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Abstract

In the first part of this thesis, we introduce and analyze spatial stochastic mod-
els for DNA methylation, an epigenetic mark with an important role in devel-
opment. The underlying mechanisms controlling methylation are only partly
understood. Several mechanistic models of enzyme activities responsible for
methylation have been proposed. Here, we extend existing hidden Markov
models (HMMs) for DNA methylation by describing the occurrence of spatial
methylation patterns with stochastic automata networks. We perform numeri-
cal analysis of the HMMs applied to (non-)hairpin bisulfite sequencing KO data
and accurately predict the wild-type data from these results. We find evidence
that the activities of Dnmt3a/b responsible for de novo methylation depend on
the left but not on the right CpG neighbors.

The second part focuses on parameter estimation in chemical reaction net-
works (CRNs). We propose a generalized method of moments (GMM) approach
for inferring the parameters of CRNs based on a sophisticated matching of the
statistical moments of the stochastic model and the sample moments of popu-
lation snapshot data. The proposed parameter estimation method exploits re-
cently developed moment-based approximations and provides estimators with
desirable statistical properties when many samples are available. The GMM
provides accurate and fast estimations of unknown parameters of CRNs. The
accuracy increases and the variance decreases when higher-order moments are
considered.
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Zusammenfassung

Im ersten Teil der Arbeit führen wir eine Analyse für spatielle stochasti-
sche Modelle der DNA Methylierung, ein wichtiger epigenetischer Marker
in der Entwicklung, durch. Die zugrunde liegenden Mechanismen der
Methylierung werden noch nicht vollständig verstanden. Mechanistische
Modelle beschreiben die Aktivität der Methylierungsenzyme. Wir erwei-
tern bestehende Hidden Markov Models (HMMs) zur DNA Methylierung
durch eine Stochastic Automata Networks Beschreibung von spatiellen
Methylierungsmustern. Wir führen eine numerische Analyse der HMMs auf
bisulfit-sequenzierten KO Datensätzen aus und nutzen die Resultate, um die
Wildtyp-Daten erfolgreich vorherzusagen. Unsere Ergebnisse deuten an, dass
die Aktivitäten von Dnmt3a/b, die überwiegend für die de novo Methylierung
verantwortlich sind, nur vom Methylierungsstatus des linken, nicht aber vom
rechten CpG Nachbarn abhängen.

Der zweite Teil befasst sich mit Parameterschätzung in chemischen Reak-
tionsnetzwerken (CRNs). Wir führen eine Verallgemeinerte Momentenmetho-
de (GMM) ein, die die statistischen Momente des stochastischen Modells
an die Momente von Stichproben geschickt anpasst. Die GMM nutzt hier
kürzlich entwickelte, momentenbasierte Näherungen, liefert Schätzer mit
wünschenswerten statistischen Eigenschaften, wenn genügend Stichproben
verfügbar sind, mit schnellen und genauen Schätzungen der unbekannten Pa-
rameter in CRNs. Momente höherer Ordnung steigern die Genauigkeit des
Schätzers, während die Varianz sinkt.

ix





Publications

This thesis is based on the following publications. For each publication the
corresponding parts of this thesis are also listed below:

• A. Lück, V. Wolf:
Generalized method of moments for estimating parameters of stochastic
reaction networks
BMC Systems Biology (2016) [88] (Chapter 3 and Section 2.4.1)

• A. Lück, P. Giehr, J. Walter, V. Wolf:
A Stochastic Model for the Formation of Spatial Methylation Patterns
International Conference on Computational Methods in Systems Biology (2017)
[87] (Sections 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.6, 2.4.3, 2.5.1, 2.5.3 and Ap-
pendix A)

• A. Lück, P. Giehr, K. Nordström, J. Walter, V. Wolf:
Hidden Markov Modelling Reveals Neighborhood Dependence of
Dnmt3a and 3b Activity
IEEE/ACM Transactions on Computational Biology and Bioinformatics (2019)
[86] (Sections 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.6, 2.3.7, 2.4.3, 2.5)

• A. Lück, V. Wolf:
Generalized Method of Moments Estimation for Stochastic Models of
DNA Methylation Patterns
submitted for publication (2019) [89] (Sections 2.4.1, 2.5.1)

• A. Lück, V. Wolf:
A Stochastic Automata Network Description for Spatial DNA-
Methylation Models
International Conference on Measurement, Modelling and Evaluation of Com-
puting Systems (2020) [90] (Section 2.3.5)

All content (text passages, figures, tables) from these publications that appears
in this thesis is originally the author’s work. Exceptions are clearly marked and
acknowledged.

xi



xii

The following publications are not covered in this thesis. The topics of these
publications are outside of the scope of the material covered here.

• C. Arita, A. Lück, L. Santen:
Length regulation of microtubules by molecular motors: exact solution
and density profiles
Journal of Statistical Mechanics: Theory and Experiment (2015) [8]

• A. Lück:
Replicated Computational Results (RCR) Report for “Automatic
Moment-Closure Approximation of Spatially Distributed Collective
Adaptive Systems”
ACM TOMACS (2016) [85]

• C. Arita, J. Bosche, A. Lück, L. Santen:
Localization of a microtubule organizing center by kinesin motors
Journal of Statistical Mechanics: Theory and Experiment (2017) [7]

• P. Kurasov, A. Lück, D. Mugnolo, V. Wolf:
Stochastic hybrid models of gene regulatory networks-A PDE approach
Mathematical Biosciences (2018) [74]

• C. Kyriakopoulos, P. Giehr, A. Lück, J. Walter, V. Wolf:
A Hybrid HMM Approach for the Dynamics of DNA Methylation
Workshop on Hybrid Systems & Biology (2019) [77]



Contents

Acknowledgements v

Abstract vii

Zusammenfassung ix

Publications xi

1 Introduction 1

2 Stochastic Modelling of Spatial Methylation Patterns 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Mathematical Background . . . . . . . . . . . . . . . . . . . 5
2.2.2 Biological Background . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Mechanistic Modelling vs. Machine Learning . . . . . . . 12
2.2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Cell Division . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Maintenance and De Novo Methylation . . . . . . . . . . . 18
2.3.4 Combination of Transition Matrices . . . . . . . . . . . . . 21
2.3.5 Stochastic Automata Network Description . . . . . . . . . 23
2.3.6 Conversion Errors . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.7 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Parameter Estimation Methods . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Generalized Method of Moments . . . . . . . . . . . . . . . 36
2.4.2 Approximate Bayesian Computation . . . . . . . . . . . . 40
2.4.3 Maximum Likelihood Estimator . . . . . . . . . . . . . . . 42

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . 43

xiii



xiv CONTENTS

2.5.2 CpG Distances . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.3 Wild-Type Prediction . . . . . . . . . . . . . . . . . . . . . . 55
2.5.4 Non-Hairpin Data . . . . . . . . . . . . . . . . . . . . . . . 59
2.5.5 Genome-Wide Data . . . . . . . . . . . . . . . . . . . . . . . 60

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 The Generalized Method of Moments for Chemical Reaction Net-
works 67
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.1 Stochastic Chemical Kinetics . . . . . . . . . . . . . . . . . 69
3.2.2 Moment-Based Analysis . . . . . . . . . . . . . . . . . . . . 71
3.2.3 Hybrid Approaches . . . . . . . . . . . . . . . . . . . . . . 72
3.2.4 The Generalized Method of Moments Revisited . . . . . . 74

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.1 Standard vs. Hybrid Moment-Based Analysis . . . . . . . 79
3.3.2 Two-Step vs. Demean Approach . . . . . . . . . . . . . . . 79
3.3.3 Multiple Time Points . . . . . . . . . . . . . . . . . . . . . . 83
3.3.4 Further Estimators . . . . . . . . . . . . . . . . . . . . . . . 84

3.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Summary 89

A Additional Figures 91

B Pseudo Code 95
B.1 Stochastic Automata Networks . . . . . . . . . . . . . . . . . . . . 95
B.2 Approximate Bayesian Computation . . . . . . . . . . . . . . . . . 97

Abbreviations 99

List of Figures 101

List of Tables 105

List of Algorithms 107

Bibliography 109



Chapter 1

Introduction

This thesis consists of two parts, which are (mostly) independent of each other.
Therefore, each of the two chapters is self-contained with its own extensive in-
troduction, such that we keep this general introduction rather short. Neverthe-
less, we give a brief outlook on both chapters here and summarize the main
contributions of this thesis.

In Chapter 2 we introduce a generalization of existing hidden Markov mod-
els for DNA methylation, which can model whole sequences of CpGs, a spe-
cial combination of base pairs in the DNA, important for methylation, at once.
To this end, we introduce dependence parameters and appropriate transition
probability functions for different methylation states of the neighborhood, such
that we can take correlations and dependencies between adjacent CpGs into ac-
count. Compared to single CpG models, our model is much more complex and
has higher requirements on the biological data. The generation of the transition
probability matrices for our model can be formalized by a stochastic automata
network description, given the matrices for a single CpG model and suitable
transition probability functions that depend on the neighborhood. We check
the applicability of different parameter estimation methods (amongst others
the generalized method of moments from Chapter 3, modified for moments of
methylation patterns, which will later be used in the context of chemical reac-
tion networks) and apply our model to biological data from selected loci within
the genome, as well as whole genome data.

In Chapter 3 we apply the generalized method of moments (GMM), a well-
known parameter estimation technique from econometrics in a biological con-
text, more specifically for chemical reaction networks. We test different methods
to obtain a weight matrix and investigate the influence higher order moments.
Since, in general, not all reactions are monomolecular, the exact moments are
not obtainable and we have to rely on approximations (moment closure). We
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also investigate the influence of the quality of the approximated moments on
the estimation quality by using standard and hybrid closure techniques.

The main contributions of this thesis are:

• The introduction of a generalized hidden Markov model to model multi-
ple CpGs at once, which enables the investigation of the influence of the
methylation states from adjacent CpGs and to test different hypotheses
about the working mechanisms of the methylation enzymes (Dnmts).

• A stochastic automata networks description that allows to generalize ev-
ery single CpG model to multiple CpGs, given the transition matrix and a
suitable neighborhood function.

• New biological insights and confirmation of existing hypotheses due to
our mechanistic model: Dnmt1 works processively and independent of
the neighborhood, while Dnmt3a/b shows a dependence to the left. Hy-
pomethylated CpGs im promoter regions tend to behave more indepen-
dently, while hypermethylated CpGs from other regions show a stronger
dependence only to the left.

• The introduction of the well-known GMM estimator from econometrics to
biological applications, especially chemical reaction networks and methy-
lation patterns.

• The investigation of the influence on the estimation quality of the GMM,
if approximated moments are used.



Chapter 2

Stochastic Modelling of Spatial
Methylation Patterns

2.1 Introduction

The DNA contains the blueprints for all proteins that can be expressed within an
organism and thus determines its appearance and behavior. However, the dif-
ferences in the DNA are not enough to explain the diversity within individuals
of the same species and obviously, because there are different cell types within
one individual, not every cell expresses all proteins. Consequently, there have to
be additional mechanisms that determine the fate of each cell. One of the most
striking of such mechanisms is DNA methylation. It occurs on the cytosine (C)
base in the context of CpGs, where a C is followed by a guanine (G) base in the
DNA sequence [27, 31, 73]. The conversion of C to 5-methylcytosine (5mC) is
carried out by DNA methyltransferase (Dnmt) enzymes [12, 104]. There are two
kinds of methylation events, namely maintenance, where existing methylation
patterns are reestablished after DNA replication [59] and de novo, where new
patterns may be introduced [103]. These different kinds of methylation events
are mostly (but not exclusively) associated with a certain type of Dnmt [82], for
example, Dnmt1 is usually associated with maintenance and Dnmt3a/b with de
novo methylation.

DNA methylation is known to control and mediate gene expression and
therefore varies considerably depending on cell type and genomic locations.
Methylation of promoters often correlates with little to no transcription [119]
and hence can be used as a predictor of gene expression [66]. This also leads to
different methylation levels in different cell types [109], as well as different lev-
els in healthy and cancerous cells [23]. However, the underlying mechanisms
that determine the methylation status of specific CpGs and the resulting methy-
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4 2.1. Introduction

lation patterns in different genomic regions are not fully understood. Therefore,
mechanistic models to investigate the underlying processes and to estimate the
probabilities of the different methylation states of a CpG have been developed
[6, 38, 78]. However, these models usually consider only a single CpG or assume
an independence of the individual CpGs.

Models that only consider a single CpG or treat the CpGs independently
have two major drawbacks: First of all, it is impossible to take possible influ-
ences of the neighboring methylation states into account, when only consider-
ing one CpG or when considering the CpGs to be independent. The second
drawback is, that it is impossible to investigate the possible working mecha-
nisms of the Dnmts, since the sequence in which the CpGs are methylated does
not matter in the independent case. We therefore generalize the existing hidden
Markov models and take whole methylation patterns into account to tackle both
of these problems. To this end we introduce dependence parameters to quantify
the influence of the methylation state of neighboring CpGs and propose differ-
ent transition probabilities (amongst others dependent on the dependence pa-
rameters) for all possible methylation states in the direct neighborhood. We also
discuss the possible working mechanisms of the Dnmts by manipulating the
order of multiplication for the transition matrices for the sub-processes (mainly
the order in which CpGs within a sequence are methylated). To generate the
transition matrices we rely on a stochastic automata networks description.

To fit the models to the available double-strand methylation data, we sug-
gest different parameter estimation methods. Each of these methods comes with
its own advantages and disadvantages and may be appropriate under different
circumstances. The focus of the parameter estimations lies on the dependence
parameters, in order to investigate the influence of the neighboring methyla-
tion states and to infer the possible working mechanisms of the enzymes. We
investigate double-strand methylation data for single copy genes and repetitive
elements at selected loci, as well as whole genome data. We also test the appli-
cability of our model to single-strand methylation data. Our main results are
that Dnmt1 seems to methylate CpGs independent of their neighboring states
and appears to work processivly, while there is a dependence on the methy-
lation state of the left (but not the right) neighbor for Dnmt3a/b. Also, hy-
pomethylated CpGs at promoter regions behave more independent compared
to hypermethylated CpGs in other regions.

This chapter is organized as follows: In Section 2.2 we give a brief mathe-
matical and biological background and discuss the state of the art related work.
Our newly introduced model is thoroughly discussed in Section 2.3. The differ-
ent techniques that are used for the parameter estimation are briefly described
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in Section 2.4. In Section 2.5 we extensively present our findings and conclude
this chapter in Section 2.6.

2.2 Background

In this section we lay the necessary mathematical and biological background for
the stochastic modelling of spatial methylation patterns.

2.2.1 Mathematical Background

Here, we give a brief overview of the most important mathematical concepts,
which are used in this thesis. For a more in-depth introduction to this topic, we
refer to common text books like [45, 62, 65].

Stochastic Processes

A stochastic process is defined as a collection of random variables (RVs). Thereby
a random variable on (Ω, 2Ω, P ) is a function

X : Ω→ R, (2.1)

where (Ω, 2Ω, P ) is a discrete probability space, Ω a sample space, 2Ω a σ-algebra
and P a probability measure. The function

π : X(Ω)→ [0, 1] with π(x) = P (X = x) (2.2)

is called the discrete probability distribution of X , where X = x is an abridged
notation for the set {ω ∈ Ω |X(ω) = x}, which is a subset of Ω. Subsets obtained
from a different relational operator, like < or ≤, are defined in a similar way.
Subsets of Ω are also called events. Given two events Y = y and X = x, with
P (X = x) > 0, the conditional probability is defined as

P (Y = y | X = x) :=
P (Y = y ∩X = x)

P (X = x)
. (2.3)

Markov Chains

Markov chains are a special family of RVs Xt, where t is an index. The RVs
Xt : Ω → S take values in a discrete set S, which is called the state space. Note
that in this case the state space is countable. Also note that there are generaliza-
tions for continuous S, but we do not consider them here. Oftentimes the index
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t is associated with time. We therefore call a Markov chain with a discrete index
t ∈ N0 a discrete time Markov chain (DTMC) and a Markov chain with a contin-
uous index t ∈ R0 a continuous time Markov chain (CTMC). Since we will only
consider DTMCs in the following, we only present the properties of DTMCs
here. CTMCs fulfill the same properties with their continuous counterparts.

The special feature of Markov chains is that they fulfill the so-called Markov
property

P (Xt+1 = y | Xt = xt, Xt−1 = xt−1, . . . , X0 = x0) = P (Xt+1 = y | Xt = xt) (2.4)

for all t, y, xt, . . . , x0. This property implies that only information about the
present Xt = xt is necessary to predict the next step Xt+1 = y. Information
about previous states and hence the history of the system are irrelevant to pre-
dict the future behavior.

Since S = {s1, s2, . . .} is countable, it is possible to enumerate the states, such
that we can write X = i instead of X = si. We can then define the transition
probabilities of reaching state j from state i in one step as

pij = P (Xt+1 = j | Xt = i) (2.5)

and arrange them into the transition probability matrix P = (pij)i,j∈{1,2,...}. Note
that we assume here, that the transition probabilities are time independent, i.e.,
the same for all t. In that case the process is called time homogeneous. The matrix
P is a right stochastic matrix, which means that it a is square matrix of nonneg-
ative real numbers whose rows add up to 1. Note that the matrix power P t is
right stochastic as well and contains the probabilities to reach another state after
t steps.

The transient distribution of the Markov chain is defined as the discrete prob-
ability distribution of the states at a certain time. Given an initial distribution,
i.e., a stochastic row vector π(0) that contains the probabilities P (X0 = i) for all
states i ∈ S at time 0, we can use the law of total probability to calculate the
probabilities for all states in the next step as

P (X1 = j) =
∑
i∈S

P (X1 = j |X0 = i)︸ ︷︷ ︸
=pij

·P (X0 = i), ∀j ∈ S. (2.6)

We can consider Eq. (2.6) as a vector matrix product and write

π(1) = π(0) · P. (2.7)

A successive application of this argument leads to the transient distribution at
an arbitrary time t

π(t) = π(t− 1) · P = . . . = π(0) · P t. (2.8)
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Under certain conditions there exists a unique equilibrium distribution

πe = πe · P (2.9)

which is independent from the initial distribution. For a finite DTMC these
conditions are irreducibility and aperiodicity. The equilibrium is characterized by
a so-called global balance condition, where the inflow of probability mass equals
the outflow of probability mass for each state.

Hidden Markov Models

When using DTMCs to model real systems, one often faces the problem that the
states are either not directly observable or that the observations are tainted with
errors. In this case an appropriate model choice are the so-called hidden Markov
models (HMMs). A HMM consists of two stochastic processes: A DTMC X with
Xt : Ω→ S, t ∈ N0, which models the transitions between the hidden states and
a second stochastic process Y with Yt : S → O, which maps the hidden states
from S to the observable states from the (countable) state space of observables
O. Note that the probability of having the k-th observation ok at time t as an
output depends only on the hidden state i at time t, i.e.,

∆ik = P (Yt = ok | Xt = i) (2.10)

and does not depend on the previous states ofX . Since we assume this emission
probabilities ∆ik to be time independent, we can arrange them in the emission or
error matrix ∆. Note that, as the transition probability matrix P of the DTMC, ∆
is a matrix of nonnegative real numbers whose rows add up to 1. However, in
contrast to P , the error matrix ∆ is not necessarily square since the cardinalities
of the hidden state space |S| and the observable state space |O| do not need to
coincide.

Typical tasks when working with HMMs involve calculating the probability
of a given output sequence, calculating unknown parameters, like the initial
distribution of hidden states from a given sequence of observations, or even
calculate the most likely hidden sequence. For each of these tasks dedicated
algorithms have been developed [107], like the Viterbi algorithm [125] to calculate
the most likely hidden sequence, given a sequence of observations.

2.2.2 Biological Background

Epigenetics

The term epigenetics was first introduced in 1942 by Conrad Waddington [126].
However, the definition was changed and refined over time. The widely ac-
cepted definition today defines epigenetics as “the study of changes in gene
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DNA mRNA protein
translation

transcription

Figure 2.1: Schematic representation of gene expression.

function that are mitotically and/or meiotically heritable and that do not entail
a change in DNA sequence” [98].

The DNA contains the blueprints for all proteins (and non-coding, func-
tional RNA) that can be built within an individual. The process of synthesizing
a protein from the DNA information is called gene expression [1]. A schematic
representation of the gene expression is shown in Fig. 2.1. In a first step a cer-
tain part of the DNA (gene) is read and transcribed into the so-called messenger
RNA (mRNA) with the aid of some special proteins, called transcription fac-
tors. Eventually the mRNA is translated into the final protein. Since the DNA
sequence itself does not change over time, without additional mechanisms ev-
ery cell could express all genes. But obviously different cells behave differently
and therefore they have to express different genes, while others remain unex-
pressed. The mechanisms to regulate gene expression [108] are called epigenetic
switches.

The three main epigenetic switches (and the intuitive high-level explana-
tions why they shut down gene expression for certain genes) are

• DNA methylation: Due to the additional methyl groups on cytosines within
promoters, the gene can not be transcribed into mRNA, since the tran-
scription factors can not attach to the DNA [101].

• histone modification: Causes loosely or tightly packing of the DNA, thus
resulting in expressed or non-expressed genes, respectively [106].

• mRNA interference: The mRNA is destroyed due to interaction with other
RNA and special enzymes and hence translation can not occur [75].

Since DNA methylation and histone modification repress the transcription of
the genes, there is a complete shut down of this gene. For mRNA interference,
the gene expression may still occur, however, to a lower extent. Since the de-
struction of the mRNA depends on the concentration of the other RNA and
enzymes, there may still be some translation into proteins, albeit at a lower rate
than without interference.
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DNA Methylation

N

H

O

N

NH2

N

H

O

N

NH2

CH3

Figure 2.2: Structural formulas of cytosine (left) and 5-methylcytosine (right).
They differ in the methyl group CH3 (marked in red) at the 5 position. Note
that we used the skeletal formula, where the carbon atoms and hydrogen atoms
bound to them are not explicitly shown.

Since this thesis focuses on DNA methylation, we go a little bit more into
detail here. In mammals DNA methylation almost exclusively occurs on cyto-
sine (C), more precisely in the context of CpGs [27, 31, 73]. A CpG is a sequence
of a C followed by guanine (G) in 5’ to 3’ direction on the DNA. C and G are
linked via a phosphate group (p), hence the name CpG. In the double-stranded
DNA C is paired with G (and vice versa) on the opposite strand. Therefore,
each CpG contains two Cs: one from the CG pair on one strand and one from
the respective GC pair on the opposite strand. This symmetry is important for
the inheritance of methylation patterns and will be discussed later.

The Cs in CpGs are converted to 5-methylcytosine (5mC) by changing the
hydrogen (H) atom at the 5 position to a methyl group CH3. A structural for-
mula for both C and 5mC can be found in Fig. 2.2. The reaction is controlled by
a family of enzymes, the so-called DNA methyltransferases (Dnmts) [12, 82, 104].
The mechanisms of how the Dnmts interact with the DNA remain elusive. It is
also possible that different kinds of Dnmts behave differently. Two examples of
different possible mechanisms are shown in Fig. 2.3: In processive methylation,
the Dnmt continuously methylates all CpGs (except for possible errors), while
walking in one direction on the DNA strand, here, for example in 5’ to 3’ direc-
tion. Distributive methylation is characterized by a constant detachment from
and attachment to the DNA, without directed movement. While the Dnmt is
attached the C can be methylated and while detached the Dnmt may perform a
diffusive motion before attaching at some other sites of the DNA.
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Figure 2.3: Two possible methylation mechanisms. In processive methylation
the Dnmts methylate unmethylated Cs in 5’ to 3’ direction without attaching. In
distributive methylation the Dnmts attach, perform a methylation event, detach
again, move to some other C (not necessarily a direct neighbor) and so forth.

One distinguishes different kinds of methylation events, which are (for the
most part) associated with different members of the Dnmt family. Maintenance
methylation is responsible to reestablish methylation patterns after cell divi-
sions and is mainly associated with Dnmt1 [59]. After replication one strand
(and its methylation) is kept as it is (parental strand), while the opposite strand
is newly synthesized (daughter strand). However, on the new strand all Cs
are initially unmethylated. Therefore, all CpGs are either un- or hemimethy-
lated, i.e., only the C on the parental strand within the CpG is methylated. Note
that hemimethylation can occur for both strands, independent of their role of
parental or daughter strand. However, immediately after replication only the
parental strand may contain a methylated C.

We now call the methylation events after replication, which make
hemimethylated CpGs fully methylated, maintenance methylation. Essentially,
in maintenance methylation the information about the methylation state of the
parental strand is used to reestablish existing methylation patterns after cell
division, i.e., if the C on the parental strand is methylated, then the C on
the daughter strand will (very likely) also be methylated and if the C on the
parental strand is unmethylated, no methylation event will take place. There-
fore the maintenance probability is usually very high [6]. Here also the afore-
mentioned symmetry in CpGs comes into play: If methylation would occur
on single Cs (outside of the CpG context), after cell division the information
about the methylation state would only be conserved on the (parental) strand
containing the C. For the other (parental) strand containing the G, the newly
synthesized daughter strand will contain an unmethylated C, however there is
no way of inferring whether the C should be methylated or not to preserve the
initial pattern.
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In de novo methylation, on the other hand, which is carried out by Dnmt3a
and Dnmt3b (which we summarize to Dnmt3a/b and treat them as one), methyl
groups may be added to any arbitrary unmethylated C, independent of the
methylation state of the opposite strand [103]. Hence, de novo methylation may
be responsible for two tasks: First to add new methylation patterns, if a fully
unmethylated CpG is methylated on one (or both) strand(s) and second to fix a
failed maintenance if methylation is added to a hemimethylated CpG when the
maintenance methylation was not performed before. Usually the de novo proba-
bility is quite small compared to the maintenance probability [6], since once the
cell differentiation is complete, the methylation patterns are quite stable. Note
that there are sometimes different definitions for the methylation events, where
de novo is exclusively the transition from un- to hemimethylated and not the
maintenance-like transitions.

Also note that the maintenance and de novo efficiencies are not necessarily
constant over time [38]. Since the focus of this thesis lies more on the spatial
modelling and neighborhood dependencies for methylation events, we keep
the efficiencies constant in order to not make the model too complex. Time
dependent transition probabilities (efficiencies) require more parameters and
transition matrices and tend to be prone to overfitting, if not treated carefully.

Recent studies suggest, that although Dnmt1 is mainly responsible for main-
tenance, it may also perform de novo methylation to a certain degree. Also,
Dnmt3a/b, mainly responsible for de novo, may perform some maintenance
[82]. Therefore, when modelling the enzymes and methylation events, each en-
zyme should get its own parameter set. With the aid of genetic engineering, it is
possible to knock out (KO) one of the enzymes such that only the other is active
and hence allows to investigate the properties of the different enzymes sepa-
rately. In case of Dnmt1KO only Dnmt3a/b is active and in case of Dnmt3a/b
DKO (double KO, since two enzymes are knocked out at once) only Dnmt1 is
active. The case where no enzymes are knocked out is referred to as wild-type.
The data sets are obtained from so-called hairpin bisulfite sequencing (BS-seq)
and will be discussed in more detail in Section 2.3.7.

It is important to note that 5mC can be further modified by oxidation to 5-
hydroxymethyl- (5hmC), 5-formyl- (5fC) and 5-carboxylcytosine (5caC) by Tet
enzymes [69]. These modifications are involved in the removal of 5mC from the
DNA by passive or active demethylation. Passive demethylation is connected
to DNA replication, when a new strand is synthesized with no methylation (or
other modifications) at all. Due to a low maintenance efficiency, or due to the
fact that the modifications of 5mC are not recognized on the opposite strand for
maintenance events, the methylation level subsequently decreases (passively)
over the course of some cell divisions. In active demethylation, on the other
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5mC5fC∗

5hmC

Figure 2.4: Schematic representation of de novo methylation and the active
demethylation loop. Note that we summarized 5fC and 5caC into 5fC∗.

hand, 5mC is eventually modified to 5fC∗ (5fC or 5caC), which is actively re-
moved from the DNA and replaced by an unmethylated C. A schematic repre-
sentation of this methylation cycle is depicted in Fig. 2.4. Note that this cycle can
occur multiple times between two cell divisions1 and therefore requires hybrid
modelling [77]. However, the data used for this thesis does not capture modifi-
cations other than 5mC. Therefore, we do not consider the other modifications
here and stick to modelling in discrete time.

2.2.3 Mechanistic Modelling vs. Machine Learning

“All models are wrong, but some are useful.”
(George E. P. Box)

The goal of mechanistic models is to gain understanding of the underlying pro-
cesses in real systems. To that end, the model approximates the real system
by focusing on the relevant/interesting aspects, usually using a mathematical
description, and omitting the non-relevant parts. It is important to note, that
no matter how complex the model becomes, certain aspects of the real system
will always be missed or cannot be described by the model. Hence, “all mod-
els are wrong”. Nevertheless, these models have successfully been applied to
describe certain aspects of the real system and to get a deeper understanding,
and “are [therefore] useful”. In physics, for example, there are different models
that describe different aspects of the same system (the universe): Processes on
a very small scale are governed by quantum mechanics, while on a large scale
gravity is the appropriate model. Both modelling approaches work very well

1Since maintenance happens only once after cell division, the cycle is for the vast majority of
runs driven by de novo methylation.
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in their respective case, however, there is no model (yet), that is able to describe
processes for all scales, small and large.

Mechanistic models usually contain parameters or assumptions that directly
allow an interpretation to explain the behavior of the system. To be a bit more
precise and establish ties to this thesis, in Section 2.3 we will introduce a mech-
anistic model uses both aforementioned possibilities: The model contains so-
called dependency parameters that directly allow to interpret the strength of the
influence of the neighboring methylation states on the transition rates. At some
point we also have to choose the multiplication order of the transition matrices,
which allows us to investigate different assumptions on the working mecha-
nisms of how the Dnmts interact with the DNA (processive vs. distributive
methylation, see also Fig. 2.3).

In machine learning, on the other hand, it is usually not possible to use
the obtained results to explain the system’s behavior. Only the simplest tech-
niques, like subset selection, decision trees or linear regression, allow some in-
terpretability of the results, however, these methods are quite inflexible and
therefore often not suitable to produce reliable predictions for more complex
scenarios.

The goal of machine learning is to build a statistical model from data, based
on generalizable rules and patterns. This model can then be used to make pre-
dictions on new unseen data. However, the underlying algorithms function in
a black box manner, i.e., they usually yield good prediction results, but how
these results are obtained is usually not explainable. This is a sharp contrast to
mechanistic models. Although this thesis focuses mainly on mechanistic mod-
elling, whenever appropriate we borrow some machine learning methods, as
for example in the clustering in Section 2.5.5 that is based on a variant of k-
means. In general, it could be a promising approach to combine the best of this
two worlds: the explainability from mechanistic modelling with the predictive
power from machine learning.

2.2.4 Related Work

With the rapid evolution of high-throughput technologies for epigenetic anal-
ysis, data on a genome-wide scale is available [15, 16, 39, 80, 91] and compu-
tational methods are contributing significantly to the progress of epigenetic re-
search. For instance, deep learning can be used to impute the methylation state
at individual DNA positions if information about the state of neighboring po-
sitions is available [5]. Another approach to impute on unassayed CpG sites is
based on Bayesian clustering [67]. As an orthogonal approach to learning-based
methods, which focus on accurate predictions, mechanistic models have been
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developed to describe the mechanisms underlying epigenetic changes and test
different hypotheses [33, 36, 105, 117].

Arand et al. proposed a hidden Markov model (HMM) for the evolution
of DNA methylation patterns during early development and applies it to hair-
pin bisulfite sequencing data from mouse embryonic stem cells [6]. It gives a
mechanistic description of the activity of the DNA methyltransferases Dnmt1,
Dnmt3a, and Dnmt3b over time, as well as the loss of methyl groups through
cell division. Since in mammals, DNA methylation primarily occurs on the cy-
tosine nucleotide of a CpG site, the model considers the methylation state of
individual CpGs over time. Trained on KO data, the model is able to predict
unseen methylation patterns in wild-type. A similar model has been used to
gain insights into the detailed molecular mechanisms underlying passive and
active demethylation [77]. Moreover, for genome-wide data, parameter values
that describe the efficiency of epigenetic modifications in such models can be
clustered and correlated with data from enrichment analysis [76].

Several mechanistic models have been proposed that consider methylation
patterns of some successive CpGs and their spatial relationships [14, 35, 48, 79,
84, 96]. Here, we consider a spatial extension of the model considered in [6].
Its main strength compared to other models is that for each locus, it considers
methylation efficiencies and dependency parameters. Moreover, it describes the
methylation state of both DNA strands and is thus appropriate for data from
hairpin bisulfite sequencing [40].

A major challenge is that the complexity of models considering methylation
patterns of several CpGs is much higher than the complexity of models that
consider a CpG in isolation. In the former case, all possible combinations of
states of the individual CpGs have to be considered during the analysis. Stan-
dard numerical approaches for parameter estimation based on maximizing the
likelihood of the data [6] fail for such models, since the number of possible
states is too large. Likelihood-free approaches based on stochastic sampling,
such as Approximate Bayesian Computation have been applied in this context
[14]. They allow to estimate the posterior distribution based on a comparison
of measured and simulated data sets but often suffer from slow convergence to
the true posterior distribution.

In [14] location- and neighbor-dependent models are proposed for single-
stranded DNA methylation data in blood and tumor cells. The (de-)methylation
rates depend on the position of the CpG relative to the 3’ or 5’ end and/or on
the methylation state of the left neighbor only. The dependence is realized by
the introduction of an additional parameter. In our proposed models we use
double-stranded DNA and can, therefore, include hemimethylated sites and
even distinguish on which strand the site is methylated. Furthermore, we allow
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dependencies on both neighbors by introducing two different dependence pa-
rameters. In contrast [35] copes with the neighborhood dependence indirectly
by allowing different parameter values for different sites. In order to reduce
the dimensionality of the parameter vector, a hierarchical model based on beta
distributions is proposed. Another difference to our model is the distinction be-
tween de novo rates for parent and daughter strand. However, this can easily be
included in future work.

A density-dependent Markov model was proposed [79]. In this model, the
probabilities of (de-)methylation events may depend on the methylation den-
sity in the CpG neighborhood. In addition, a neighboring sites model has been
developed, in which the probabilities for a given site are directly influenced by
the states of neighboring sites to the left and right [79]. When these models
were tested on double-stranded methylation patterns from two distinct tandem
repeat regions in a collection of ovarian carcinomas, the density-dependent and
neighboring sites models were superior to independent models in generating
statistically similar samples. Although this model also includes the dependence
on the methylation state on the left and right neighbor for double-stranded
DNA the approach is different. The transition probabilities of the neighbor-
independent model are transformed into a transition probability of a neighbor-
dependent model by introducing only one additional parameter. The state of
the left and right neighbor are taken into account by exponentiating this pa-
rameter by some norm. In addition, this approach does not allow the intuitive
interpretation of the dependence parameter. Recently the model from [79] was
extended to include the influence of different distances between the CpGs [96].
However this model is still restricted to single-stranded methylation data.

In [48] it has been shown that the collaboration between CpG sites is re-
quired to obtain stable fractions of methylation states over time in CpG islands
(CGIs). In this model another nearby CpG serves as a mediator such that its
state influences the possible reactions. In a more recent version of this model
the distance to the mediator CpG is taken into account [84]. However, both
models feature active demethylation, but have no explicit dependence parame-
ter and do not distinguish between the two different hemimethylated states.

Another approach based on the Ising model from statistical physics is intro-
duced in [64]. The correlation between methylation states are accounted for by
using a joint probability model. Recently, [47] introduced a model that contains
changes in the methylation states for both single sites and whole CGIs. How-
ever, the efficiency of this model is based on the assumption of the conditional
independence of CpG sites and therefore does not take into account the (possi-
ble) correlations between these CpG sites. Another recent approach combines
statistical inference with mathematical modelling [21]. At first they infer the
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parameters for each CpG site independently and investigate correlations with
the genomic distance as well as the influence of the local CpG density. In a next
step they use the obtained parameters for a stochastic simulation and compare
the results to real data.

2.3 Model

2.3.1 Notation

Consider a sequence of L neighboring CpG dyads2, which is represented as a
lattice of length L and width two (for the two strands). Each cytosine in the
lattice can either be methylated or not, leading to four possible states at each
position l:

• State 0: Both cytosines are not methylated.

• State 1: The cytosine on the upper strand is methylated, the lower one not.

• State 2: The cytosine on the lower strand is methylated, the upper one not.

• State 3: Both cytosines are methylated.

A sequence of four CpGs, each of which is in one of the four possible states, is
shown in Fig. 2.5. For a system of length L there are in total 4L possibilities to
combine the states of individual CpGs. These combinations are called patterns
in the following. A pattern is denoted by a concatenation of states s1s2 . . . sL,
e.g. 321 or 0123.

In order to represent the pattern distribution as a vector it is necessary to
uniquely assign a reference number Z to each pattern. A pattern can be per-
ceived as a number in the tetral system, such that converting to the decimal

2The exact nucleotide distance between two neighboring dyads is not considered here ex-
plicitly, but we assume that this distance is small. For the BS-seq data that we consider, the
average distance between two CpGs is 14 bps (base pairs) and the maximal distance is 46 bps.

Figure 2.5: A lattice of length L = 4 containing all possible states 0, 1, 2 and 3,
forming the pattern s1s2s3s4 = 0123.
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system leads to a unique reference number. After the conversion an additional
1 is added in order to start the referencing at 1 instead of 0, i.e.

Z = 1 +
L∑
l=1

sl · 4l−1. (2.11)

For example, for L = 3:

pattern: 000 −→ Z = 1

pattern: 123 −→ Z = 28

pattern: 333 −→ Z = 64

This reference number Z then also corresponds to the position of the pattern
in the respective distribution vector. Note that this definition of Z is only used
to uniquely enumerate the patterns and allows the convenient transformation
from pattern to reference number and back. The emerging ordering with re-
spect to the reference number does not necessarily reflect the (dis)similarity of
different patterns. For example, the patterns 002 and 100, which are essentially
the same pattern (only considering CpGs and ignoring the rest of the DNA),
i.e, containing exactly one methylated C at the respective 5’ end, have reference
numbers 3 and 17 for L = 3. Hence, they are quite far apart in the distribution
vector. Thus, the reference number Z falls in the category of qualitative, nomi-
nal data and, therefore, classical moments of the distribution with respect to Z,
like the average pattern, have no intuitive meaning.

We describe the state of a sequence of L CpGs by a discrete-time Markov
chain with pattern distribution π(t), i.e., the probability of each of the 4L pat-
terns after t cell divisions. For the initial distribution π(0), we use the distri-
bution measured in the wild-type when the cells are in equilibrium. Note, that
other initial conditions gave very similar results, i.e., the choice of the initial
distribution does not significantly affect the results. The reason is that also the
KO data is measured after a relatively high number of cell divisions where the
cells are almost in equilibrium. Transitions between patterns are triggered by
different processes: First due to cell division the methylation on one strand is
kept as it is (e.g. the upper strand), whereas the newly synthesized strand (the
new lower strand) does not contain any methyl group. Afterwards, methyla-
tion is added due to different mechanisms. On the newly synthesized strand, a
site can be methylated if the cytosine at the opposite strand is already methy-
lated (maintenance). It is widely accepted that maintenance in form of Dnmt1
is linked to the replication machinery and thus occurs during/directly after the
synthesis of the new strand. Furthermore, CpGs on both strands can be methy-
lated independent of the methylation state of the opposite site (de novo). The
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Figure 2.6: Possible maintenance and de novo transitions depicted for the lower
strand, where ◦ denotes an unmethylated, • a methylated site and ? a site where
the methylation state does not matter. Note that the same transitions can occur
on the upper strand.

transition matrix P is defined by the composition of matrices for cell division,
maintenance and de novo methylation of each site.

2.3.2 Cell Division

Depending on which daughter cell is considered after cell replication, the upper
(s = 1) or lower (s = 2) strand is the parental one after cell division. Then, the
new pattern can be obtained by applying the following state replacements:

s = 1 :


0 −→ 0

1 −→ 1

2 −→ 0

3 −→ 1

s = 2 :


0 −→ 0

1 −→ 0

2 −→ 2

3 −→ 2

(2.12)

Given some initial pattern with reference number i, applying the transforma-
tion (2.12) to each of the L positions leads to a new pattern with reference num-

ber j (notation: i
(2.12)
 j). The corresponding transition matrix CDs ∈ {0, 1}4L×4L

has the form

CDs(i, j) =

{
1, if i

(2.12)
 j,

0, else.
(2.13)

2.3.3 Maintenance and De Novo Methylation

For maintenance and de novo methylation, the single site transition matrices are
built according to the following rules:
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Consider at first the (non-boundary) site l = 2, . . . , L − 1 and its left and right
neighbor l− 1 and l+ 1 respectively. The remaining sites do not change and do
not affect the transition. The probabilities of the different types of transitions in
Fig. 2.6 have the form

p1 =0.5·(ψL + ψR)x, (2.14)
p2 =0.5·(ψL + ψR)x+ 0.5·(1− ψL), (2.15)
p3 =0.5·(ψL + ψR)x+ 0.5·(1− ψR), (2.16)
p4 =1− 0.5·(ψL + ψR)(1− x), (2.17)

where we set the probability x to x = µ in case of maintenance and to x = τ
in case of de novo methylation. ψL, ψR ∈ [0, 1] are the dependence parameters
for the left and right neighbor. The probabilities correspond to the four possible
cases for the neighbor states: p1 is used when both neighbors are unmethylated,
p2 if only the left, p3 if only the right, and p4 if both neighbors are methylated.

A dependence value of ψi = 1 corresponds to a total independence on the
neighbor whereas ψi = 0 leads to a total dependence. Hence, µ and τ can be in-
terpreted as the probability of maintenance and de novo methylation of a single
cytosine between two cell divisions assuming independence from neighboring
CpGs. A visualization of the transition probabilities (2.14) - (2.17) can be found
in Fig. 2.7. Moreover, all CpGs that are part of the considered window of the
DNA have the same value for the parameters µ, τ , ψL, and ψR, since in earlier
experiments only very small differences have been found between the methy-
lation efficiencies of nearby CpGs [6].

In order to understand the form of the transition probabilities consider at
first a case with only one neighbor. The probabilities then have the form ψx if
the neighbor is unmethylated and 1 − ψ(1 − x) if the neighbor is methylated.
Note that both forms evaluate to x for ψ = 1, meaning that a site is methylated
with probability x, independent of its neighbor. For ψ = 0 the probabilities
become 0 and 1, meaning that if there is no methylated neighbor the site cannot
be methylated or will be methylated for sure if there is a methylated neighbor
respectively.

The probabilities for two neighbors are obtained by a linear combination of
the one neighbor cases, with ψL for the left and ψR for the right neighbor, and
an additional weight of 0.5 to normalize the probability. The same considera-
tions also apply to the boundary sites however there is no way of knowing the
methylation states outside the boundaries (denoted by ?). Therefore instead of
a concrete methylation state (◦ for unmethylated, • for methylated site) the av-
erage methylation density ρ is used to compute the transition probabilities at
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Figure 2.7: Transition probabilities p1 - p4 (left to right) for x = 0, 0.3, 0.7, 1 (top
row to bottom row).

the boundaries (depicted here for de novo):

? ◦ ◦ → ? • ◦ p̃1 = (1− ρ)·p1 + ρ·p2, (2.18)
? ◦ • → ? • • p̃2 = (1− ρ)·p3 + ρ·p4, (2.19)
◦ ◦ ?→ ◦ • ? p̃3 = (1− ρ)·p1 + ρ·p3, (2.20)
• ◦ ?→ • • ? p̃4 = (1− ρ)·p2 + ρ·p4. (2.21)

Note that the same considerations hold for maintenance at the boundaries if the
opposite site of the boundary site is already methylated.

For each position l, there are four transition matrices: two for maintenance
and two for de novo, namely one for the upper and one for the lower strand in
each process. In order to construct these matrices consider the three positions
l− 1, l and l+ 1, where the transition happens at position l. Only the transitions
depicted in Fig. 2.6 can occur. Furthermore the transitions are unique, i.e. for a
given reference number i the new reference number j is uniquely determined.
For patterns not depicted in Fig. 2.6 no transition can occur, i.e. the reference
number does not change.
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The matrix describing a maintenance event at position l and strand s has the
form

M (l)
s (i, j) =


1, if i = j and 6 ∃j′ : i j′,

1− p, if i = j and ∃j′ : i j′,

p, if i 6= j and i j,

0, else,

(2.22)

where the probability p is given by one of the Eqs. (2.14)-(2.21) that describes
the corresponding case and x = µ. Note that M (l)

s depends on s and l since it
describes a single transition from pattern i to pattern j, which occurs on a par-
ticular strand and at a particular location with probability p. We define matrices
T

(l)
s for de novo methylation according to the same rules except that x = τ and

the possible transitions are as in Fig. 2.6, right. All matrices are of size 4L × 4L.
The advantage of defining the matrices position- and process-wise is that dif-
ferent models can be realized by changing the order of multiplication of these
matrices.

It is important to note that we have a 4L×4L transition matrix for each strand
and position here, i.e., each matrix describes the transition of exactly one C for
a given process. Hence, with different multiplication orders, different assump-
tions about working mechanisms of the Dnmts can be realized as demonstrated
in the following section. In Section 2.3.5 we present an alternative approach to
generate the transition matrix, where all Cs on one strand are updated simulta-
neously with only one matrix per process.

2.3.4 Combination of Transition Matrices

For all subsequent models it is assumed that first of all cell division happens and
maintenance methylation only occurs on the newly synthesized strand given by
s, whereas de novo methylation happens on both strands. Given the mechanisms
in Fig. 2.3, the two different kinds of methylation events, and the two types of
enzymes, there are several possibilities to combine the transition matrices. We
consider the following four models, which we found most reasonable based on
the current state of research in DNA methylation:

1. first processive maintenance and then processive de novo methylation

Ps =
L∏

l1=1

M (l1)
s

L∏
l2=1

T
(l2)
1

L∏
l3=1

T
(l3)
2 , (2.23)
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2. first processive maintenance and then de novo in arbitrary order

Ps =
1

(L!)2

L∏
l1=1

M (l1)
s

( ∑
σ1∈SL

L∏
l2=1

T
(σ1(l2))
1

)( ∑
σ2∈SL

L∏
l3=1

T
(σ2(l3))
2

)
, (2.24)

3. maintenance and de novo at one position, processive

Ps =
L∏
l=1

M (l)
s T

(l)
1 T

(l)
2 , (2.25)

4. maintenance and de novo at one position, arbitrary order

Ps =
1

L!

∑
σ∈SL

L∏
l=1

M (σ(l))
s T

(σ(l))
1 T

(σ(l))
2 , (2.26)

where SL is the set of all possible permutations for the numbers 1, . . . , L. We
will call the resulting models from Eqs. (2.23)-(2.26) model 1-4 in the following,
according to their enumeration above.

Note that the de novo events on both strands are independent, i.e. the de novo
events on the upper strand do not influence the de novo events on the lower
strand and vice versa, such that [T

(l)
1 , T

(l′)
2 ] = 0 independent of ψi3. Obviously it

is important whether maintenance or de novo happens first, since the transition
probabilities and the transitions themselves depend on the actual pattern. Fur-
thermore in the case ψi < 1 (dependence on right and/or left neighbor) the or-
der of the transitions on a strand matters, i.e. [M

(l)
s ,M

(l′)
s ] 6= 0 and [T

(l)
s , T

(l′)
s ] 6= 0

for l 6= l′. Note that this definition of models in principle allows to consider an
arbitrary number of CpGs. However, at least three CpGs are needed to prop-
erly include the influence of the left and right neighbor in the transitions. It
is also important to note that independent of the number of considered CpGs
the window size of the influential CpGs for the transition rates is always kept
at size three. However, treating more than three CpGs at once has two major
drawbacks: First of all the number of possible patterns grows rapidly (recall 4L

possible patterns for L CpGs) and hence the transition matrices become very
large as well (4L × 4L). This may lead to memory issues while calculating the
distributions, which can however be circumvented by sampling approaches, i.e.
stochastic simulation of the underlying Markov chain. Another problem with
the large number of possible patterns is that more data is required in order to

3[A,B] = AB −BA is the commutator of the matrices A and B.



Chapter 2. Stochastic Modelling of Spatial Methylation Patterns 23

ensure a good coverage, i.e. the number of measurements should be larger than
the number of patterns.

The second main problem is that using the same dependence parameters
for all pairs of adjacent CpGs is a rather strong assumption. Note that this as-
sumption becomes more problematic for larger windows, due to e.g. different
distances between the CpGs. One solution would be to introduce extra depen-
dence parameters for each pair, however this may lead to difficulties in the pa-
rameter identification.

The total transition matrix is then given by a combination of the cell division
and maintenance/de novo matrices. Recall that we consider two different types
of Dnmts, i.e., Dnmt1 and Dnmt3a/b. If only one type of Dnmt is active (KO
data) the matrix has the form

P = 0.5·(CD1 ·P1 + CD2 ·P2) (2.27)

and if all Dnmts are active (WT data)

P = 0.5·(CD1 ·P1 ·P̃1 + CD2 ·P2 ·P̃2), (2.28)

where Ps and P̃s have one of the forms (2.23)-(2.26). This leads to four different
models for one active enzyme or 16 models for all active enzymes respectively.
In the second case Ps represents the transitions caused by Dnmt1 and P̃s the
transitions caused by Dnmt3a/b. Note that if ψL = ψR = 1 all models are
the same within each case since they reduce to the neighborhood independent
model from [6]. Furthermore, the cell division, maintenance, and de novo tran-
sition matrices for a single CpG at a given position are sparse. However, upon
combining them to the full transition matrices in Eqs. (2.27) or (2.28), the final
matrices become dense and therefore have higher memory requirements. Note
that with increasing L the density of P decreases (see also Fig. 2.8), however, the
number of non-zero entries and thus the memory requirements still increase.

2.3.5 Stochastic Automata Network Description

Instead of manually generating the transition matrices for L CpGs, we present
a formal approach here, which enables us to generate transition matrices for an
arbitrary number of CpGs from the single CpG matrices.

The transition probability matrices for cell division, maintenance and de novo
methylation for a single CpG are listed in Tab. 2.1. In the left column the matri-
ces concerning the upper strand are listed and in the right column the matrices
for the lower strand.

It is biologically plausible to assume that cell division happens first, after-
wards maintenance on the daughter strand and in the end de novo on both
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Table 2.1: Transition matrices for a single CpG. Note that the transition proba-
bilities f may be functions of the reaction parameters, the CpG position and/or
the states of the adjacent CpGs. The matrices in the left column represent the
transitions on the upper and the matrices in the right column the transitions on
the lower strand.

Cell Division

CD1 =


1 0 0 0

1 0 0 0

0 0 1 0

0 0 1 0

 CD2 =


1 0 0 0

0 1 0 0

1 0 0 0

0 1 0 0


Maintenance

M1 =


1 0 0 0

0 1 0 0

0 0 1−f f

0 0 0 1

 M2 =


1 0 0 0

0 1−f 0 f

0 0 1 0

0 0 0 1


De Novo

T1 =


1−f f 0 0

0 1 0 0

0 0 1−f f

0 0 0 1

 T2 =


1−f 0 f 0

0 1−f 0 f

0 0 1 0

0 0 0 1



strands takes place. Note that the order of the two possible de novo events does
not matter, i.e. T1 · T2 = T2 · T1. Since the strand that is kept after cell division is
chosen randomly with equal probability, the total transition probability matrix
P for one acting enzyme (see also Eq. (2.27)) is given by

P = 0.5 · (CD1 ·M1 + CD2 ·M2) · T1 · T2. (2.29)

Given a sequence of L CpGs, each CpG can be described by the aforemen-
tioned DTMC, which gives us one automaton of the stochastic automata net-
work (SAN). The structure of each automaton is independent of the automata
describing neighboring CpGs, however, the transition probabilities may de-
pend on their local states (functional transitions). A suitable method to com-
bine these automata in order to capture the dynamics of whole sequences of
CpGs is to consider them as an automata network. Within the SAN framework,
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the transition matrices of the individual automata are combined via the Kro-
necker product. Since in our case the transition matrix for one automaton is a
product of the transition matrices for the different processes, we exploit some
properties of the Kronecker product to generate the global transition matrix of
the network. From

A⊗ (B ⊗ C) = (A⊗B)⊗ C (2.30)
(AC)⊗ (BD) = (A⊗B) · (C ⊗D) (2.31)

the following properties can be derived [25](
N∏
n=1

An

)
⊗

(
N∏
n=1

Bn

)
=

N∏
n=1

(An ⊗Bn) , (2.32)

M⊗
m=1

(
N∏
n=1

A(m)
n

)
=

N∏
n=1

(
M⊗
m=1

A(m)
n

)
. (2.33)

Note that in Eqs. (2.31)-(2.33) the corresponding matrices have to be compatible
under the standard matrix product.
As a consequence of Eq. (2.33) it is possible to obtain the total transition matrix
P in two ways: First compute a transition matrix for a single CpG (Eq. (2.29))
and extend the result to several CpGs with the Kronecker product or calculate
the transition matrices for the different processes for several CpGs first via the
Kronecker product and combine them afterwards. Since the transition probabil-
ities may depend on the neighbor states, i.e. the states of the adjacent automata,
it is easier to choose the second possibility and construct the individual tran-
sition matrices for the different processes first. Another advantage is that the
matrices for the different processes are sparse, while the total transition matrix
is quite dense for a single CpG (see Tab. 2.1 and Fig. 2.8), such that we apply
the Kronecker product to sparse matrices and multiply the (also sparse) results
afterwards.

If we assume that all CpGs are methylated independent of their neighbor-
hood, then no functional transitions are needed and the transition probabilities
are constants. The construction of the global transition matrix is then straight-
forward by simply applying the Kronecker product. To model dependence,
first observe that since only the transition probabilities, but not the transitions
themselves, depend on the neighboring states, the structure of the global tran-
sition matrix is the same as in the independent case. By using functions instead
of constant probabilities, we are able to capture the effect of the neighbors on
the transition rates. Another advantage of the functions is that we can incorpo-
rate different model assumptions (like processivity) by using different functions
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Figure 2.8: Density of entries for the transition matrix P for different numbers
of CpGs L.

without altering the structure of the transition matrices.
To shape the function f := f(~r, l, sl−1, sl+1) ∈ [0, 1] in the matrices in Tab. 2.1 to
our needs, we use the following inputs:

• ~r is a vector with the reaction parameters,

• l ∈ {1, . . . , L} is the position of the CpG such that boundary (l = 1, L) and
non-boundary (l = 2, . . . , L− 1) CpGs can be distinguished,

• sl−1 is the state of the left neighboring CpG and

• sl+1 is the state of the right neighboring CpG.

Depending on the methylation event (maintenance or de novo) different para-
meter vectors ~r can be chosen. Since in general all CpGs may undergo a reac-
tion, the states of the neighboring CpGs that are used (before or after reaction)
as an input for the function depends on the underlying assumptions. This will
be demonstrated in the following.

We first note that the indices of the matrices in Tab. 2.1 correspond to the
states before and after transition, i.e. the entry ai,j corresponds to the probability
of going from state i to state j. Furthermore, there is a unique relation between
the indices of the initial matrices and the indices of the result of their Kronecker
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product

ar,s · bv,w = (A⊗B)p(r−1)+v,q(s−1)+w, (2.34)
(A⊗B)i,j = ab(i−1)/pc+1,b(j−1)/qc+1 · bi−b(i−1)/pcp,j−b(j−1)/qcq, (2.35)

where A is a p × q- and B an arbitrary matrix. These formulas can easily be
generalized such that for a Kronecker product of L matrices we know exactly
the indices for each of the matrices and therefore the states before and after
transition for each CpG. We then use this knowledge to choose the correct tran-
sition probability depending on our assumptions. Note that the resulting in-
dices correspond exactly to our previous definition in Eq. (2.11), i.e. they are the
corresponding decimal number (shifted by one) when considering a state as a
number in the tetral system. For the transition probabilities, we use Eqs. (2.14) -
(2.21), depending on which is the appropriate choice for the given assumption
and position in the transition matrix.

For a moderate number of CpGs (≈ 5) it is possible to explicitly construct
the whole transition matrix with a simple algorithm. We first note that we have
to apply the Kronecker product for the matrices in Tab. 2.1 L times with them-
selves for a sequence of L CpGs. We then apply the following scheme:

1. Identify the indices of the non-zero entries of the matrix.

2. Calculate the indices of the resulting matrix after applying the Kronecker
product with Eq. (2.34) for the indices from step 1. Iteratively applying
Eq. (2.34) L times leads to the final indices (u, v). For each (u, v) we get an
ordered list ` containing the indices from the original matrices that lead to
this index.

3. For each (u, v) calculate the matrix entry

mu,v =
∏

(i,j)∈`

ai,j, (2.36)

where ai,j are the entries of the original matrix.

4. If ai,j contains the function f choose the neighbor states based on the as-
sumption and the indices (states) from ` of the adjacent matrices.

The corresponding pseudo-code can be found in Algorithm B.1 in Appendix B.
Note that for real data we have to ensure that all CpGs of a given sequence

originate from the same cell in order to properly investigate the neighborhood
dependencies. Real data rarely covers states of more than a couple of succes-
sive CpGs from the same cell with sufficiently deep coverage. Therefore, the
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number of contiguous CpGs is usually very limited, such that the explicit con-
struction of the transition matrix for short CpG sequences is feasible in most
cases. For a possible larger number of CpGs from advanced measurement tech-
niques we have to resort to more sophisticated methods to obtain the transition
matrices or even avoid the generation completely and resort to matrix vector
matrix products on the smaller component matrices [18, 19, 20, 32, 118].

Processivity

The detailed mechanisms about the interaction of the Dnmts with the DNA re-
main elusive. The Dnmts may behave in a processive way, i.e., moving con-
tinuously on the DNA strand, or in a distributive manner without directed
movement, where attachment and detachment occurs at arbitrary positions on
the DNA strand. We therefore would like to test these different assumptions
about the methylation mechanisms [44, 61, 87, 102]. A reasonable assumption
for Dnmt1 is processivity from left to right (assuming 5’ to be at the left and 3’ to
be at the right end), due to its link to the replication machinery. The processivity
from left to right implies, that a transition already happened at the left neighbor
(position l − 1) but not yet at the right neighbor (l + 1). This means, given the
list of indices ` = [. . . , (il−1, jl−1), (il, jl), (il+1, jl+1), . . .] we choose jl−1 for the left
neighbor state and il+1 for the right neighbor state as an input for the function
in step 4 of our algorithmic scheme. Consider for example the transition from
a fully unmethylated sequence (◦ ◦ ◦) to a fully methylated sequence (• • •). In
this case the correct order of (sub)transitions with their respective probabilities
are:

◦ ◦ ◦ (2.18)−→ • ◦ ◦ (2.15)−→ • • ◦ (2.21)−→ • • •

Verification

In order to check the correctness of our dedicated implementation for generat-
ing matrices with the Kronecker product for L CpGs, we compare the resulting
distributions with results from Monte-Carlo (MC) simulations. As initial distri-
bution π0 we use a discrete uniform distribution which assigns the same prob-
ability 4−L to all possible methylation patterns. We then compute the transient
distributions π(t) after t = 30 cell division and subsequent methylation events
via

π(t+ 1) = π(t) · P, (2.37)

where P is the total transition matrix, where we assume processivity. Note that
t = 30 cell divisions is well within the order of cell divisions for biological data
[6], where the system still shows a transient behavior. For a larger number of cell
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divisions the system may reach a stationary state. However, with the generated
transition matrix a stationary analysis is also straightforward.

We perform the corresponding MC simulations of our model with N = 106

runs to get an independent estimation for the transient pattern probabilities.
Note that for that many runs the results from MC simulations are already pretty
stable, i.e., the confidence intervals for the estimated transient probabilities are
small. In order to not overload the figures, we therefore do not show them here.
The distributions for different parameter sets are shown in Fig. 2.9. Panels (a)
and (b) show the fully dependent case, where the transition probabilities de-
pend only on the neighbor states and not on the actual maintenance and de novo
rates µ and τ . In Fig. 2.9 (c) the transition probabilities are completely inde-
pendent of the neighboring states and depend solely on µ and τ . This case is
equivalent to the case where we replace the function f by the respective (con-
stant) transition probabilities. Fig. 2.9 (d) shows a case with some dependency
on both neighbor states, where the dependence to the left is slightly stronger.
Choosing a wrong transition function in the matrix entries (compared to MC,
where it is easier to ensure the correct choice) would affect the distribution in
(a) and (b) the most, since there is a full dependency and hence the largest effect
from the neighboring states. For the partial dependencies in (d) there should
also be an effect if the choices were wrong. In the independent case (c) there can
not be a wrong choice, since the transition function is a constant.

In all cases we observe an almost perfect agreement with only small devia-
tions on some patterns on a very small scale. In order to exclude a flaw in the
construction of the transition matrix we compute the Hellinger distance

H(P,Q) =
1√
2

(
k∑
i=1

(
√
pi −
√
qi)

2

) 1
2

(2.38)

to compare the similarity of the distributions and to check if the deviations stem
from the finite number of MC simulation runs. From Fig. 2.10 it is obvious that
with an increasing number of runs the distributions become more and more
similar such that we can indeed exclude a flaw in the matrix construction. The
small deviations stem from the finite number of runs since for N = 106 there are
still statistical inaccuracies and hence H is quite large (order of 10−2).

Generalizations

The presented SAN framework allows to consider longer CpG sequences and
hence the proper investigation of larger genomic regions. The transition matrix
for L CpGs can systematically be generated from the small single-CpG matrices
and the generation is less prone to errors than an ad hoc approach. It is also
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Figure 2.9: Comparison of distributions obtained from transition matrices gen-
erated from the SAN description (blue dots connected with solid lines) and from
MC simulations (red crosses). The parameters for each subfigure are given in
the form (µ, ψL, ψR, τ).

pretty easy to adapt the model to test different biological assumptions by us-
ing different functions in the transition matrices. In our example, we assumed
processivity from left to right, but by changing the functions other assump-
tions like processivity from right to left (less biologically plausible) or even non-
processive (e.g. distributive) behavior can be realized. It is also easily possible
to introduce additional reaction parameters for each individual CpG within this
framework to generalize the model. Using the same reaction parameters for all
CpGs is a strong assumption, especially for the neighborhood dependencies,
which should intuitively be different due to the (in general) different distances
between CpGs or also due to different base sequences in the DNA (see also
Fig. 2.20).
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Figure 2.10: Hellinger distance H between distribution obtained from numeri-
cal SAN solution and from MC simulations with N runs for the parameter set
of Fig. 2.9 (d).

Furthermore, it is also straightforward to apply the SAN approach to more
complex methylation models in order to investigate possible neighborhood de-
pendencies. This is especially useful when there are more than four states per
CpG as with more states (and hence more possible patterns) the transition ma-
trix grows rapidly (see Fig. 2.11).

In the simplest case, only one DNA strand is considered. Hence there are
only two possible states for each CpG, either methylated or unmethylated. In
this case even for a quite large number of CpGs the number of patterns remains
moderate (Fig. 2.11, blue), however, in this simple case lacks the possibility
to include important features, like the distinction of maintenance and de novo
methylation.

The inclusion of an additional hemimethylated state resolves this issue.
However, so far there is no distinction between the two different possible
hemimethylated states. Therefore there are only three possible states (Fig. 2.11,
yellow). Using hairpin sequencing techniques allows the distinction between
the two different hemimethylated states and increases the number of states per
CpG to four (Fig. 2.11, green). Since this is the case this thesis focuses on, it will
be thoroughly discussed in Section 2.3.7.
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Figure 2.11: Number of patterns for different numbers of CpGs and possible
states for a single CpG. The corresponding data (or model) is explained in the
main text. Note the log-scale on the Y axis.

Introducing additional hydroxylated Cs as in [38] the number of states per
CpG grows from four to nine such that the number of possible patterns grows
to 9L and the size of the transition matrix grows to 9L×9L for L CpGs (Fig. 2.11,
red).

With even more possible modifications of C, such as the formylated form
5-formylcytosin, the number of possible states and hence the matrix size grows
even more (16L or 16L × 16L respectively; Fig. 2.11, purple). In this case, the
SAN description becomes even more useful as it would be very tedious to gen-
erate the transition matrix in other ways. It is also possible to apply the SAN
approach to continuous time Markov chains or hybrid models as in [77]. Here,
the discrete transition matrix was generated with a Kronecker product, while
the continuous generator matrix can be generated with a Kronecker sum.
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Figure 2.12: Conversions of the unobservable states u,m to observable states
T,C with respective rates.

2.3.6 Conversion Errors

The actual methylation state of a C cannot be directly observed. During BS-seq,
with high probability every unmethylated C (denoted by u) is converted into
thymine (T) and every 5mC (denoted by m) into C. However, conversion errors
may occur and we define their probability as 1 − c and 1 − d, respectively, as
shown by the dashed arrows in Fig. 2.12. It is reasonable that these conver-
sion errors occur independently and with approximately identical probability
at each site and thus the error matrix for a single CpG (containing two Cs) takes
the form

∆1 =


c2 cc̄ cc̄ c̄2

cd̄ cd c̄d̄ dc̄

cd̄ c̄d̄ cd dc̄

d̄2 dd̄ dd̄ d2

 , (2.39)

with c̄ = 1− c and d̄ = 1− d. Due to the independence of the events this matrix
can easily be generalized for systems with L > 1 CpGs by recursively using the
Kronecker-product

∆L = ∆1 ⊗∆L−1 for L ≥ 2. (2.40)

Hence, ∆L gives the probability of observing a certain sequence of C and T nu-
cleotides for each given unobservable methylation pattern. In order to compute
the likelihood π̂ of the observed BS-seq data, we therefore first compute the
transient distribution π(t) of the underlying Markov chain at the corresponding
time instant4 t by solving Eq. (2.37) and then multiply the distribution of the
unobservable patterns with the error matrix.

π̂ = π(t) ·∆L. (2.41)

Note that this yields a hidden Markov model with emission probabilities ∆L.
In the following the values for c were chosen according to [6]. Since the value

4The number of cell divisions is estimated from the time of the measurement since these cells
divide once every 24 hours.
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Figure 2.13: Representations of WT (left), Dnmt1KO (middle) and Dnmt3a/b
DKO (right) data for mSat. On the X axis the CpGs and on the Y axis the mea-
sured cells are shown. The different colors encode the states as follows: Red: 0,
green: 1, yellow: 2, blue: 3, and white: “no measurement”.

for d was not determined in [6], we measured the conversion rate d = 0.94 in
an independent experiment under comparable conditions [38]. In this study we
used hairpin linkers, which contain C, 5mC, as well as 5hmC. After sequencing
we determine the conversion state of each particular C from within each read.
Note, that we calculated the average conversion rate of all experiments for the
present study.

2.3.7 Data

For our analysis we focused on hairpin data of the single copy genes Afp (5
CpGs) and Tex13 (10 CpGs) as well as the repetitive elements IAP (intracis-
ternal A particle) (6 CpGs), L1 (Long interspersed nuclear elements) (7 CpGs)
and mSat (major satellite) (3 CpGs). During the workflow of hairpin bisulfite
sequencing, the two DNA strands are linked together covalently, i.e. the methy-
lation status of both strands from an individual chromosome (DNA molecule)
is known. Repetitive elements occur in multiple copies and are dispersed over
the entire genome. Therefore they allow capturing an averaged, more general
behavior of methylation dynamics.

The statistics for all data sets are summarized in Tab. 2.2. Note that only
for mSat we have more samples than possible patterns when considering the
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Table 2.2: Number of CpGs L and sample sizes N for the different data sets.

Locus L N1KO N3abKO NWT

mSat 3 1 191 1 187 2 285
Afp 5 134 186 564
IAP 6 182 457 609
L1 7 174 128 273
Tex13 10 394 601 1 044

whole sequence of all CpGs. Amongst others, this is one of the reasons why
we restrict the discussion mostly to sequences of three CpGs. The mSat data
sets are visualized in Fig. 2.13. Note that the WT data is almost always fully
methylated, while the Dnmt1KO data is mostly un- or hemimethylated. The
Dnmt3a/b DKO data is somewhat in between. Fully methylated CpGs are
displayed in blue, hemimethylated CpGs in yellow and green, depending on
which C is methylated, and unmethylated CpGs in red. White indicates that
there is no measurement for the respective CpG. In this case the sequence has
to be discarded for further analysis, because we need a pattern of at least length
3 for our model. For analyzing loci with more than three CpGs all partial se-
quences with three adjacent CpGs can be kept. Note that we can only use par-
tial sequences of the same CpGs, because different CpGs may in general show
different behaviors. If we, for example, analyze a locus with four CpGs and for
a certain measurement we have no data for the first CpG, we can still keep the
pattern from CpGs 2-4 if we would like to analyze those three CpGs. For inves-
tigating CpGs 1-3 or all four CpGs simultaneously, the respective measurement
has to be discarded due to the missing data for the first CpG.

Therefore, the actual sample size is smaller than the number of measured
cells, e.g., we have 1 729 measured cells in the Dnmt1KO data set for mSat
(Fig. 2.13 middle), but only 1 191 of them are usable (see Tab. 2.2). For the same
reason the sample sizes for partial sequences may be larger than the numbers
for the whole sequence given in Tab. 2.2. For example, in the L1 Dnmt1KO data
set there are only 174 usable measurements for the whole sequence of seven
CpGs, but 1 047 measurements that can be used, when only considering the
first three CpGs.
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2.4 Parameter Estimation Methods

In order to estimate the parameters θ = (µ, ψL, ψR, τ) ∈ [0, 1]4, there are sev-
eral possible methods available. Here we discuss (and apply) three examples of
conceptually different parameter estimation techniques: a moment-based ap-
proach (Generalized Method of Moments), a Bayesian approach (Approximate
Bayesian Computation), and a likelihood-based approach (Maximum Likeli-
hood Estimator).

2.4.1 Generalized Method of Moments

We start of with a moment-based parameter estimation method. To ensure iden-
tification of the parameters, we use the following quantities, which are based on
the methylation state and independent of the labeling of these states. Since the
labeling of states in our model might be chosen arbitrarily, i.e., there is no as-
sociated interpretation of the state labels, such as number of proteins later in
Chapter 3, the classical moments (such as the mean state) are meaningless here.
Instead, we define a set of more suitable moments.

We consider a pattern of L CpGs in the k-th measured cell, k ∈ {1, . . . , N}.
Let M (k)

i ∈ {0, 1} be the methylation state of the upper C in CpG i, where 1

represents a methylated and 0 an unmethylated C. Let S(k)
i ∈ {0, 1, 2} be the

number of methylated Cs of CpG i ∈ {1, . . . , L}. We consider moments of the
following RVs:

• (the horizontal average of) the methylation level on the upper strand

Xk =
1

L

L∑
i=1

M
(k)
i , (2.42)

• the squared difference of the methylation level and the (cell population)
average of the methylation level

(Xk − X̄)2, (2.43)

• a quantity to measure the fraction of consecutive methylated Cs on the
upper strand

1

L− 1

L−1∑
i=1

(
M

(k)
i ·M

(k)
i+1

)
, (2.44)
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Figure 2.14: Visual representation of the RVs (2.42) (left), (2.44), (2.45) (middle),
and (2.46) (right) for 4 CpGs and example pattern 0123. When only considering
the upper strand, this pattern is converted to 0101. (2.43) and (2.47) correspond
to the variances of (2.42) and (2.46).

• a quantity to measure the fraction of consecutive unmethylated Cs on the
upper strand

1

L− 1

L−1∑
i=1

(
(1−M (k)

i ) · (1−M (k)
i+1)
)
, (2.45)

• the number of methylated Cs for each CpG

S
(k)
i , (2.46)

• the squared difference of the number of methylated Cs and the cell popu-
lation average of methylated Cs in each CpG

(S
(k)
i − S̄i)2. (2.47)

Note that since our model is strand symmetric, the upper and lower strand be-
have equivalently and the moments based on Eqs. (2.42)-(2.45) are identical for
both strands. Therefore, w.l.o.g. we consider only the quantities for the upper
strand. A visual representation of the quantities can be found in Fig. 2.14. Fur-
ther, note that all these quantities only take small values due to their definition
and all have the same (or a very similar) order of magnitude.

We selected the above quantities based on some considerations: The methy-
lation level (2.42) and number of methylated Cs for each CpG (2.46) are obvi-
ous choices. The squared differences to their average (2.43) and (2.47) are later
needed to obtain variances. Since the model contains neighborhood dependen-
cies, i.e., the state of one CpG may influence (or even determine) the states of
its neighbors, the number of consecutive (un)methylated Cs (2.44) and (2.45)
contain valuable information. Note that it is not possible to distinguish be-
tween alternating states and consecutive opposite states with only one of these
quantities. For example, with Eq. (2.44) only, it is impossible to distinguish the
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patterns 00000 and 10101 (L = 5). The combination of (2.44) and (2.45) contains
this information. We will later investigate which of the defined quantities (2.42)-
(2.47) are mandatory for the successful parameter identification and estimation.

For each measured cell k, we collect the quantities defined in Eqs. (2.42)-
(2.47) (or a subset thereof) in a random vector Yk. For L CpGs, each Yk has
(depending on how many moments are used, up to) m = 4 + 2L entries. The
corresponding sample moments are denoted by

Ȳ =
1

N

N∑
k=1

Yk (2.48)

and the theoretical moments, which can either be obtained from the numerical
solution of the model or from MC simulations, are denoted by m(θ), where θ is
the vector of model parameters. We then define the cost functions as

gr(θ) := Ȳ (r) −mr(θ), (2.49)

where r denotes the r-th entry in the corresponding vectors.
An obvious inference approach would be to consider the ordinary least

squares estimator

θ̂ = arg min
θ

m∑
r=1

(gr(θ))
2 , (2.50)

where m is the number of moment constraints. Under certain conditions re-
lated to the identification of the parameters as discussed below, this estimator
is consistent (converges in probability to the true value of θ) and asymptotically
normal. However, its variance may be very high. This problem can be mitigated
by choosing appropriate weights for the summands in (2.50). Moreover, since
correlations between the cost functions gr(θ) exist, a more general approach that
considers mixed terms is needed. This leads to a class of estimators, called gen-
eralized method of moments (GMM) estimators that have been introduced by
Hansen [52]. The idea is to define the estimator as

θ̂ = arg min
θ

g(θ)′Wg(θ), (2.51)

where g(θ) is the column vector with entries gr(θ), r = 1, . . . ,m, and W is a
positive semi-definite weighting matrix. Note that by defining fr(Y, θ) = Y (r)−
mr(θ) we see that

gr(θ) =
1

N

∑
k

fr(Yk, θ) =
1

N

∑
k

Y
(r)
k −mr(θ) (2.52)
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is the sample counterpart of the expectation E[fr(Y, θ)]. The latter satisfies

θ0 = arg min
θ
E[f(Y, θ)]′WE[f(Y, θ)], (2.53)

where f(Y, θ) is the column vector with entries fr(Y, θ) and θ0 is the true value
of θ. Note that the choice W = Im, where Im is the m×m identity matrix, gives
the least-squares estimator (2.50) with m terms while for general W there are
m·(m+1)

2
terms in the objective function (with m being the dimension of g(θ)). In

addition, we remark that in general W may depend on θ and/or the samples
Yk.

Here we assume that identification of θ is possible, i.e., we require that the
number of the moment constraints used is at least as large as the number of
unknown parameters and

E[f(Y, θ)] = 0 if and only if θ = θ0. (2.54)

Moreover, the theoretical moments mr(θ) should not be functionally dependent
(see Chapter 3.3 in [49]) to ensure that the information contained in the moment
conditions is sufficient for successfully identifying the parameters.

By applying the central limit theorem to the sample moments, it is possi-
ble to show that the GMM estimator is consistent and asymptotically normally
distributed and that its variance becomes asymptotically minimal if the matrix
W is chosen such that it is proportional to the inverse of the covariances be-
tween the Y (r)

k [52]. Intuitively, whenever a sample moment has high variance,
its weight is decreased compared to sample moments with lower variance. For-
mally, we define Yk as the random vector with entries (Yk)

(r) for r = 1, . . . ,m
and omit the subindex k if it is not relevant. Then,

F (θ0) = COV [Y,Y] = E[f(Y, θ0)f(Y, θ0)T ] (2.55)

and choosing W ∝ F−1 will give an estimator with smallest possible variance,
i.e., it is asymptotically efficient in this class of estimators [49, 52]. Note that
the covariance depends on the (unknown) real parameter value θ0. Using an
estimated value θ̃ instead of the true one may lead to “misspecification”, i.e.,

E[Y] 6= m(θ̃). (2.56)

In this case, the above estimator is no longer consistent and the weight matrix
W might be suboptimal.

An estimator for F that is consistent is then given by [49]

F̂ =
1

N

N∑
k=1

(Yk −Y)(Yk −Y)T , (2.57)
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where Y is the vector containing the sample moments defined in Eq. (2.48).
Note that Eq. 2.57 is the sample counterpart of Eq. (2.55). It is important to
note, that instead of the theoretical moments, the sample means are subtracted
here. In the sequel, we refer to the estimator based on Eq. (2.57) as the demean
estimator. This estimator removes the inconsistencies in the covariance matrices
estimated from the sample moments by ”demeaning“.

Later, in Section 3.2.4, we will discuss more methods to obtain an ideal
weight matrix and show how to adapt the GMM to multiple species and time
points. For the remainder of this chapter, we will focus on the demean estimator
with data from one time point only.

2.4.2 Approximate Bayesian Computation

According to Bayes’ theorem

p(θ|D) =
p(D|θ)p(θ)
p(D)

(2.58)

the conditional density of parameter θ given dataD (posterior) is determined by
the conditional density ofD given θ (likelihood), the prior p(θ) and the evidence
p(D). Note that the prior p(θ) is independent of D and is therefore used to
incorporate initial beliefs about the parameter values. If nothing is known a
uniform prior is usually an appropriate choice. In general, posterior and prior
stem from different families of distributions.

Since usually it is computationally too expensive (as for large L in our
model) or even infeasible to evaluate the likelihood, one has to resort to meth-
ods which circumvent the likelihood evaluation. One of these methods is the
approximate Bayesian computation (ABC). where the real data D is compared
to data D̃ generated from the model for different parameters θ distributed ac-
cording to the prior p(θ). The results are then compared via some suitable mea-
sure d(D, D̃). If d(D, D̃) ≤ ε, where ε ≥ 0 is a small tolerance, the respective
parameter is added to the posterior and otherwise discarded. Note that it is
also possible to not compare the data directly and rather use summary statistics
S(D) and S(D̃). For sufficient summary statistics there is no additional error
introduced by using the statistic.

In general, the rejection rate in a simple ABC algorithm is quite high. We
therefore resort to a variant of ABC called ABC-sequential-Monte-Carlo (ABC-
SMC) algorithm. The main idea is to first roughly scan the parameter space and
keep the best results as a first suggestion for the posterior. Then these results
are improved by slowly decreasing the tolerance ε and search preferentially in
the parts of the parameter space that yielded better results.
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We now describe the simple ABC-SMC version that we used in more detail:
As data D we use the distribution over the patterns and obtain the respective
distributions D̃ from the model either by MC simulations or the numerical so-
lution of Eq. (2.37) (only feasible for small/moderate L). Since initially nothing
is known about the parameters, except that they are probabilities, i.e. take on
values between 0 and 1, we chose a uniform prior, i.e. p(θ) ∼ U(0, 1) for all four
parameters. We then calculate d(D, D̃) for N1 samples and keep the n best re-
sults. Note that it is usually preferable to specify the size of the posterior rather
than ad hoc choosing a tolerance. The value of the distance function depends
on a variety of factors, amongst others on the distance function itself. It is there-
fore hard to determine only by considering the value of the distance function,
whether some parameters are good or bad and hence what is a good choice for
the acceptance threshold. A too large threshold leads to a too wide posterior
and a too narrow threshold leads to too many rejections and hence to long run
times due to the large number of required runs. It is therefore preferable too
specify the size of the posterior and adaptively calculate and update the thresh-
old.

From the accepted parameter values, we then have a list V that contains
the parameter values and the corresponding distances. For the measure d suit-
able choices are for example the Euclidean distance or the Hellinger distance
(Eq. (2.38)). Based on the distances in V we calculate the tolerance ε as the av-
erage distance

ε =
1

n

∑
di∈V

di (2.59)

and weights for each parameter set in the list

wj =

(
dj
∑
di∈V

d−1
i

)−1

. (2.60)

The weights are used to search preferentially around good parameter values
(small distance, large weight) and to a lesser extend around worse parameter
values (big distance, small weight). After randomly choosing parameter values
from V according to the weights, these parameters are used a means for a mul-
tivariate normal distribution with variance σ. Note that there are sophisticated
methods for an optimal choice of σ. Here, we chose a small constant σ which
should neither be too small, since then the parameter space is not sufficiently
explored, nor too large since then the rejection rate becomes too large. We then
sample new parameter values from this normal distribution. Note that the nor-
mal distribution may yield parameter values outside of the interval between
0 and 1. In this case these parameters are discarded immediately. Otherwise



42 2.4. Parameter Estimation Methods

the distance is calculated and if it is smaller than the current tolerance ε the
corresponding parameters and distance replace the entry in V with the largest
distance, i.e. the number of entries in V and ultimately in the posterior remains
constant. We then recompute the tolerance and weights and repeat this process
until some criterion is met. Some possible criteria are a maximum number of
tries N2, a minimum of change in the tolerance, or a small standard deviation
of the posterior. The final values of the parameters in V form the posterior. The
parameter estimations can be extracted from the posterior, for example by tak-
ing the mean or the median. The pseudo-code for this simple ABC-SMC version
can be found in Algorithm B.2 in Appendix B.

2.4.3 Maximum Likelihood Estimator

A commonly used parameter estimation technique is the Maximum Likelihood
Estimator (MLE). Given a set of observed patterns x1, . . . , xN of L CpGs and the
parameterized pattern distribution π̂(θ) from the numerical solution of (2.37)
and (2.41) for a given time t, we can derive the likelihood

L(θ) =
N∏
k=1

π̂θ(xk), (2.61)

where π̂θ(xk) is the probability of pattern xk from the numerical solution, given
parameters θ. Note that in order to write the likelihood in this product form,
x1, . . . , xN have to be realizations of independent and identically distributed
random variables, which is the case for the independently observed patterns.
Since there are only 4L possible patterns for L CpGs, we can rewrite Eq. (2.61)
into

L(θ) =
4L∏
j=1

π̂j(θ)
Nj , (2.62)

where Nj is the number of occurrences of pattern j in the observed data. Note
that

N =
4L∑
j=1

Nj. (2.63)

In practice usually the log-likelihood

`(θ) = log(L(θ)) =
4L∑
j=1

log(π̂j(θ)) ·Nj (2.64)
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is maximized instead of the likelihood. Since the logarithm is a monotonic func-
tion the maximum occurs at the same value of θ̂ for both L and `. Applying the
logarithm has the advantage that it transforms the numerically unstable prod-
uct into a sum, which also has asymptotic properties that are easier to analyze.
The parameters θ = θ̂ are then chosen in such a way that ` is maximized, i.e.,

θ̂ = arg max
θ
`(θ). (2.65)

In order to ensure that the global maximum in [0, 1]4 is found during the op-
timization, we ran the estimation several times with different random starting
points. In all cases the estimation yielded the same results, such that it is very
likely that indeed the global optimum was found.

2.5 Results

We now present the results for our model. First, we test the different parame-
ter estimation methods and then proceed with the method best suited for our
case. Note that, except for testing the different parameter estimation methods,
we restrict the discussion of the results to 3 CpGs, mainly due to two reasons:
Although it is possible (especially with the presented SAN framework) to gen-
eralize the model to more CpGs, the assumption of the same parameters for
all CpGs becomes more and more unrealistic. In principle one could introduce
separate parameters for each CpG, however, together with the increasing model
complexity due to the increasing number of possible states, the (currently) avail-
able biological data is usually not enough. Typical hairpin data sets contain in-
formation of about 100-1 000 cells with connected CpGs which is not enough to
analyze models with many states and parameters.

2.5.1 Parameter Estimation

Here, we test the different parameter methods on artificial data, i.e., we know
the real parameters and can therefore assess the qualtity of the prediction. For
GMM and MLE, which are both significantly faster than ABC, we also perform
estimations on real biological data.

If not stated otherwise all estimations are performed for model 1, i.e. pro-
cessive maintenance first and processive de novo methylation afterwards, where
the direction is assumed to be from the left to the right.
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(a) True parameters: µ = 0.8, ψL = 0.4
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(b) True parameters: τ = 0.1, ψR = 0.6

Figure 2.15: Mean and standard deviation of the estimated parameters θ̂GMM and
θ̂MLE from 25 estimations for MC simulation data with a sample size of N . The
red (orange) bars show the GMM estimations for 3 (4) CpGs and the blue (green)
bars the MLE estimations for 3 (4) CpGs.

Generalized Method of Moments

In order to determine the accuracy of the GMM approach applied to parame-
ters of spatial methylation models, we initially use artificial data (with known
parameters) generated from Monte-Carlo (MC) simulations. The known pa-
rameters enable us to ensure that the estimations indeed yield the correct pa-
rameters. Additionally, we compare the GMM estimations to results from a
MLE (Eq. (2.65)), in order to compare their performances in terms of accuracy
and requirements of the available data. For each parameter set and sample size
we generate 25 data sets from MC simulations and use them to obtain the mean
and standard deviations for the estimates.

In Fig. 2.15 we plot the results for parameters θ = (µ, ψL, ψR, τ) =
(0.8, 0.4, 0.6, 0.1), where the red (orange) bars show the GMM estimations for
L = 3 (L = 4) CpGs and the blue (green) bars the MLE estimations for L = 3
(L = 4) CpGs for different sample sizes N , respectively. Note that we assume
identical parameters for all CpGs of the pattern and N is the number of single-
cell pattern samples at the selected position. Also note that the bars have a little
offset to the left/right of the actual sample size in order to increase the clarity of
the presentation. We observe that both GMM and MLE show a very similar per-
formance in terms of accuracy for all four parameters. Furthermore, a relatively
modest sample size of 100-1 000 is already enough to obtain reliable estimates.
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Figure 2.16: Estimations for µ for different subsets of moments. Purple: (2.44),
(2.46); black: (2.42), (2.44), (2.45), (2.46); gray: (2.42), (2.44), (2.45); brown: (2.42),
(2.46)

Note that not all moments derived from Eqs. (2.42)-(2.47) are needed to en-
sure identifiability of the parameters. In Fig. 2.16, we plot results for different
subsets of moments. Without the variances (Fig. 2.16, black bars, moments
of Eqs. (2.42), (2.44), (2.45), (2.46)) and additionally even without the methy-
lation level and the successive unmethylated CpGs (Fig. 2.16, purple bars,
moments of Eqs. (2.44), (2.46)) the parameters can still be estimated correctly,
however, only with significantly larger sample sizes. On the other hand, when
we only consider the methylation level and the number of methylated Cs per
CpG (Fig. 2.16, brown bars, moments of Eqs. (2.42), (2.46)) or the methylation
level and the successive (un)methylated CpGs (Fig. 2.16, gray bars, moments
of Eqs. (2.42), (2.44), (2.45)) the GMM can not estimate the real parameters,
even for very large sample sizes. Fig. 2.16 shows the estimation only for µ,
however, the results are very similar for the other parameters and are therefore
not shown. Hence, at least one of the moments derived from the number of
successive (un)methylated CpGs (Eq. (2.44) or (2.45)) as well as the number of
methylated Cs per CpG (Eq. (2.46)) are needed to ensure identification of the
parameters.

Intuitively, the reason that these moments contain enough information to
successfully identify the parameters is that due to the neighborhood dependen-



46 2.5. Results

cies, the average number of consecutive (un)methylated CpGs is a good indica-
tor for the strength of the neighborhood dependence. Furthermore, since each
CpG is influenced by its neighboring CpGs, each CpG in general may have a
different average number of methylated Cs. The other moments are less in-
formative. The average methylation level in Eq. (2.42), for example, gives no
hint about the distribution of methylation, i.e. if it is spread uniformly over all
CpGs or only concentrates on certain areas. On the other hand, once identifi-
cation is ensured, additional information from such moments helps to estimate
the parameters more accurately for smaller sample sizes. For 100–1 000 sample
patterns, which is the order of magnitude for the hairpin bisulfite sequencing
data considered later, all moments should be considered to achieve an accurate
estimation.

We also perform estimations for different parameter sets with
stronger/weaker dependencies, higher/lower methylation efficiencies and
combinations thereof. The results are in agreement with the results in Fig. 2.15
and 2.16, i.e., GMM and MLE show a similar accuracy if the sample size is at
least of the order of hundreds and also the moment subsets comparison gives
very similar results. We therefore do not present detailed results for these
parameter sets.

Finally, we apply the GMM to the hairpin bisulfite sequencing data sets from
mouse embryonic stem cells in [6]. During hairpin bisulfite sequencing, the two
DNA strands are linked together covalently such that the methylation status of
both strands can be measured simultaneously [80]. Our data sets consist of data
for single copy genes, which occur only once in the genome, as well as repet-
itive elements, which occur in multiple copies over the whole genome. For
single copy genes, we have data for Afp (5 CpGs) and Tex13 (10 CpGs). For the
repetitive elements, the data stems from IAP (intracisternal A particle; 6 CpGs),
L1 (Long interspersed nuclear elements; 7 CpGs) and mSat (major satellite; 3
CpGs). We focus on Dnmt1KO data, i.e. only Dnmt 3a/b is active, since previ-
ous findings suggest, that in general only Dnmt 3a/b shows a dependence on
the left neighbor, while Dnmt1 acts independent of the neighborhood [86].

Since the number of possible states grows exponentially with the number
of CpGs, i.e. for L CpGs there are 4L possible states, the numerical solution is
no longer feasible, due to large memory requirements for more than 5 CpGs.
We therefore estimate the theoretical moments via MC sampling of the model.
Due to finite size effects and statistical inaccuracies these moments are not exact
anymore. In order to have an estimate for these variations we compute the
confidence interval

m̄q ± 1.96 ·
√
S2
q

N
, (2.66)
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where 1.96 is the approximate value of the corresponding percentile point of the
normal distribution for a confidence level of 95%, m̄ and S2 are the sample mean
and variance of the quantities in Eqs. (2.42)-(2.47) for a sample size of N . We
find that for N = 1 000 the relative width of the confidence interval is ≤ 0.1 for
all moments and parameter sets and use this sample size for the approximation
of the theoretical moments.

Since we have only one data set for each locus available, we use bootstrap-
ping to generate 25 samples and again calculate the mean and standard devi-
ations of the estimators. The results for all available loci are summarized in
Tab. 2.3. Note that the standard deviations are rather large due to multiple
reasons. First of all, the aforementioned variability in the (MC sampled) the-
oretical moments leads to a variability in the estimates as well. Furthermore,
we use the same parameters for all CpGs. Hence, the results represent the av-
erage dependency and methylation efficiency at this position (spanning several
CpGs). Introducing separate parameters for each CpG results in 4L parameters
and may lead to identifiability problems, due to the in general low coverage.
For the artificial data considered above, we used the same parameters to gen-
erate the data, such that the parameters for each CpGs were indeed identical
in this case. Finally, the number of pattern samples that can be considered for
the estimation is often very small when considering all CpGs, since often the
methylation state for one (or more) of the CpGs is missing, such that we have to
omit the whole measurement (see Tab. 2.2 for detailed numbers). Nevertheless,
the results are in good agreement with results from the other estimation meth-
ods presented later, i.e., for Dnmt 3a/b there is, in general, only a dependence
on the left neighbor.

Although the model’s moments can be estimated by MC sampling, a numer-
ical approach to compute the moments without calculating the full underlying
distribution is desirable. As future work, we plan to derive moment equations
that allow a fast numerical computation of the statistical moments. This would
allow to obtain accurate estimates very efficiently also in the case of longer
methylation patterns and to estimate parameters on a whole-genome scale.

Approximate Bayesian Computation

Again, we investigate the accuracy of the parameter estimation by using arti-
ficial data from MC simulations with known parameters θ = (µ, ψL, ψR, τ) =
(0.8, 0.4, 0.6, 0.1) for different sample sizes. We performed the parameter esti-
mation with the simple ABC-SMC method presented in Algorithm B.2. For the
first step in the algorithm, i.e. the rough scanning of the parameter space, we
draw N1 = 10 000 random parameter sets from a uniform distribution. In the
second step, i.e. the improvement of the initial proposal for the posterior, which
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Table 2.3: Mean and standard deviations for GMM for BS-seq hairpin data
(Dnmt1KO) from different loci, obtained from 25 bootstrap samples. The num-
ber of CpGs and the sample sizes can be found in Tab. 2.2.

Locus µ ψL ψR τ

mSat 0.3278± 0.1836 0.2388± 0.1784 0.9624± 0.0743 0.0069± 0.0157

Afp 0.3700± 0.3254 0.4357± 0.3126 0.5254± 0.2833 0.4745± 0.2598

IAP 0.5736± 0.1611 0.3868± 0.2738 0.9388± 0.1044 0.0264± 0.0356

L1 0.6147± 0.2751 0.9443± 0.1968 0.9596± 0.1959 0.0401± 0.1720

Tex13 0.7039± 0.3474 0.5990± 0.3753 0.9688± 0.0709 0.9626± 0.0984

consists of the n best results from step 1, we draw N2 = 100 000 random param-
eters from a normal distribution and replace the worst performing parameters
in the posterior by the new ones, if the distance is smaller than the threshold
calculated from Eq. (2.59). The means are the current parameters and we fix the
standard deviation to σ = 0.01 for all four parameters. As a distance function
we use the Euclidean distance here.

For each parameter set and sample size N we generate 25 data sets from
MC simulations and perform the parameter estimation. We also test different
sizes of the posterior n. As an estimator we choose the mean of the posterior
and show the corresponding sample mean and sample standard deviation from
the 25 data sets in Fig. 2.17. Note that the shown standard deviations only
stem from the variety in the data, i.e. from the different means from the 25
approximated posteriors and therefore only form a lower bound. We choose
this approach to enable the direct comparison with other methods, where the
presented standard deviations of the estimations also only stem from the variety
in the data. The standard deviations of the posteriors are therefore not included
here and will be discussed later.

We compare the results for posteriors of size n = 100 (red) and n = 1 000
(blue) in Fig. 2.17. For both sizes the estimations show a similar accuracy, with a
slight advantage for n = 100 for very small sample sizes. For larger sample sizes
the results are practically indistinguishable. In terms of standard deviations the
results are also very similar for both posterior sizes.

As for the posteriors themselves, we show the resulting posterior for an ar-
tificial data set of size N = 106 for a different N2, i.e., the number of steps to
improve the approximation in the ABC algorithm, for the maintenance prob-
ability µ in Fig. 2.18. The other parameters show a similar behavior and are
therefore not shown here. We explicitly show the resulting histogram from the
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(a) True parameters: µ = 0.8, ψL = 0.4

102 103 104 105 106 107

N
0.0

0.2

0.4

0.6

0.8

1.0

pa
ra

m
et

er
(b) True parameters: τ = 0.1, ψR = 0.6

Figure 2.17: Mean and standard deviation of the estimated parameters θ̂ABC from
25 estimations for MC simulation data with a sample size ofN and 3 CpGs. The
red bars show the ABC estimations for a posterior of size 100, the blue bars for
a posterior of size 1 000.

accepted values in the posterior for N2 = 0 (blue), which corresponds to the ini-
tial proposal of the posterior after the rough scanning of the parameter space,
and the posterior after N2 = 106 steps (red) with their respective Gaussian fits
(solid black lines). For the values of N2 in between, we only show the resulting
Gaussian fit (dashed lines). The color scheme and the fitting parameters can
be found in Tab. 2.4. Note that we use these means as the estimation for the
model parameters. Also note, that for the same N2 the posterior of smaller size
is sharper, i.e., has the smaller standard deviation (sd).

This intuitively makes sense, since there are more steps necessary to update
the larger posterior. Furthermore, due to the larger posterior size the threshold
is more stable under changes of single values and hence decreases slower, such
that it is more likely that non-optimal values will still be accepted. On the other
hand, the larger posterior allows for more exploration of the parameter space.

Finally, note that different parameter sets as well as different distance func-
tions yield very similar results in terms of performance and accuracy.

Maximum Likelihood Estimator

Since the results for artificial data for the MLE have already been presented in
the GMM section, we focus here on the hairpin data for the single copy genes
and repetitive elements as introduced in the Section 2.3.7. If a locus contains
more than three CpGs, the analysis is done for all sets of three adjacent sites
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(a) Posterior size n = 100
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(b) Posterior size n = 1000

Figure 2.18: Example posteriors for different sizes n for N2 = 0 (blue) and N2 =
106 (red) with Gaussian fits for the posteriors with N2 = 0, 102, 103, 104, 105 and
106 for the (true) maintenance probability µ = 0.8. The coloring scheme as well
as the fitting parameters for the Gaussian fits can be found in Tab. 2.4.

independently, in order to keep computation times short and memory require-
ments low. In the sequel, we mainly focus on the estimated dependence param-
eters ψL and ψR and on the prediction quality of the different models.

The estimates for all the available KO data and all suggested models ob-
tained using the transition matrix in Eq. (2.27) are summarized as histograms
in Fig. 2.19. Because of the different possibilities to combine the four differ-
ent models in Eq. (2.23)-(2.26) and because of the different loci considered, in
total there are 84 estimates for each KO data set. We plot the number of occur-
rences N of ψL (left) and ψR (right) in different ranges for both sorts of KO data
(Dnmt1KO and Dnmt3a/b DKO).

The estimates of ψL spread over the whole interval [0, 1] while in the case of
ψR, nearly all estimates are larger than 0.99 and only in a few cases the depen-
dence parameter is significantly smaller than 1. Hence, in most cases the methy-
lation probabilities are independent of the right neighbor for both Dnmt1KO
and Dnmt3a/b DKO. For ψL the dependence parameter in the Dnmt3a/b DKO
case occurs more often close to 1, meaning that the transitions induced by
Dnmt1 have little to no dependence on the left neighbor. On the other hand for
Dnmt1KO the dependence parameter occurs more often at smaller values giv-
ing evidence that there is a dependence on the left neighbor for the activity of
Dnmt3a/b. Note that all models show a similar behavior in terms of the depen-
dence parameters for a given locus or position within a locus respectively, i.e.
either ψi ≈ 1 or ψi < 1 for all models. Since the histograms for Dnmt3a/b DKO
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Table 2.4: Color scheme and fitting parameters (mean and standard deviation)
for the Gaussian fits of the posteriors shown in Fig. 2.18.

n = 100 n = 1 000

N2 color mean sd mean sd
0 black 0.8052 0.1168 0.7743 0.1187

102 yellow 0.8059 0.1149 0.7888 0.1178
103 green 0.8193 0.0877 0.7841 0.1091
104 brown 0.8023 0.0311 0.8018 0.0442
105 cyan 0.8009 0.0163 0.8021 0.0185
106 black 0.8008 0.0098 0.7989 0.0102

look very similar for ψL and ψR, we used a two-sample Kolmogorov-Smirnov
test to assess if they differ significantly. The resulting p-value of 1 indicates that
there is no significant difference in this case. Note that we also get quite high p-
values (0.786 and 0.433) when applying the test to the Dnmt1KO histogram for
ψR and the two Dnmt3a/b DKO histograms. On the other hand, the p-values
are significantly smaller for the Dnmt1KO ψL histogram, with a minimum of
0.019, indicating a different behavior for the dependence on the left neighbor
for Dnmt3a/b.

Since ψR is usually close to 1 a smaller model with only three parameters
θ = (µ, ψ, τ) can be proposed, where ψ is a dependence parameter for the left
neighbor. This model can either be obtained by fixing ψR = 1 in the original
model and setting ψ = ψL or by redefining the transition probabilities to ψx
if the left neighbor is unmethylated and 1 − ψ(1 − x) if the left neighbor is
methylated. In that case ψ and ψL are related via ψ = 0.5(ψL+1). Note that both
versions yield the same results. In order to check whether there is a significant
difference in the original and the smaller model, we performed a Likelihood-
ratio test with the null hypothesis that the smaller model is a special case of
the original model. Since the original model with more parameters is always
as least as good as the smaller model, our goal is to check in which cases the
smaller model is sufficient. Indeed, if ψR was estimated to be approximately 1
the Likelihood-ratio test indicates that the smaller model is sufficient (p-value
≈ 1). On the other hand, for the few cases where ψR differs significantly from 1
the original model has to be used (p-value < 0.01).
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Figure 2.19: Histograms for the estimated dependence parameters ψL and ψR
for all sets of three adjacent CpGs in all loci and for all suggested models.

Comparison of the Parameter Estimation Methods

As demonstrated for artificial data with known parameters, all methods can be
used to successfully estimate the parameters given samples of sufficient sizes
and show a similar performance in terms of accuracy. However, each of the
methods comes with its own (dis)advantages.

While GMM and MLE have a clear optimization task (minimizing a score
function for GMM and maximizing the likelihood for MLE) for the parameter
estimation, in ABC there is more freedom in how to obtain the parameter es-
timations from the (approximated) posterior. Since ABC is a sampling based
method and furthermore one may use summary statistics, which reduce the
dimension of the needed information, in order to decide which parameters to
accept into the posterior, it is especially appealing for systems with more CpGs,
i.e. larger state spaces. The GMM estimator has a similar advantage since in-
stead of the whole distribution, only some selected moments are needed for the
parameter estimation. However, a finite set of moments does not necessarily
capture all details in the behavior of the underlying distribution and can there-
fore only be considered to be an approximation.

In terms of runtime and memory requirements, ABC has low memory re-
quirements since only the accepted parameters in the posterior have to be
stored, but may suffer from long runtimes due to high rejection rates and the
many samples needed. The typical number of function evaluations for ABC is
in the order of 1 000-10 000, since the posterior has to be updated sufficiently of-
ten. For the optimization tasks for MLE and GMM the typical order of function
evaluations is about 100. For GMM the moments can either be directly obtained
from the model, if the respective analytic expressions are available or they could
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be sampled otherwise. Sampling the likelihood is usually not preferable due to
the small order of magnitude for the values in the distribution. It would require
many samples to keep the statistical inaccuracies low enough, which would
lead to very long runtimes. The numerical solution of the model to obtain the
distribution and hence the likelihood is very fast, however the transition matrix
has to be stored, which requires a lot of memory especially for a larger number
of CpGs and therefore becomes infeasible for larger systems.

Since for the investigated scenarios the numerical solutions are available, all
parameter estimations stem from a MLE if not stated otherwise in the remainder
of this thesis.

2.5.2 CpG Distances

Since in general the distances between two adjacent CpGs are not identical for
all pairs due to different DNA sequences, the distance may influence the neigh-
borhood dependencies. We therefore take a closer look at the estimated depen-
dence parameters shown in the histograms in Fig. 2.19 and link the parame-
ters to their respective loci and distances between adjacent CpGs in base pairs
(bps). The results for the estimation of the left and right dependence parameter
for both Dnmt3a/b DKO and Dnmt1KO data, based on the transition matrix
in Eq. (2.23) (model 1) are shown in Fig. 2.20. The results based on the other
transition matrices yielded similar results and are therefore not presented here.
The coloring of the symbols for the different loci is as follows: mSat (red), Afp
(blue), IAP (green), L1 (pink) and Tex13 (black). As already seen before, in all
cases, except for the dependence of the activity of Dnmt3a/b on the left neigh-
bor, the dependence parameter is always close to 1, independent of the distance
between the CpGs, i.e. the majority of the estimates for the dependence pa-
rameters fall into the interval 0.9 < ψ < 1. Only Dnmt3a/b shows a stronger
dependence on the left neighbor, i.e. in most cases ψ < 0.9, but no simple re-
lation to the distance is visible. Another observation from Fig. 2.20 (c) is that
the dependency parameters show very similar behaviors within the same lo-
cus. However, it is impossible to draw reliable conclusions due to the small
sample size within each locus.

A reasonable assumption is that for (very) large distances between the CpGs
the dependence on the neighbor state should eventually vanish. However, since
the maximum distance is very small for our data (< 50 bps) we are not able
to verify this assumption. Also note that an increasing distance in bps does
not necessarily imply an increasing real distance, especially for small distances.
Due to the double-helix geometry of the DNA, a CpG with a larger bps distance
could be physically closer to another CpG than a CpG with a smaller bps dis-
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tance. In the limit however, if the bps distance goes to infinity, so does the real
distance. Note that we do not account for such effects in our model.
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Figure 2.20: Dependence parameter versus distance between CpGs measured in
base pairs (bps). The top row shows the results for the Dnmt3a/b DKO data, the
bottom row for Dnmt1KO for model 1. The left (right) column shows results for
the dependence parameter to the left (right). The different colors of the symbols
represent the different loci and are explained in the main text. Note the different
ranges on the Y axes.
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2.5.3 Wild-Type Prediction

As a next step we use the estimated parameters from the KO data to predict the
WT data. We have to employ the MLE twice in order to estimate the parameter
vector θ̂1 for Dnmt1 from the 3a/b DKO (double knockout) data and the vector
θ̂3a/b for Dnmt3a/b from the Dnmt1KO data, where transition matrix (2.27) is
used. The corresponding time instants are t = 26 for the 3a/b DKO data and
t = 41 for the 1KO data. Instead of bootstrapping, we approximate the standard
deviations of the estimated parameters θ̂ as follows: Let I(θ̂) = E[−H(θ̂)] be the
expected Fisher information, with the Hessian H(θ̂) = ∇∇ᵀ`(θ̂). The inverse of
the expected Fisher information is a lower bound for the covariance matrix of

the MLE such that we can use the approximation σ(θ̂) ≈
√

diag(−H(θ̂)).

A prediction for the wild-type can be computed by combining the estimated
vectors such that in the model both types of enzymes are active. For this, we
insert θ̂1 in Ps and θ̂3a/b in P̃s in (2.28) to obtain the transition matrix for the
wild-type.

As a reminder, the models from Eq.(2.23)-(2.26) are referred to as models 1-
4. For the prediction, the notation (x, y) is used to refer to Model x for the
Dnmt3a/b DKO (only Dnmt1 active) and Model y for the Dnmt1KO case (only
Dnmt3a/b active). One instance of the prediction, for which Model 1 was used
for both Dnmt1KO and Dnmt3a/b DKO, i.e. (1, 1), are shown in Fig. 2.21. Note
that all wild-type predictions yielded a very similar accuracy. We list the corre-
sponding estimations for the parameters for an example of a single copy gene
(Afp) and a repetitive element (L1) in Tab. 2.5. Note that due to the fact that we
only consider sequences of three CpGs here, the samples sizes are bigger than
those for the whole sequence given in Tab. 2.2. While the standard deviation
of the estimated parameters for µ is always of the order 10−2 and for τ of or-
der 10−3, it is usually of order 10−2 for ψi. Depending on the model, locus and
position, standard deviations up to order 10−1 may occur for the dependence
parameters in a few cases.

In Fig. 2.21 the predictions for the pattern distribution together with the
WT pattern distribution and a prediction from the neighborhood independent
model (ψL = ψR = 1) for all loci are shown in the main plot. As an inset the
distributions are shown on a smaller scale to display small deviations. With
the exception of patterns 1 and 64 (which corresponds to no methylation/full
methylation of all sites) in L1 and pattern 64 in all loci, where the difference
between WT and the numerical solution is about 10%, the difference is always
small (< 5%) as seen in the insets. In order to compare the performance of the
neighborhood dependent and neighborhood independent model, we compute
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the Kullback-Leibler divergence

KL =
4L∑
j=1

πj(WT) log

(
πj(WT)

πj(pred)

)
(2.67)

for both cases and each locus and list the results in Tab. 2.6. The mean and stan-
dard deviation were obtained via bootstrapping of the wild-type data (10 000
bootstrap samples). The results show that the mean of KL as well as its stan-
dard deviation are always smaller for the neighborhood dependent model, i.e.
the neighborhood dependent model yields more accurate predictions.

For the 16 proposed models from Eq. (2.28) we observe a similar perfor-
mance for all loci and positions in terms of accuracy of the prediction. On the
large scale the differences are not visible and even for the smaller scale the dif-
ferences are small. We therefore only show two examples for mSat in Fig. 2.22,
namely (1, 1) on the left and (4, 4) on the right. The distribution for all 16 possi-
bilities can be found in Fig. A.1 in Appendix A.

By comparing KL that we list in Tab. 2.7, the similar performance of all 16
models can clearly be seen. The difference in KL between the “best” and the
“worst” case is about 0.01. Again, the mean and standard deviation forKLwere
obtained via bootstrapping of the wild-type data (10 000 bootstrap samples for
each model). Since no confidence intervals of the parameters are included, this
standard deviation can be regarded as a lower bound. However, even with
these lower bounds the intervals of KL overlap for all models, such that no
model can be favorized.

Table 2.5: Estimated parameters for the KO data and model (1, 1) based on
Eq. (2.23) for the loci Afp and L1 with sample size N .

Afp
KO µ ψL ψR τ N

1 0.452± 0.062 0.383± 0.076 1.000± 0.094 0.091± 0.016 134
3a/b 0.990± 0.003 0.984± 0.011 1.000± 0.006 10−10 ± 0.011 186

L1
KO µ ψL ψR τ N

1 0.334± 0.051 0.576± 0.067 1.000± 0.122 0.038± 0.004 1 047
3a/b 0.789± 0.037 1.000± 0.038 0.984± 0.045 10−10 ± 0.002 805
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Table 2.6: Kullback-Leibler divergenceKL for the neighborhood dependent and
independent predictions at all loci.

Locus KLdep KLind

Afp 0.6820± 0.0914 3.3557± 0.0979

mSat 0.1398± 0.0134 0.2582± 0.0286

IAP 0.3615± 0.0482 0.5390± 0.0602

L1 0.5342± 0.0638 0.5639± 0.0771

Tex13 1.3364± 0.3235 2.0120± 0.3637
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Figure 2.21: The figures show an example for the predicted (neighborhood de-
pendent (1, 1) and neighborhood independent) and the measured pattern distri-
bution for each locus. The inset shows a zoomed in version of the distribution.
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Table 2.7: Kullback-Leibler divergence KL for all 16 models at the locus mSat.

Model KL Model KL

(1, 1) 0.1398± 0.0134 (3, 1) 0.1399± 0.0134

(1, 2) 0.1398± 0.0134 (3, 2) 0.1399± 0.0134

(1, 3) 0.1398± 0.0134 (3, 3) 0.1398± 0.0133

(1, 4) 0.1337± 0.0127 (3, 4) 0.1337± 0.0127

(2, 1) 0.1438± 0.0137 (4, 1) 0.1410± 0.0137

(2, 2) 0.1439± 0.0136 (4, 2) 0.1411± 0.0136

(2, 3) 0.1439± 0.0137 (4, 3) 0.1409± 0.0135

(2, 4) 0.1374± 0.0133 (4, 4) 0.1349± 0.0130
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Figure 2.22: The figures show the predicted and the measured pattern distribu-
tion for two (left: (1, 1), right: (4, 4)) of the 16 models for mSat. The inset shows
a zoomed in version of the distribution. The red WT distribution is the same in
both plots. Note the slight differences in both predictions for example in pattern
16, 62 and 63.
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Figure 2.23: Ratio R = µ/τ between maintenance and de novo rate for hairpin
(blue) and non-hairpin data (red) for all loci. The loci are mapped to the indices
as follows: mSat:1, Afp:2–4, IAP:5–8, L1:9–13, Tex13:14–21.

2.5.4 Non-Hairpin Data

So far we restricted the usage of the model to hairpin data, i.e. for one DNA
molecule the methylation state of both strands is measured. For non-hairpin
data there is only knowledge available for each strand independently. The in-
formation which strands stem from the same chromosome is not known. How-
ever, it is possible to compute the product of the likelihoods of the individual
strand patterns, which resembles the likelihood of real hairpin data (assuming
independence). Our results show that this approach works well as long as the
states of the opposite strand do not determine the transition probabilities, which
is the case for Dnmt1KO data, since Dnmt3a/b shows only little maintenance
activity. Since Dnmt1’s main activity is maintenance, we indeed found that the
WT and Dnmt3a/b DKO data does not yield good results (results not shown).

To compare the performance of the model for hairpin and non-hairpin data,
we split the original hairpin data in upper and lower strand and computed
the product of likelihoods for the patterns using the independence assumption.
We then estimated the parameters via MLE with our model and the computed
distributions. We found that for Dnmt3a/b the results are very close to the
original hairpin data in terms of dependence parameter ψL and ψR, since in
the model definition these parameters rely only on information on the same
strand. No information from the opposite strand influences the dependence
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Figure 2.24: Dependence parameter versus distance between CpGs for the
genome-wide data. The three colors represent three clusters. Cluster 0: blue,
cluster 1: orange, cluster 2: green.

parameters. The ratio R = µ/τ is usually smaller, i.e. the maintenance is under-
and the de novo activity overestimated, for the non-hairpin data as shown in
Fig. 2.23. However, this does not lead to contradictory results since maintenance
and de novo methylation can not be distinguished by the model if the CpG on
the opposite strand is methylated.

2.5.5 Genome-Wide Data

Due to the limited amount of CpGs for the experiments in the previous sec-
tions, we also considered genome-wide hairpin data obtained from mouse em-
bryonic stem cells to substantially increase the number of measured CpGs and
hence also the number of possible distances between adjacent CpGs. In the
genome-wide data the methylation state of the CpGs were recorded in win-
dows of approximately 150 bps for a subset of CpGs, such that there is informa-
tion available for about 4 million CpGs of the entire genome. The data contains
the methylation state of each CpG and the position on the DNA, from which
the distance between adjacent CpGs can be derived. For our analysis, we only
consider CpGs within the sames read i.e. in the 150 bp window. This last in-
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formation is of great importance since we want to investigate the neighborhood
dependence and have to ensure that the three adjacent CpGs stem from the
same DNA molecule. Therefore the data is filtered such that we omit all CpGs
which do not form a sequence of at least three consecutive CpGs within one
read. Note that we do not consider all cases where either only one or two CpGs
were covered in the measurement window or because of missing CpGs the con-
secutive sequence is split in chunks of two CpGs or smaller. Furthermore we
only considered CpG triples for which at least 64 (i.e. the number of possible
patterns) measurements were taken. After applying these constrains there are
3 489 CpG triples left.

Since only WT data (and no KO data) was available for the whole genome,
we had to use a modified version of the parameter estimation based on
Eq. (2.28), which contains eight parameters (four for each enzyme). In order
to reduce the model complexity we use the observations from the previous ex-
periments, namely that only Dnmt3a/b shows a dependence to the left, and
we therefore set the remaining dependence parameters ψ(1)

L , ψ(1)
R and ψ

(3a/b)
R to

1. The conversion errors for the data set are c = 0.996 and d = 0.93. The
conversion rates are derived from short synthetic DNA fragments containing
different cytosine forms at definite positions. These oligos become part of the
hairpin bisulfite library and therefore undergo the same treatment as the stem
cell DNA. Thus, after sequencing, we can determine the conversion rate of C
and 5mC independently of our biological sample.

Despite considering only CpG triples with a coverage of at least 64, in gen-
eral the coverage is pretty low compared to the hairpin data used for the param-
eter estimation in the previous section. We therefore employ Bayesian inference
rather than MLE for the parameter estimation in the genome-wide data [93]. We
use a Metropolis Hastings algorithm with the estimations from ML as starting
points and a Gaussian proposal distribution with mean 0 and a standard devi-
ation of 0.01 such that on average 40% of the 5 000 total trials per CpG triplet
are accepted for the posterior distribution. Afterwards a variant of the k-means
algorithm is applied, which also considers standard deviations of the quantities
that should be clustered [72]. Note that in order to avoid a domination by the
much larger distances in the clustering, the distance is normalized before the
algorithm is applied. The ideal number of clusters is chosen by minimizing the
Davies-Bouldin index [24], which is defined as the ratio between cluster separa-
tion and similarity within the clusters. The results of the parameter estimation
and the clustering is shown in Fig. 2.24.

Note that the clustering is based on dependence parameter and distance
only. The methylation state is not an input of the clustering algorithm. Inter-
estingly, the different clusters show different behavior in terms of methylation
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levels, as well as in genomic location. CpGs from clusters 0 and 1 (no/low de-
pendence, blue and orange) tend to be unmethylated and the majority is located
in promoter regions, while CpGs from cluster 2 (high dependence, green) are
usually fully methylated and located in intergenic regions (results not shown)
[37, 86].

In our results the methylation state of a CpG shows a strong dependence on
the methylation state of the left neighbor even for distances up to 70 bps. We
therefore conclude that the independence starts at much larger distances. Note
that due to the restriction that the three CpGs have to be within the same 150
bps window during the measurement, even for the genome-wide data the dis-
tances between the CpGs are rather short. It is therefore not possible with the
current data and measurement techniques to check hypotheses such as the inde-
pendence of neighboring CpGs for large distances. Furthermore, it is possible
that the filtering introduces a bias in the available data in terms of genomic lo-
cations, since only regions are kept, where the sufficiently many CpGs are close
together. Regions with CpGs further apart are usually sorted out and there-
fore underrepresented in our final data set. With more advanced measurement
techniques in the future it should be possible to investigate adjacent CpGs with
larger distances, which will also decrease the bias in the available locations.

2.6 Conclusion

2.6.1 Discussion

We proposed a set of stochastic models for the formation and modification of
methylation patterns over time. These models take into account the state of the
CpG sites in the spatial neighborhood and allow to describe different hypothe-
ses about the underlying mechanisms of methyltransferases adding methyl
groups at CpG sites. We introduced a stochastic automata networks description
of our model, that allows to easily generate the transition probability matrix and
also allows to generalize the model to different scenarios, like more modifica-
tions of cytosine other than 5mC or also different hypotheses about the working
mechanisms of the Dnmts.

We used knockout data from bisulfite sequencing at several loci to learn the
efficiencies at which these enzymes perform methylation. To estimate the effi-
ciencies, we sucessfully tried different parameter estimation methods, namely
the generalized method of moments, approximate Bayesian computation and
maximum likelihood. Each of these methods comes with their own advantages
and disadvantages, but all are feasible in certain situations.
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By combining the efficiencies estimated with a maximum likelihood estima-
tor, we accurately predicted the probability distribution of the patterns in the
wild-type. Moreover, we found that in all cases the models predict values for
the dependence parameters ψL and ψR close to 1 and therefore independence
of methylation for the Dnmt3a/b DKO meaning that Dnmt1 methylates CpGs
independent of the methylation of neighboring CpGs. For Dnmt3a/b on the
other hand we could identify dependences on the neighboring CpGs. Both find-
ings are in accordance with current existing mechanistic models: Dnmt1 reliably
copies the methylation from the template strand to maintain the distinct methy-
lation patterns, whereas Dnmt3a/b try to establish and keep a certain amount
of CpG methylation at a given locus. Interestingly, our models only suggest de-
pendences of de novo methylation activity on the CpGs in the 5’ neighborhood.
This indicates that Dnmt3a and Dnmt3b show a preference to methylate CpGs
in a 5’ to 3’ direction and could point towards a processive or cooperative be-
havior of these enzymes like recently described in in vitro experiments [28, 61].

Our results indicate that, at least for small distances, rather the genetic re-
gion than the distance determines the dependence on the neighbors. Compared
to a neighborhood independent model with ψL = ψR = 1, a neighborhood de-
pendent model shows better predictions and furthermore allows to investigate
(possible) connections of adjacent CpGs and their methylation states. As long
as no information from the opposite strand is needed, i.e., if the maintenance
activity is not too high, as in the Dnmt1KO data, our model can also be used for
non-hairpin data. Applying our model at genome-wide data reveals distinct
dependence clusters with individual methylation patterns.

2.6.2 Future Work

So far, we considered a quite simple model, i.e., there are only four parameters
when modelling one of the enzymes. However, there are some obvious exten-
sions or generalizations. For example, there is only one de novo probability for
both parental and daughter strand. There are existing models with separate
probabilities. In our model this additional rate can also be easily included.

Another point is the transitions at CpGs at the left or right boundary. Here,
we used a combination of the bulk probabilities, which are weighted by the
average methylation level. Other possibilities are extra probabilities for the
boundary cases, or it is also imaginable to infer the methylation state of the
CpG left (right) of the left (right) boundary with suitable methods from ma-
chine learning and then use the bulk probabilities.

So far, the transition probabilities for methylation events depends only on
the methylation states of the two adjacent CpGs on the same strand. But it is also
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possible, that for example the diagonal neighbors, i.e., the methylation status of
the adjacent CpGs on the opposite strand, or the methylation status of CpGs
further away may have an influence on the transition probabilities. Also con-
sidering the diagonal neighbors or two CpGs to each side (on the same strand)
would increase the number of possible neighborhood combinations from four
to 16 and would also require additional dependence parameters. While for the
diagonal neighbor case sequences of three CpGs are still sufficient, for the other
case we would need sequences of length five, which would also increase the
number of possible patterns to 1024. For this case it is oftentimes hard to get
data with sufficiently deep coverage. Instead of introducing extra dependence
parameters for each CpG in longer sequences, it may also be possible to find
a dependence function, which also depends on the distance between adjacent
CpGs to account for the (in general) different number of base pairs between two
CpGs. A distance function would have the advantage, that the number of (de-
pendence) parameters remains fixed and does not increase with a larger number
of CpGs. Extra parameters or a distance function are also needed, when investi-
gating multiple CpGs simultaneously, even when only considering the adjacent
CpGs for the transition probabilities, since assuming the same dependencies
for all CpGs is a strong assumption. It is very likely that each CpG has its own
dependencies because of different distances to the next CpGs or due to differ-
ent base sequences in the DNA. So far, all parameters are constant over time.
Another possible generalization of the model is to introduce time-dependent
efficiencies.

Also, there are more possible working mechanisms for the Dnmts, other
than the processesive and distributive behavior that we described here. Here,
in distributive methylation the attachment to the DNA may happen randomly
at every site of the considered DNA sequence. In a similar approach, which is
still characterized by frequent attachment and detachment from the DNA, the
Dnmt performs a diffusive motion while unbound and is therefore more likely
to reattach in the vicinity of the detachment site, rather than far away. We call
this behavior diffusive methylation. There are also combinations of the described
behaviors imaginable. For example, a Dnmt may perform processive methyla-
tion while attached to the DNA and show a diffusive behavior while unbound.
A description like that would require additional states, i.e., whether a Dnmt is
bound to the DNA or unbound. In that case it would also be possible to dis-
tinguish if a methylation event failed because the Dnmt was not attached to the
DNA or because there is a imperfect methylation probability. So far when we
estimate a methylation probability smaller than one, it is a combination of both
effects, since our model is not able to distinguish both cases. However, it is chal-
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lenging (if not impossible) to obtain biological data on the binding state of the
Dnmts.

Finally, as already hinted in Section 2.3.5 about the stochastic automata net-
work description, it is straightforward to generalize the model to more states
per CpG, i.e., including further modifications of cytosine, like 5hmC, 5fC or
5caC. Furthermore we can easily switch to a hybrid description and omit the
necessity of specifying the order of certain events beforehand.





Chapter 3

The Generalized Method of
Moments for Chemical Reaction
Networks

3.1 Introduction

A widely-used approach in systems biology research is to design quantitative
models of biological processes and refine them based on both computer sim-
ulations and wet-lab experiments. While a large amount of sophisticated pa-
rameter inference methods have been proposed for deterministic models, only
a few approaches allow the efficient calibration of parameters for large discrete-
state stochastic models that describe stochastic interactions between molecules
within a single cell. Since research progress in experimental measurement tech-
niques that deliver single-cell and single-molecule data has advanced, the abil-
ity to calibrate such models is of key importance. For instance, the widely-used
flow cytometric analysis delivers data from thousands of cells which yields
sample means and sample variances of molecular populations.

Here, we focus on the most common scenario: a discrete stochastic model
of a cellular reaction network with unknown reaction rate constants and pop-
ulation snapshot data such as sample moments of a large number of observed
samples. The state of the model corresponds to the vector of current molecu-
lar counts, i.e., the number of molecules of each chemical species, and chemical
reactions trigger state transitions by changing the molecular populations. A
system of ordinary differential equations, the chemical master equation [94],
describes the evolution of the state probabilities over time.

A classical maximum likelihood (ML) approach, in which the likelihood is
directly approximated, is possible if all populations are small [3] or if the model
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shows simple dynamics (e.g. multi-dimensional normal distribution with time-
dependent mean and covariance matrix) such that the likelihood can be ap-
proximated by a normal distribution [97]. In this case, the likelihood (and
its derivatives) can usually be approximated efficiently and global optimiza-
tion techniques are employed to find parameters that maximize the likelihood.
However, if large populations are present in the system then direct approxima-
tions of the likelihood are unfeasible since the underlying system of differential
equations contains one equation for each state and the main part of the prob-
ability mass of the model distributes on an intractably large number of states.
Similarly, if the system shows complex dynamics such as multimodality, ap-
proximations of the likelihood based on Gaussian distributions become inaccu-
rate.

In the last years several methods have been developed to accurately sim-
ulate the moments of the underlying probability distribution up to a certain
order m over time [2, 29, 115]. The complexity of these simulation methods is
therefore independent of the population sizes but, for large m, the correspond-
ing differential equations may become stiff and lead to poor approximations.
However, reconstructions of complex distributions from their moments show
that for many systems already for small m (e.g. m ∈ {4, . . . , 8}) the moments
contain sufficient information about the distribution such as the strength and
location of regions of attraction (i.e. regions of the state space containing a large
proportion of the probability mass) [4].

For models with complex distributions such as multiple modes or oscilla-
tions, the accuracy and the running time of the moment approximation can be
markedly improved, when conditional moments are considered in combination
with the probabilities of appropriately chosen system modes such as the activ-
ity state of the genes in a gene regulatory network [56, 57, 63, 95]. Recently a
full derivation of the conditional moment equations was derived and numer-
ical results show that when the maximum order of the considered moments
is high, the number of equations that have to be integrated is usually much
smaller for the conditional moments approach and the resulting equations are
less stiff [55]. In addition, the approximated (unconditional) moments are more
accurate when the same maximal order is considered.

An obvious parameter inference approach is the matching of the observed
sample moments with those of the moment-based simulation of the model.
Defining the differences between sample and (approximated) population mo-
ments as cost functions that depend on the parameters, an approach that min-
imizes the sum of the squared cost functions seems reasonable. However, in a
simple least-squares approach low moments such as means and (co-)variances
contribute equally to the sum of squared differences as higher moments, whose
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absolute magnitudes are much higher (even if they are centralized). Moreover,
correlations between the different cost functions may exist and thus necessitate
an approach where also products of two different cost functions are considered.

The generalized method of moments (GMM) that is widely used in econo-
metrics provides an estimator that is computed after assigning appropriate
weights to the different cost function products [52]. The GMM estimator has,
similar to the ML estimator, desirable statistical properties such as being consis-
tent and asymptotically normally distributed. Moreover, for optimally chosen
weights it is an asymptotically efficient estimator, which implies that (asymp-
totically) it has minimum variance among all estimators for the unknown pa-
rameters.

In this chapter, we explore the usefulness of the GMM for moment-based
simulations of stochastic reaction networks. We focus on two particular es-
timators that are commonly used in econometrics: the two-step estimator of
Hansen [52] and the demean estimator [50]. We study the accuracy and vari-
ance of the estimator for different maximal moment orders and different sam-
ple sizes by applying the GMM to two case studies. In addition, we show that
poor approximations of some higher order moments have a strong influence on
the quality of the estimation. Interestingly, we see that the additional informa-
tion about the covariances of the cost functions can lead to identification of all
parameters. Additionally, the variance of the estimator becomes smaller when
higher order moments are included. Compared to the simple least-squares ap-
proach, the GMM approach yields very accurate estimates.

This chapter is organized as follows: In Section 3.2 we give the necessary
theoretical background. The results are presented in Section 3.3. We discuss our
findings with regards to related work in Section 3.4 and conclude this chapter
in Section 3.5.

3.2 Methods

3.2.1 Stochastic Chemical Kinetics

Our inference approach relies on a Markov modelling approach that follows
Gillespie’s theory of stochastic chemical kinetics. We consider a well-stirred
mixture of n molecular species in a volume with fixed size and fixed tem-
perature and represent it as a discrete-state Markov process {X(t), t ≥ 0} in
continuous-time [42]. The random vector X(t) = (X1(t), . . . , Xn(t)) describes
the chemical populations at time t, i.e., Xi(t) is the number of molecules of
type i ∈ {1, . . . , n} at time t. Thus, the state space of X is Zn+ = {0, 1, . . .}n.
The state changes of X are triggered by the occurrences of chemical reactions.
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Each of the R different reaction types has an associated non-zero change vector
vj ∈ Zn (j ∈ {1, . . . , R}), where vj = v−j + v+

j such that v−j (v+
j ) contains only

non-positive (non-negative) entries and specifies how many molecules of each
species are consumed (produced) if an instance of the reaction occurs, respec-
tively. Thus, if X(t) = x for some x ∈ Zn+ with x + v−j being non-negative, then
X(t + dt) = x + vj is the state of the system after the occurrence of the j-th re-
action within the infinitesimal time interval [t, t + dt). W.l.o.g. we assume here
that all vectors vj are distinct.

We use α1, . . . , αR to denote the propensity functions of the reactions, where
αj(x) · dt is the probability that, given Xt = x, one instance of the j-th reaction
occurs within [t, t + dt). Assuming law of mass action kinetics, αj(x) is chosen
proportional to the number of distinct reactant combinations in state x. An ex-
ample is given in Table 3.1, where the first reaction gives as change vectors, for
instance, v−1 = (−1, 0, 0), v+

1 = (0, 1, 0), v1 = (−1, 1, 0). Note that, given the
initial state x = (1, 0, 0), at any time either the DNA is active or not, i.e. x1 = 0
and x2 = 1, or x1 = 1 and x2 = 0. Moreover, the state space of the model is
infinite in the third dimension. Although our inference approach can be used
for any model parameter in the sequel we simply assume that the proportional-
ity constants cj are unknown and have to be estimated based on experimental
data.

For x ∈ Zn+ and t ≥ 0, let pt(x) denote the probability P (X(t) = x). As-
suming fixed initial conditions p0 the evolution of pt(x) is given by the chemical
master equation (CME) [94]

∂
∂t
pt(x) =

∑
j:x−v−j ≥0

αj(x−vj)pt(x−vj)− αj(x)pt(x),

which is an ordinary first-order differential equation that has a unique solution
under certain mild regularity conditions. Since for realistic systems the num-
ber of states is very large or even infinite, applying standard numerical solution
techniques to the CME is infeasible. If the populations of all species remain
small (at most a few hundreds) then the CME can be efficiently approximated
using projection methods [58, 100] or fast uniformization methods [92, 114].
Otherwise, i.e., if the system contains large populations, then analysis methods
with running times independent of the population sizes have to be used such
as moment closure approaches [2, 29, 115] or methods based on van Kampen’s
system size expansion [65, 120]. For both approaches, accurate reconstructions
of the underlying probability distribution, i.e., the solution of the CME, are pos-
sible [4, 120].
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3.2.2 Moment-Based Analysis

From the CME it is straightforward to derive the following equation for the
derivative of the mean of a polynomial function T : Zn+ → R on X(t).

d
dt
E[T (X(t))]

=
R∑
j=1

E [αj(X(t))·(T (X(t) + vj)− T (X(t)))]
(3.1)

Omitting the argument t of X and choosing T (X) = Xi, X
2
i , . . . yields the fol-

lowing equations for the (exact) time evolution of the m-th moment E[Xm
i ] of

the distribution for the i-th species.

d
dt
E[(Xi)

m]

=
R∑
j=1

E[αj(X) · ((Xi + vji)
m − (Xi)

m)],
(3.2)

where vji refers to the i-th component of the change vector vj . In a similar way,
equations for mixed moments are derived.

If all reactions are at most monomolecular (1 ≥
∑

i |v
−
ji| for all j), then no

moments of order higher than k appear on the right side (also in the mixed
case) and we can directly integrate all equations for moments of at most order
m. However, most systems do contain bimolecular reactions (in particular those
with complex behavior such as multistability). In this case we consider a Taylor
expansion of the multivariate function

f(X) = αj(X) · (T (X + vj)− T (X))

about the mean µ := E[X]. It is easy to verify that, when applying the expec-
tation to the Taylor sum, the right side only contains derivatives of f at X = µ,
which are multiplied by central moments of increasing order. For instance, for
m = 1 and a single species system with n = 1, Eq. (3.2) becomes

d
dt
E[(Xi)] =

R∑
j=1

vjiE[αj(X)]

=
R∑
j=1

vji
(
αj(µ) + E[(X−µ)]

1!
· ∂
∂x
αj(µ)

+E[(X−µ)2]
2!

· ∂2
∂x2
αj(µ) + . . .

)
In the expansion, central moments of higher order may occur. For instance, in
the case of bimolecular reactions, the equations for order m moments involve
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central moments of order m + 1 since second order derivatives are non-zero.
By converting the non-central moments to central ones and truncating the ex-
pansion at some fixed maximal order m, we can close the system of equations
when we assume that higher order central moments are zero. A full derivation
of the moment equations using multi-index notation (as required for n > 1) can
be found in [29].

The accuracy of the inference approach that we propose in the sequel de-
pends not only on the information given by the experimental data but also on
the accuracy of the approximated moments. Different closure strategies have
been suggested and compared in the last years showing that the accuracy can be
improved by making assumptions about the underlying distribution (e.g. ap-
proximate log-normality) [13, 113]. In addition, the accuracy of moment-closure
approximations has been theoretically investigated [46].

3.2.3 Hybrid Approaches

Compared to deterministic models that describe only average behaviors,
stochastic models provide interesting additional information about the behav-
ior of a system. Although this comes with additional computational costs, it is
in particular for systems with complex behavior, such as multimodality or os-
cillations, of great importance. Often the underlying sources of multiple modes
are discrete changes of gene activation states that are described by chemical
species whose maximal count is very small (e.g. 1 for the case that the gene is
either active, state 1, or inactive, state 0). Then the moment-based approaches
described above can be improved (both in terms of accuracy and computation
time) by considering conditional moments instead [55, 56, 57, 95, 116]. The idea
is to split the set of species into species with small and large populations and
consider the moments of the large populations conditioned on the current count
of the small populations. For the small populations, a small master equation
has to be solved additionally to the moment equations to determine the corre-
sponding discrete distribution. More specifically, if x̂ is the subvector of x that
describes the small populations and x̃ is the subvector of the large populations
(i.e. x = (x̂, x̃)), then for the distribution of x̂ we have

d
dt
pt(x̂) =

∑
j:x̂−v̂j≥0

E[αj(X) | X̂ = x̂− v̂j]pt(x̂− v̂j)

−
∑

j E[αj(X) | X̂ = x̂]pt(x̂)

where v̂j is the corresponding subvector of vj . Using Taylor expansion, the
conditional expectations of the propensities can, as above, be expressed in terms
of conditional moments of the large populations. In addition, equations for the
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Figure 3.1: Absolute error of the first four moments of P1 for the exclusive
switch model, where the moments are either computed based on a standard
moment closure approach or a hybrid approach. The maximal order of the con-
sidered moments is 5.

conditional moments of the large populations can be derived in a similar way as
above. For instance, the partial mean E[X̃i | x̂]pt(x̂) follows the time evolution

∂
∂t

(
E[X̃i | x̂]pt(x̂)

)
=

∑
j:x̂−v̂j≥0

E[(X̃i + vij)αj(X) | X̂ = x̂− v̂j]pt(x̂− v̂j)

−
∑

j E[X̃iαj(X) | X̂ = x̂]pt(x̂)

where on the right side again Taylor expansion can be used to replace unknown
conditional expectations by conditional moments. As above a dependence on
higher conditional moments may arise and a closure approach has to be ap-
plied to arrive at a finite system of equations. Unconditional moments can then
be derived by summing up the weighted conditional moments. It is important
to note that if pt(x̂) = 0 then algebraic equations arise turning the equation sys-
tem into a system of differential-algebraic equations, which renders its solution
more difficult (see [55, 68] for details).
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In Fig. 3.1 we give an example for a comparison of the accuracy of the hy-
brid approach and the standard moment closure (assuming that all central mo-
ments above a fixed maximal order are zero) for one of our case studies. As ”ex-
act” moment values we chose the average of 500 000 samples generated by the
stochastic simulation algorithm (SSA) [41] and considered the absolute differ-
ence to the approximated moments of one chemical population until a maximal
order of four. Since for our case studies we assumed 10 000 samples we ad-
ditionally plot the (approximated) standard deviation of the 50 sample means
taken from batches of 10 000 samples. The moments computed based on the
hybrid approach show a smaller error than those computed using the standard
moment closure and lie within the deviations given by the sample moments.
For the example in Fig. 3.1 we have 126 equations for the standard approach
up to an order of four. In the hybrid case there are 14 moment equations and
one equation for the mode probability per mode leading to a total number of 45
equations. However, reductions are possible for the standard approach when
the model structure is exploited [111]. We do not make use of these reductions
here but choose the hybrid approach mainly because it gives more accurate re-
sults for the (unconditional) moments. This strongly improves the quality of
the estimated parameters as demonstrated in Section 3.3.

3.2.4 The Generalized Method of Moments Revisited

We assume that observations of a biochemical network were made using single-
cell analysis that gives population snapshot data (e.g. from flow cytometry
measurements). Typically, large numbers (about 5 000-10 000 [51, 54, 99]) of in-
dependent samples can be obtained where every sample corresponds to one
cell. It is possible to simultaneously observe one or several chemical popula-
tions at a time in each single cell. In the sequel, we first describe the inference
procedure based on the protein counts for a single observation time point and
a single chemical species that is observed. Later, we extend this to several time
points and species.

Note that, in contrast to Section 2.4.1 where we had to define special mo-
ments, we can use ordinary moments here. Since the r-th entry in the vector Y
contains the r-th power of the protein count here, we remove the parentheses
in the exponent. For a fixed measurement time t we can define the r-th order
sample moment as

Y r =
1

N

N∑
k=1

Y r
k , (3.3)
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where Yk is the k-th sample of the observed molecular count and there are N
samples in total. For large N , the sample moments are asymptotically unbiased
estimators of the population moments.

Let θ be a vector of, say, q ≤ m unknown reaction rate constants1, for which
some biologically relevant range is known. Moreover, let mr be the r-th theoret-
ical moment, i.e., mr(θ) := E[Y r

k ]. In the sequel we also simply write Y instead
of Yk whenever Y appears inside the expectation operator or when the specific
index of the sample is not relevant.

Besides the (possibly) large variance of the least squares estimator defined
in Eq. (2.50) and the possible correlations between the cost functions gr(θ) =
Y r − mr(θ), we face an additional problem here: In contrast to Section 2.4.1,
where all moments had (roughly) the same order of magnitude, the higher-
order moments of the protein counts are much larger than the low-order mo-
ments. Therefore, without suitable weights the higher-order moments would
dominate the cost functions and hence strongly affect the estimation process.
Additionaly, for increasing moment order the variance of the sample moments
increases and so does the variance of the estimator. Furthermore, since we use
only approximations for the theoretical moments here, we introduce an addia-
tional source of possible errors, which may influence the accuracy of the esti-
mator. Therefore, the weights in the score function are of utmost importance.

As a reminder, the GMM estimator is defined as

θ̂ = arg min
θ

g(θ)′Wg(θ),

with the weight matrix W ∝ F−1, where F (θ0) = COV [Y,Y] will give the
estimator with the smallest variance. We also discussed the conditions for iden-
tifiability, consistency properties and the demean estimator, which subtracts the
sample means instead of the theoretical moments in the sample counterpart of
the covariance in Section 2.4.1.

Another possibility to obtain an ideal weight matrix is the so-called multi-
step approach, which is also called iterated GMM estimator [53]). Since F depends
on the (unknown) true value θ0, W is chosen as the identity matrix I in the first
step and an initial estimate θ̃1 is computed. In the later steps, F is estimated by
the sample counterpart of E[f(Y, θ̃)f(Y, θ̃)T ], i.e.,

F̂1(θ̃`−1) =
1

N

N∑
k=1

f(Yk, θ̃`−1)f(Yk, θ̃`−1)T , (3.4)

where θ̃`−1 is the estimate from the previous step. In this way, the estimation of
the parameter and the weight matrix is gradually improved. Note that for each

1It is straightforward to adapt the approach that we present in the sequel to the case that
other unknown continuous parameters have to be estimated.
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step, we have to run a separate optimization. Usually a two-step approach is
already sufficient.

In demean and multi-step the weight matrix can be computed beforehand
and is fixed during the optimization itself. A third way to define an estimator is
to include a parameter-dependent (not fixed) weight matrix into the optimiza-
tion, i.e.,

θ̂ = arg min
θ

g(θ)′W (θ)g(θ), (3.5)

with the weight matrix W (θ) = (F̂1(θ))−1, where F̂1 is defined in Eq. (3.4). In
this case, the weight matrix has to be recomputed in each optimization step.
This estimator is called the continuously updating GMM estimator [53].

The estimation procedure described above can be generalized to several di-
mensions by also using mixed sample moments instead of only Y r and mixed
theoretical moments instead of only mr(θ). For instance, for moments up to
order two and two simultaneously observed species X and Y , we use the cost
functions

g1(θ) = 1
N

∑N
k=1Xk − E[X | θ]

g2(θ) = 1
N

∑N
k=1 Yk − E[Y | θ]

g3(θ) = 1
N

∑N
k=1XkYk − E[XY | θ]

g4(θ) = 1
N

∑N
k=1X

2
k − E[X2 | θ]

g5(θ) = 1
N

∑N
k=1 Y

2
k − E[Y 2 | θ].

In the same way, we can extend the estimators F̂1 and F̂2 to several dimensions.
For instance, the covariance between XkYk and X2

k can be estimated as

1

N

N∑
k=1

(XkYk −XY )(X2
k −X2),

where again we use ∗ to denote the sample mean operator.
If, instead of snapshot data for a single observation time, independent sam-

ples for different times are available then the GMM estimator can also be easily
generalized to

θ̂ = arg min
θ

tf∑
t=t0

g(t)(θ)′W (t)g(t)(θ). (3.6)

Here, for each time point t ∈ {t0, . . . , tf} the vector of cost functions g(t) is cal-
culated as before and the minimum is taken over the sum of these uncorrelated
cost functions. Note that for each observation time point a weight matrix W (t)

has to be computed. In the two-step approach, the initial weight matrices are



Chapter 3. The GMM for Chemical Reaction Networks 77

all equal to the identity matrix and then in the second step different weight ma-
trices may arise since the estimator of F depends on Y , which in turn depends
on the distribution of the model at the specific time t.

Since moment-based analysis methods usually give approximations of the
moments and not the exact values, we consider both, the demean estimator de-
fined by Eq. (2.57) and the estimator of the two-step procedure in Eq. (3.4) for
our numerical results in the following. In particular, if the theoretical moments
are poorly approximated, it is likely that also the accuracy of the resulting esti-
mates is poor.

3.3 Results

To analyze the performance of the GMM we consider two case studies, the sim-
ple gene expression model in Table 3.1 and a network of two genes with mutual
repression, called exclusive switch [83]. The reactions of the exclusive switch are
listed in Table 3.2. All propensities follow the law of mass action. For the pa-
rameters that we chose, the corresponding probability distribution is bi-modal.

For fixed reaction rate constants and initial conditions, we used the SSA to
generate trajectories of the systems and record samples of the size of the corre-
sponding protein/mRNA populations. In addition, we used the software tool
SHAVE [81] to generate moment equations both for the standard moment clo-
sure and for the hybrid approach. In SHAVE the partial moments are integrated
instead of the conditional moments such that the differential-algebraic equa-
tions are transformed into a system of (ordinary) differential equations after
truncating modes with insignificant probabilities. Then an accurate approxi-
mation of the solution using standard numerical integration methods can be
obtained. The system of moment equations is always closed by setting all cen-
tral moments of order larger thanm to zero. We used for the inference approach
only the moments up to order m−1 since the precision of the moments of high-
est order m is often poor. SHAVE allows to export the (hybrid) moment equa-
tions as a MATLAB-compatible m-file. We then used MATLAB’s ode45 solver,
which is based on a fifth order Runge-Kutta method, to integrate the (hybrid)
moment equations. Note that for the gene expression example, the moment
equations are exact since all propensities are linear. Thus, even an analytic so-
lution is possible for this system.

We then used MATLAB’s Global Search routine to minimize the objective
function in Eq. (2.51). Global Search is a method for finding the global min-
imum by starting a local solver from multiple starting points that are chosen
according to a heuristic [123]. Therefore the total running time of our method
depends on the tightness of the intervals that we use as constraints for the un-
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Table 3.1: Simple gene expression model [110]: The evolution of the molecular
populations DNAON, DNAOFF, and mRNA is described by the random vector
X(t)=(X1(t),X2(t),X3(t)), respectively.

Reactions Propensities Intervals

DNAON → DNAOFF α1(x) = b · x1 b ∈ [0, 0.5]

DNAOFF → DNAON α2(x) = a · x2 a ∈ [0, 0.5]

DNAON → DNAON+ mRNA α3(x) = c · x1 c ∈ [0, 0.5]

Table 3.2: Exclusive switch model [83]: Two different proteins P1 and P2 can
bind to a promoter region on the DNA. If P1 is bound to the promoter the pro-
duction of P2 is inhibited and vice versa. In the free state both proteins can be
produced.

Reactions, i = 1, 2 Rate constant Interval
DNA→DNA + Pi pi [0.5,1.5]

DNA.Pi→DNA.Pi + Pi pi [0.5,1.5]
Pi→∅ di [0,0.05]

DNA + Pi→DNA.Pi bi [0,0.1]
DNA.Pi→DNA + Pi ui [0,0.1]

known parameters as well as on the starting points of the Global Search pro-
cedure. The running times for one local solver call (using the hybrid approach
for computing moments) were about 2 s (demean estimator) and 40 s (two-step
estimator) for the gene expression model. For the exclusive switch, the average
running time for a local solver call was about 2 min (demean) and 10 min (two-
step). Note that the total running time depends on the amount of local solver
calls carried out by Global Search, which varied between two and 50. For all
experiments, we chose a single initial point that is located far away from the
true values and allowed Global Search to choose 500 (potential) further starting
points. Different initial points yielded similar results except if the initial points
are chosen close to the true values (then the results are significantly better in
particular in the case of only few moment constraints).

The intervals that we used as constraints for the parameters are all listed in
Tables 3.1 and 3.2.
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Figure 3.2: Exclusive switch model: Comparison of estimations with the de-
mean procedure for the standard moment closure and hybrid moments.

3.3.1 Standard vs. Hybrid Moment-Based Analysis

In Fig. 3.2 we plot the results of a comparison between the standard and the
hybrid moment closure when it is performed during the optimization proce-
dure of the GMM inference approach. We chose the exclusive switch model for
this since for this model the accuracy of the standard approach is poor. As an
estimator for F , we used (2.57), which is based on demeaning (demean). Re-
sults for the two-step procedure show similar differences when standard and
hybrid moment closure are compared. We fixed the degradation rates to ensure
that identification of p1 and p2 is possible when the two protein populations are
measured at only a single observation time point. To simultaneously identify all
parameters (including p1 and p2) several observation time points are necessary
(see Fig. 3.5).

The true values of the six unknown parameters are plotted against the means
and standard deviations of the estimated values for a maximal moment order
of 2 and 3, where for each of the six unknown parameters 50 estimations based
on 10 000 samples each were used.

We see that the inaccurately approximated moments of the standard ap-
proach lead to severe problems in the inference approach. Nearly all param-
eters are estimated more accurately when the hybrid moment closure is used.
For parameter b1 most of the optimization runs converged to the upper limit of
the given interval (0.1) when the standard approach was used. For the results
in the sequel, we only used the hybrid moment closure.

3.3.2 Two-Step vs. Demean Approach

In Fig. 3.3 and 3.4 we plot results of the GMM approach applied to the two ex-
ample networks, where we compare the performance of the two-step estimator
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Figure 3.3: Gene expression model: Estimated parameters a,b and c for different
numbers/orders of moments and 10 000 samples (A-C) and for different sample
sizes based on 3 moments (D-F). The inner plots show results on a more detailed
scale (A and D).

in Eq. (3.4) with the demean estimator in Eq. (2.57). We plot the true values
of the parameters against the estimated values, where 2-Step I is the result of
the first step of the two-step procedure (with W = I) and 2-Step II that of the
second step (with W = F̂1 and F̂1 as defined in Eq. (3.4)).

For the results in Fig. 3.3 only one population (mRNA) was observed at t =
100 where the initial conditions were such that DNAOFF = 1, DNAON = 0 and 10
mRNA molecules were present in the system. For three parameters the means
and standard deviations of the estimated values are plotted, again based on 50
repetitions of the inference procedure.

In the first row of Fig. 3.3 the accuracy of the estimation is compared with
respect to the number/order of moments considered, where again for each of
the 50 estimated values 10 000 samples were used. We see that if only one mo-
ment is considered or if equal weights are used for the first two moments, only
a rough estimate is possible since identification is not possible. The accuracy
is markedly improved when the weights are chosen according to the demean
approach. Here, it is important to note that for a maximal order of m = 2, in W
we also consider, besides the squared cost functions g1(θ)2 and g2(θ)2, the mixed
term g1(θ)g2(θ). This additional term significantly improves the quality of the
estimation such that it is possible to achieve a good estimation of the parameters



Chapter 3. The GMM for Chemical Reaction Networks 81

moment order
1 2 3 4

p 1

0.725

0.75

0.775

0.8

0.825
2-Step I
2-Step II
demean
real value

moment order
1 2 3 4

p 2

0.925

0.95

0.975

1

moment order
1 2 3 4

b 1

0

0.025

0.05

0.075

0.1

moment order
1 2 3 4

b 2

0

0.025

0.05

0.075

0.1

moment order
1 2 3 4

u 1

0

0.025

0.05

0.075

0.1

moment order
1 2 3 4

u 2

0

0.025

0.05

0.075

0.1

moment order
1 2 3 4

d 1

0

0.025

0.05

0.075

0.1

1 2 3 4
0

0.0025

0.005

0.0075

moment order
1 2 3 4

d 2

0

0.025

0.05

0.075

0.1

1 2 3 4
0

0.0025

0.005

0.0075

moment order
1 2 3 4

b 2

0

0.025

0.05

0.075

0.1
1 time point
2 time points
4 time points
real value

A B C

D E F

G H I

Figure 3.4: Exclusive switch model: Estimated parameters for maximal moment
order 1-4 based on 10 000 independent samples observed at time t = 100 and
t = 200 (A-H) and at 1-4 different time points for the demean-based estimation
of b2 (I). The inner plots show results on a more detailed scale (C and D).

with only the sample mean and the sample second moment. To further inves-
tigate the positive influence of the mixed term, we additionally plot results for
the case that only variances are estimated, referred to as ’demean (diagonal)’,
i.e., the weight matrix is the inverse of a diagonal matrix that contains the vari-
ances estimated based on the demean approach.
However, the variance of the estimator for a maximum order of two is rela-
tively high but decreases significantly when also the third (and fourth) moment
is considered. Here, demean and the second step of the two-step procedure
perform equally well and also demean (diagonal) gives very good results. Op-
posed to this W = I (first step of two-step procedure) gives poor results and a
high variance also if higher moments are considered.

In Table 3.3 we give an example for the (normalized) matrix W as used for
demean and 2-Step II. The two methods choose nearly identical weights and the
mean has the highest weight. Then, the mixed cost function for mean and sec-
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Table 3.3: Weight matrices for the two-step and demean procedure with mo-
ment order 3 for the gene expression model. The entries are normalized with
respect to the weight for the mean and rounded (the original weight matrices
are both positive semi-definite).

method W

Two-Step

 1 −0.0495 0.0007

−0.0495 0.0025 −3.86e−5

0.0007 −3.86e−5 6.11e−7


Demean

 1 −0.0494 0.0007

−0.0494 0.0025 −3.85e−5

0.0007 −3.85e−5 6.09e−7



ond moment has a (negative) weight of about 2 · (−4.95)% since these moments
are negatively correlated (and so are the second and third moment). All terms
that involve the third moment have a very small weight as their covariances are
high.

It is important to note that also if the number of moment constraints m is
equal to the number of parameters, q, 2-Step I performs poor (see results for
maximal order m = 3 in the first row of Fig. 3.3). The reason is that in this
example identification is not possible if only three terms are used due to func-
tional dependencies between the parameters of the first two reactions and due
to the fact that only at a single time point measurements were made. If iden-
tification was possible and the computed population moments were exact, the
results should be independent of the choice of W for the case that q equals m.

Thus, the weights given by the estimators for F in (3.4) and (2.57) substan-
tially increase the accuracy of the results and allow identification, because ad-
ditional information about the covariances between the Y r are used. Moreover,
due to the off-diagonal entries of W additional mixed terms are part of the ob-
jective function.

In the second row in Fig. 3.3, we compare the accuracy for different sam-
ples sizes where the first three moments were considered. While 2-Step I does
not show a systematic improvement when the number of samples increases,
we see for 2-Step II and demean not only significantly improved estimates but
also smaller variances. However, in the case of few samples, demean gives in
particular for parameter a a high variance. This comes from the fact that the
corresponding estimator uses the sample mean instead of the theoretical mean
and therefore the weight matrix is far from optimal if N is small.
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In Fig. 3.4, A-H, we plot results for the exclusive switch model where all
eight parameters were estimated based on observations of the two protein pop-
ulations of P1 and P2 at two time points. Recall that we need two time points to
ensure identifiability of some parameters (see also Section 3.3.3). On the X axis
the maximal order of moments used is plotted. For the orders 1, 2, 3 and 4 there
are in total 2, 5, 9 or 14 moments, respectively. Again, 2-Step II and demean
both give accurate results from a maximal order of two on, whereas 2-Step I
gives poor results. In addition, the variance of the estimator decreases with
increasing maximal order. However, the values for 2-Step II become slightly
worse and have higher variance for a maximal order of four since these mo-
ments are not approximated very accurately. Also the accuracy of the demean
estimator does not improve when the maximum order is increased from three
to four. Thus, the cost functions of order four moments do not lead to any sig-
nificant improvement in this example and should be excluded.

3.3.3 Multiple Time Points

For certain pairs of chemical reactions the identifying condition

E[f(Y, θ)] = 0 if and only if θ = θ0.

is violated when only regarding snapshot data from a single time point. For
example in the very simple reaction system

∅ → A rate λ,
A→ ∅ rate µ

every combination of λ and µ with λ
µ

= const would lead to the same snapshot
data for species A at a certain time point.

In order to resolve this problem more information, i.e. snapshot data at sev-
eral time points (of independent samples to avoid correlation), is needed or one
of the parameters has to be fixed. In Section 3.3.1 this problem already occurred
for the exclusive switch: The corresponding rates are production pi and degra-
dation di as well as binding bi and unbinding ui. By fixing the degradation rates
di the estimation of the production rates becomes quite well, whereas bi and ui
can not be estimated due to the identifying problem.

For the following estimations the demean procedure was used. The two-step
method showed a similar behavior. With no fixed parameters and only a single
time point t = 200 nothing can be reliably estimated as indicated in Fig. 3.5. The
estimated values are often far away from the real ones and the variance is also
quite high in all cases.
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Figure 3.5: Exclusive switch model: Comparison of estimations with the de-
mean procedure for single time point data and combined data for samples of
two and four independent time points.

The consideration of a second time point (t = 100, 200) resolves the issue in
case of sufficient moment conditions, i.e. order 2 or higher. Four time points (t =
50, 100, 150, 200) do not further improve the estimation but due to the higher
total number of samples (500 000 per time point) the variance is decreased.

3.3.4 Further Estimators

For our results we focused on the most popular GMM estimators, that is, de-
mean and two-step. However, we also implemented two additional variants of
estimators that were described before. One is the multi-step approach (or iter-
ated GMM estimator) that results from further iterations of the two-step proce-
dure. However, in our examples we did not see an increase in accuracy after
the second iteration. Also, for the second approach,the continuously updating
GMM estimator, the results did not show increased accuracy, even when we
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used results of the other estimators (e.g. demean) as starting points for the op-
timization. Moreover, for large weight matrices, the recomputation in each step
of the optimization resulted in longer running times.

Overall, our experiments show that for sufficiently large N the demean es-
timator usually yields the best results, while two-step performs better for small
N . Moreover, choosing three as the maximum order gave the best results (ac-
curate average value and small standard deviations) for the examples that we
considered.

3.4 Discussions

In the context of stochastic chemical kinetics, parameter inference methods are
either based on Markov chain Monte-Carlo (MCMC) schemes [17, 22, 43, 127],
on approximate Bayesian computation techniques [26, 30, 122] or on maximum
likelihood estimation using a direct approximation of the likelihood [110, 3] or
a simulation-based estimate [121, 124]. Maximum likelihood estimators are, in
a sense, the most informative estimates of unknown parameters [60] and have
desirable mathematical properties such as unbiasedness, efficiency, and normal-
ity. On the other hand, the computational complexity of maximum likelihood
estimation is high as it requires a simulation-based or numerical solution of the
CME for many different parameter instances.

Since the applicability of these methods is limited, approaches based on mo-
ment closure [13, 34, 71, 97, 112, 128] or linear noise approximations [11, 70, 129]
have been developed. An approximation of the likelihood of order-two sample
moments is maximized in [13, 34, 112, 128]. The approach exploits that for large
numbers of samples these sample moments are asymptotically normally dis-
tributed. The negative log-likelihood leads to an optimization problem where
the differences between the sample and theoretical moments up to order two
are weighted and minimized as well. As opposed to the GMM, the weight ma-
trix in [112, 128] is estimated based on the theoretical moments of the model
up to order four and independent of the samples while in the GMM approach
this matrix depends on the samples (and theoretical moments up to order two).
Moreover, the objective function contains an additional summand, which is the
logarithm of the determinant of the estimated covariance matrix.

In [13], Bogomolov et al. insert sample instead of theoretical moments in the
derived formulas for the covariances of moment conditions up to order two. A
comparison for the two examples that we consider in the previous section yields
that when the theoretical moments are used to estimate covariances, similar to
the continuously updating GMM, optimization was slow and sometimes failed
to return the global optimum due to a much more complex landscape of the
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objective function. When sample moments are considered as suggested in [13],
the results are similar to those of the GMM demean estimator for a maximum
order of two. In [34], only variances are considered (weight matrix is diagonal)
and estimated based on the samples. Therefore, it does not exploit the infor-
mation contained in the mixed terms, which lead to improved estimates in our
examples (see results for ’demean (diagonal)’ in Fig. 3.3).

A similar approach is used in [97] where the moment equations are closed
by a Gaussian approximation. The parameter estimation is based on using a
ML estimator and a MCMC approach. In [71] the importance of higher moment
orders when using least square estimators is shown. Weights for terms that
correspond to different moments are chosen ad hoc and not based on any sta-
tistical framework. The GMM can also be used to estimate the parameters from
the equilibrium distribution, where approximations such as moment closures
are not necessary [9].

Here, we present results for the general method of moments that assigns
optimal weights to the different moment conditions for an arbitrary maximal
moment order and number of species. We showed that trivial weights (e.g.
identity matrix) give results whose accuracy can be strongly increased when
optimal weights are chosen. In the very common case that functional depen-
dencies between parameters exist (e.g. degradation and production of the same
species) and identification is difficult, the GMM estimator allows to accurately
identify the parameters. Moreover, our results indicate that the accuracy of the
estimation increases when moments of order higher than two are included. A
general strategy could be to start withm = q cost functions (equal to the number
of unknown parameters) and increase the maximal order until tests for over-
identifying restrictions (e.g. the Hansen test [52]) suggest that higher orders do
not lead to an improvement. In this way, cost functions that do not improve the
quality of the estimation, such as the fourth order cost functions for the results
in Fig. 3.4, can be identified.

We also found that an accurate approximation of the moments is crucial for
the performance of the GMM estimator. Thus, hybrid approaches such as the
method of conditional moments [55] or sophisticated closure schemes (e.g. [13])
should be preferred. If all propensities in the network are linear, the moment
equations are exact and model misspecification is not an issue. However, for
most networks the moments can only be approximated, since the propensities
are nonlinear, and hence the model is potentially misspecified. Again, statis-
tical tests can be used to detect model misspecification [49] and equations for
higher order moments may be added to the (conditional) moment equations to
improve the approximation of the lower order moments.
Finally, we note that the GMM framework can also be applied when the ob-
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served molecular counts are subject to measurement errors. It is straight for-
ward to extend the GMM framework to the case of samples Yk + ε where the
error term ε is independent and normally distributed with mean zero.

3.5 Conclusion

Parameter inference for stochastic models of cellular processes demands huge
computational resources. The proposed generalized method of moments
(GMM) approach is based on an adjustment of the statistical moments of the
model and therefore does not require the computation of likelihoods. This
makes the approach appealing for complex networks where stochastic effects
play an important role, since the integration of the moment equations is typ-
ically fast compared to other computations such as the computation of likeli-
hoods. The method does not make any assumptions about the distribution of
the process (e.g. Gaussian) and complements the existing moment-based anal-
ysis approaches in a natural way.

Here, we used a multistart gradient-based minimization scheme, but the
approach can be combined with any global optimization method. We found that
the weights of the cost functions computed by the GMM estimator yield clearly
more accurate results than trivial (identical) weights. In particular, the variance
of the estimator decreases when moments of higher order are considered. We
focused on the estimation of reaction rate constants and, as future work, we plan
to investigate how well Hill coefficients and initial conditions are estimated.

An important advantage of the proposed method is that in the economics lit-
erature the properties of GMM estimators have been investigated in detail over
decades and several variants and related statistical tests are available. We will
also check how accurate approximations for the variance of the GMM estima-
tor are [49]. Since we found that when moments of order higher than three are
included, the results become slightly worse, we will also explore the usefulness
of statistical tests for over-identifying moment conditions. In this way, we can
ensure that only moments conditions are included that improve the estimation.





Chapter 4

Summary

To top this thesis off, we summarize the most important results from both Chap-
ter 2 and Chapter 3 again.

In Chapter 2 we introduced a generalized hidden Markov model, that is
able to model the methylation dynamics of whole sequences of CpGs simulta-
neously, in contrast existing models that usually consider only a single CpG.
The inclusion of whole patterns enables us to investigate the possible influence
of neighboring methylation states on methylation events and take possible cor-
relations between the CpGs into account. Furthermore, since the CpGs do not
behave independently anymore, it is possible to test different hypotheses on the
working mechanisms of the methylation enzymes (Dnmts), since the order of
methylation events matters. We show how to formally generate the transition
probability matrix for whole CpG sequences by using a stochastic automata
networks description with functional transitions. These functional transitions
depend on the newly introduced dependence parameters and the methylation
states of the adjacent CpGs.

To fit the model to biological data, we test different parameter estimation
methods. For a small number of CpGs a maximum likelihood approach is vi-
able, while for a larger number of CpGs we have to resort to the generalized
method of moments (GMM) or a Bayesian approach. Our main biological find-
ings are that Dnmt1 works processively and independent of the neighborhood,
while Dnmt3a/b shows a dependence on the methylation state of the left neigh-
bor. From whole genome data we get the result that CpGs in hypomethylated
promoter regions behave independently, while hypermethylated CpGs from
other regions show a dependence on the methylation state of the left neighbor,
but not on the right.

In Chapter 3 we introduced the GMM, a moment-based parameter estima-
tion technique from econometrics to chemical reaction networks. The main idea
is that the moments are weighted based on their covariance. This has the two
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advantages, namely that the influence of moments of higher order (which are
usually much larger in their order of magnitude and have a higher variance) is
mitigated, such that they do not dominate the moments of low order, and that
due to the non-diagonal entries in the weight matrix, more information can be
included in the estimation process. Compared to trivial (identical) weights for
all moments, we observe a clear improvement of the estimation qualitity for the
same number of moments used. In particular, the GMM yields smaller vari-
ances for the estimated parameters, when moments of higher orders are used.
Furthermore, if moment approximation techniques (like moment closure) have
to be used, it is crucial to use to best approximation possible. We found that hy-
brid approaches yielded much better results in the parameter estimation than
standard approximations.



Appendix A

Additional Figures

Here, we show some additional figures. In particular we show the comparison
of the distribution from real wild-type data and the predicted distribution from
our model (Eq.(2.28)). Since for each enzyme we have four possible models
(Eqs.(2.23)-(2.26); models 1-4) for each of the two enzymes, there are 42 = 16
possible models in total for the wild-type.

In Fig. A.1 we show all 16 results, where (x, y) means that we used model x
for Dnmt1 and model y for Dnmt3a/b. The red symbols represent the distribu-
tion from the wild-type data and is hence identical in all 16 subplots. The blue
symbols show the results from the numerical solution of the respective model.
Note that in all cases there are only some small deviations on the large scale.
In the insets we show a zoomed in version of all states with small probabili-
ties, i.e., all except the fully methylated state 64. In absolute terms, even in the
zoomed in version the deviations are rather small. Importantly, the models cor-
rectly predict the position of the peaks, i.e., correctly identifies more common
patterns. Furthermore, the deviations between the predictions of the different
models are only very subtle.
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Figure A.1: The figures show the predicted and the measured pattern distri-
bution for all 16 models for mSat. The inset shows a zoomed in version of the
distribution.
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Figure A.1: (cont.) The figures show the predicted and the measured pattern
distribution for all 16 models for mSat. The inset shows a zoomed in version of
the distribution.





Appendix B

Pseudo Code

B.1 Stochastic Automata Networks

We now present the algorithm B.1 that is used to generate the transition matrix
M in Section 2.3.5 for maintenance or de novo for L CpGs, given the respective
transition matrix for a single CpG A and a function f that introduces the neigh-
borhood dependency. Note that for cell division a standard Kronecker product
can be applied since all CpGs behave independently in this case.

Since A (and hence M ) is usually sparse, we initialize M as a matrix of con-
taining only zeros (line 2) with the goal to only update the entries that will
eventually be non-zero. The size of the matrix is determined by the number of
possible states (4 in our example) and the number of CpGs L. We extract the
indices of non-zero elements in A (line 3) and safe them to a list (line 4). Then
a copy of this list is made (line 5), which will be updated later, while the list
with single CpGs indices is kept, since it is needed to iteratively recompute the
new indices for the larger matrices in the while loop (lines 8-19). In this loop
the new indices are calculated with Eq. (2.34) (lines 13 and 14) and stored in a
list (line 15). After calculating all new indices the old list of indices is replaced
by the new one (line 18). This procedure repeats until the number of necessary
Kronecker multiplications is reached.

Once all indices of the final matrix that contain non-zero elements are ob-
tained, we calculate the corresponding entries by iterating over the indices (for
loop in lines 21-31). First of all, the indices can be uniquely converted into an
ordered list, such that we know the states of all CpGs before (from u) and after
transition (from v) for a given pair of indices (lines 22 and 23). We then simply
multiply the correct entries of the single CpG matrix A, where the indices stem
from the ordered list (for loop in lines 25-30). For example for the first CpG,
we use the first entries in the lists resulting from u and v and so on. If the en-
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96 B.1. Stochastic Automata Networks

try contains the function f (line 27), we chose the correct transition probability
based on the process (maintenance or de novo), the position (boundary or non-
boundary) and assumption (e.g. processivity). The states of the adjacent CpGs
can be obtained from the lists generated in lines 22 and 23.

Algorithm B.1 Generation of the transition matrix M of one of the subprocesses
for L CpGs using SANs.

1: procedure SANS(A, f, L)
2: M ← zeros(numstate ∗ ∗L, numstate ∗ ∗L)
3: i, j ← nonzero(A)
4: ind1← list([i, j])
5: indices← ind1
6: n← 1
7:
8: while n < L do
9: n← n+ 1

10: ind2← [ ]
11: for i, j in ind1 do
12: for u, v in indices do
13: u2← numstate ∗ (u− 1) + i
14: v2← numstate ∗ (v − 1) + j
15: ind2← ind2.append([u2, v2])
16: end for
17: end for
18: indices← ind2
19: end while
20:
21: for u, v in indices do
22: indu← Fragment(u)
23: indv ← Fragment(v)
24: M [u, v]← 1
25: for n = 1, . . . , L do
26: if A[indu[n], indv[n]] is callable then
27: A[indu[n], indv[n]]← f
28: end if
29: M [u, v]←M [u, v] ∗ A[indu[n], indv[n]]
30: end for
31: end for
32: return M
33: end procedure
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B.2 Approximate Bayesian Computation

Here we describe the algorithm B.2 of the simple version of the ABC-SMC that
was introduced in Section 2.4.2. Note that for convenience the parameters in this
pseudo-code are treated as univariate, however, the multivariate case works in
the same fashion.

Given the distribution of the observed data distr1 and the desired size of the
posterior n, the algorithm returns an approximation of the posterior distribu-
tion. At first we initialize an empty list (line 2) which is later used to store the
posterior. We then perform a loop of size N1 (lines 3-8) which is used to roughly
scan the parameter space. In each iteration we draw a random parameter, which
is uniformly distributed between 0 and 1 (line 4). We then obtain a distribution
based on this parameter from either solving the model numerically (for few
CpGs) or via Monte-Carlo simulation (for many CpGs) (line 6). Then a suitable
measure is used (Euclidean distance, Hellinger distance, Kullback-Leibler, . . . )
to calculate the distance between observed and generated distribution (line 6).
Finally, the parameter and the corresponding distance is saved to the list for the
posterior (line 7). After finishing the scanning, the entries in the list are sorted
with respect to the distance (line 9) and only the n best entries, i.e., entries with
the smallest distance, are kept (line 10). Based on the remaining entries, the tol-
erance is calculated with Eq. (2.59) (line 11) and the weights are calculated with
Eq. (2.60) (line 12).

We then try to improve the posterior by searching more thoroughly in parts
of the parameter space that yielded good results while scanning the entire pa-
rameter space (for loop in lines 14-25). Instead of drawing uniformly distributed
parameters, we now draw from a normal distribution (line 16), where the mean
is a random value from the current posterior. We make a weighted random
choice based on the weights that were calculated in line 12. The higher the
weight (or smaller the distance) the more likely the parameter will be chosen
as mean for the normal distribution (line 15). For the standard deviation σ we
impose a small constant, which is small enough to reduce excessive rejections of
parameters and large enough to allow for further exploration of the parameter
space. Note that there are more sophisticated choices for σ, which also depend
on the current posterior, like twice the weighted empirical variance of the cur-
rent posterior as in [10]. Also note, that the parameters still have to be bound
between 0 and 1. With a normal distribution that is not necessarily the case.
For convenience sake, we omit the corresponding if query here. Similar to the
first for loop, we now obtain a distribution for the drawn parameter from the
model (line 17) and calculate the distance to the distribution from the real data
(line 18). If the distance is smaller than the tolerance ε (line 19), we accept the
parameter and the bottom (worst) entry in the posterior is replaced (line 20).



98 B.2. Approximate Bayesian Computation

Then the list is sorted again (line 21) and the tolerance (line 22) and weights are
recalculated (line 23).

Note that instead of the for loop with a fixed size (line 14), there are other
criteria that may be used to terminate the algorithm when improving the poste-
rior. Some possible choices are the maximal number of consecutive rejections or
the minimal (relative) change in the tolerance after accepting a new parameter
for the posterior.

Algorithm B.2 ABC-SMC

1: procedure ABC(distr1, n)
2: post← [ ]
3: for i = 1, . . . , N1 do
4: r ∼ unif(0, 1)
5: distr2← SolveModel(r)
6: d← Distance(distr1, distr2)
7: post← post.append([r, d])
8: end for
9: post← Sort(post, d)

10: post← post[1 : n]
11: ε← CalculateEps(post)
12: w ← Weights(post)
13:
14: for i = 1, . . . , N2 do
15: µ← WeightedRandomChoice(post, w)
16: r ∼ normal(µ, σ)
17: distr2← SolveModel(r)
18: d← Distance(distr1, distr2)
19: if d < ε then
20: post[−1]← [r, d]
21: post← Sort(post, d)
22: ε← CalculateEps(post)
23: w ← Weights(post)
24: end if
25: end for
26: return post
27: end procedure



Abbreviations

5caC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-carboxylcytosine
5fC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-formylcytosine
5hmC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-hydroxymethylcytosine
5mC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-methylcytosine
ABC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . approximate Bayesian computation
ABC-SMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . ABC-sequential-Monte-Carlo
BS-seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . bisulfite sequencing
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cytosine
CGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CpG island
CME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . chemical master equation
CpG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C and G linked via phosphate group
CTMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . continuous time Markov chain
Dnmt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DNA methyltransferase
DTMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . discrete time Markov chain
G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . guanine
GMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . generalized method of moments
HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . hidden Markov model
KO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . knockout
MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Monte-Carlo
MLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . maximum likelihood estimator
mRNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . messenger RNA
RV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . random variable
SAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . stochastic automata network
SSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . stochastic simulation algorithm
WT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . wild-type
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