⇒ P(µi)
[∣∣∣ 1

m

(
Rρ(µ̂∗mm )−Rρ(∗mi=1 µi)

)∣∣∣ ≥ ε] ≤ ε for all m ≥ m0.

(7.27)

Let µ ∈M and ε > 0 be arbitrary but fixed. Since Rρ is Lipschitz continuous w.r.t. (dWass,p, |·|) (by

condition (c) of Theorem 7.3.4), we find some finite constant Lρ > 0 such that for all ν1, ν2 ∈Mp
1(R)

we have ∣∣Rρ(ν1)−Rρ(ν2)
∣∣ ≤ Lρ dWass,p(ν1, ν2). (7.28)

Moreover note that in view of [17, Lemma 8.6] the Lp-Wasserstein metric dWass,p satisfies

dWass,p(∗mi=1 νi,∗mi=1 ν
′
i) ≤

m∑
i=1

dWass,p(νi, ν
′
i) (7.29)

for every m ∈ N and νi, ν
′
i ∈M

p
1(R), i = 1, . . . ,m. As the metrics dψp and dWass,p are topologically

equivalent onMp
1(R), we find some δ′ > 0 such that in view of (7.28)–(7.29) the right-hand side of

(7.27) can be estimated by

P(µi)
[∣∣∣ 1

m

(
Rρ(µ̂∗mm )−Rρ(∗mi=1 µi)

)∣∣∣ ≥ ε]
≤ P(µi)

[
dWass,p(µ̂

∗m
m ,∗mi=1 µi) ≥

mε

Lρ

]
≤ P(µi)

[
dWass,p(µ̂

∗m
m , µ∗m) + dWass,p(µ

∗m,∗mi=1 µi) ≥
mε

Lρ

]
≤ P(µi)

[
dWass,p(µ̂m, µ) ≥ ε

2Lρ

]
+ P(µi)

[ 1

m

m∑
i=1

dWass,p(µ, µi) ≥
ε

2Lρ

]
≤ P(µi)

[
dψp(µ̂m, µ) ≥ δ′

]
+ P(µi)

[ 1

m

m∑
i=1

dψp(µ, µi) ≥ δ′
]

=: S1(m, (µi)) + S2(m, (µi)) (7.30)

for every m ∈ N and µi ∈ M , i ∈ N. Thus S2(m, (µi)) = 0 for any m ∈ N and µi ∈ M with

dψp(µ, µi) ≤ δ1 := δ′′/2. For the first summand in the last line of formula display (7.30), we observe

in view of (7.25)

P(µi)
[
dψp(µ̂m, µ) ≥ δ′

]
≤ P(µi)

[
dψp(µ̂m, µm) ≥ δ′/2

]
+ P(µi)

[
dψp(µ, µm) ≥ δ′/2

]
≤ P(µi)

[
dvag(µ̂m, µm) ≥ δ′/4

]
+ P(µi)

[∣∣∣ˆ ψp dµ̂m −
ˆ
ψp dµm

∣∣∣ ≥ δ′/4]
+ P(µi)

[
dψp(µ, µm) ≥ δ′/2

]
=: S1,1(m, (µi)) + S1,2(m, (µi)) + S1,3(m, (µi))
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for every m ∈ N and µi ∈ M , i ∈ N. Since M (⊆ M1(R)) is locally uniformly p-integrating (by

condition (b) of Theorem 7.3.4) there exists in view of Lemma 7.3.7 (applied to η := δ′/4) some

m1 ∈ N and δ2 > 0 such that S1,2(m, (µi)) ≤ ε/2 for allm ≥ m1 and all µi ∈M with dψp(µ, µi) ≤ δ2.

By Lemma 7.3.5 (applied to η := δ′/4), we find some m2 ∈ N such that S1,1(m, (µi)) ≤ ε/2 for all

m ≥ m2 and µi ∈M (⊆M), i ∈ N.

Moreover, the metrics dvag and dBL are topologically equivalent. Recall that both dvag and dBL

generates the weak topology. In particular, in view of Lemma 2.1.1, this implies that the metrics

dψp (given by (7.25)) and d̃ψp (given by (2.3) with dBL in place of dw) are topologically equivalent,

too. Thus we find some δ′′, δ′′′ > 0 such that in view of Lemma 7.3.6(ii)

P(µi)
[
dψp(µ, µm) ≥ δ′/2

]
≤ P(µi)

[
d̃ψp(µ, µm) ≥ δ′′

]
≤ P(µi)

[ 1

m

m∑
i=1

d̃ψp(µ, µi) ≥ δ′′
]

≤ P(µi)
[ 1

m

m∑
i=1

dψp(µ, µi) ≥ δ′′′
]

for any m ∈ N and µi ∈ M , i ∈ N. Hence S1,3(m, (µi)) = 0 for every m ∈ N and all µi ∈ M with

dψp(µ, µi) ≤ δ3 := δ′′′/2. Consequently, setting δ := min{δ1, δ1, δ3} and m0 := max{m1,m2}, we

arrive at (7.27). 2

Now, let us turn to the proof of Theorem 7.3.4.

Proof of Theorem 7.3.4: We have to show that for every µ ∈ M and ε > 0 there are some

m0 ∈ N and an open neighbourhood U = U(µ, ε;M) of µ for the relative weak topology Ow ∩M
such that

µi ∈ U, i ∈ N =⇒ dProh

(
P(µ) ◦ {R̂CE

m}−1,P(µi) ◦ {R̂CE
m}−1

)
≤ ε for all m ≥ m0. (7.31)

Since M is locally uniformly p-integrating and therefore a w-set in Mp
1(R), it suffices for (7.31) to

show that for every µ ∈M and ε > 0 there exist m0 ∈ N and δ > 0 such that

µi ∈M, dψp(µ, µi) ≤ δ, i ∈ N =⇒ dProh

(
P(µ) ◦ {R̂CE

m}−1,P(µi) ◦ {R̂CE
m}−1

)
≤ ε for all m ≥ m0.

(7.32)

Take into account that dψp given by (7.25) generates in view of Lemma 2.1.1 the ψp-weak topology

on Mp
1(R).

Let µ ∈ M and ε > 0 be arbitrary but fixed. In the following we will verify that (7.32) holds for

some m0 ∈ N and δ > 0. Note at first, that the right-hand side of (7.32) can be estimated by

dProh

(
P(µ) ◦ {R̂CE

m}−1,P(µi) ◦ {R̂CE
m}−1

)
≤ dProh

(
P(µ) ◦ {R̂CE

m}−1, δRρ(µ∗m)/m

)
+ dProh

(
δRρ(µ∗m)/m, δRρ(∗mi=1 µi)/m

)
+ dProh

(
δRρ(∗mi=1 µi)/m

,P(µi) ◦ {R̂CE
m}−1

)
=: S1(m) + S2(m, (µi)) + S3(m, (µi))

for any m ∈ N and µi ∈M , i ∈ N. It follows from Lemma 7.3.8 that there exists δ1 > 0 and m1 ∈ N
such that S3(m, (µi)) ≤ ε/3 for all m ≥ m1 and µi ∈ M with dψp(µ, µi) ≤ δ1. Since the summand
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S1(m) is for any m ∈ N equal to S3(m, (µi)) by choosing µi := µ, i ∈ N, we get S1(m) ≤ ε/3 for

every m ≥ m1. Moreover since Rρ is Lipschitz continuous w.r.t. (dWass,p, | · |) (by condition (b))

and since dWass,p and dψp are topologically equivalent on Mp
1(R) there exist Lρ ∈ R>0 and δ2 > 0

such that in view of (7.28)–(7.29)

S2(m, (µi)) = min
{ 1

m

∣∣Rρ(µ∗m)−Rρ(∗mi=1 µi)
∣∣; 1
}
≤ 1

m

∣∣Rρ(µ∗m)−Rρ(∗mi=1 µi)
∣∣

≤ 1

m
Lρ dWass,p(µ

∗m,∗mi=1 µi) ≤
1

m
Lρ

m∑
i=1

dWass,p(µ, µi) ≤
1

m
Lρm

ε

3Lρ
= ε/3

for every m ∈ N and µi ∈ M with dψp(µ, µi) ≤ δ2. Setting δ := min{δ1, δ2} and m0 := m1, this

implies the assertion in (7.32). The proof of Theorem 7.3.4 is now complete. 2

In the rest of this section we will illustrate the notion of a w-set inMp
1(R). Examples 7.3.11–7.3.12

below involve in each case a parametric class of distributions which gives an example of a w-set

in the sense of Definition 7.3.3. The key for the verification of the assertions in these examples

will be Lemma 7.3.10 (a variant of Proposition 3.3 in [58]) which is an immediate consequence of

the following Theorem 7.3.9 (see also Theorem 2.3 in [58]). Note that in view of Lemma 2.1.1

the equivalence of the statements in (i) and (ii) of this theorem is obvious because the respective

topologies are metrizable. Recall that
w−→ refers to weak convergence of probability measures.

Theorem 7.3.9 Fix p ∈ R≥1, and let M ⊆ Mp
1(R). Then the following two assertions are equiv-

alent.

(i) Oψpw ∩M = Ow ∩M .

(ii) For every choice of ν, ν1, ν2 . . . ∈M for which νm
w−→ ν, the convergence

´
ψp dνm →

´
ψp dν

holds.

Recall for the following lemma that ψp is given by (6.6), and let ‖ · ‖ be the usual Euclidean norm

on Rd (with d ∈ N fixed).

Lemma 7.3.10 Fix p ∈ R≥1 as well as Θ ⊆ Rd, and let νθ ∈ Mp
1(R) for every θ ∈ Θ. Then the

set MΘ := {νθ : θ ∈ Θ} is a w-set in Mp
1(R) if for every choice of θ, θ1, θ2, . . . ∈ Θ the following

two conditions hold.

(a) νθm
w−→ νθ =⇒ ‖θm − θ‖ → 0.

(b) ‖θm − θ‖ → 0 =⇒
´
ψp dνθm →

´
ψp dνθ.

Using Lemma 7.3.10, Examples 7.3.11 and 7.3.12 give us two illustrations for w-sets in Mp
1(R).

Example 7.3.11 (Normal distribution) Let Θ := R>0 (⊆ R), and let Nm,s2 be the normal

distribution with known (and therefore fixed) location parameter m ∈ R and unknown (squared)

scale parameter s2 ∈ Θ. Recall that Nm,s2 is given by the standard Lebesgue density

ϕN
m,s2(x) := (2πs2)−1/2 e−(x−m)2/(2s2), x ∈ R.

Then the family NΘ := {Nm,s2 : s2 ∈ Θ} is a w-set in Mp
1(R) for any fixed p ∈ R≥1.
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Proof It suffices to verify conditions (a)–(b) of Lemma 7.3.10 in order to show that NΘ is a w-set

in Mp
1(R). First of all, it is clear that Nm,s2 ∈ M

p
1(R) for every s2 ∈ Θ. Now, let s2 ∈ Θ and

(s2
m)m∈N be any sequence in Θ.

(a) Suppose that the sequence (Nm,s2m
)m∈N in NΘ converges weakly to some Nm,s2 ∈ NΘ. Then

the corresponding sequence (Fm,s2m
)m∈N of distribution functions satisfies

Φ0,1

(x−m

sm

)
= Fm,s2m

(x) −→ Fm,s2(x) = Φ0,1

(x−m

s

)
for all x ∈ R. Recall that Φ0,1 refers to the distribution function of the standard normal

distribution. Hence, we have necessarily sm → s and thus s2
m → s.

(b) Suppose that s2
m → s2. Set s2 := infm∈N s2

m and s2 := supm∈N s2
m, and note that 0 < s2 <

s2 <∞. Then

lim
m→∞

ψp(x)ϕN
m,s2m

(x) = lim
m→∞

ψp(x) (2πs2
m)−1/2 e−(x−m)2/(2s2m)

= ψp(x) (2πs2)−1/2 e−(x−m)2/(2s2) = ψp(x)ϕN
m,s2(x)

for all x ∈ R. Since for any x ∈ R the mapping s2 7→ −(x − m)2/(2s2) is non-decreasing on

Θ, we get

sup
m∈N

ψp(x)ϕN
m,s2m

(x) = sup
m∈N

ψp(x) (2πs2
m)−1/2 e−(x−m)2/(2s2m) ≤ ψp(x) (2πs2)−1/2 e−(x−m)2/(2s2)

for all x ∈ R. In view of Nm,s2 ∈ M
p
1(R), an application of the dominated convergence

theorem yields

ˆ
ψp(x) Nm,s2m

(dx) =

ˆ
ψp(x)ϕN

m,s2m
(x)`(dx) −→

ˆ
ψp(x)ϕN

m,s2(x)`(dx) =

ˆ
ψp(x) Nm,s2(dx).

Therefore conditions (a)–(b) of Lemma 7.3.10 hold and the latter result implies that NΘ is a w-set

in Mp
1(R). 3

The following example is in line with Example 3.7 in [58].

Example 7.3.12 (Type-1 Gumbel distribution) Let Θ := R>0 (⊆ R), and let Ga,b be the

type-1 Gumbel distribution with unknown scale parameter a ∈ Θ and known (and therefore fixed)

shape parameter b > 0. Recall that Ga,b is given by the standard Lebesgue density

ϕG
a,b

(x) := abe−ax−be
−ax

, x ∈ R.

Note that Ga,1 is nothing but the usual Gumbel distribution. Then the family GΘ := {Ga,b : a ∈ Θ}
is a w-set in Mp

1(R) for any fixed p ∈ R≥1.

Proof It suffices to verify conditions (a)–(b) of Lemma 7.3.10 in order to show that GΘ is a w-set

inMp
1(R). At first, it is easily seen that Ga,b ∈M

p
1(R) for any a ∈ Θ. Now, let a ∈ Θ and (am)m∈N

be any sequence in Θ.
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(a) Suppose that the sequence (Gam,b
)m∈N in GΘ converges weakly to some Ga,b ∈ GΘ. Then the

corresponding sequence (Fam,b)m∈N of distribution functions satisfies

e−be
−amx

= Fam,b(x) −→ Fa,b(x) = e−be
−ax

for all x ∈ R. Hence, we have necessarily am → a.

(b) Suppose that am → a. Set a := infm∈N am and a := supm∈N am, and note that 0 < a < a <∞.

Then

lim
m→∞

ψp(x)ϕG
am,b

(x) = lim
m→∞

ψp(x) ambe
−amx−be−amx = ψp(x) abe−ax−be

−ax
= ψp(x)ϕG

a,b
(x)

for every x ∈ R. Since for any x ∈ R the mapping a 7→ −ax− be−ax is non-increasing on Θ,

we have

sup
m∈N

ψp(x)ϕG
am,b

(x) = sup
m∈N

ψp(x) ambe
−amx−be−amx ≤ ψp(x) abe−ax−be

−ax

for all x ∈ R. In view of Ga,b ∈M
p
1(R), an application of the dominated convergence theorem

yields

ˆ
ψp(x) Gam,b

(dx) =

ˆ
ψp(x)ϕG

am,b
(x) `(dx) −→

ˆ
ψp(x)ϕG

a,b
(x) `(dx) =

ˆ
ψp(x) Ga,b(dx).

Hence conditions (a)–(b) of Lemma 7.3.10 hold and the latter result implies that GΘ is a w-set in

Mp
1(R). 3
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Appendix A

Quasi-Hadamard differentiability and

quasi-Lipschitz continuity

Let V and W be vector spaces, and E ⊆ V as well as W ′,W ′′ ⊆W be subspaces. Let ‖ · ‖E and

‖ · ‖W ′′ be norms on E and W ′′, respectively. Moreover let

H : V H →W ′

be a map defined on a subset V H ⊆ V .

A.1 Definition of quasi-Hadamard differentiability

In this section we recall in the following Definition A.1 the notion of quasi-Hadamard differentiability

introduced in [59]. Note that R>0 := (0,∞).

Definition A.1 Let E0 be a subset of E, and fix v ∈ V H .

(i) The map H is said to be quasi-Hadamard differentiable at v tangentially to E0〈E〉 with trace

W ′′ if H(w)−H(v) ∈W ′′ for all w ∈ V H and there exists a continuous map Ḣv : E0 →W ′′ such

that

lim
m→∞

∥∥∥H(v + εmvm)−H(v)

εm
− Ḣv(v0)

∥∥∥
W ′′

= 0

holds for every triplet (v0, (vm), (εm)) ∈ E0 × EN × RN
>0 satisfying ‖vm − v0‖E → 0, εm → 0 as

well as (v+ εmvm) ⊆ V H . In this case, the map Ḣv is called quasi-Hadamard derivative of H at v

tangentially to E0〈E〉 with trace W ′′.

(ii) If E0 = E = V , then we skip in (i) the phrases “quasi-” as well as “tangentially to E0〈E〉”.

(iii) If W ′′ = W ′, then we skip in (i) the phrase “with trace W ′′”.

Note that Definition A.1 extends the notion of quasi-Hadamard differentiability from [13, 15, 57].

Indeed, this follows from the concept of differentiability in (i) of the latter definition with W ′′ as

in (iii).

Remark A.2 Consider the case where W ′′ = W ′, E0 = E, and ‖ · ‖E provides a norm on all of

V . Then the notion of quasi-Hadamard differentiability of H at (fixed) v in part (i) of Definition

A.1 coincides with the classical notion of Hadamard differentiability of H at v tangentially to E
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as introduced in [36, p. 102]. Here we stress the fact that in general the concept of Hadamard

differentiability of H at v tangentially to E is not the same as the notion of quasi-Hadamard

differentiability of H at v tangentially to E〈E〉 because in the latter case the norm ‖ · ‖E may be

defined only on E (and not on all of V ). For an example of the latter situation, see Definition 4.3.7

in Subsection 4.3.2. 3

A.2 Definition of quasi-Lipschitz continuity, and an auxiliary lemma

In this section we give in Definition A.3 a notion of quasi-Lipschitz continuity which was originally

introduced in [57]. The notion of quasi-Lipschitz continuity in the latter reference corresponds to

the continuity concept in part (i) of Definition A.3 with W ′′ as in (iii) of this definition. In the

sequel, we denote by 0V the null in V .

Definition A.3 Let v ∈ V H .

(i) The map H is said to be quasi-Lipschitz continuous at v along E with trace W ′′ if H(w)−H(v) ∈
W ′′ for all w ∈ V H and

‖H(v + um)−H(v)‖W ′′ = O(‖um‖E)

holds for every sequence (um)m∈N in E \ {0V } satisfying ‖um‖E → 0 as well as (v + um) ⊆ V H .

(ii) If E = V , then we skip in (i) the phrases “quasi-” and “along E”.

(iii) If W ′′ = W ′, then we skip in (i) the phrase “with trace W ′′”.

The following lemma is an adapted version of Lemma A.4 in [57]. Its statement can be obtained

by following the lines in the proof of Lemma A.4 in [57].

Lemma A.4 Let v ∈ V H . Then H is quasi-Lipschitz continuous at v along E with trace W ′′ if

and only if H(w)−H(v) ∈W ′′ for all w ∈ V H and

‖H(v + εmvm)−H(v)‖W ′′ = o(εm)

holds for every doublet ((vm), (εm)) ∈ EN × RN
>0 satisfying ‖vm‖E → 0, εm → 0 as well as (v +

εmvm) ⊆ V H .

Lemma A.5 below provides a tool to obtain quasi-Lipschitz continuity of the map H based on

quasi-Hadamard differentiability of H. Note that it follows from Lemma A.4 that quasi-Lipschitz

continuity of H at (fixed) v along E with trace W ′′ exactly coincides with quasi-Hadamard dif-

ferentiability of H at v tangentially to {0V }〈E〉 with trace W ′′ (in the sense of Definition A.1(i))

and quasi-Hadamard derivative Ḣv(0V ) = 0W , where 0W stands for the null in W . Therefore

we obtain immediately the following lemma which slightly generalizes Lemma A.5 in [57]. For an

application of this lemma, see the proof of Lemma 4.5.5 in Subsection 4.5.2.

Lemma A.5 Let v ∈ V H . Moreover let E0 be a subset of E with 0V ∈ E0. If H is quasi-

Hadamard differentiable at v tangentially to E0〈E〉 with trace W ′′ and quasi-Hadamard derivative

Ḣv : E0 →W ′′ satisfying Ḣv(0V ) = 0W , then H is quasi-Lipschitz continuous at v along E with

trace W ′′.
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Appendix B

Lebesgue–Stieltjes integrals and an

integration-by-parts formula

B.1 Definition of Lebesgue–Stieltjes integrals, and auxiliary lemmas

In this section we first want to introduce Lebesgue–Stieltjes integrals defined on R≥0. Note that

we used the notation R≥0 := [0,∞). Denote by B(R≥0) the Borel σ-algebra on R≥0, and set

∆b
av := v(b)− v(a) for any map v : R≥0 → R and any a, b ∈ R≥0 with a < b.

The following proposition can be deduced from an analogue of Theorem 6.5 in [6]. Recall that any

locally finite measure on B(R≥0) is finite on every bounded interval in R≥0.

Proposition B.1 Let v : R≥0 → R be a map. If v is non-decreasing and right-continuous, then

there exists exactly one locally finite measure µv on B(R≥0) satisfying

µv[(a, b]] = ∆b
av for all a, b ∈ R≥0 with a < b. (B.1)

In this case, v is called measure-generating function (or Stieltjes measure function) and µv is the

Stieltjes measure w.r.t. v.

Note that the (unique) locally finite Stieltjes-measure µv w.r.t. the measure-generating function v

is clearly σ-finite.

Remark B.2 The statement in Proposition B.1 (and thus the following elaborations) can be ex-

tended to measure-generating functions v defined on the whole real line. In particular, the corre-

sponding (unique) locally finite Stieltjes measure µv w.r.t. v is then defined on B(R). 3

For any measure-generating function v : R≥0 → R with corresponding Stieltjes measure µv on

B(R≥0) and any Borel measurable map u : R → R for which the Lebesgue-integral
´
R≥0
|u| dµv is

finite, we define the Lebesgue–Stieltjes integral of u w.r.t. v byˆ
R≥0

u dv :=

ˆ
R≥0

u dµv.

The following Lemmas B.3 and B.4 are simple consequences of Proposition B.1 (along with the

change-of-variables formula). Their statements will be used in Subsections 5.2.2 and 5.2.3. Let `

be the usual Lebesgue measure on B(R).
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Lemma B.3 Let v : R≥0 → R be a measure-generating function (in the sense of Proposition B.1)

and u : R≥0 → R≥0 be a Borel measurable map with

ˆ
(a,b]

u d` = ∆b
av for all a, b ∈ R≥0 with a < b.

Then the Stieltjes measure µv w.r.t. v on B(R≥0) has density u w.r.t. ` in the sense that

µv[B] =

ˆ
B
u d` for all B ∈ B(R≥0).

In particular, for any Borel measurable map w : R→ R satisfying
´
R≥0
|w| dµv <∞ or

´
R≥0
|wu| d` <

∞ we have the following identity

ˆ
B
w dv =

ˆ
B
wud` for all B ∈ B(R≥0).

Lemma B.4 Let v : R≥0 → R be a measure-generating function (in the sense of Proposition B.1)

with corresponding Stieltjes measure µv on B(R≥0). Moreover let u : R≥0 → R≥0 be a strictly

increasing and right-continuous function. Then v ◦ u : R≥0 → R is a measure-generating function,

and the corresponding Stieltjes measure µv◦u on B(R≥0) satisfies

µv◦u[B] = µv ◦ (u−1)−1[B] for all B ∈ B(R≥0).

In particular, for any Borel measurable map w : R → R with
´
R≥0
|w|dµv◦u < ∞ we have the

following identity ˆ
R≥0

w d(v ◦ u) =

ˆ
R≥0

w ◦ u−1 dv.

Next, we want to introduce a Lebesgue–Stieltjes integral for functions v : R≥0 → R which are

right-continuous and of so-called locally bounded variation. For the latter concept, however, we

still need to introduce some additional notation. This extension of the Lebesgue–Stieltjes integral

will be needed to formulate the integration-by-parts formula presented in the next section.

In the sequel, we let either I = R≥0 or I = [a, b] for some a, b ∈ R≥0 with a < b. Let v : R≥0 → R
be any map. According to Section 4.4 in [25], the variation of v on I is defined by

Vv(I) := sup
{∑

i

|v(xi)− v(xi−1)| : {xi} ∈ S
}
, (B.2)

where S consists of all finite sequences {xi}ni=0 such that x0, . . . , xn ∈ I, x0 < . . . < xn, and n ∈ N.

In the same way, the positive (resp. negative) variation V+
v (I) (resp. V−v (I)) of v on I is defined as

in (B.2) with | · | replaced by the positive part (·)+ (resp. negative part (·)−). The map v is said to

be of locally bounded variation on R≥0 if Vv([a, b]) <∞ for every a, b ∈ R≥0 with a < b. We denote

by BVloc(R≥0) the linear space of all maps v : R≥0 → R that are of locally bounded variation on

R≥0.

Moreover it can be deduced from Proposition 2.18 in [46] that any v ∈ BVloc(R≥0) can be rep-

resented by two non-decreasing functions v+, v− : R≥0 → R through v = v+ − v−. For such v
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we have Vv([a, b]) ≤ ∆b
av+ + ∆b

av− for all a, b ∈ R≥0 with a < b with equality if and only if

∆b
av± = V±v ([a, b]). Therefore any v ∈ BVloc(R≥0) admits the representation

v(·) = v(0) + v0,+(·)− v0,−(·), (B.3)

where v0,± is defined by v0,±(x) := V±v ([0, x]), x ∈ R≥0. Note that (B.3) refers to the so-called

Jordan decomposition of v ∈ BVloc(R≥0). Also note that ∆b
a[v] = Vv([a, b]) for every a, b ∈ R≥0

with a < b, where [v] := v0,+ + v0,−.

In the sequel, we use BVloc,r(R≥0) to denote the linear space of all right-continuous functions

in BVloc(R≥0), and fix v ∈ BVloc,r(R≥0). As a consequence of Proposition 2.19 in [46], the

non-decreasing components v0,± in the Jordan composition (B.3) of v ∈ BVloc,r(R≥0) are right-

continuous. Hence, since for any monotonic function the left-sided limits exist at every point, the

functions v0,± in (B.3) and thus v and [v] are càdlàg. In particular, the functions v0,+ as well as v0,−
(and thus [v]) are even measure-generating (in the sense of Proposition B.1) with corresponding

Stieltjes measures µv0,+ and µv0,− , respectively. Thus for any Borel measurable map u : R → R,

the Lebesgue–Stieltjes integral of u w.r.t. v is defined by

ˆ
R≥0

u dv :=

ˆ
R≥0

u dv0,+ −
ˆ
R≥0

u dv0,− =

ˆ
R≥0

u dµv0,+ −
ˆ
R≥0

u dµv0,−

whenever
´
R≥0
|u| d[v] <∞.

B.2 An integration-by-parts formula

Maintain the notation and terminology introduced in Section B.1. In this section we present in

Lemma B.5 below an integration-by-parts formula for Lebesgue–Stieltjes integrals defined on R≥0.

This formula will be needed in Subsection 5.2.2 to show quasi-Hadamard differentiability of the

value functional of the terminal wealth problem introduced in Subsection 5.2.1.

For the formulation of Lemma B.5, we denote by v− the left-sided limit of v ∈ BVloc,r(R≥0) defined

by v−(x) := limy↗x v(y), x ∈ R≥0. Recall that v− exists whenever v ∈ BVloc,r(R≥0).

Lemma B.5 Let u, v ∈ BVloc,r(R≥0) with limx↘0 u(x)v(x) = limx→∞ u(x)v(x) = 0, and assume

that
´
R≥0
|v| d[u] <∞ as well as

´
R≥0
|u−| d[v] <∞. Then

´
R≥0

v du = −
´
R≥0

u− dv.

The proof of Lemma B.5 can be carried out with similar arguments as in the proof of Lemma B.1

in [14].
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[58] Krätschmer, V., Schied, A. and Zähle, H. (2017). Domains of weak continuity of statistical

functionals with a view toward robust statistics. Journal of Multivariate Analysis, 158, 1–19.
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