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Abstract: Insertion energy has been advocated as a novel measure for primary implant stability, but
the effect of implant length, diameter, or surgical protocol remains unclear. Twenty implants from one
specific bone level implant system were placed in layered polyurethane foam measuring maximum
insertion torque, torque–time curves, and primary stability using resonance frequency analysis
(RFA). Insertion energy was calculated as area under torque–time curve applying the trapezoidal
formula. Statistical analysis was based on analysis of variance, Tukey honest differences tests and
Pearson’s product moment correlation tests (α = 0.05). Implant stability (p = 0.01) and insertion energy
(p < 0.01) differed significantly among groups, while maximum insertion torque did not (p = 0.17).
Short implants showed a significant decrease in implant stability (p = 0.01), while reducing implant
diameter did not cause any significant effect. Applying the drilling protocol for dense bone resulted
in significantly increased insertion energy (p = 0.02) but a significant decrease in implant stability
(p = 0.04). Insertion energy was not found to be a more reliable parameter for evaluating primary
implant stability when compared to maximum insertion torque and resonance frequency analysis.

Keywords: insertion energy; insertion torque; primary implant stability; resonance frequency analysis;
surgical protocol

1. Introduction

Recent finite element analysis [1] and in-vitro experiments [2] have shown that trabecular
bone definitely contributes to the insertion process and resulting implant stability. Consequently,
surgical technique should be customized based on the bone quality found in the specific site and
with consideration of the impact of different drilling protocols, implant designs [3,4], and implant
material [5].

Several in-vitro studies have demonstrated that under-preparation of the osteotomy increased
primary stability at the time of implant installation [6–8], however an increase in bone density has
been shown to have a greater effect on the primary stability of the implant [9]. In an animal trial,
Marin et al. [10] demonstrated that under-sizing an implant osteotomy led to an increase in insertion
torque and had no detrimental effect on osseointegration when compared to wider bone preparation,
despite substantial differences in the healing mode. On the other hand, Cha et al. [11] found that an
increase in insertion torque caused microfractures in bone and resulted in increased resorption in
the site. This observation is supported by two animal studies demonstrating that the speed of bone
formation was lower, whilst marginal bone loss was greater [12], and an associated loss in implant
stability [13] in undersized as compared to enlarged osteotomies. In a clinical study comparing the
primary stability of straight-walled and tapered implants using an insertion torque device, the authors
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found higher levels of primary stability for tapered implants, but a resultant higher failure rate for this
implant design. They concluded that the high insertion torque caused the destruction of peri-implant
bone and compromised osseointegration [14].

Several parameters have been used for determining the level of primary implant stability; these
include insertion torque [2,6,8,14,15], implant stability quotient [4,8,15], and removal torque [8,13].
From a biomechanical perspective, it has been argued that a ‘dynamic’ parameter, i.e., ‘work’ or
‘energy’ may be better suited for characterizing bone-to-implant interfacial strength [16]. With modern
surgical motors being capable of accurately measuring torque values, several authors have been
reporting ‘insertion energy’—defined as the area under a torque–time curve, as a measure for primary
stability [17–22].

The aim of this in-vitro study was to determine how implant-related parameters (length, diameter)
and surgical protocols affect the parameters ‘insertion energy’ and primary implant stability for one
specific bone-level implant design.

2. Materials and Methods

Twenty bone level implants belonging to one specific system (ICX, Medentis Medical GmbH,
Ahrweiler, Germany) were divided into four groups (n = 5). The implants differed with respect to
diameter and length (Figure 1; Table 1), with one group of implants (4.8 mm diameter and 12.5 mm
length) acting as the control. The implants were placed in prepared sites in polyurethane foam
blocks (Figure 2) consisting of a ‘trabecular’ portion covered by a ‘cortical’ layer with a thickness of
2 mm (Solid Rigid polyurethane foam 10 pcf/30 pcf, Sawbones Europe AB, Malmö, Sweden) [2,8,9,19].
The implant site preparation was completed using the manufacturer’s surgical drills and according
to the manufacturer’s recommended drilling protocol for a medium bone density. In one group, the
implants having the same dimensions as the control group, the drilling protocol was altered to that
recommended for dense bone (Table 1). In the Control group, 4.8 × 12.5 mm implants were used,
while in the Short group, implant length was reduced to 10 mm. In the Slim group, 4.1 × 12.5 mm
implants were considered. For all of these groups, the osteotomies were prepared according to the
medium bone drill protocol, while in the Dense group, 4.8 × 12.5 mm implants were placed following
site preparation according to the dense bone protocol.
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Figure 1. Implant dimensions used in this study: (left) implant dimension 4.8 × 10 mm; (middle)
implant dimension 4.8 × 12.5 mm; (right) implant dimension 4.1 × 12.5 mm.

Table 1. Description of the four experimental groups investigated.

Group Implant Surgical Protocol

Control ICX 4.8 × 12.5 mm Medium Bone
Short ICX 4.8 × 10.0 mm Medium Bone
Slim ICX 4.1 × 12.5 mm Medium Bone

Dense ICX 4.8 × 12.5 mm Dense Bone
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Figure 2. Implants were inserted in laminated polyurethane foam material using a surgical motor
capable of recording the actual torque applied over time.

The implants were inserted into the prepared site with a surgical motor (speed set at 25 rpm)
capable of recording actual torque over time (iChiropro, BienAir, Biel, Switzerland). Insertion torque
was recorded with a sampling rate of 1/200 ms and exported into an Excel file, which could then be
used for calculating the area under the curve applying the trapezoidal formula. Using implant specific
MultiPeg abutments (Integration Diagnostics Sweden AB, Gothenburg, Sweden) and an Osstell ISQ
device (Osstell AB, Gothenburg, Sweden), resonance frequency analysis (RFA) was used for quantifying
primary implant stability in two directions perpendicular to each other [4,8,15].

Statistical analysis comparing maximum insertion torque, primary implant stability, and insertion
energy was based on analysis of variance. For pairwise comparison of means, the Tukey honest
differences test was applied. In addition, the dataset was checked for potential correlations among
parameters using Pearson’s product moment correlation test. The level of significance was set at
α = 0.05 for all statistical operations conducted. Due to a lack of data on the specific implant system
and the bone surrogate material in this study, a sample size calculation could not be performed.

3. Results

Despite an identical insertion speed of 25 rpm, differences were noted in the time needed for seating
the different implant types, as seen in the torque–time curves recorded by the surgical motor (Figure 3).
Implants of 10 mm length required less time to insert compared to 12.5 mm long implants, for both
4.1 mm and 4.8 mm diameters. The torque–time curves showed a reasonable level of reproducibility as
did all other measurements and what led to standard deviations for all parameters below 15% (Table 2).
The Shapiro-Wilk test confirmed the data obtained could be assumed to be normally distributed.

Table 2. Mean values and standard deviations (SD) for all parameters evaluated.

Group Control Short Slim Dense

Mean SD Mean SD Mean SD Mean SD

Maximum insertion torque [Ncm] 15.9 2.24 15.1 0.85 15.7 1.53 17.2 0.55

Implant Stability [ISQ] * 64.0 1.32 61.0 0.79 62.8 1.40 61.6 1.47

Insertion Energy [Ncm·s] * 819.08 77.78 703.46 46.41 800.36 77.86 973.24 82.56

* significant differences appeared in these parameters.
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Analysis of variance (Table 3) revealed significant differences among groups with respect to
implant stability (p = 0.01) and insertion energy (p < 0.01) but not for maximum insertion torque
(p = 0.17). The use of 10 mm implants did not significantly alter maximum insertion torque (p = 0.82)
but led to a significant decrease in implant stability (p = 0.01) compared to the 12.5 mm length implants.
Reducing the implant diameter from 4.8 mm to 4.1 mm did not cause any significant change in the
parameters tested, as compared to the control implants. The implants inserted using the drilling
protocol for dense bone resulted in significantly higher values for insertion energy as compared to all
the other groups (Control vs. Dense p = 0.02; Short vs. Dense p < 0.01; Slim vs. Dense p < 0.01). While
not causing a statistically significant increase in maximum insertion torque (p = 0.49), the drilling
protocol for dense bone led to a statistically significant decrease in implant stability (p = 0.04).

Table 3. Results (p-values) of ANOVA and pairwise comparisons between the different implant systems
used for all three parameters tested (Tukey’s honest differences test; α = 0.05; significant differences are
written in bold).

Maximum Insertion Torque Implant Stability Insertion Energy

ANOVA 0.17 0.01 0.00

Control vs. Short 0.82 0.01 0.09

Control vs. Slim 0.99 0.47 0.98

Control vs. Dense 0.49 0.04 0.02

Short vs. Slim 0.92 0.16 0.19

Short vs. Dense 0.14 0.88 <0.01

Slim vs. Dense 0.36 0.47 <0.01

Comparing all data across the four different groups, good correlation was observed between
maximum insertion torque and insertion energy (r = 0.75; p < 0.01). However, no correlation was
observed between ISQ and insertion energy (r = 0.02; p = 0.95) nor between ISQ and maximum
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insertion torque (r = −0.10; p = 0.67). When considering the four experimental groups independently,
no significant correlation across the parameters measured was observed (Table 4).

Table 4. Pearson product moment correlation for the parameters implant stability quotient (ISQ,)
maximum insertion torque and insertion energy (α = 0.05; significant correlations are written in bold).

ISQ vs. Maximum
Insertion Torque ISQ vs. Insertion Energy Maximum Insertion Torque

vs. Insertion Energy

r-Value p-Value r-Value p-Value r-Value p-Value

Control −0.38 0.53 0.09 0.89 0.77 0.13

Short −0.35 0.56 −0.69 0.20 0.86 0.06

Slim 0.15 0.81 −0.01 0.99 0.68 0.20

Dense −0.25 0.69 −0.06 0.92 0.78 0.12

Overall −0.10 0.67 0.02 0.95 0.75 <0.01

4. Discussion

A potential paradigm shift in surgical implant placement appears evident, transitioning from high
insertion torque values being considered beneficial for mechanical primary implant stability [7,23],
to an altered osteotomy and implant installation protocol to provide for a biologically acceptable level
of primary stability—a successful outcome (osseointegration) that avoids damage to the jaw bone due
to mechanical stress [10–13,24,25]. In evaluating this shift, insertion energy of a dental implant has
been advocated as a relevant measure [17–22].

Based on the limited correlations of insertion energy with other parameters found in this study,
it appears that this novel measure lacks advantages as compared to traditional measurements of
implant stability. This assertion is further supported by the fact that only the dense bone protocol
group demonstrated a significant difference in outcome with respect to insertion energy. A change
in the implant length or diameter did, however, did not demonstrate a similar effect on the insertion
energy. It has also been noted during the experiments that apical tapering of the implants allowed
placing them at different depths into standardized osteotomies prior to engaging the bony walls. Other
than for recording maximum insertion torque, which is normally reached during final seating of an
implant, this affects the dynamic parameter of insertion energy.

As such, resonance frequency analysis as a measure of primary stability appeared to offer greater
benefit in distinguishing the different implant groups. A previous clinical study found that tapered
implants required higher insertion torque when compared to straight-walled implants but provided
better primary stability. However, the tapered implants also had a lower clinical success outcome,
thus implicating the level of insertion torque applied [15]. Despite a study by Elias et al. [6] claiming
that the influence of the surgical technique would exert less effect than that of implant size and shape,
it had been expected that the application of the dense bone drilling protocol would lead to a reduction
in measurement values. When considering maximum insertion torque and insertion energy, this
study found the opposite. Consequently, one could conclude that the implant manufacturer’s surgical
placement protocol is not suited to avoid ‘overstressing’ dense bone. Notwithstanding, dense bone
protocols generally can be expected to provide for less under-sizing of the osteotomy compared to
medium and low bone quality drill protocols [6]. As shown in this study, the effect of changing the
drill protocol can potentially be monitored using the novel parameter of insertion energy.

In interpreting the data from this study, the authors acknowledge the limited sample size.
Two further limitations are noted: Layered polyurethane foam material [2,8,9,19] has been used as a
bone surrogate and consequently, the absolute values measured here cannot be directly transferred
to clinical reality. Additionally, these materials are not able to fully mimic the elastic properties of
alveolar bone, but in turn, allow for reproducible measurements [6]. The process of implant placement
strongly depends on the drill protocol used in the preparation of the osteotomy and the design of the
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implant. As only one specific implant design has been used in this investigation, the results should be
interpreted within the scope of the study. Future studies should consider the effect of different implant
materials such as zirconia ceramic on the surgical protocols applied [5] as well as the biologic effects
associated with a specific level of insertion torque. In addition, measurement parameters directly
evaluating mechanical bone quality should be established in contrast to developing implant-related
surrogate criteria.
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