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A B S T R A C T

Life stores information in large biopolymer molecules, which can be repre-
sented as a sequence of letters. Computers stores information in sequences
of zeros and ones. This predestines computers for automated processing of
biological data and with a great success. Computational biology has produced
many methods and tools based on biological sequences. However, reducing
life to just sequences radically reduces the whole picture. The functionality of
biomolecules, especially proteins, is performed in the three-dimensional (3D)
space. Thus, limiting methods in computational biology to sequences will never
yield sufficient insights in the ways molecular biology operates.
In this thesis I present my work on the integration of protein 3D structure
information into the methodological workflow of computational biology. We
developed an algorithmic pipeline that is able to map protein sequences to
protein structures, providing an additional source of information.
We used this pipeline in order to analyze the effects of genetic variants from the
perspective of protein 3D structures. We analyzed genetic variants associated
with diseases and compared their structural arrangements to that of neutral
variants. Additionally, we discussed how structural information can improve
methods that aim to predict the consequences of genetic variants.
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Z U S A M M E N FA S S U N G

Das Leben speichert Informationen mit der Hilfe von langen Biopolymermole-
külketten. Man kann solche Ketten durch Buchstabensequenzen beschreiben.
Computer speichern Informationen in Sequenzen von Nullen und Einsen. Dies
prädestiniert Computer zur Verabeitung biologischer Daten und tatsächlich hat
die Bioinformatik, mit großem Erfolg, Methoden und Werkzeuge entwickelt,
die auf der Verarbeitung solcher Sequenzen basieren.
Allerdings, spielt sich die Funktionalität von Biomolekülen, insbesonders die
von Proteinen, im drei-dimensionalen (3D) Raum ab. Und deshalb werden
bioinformatische Methoden, die sich auf Sequenzdaten beschränken niemals in
der Lage sein, mikrobiologische Vorgänge funktionell zu beschreiben.
Diese Thesis widmet sich der Integration von Protein 3D Strukturinformationen
in die Abläufe bioinformatischer Methodiken. Wir haben eine algorithmische
Pipeline entwickelt, die es ermöglicht Proteinsequenzen auf Proteinstrukturen
abzubilden um so eine zusätzliche Informationsquelle beizusteuern.
Wir benutzten diese Methodik um die Effekte von genetischen Variationen aus
der Sichtweise von Proteinstrukturen zu analysieren. Wir haben die Tendenzen
der räumlichen Verteilung von genetischen Varianten, die man mit Krankheiten
in Verbidung gebracht hat, analysiert und sie mit denen von neutralen Varian-
ten verglichen. Desweiteren, haben wir geprüft in wie weit das Einbeziehen
strukureller Daten die Vorhersage von Konsequenzen genetischer Varianten
verbessert.
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1
I N T R O D U C T I O N

Since the introduction of the central dogma of molecular biology in 1970 [1] it
is universally accepted in the scientific community that the mechanisms of life
are based on the flow of genetic information from the genes over transcripts to
the proteins. Nowadays, each step in that succession spans a whole research
area named after the corresponding biomolecule with the suffix -omics, e.g.
genomics, transcriptomics or proteomics. Later on, new discoveries expanded
this classical central dogma and lead to the creation of more specialized fields,
like epigenomics, interactomics, metabolomics, metagenomics and many more
leading to the omics-age of molecular biology. Each omics field on its own
developed experimental methods creating massive amounts of data, which are
impossible to be processed in a manual fashion. This need for automatization in-
troduced computational biology to all omics fields. Computational biology also
plays an important role when it comes to the connection between individual
fields. The tasks range from the transformation of different types of data, over
mapping dataset from one type of biomolecules to another type of biomolecules,
to the simulation and prediction of whole biological systems from a dataset
that is upstream on the flow of biological information. The accomplishment of
the last task is particularly desirable. Since in the central dogma the flows of
information between all biomolecules are connected, it should be possible to
calculate, simulate or predict the states of one type of biomolecule by the data
of another connected field, preferably a field for which the data can be obtained
more easily. One especially important example of such a task is the prediction
of the phenotype from the genome and/or epigenome. Performing that feat
perfectly would require a total understanding of molecular biology, which
sounds very utopic given our current understanding. The solution to another
similar problem seems feasible: given a defined reference system, predict how
the system changes upon perturbation. In particular, in our setting, this means
the prediction of the effects of genetic variation on the phenotype.
The research presented in this thesis is related to several omics fields including
genomics, transcriptomics, proteomics, and interactomics. From the genome,
one can deduce the nucleic acid composition of the corresponding expressed
gene products. For us, the most important products are the messenger RNAs
(mRNAs) that are translated into proteins. Through this process, variations in
the genome called mutations are also transferred to the mRNAs as well as to
their corresponding proteins where sometimes they cause amino acid variations.
When they reach this stage, mutations can influence the function of proteins
and the interactions proteins participate in. The transition from variants in the
mRNA to their effects on proteins is the key research subject of this thesis.
In the majority of cases, the input information is derived from genome-level
data produced by next-generation sequencing (NGS) techniques. To understand
the effects of genetic variations on the proteome and interactome, they have

1



2 introduction

to be mapped to the level of the proteome. Individual sequence positions cor-
responding to mutations have to be related to individual amino acids in the
context of three-dimensional protein structures, and their role in the interac-
tome has to be inferred by the analysis of their participation in biochemical
interactions.
We developed an algorithmic solution that maps protein sequences, which
include genetic variants into the spatial world of protein three-dimensional
(3D) structures, performing structural analyses of the mapped structures and
producing features, which finally are used to predict the functional impact of
the corresponding genetic variant.
In general, we call any form of assignment of protein sequences to protein
structures a structural annotation. Such an annotation can be performed on a
sequence level or on a residue-wise level, where individual positions in the
sequence, are mapped to individual residues in a protein 3D structure. For the
analysis of mutations in protein structures, a residue-wise structure annotation
is unavoidable.
A simple form of structural annotation is only considering experimentally
resolved structures where the amino acid sequence is identical to the target se-
quence. We call such a structure a corresponding structure. This task is basically
solved, since the major protein sequence repositories, for example, Uniprot [2],
include this kind of information. The residue-level annotation of a sequence to
a corresponding structure is a very simple task since the sequences are identical.
More interesting is the annotation of structures with weaker restrictions. Here
the goal is to assign appropriate structures of proteins, which are not identical
to the target protein. What constitutes an appropriate structure and why certain
techniques can reveal interesting functional insights for the protein are key
topics discussed in this thesis. One famous example of a structural annotation is
the template structure search as a preparation step for homology-based protein
structure modeling.
Structural annotation methods often are combined with some form of struc-
tural analysis. There are many forms of structural analyses, which are more or
less complex. Simpler, but also faster analyses calculate and assign structural
properties. For example, DSSP [3] calculates the solvent-accessible surface area,
secondary structure elements, and other geometrical properties. Also quite
simple, but computationally more expensive is the calculation of a pairwise
distance matrix of all residues of a protein structure. A similar approach is the
calculation of the surface area of the pairwise interaction interface between all
residues, an example method doing that would be Probe [4]. Other structural
analysis methods estimate the stability of a protein structure by measuring the
free energy of the protein folding. Some of these methods also can estimate the
difference in folding energy upon mutation, for example, Cupsat [5], MCSM [6]
and FoldX [7]. Even more computationally expensive methods that fall into the
category of structural analysis are docking methods. Such methods estimate the
best spatial composition or docking poses of two interaction partners, examples
are FlexX [8] for protein-ligand docking and HADDOCK [9] for protein-protein
docking. The arguably most computationally expensive structural analyses are
molecular dynamics simulations. In such simulations, the ambitious task is to
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compute as precise as possible all individual forces on each atom, followed by
the movement of the atoms according to the calculated forces in a minuscule
time step and repeating the process multiple times. An example method for
conducting molecular dynamics simulations is GROMACS [10].
The structural annotation method that we developed in the frame of this thesis
is named Structural Mutation ANnotation (StructMAn). While developing this
tool, we aimed to achieve several goals that would ensure the optimal usability
of the tool. The tool should be not constrained to a given input: proteins and
mutations in any number from any species should be processable. Further,
an important aspect of StructMAn is the idea to include as much structural
information as possible with the goal to produce better structural analyses and
to increase the number of the cases, for which the annotation is applicable.
For this, we used not only the corresponding experimentally resolved protein
structures, but also the experimentally resolved protein structures of homologs.
Through the realization of these goals, the method left the realm of structural
mutation annotation and is now able to structurally annotate any form of amino
acid sequences in a position-specific manner.
The estimation of the differences between a reference and a slightly modified
system introduced by a genetic alteration has many names: variant impact
prediction [6, 11, 12], variant effect prediction [13, 14] or variant prioritization
[15, 16] are the most common names. Since StructMAn is able to produce a lot
of structural features, also for variants that could not be structurally annotated
before, we developed our own variant effect prediction method. It combines
established evolutionary features with a complex array of structural features
from StructMAn in a random forest classifier approach.
The overall ambition of the work described in this thesis is structural annotation
and prediction of the impact of genetic variants on the largest possible scale,
which would enable an unprecedented level of connection between genome and
proteome. This ambitious goal comes with an array of challenges. The amount
of data that has to be processed renders the general usage of computationally
expensive methods like protein structure prediction, docking experiments, and
molecular dynamics simulations impossible. Efficient solutions are required
that balance the amount and accuracy of generated information with time
constraints and computational resources.
This thesis contains four projects, each more specifically explained in their own
chapters. The first project (Chapter 4) describes the development of a specific
structural analysis method for estimating the relative solvent accessible area of
individual residues. The second project (Chapter 5) is about the automatization
of the genome to proteome mapping and the structural analysis process and
presents the development of StructMAn. The third project (Chapter 6) demon-
strates the application of the methodology developed in the second project in
a comprehensive study focusing on variants associated with genetic diseases.
The fourth project (Chapter 7) also builds on the methods from the second
project and uses the results produced by the structural analyses as features in a
machine learning tool for predicting functional and pathogenic consequences
of mutations.



4 introduction

1.1 first author publications related to doc-
toral studies

Gress, A., Ramensky, V., Büch, J., Keller, A. and Kalinina, O.V., “StructMAn:
annotation of single-nucleotide polymorphisms in the structural context”,
Nucleic Acids Research, vol. 44, Jul. 2016.
Abstract: The next generation sequencing technologies produce unprecedented
amounts of data on the genetic sequence of individual organisms. These se-
quences carry a substantial amount of variation that may or may be not related
to a phenotype. Phenotypically important part of this variation often comes in
form of protein-sequence altering (non-synonymous) single nucleotide variants
(nsSNVs). Here we present StructMAn, a Web-based tool for annotation of
human and non-human nsSNVs in the structural context. StructMAn analyzes
the spatial location of the amino acid residue corresponding to nsSNVs in the
three-dimensional protein structure relative to other proteins, nucleic acids and
low molecular-weight ligands. We make use of all experimentally available
three-dimensional structures of query proteins, and also, unlike other tools in
the field, of structures of proteins with detectable sequence identity to them.
This allows us to provide a structural context for around 20% of all nsSNVs in
a typical human sequencing sample, for up to 60% of nsSNVs in genes related
to human diseases, and for around 35% of nsSNVs in a typical bacterial sample.
Each nsSNV can be visualized and inspected by the user in the corresponding
three-dimensional structure of a protein or protein complex. The StructMAn
server is available at http://structman.mpi-inf.mpg.de.

Gress, A., Ramensky, V., and Kalinina, O.V., “Spatial distribution of disease-
associated variants in three-dimensional structures of protein complexes”,
Oncogenesis, vol. 6, Sep. 2017.
Abstract: Next-generation sequencing enables simultaneous analysis of hun-
dreds of human genomes associated with a particular phenotype, for example,
a disease. These genomes naturally contain a lot of sequence variation that
ranges from single-nucleotide variants (SNVs) to large-scale structural rear-
rangements. In order to establish a functional connection between genotype and
disease-associated phenotypes, one needs to distinguish disease drivers from
neutral passenger variants. Functional annotation based on experimental assays
is feasible only for a limited number of candidate mutations. Thus alternative
computational tools are needed. A possible approach to annotating mutations
functionally is to consider their spatial location relative to functionally rele-
vant sites in three-dimensional (3D) structures of the harboring proteins. This
is impeded by the lack of available protein 3D structures. Complementing
experimentally resolved structures with reliable computational models is an at-
tractive alternative. We developed a structure-based approach to characterizing
comprehensive sets of non-synonymous single-nucleotide variants (nsSNVs):
associated with cancer, non-cancer diseases and putatively functionally neu-
tral. We searched experimentally resolved protein 3D structures for potential
homology-modeling templates for proteins harboring corresponding mutations.

http://structman.mpi-inf.mpg.de
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We found such templates for all proteins with disease-associated nsSNVs, and
51 and 66% of proteins carrying common polymorphisms and annotated benign
variants. Many mutations caused by nsSNVs can be found in protein-protein,
protein-nucleic acid or protein-ligand complexes. Correction for the number
of available templates per protein reveals that protein-protein interaction in-
terfaces are not enriched in either cancer nsSNVs, or nsSNVs associated with
non-cancer diseases. Whereas cancer-associated mutations are enriched in DNA-
binding proteins, they are rarely located directly in DNA-interacting interfaces.
In contrast, mutations associated with non-cancer diseases are in general rare
in DNA-binding proteins, but enriched in DNA-interacting interfaces in these
proteins. All disease-associated nsSNVs are overrepresented in ligand-binding
pockets, and nsSNVs associated with non-cancer diseases are additionally en-
riched in protein core, where they probably affect overall protein stability.

Gress, A. and Kalinina, O.V., “SphereCon - A method for precise estimation
of residue relative solvent accessible area from limited structural informa-
tion.”, Bioinformatics, Under review
Abstract: Motivation: In proteins, solvent accessibility of individual residues
is a factor contributing to their importance for protein function and stability.
Hence one might wish to calculate solvent accessibility in order to predict the
impact of mutations, their pathogenicity, and for other biomedical applications.
A direct computation of solvent accessibility is only possible if all atoms of a
protein three-dimensional structure are reliably resolved. Results: We present
SphereCon, a new precise measure that can estimate residue relative solvent
accessibility (RSA) from limited data. The measure is based on calculating the
volume of intersection of a sphere with a cone cut out in the direction opposite
of the residue with surrounding atoms. We propose a method for estimating the
position and volume of residue atoms in cases when they are not known from
the structure, or when the structural data are unreliable or missing. We show
that in cases of reliable input structures, SphereCon correlates almost perfectly
with the directly computed RSA, and outperforms other previously suggested
indirect methods. Moreover, SphereCon is the only measure that yield accurate
results when the identities of amino acids are unknown. A significant novel
feature of SphereCon is that it can estimate RSA from inter-residue distance and
contact matrices, without any information about the actual atom coordinates.
Availability: https://github.com/kalininalab/spherecon

1.2 coauthor publications during doctoral stud-
ies

Mueller, S.C., Backes C., Gress, A., Baumgarten N., Kalinina O.V., Moll A.,
Kohlbacher O., Meese E., Keller A., “BALL-SNPgp-from genetic variants to-
ward computational diagnostics.”, Bioinformatics, vol. 32, no. 12, Jun. 2016.
Abstract: In medical research, it is crucial to understand the functional conse-
quences of genetic alterations, for example, non-synonymous single nucleotide
variants (nsSNVs). NsSNVs are known to be causative for several human dis-

https://github.com/kalininalab/spherecon
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eases. However, the genetic basis of complex disorders such as diabetes or
cancer comprises multiple factors. Methods to analyze putative synergetic ef-
fects of multiple such factors, however, are limited. Here, we concentrate on
nsSNVs and present BALL-SNPgp, a tool for structural and functional charac-
terization of nsSNVs, which is aimed to improve pathogenicity assessment in
computational diagnostics. Based on annotated SNV data, BALL-SNPgp creates
a three-dimensional visualization of the encoded protein, collects available
information from different resources concerning disease relevance and other
functional annotations, performs cluster analysis, predicts putative binding
pockets and provides data on known interaction sites.
My contribution: I implemented the structural annotation performed in the
algorithmic pipeline of BALL-SNPgp.



2
B I O L O G I C A L B A C K G R O U N D

2.1 protein biosynthesis

The central dogma of molecular biology [1] states the direction of transfer and
the usage of information stored in the genome and in the biological processes
leading to the biosynthesis of proteins (Figure 2.1).
The composition and 3D structure of biological molecules, most importantly
proteins, as well as their interplay ultimately result in a well-behaving biological
system called life. While this system as a whole has multiple levels of complex-
ity, there is a common denominator in the form of protein biosynthesis [17]. The
process involves two major steps, transcription and translation. It starts with the
genome, which is a large molecule consisting of two sequential concatenations
of nucleotides forming DNA strands. Nucleotides are the monomeric units of
all nucleic acids, and consist of a sugar, a phosphate and a nucleobase. There
are four nucleobases: Adenine (A), Thymine (T), Guanine (G) and Cytosine (C)
(Figure 2.2). Using hydrogen bonds (H-bonds) they can form so-called base
pairs with their complementary base, A is complementary to T and G is com-
plementary to C. This way, two DNA strands with complementary sequences
form together double-stranded DNA, which forms the famous double-helix
structure [18]. The genetic information is stored in all living organisms (expect
some classes of viruses, although it is still debated whether viruses can be
regarded as living organisms) in double-stranded DNA.
In the transcription process, short segments of the genome that correspond
to individual genes are inversely copied, by concatenating complementary
nucleotides forming a messenger RNA molecule (mRNA). The nucleotides
forming RNA differ from nucleotides forming DNA strands by their sugar,
which is ribose instead of deoxyribose. Further, RNA strands use the base
Uracil (U) instead of T.
The translation process happens at the ribosomes, huge complexes of multiple
proteins and structured RNA. Here, mRNA molecules are sequentially pro-
cessed, whereby every three bases form a triplet or codon, which are decoded
to a corresponding amino acid. Collinear to the mRNA sequence codons are
processed and their corresponding amino acids are bound together with a
peptide bond resulting in an amino acid sequence.

2.2 proteins as sequences of amino acids

There are 20 standard different naturally occurring amino acids, which differ by
chemical properties of their sidechains. This sidechain is also called a residue.
The backbone is identical for 19 of the 20 amino acids and can be connected
by the peptide bond [19] depicted in Figure 2.3. The chemical composition

7
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Figure 2.1: (Source: (Crick, 1970)[1]) The central dogma of molecular biology showing the flow
of information in living systems.

Figure 2.2: (Source: https://upload.wikimedia.org/wikipedia/commons/d/d3/0322_
DNA_Nucleotides.jpg) The four nucleotides form two base-pairs: thymine and adenine (con-
nected by double hydrogen bonds) and guanine and cytosine (connected by triple hydrogen
bonds). The individual nucleotide monomers are chain-joined at their sugar and phosphate
molecules.

https://upload.wikimedia.org/wikipedia/commons/d/d3/0322_DNA_Nucleotides.jpg
https://upload.wikimedia.org/wikipedia/commons/d/d3/0322_DNA_Nucleotides.jpg
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Figure 2.3: (Source: https://en.wikipedia.org/wiki/Peptide_bond) The peptide bond
(red atoms) connects two amino acids under the expulsion of water to a dipeptide.

of a sidechain gives the amino acid its name and its special physicochemical
attributes. The exception is proline, whose sidechain is connected twice with its
backbone. It can still form peptide bonds.
This allows amino acids to form polymeric chain molecules, called polypeptides.
Longer peptides, which fulfill biological functions, are called proteins. Proteins
can be built of a near-infinite amount of possible amino acid sequences.
The bonds between the alpha carbon and the carboxyl carbon (phi-bond) and
between the alpha carbon and the nitrogen (psi-bond) are rotatable freely. This
leads to a plentitude of possibilities for the three-dimensional orientation of a
protein’s amino acids. Luckily, the majority of proteins have one or at least a
few natural ways to pack their amino acids, determined by the physicochemical
interactions between them and characterized by the lowest free energy [20].
Such a mutual placement of amino acids is called protein fold or the three-
dimensional structure of a protein [21].

2.3 protein structures

Proteins can be distinguished into the ones that fold autonomously (or with
the help of chaperones) into a particular shape called protein structure and
those proteins, that do not fold into a stable structure. The latter ones are
called non-structured or disordered proteins. There are also partially structured
proteins, which combine segments of both kinds.
Structured proteins can be described in terms of four levels of structural or-
ganization [22–25]. In this hierarchy (Figure 2.4), the amino acid sequence is
described as the primary structure of a protein. Hydrogen bonds between the
amino acid backbones build regular reappearing structural patterns, known
as secondary structure elements. While there exist finer distinctions, the sim-
plest and most well-known classification of secondary structure elements are
alpha-helices, beta-sheets, and loops or coiled regions. The alpha-helices and
beta-sheets can be viewed as less flexible building blocks, that can be arranged
in any formation in space, connected by highly flexible loop stretches. This
arrangement of secondary structure elements forms the tertiary structure. The
next level in the hierarchy leaves the scope of a single protein sequence. As
the quaternary structure, one understands a structural composition of multiple
protein chains to form a functional biological entity.

https://en.wikipedia.org/wiki/Peptide_bond
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Figure 2.4: (Source: https://en.wikipedia.org/wiki/File:Protein_structure_

(full).png) The four levels of protein structure hierarchy on the example protein PCNA
(PDB: 1AXC)

https://en.wikipedia.org/wiki/File:Protein_structure_(full).png
https://en.wikipedia.org/wiki/File:Protein_structure_(full).png
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Segments of proteins, whose fold is evolutionary conserved and that form inde-
pendent functional units, are called protein domains [26, 27]. Often domains
can be observed to specifically bind to other domains or low molecular weight
ligands. While smaller proteins consist entirely of one domain, the combination
of domains enables the construction of larger proteins with more possibilities
regarding interaction partners. Smaller recurring structural elements are called
structural motifs and are linked to specific roles in protein structure formation
[28].

2.3.1 Protein Function Through Interactions

Most biological processes and functions are mediated by the physical and
chemical properties of protein structures and their ability to form very specific
complexes with other proteins, nucleic acids, lipids, low molecular weight
ligands. Further, we call such tight and specific binding to other molecules
interactions. While there are proteins, which function and form interactions in
a disordered state [29], a very common way of proteins engaging in interactions
is by the formation of more or less defined 3D structures. Protein structures are
usually not completely rigid. The ability to slightly change their 3D conforma-
tion to adapt to the specific structure of a corresponding interaction partner is
called induced fit and enables the interaction to a variety of interaction partners
[30].
This concept can be expanded to partially structured proteins. Their disordered
parts can form more or less structured interaction interfaces during the for-
mation of a complex. Overall, the function of a protein is determined by the
various dynamic interactions it facilitates and the complexes it participates in.
Since most complex formations are determined by the specific folds of protein
structures, there is a strong connection between protein structure and protein
function [31].
Thus, when proteins perform their function, they inevitably engage in interac-
tions with other biologically relevant molecules. This includes a wide variety
of possibilities, ranging from binding smaller molecules in order to catalyze
chemical reactions up to forming massive complexes building whole cellular
compartments [32]. The only other type of biological macromolecules, which
can fulfill similar tasks, are structured RNAs. This can also be done in coopera-
tion with proteins, a prime example of such cooperation being the ribosomes.
However, the vast majority of cellular processes are mediated by proteins.
As previously stated, protein function is determined by its structure. More pre-
cisely, proteins fulfill their functions through interactions with other biomolecules.
Enzymes are interacting with their corresponding substrates, transcription fac-
tors interact with nucleic acid chains, membrane proteins interact with different
cell membranes, signaling proteins interact with other proteins and signal-
ing molecules and so on. All these interactions have to be very specific, such
that only with the correct interaction partners a complex can be formed. This
specificity is guaranteed by the particular structure of a protein, hence pro-
tein structure still determines protein function, but knowing the structure of
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a protein without knowledge about the corresponding interaction partners,
deductions about the function cannot be made, at least as long as one cannot
precisely predict interaction interfaces and partners based on the structures.
For that reason, the investigation of protein structures without the context of
their interactions is not sufficient and only through research of interactions a
protein participates in, protein function can be deduced. Thus protein structure
modeling does not suffice to fill the gap between known sequence and known
structures when the protein function is of interest. Most protein structure de-
termination experiments are designed in a way that they aim to resolve the
protein structures together with their interactions partner, especially in the case
of X-ray crystallography experiments. The possibility of multiple interaction
partners makes the investigation of multiple experimental results for the same
protein structure very valuable. One protein can interact with many different
proteins using distinct interaction interfaces or the same interface and/or by
switching its conformational state [33]. Often the binding of multiple putative
interaction partners even excludes each other. Different structure resolution
experiments can uncover different complexes formed by the same protein. This
principle applies not only to proteins as interaction partners, but also to low
molecular weight molecules and the combination of both types. When only the
data from one experimentally resolved structure is used when performing a
structural analysis, one can overlook important mechanisms and functions of a
protein.

2.3.2 The Relation Between Sequence and Structure Similarity

The structural fold of a protein is determined by its sequence. It has been
observed that similar sequences will fold into similar structures [34]. However,
since protein function is determined by its structure and not by its sequence,
the theory is that evolutionary pressure affects the structure stronger than the
sequence of a protein, leading to stronger conservation of structure in compar-
ison to sequence conservation. Empirically, this has been shown by Illergård
er al. [35]. While structures are more complex to analyze than sequences, due
to the additional dimension, the diversity of structures observed in nature is
less than the diversity of sequences [28]. This observation indicates that the
possibilities for protein structure folds, which properly fulfill their function, are
limited. In other words, accumulating evolutionary changes over time can lead
to highly diverse sequences folding into similar structures. As a conclusion,
similarity in structure does not strictly imply sequence similarity (for example
Figure 2.5), but empirically a high sequence identity is a very high indicator for
a high structural similarity [34, 36].
This fact is relevant in practice because a similar structure is a strong indicator
for a protein to have a similar function. Structures of proteins with a similar
sequence to the protein of interest can be studied, when for the protein of
interest no structure is available. Conclusions regarding protein function drawn
from related structures can be transferred back to the original protein. Since
even not directly related proteins may share similar structural domains, which
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Figure 2.5: Superimposition of structures of Hemoglobin subunit alpha HBA1 in human
(in green, PDB id 1ABW, chain A) and Hemoglobin subunit 1 in Anadara inaequivalvis (in
magenta, PDB id 3SDH, chain A); sequence identity of the homologous sequences: 19%. Above
the structures: sequence alignment induced from the structural superimposition.
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Figure 2.6: Total number of available data over time: for the number of gene sequence records
in the NCBI GenBank [39] and the number of structures in the PDB.

can be linked to specific functions [37], the analysis of structures from proteins,
which show sequence similarity only for a part of the sequence, can be very
fruitful, too.
Since the structure of most proteins is not known, the previously explained
relationship between similar structures needs to be used for filling this knowl-
edge gap. For that purpose, there is a need to find similar structures, which is
achieved by searching for similar sequences of proteins with known structures,
which is explained in more detail in Chapter 5.
Currently, only for 22% of all human proteins there is an experimentally re-
solved structure in the Protein Data Bank (PDB) [38], the major repository for
results of protein structure resolution experiments. Since more and more struc-
tures are experimentally determined over time, the question arises, whether
the need for studying similar structures is just a temporary situation until
all structures are available. While the state of universally available protein
structures would be desirable, it seems a) very far away and b) may never be
reached since the number of newly sequenced genes grows more rapidly than
the number of newly resolved structures (Figure 2.6).
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2.4 genetic variants

When comparing a specific genome to the reference genome of the corre-
sponding species, their differences called genetic variation. The variant that
is observed in the reference is called wildtype and all other variants we call
mutant. There are many forms of genetic variants known. They can be de-
scribed in terms of their general structure, such as their size or the biological
event that caused the variation, and in terms of the region of the genome, in
which they occur. One can differentiate three major classes of genetic variants:
large-scale or structural variants, medium-sized insertions and deletions which
are called indels, and point mutations, which are also called single nucleotide
polymorphisms (SNPs) or single nucleotide variants (SNVs). The term SNV
refers to all point mutations, whereas SNPs are only SNVs that occur in less
than 1% of the population [40]. Structural variation can be specified further
[41], but since they a comparably rare form of genetic variation in the human
genome [42, 43] we ignore them in the scope of this thesis. Indels are more
frequent than structural variations, but still about 25 times rarer than SNVs
[42]. SNVs that change a codon and lead to an amino acid substitution in the
resulting protein are called non-synonymous SNVs (nsSNVs), and the focus of
this thesis is exclusively on nsSNVs.
In 2001 it was estimated that there are at least 10 million SNPs in the population
[44], in 2019 there are over 69 million SNPs listed in dbSNP [45], which are
reported in less than 1% of the population. Each individual can carry about
3 million SNVs [46] and from these 99% have a population frequency < 1% [47].

2.4.1 Influence of nsSNVs on Protein Function

The result of an nsSNV is a substitution of one amino acid in the protein
sequence. Since a protein’s function is fulfilled via its interactions, the impact of
a mutation on protein function can be interpreted in terms of its impact on the
interactions of a protein. We distinguish three basic modes of how a mutation
can impact an interaction [48–50]. The most obvious mode is to directly alter
an interaction, either by replacing an amino acid, which formed a non-covalent
bond in the wild type with an interaction partner, destroying this bond, or
by introducing a new bond to an interaction partner. The second mode is by
destabilizing the protein structure, which may lead to formation of incorrect
conformations and/or partial or complete misfolding of the protein. Allosteric
effects define the third mode, where comparatively subtle structural changes
impact an interaction although the site that was altered is distant from the in-
teraction site. Such effects can become rather complicated, mitigated by a chain
of minor molecular events and are difficult to assess. All these effects differ in
their magnitude. Some mutations can completely disable all functions of the
protein, some disable just one function and others only result in smaller effects
[51]. For example, a mutation can impede the formation of a particular complex
without having any effect on interactions with other partners. Other mutations
may only change the binding affinity of an interaction instead of completely
inhibiting the binding, resulting in even more subtle changes or even in an
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increased binding affinity. Another example of a possible effect is the change in
the turnover rate of an enzyme, leading to a change of the product molecule
concentration in the cell, which could have further ramifications. Overall, we
can hypothesize that variants in the protein core have an increased chance of
inducing the complete loss of function, variants on interaction interfaces tend
to have more subtle effects and variants lying on the protein surface that are
not part of an interaction interface lead to rather neutral effects.

2.5 genetic diseases

Genetic diseases, or genetic disorders, are diseases that result from genetic
alterations and can be observed as specific phenotypes. These alterations most
commonly occur randomly and can be inherited from the ancestors. The term
phenotype goes back to 1909 to the work of Wilhelm Johannsen as described by
[52]. While the term can be used in various meanings, we focus on the distinc-
tion between neutral or healthy phenotypes and malicious disease phenotypes,
especially in humans. On a population scale over a long time, the process of
evolution through random mutation and recombination of genetic informa-
tion is the driving force behind the diversity of life [17]. Zooming into the
perspective of individual fates, the collateral damage of evolution in the form
of genetic diseases seems very cruel. These diseases often do not directly lead
to death, but cause abnormalities and/or decrease quality of life of the affected
individuals. This makes fighting genetic diseases one of the main motivations
behind plenty of scientific research. Cancer is usually not considered to be a
genetic disorder, although it is caused by genetic alterations.
The set of mutations causing a genetic disease can range from individual point
mutations up to very complex multi-mutation pattern. One distinguishes be-
tween germline mutations, which occur in germ cells either inherited from the
parents or appeared before the differentiation of the germ cells, and somatic
mutations, which were introduced into the genetic code during the lifespan
of the individual [53]. Since all cells in the human body are descendants from
germline cells, germline mutations are omnipresent in all cells and tissues in
an individual, while somatic mutations spread from the time and place of their
first origination through the replication cycle of living cells only to a limited
number of cells in the body. Germline mutations are often the cause of the
inheritance of a genetic disease. The earlier somatic mutations happen in the
differentiation process in the life cycle of a multicellular eukaryote, the more
it is spread to different tissues. Somatic mutations can cause diseases when
occurring in a specific tissue while having a neutral effect in another tissue.
When going down the road from genotype to phenotype, one should never
underestimate the complexity of the greater picture. The genotype is not alone
responsible for the phenotype. Epigenetics and environmental factors also
influence the phenotype. Cases, in which the presence of disease-associated
mutations do not result in their expected phenotype are called variants with
reduced penetrance [54] and can be very puzzling. Some can be explained by
heterozygosity, meaning the variant is only carried by the recessive allele, some
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are due to epigenetic effects and others remain unexplained.
The Online Mendelian Inheritance in Man (OMIM) database [55] collects ge-
netic disorders and their corresponding associated genes. Disease phenotypes,
which can be associated with malfunction or inhibition of a single gene or
its corresponding gene product exclusively is called a monogenic disorder
[56]. They need to be distinguished from diseases caused by a combination of
perturbations, which are called multifactorial disorders or complex disorders.
In OMIM (January 28th, 2020), the 5520 monogenic disorders outnumber the
complex disorders that only have 694 entries. Surprisingly the same holds true
for genes associated with monogenic disorders (3832) and genes associated
with complex disorders (501).

2.5.1 Monogenic Disorder

As mentioned before, diseases resulting from mutations located in one specific
gene are called monogenic disorders [56]. All patients that have the disease also
share a perturbation in the gene. This could be, for example, a mutation leading
to an amino acid change in its corresponding protein, which then disrupts
the protein’s function. If the causative mutation is known, the corresponding
disease can be diagnosed easily via sequencing the corresponding genome
segment. If therapy is available, this is especially helpful for diseases, whose
symptoms are developing over time. However, due to the cases of reduced pen-
etrance explained previously, this concept may lead to false-positive diagnoses.
For understanding, fighting and curing monogenic diseases, the knowledge of
the statistical connection between the specific mutation and the corresponding
monogenic disorder is not sufficient. The impacts and implications of the muta-
tion on the underlying biological system have to be evaluated thoroughly to
design a potent cure.

2.5.2 Multifactorial Disorder

As the name suggests, multifactorial disorders have multiple mutations amount-
ing together to a disease phenotype. Examples of such diseases are diabetes,
heart disease and schizophrenia [56]. In comparison to monogenic disorders,
they affect a much larger fraction of the world’s population [57]. The interac-
tions between the individual genetic variants in a multifactorial disorder can
become extremely complicated, and multifactorial disorders are also known
as complex disorders. The most infamous complex diseases are cancers, de-
scribed in more detail in the next section. In the majority of cases, the malignant
mutations are combinations of germline and somatic mutations. Since it is
possible that completely different combinations of mutations result in the same
pathogenic phenotype, a diagnosis based on specific mutations gets a lot more
challenging compared to monogenic disorders. But it is not impossible: some
mutations are more frequently observed in pathogenic phenotypes than others,
and based on that observation statistical associations can be deduced. Thus,
some mutations have a greater pathogenic potential than others. Resulting
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from this observation, a whole field developed, which creates models that are
predictive of the pathogenic potential of individual mutations. It will be in
more detail introduced in Chapter 7.

2.5.3 Cancer

There are many definitions of cancer. In general, cancer is a group of cells
with abnormal proliferation and many other abnormal cellular characteristics
resulted from genetic alterations [58, 59]. Cancer is distinct from benign tumors,
which are also characterized by abnormal proliferation but do not pose a direct
threat to its neighboring tissue and its host. Cancer is a malicious tumor and
thus able to invade other types of tissue causing metastasis [60]. Cancer can hap-
pen in all types of tissues, and different forms of cancer are generally broadly
classified by their tissue of origin. Each cancer is different and often rapidly
changes over time, which renders it the most complex existing disease. Some
cancers are caused by very few mutations, but most often the accumulation
of unfavorable somatic mutations in combination with malignant germline
mutations is observerd during tumor progression [58]. A benign tumor can also
develop into malicious cancer this way.
A collection of the traits of cancer that differentiate them from healthy cells is
known as the hallmarks of cancer [61, 62]. It includes ten hallmarks, which can
be seen as changes in cellular phenotype typical for cancer:

1. Resisting cell death. Cancer can disrupt the natural signaling pathways,
which initiate apoptosis of damaged cells. The well-known tumor sup-
pressor protein TP53, which is able to sensor cell damage and to start a
signaling cascade that leads to apoptosis, is perturbed in many cancers,
for example.

2. Deregulating cellular energetics. The uncontrolled proliferation of can-
cer cells requires more energy in comparison to healthy cells of the same
tissue type. To fulfill that increased demand for energy, cancer cells are
known to upregulate their glucose metabolism.

3. Sustaining proliferative signaling. The growth and eventual division
of healthy cells are strongly regulated by signaling pathways. Cancer
cells are upregulating cell-growth promoting signals to reach a state of
uncontrolled proliferation.

4. Evading growth suppressors. The effect of the previous hallmark is also
supported by another mechanism, namely the deregulation of growth-
suppressing signaling pathways.

5. Avoiding immune destruction. To evade the destruction through the
immune system of the host, cancer cells can produce immuno-suppressive
agents.

6. Enabling replicative immortality. While healthy cells are limited regard-
ing the number of cell divisions, cancer cells can reach a state, where their
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replication is unlimited. Together with the resisting cell death hallmark,
this leads to a seemingly immortal tumor, which when left untreated dies
only with the death of the host due to the loss of nutrition supply. This
ability is useful in molecular biology experimental routine since in vitro
immortalized cancer linages can be stored forever and multiplied at will
to produce research samples of constant quality.

7. Tumor-promoting inflammation. An inflammation, triggered by the tu-
mor itself or by external causes, can change the metabolic environment of
the tumor in a way supporting the development of the other hallmarks.

8. Activating invasion and metastasis. A cancerous tumor originates from
one type of tissue. A further developed tumor, however, is able to initiate
cancerogenesis in neighboring tissues of a different type. It is also possible
for a cancer tumor to separate single cells, which can be transported
through the lymphatic and blood system of the host enable metastatic
colonies throughout the host body. This hallmark has the most negative
consequences for the host.

9. Inducing angiogenesis. Angiogenesis is the biological process in which
blood vessels create new branches. Cancer cells affect their surrounding
tissue by initiating angiogenesis to ensure a sufficient supply of nutrients
from the host.

10. Genome instability and mutation. The acquisition and development of
all hallmarks are driven by (epi-)genetic perturbations. Cancer increases
the rate of genetic variation and accumulates a larger number of mutations,
which accelerates the development of all hallmarks.

While the hallmarks are numbered here, they do not have any particular order
and their joint presence is not necessary to classify a tumor as cancer.

2.5.4 Phenotypic Effects of nsSNVs

Since mutations can affect the functions of proteins, they also can impact the
resulting phenotype. Sometimes specific mutations co-occurring with genetic
disorders can be statistically linked. Such mutations are said to be in association
with the disease and are collected in databases, for example, ClinVar [63].
Predicting the effects of nsSNVs on a phenotype is equivalent to the investiga-
tion of the impact of the altered function of a protein on an entire biological
system. Even when the alteration of the function is exactly understood, it is an
immensely complex task. At first glance, this does not seem too complicated
for a monogenic disorder, but the process in which the affected protein is
involved may not be completely understood [57]. The issue becomes even more
complicated when the association between the gene and the disorder is not
known. Such cases are not rare, which can be seen by the investigation of the
entry statistics of OMIM (https://omim.org/statistics/entry).
The prediction is particularly difficult for complex disorders. Since different
mutations are causing the phenotype in combination here, the effect of a single

https://omim.org/statistics/entry
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nsSNV on a phenotype can be relatively subtle. The phenotypic effect of nsS-
NVs can be approximated by their impact on protein function. The underlying
assumption is that strong effects on protein function correlate with a strong
contribution to the change in phenotype [49]. In this model, all the complex
networks of biological pathways are ignored.
Since this assumption is a significant simplification of the underlying biological
system, the prediction of phenotypic effects of individual mutations in this
manner will never be an ideal method.
Overall, proteins can be more or less important and are more or less susceptible
to mutations. The tendency is that the more interactions a protein participates
in, the more important they are to maintain the phenotype and the biological
system is affected more by mutations in that protein. This tendency has a
secondary repercussion. Some proteins are more researched because of their
known important roles in diseases like cancer, resulting ultimately in the exis-
tence of more data on them, including data on their interactions. At first glance,
this sounds desirable, but when working in that field one should always keep
this in mind since it introduces some heavy biases. In this thesis, we explore
these and other biases that can obscure the computational predictions in this
field in Chapter 7.
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E X P E R I M E N TA L A N D C O M P U TAT I O N A L T E C H N I Q U E S

3.1 experimental methods for data acquisition

3.1.1 Genome Sequencing

Sequencing techniques are experiments with the goal to determine the correct
sequential order of nucleotides in a given DNA or RNA molecule (protein
sequencing technologies exist, but are not commonly used and not considered
here). Since the discovery of the structure of DNA [18] and the following for-
mulation of the central dogma [1], it became clear that the mystery of life is
coded in the nucleotide sequence of the DNA and the quest to crack the code
was born. After some time, experimental methods were developed in order
to sequence fragments of DNA (Sanger sequencing) [64] and through further
improvements on that technique [65, 66] the foundation for the sequencing of
the human genome was laid [67]. The famous first sequencing of the human
genome by the Human Genome Project [68–70] which resulted in a total cost
of $3 billion. The result defined the very first human reference genome, which
simplified the task for future human genome sequencing efforts.
The most current reference genome at the moment, hg38, resulted from the
1000 Genomes Project [46]. The main focus of the project was to map all ge-
netic variations in the human genome. As the name suggests, the idea was to
sequence 1000 genomes and with the following sequence alignment, one could
identify the varying locations in the genome.
In comparison to the Sanger sequencing, modern sequencing techniques are
characterized by their higher throughput of sequenced nucleotide per time
and cost. They are generally described as Next-Generation Sequencing (NGS)
techniques and are discussed in the following.
All sequencing techniques involve the fragmentation of the given sequence since
only fragments of a certain length range can be determined. The experimentally
determined sequence of such a fragment is called a read. Different sequencing
techniques are mainly distinguished by the corresponding typical read lengths,
which splits the field into short-read assays and long-read assays. Other at-
tributes are the rate of errors per nucleotide and how much time and money are
required for the generation of the reads. To reassemble the whole sequence of a
given sample, reads have to be processed by computational methods. Different
read lengths and coverage rates require appropriate computational methods.
Here it should be noted that the existence of a corresponding reference genome
simplifies the problem significantly.
As the name suggests, sequencing by ligation (SBL) techniques exploit the
biological process of DNA ligation. In contrast to the biological process, in SBL
the DNA ligase does not join two DNA double-strands, but target sequences
with labeled oligonucleotides, for example in the SOLiD platform [72]. Sequenc-
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Method Read length Error rate Cost per Gb

Sanger sequencing short 0.1% $2, 400, 000

Sequencing by ligation short 0.1% $70− 130

Sequencing by synthesis short 0.1% $7− 150

Single-molecule real-time sequencing long 3− 13% $7− 40

Synthetic-long read sequencing long 0.1% $30− 150

Table 3.1: Different DNA sequencing technologies; Gb: a million bases; this table is based on
information from https://en.wikipedia.org/wiki/DNA_sequencing and from Goodwin
et al. (2016)[71].

ing by synthesis (SBS) uses another biological DNA-related protein, the DNA
polymerase (e.g. Taq polymerase) in a similar fashion as in the polymerase
chain reaction (PCR). In SBS assays, the target sequence fragments are fixed
in place, fluorophore-labeled single nucleotides are added step by step, one
type of nucleotide per step. The DNA polymerase adds the nucleotide to the
complement of the target fragments, enabling the detection of the fluorophore,
which is cleaved from the complex in the process, corresponding to the spatial
fixation. Example platforms using SBS are Illumina and Qiagen [71]. In contrast
to SBS in single-molecule real-time (SMRT) sequence, the target fragments are
not fixed. Instead, one DNA polymerase molecule is fixed to a specific location
hence ‘single-molecule’. The target fragments are complemented by labeled
nucleotides. In SMRT all four types of nucleotides are always present, enabling
the polymerase to work as fast as in vivo, hence ‘real-time’. Each nucleotide
concatenation is accompanied by the cleavage of a fluorophore, which enables
the detection based on the specific location of each polymerase. This allows for
the sequencing of larger fragments in one go. Synthetic long-read sequencing
techniques are, in principle, extended short read sequencing techniques. Here,
the target DNA is first fragmented into longer pieces and then separated into
sets of a several thousand fragments, which are then further fragmented to
short read size and tagged. All short fragments are finally sequenced and with
the help of the tags long reads can be rediscovered.
There are also further specialized DNA sequencing techniques. With single-cell
sequencing, for example, it is possible to identify genomic differences in indi-
vidual cells and to reveal allele frequencies of individual samples.
In medical practice, the cost of sequencing is of utmost importance. To reach
the goal of personalized medicine, i.e. for each patient provide a treatment
tailored to their individual characteristics, we need to be able to obtain as much
genomic information as possible for individual patients for the lowest possible
price. With the advent of next-generation sequencing techniques this became a
realistic opportunity. The resulting data amounts call for the development of
computational methods harnessing the potentials of the ongoing advancements
in sequencing technology [73].
Sequencing technology is not limited to DNA. RNA sequencing is able to iden-
tify all transcribed segments of the genome and is especially important when
studying protein expression profiles since RNA sequencing can tell which genes
are transcribed and what are the quantities of the resulting gene products.

https://en.wikipedia.org/wiki/DNA_sequencing


3.1 experimental methods for data acquisition 23

While the world of sequencing technology is far more versatile and fascinating
than described here, for this thesis we only focus on the processed data pro-
duced by sequencing technology. Further, we also treat computational methods
for the processing of raw sequencing data as a black box, assuming that the
task of gene annotation and variant calling are solved.

3.1.2 Protein Structure Determination

The spatial image of proteins was a mystery for a long time in molecular
biology. In 1958, the first protein 3D structure was experimentally resolved,
which was the structure of myoglobin [74]. This feat was possible with the
technique of X-ray crystallography, which is still the most prevalent protein
structure determination technique and consists of two steps. In the preparation
phase, the molecules, for which the structure should be resolved are chemically
driven into a crystal state, which means a regular symmetric repeating arrange-
ment of so-called asymmetric units. In the main experiment itself, the crystal
is penetrated by X-rays, which are diverted by the repeating organization of
the crystal lattice in a way specific to the substructure of the asymmetric units
forming the lattice [17]. The diverted X-rays are detected and the structure of
the target molecule can be deduced from the specific geometry of the diversion.
The complicated preparation of the crystals is comparatively labor-intensive.
A suitable crystallization process of each protein needs to be determined and
for some, no crystals can be derived despite the best effort. Transmembrane
proteins are especially complicated to crystallize because of their hydrophobic
surfaces facing the membrane. The advantages of X-ray crystallography are
the possibility to achieve very sharp resolutions and the ability to resolve large
molecules, including protein complexes. A disadvantage is that it is just a
snapshot ignoring all possible dynamics of the resolved structures.
Nuclear magnetic resonance (NMR) spectroscopy is an experimental protein
structure determination technique that is capable of capturing protein structure
dynamics to a certain extent. In an NMR experiment, the molecule structure of
which is being resolved is put into the influence of a strong magnetic field [17].
This construction is then probed by radio waves of differing intensity. Different
intensities put different hydrogen protons (and other atoms with an uneven
number of protons with a less strong signal) into a state of resonance, which
can be measured. The result is a spectrum curve showing peaks for different
energy intensities. Which peak corresponds to which atoms are determined
by their chemical environment. Thus one can deduce the distance constraints
between atoms in the molecule of interest. In NMR it is also possible to detect
fluctuations on an atomic level in the structure, which means protein structure
dynamics can be detected. The greatest disadvantage of NMR is that the larger
the structure the more the peaks in the spectrum start to overlap. Then their
structural determination becomes unfeasible at some point. Thus, NMR is only
applicable to small proteins. Recent developments are expanding the applica-
bility of this technique to larger structures.
Recently, a third major protein structure determination method starts to es-
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tablish itself, the cryo-electron microscopy (cryo-EM), which is a specialized
version of electron microscopy (EM) setup at very low temperatures [75, 76].
Cryo-EM opens EM for resolutions sharp enough for the determination of
structures at the level of individual atoms, but currently still cannot compete
with X-ray and NMR structure determination their productivity. The greatest
contributions offered by Cryo-EM are the structures of large protein complexes,
since there are no limitations on the size of the molecules of interest or their type
and no need to laboriously produce crystals, enabling the resolution of very
large complexes including membrane protein complexes and other molecules
that represent a challenge for X-ray crystallography and NMR.
The raw experimental data is transformed into atomic coordinates (with or
without hydrogen atoms) using special software specific to each experimental
technique. The results from every protein structure determination experiment
are submitted to the PDB, independent of the experiment type (see Figure 3.1).
Each structure is stored in files with a special file format, which contains all
the information from the experiment, most importantly including the atomic
coordinates. Such a file can contain one or multiple models, which are made
up of one or multiple protein chains. Each chain consists of a list of residues,
which are basically lists of the residues’s individual atoms.

3.1.3 Clinical and Experimental Annotation of Impacts of Genetic Variants

One key aspect of this thesis is the analysis and prediction of the impact of
genetic variants. To train models and evaluate the quality of analyses and
predictions, the usage of variants with known impact is inevitable. There are
two major ways to create such annotated variants: either their impact could
be clinically observed in vivo, or they can be experimentally analyzed in vitro.
Clinically observed variants are usually reported with respect to their associa-
tion with a pathogenic phenotype. Here, multiple independent observations
are crucial to exclude random cause-effect deductions. Experimental annotation
of genetic variants is often very specific. If only the impact on one particular
function of the protein is tested, for example, one loses much of the surrounding
perspective.
A frequently used database collecting clinically annotated variants is ClinVar
[63], which has an integrated system rating the quality of each variant. En-
tries from singular submissions are rated with 1 star. Entries with multiple
submissions, which do not contradict each other, are assigned 2 stars. Entries
submitted by expert panels receive 3 stars and entries, which are mentioned in
practical guidelines are granted with 4 stars. Currently, ClinVar holds slightly
over 1 million variants, whereby nearly 100, 000 entries have 2 stars or more.
While ClinVar includes all types of genetic variations, there are databases that
specialize in that regard. For example, dbSNP [45] contains only SNPs or dbVar
[77] contains only structural variations. Other databases are specialized for
the collection of variants that can be associated with specific phenotypes, like
COSMIC [78], which concentrates on somatic genetic variants associated with
human cancer, or HGMD [79] that contains variants associated with all kinds
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Figure 3.1: Number of structures in the PDB (January 2020: https://www.rcsb.org/stats/
summary) by experimental technique.

https://www.rcsb.org/stats/summary
https://www.rcsb.org/stats/summary
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of human Mendelian diseases.
An important group of experimental methods analyzing the impact of genetic
variants on protein-protein interactions are protein-protein binding assays,
where the strength of the interaction between two proteins is measured. To
estimate the impact of a mutation on that interaction, the assay has to be per-
formed on the mutant protein as well as on the wildtype protein. The most
comprehensive database collecting the results of such experiments is IntAct
[80]. The price for the large size of the database is paid in a loss of precision
since the database combines the outcomes from many different experimental
techniques into a rough classification scheme. A similar, but smaller database
containing more detailed entries is SKEMPI [81], which usually contains exact
values for the change in binding affinity for its entries.
A type of experimental assays for the estimation of the impact of genetic vari-
ants that is gaining popularity recently are deep mutational scanning (DMS)
assays [82], which benefit from modern high-throughput experimental tech-
niques, especially NGS methods (Figure 3.2). The goal of a DMS experiment
is to assess the impact of as much as possible genetic variants on the function
of a single protein. The first step is the creation of a variant library, usually in
the form of a cell-based assay, whose cells contain the protein of interest artifi-
cially introduced using some vector. The trick is to obtain a roughly uniform
distribution of mutants throughout the assay. Fruther, in the assay there is a
possibility to select the cells based on the function of the protein of interest. The
evolved cell population is sequenced afterwards and from the allele frequencies
of each position of the protein, one can deduce the individual impact of each
variant. The idea behind that deduction is based on the selection that reduces
the number of cells carrying variants, which disrupts the target protein function,
leading to a reduced allele frequency of the variant. The resulting functional
impact estimations for all possible mutations for individual proteins are highly
valuable in understanding the contribution of individual residues to the overall
protein function.

3.2 computational methods

3.2.1 Sequence Similarity Search

Sequence similarity search techniques are one of the most fundamental methods
in computational biology. Given an input query sequence and a database of
sequences, the goal is to find a subset of the database with sequences similar to
the query sequence, often called hits. Over the years, a variety of methods have
been developed, whereby the focus was primarily to improve two characteris-
tics, runtime efficiency and sensitivity. In sequence similarity search tools, the
sensitivity is the ability of the method to find more distantly related sequences.
The most well-known search tool is BLAST [83]. It divides the query sequence
into k-mers (subsequences of length k), which are then matched against all
sequences in the database. This matching is efficiently performed due to a
preliminary indexing of the database. All matched k-mers are elongated in both
directions, resulting in a local alignment. In this process, newly added matches



3.2 computational methods 27

Figure 3.2: Taken with permission from Fowler and Fields (2014) [82]: Deep mutational
scanning draws on high-throughput DNA sequencing to assess the functional capacity of a
large number of variants of a protein simultaneously. First, a library of protein variants is
created and introduced into a system where the genotype of each variant is linked to a selectable
phenotype. Second, a selection for the function of the protein is imposed. Variants with high
activity increase in frequency, whereas variants with low activity decrease in frequency. High-
throughput DNA sequencing is used to measure the frequency of each variant before and after
selection. These frequency data are analyzed to generate functional score for each of the protein
variants.
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are scored by a substitution matrix and it is possible that elongated matches
can fuse with other matches. The elongation is prolonged as long the scores
of the added matches are above a certain threshold. Each alignment with a
sufficient score is returned as a hit.
Another class of sequence similarity search methods are hidden Markov Models
(HMM)-based methods. The latter type of method calculates a profile HMM,
which is based on the sequences in the search database [84]. The target sequence
is matched against the profile HMM by calculating the path corresponding to
the target sequence through the profile HMM that has the maximum probability.
A set of models from the data bank, for which this probability is high enough,
correspond to a set of related sequences that form a list of hits. A well known
HMM-based method is HMMER [85]. Modern methods are able to be balanced
between efficiency and sensitivity by the user.
The sequence similarity search is a key step in StructMAn (Chapter 5), where
many sequences have to be searched in a static search database with high
sensitivity. To fulfill these demands, the method of choice was MMseqs2 [86],
which is able to handle multiple searches in parallel.

3.2.2 Pairwise Sequence Alignment

The diversity of life is driven by evolution, which takes place by the introduc-
tion of random mutations into biological sequences. From this principle follows
that similar biological sequences originate from a common ancestor sequence.
More similar sequences indicate a closer evolutionary relatedness. Sequence
similarity can be deduced by a list of computational methods, where sequence
alignment is the most prominent. The goal of a pairwise sequence alignment
is, in general, given two sequences of characters to match as many as possible
identical or similar characters in both sequences onto each other by shifting the
sequences with respect to one another and introducing gap characters into the
sequences. Since all important biological macromolecules are representable as
sequences of characters of a defined alphabet, sequence alignment methods are
fundamental in computational biology. Sequence identity is the proportion of
identically matched characters in a sequence alignment. While any mapping of
two sequences with any amount of added gaps is technically an alignment, the
most desired alignments maximize sequence identity or some other similarity
measure.
For the alignment of protein sequences, in particular, a more complex similarity
measure is taken. Compared to nucleic acid sequences, the alphabet of possible
characters is larger and since amino acids can often be replaced by another
amino acid with similar chemical properties, alignments of protein sequences
may have a comparably low sequence identity and the proteins can still be
considered as evolutionary related and perform identical or highly similar
functions. For that reason, instead of taking just identically matching positions
into account, usually a substitution matrix is used in which entries contain
scores for all possible matched amino acid pairs, where identical or chemically
similar amino acids receive a positive score, while dissimilar amino acid pairs
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get a penalty in form of a negative score. There are two well-known sets of
substitution matrices, Point Accepted Mutation (PAM) matrices [87] and BLOck
SUBstitution Matrices (BLOSUM) [88]. Instead of maximizing the sequence
identity, all pairwise scores are summed and the total penalty is minimized.
Furthermore, there are additional penalties for opening and for elongating a
gap to prevent alignment algorithms from introducing a large number of gaps
to match a single character and ripping the sequences apart in the process.
Two types of pairwise alignments are considered in computational biology, to
solve different problems: local and global alignments. For example, aligning
the sequence of a single gene with a much larger sequence of a chromosome
requires to match the gene completely to one place in the chromosome with-
out spreading the gene sequence all over the larger sequence. This scenario
requires local alignment, since only a small part of one of the sequences is
covered. Another application is the alignment of two protein domains, which
should match approximately from end to end without many gaps, assuming
some evolutionary relation. This scenario requires global alignment, where the
majority of both sequences are matched.

3.2.3 Computational Prediction of Protein Three-dimensional Structure

An attractive option to span the bridge over the gap between the amount of
protein sequence data and the amount of protein structure data is the in silico
protein structure prediction. In most general terms, it is the prediction of the
three-dimensional structure of a protein given just its sequence. In a perfect
world, this method can replace the need for protein structure determination
experiments. However, even after huge amounts of research and development
in this area, protein structure prediction methods are still struggling with
certain challenges. The sheer amount of possible arrangements of the amino
acid sequence in three-dimensional space makes the base complexity of the
problem nearly unsolvable. At a first glance, one could think that since the
folding process of the protein is determined by physical interactions between
the atoms of the protein molecule, it should be possible to simulate this process
from the first principles, hence delivering the protein structure. However, the
correct physical behavior in such a complex system is not fully understood
yet. Still one could argue that the current physical models would suffice to
simulate crudely enough to reach an acceptable solution. Currently, the compu-
tational complexity of such a simulation starting from the unfolded amino acid
sequence by far exceeds the capabilities of the available hardware systems.
Hence, other methods abridging the real folding process are created. The prac-
tice has shown that protein structure prediction can be performed successfully
if the structure of a closely evolutionarily related protein is known. The latter
is obviously not always the case. Thus, protein structure prediction methods
can be categorized by the amount and detail of data from other proteins re-
quired. Homology-based protein structure prediction is able to produce the
most accurate predictions and requires the most specific data. Also known as
template-based protein structure prediction, these methods use an experimen-
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tally resolved protein structure of a protein homologous to the target protein as
a template and model the amino acid sequence of the target protein around
the template. Naturally, the more similar the template protein and the target
protein are and the higher the quality of the structure determination experiment
of the template is, the more accurate will the predicted model be.
The two most well-known homology-based protein structure prediction meth-
ods are Modeller [89] and SwissModel [90]. While having differences in details,
the core principle is the same and is explained in the following. The first step is
the alignment of the target and the template protein sequences, which some-
times can be corrected by using the 3D structure of the template. Matching
amino acids of the target protein in the alignment can be used initially to
reconstruct the backbone of the model by copying the coordinates of matched
amino acids backbone atoms from the template. What is left are the gaps in
the alignment, which are reconstructed as backbone loops bridging the pre-
viously placed fragments of the backbone. Obviously, this step is harder the
larger the number of and the longer the gaps are. For that reason, it is harder
to model structures based on a template with low sequence similarity. If the
template is too far related, the predicted structure will be probably wrong. So
the coordinates of the backbone are reconstructed. In the next step, the empty
space in the model is filled with the sidechain atoms which are placed in as
correctly orientated as possible by using a rotamer library. Finally different local
optimizations are performed. Usually, this process is repeated several times,
resulting in a list of possible predicted structures. Structure quality assessment
methods then order the resulting structures to present the most promising
solutions.
A more difficult problem is the protein structure prediction without any struc-
ture from an evolutionarily related protein, called template-free modeling.
Methods in this field are usually based on conformational sampling [91], which
uses conformation libraries containing experimentally resolved structure frag-
ments for short sequences. Based on sequence similarity, such fragments are
assembled against the sequence of the target protein, which results in a set
of possible combinations of fragments representing individual conformations.
Then, Monte Carlo simulations are used to find conformations with low energy,
which are further refined similar to the optimization process done in template-
based modeling. Examples of methods of this category are I-TASSER [92] and
Rosetta [93].
Recently, template-free methods are improving at a fast rate due to the in-
clusion of deep learning methods. Using multiple sequence alignments of
evolutionarily related sequences as the input, deep neural networks are able to
predict residue-residue contacts and distances based on evolutionary coupled
mutations [94]. When one residue of a pair of residues, which are interacting
with each other in the structure, is mutated and loses the interaction, the other
residue can be mutated simultaneously or shortly after that to compensate for
the loss and thus reinitiate the interaction. As a result, such mutation pairs tend
to cooccur in related sequences, even if they are not close in the sequence. This
enables a more accurate prediction of long-range contacts and, together with
the prediction of secondary structure elements and relative solvent accessible
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area, the conformation space can be filtered much more precisely.

3.2.4 Supervised Machine Learning Methods

Described very broadly, the goal of machine learning methods is to create
predictive models that are able to assign labels to samples [95]. Samples can
basically mean anything that can be grouped in any way, for example, images,
texts, patients or any kind of data. The samples have to be cast into a mathe-
matical framework describing properties of each sample. This is commonly a
so-called feature vector of numerical values, called features. For the example
of images, the features could be the color values for each pixel. The goal is to
find and recognize a certain logic or mathematical patterns in the features for
a given set of samples. This set is called a training set. Based on the patterns
learned, the samples are either scored numerically in regression problems
or labeled in classification problems. When the corresponding ground truth
scores or labels are unknown for the training set, we speak of an unsupervised
learning problem. This class of problems is not further discussed in this thesis.
In the opposed setting, supervised machine learning requires a training dataset
of labeled samples to infer the relationship between the features of a sample
and the corresponding label. This is done in the training process of the model.
The more features are present, the more accurate the model can become. How-
ever, also more samples are needed to correctly understand the relationships
between the features and the labels. In good practice, the training of a model is
followed by a testing phase, in which the performance of the model is tested
by predicting the labels for samples, for which the labels are known but which
were not present in the training. It is of utmost importance that the samples
used in the training and the samples used in the testing are non-overlapping
and do not share too many common features. A perfect model is trained on
an infinite amount of error-free independent training samples and uses as few
features as possible to predict all labels correctly.
In practice, multiple problems and challenges arise. First, the more complex
the underlying system, the more complex the model has to be. Thus, more
features are required. In this thesis, biological systems that are very complex
are considered. Second, if many features are present, many labeled samples are
required. Labeled samples in biological problems are the results of expensive
experiments, consequently they cannot be produced in endless numbers. This
often leads to situations where one has a lot of features for a limited amount of
annotated training samples. In these scenarios, machine learning tools tend to
produce too complex models, which are able to perfectly explain the training
samples. This is achieved by misinterpreting little details in the feature space
and ultimately leads to misusing these details on unseen data, which results in
false predictions. This behavior is called overtraining and is an indicator that the
produced model is too complex for the underlying problem. Overtraining can
be prevented by either increasing the amount of training data, which increases
the complexity of the underlying problem and thus matches a more complex
model, or by simplifying the model, for which there are appropriate techniques
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for almost all machine learning methods.
Following Occam’s razor, the complexity of the model should be appropriate
to the problem. Often simpler machine learning methods suffice to explain
the problem exhaustively. A large class of machine learning methods is based
on the assumption that the labels are computable by a linear combination of
the feature values. The difference in the true labels and the labels predicted
by such a function is called error. Linear machine learning methods are the
result of a linear combination of the feature space, which is minimizing the
error. For many of the problems there is no analytical nor optimal solution to
the minimization problem. There are many different linear methods and the
mathematical background is very rich, so it cannot be discussed in detail in this
thesis, but we want to mention that studying linear methods is a good entry
point for getting involved with machine learning methods in general.
The only machine learning method used in this thesis is the random forest,
which is a supervised method. It is based on decision trees (Figure 3.3), which
are supervised learning methods themselves. In the training phase, decision
trees separate the training samples by connecting a series of decisions. A single
decision divides a set of samples based on the values of each sample for a
single feature. This division is optimized to separate the corresponding labels
in the resulting subsets according to some measure (e.g. the Gini index). The
decisions are organized in a tree structure, non-leaf nodes represent an individ-
ual decision that is splitting a given set of samples into two subsets, which are
then given to its two child nodes individually. If all samples of a resulting node
share the label, the division process is stopped and the node is declared as a
leaf node with the corresponding label.
When using a trained decision tree for predicting the label for a sample, one
traverses the tree from the root to a leaf node. The path is determined based
on the decisions, which are made based on the corresponding feature values.
The leaf node that is reached returns the label, which was assigned to it in the
training process, as the prediction.
If in the training phase, the the fact that all labels in the sample set for a node is
the only stopping criterion, then the resulting tree is called full-grown. Hence,
a full-grown decision tree on a sample that is part of the training set will
always predict the correct label, meaning that full-grown decision trees have no
training error. Obviously, in testing and application this is not useful, because
it is likely that samples will not coincide with the samples from the training set,
and the full-grown decision tree turns out to be hopelessly overtrained.
The counter method for the overtraining of decision trees is pruning, i.e. the
introduction of other stopping criteria. Pruning leads to smaller trees and by
that, the leaves may not have identically labeled sample sets anymore, which is
leading to an increase in training error, but hopefully in a decrease in testing
error. However, too much pruning will again result in an increase in the testing
error, making the amount of pruning a central hyperparameter (i.e. parameter
that is not optimized in the training phase) for constructing decision trees.
The difficulty with decision trees is the choice of the decisions and the order to
organize them. Using a decision that seems suboptimal at first glance, could
lead to a better predictor overall.
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Figure 3.3: Example decision tree, for the task of predicting if a mutation has a deleterious
effect or a neutral effect.

Random forests are a method to overcome this problem. Instead of regular
decision trees, random decision trees are used. The growth of random decision
trees is perturbed by random events, usually limiting the choice of features
used for the single decisions down to a random subset of all features. Random
forests grow multiple random decision trees, which due to the random events
now have varying topology from each other. Each of the trees is handled as
a weak predictor and combined together they form a strong predictor, the
random forest. The important hyperparameters are then the pruning of the
single trees and the magnitude of the perturbations through the random events.
The advantage of a random forest compared to other machine learning meth-
ods is its ability to incorporate dissimilar sets of features, for example, the
combination of categorical and floating-point values is possible. Further, its
moderate computational costs allow the inclusion of large amounts of features
for a great number of samples. Whether more features make a better random
forest predictor is to be debated at another place.





4
A S S E S S I N G T H E S O LV E N T A C C E S S I B L E A R E A F O R
P R O T E I N S T R U C T U R E S W I T H L I M I T E D Q UA L I T Y

In the development of StructMAn, we implemented many types of structural
analyses, one of which one was the differentiation between residues lying in
the protein core and residues located on the surface of a protein. This is done
by estimating how much a residue has access to the solvent surrounding the
protein. When working with a protein 3D structure with atomic resolution, the
most exact measure for the solvent accessible area is based on the area one
obtains when rolling a small probe sphere over the van-der-Waals surface of
a protein [96]. This area is called the solvent accessible area (SA) of a protein
and can be broken down into the contributions of each residue. In order to
address the different volumes of different amino acids, amino acid type-specific
maximum SA values were calculated [97] and the SA value of a residue divided
by the corresponding maximum SA results in the relative solvent accessible
area (RSA), which can be used to compare the solvent access of different types
of amino acids.
We tried several methods for the RSA calculation and all of them computed first
the whole SA of the protein and then separated the SA into the contributions
from individual residues. One major motivation of StructMAn is the annota-
tions of nsSNVs, hence single amino acid positions were in the focus and thus
the structural analysis of individual residues. This lead us to ask ourselves if we
could come up with a measure for solvent accessibility, applicable individually
for each residue, which would then be more efficient than the established
methods.
After continuing the development of StructMAn at some point, it became clear
that the RSA calculation never will be a bottleneck. But the ideas we had in
this area remained interesting and we were able to develop a new measure for
solvent accessibility, that can be applied more universally, not only in the scope
of structural annotation on nsSNVs. We submitted a publication on the subject
to Bioinformatics, which is currently under review (minor revision).

4.1 introduction

Residues located on the surface of a protein and residues buried inside the core
of a protein have different functions. Thus, the distinction between residues on
the surface of a protein and in the core of a protein has a lot of implications
and applications [98] and mutations tend to have a different mode of how they
impact protein function based on the location of the mutated residue in the
structure. On the one hand, mutated residues buried in the protein core are
known to be more disruptive for the function of the protein [99–102], on the
other hand, mutated residues located on the surface of a protein can affect an
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interaction interface and by that change the stability of the resulting complex
or even inhibit the complex formation completely [51]. Mutations of a residue
located on the surface that does not coincide with an interaction interface
rarely impact the function of the protein [103]. To differentiate between surface
and buried residues is non-problematic for protein structures with atomic
resolution [96]. However, as mentioned in Chapter 2.3.2 in the majority of
proteins, there is no experimentally resolved 3D structure and for that scenario,
an array of sequence-based RSA prediction methods has been developed [104–
107]. This still leaves the niche for cases, where there is limited (coarser than
atomic resolution level) structural information available. In order to address
these cases, measures are developed, which can be calculated from limited
structural information and should correlate with RSA as much as possible. In
this project, we developed a measure SphereCon applicable in four different
scenarios and compared it to the actual calculation of RSA via probe rolling and
two established measures Coordination Number (CN) [108] and Half-Sphere
Exposure (HSE) [109].
The four scenarios are:

1. The full atomic information, in order to have a direct comparison to RSA

2. The backbone coordinates with sequence information, which showcases
the full potential of SphereCon and represents structures from experimen-
tal structure resolution experiments with coarser than atomic resolution.

3. The backbone coordinates without sequence information, typical interme-
diate structures in threading procedures. This scenario is also the main
scenario for CN and HSE.

4. A predicted distance or contact matrix of the protein. This scenario al-
lows SphereCon to expand its applications, with the help of distance
and/or contact matrix prediction methods, to cases where only sequence
information is avaialble.

4.1.1 Related Work

Measures for solvent accessible area are invented for protein structures with
limited information. They tend to be constructed in a rather simple fashion in
order to limit the number of cases, where they cannot be applied. The presum-
ably first measure is also the simplest, the coordination number (CN) [108]. The
CN is based on a sphere centered at the Cα atom of the residue, the measure is
applied to (Figure 4.1). The Cα atoms of other residues located inside the sphere
are counted. This number is then called the coordination number. The radius
of the sphere is variable and each possible radius creates its own measure, but
the most commonly used radius is 13Å.
Why this measure anti-correlates with the RSA is obvious: a residue on the
surface of a protein should be surrounded by fewer other residues compared
to a residue in the core of the protein. But counter-examples can easily be
constructed (Figure 4.2).
The advantages of CN are obvious: due to its simplicity, it requires only the
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Figure 4.1: A two-dimensional schematic representation for two example CNs. All residues are
represented by their Cα atom depicted as ‘C’ in the figure. The residue for which the measure is
applied to is the red ‘C’ in the circle center.; A: The upper half of the circle lacks any residues
and thus is filled with solvent, this means that the target residue has access to the solvent, also
described as located on the protein surface. In this example, this results in a CN equal to 9. B:
The target residue has no access to the solvent since the upper part of the circle is filled with
other residues. This results also in a higher CN of 14.

Figure 4.2: The scheme of this figure is identical to the previous figure. The target residue lies
on the protein surface, but due to the changed overall structure, the CN is the same as the CN
of the buried residue in the previous figure.
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Figure 4.3: A two-dimensional schematics of HSE examples in the same fashion as the CN
examples. The red dotted line depicts the dividing plane. The content of the upper half circles
is used for the HSE calculation.; A: The surface residue example results in a low HSE value
equal to 2; B: The buried residue example results in a higher HSE value equal to 7; C: The CN
counter-example results in an HSE value equal to 5 and shows the advantage of HSE over CN.

Cα-coordinates of the protein. An improved version of CN is HSE [109] (Figure
4.3). The idea behind HSE is that amino acid atoms can be split into backbone
and sidechain, giving each amino acid two sides. Geometrically, the two sides
are separated by a plane going through the Cα atom and spanned by the
normal vector CαCβ. The authors of HSE have shown that the space around
the sidechain side is much more important for the solvent accessibility of an
amino acid than the space around the backbone side. The plane also divides
the CN-sphere around the target residue into two half spheres. The HSE is
similar to the CN in that it simply counts the amount of other Cα atoms in the
sidechain half sphere.
Still, HSE might have one disadvantage compared to CN: the requirement of
Cβ coordinates in addition to Cα coordinates. The authors of HSE came up
with a solution by constructing the CαCβ vector based on the coordinates of
the Cα atoms of the residues neighboring in sequence. This construction is also
applied for all glycines since they do not have Cβ atoms.
Any measure calculation is not possible for proteins, for which there is no re-
solved structure available. To address those cases, over time a separate field has
emerged aiming to predict the RSA of individual residues from the sequence
of a protein. It is closely related to the prediction of secondary structure from
sequence. Most of such sequence-based RSA prediction methods are end-to-
end machine learning methods and hence the state-of-the-art is dominated by
neural network-based tools: SPIDER3 [105], NetSurfP-2.0 [106], JPred4 [104]
and RaptorX-Property [107] to name just the more recent ones. Breaking away
from the end-to-end paradigm SPOT-1D [110] uses predicted contact maps as
an intermediate step in order to predict several structural properties on residue
level, which can be directly compared to SphereCon’s distance matrix mode.
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4.2 methods

4.2.1 General Approach

Just as for CN and HSE, the idea behind SphereCon is to estimate how much
of the space surrounding the target residue is occupied by other residues.
This is achieved by defining a search space, which is generally based on a
sphere, and the calculation of sphere-sphere intersections between so-called
intersecting spheress and the search space. The intersecting spheress are either
van-der-Waals spheres of spatially close atoms or spheres representing individ-
ual residues, depending on the corresponding scenario. For each scenario, the
search space is constructed slightly different, since different levels of informa-
tion allow more or less precise design setups. The less information is available,
the more has to be inferred with heuristics and predictions.
The general formula for SphereCon is:

SphereCon(R) =
Volume(S(R)) − I(S(R))

Volume(S(R))
, (4.1)

where S(R) is the search space of residue R, and I(S(R)) is the sum of the
volume of the intersections between all intersecting spheress and the search
space.
The maximum value of SphereCon is 1, for residues that are completely ex-
posed. In that case, the sum of interactions is zero. The lower the SphereCon
value is, the more buried is the residue and by that it is designed to positively
correlate with RSA. SphereCon can have negative values, since the intersecting
spheress can intersect with each other and this is not taken into account in the
calculation of SphereCon, so the sum of intersection volumes can become larger
than the total volume of the search space, resulting in negative SphereCon
values.
Inspired by the idea behind HSE, we wanted SphereCon to have a focus on the
space in front of the sidechain of the residue. While HSE cuts away half of the
sphere, we used a cone, whose apex is identical to the search sphere center and
its axis coincides with the line through the search sphere center and the Cα
atom of the residue (Figure 4.4). The exact construction of the search sphere
and intersecting spheress is different for each of the scenarios and is described
in the following.

4.2.2 Scenario 1 (SC-S1) - Structures with Complete Atom Coordinate Infor-
mation

When the coordinates of all atoms of a protein structure are known, one does
not have to rely on measures, which are designed for limited structural infor-
mation, in order to estimate the solvent accessibility of its individual residues.
However, in this scenario, SphereCon is able to use the additional information
and we can exhaust the measure to its maximal potential. Comparing Sphere-
Con in this scenario directly with RSA, we can investigate whether the concept
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Figure 4.4: Schematic representation of the design of the search sphere. In grey, a small segment
of a protein, Rn denotes the residue for which SphereCon value is being computed. S is the
center of the sphere, which is identical to the apex of the cone, r is the search sphere radius, a is
the apex angle of the cone and C is the cone axis.

behind SphereCon functions as intended.
The search sphere center is placed at the centroid, calculated from the coordi-
nates of all sidechain atoms of the residue. The cone axis is placed at the line
through the Cα atom and the sidechain centroid of the residue. For glycine we
used the construction method from HSE, which simulates a CαCβ vector by
placing it on the plane spanned by the N, Cα and the carboxyl carbon and is
orientating it at a 120◦ angle with respect to the NCα vector facing away from
the carboxyl carbon. The search sphace parameters (the radius of the search
sphere r and the apex angle of the cut-out cone) can be optimized specifically
for each residue type. The intersecting spheres are the van-der-Waals sphere of
the atoms of all other residues.

4.2.3 Scenario 2 (SC-S2) - Only Cα Coordinates

It is sometimes difficult to resolve protein structures to atomic resolution (for
example, for very large protein complexes), leading to experimental results
with coarser resolution, from which only the coordinates of the Cα atoms
could be deduced. In the absence of the full atomic coordinates, we cannot
calculate the sidechain centroid anymore. Based on a gold standard set of high-
quality protein structures (described in 4.2.6), we calculated mean centroids
for each residue type, which we use in order to predict the location of all
centroids of residues in such low-resolution structures. The remaining part of
the search sphere design is identical to SC-S1, just with a predicted centroid
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instead of a calculated one. The intersecting spheress are spheres centered at
the predicted centroids of all other residues with radii specific to the volume of
the corresponding residue type (Supplementary Table 9.1).

4.2.4 Scenario 3 (SC-S3) - Only Cα Coordinates, Unknown Residue Types

To be in a fair competition with CN and HSE, we remove the information about
the individual residue types, leaving a spatial trace of Cα coordinates without
any further information. This scenario represents the minimal information, for
which CN and HSE are applicable, and represents for example intermediate
structures produced as an internal step in some threading algorithms. The
possibility to apply a measure in these cases was one major motivation in the
creation of CN and HSE.
In this scenario, the centroid prediction, the search sphere parameters, and the
intersecting spheress can no longer be residue type-specific. Here we used an
overall mean centroid, optimized just one search sphere radius and one apex
angle jointly for all residues and used identical sized intersecting spheress with
radius 3.23Å, which corresponds to a sphere with mean volume over all amino
acids in the gold standard dataset.

4.2.5 Scenario 4 (SC-S4) - Distance Matrix Mode

Since the calculation of a sphere-sphere intersection volume requires only the
radii of both spheres and the distance of the sphere centers, it is possible to
calculate SphereCon using only residue-residue distances. This expands the
application possibilities of SphereCon to the estimating the solvent accessibility
based on predicted distance matrices. At first glance, the fourth scenario seems
to be the scenario with the strictest limitations, but here we include the residue
type information again, which are necessary to predict distance matrices.
Since no coordinates are known, no centroids can be predicted and no cutting
cones can be applied. Still, we can calculate the sphere-sphere intersection
based on the given distances between the target residue and other residues.
The search sphere radii can again be optimized specifically for each residue
type and the intersecting spheres radii are identical to the ones in SC-S2. Since
SC-S4 can be used for predicted distance matrices, which are not completely
filled, SphereCon calculates the sparsity of the given matrix and uses different
sets of optimized parameters for different sparsity values.

4.2.6 Gold Standard Dataset, Parameter Optimization, and Performance Eval-
uation

For evaluating the performance of all variant of considered measures, we
constructed a gold standard set (Supplementary Table 9.2), by choosing one
high-quality structure for each SCOP [27] family (only SCOP classes a, b, c,
and d), for which we all heavy atoms are resolved. To pick one structure per
family we took the one with the best resolution. We calculated the RSA for each
residue in the gold standard dataset using DSSP [3]. The Pearson’s correlation
coefficient of a measure to RSA over the whole datasets is used for evaluation
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of a measure.
For different scenarios, the parameters of the search sphere design have to
be optimized. Here we used a simple grid search approach, maximizing the
correlation value of different parameter combinations, ranging the r in the
segment [4Å, 20Å] in 0.25Å steps and ranging cos(a) in the segment [0, 1] in
0.05 steps. The optimal parameters are called r∗ and cos(a)∗.
We used a cross-validation setup, using for each validation round all structure
belonging to one SCOP class as the test dataset, and the remaining structures
as the training dataset for the parameter optimization.
We performed the parameter optimization for SC-S4, using different distance
matrices, which are all based on the true distance matrix calculated from
the structure. First, we used the complete matrix. Second, we removed all
distances between residues, which are neighbors or the neighbors of neighbors
in sequence, and third, in addition to the distances removed in the second
version, we randomly removed a certain portion of all distances.
As an ultimate test for SC-S4, we took 13 structures (Table 4.4) and their
corresponding sequences from the latest round of CASP [111], used the distance
matrix prediction webserver from RaptorX [107] to predict pairwise distances
from these sequences, calculated SC-S4 on the predicted matrices and compared
the results to true RSA values obtained from the structures.

4.3 results

4.3.1 Parameter Optimization

For SC-S1 and SC-S2 we expected larger optimized search sphere radii for larger
amino acid types (all optimized parameters are presented in Supplementary
Table 9.3). This expectation was met, for example, comparing the smallest amino
acid glycine (SC-S1: r∗ = 6.75Å, SC-S2: r∗ = 6.75Å) to the largest tryptophan
(SC-S1: r∗ = 8.0Å, SC-S2: r∗ = 9.0Å). The optimal cutting cone angle defined by
cos(a)∗ varies between 0.8 and 1.0 in SC-S1 (0.85 and 1.0 for SC-S2) and thus
from search spaces in SphereCon a smaller volume is cut out, compared to the
bisection of the search sphere in HSE.
For SC-S3 we optimized only two parameters, and with r∗ = 8.0Å and cos(a)∗ =
0.8 they happen to be roughly in the same range as the optimal parameters of
SC-S1 and SC-S2.
For SC-S4 we determined r∗ for each amino acid type and for different sparse
distance matrices. Compared to the other scenarios the r∗ vary less between the
different amino acid types, which might be due to the relatively more limited
information in SC-S4 restraining the method from drawing more yield from
the additional information of knowing the amino acid type.

4.3.2 SCOP-based Cross-validation

Pearson’s correlation values of SphereCon to RSA in the SCOP-based cross-
validation (Table 4.1) are basically unchanged between the different test-rounds.
As expected, the correlation of SphereCon to RSA is decreasing from SC-S1

to SC-S4, since with each scenario we decrease the amount of incorporated
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SCOP class A SCOP class B SCOP class C SCOP class D

SC-S1 0.951 (0.950) 0.949 (0.951) 0.950 (0.950) 0.950 (0.950)

SC-S2 0.921 (0.921) 0.921 (0.921) 0.921 (0.921) 0.919 (0.922)

SC-S3 0.893 (0.892) 0.893 (0.892) 0.890 (0.894) 0.895 (0.892)

SC-S4 0.873 (0.872) 0.874 (0.870) 0.871 (0.877) 0.879 (0.871)

Table 4.1: Pearson’s correlations of SphereCon to RSA, using the parameters optimized in
the cross-validation setup (performance of SphereCon evaluated directly on the training set in
parenthesis). The distance matrices for SC-S4 are directly calculated from the structures in the
gold standard dataset.

RSA CN HSE SC-S4 SC-S3 SC-S2 SC-S1

RSA 1.0 −0.770 −0.823 0.878 0.893 0.921 0.950

CN 1.0 0.817 −0.795 −0.866 −0.830 −0.778

HSE 1.0 −0.819 −0.882 −0.860 −0.835

SC-S4 1.0 0.899 0.939 0.903

SC-S3 1.0 0.949 0.907

SC-S2 1.0 0.944

SC-S1 1.0

Table 4.2: Pearson’s correlation between all tested measures on the full gold standard dataset.

information. Surprisingly, these drops revealed to be smaller than expected and
with using only a distance matrix as input, we are able to reach a correlation
to RSA greater than 0.87. We also notice that the training error is as good as
equals to the test error, meaning that the parameter optimization showed no
overtraining effects.

4.3.3 Comparison of SphereCon to RSA, CN, and HSE

We calculated SphereCon values in all four scenarios as well as RSA, CN, and
HSE values for each residue in the gold standard dataset and calculated the
Pearson’s correlation between all of these seven measures (Table 4.2).
For the correlations between CN to RSA and HSE to RSA, our results are in
agreement with the evaluation performed by the authors of HSE [109]. The
correlations of SphereCon to RSA are all greater than of HSE to RSA and, as
expected, are increasing as the information in the specific scenarios increases.
HSE and SC-S2 are designed to be applied for the same application scenarios
and using mostly the same information. The comparison of their performance
is most important for the evaluation of SphereCon. Here, SC-S2 (correlation to
RSA 0.921) clearly outperforms HSE (correlation to RSA −0.823). Even if we
remove the sequence information (since HSE does not use this information),
SC-S3 (correlation to RSA 0.893) is still superior.

4.3.4 Optimization for Sparse Distance Matrices

For SC-S4 different sets of parameters were optimized based on artificially
perturbed distance matrices in order to simulate distance matrices coming from
prediction methods. Again, we used the SCOP-based cross-validation (Table
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Sparsity Test set (training set consists of the other three SCOP classes)

(% of distances removed) SCOP class A SCOP class B SCOP class C SCOP class D

None 0.873 (0.872) 0.874 (0.870) 0.871 (0.877) 0.879 (0.871)

0% 0.881 (0.878) 0.877 (0.868) 0.877 (0.880) 0.882 (0.878)

10% 0.831 (0.851) 0.831 (0.850) 0.831 (0.841) 0.834 (0.845)

20% 0.821 (0.826) 0.820 (0.817) 0.815 (0.826) 0.827 (0.828)

30% 0.801 (0.813) 0.802 (0.816) 0.792 (0.807) 0.806 (0.808)

40% 0.753 (0.793) 0.758 (0.788) 0.741 (0.797) 0.763 (0.767)

50% 0.768 (0.752) 0.769 (0.777) 0.758 (0.784) 0.776 (0.779)

60% 0.728 (0.755) 0.735 (0.754) 0.718 (0.757) 0.741 (0.730)

70% 0.746 (0.732) 0.747 (0.744) 0.734 (0.733) 0.750 (0.736)

80% 0.725 (0.733) 0.728 (0.725) 0.712 (0.731) 0.732 (0.728)

90% 0.713 (0.719) 0.713 (0.715) 0.703 (0.709) 0.722 (0.712)

Table 4.3: Pearsons’s correlation of SC-S4 and RSA with parameter optimization and evaluation
performed on sparse distance matrices. Correlation of SC-S4 and RSA for the training set is
given in parentheses. None sparsity: the full distance matrix. 0% sparsity: distances of residues
separated by less than three amino acids in sequence are removed. Sparsity > 0%: additionally
randomly selected entries from the distance matrix are removed.

4.3) to demonstrate that the parameter optimization does not introduce any
overtraining effects into SC-S4.
In comparison to the cross-validation of the other three scenarios, the obtained
correlation values are less stable. This was to be expected due to the fact that
we randomly remove distances from the matrix. The correlation values are
continuously decreasing the higher the sparsity of the distance matrices get.

4.3.5 SC-S4 on Predicted Distance Matrices for CASP Targets

For the CASP targets that we used for a real-life evaluation of SphereCon’s
SC-S4, the sparsity of the predicted distance matrices fluctuates strongly (Table
4.4). The reason for this is that RaptorX reports only a top-quantile (first L/5

top-scoring pairs where L is the length of the input sequence) of all predicted
distances. The size of this quantile is linear with respect to the length of the
input sequence, the size of a distance matrix grows quadratically, thus for
longer sequences, we get less complete matrices.

4.4 discussion

With SphereCon, we developed a new measure for estimating relative solvent
accessible area, which is applicable for protein structures with limited infor-
mation. Its simple geometrical design is inspired by its predecessors [108, 109].
SphereCon aims to include all available information to improve the perfor-
mance of the measure. SC-S1 shows a very high correlation to RSA and acts as
a proof of concept. Since its simpler design and applicability to single residues,
SC-S1 can even be used in scenarios, where the computation time is more
important than the precision of the measure. However, we are not aware of
such a scenario in real life.
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Structure #Amino acids Sparsity Pearson’s correlation to RSA

6EK4 chain A 342 92.3% 0.600

6F45 chain A 68 70.5% 0.484

5W9F chain A 72 58.8% 0.460

6CP8 chain A 157 78.8% 0.740

6BTC chain A 84 67.1% 0.771

6CP9 chain A 116 73.2% 0.742

6CP9 chain B 114 75.1% 0.706

6CCI chain A 354 93.2% 0.631

6G57 chain A 97 66.0% 0.404

6GNX chain A 98 72.3% 0.729

6D7Y chain A 89 69.2% 0.620

6Q64 chain A 319 90.6% 0.552

6MSP chain A 80 59.7% 0.719

Table 4.4: Pearson’s correlation of SC-S4 to RSA on 13 structures with predicted distance
matrices.

SphereCon is directly comparable to CN and HSE in SC-S2 and SC-S3, where it
worked exactly as intended and demonstrate a great increase in performance.
Here SphereCon has the potential to improve any method, which relies on CN
or HSE as a measure.
SC-S4 addresses a fundamentally different problem of prediction of solvent
accessibility based on the sequence alone. The evaluation of artificially per-
turbed distance matrices proved that in theory, it is possible to use SC-S4 on
sparse distance matrices, achieving a comparable performance to CN with full
information even after removing half of the matrix along with the distances to
residues close in sequence. However, the evaluation of SC-S4 on real predicted
distance matrices showed that the performance does not necessarily depend
on the completeness of the matrix. After all, the sparsity of the predicted ma-
trix is no measure for the quality of individual predicted distances, and the
performance of SC-S4 is directly dependent on the quality of the predicted
matrix. Still, the varying performance of SC-S4 for the 13 CASP structures is
not very convincing. In any case, the completely different concept of SC-S4

that uses simple geometric calculations suggests that it can be worthwhile and
interesting to include it in a possible consensus method.





5
E F F I C I E N T A N N O TAT I O N O F P R O T E I N S E Q U E N C E S W I T H
S T R U C T U R A L I N F O R M AT I O N

This chapter describes the development of StructMAn. In my master’s thesis, I
developed an automated computational pipeline capable of structurally anno-
tating non-synonymous single nucleotide variants (nsSNVs) and selecting an
appropriate structure to be used as a template in a follow-up homology-based
protein structure modeling. To assess the consequences of an nsSNVs for the
protein function, it is crucial to analyze interactions, in which the protein par-
ticipates. So, after the homology modeling, further expensive computational
methods, like docking experiments or molecular dynamics simulations, are
required. Especially for larger proteins, this can become very time-consuming.
Stacking more and more complex computational methods on top of each other
also accumulates errors. We are convinced that instead of accumulating errors
in this way, it is more appropriate to directly analyze more available experimen-
tally resolved structures, transferring the implications gained from structures
of homologous proteins. Thus, we moved away from the automated modeling
process and focused the pipeline on the combination of information gained
from the analysis of multiple structures.

5.1 introduction

The rise of next-generation sequencing techniques resulted in huge amounts of
available sequence data. Utilizing this flood of data is frequently stated as one
of the major motivations behind the development of methods in computational
biology. The information one can obtain analyzing protein structures is plentiful
(see Chapter 2.3.1), hence connecting the protein sequence world to the protein
structure world is very promising. We call such computational methods that
map protein sequences to protein structures structural annotation methods
[112, 113].
At first glance, structural annotation can be done manually and does not re-
quire the development of a specialized method. For example, for any protein in
Uniprot [2], all PDB entries corresponding to it are listed in the Uniprot entry.
But that way one risks losing a lot of useful structural information, which can
be found in structures, whose sequence is not identical to the protein sequence
listed in the Uniprot entry. As already mentioned in Section 2.3.2, methods
producing experimentally resolved protein structures cannot keep up with the
sheer amounts of newly sequenced genes and transcripts. Thus the number of
protein sequences without corresponding experimentally resolved structures is
increasing. Since the function of a protein and the interactions, it participates in,
are conserved among homologs even with low sequence identity [114], one can
transfer implications from a structural analysis of homologous proteins. This
widely used technique [115, 116] increases the number of protein sequences for
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Figure 5.1: Schematic representation of the algorithmic pipeline behind StructMAn. Blue
rectangles are external data sources, green rectangles are the intermediate steps of StructMAn
and red rectangles are the types of data of different inputs and outputs.

which we can find protein structures that can be used for performing structural
analyses.
The goal of this project is the creation of a sequence-to-structure annotation
method, which is as computationally efficient as possible in order to process all
possible input sizes. However, this efficiency must not result from compromis-
ing on the annotation quality. The method should be able to process protein
sequences at the resolution level of each individual position. It should collect
all available structural information, process this information and supply further
downstream methods with it in a concise form.
With the implementation of StructMAn, we were able to fulfill all these re-
quirements. This fully automated algorithmic pipeline takes individual amino
acids from a given protein sequence and maps them directly to multiple exper-
imentally resolved protein structures. All residues are analyzed individually,
the results are combined and ultimately lead to a structural classification at a
residue level.
Briefly, the algorithmic pipeline has five major steps (Figure 5.1). In the data
preprocessing step, a list of given protein sequence IDs are translated to Uniprot
accession numbers (https://www.uniprot.org/help/accession_numbers), and

https://www.uniprot.org/help/accession_numbers
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their corresponding sequences are acquired. Since being protein isoform-
specific, Uniprot accessions function as the primary type of protein IDs in
StructMAn. In the sequence similarity search step, for each protein sequence
the PDB [38] is searched for corresponding experimentally resolved protein
structures. Next, the sequences of the found structures are aligned to their cor-
responding target protein sequence. This alignment then defines the mappings
of individual amino acid positions in the target sequence to specific residues in
the protein structures. The mapped residues are structurally analyzed in the
fourth step, producing residue-specific annotations. The final step is to combine
the annotations from all structures associated with a target position in order to
produce position-specific structural annotations, which are the foundation for
the structural classification of the position.

5.1.1 Related Work

The history of structural annotations methods is tightly connected to the meth-
ods for mapping of genetic variants into protein three-dimensional (3D) struc-
ture. Thus most of the related methods (Table 5.1) enable querying for specific
mutations. In addition to the structural annotation, these methods also usually
provide either a structural analysis or connections to database entries corre-
sponding to the given variant.
When developing a structural annotation method, one has to balance the com-
prehensiveness of the analysis of individual structures and the total number of
variants or proteins the method can process. Construction of a pre-computed
database allows for more complex analysis, but one loses the ability to pro-
cess arbitrary variants provided by the user. Based on that, we can categorize
structural annotation methods into high-focus, high-throughput and database
methods, but rarely a method falls into just one category. High-focus methods
use a comprehensive analysis of the annotated structures, which usually makes
them computationally more expensive and as a consequence, they are restricted
in the number of variants, which can be processed. High-throughput methods
try to maximize the amount of data, which can be processed. This is achieved by
using computationally less expensive methods, automatization techniques and
the inclusion of structures from evolutionarily related proteins. Database meth-
ods are characterized by the use of pre-computed data. Many high-throughput
methods are supported by integrated databases to yield the advantages of a
database method without the limitations typic for pure databases.
Databases of annotated mutations usually promise the most comprehensive
results for individual mutations. Also, runtimes are no issue here, and hence
databases seem to be the most desirable type of structural annotation methods.
The obvious drawback of using databases is that they are limited to already
annotated mutations, which makes the analysis of novel mutations impossible.
The solution is to combine structural annotation pipelines with an integrated
database.
To the best of my knowledge, StructMAn is the first high-throughput structural
annotation pipeline efficient enough to annotate all human proteins. However,
many methods can map genetic variants to protein structures on a smaller scale.
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Whole Custom Including Considering

Method Category sequence nsSNVs Species structures protein

annotation possible of homologs isoforms

Mechismo [115] High-throughput Yes Yes 8 Yes No

dSysMap [117] High-throughput Yes Yes Human No No

VarQ [118] High-focus No Yes Any No Yes

mutfunc [116] Database No No 3 Yes No

MuPit [119] High-throughput No Yes Human No No

MutDB [112] Database Yes No Human No Yes

SAAPdap [120] High-focus No Yes Any No Yes

LS-SNP/PDB [121] Database Yes No Human No ?

SNPs3D [122] Database Yes No Human No No

G23D [123] High-focus Yes Yes Any Yes Yes

PROSAT+ [113] High-focus Yes Yes Any Yes No*

MSV3d [124] Database Yes No Human Yes ?

Cancer3D [125] Database Yes No Human Yes No

SNP2Structure [126] High-focus Yes Yes Human No No

AMASS [127] Database Yes No Any Yes No

Aquaria [128] Database Yes No Any Yes No

Table 5.1: Characteristics of different structural annotation methods; *possible through custom
sequence input.

Most of them also perform a structural analysis of the mapped residues, for
example, the method MuPIT [119], which is limited to human variations. The
pipeline returns a list of structures and leaves the choice of structure to be used
for structural analysis to the user. The input of MuPIT is not limited to single
positions but accepts lists of positions of arbitrary length and the processing
time is with a few seconds quite fast. These aspects suggest that MuPIT can
be categorized as a high-throughput method. The analysis performed for the
mapped residue is based on annotated databases, which limits the structural
analysis of MuPIT.
dSysMap [117] is capable of processing single positions as well as whole pro-
teins and is considered as a high-throughput method. dSysMap concentrates
on Protein-Protein Interactions (PPI), creating not only a PPI network for the
given proteins but also placing the given individual mutations into the network,
based on their spatial location in the protein complex. Individual mutations
are structurally classified and information from multiple external databases is
gathered: Pfam [129], 3did [130], BIND [131], BioGRID [132], DIP [133], HPRD
[134], InnateDB [135] and IntAct [80]. The weaknesses of dSysMap include
the lack of analysis of interactions with small molecules, and the fact that
alternative protein isoforms are not considered by this method.
Another high-throughput method is Mechismo [115], whose focus is to pre-
dict if a residue participates in an interaction. It takes protein sequences from
Uniprot entries as input without considering individual isoforms separately.
For each of these Uniprot entries, the experimentally resolved structures in
the PDB are listed. In order to find experimentally resolved structures of pro-
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teins evolutionarily related to the given protein, a sequence similarity search
against the other proteins in Uniprot is conducted. The listed structures of the
entries resulting from this search are also considered for the structural analysis.
Interactions are identified by distance: molecules closer than 5Å are consid-
ered to be in interaction. In order to increase the prediction of interactions,
Mechismo also includes the experimental information from the interaction
databases such as BIND [131], BioGRID [132], IntAct [80] and MINT [136]. For
the whole input sequence, Pfam [129] domains are identified and disordered
regions are predicted by IUPred [137]. The predicted interactions are divided
by the type of interaction partner into protein-protein, protein-chemical, and
protein-DNA/RNA interactions. The protein-chemical interactions also are
subdivided into organic, inorganic and organometallic.
The Mechismo webserver has low processing times, since it always produces
outputs for all variants with precomputed annotations for the given protein,
even if individual variants are requested. The reason for its speed is an immense
amount of precomputations. Each of the similarity search results is stored, and
for all residues in all structures it is precomputed in what kind of interaction
they are involved in. This limits the space of allowed inputs to only eight species
(H.sapiens, M.musculus, S.cerevisiae, C.elegans, D.melanogaster, E.coli, B.subtilis and
M.pneumoniae) and gives Mechismo a database-like character. But since it stores
the intermediate steps and not just the end results, it can be easily expanded by
adding precomputations for other sequences and about 60,000 sequences of 8

organisms are currently available (January 2020).
A recently developed method more focused on individual positions, especially
nsSNPs, is VarQ [118]. The goal of VarQ is to assess the clinical relevance of
a given nsSNP. For that purpose, it combines databases comprising data on
clinical effects of mutations (dbSNP [45], BioMuta [138], humsavar [139], and
ClinVar [63]) with a custom structural annotation pipeline, for which only cor-
responding experimentally resolved structures are considered. The structural
analysis is performed on a single structure, but when different low molecular
weight ligands are bound in different structures, all such structures are ana-
lyzed. For the structural analysis, VarQ selects the structure that covers the
largest part of the given protein and uses the resolution of a structure as a
tie-breaker, when multiple structures have the same coverage. The performed
structural analysis is the most comprehensive in the field. The participation
of the wildtype residue in a protein-protein interaction is assessed with 3did
[130]. The involvement of the residue in an active site is computed with fpocket
[140]. The change in the protein structure stability introduced by the amino acid
substitution is calculated with FoldX [141]. The relative solvent accessibility
(RSA) of the residue is calculated in order to determine if the residue lies on
the surface of a protein or is buried in the protein core. Tango [142] is used to
estimate the tendency of the mutation to cause aggregation. Conservation of
the wildtype and mutant amino acids is assessed using the allele frequency in
the alignment of the corresponding Pfam family. The results of all performed
analyses are reported individually. Since VarQ uses many computationally
expensive methods, it is very slow and can only be used in case studies of
preselected mutations. Further, the fact that 3D structures of homologs are not
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considered leads to a strong reduction of cases where it is applicable.
These examples show that there is no perfect structural annotation tool. All
of the methods have their strengths and weaknesses and this also applies to
our method. We have developed a high-throughput method applicable to input
sizes that were not approachable in the field so far. Our method also pro-
duces comprehensive structural analyses more extensive than most high-focus
methods.

5.2 methods

5.2.1 Data Preprocessing

StructMAn supports two types of file formats for input files, a simple tab-
separated text file format, which we called the simple mutation list format (smlf),
and the variant call format (vcf) (https://en.wikipedia.org/wiki/Variant_
Call_Format). Files in the smlf format include a list of protein IDs. Uniprot IDs
(https://www.uniprot.org/help/entry_name), Uniprot accession IDs (https:
//www.uniprot.org/help/accession_numbers) and Refseq sequence IDs [143]
are supported. All types of protein IDs are mapped to Uniprot Accession
numbers, which functions internally as the main type of protein IDs. For all
given proteins, the corresponding amino acid sequence is retrieved. Instead of a
protein ID, one can also use a PDB structure ID (https://www.rcsb.org/pages/
help/advancedsearch/pdbIDs) together with a chain identifier. In that case, the
amino acid sequence of the given chain is parsed from the corresponding PDB
file. In the smlf file format, one can also specify individual positions, individual
nsSNVs, and add position-specific tags. Such tags can later be used to create
tag-specific statistics.
Files in the vcf format contain a list of genetic variants specified by their genomic
coordinates specific for a reference genome and thus lacking protein IDs. For
that reason, it is necessary to provide the UCSC ID [144] for the corresponding
reference genome. For files in the vcf format, corresponding to a reference
genome that is not in the UCSC genome database, one has to provide the
corresponding reference genome. For input files in the vcf format, StructMAN
uses ANNOVAR [145] to map the variants to the protein IDs, which are used
in the corresponding reference genome.

5.2.2 Structure Search and Quality Assessment

The structure search step has the goal to find as many experimentally resolved
structures as possible that are either a corresponding structure (structure of
the corresponding protein) or a structure of a homologous protein. The first
step is a sequence similarity search against a sequence database containing all
experimentally resolved structures from the PDB [38]. Here instead of taking
the content of the SEQRES records, we scanned through the ATOM records
in order to represent the structures as precise as possible. Since PDB entries
usually contain several structure files, we retained the first biological assembly
file and if not available the first asymmetric unit file. The latter case mainly
concerns NMR structures, for which we took the structure indicated as the first

https://en.wikipedia.org/wiki/Variant_Call_Format
https://en.wikipedia.org/wiki/Variant_Call_Format
https://www.uniprot.org/help/entry_name
https://www.uniprot.org/help/accession_numbers
https://www.uniprot.org/help/accession_numbers
https://www.rcsb.org/pages/help/advancedsearch/pdbIDs
https://www.rcsb.org/pages/help/advancedsearch/pdbIDs
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model in the file.
The sequence similarity search performed on the resulting sequence database is
set to produce as many hits as possible. The version of StructMAn we published
in 2016 used BLAST [83] with an e-value cutoff of 0.1. The current implementa-
tion uses MMseqs2 [86] removing the default limit for the maximum number
of produced hits and limiting minimum hit length to 50. Input proteins with
sequences shorter than 100 amino acids are processed separately without the
limitation on the length of the hits. Thus, a configuration of the search method
with high sensitivity was chosen, which means a lower runtime efficiency. In
the greater scheme of constructing a high-performance algorithmic pipeline,
this seems counter-intuitive, but practice has shown that the structure search
is not the bottleneck of the pipeline by far. When multiple chains of the same
structure are found to be similar, all hits are retained and this information is
used to infer the oligomeric composition of the complex.
Then we filter for high-quality structures. In the first round of structure filtering,
we reject structures, for which resolution is too poor (> 4.5Å). The remaining
hits go into the alignment step, which is explained in the next section. After the
alignment more precise values for sequence identity and alignment length are
available. These are used for the second round of filtering, where all hits below
35% sequence identity and, for proteins with more than 100 amino acids, all
hits with an alignment length less than 50 are filtered out. All hits are scored
using a structure quality score:

Q(S,C,R) =M1(S) + 0.5 ·C+ 0.25 ·M2(R) (5.1)

M1(x) =
1

1+ e10·(0.4−x)
(5.2)

M2(x) =
1

1+ e1.5·x−4
(5.3)

The quality score combines three measures. Sequence identity (S) and coverage
(C) (the number of positions not matched with gaps divided by the length of the
target sequence) are based on the pairwise alignment between the target protein
sequence and the sequence of the mapped protein structure. The structure’s
experimental resolution (R) is taken from the header corresponding PDB file
reporting of the structure resolution experiment. S and C are a measure for
the quality of the match between a target protein and protein structure, R is a
measure for the overall quality of the structure. Each measure is scaled to [0; 1]
(see equations 5.2 and 5.3), where 1 corresponds to structures of the highest
quality. They are then combined in a weighted sum, S is the most important
measure, C is weighted half as strong as S, and R is weighted half as strong as
C (see equation 5.1).
As seen in the plot (Figure 5.2), M1(5.2) is mapped in a way that the function
grows for values between 0.35 and 0.7 linearly, while the growth for values
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Figure 5.2: The mapping function M1 (5.2) plotted for a sequence identity interval of 0.35 to
1.0
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Figure 5.3: The mapping function M2 plotted for a resolution interval of 1Å to 4.5Å

above 0.7 is limited. Translated in the biological terms, this means that the
higher the sequence identity of the sequence-to-structure mapping, the more
valuable is the information gained from the mapping, but the difference be-
tween a structure with 70% sequence identity and a structure with 40% identity
is higher than the difference between a structure with 100% sequence identity
and a structure with 70% sequence identity. We did not use a mapping func-
tion for the coverage since it is already a value in [0; 1] and the difference of
coverages between two mappings has no biological background, but most often
results from experimental limitations. The resolution of the structure is mapped
according to the function 5.3, which is plotted in Figure 5.3. The idea of the
mapping function is to have high values of the function for resolution below
2Å, for resolution between 2Å and 3.5Å it should drop approximately linearly
approaching 0, and for resolution above 4Å the values of the function should
be very low.
The quality score is used at later stages in the pipeline when it comes to the
combination of different annotations. In theory, the quality scores can range
from 0 to 1.75, we could have divided it by 1.75 in order to map it into the
range between 0 and 1, but this would only have cosmetic effects. Since the
score is of only internal use for weighting the information gained from different
structures, we refrained from doing so.
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5.2.3 Prediction of Disordered Regions

For disordered regions of proteins, a structural analysis does make much sense,
since they by definition do not assume a stable 3D structure. But knowing
where they are is still a piece of useful information and that can be used
for assessing the effect of mutations in them, e.g. with respect to location
of possible functional linear motifs that tend to reside in these regions [29].
For all input protein sequences, we predicted the ordered and disordered
regions by first searching in the MobiDB3.0 [146] database, which combines
the experimental knowledge about the intrinsic disorder with methods for
prediction of disordered regions. For proteins not covered in MobiDB3.0, we
used IUPred2A [137] to predict the disordered regions.

5.2.4 Sequence Alignment

In order to map individual amino acids to individual residues in a structure, we
compute the alignments between the target sequence and all sequences of the
corresponding proteins in the structures returned from the sequence similarity
step. As the alignment algorithm, we choose the Needleman-Wunsch pairwise
global alignment method [147] and use the implementation from biopython
[148]. As the substitution matrix, we use the BLOSUM62 [88]. The gap open
penalty is 10 and the gap extension penalty is 0.5. One challenge that we often
face are proteins that are only partially resolved in the structure, which results
in a low alignment coverage, while the alignment has a decent sequence identity.
In order to address these cases, we chose to not penalize terminal gaps.
The sequence identity and sequence coverage of the resulting alignment are
important measures for the quality estimation of the corresponding sequence-
to-structure mapping. The alignment itself defines the mapping of individual
positions of the target sequence to individual residues in the mapped structure.
We call such a mapping a position-specific structural annotation.

5.2.5 Solvent Accessible Area

Residues lying on the protein surface are less frequently involved in protein
function than residues lying in the core [98], hence calculation of solvent
accessible area is an important part of the structural interpretation of mutations.
We used DSSP [3] in its default settings and take the total surface area (SA)
of each residue. Further, from DSSP we also extract the secondary structure
assignment as well as the calculated torsion angles. We divide the SA values by
the amino acid type-specific maximum values according to Rost and Sander
[97] in order to obtain the relative surface area (RSA). We also calculate the
SphereCon values, which are described in detail in Chapter 4. For most cases,
when DSSP is not applicable, due to limited structural information, SphereCon
measures can still be calculated and are used instead of RSA values.

5.2.6 Distance Calculations

For each pair of residues, incuding those from other chains than the one
that corresponds to the target sequence, distances are calculated at an atomic
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level, i.e. the distance between two residues A and B is the shortest distance
between any atom from residue A and any atom of residue B. Analogously,
distances between each residue and each co-resolved small molecule (stored in
the heteroatoms records in the PDB files) are calculated. A small set of small
molecules corresponding to typical buffer components (Supplementary List
9.1.1) were excluded from the analysis. The minimal distances between the
residue of interest (if the list of residues of interest is specified in the input,
otherwise for each residue) and all potential interaction partners co-resolved in
the structure are calculated and all distances below 5Å are stored.
To do this efficiently we compute a so-called fuzzy distance matrix. The fuzzy
distance matrix of a structure contains distances for pairs of residues from all
chains from a structure. It guarantees correct distances for residue pairs close in
space, i.e. contacting residues from the same chain and in interaction interfaces.
For residue pairs that are not close in space the distances may be approximated.
The calculation of a residue-residue distance matrix completely filled with
correct distance values takes time quadratic with respect to the total amount
of atoms in a structure, but since most of them are above 5Å, only the correct
values for a small subsection of pairs is required. For the calculation of the fuzzy
distance matrix, we first calculate minimal Euclidean axis-aligned bounding
boxes around each chain, or simpler explained, the minimal and maximal x,y
and z values for each chain. Then we construct the smallest possible sphere
around the boxes. Now if two such spheres have a distance above 5Å, no
residues in their two corresponding chains can have a distance below 5Å and
they are not considered for the following distance calculation steps. For all
remaining residues, the distance between their first listed atom is calculated,
this distance is recorded as approximate distance in the fuzzy distance matrix.
For each residue, we calculate the precise (on atomic level) distance only to the
twenty residues with lowest approximate distance.
For small structures, a fuzzy distance matrix is basically identical to a precise
distance matrix and there are also no improvements in terms of running time.
But, for large structures, for many residue pairs distances are approximated or
not calculated at all, thus the fuzzy distance matrix becomes sparse, effectively
reducing the complexity of the algorithm to be linear with respect to the number
of residues. Since the calculation of a precise distance matrix takes quadratic
time in relation to the number of atoms in the structure, they can create
menacing bottlenecks for huge structures. These bottlenecks were eliminated
by the introduction of the fuzzy distance matrix.

5.2.7 Residue Interaction Networks

Structures can be represented as residue interaction networks (RINs). RINs are
graph structures, where the nodes correspond to amino acids and the edges
denote interactions between amino acids. The distance matrices described in
the previous section already provide a way of constructing a RIN by taking the
distance matrix, removing all distances below a certain threshold and using the
resulting matrix as matrix representation of a graph.
In this section, we describe the usage of more precise RINs, generated by RINer-
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Figure 5.4: Threonine 147 (T147) and proline 102 (P102) of the quinone reductase 2 (green
cartoon) and flavin-adenine dinucleotide (FAD) (yellow sticks) taken from PDB structure 4FGL;
H-bonds shown in yellow dashed lines. The shortest distance between T147 and FAD: 2.68Å;
the shortest distance between P102 and FAD: 2.89Å; probe score of the interface between T147
and FAD: 2.38; probe score of the interface between P102 and FAD: 0.04

ator [149]. Instead of calculating distances, RINerator uses Probe [4], which rolls
probes spheres across the residue van der Waals surfaces, the resulting clashes
of the rolling sphere with other residues surfaces are registered, and a so-called
probe score is calculated for each residue-residue interaction. These interactions
are further classified into van-der-Waals interactions and hydrogen bonds. In
addition, the distinction between sidechain-sidechain, sidechain-backbone, and
backbone-backbone interactions is made. Here we had to extend the functional-
ity of RINerator to include directed edges for sidechain-backbone interactions.
For our purposes, we store for each residue the node degree and the sum of
probe scores for all its edges and distinguish between edges to different types
of interaction partners.
This type of analysis is computationally expensive, which is in apparent contra-
diction to the stated efficiency of the pipeline. For that reason, we constructed a
RIN database containing all RINs for all structures in the PDB. The downside
of this approach is that external installations cannot use RIN-based analyses
without constructing the RIN database locally or downloading a copy of it.
An example of the advantage of detecting an interaction with probe scores
rather than computing Euclidean distances is shown in Figure 5.4. The two
residues have an almost equal distance to the ligand molecule, however, there
is a large difference in their corresponding probe scores, which represent the
biological relevance much more faithfully. In fact, the sidechain of the threonine
forms two H-bonds with the ligand molecule and the proline just happens to
be in near vicinity not directly interacting with the ligand other than via weak
van-der-Waals interactions.
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5.2.8 Structural Classification

Since single positions in a given protein sequence can be mapped to individual
residues in up to thousands of 3D structures, the produced results are not
interpretable by humans anymore. After calculating all these per-residue values
for the different mapped structures, the next step is to combine these into a
single structural classification for each residue.
For each type of interaction partner, the minimal distance values from each
annotated residue are taken in order to calculate so-called weighted distance
values (equation 5.4). This is done for each type of the interacting molecule (pro-
teins, DNA, RNA, metals, non-metal ions and low molecular weight ligands)
separately. For this calculation, only distance values lower than 8Å are con-
sidered. Each distance is multiplied by the quality score of the corresponding
protein structure mapping, the products are summed and finally are divided
by the sum of quality scores.

W(D) =

∑
qi · di∑
qi

, (di,qi) ∈ D, (5.4)

where D is the set of distances (di) and quality scores (qi, see equation 5.1) for
all mapped structures of a target position.
Note that the weighted distance can be undefined for cases, where no distance
is below 8Å. For these cases and the cases, when the weighted distance is
between 5Å and 8Å, the position is considered to be not in contact with the
particular type of interaction partner. If the weighted distance for a particular
type of interaction partner is below 5Å, the position is considered to be in an
interaction of the particular type, for example, protein-protein interaction. A
position can be considered to be in interaction with multiple types of interaction
partners. When only one type of interaction is defined, this interaction then
defines the classification. When multiple interaction types are registered, they
are combined as double, triple, quadruple (and so on) interactions. In most
cases, these multiple interactions result from different structures, for example,
a position is mapped to residue A in structure X and residue B in structure
Y. For residue A a protein-protein interaction is detected and for residue B
a ligand interaction is detected. Then the resulting classification of the given
position is a double interaction, protein and ligand, although, for no single
structure, these interactions are observed simultaneously. In order to distinguish
classification with multiple types of interactions, we collect the classifications
for all individual structures and provide the list together with the combined
classification (for each detected type of interaction we provide one structure ID,
which corresponds to the structure with the highest quality score, for which
this type of interaction is observed).
For cases, when for a position no interactions are detected, the classification
scheme shifts its focus to the question if the mapped residues lie on the surface
of the protein or in the core of the protein. Instead of the interaction type
classifications, we assign a location type classification here. We decided not to
calculate weighted RSA values in the same fashion as the weighted distance
values. Structures with a low sequence coverage of a protein can produce very
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Figure 5.5: ATP-dependent molecular chaperone HSP82 resolved in two different PDB struc-
tures; green: PDB ID 2CGE, chain A; cyan: PDB ID 2CG9, chain B.

misleading RSA values as shown in Figure 5.5. Here the green structure misses
a large part of the protein, which can be seen in the cyan structure that extends
the green structure. Thus, some residues calculated to be located on the surface
are in reality located in the core. Vice versa this is not the case. Hence, we
can conclude that sequence coverage is important, and individual annotated
residues located in the core region of a structure are more important than
individual annotated residues located on the protein surface.
In an early version of StructMAn, we tried to solve this problem, assigning
a position to core, when at least one annotated residue was located in the
core. The drawback was that there were a lot of cases, where the structures of
distantly related proteins got too much influence on the classification. Now,
we determine the combined location type classification (surface or core) by a
weighted majority vote. First for each annotated residue the individual location
is determined by using the established RSA threshold of 0.16 [97] (surface
if RSA > 0.16, core for RSA 6 0.16). In the calculation of the location type
classification each annotated residue votes for its location with a weight:

WL(D) =
∑

(qi,ci)∈C

2 · qi · c5i −
∑

(qi,ci)∈S

qi · c5i , (5.5)

where WL is the weighted location, C is the set of coverages (ci) and quality
scores (qi, see equation 5.1) for all mapped residues buried in the protein core,
S is the set of coverages (ci) and quality scores (qi, see equation 5.1) for all
mapped residues located on the surface of the protein, and D = S∪C.
Positive WL values lead to core classification and negative WL values to a
surface classification. At first glance, the constants for the calculation of this
weighted majority vote seem arbitrary. They were selected heuristically by
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Figure 5.6: Decision tree for the simple classification scheme.

searching for examples, where our initial location type classification scheme
produced the wrong classifications due to previously explained drawbacks. We
choose the parameters of the weighted majority vote such that all the chosen
examples are correctly classified while preserving the classification for all cases,
where the old scheme was already correct. The resulting weighted majority
for the combined location is then taken as a classification for cases when no
interactions are detected.
Due to the numerous combinations of interaction types, we also created a
simplified classification scheme, where all multiple interactions are simplified
by taking only one interaction type based on the following priority order: metal
(Supplementary List 9.1.2), ligand (all ligands extracted from the HETATM
records except metals and ions), DNA, RNA, protein, ion (Supplementary List
9.1.3).
Thus, for the simple classification, there are eight different classes: the six
interaction types and the two location types (Figure 5.6). For both schemes, we
also implemented the classification to be based on the RIN-based probe scores
instead of the distance calculations.

5.2.9 Database and Lite Mode

Efficiency is a matter of the scale of the given input. There are different chal-
lenges in terms of runtime efficiency when it comes to the annotation of a
single position in a single protein compared to the annotation of all positions
for a large set of proteins. For example, when annotating a single position, only
single mapped residues are analyzed. It would not make sense to calculate the
distance matrix for the whole structure. On the other extreme, when annotating
large datasets, it is important not to repeat calculations, for example, when two
different positions from different proteins are mapped to the same residue in a
structure, the structural analysis should not be repeated. For that purpose, we
implemented a relational database in the background of the pipeline. The filling
of the database and the checks if results should be calculated or retrieved from
the database are producing an overhead in the beginning, but at some point, the
cases, when calculations are not necessary and the data can be retrieved from
the database, amortize for that. Another advantage of maintaining a database
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is the possibility to store of the results from many intermediate steps in the
pipeline, which can be used for the development of new downstream analyses
without reprocessing the original data.
The default mode of the pipeline is developed in a way to maximize the usage
of the database. For example, all residues of all mapped structures are analyzed
and the results are stored, independent of whether a particular residue got
mapped to an input position. For external installations of the pipeline, the
requirements can differ. When no precomputed results are available in the
database, the annotation of small inputs can result in a huge overhead, which
will never be useful for a particular user. For this use case, we developed the
lite mode. It forgoes the usage of the database, saving the overhead coming
with it. Thus, the lite mode is much faster for smaller inputs, which are not
supported by a well-filled background database, for example, nsSNVs in novel
proteins.

5.2.10 Implementation

Currently, there are three different implementations of StructMAn. The first
one comes in the form of the online webserver and was published in the
webserver issue of Nucleic Acid Research in 2016 [150]. The frontend of the
webserver was written in PHP, and the backend was written in python 2.5. For
the communication between backend and frontend, we used the python flask
library. The database runs on in MySQL 5.5.60 for all three implementations.
The webserver backend used the python MySQLdb (http://mysql-python.
sourceforge.net/MySQLdb.html) library for database communication. Since its
initial implementation, the webserver never had a major update and lacks many
functionalities, described in this thesis.
The in-house version of StructMAn is a locally installed command-line tool,
which contains all the described features and is written in python 3.7. We
replaced the database communication with the python pymysql library (https:
//github.com/PyMySQL/PyMySQL). The third implementation is a Docker (https:
//www.docker.com/) container (manuscript in preparation). The container will
enable a local installation of StructMAn on any system and has the same source
files as the in-house version. It includes the lite version and the full version
supporting the database that is automatically created and maintained without
any required actions from the user.

5.3 results

5.3.1 Annotation of the Human Proteome

The largest dataset we annotated so far was the entire human proteome, which
includes the amino acid sequences of all human proteins including separate se-
quences for different isoforms. The dataset was downloaded from https://www.

uniprot.org/uniprot/?query=*&fil=organism%3A%22Homo+sapiens+%28Human%

29+%5B9606%5D%22+AND+reviewed%3Ayes, whereby the option for canonical+isoforms
sequences was chosen. The dataset contains in total 37, 702, 205 individual posi-
tions in 95, 117 different isoforms. The first time we performed the complete

http://mysql-python.sourceforge.net/MySQLdb.html
http://mysql-python.sourceforge.net/MySQLdb.html
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://www.docker.com/
https://www.docker.com/
https://www.uniprot.org/uniprot/?query=*&fil=organism%3A%22Homo+sapiens+%28Human%29+%5B9606%5D%22+AND+reviewed%3Ayes
https://www.uniprot.org/uniprot/?query=*&fil=organism%3A%22Homo+sapiens+%28Human%29+%5B9606%5D%22+AND+reviewed%3Ayes
https://www.uniprot.org/uniprot/?query=*&fil=organism%3A%22Homo+sapiens+%28Human%29+%5B9606%5D%22+AND+reviewed%3Ayes
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Figure 5.7: Fractions (total numbers) of proteins from the human proteome, for which Struct-
MAn was able to map at least one structure.

annotation was done in 2018 and the result was presented in the German
Conference for Bioinformatics (GCB) (http://gcb2018.de/abstracts) in the
same year. Since then, this dataset functions as a basic database for StructMAn
and was reannotated multiple times after each major update. The annotation
of this dataset from scratch, which means starting with an empty database,
takes around 10 days on a 48-core server (4x Intel Xeon E7-8857 v2 96x 16GB
RDIMM, 1.600MHz RAM 1,5TB).
We were able to map over 58% of the proteins to structural data (Figure 5.7)
and for the portion of proteins, which could be mapped, the majority was only
mapped to the structure of a homolog. These statistics clearly show the benefits
of using the structures of homologs. When comparing the 2018 and the 2019

annotation, the number of mapped proteins increased drastically. This has four
reasons: the increased numbers of experimentally resolved structures in the
PDB, the switch from BLAST [83] to MMseqs2 [86] for performing the sequence
similarity search, and overall improved implementation. However the main
reason for more mapped proteins and that explains the surprising increase in
proteins mapped to corresponding structures from 15.9% to 22.0% is that we
changed the way how we calculated the sequence identity of the alignments. In
2018, we divided the number of matched positions by the length of the target
sequence. Today, we divide the number of matched positions by the number
of positions not matched with a gap. This resulted in higher sequence identity
values in general. Around 5% of all proteins, while they could not be mapped
to any 3D structure are predicted to be entirely disordered by IUPred2A [137].
That’s why we distinguish them from the unmapped proteins.
Figure 5.8 shows similar statistics but on the amino acid level. For the 2018

http://gcb2018.de/abstracts
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Figure 5.8: Fractions (total numbers) of individual positions from the human proteome with
respect to the availability of StructMAn annotations.

annotation, we have no data on the distinction between mappings into experi-
mentally resolved structures of the same protein and structures from a homolog.
The amount of newly mapped positions comparing 2018 and 2019 is much
less than the increase of mapped structures, since the change in the sequence
identity calculation has a smaller effect here.
In Figure 5.9 we show the distribution of the classifications for all mapped
positions. We present the classifications based on the distance calculations and
the classifications based on the RINs separately. Both classifications schemes
assign around 31% of the positions as lying in disordered regions because
here distance-based classifications and RIN-based classifications do not differ.
Around 47% are not directly involved in any interactions, where 20% of the
positions are mapped to residues lying in the protein core and nearly 27% of
the positions are mapped to residues lying on protein surfaces. The remaining
22% of the positions are assigned to an interaction type classification.
For these positions, the assigned type of interaction classes differs for the
two classification schemes. The distributions of interaction types are shown in
Figure 5.10. Here we can see how the two ways to assign contacts differently
influence structural classification. The RIN-based scheme classifies more po-
sitions to be involved in protein and DNA interactions and fewer as ligand
and metal interactions. The numbers of ion and RNA interactions are roughly
the same for the two schemes. Since the RIN-based classification prefers a
larger surface of the interaction interface between the mapped residue and the
interaction partner to the minimal distance between both interacting partners,
we observe a propensity for this scheme to favor larger interaction partners.
Since the distance-based classification, as its name suggests, favors just the
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Figure 5.9: Distribution of RIN-based and distance-based structural classification for the
annotation of the human proteome; interaction classes can be seen in detail in Figure 5.10.

shortest distance between any two atoms from both interaction partners, there
is no such trend to be expected.

5.3.2 Annotation of All nsSNPs of the Genome from an Individual Human
Being

In the first place, StructMAn was developed to map nsSNVs into the context of
protein 3D structures. A good example of a large nsSNV-related dataset is a
collection of all the individual nsSNPs of one human being. In this example,
we took a randomly chosen individual from the 1000 genomes project [151]
and obtained all genetic variations in this particular genome in the form of a
variant call format (vcf) file. The resulting dataset contains 8750 nsSNPs in 4321
different proteins. In order to provide a protein-specific background, we also
annotated all positions in these proteins, which in total contained 3, 294, 328
positions.
Comparing the class distribution of this dataset to the class distribution of the
human proteome (Figure 5.11), they look very similar with only one difference:
for the individual nsSNVs there are more positions classified as surface in
favor of positions classified as core. This comparison may not be completely
fair since the annotation of the human proteome includes all protein isoform
sequences and ANNOVAR mapped the variants only to the major isoforms.
When comparing the individual nsSNVs to all positions from the same proteins,
we can see an even stronger depletion for positions classified as core, but this
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Figure 5.10: Distribution of RIN-based and distance-based structural interaction classifications
over the annotation of the human proteome.



5.3 results 67

Figure 5.11: Distribution of RIN-based classifications for the annotation of the human proteome,
for all nsSNPs from an individual human being, and for all positions for the same set of proteins;
interaction classes can be seen in detail in Figure 5.12.

time more in favor of positions predicted to lie in disordered regions. This
might imply that the distribution of mutations in humans is not completely
independent from the structural composition of the proteins they affect.

5.3.3 Performance Comparison

We tested the runtimes for seven different types of input for five different
installations:

1. The in-house version on a 48-core server (4x Intel Xeon E7-8857 v2 96x
16GB RDIMM, 1.600MHz RAM 1,5TB), full installation with locally in-
stalled versions of the PDB and Uniprot, starting with an empty database
(from scratch).

2. The in-house version on a 48-core server, full installation with locally
installed versions of the PDB and Uniprot, using the lite mode.

3. The in-house version on a 48-core server, full installation with locally
installed versions of the PDB and Uniprot, using the annotation of the
human proteome as the database.

4. The containerized version run on the same servers, but with access limited
to 4 cores. Additionally, the containerized version had no access to locally
installed databases, namely Uniprot, PDB and the RIN version of PDB,
and for it the RIN-based classifications were not computed.
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Figure 5.12: Distribution of RIN-based and distance-based structural interaction classifications
over the annotation of the human proteome, for all nsSNPs from an individual human being,
and for all positions for the same set of proteins.

5. The containerized version, limited to 4 cores, without access to the local
databases, in the lite mode.

The input scenarios are:

1. A single position from the major isoform of the human protein p53, as an
example of a protein that has a lot of experimentally resolved structures
in the PDB

2. All positions from p53

3. A single position from the major isoform of the human protein Sart3,
as an example of a protein that has only a few experimentally resolved
structures in the PDB

4. All positions from Sart3

5. 86 individual positions from 86 different human proteins (taken from the
cancer germline dataset, described in Chapter 6.2.1, since we can annotate
all of these proteins to a large amount of 3D structures)

6. All positions from the same 86 different human proteins

7. All nsSNVs from one individual (Section 5.3.2)

All results are presented in Table 5.2. The overhead resulting from building the
database can be seen when the ‘from scratch’ column with the ‘lite mode’ col-
umn are compared. In contrast, the advantage of using a pre-built database can
be seen when comparing the ‘lite mode’ column with the ‘full database’ column.
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Scenario in-house in-house in-house container container

from scratch lite mode full database from scratch lite mode

p53 1 SNV 88 14 8 294 129

p53 full 97 26 8 301 233

Sart3 1 SNV 21 6 7 30 15

Sart3 full 28 20 7 37 26

86 SNVs 1783 463 13 18216 8420

86 full 2697 2623 19 18344 15014

all SNVs 28289 7571 530 not done not done

Table 5.2: Runtimes for the different scenarios and different Installations of StructMAn in
seconds.

The database construction overhead is larger for proteins with more experi-
mentally resolved structures (p53 vs. Sart3) and for inputs with one individual
position, since during the database construction always full sequences are an-
notated. For the analysis of a few mutations, the construction of a database
seems unnecessary, but when handling larger datasets, the database-related
overhead amortizes quickly. The 48-core version is about ten times faster than a
local 4-core version, especially in combination with the lite mode. Such a local
installation can handle small to medium-sized inputs.

5.4 discussion

Over the last four years, we developed StructMAn, which acts as the compu-
tational centerpiece of this thesis. We wanted to learn from the shortcomings
of other structural annotation methods and to fill all the unsupported niches
the field demands. Consequently, we have created a structural annotation tool,
which can process the largest inputs without any kind of limitations, be it
species, isoforms or specific positions. The comprehensiveness of the performed
structural analysis is also nearly unmatched, especially when considering the
amount of input data it can be applied to. However, we failed so far to deliver
this powerful method to the community. The webserver implementation lacks a
lot of important features. The containerized version is finished and working,
but still not published.
A common problem for all structural annotation methods are cases where no
experimentally structures are available. The annotation of the human proteome
shows that there are still 38% of all positions left out. The amount of structures
in the PDB increases constantly and rapidly and recent developments in cryo-
EM and hybrid structure resolution methods keep the hopes alive to further
reduce the amount of unannotated positions in the future.
One outstanding question is if protein structure modeling techniques can
improve the coverage of structural annotation, particularly given the recent
developments in that field. The integration of deep learning methods for the
prediction of residue-residue contacts in protein structure prediction pipelines
improved especially the quality of the models for proteins, which were con-
sidered to be very hard to model [111]. But since in our opinion, the most
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important thing about protein structural annotation are the interactions it par-
ticipates in, we doubt that protein structure modeling alone can solve this issue.
Still, it will be wise not to completely rule anything out.
For example, such model can be used for structural comparison with other
resolved structures, including those of complexes, and in this way can assist
finding remote homologs that are missed by sequence similarity searches.The
combination of information gained from structural analysis of multiple different
annotated structures and hence the following structural classification are also
complex tasks. The usage of structure quality score in order to weigh different
structural analysis results is a simple solution to this problem. However, the
calculation of the quality scores is based on ad-hoc heuristic parameters, which
are not evaluated or optimized, which leaves always room for potential criti-
cism.
There is no gold-standard set, for which we can optimize our parameters in
order to produce the perfect structural classification. While most structural
annotation methods perform such a classification, the structural classes dif-
fer from method to method. The distinction between residues on the protein
surface and residues buried in the core is the only classification common to
all methods that conduct a structural analysis. We tried to come up with a
classification scheme as logical and biologically meaningful as possible. In that
regard, a unique feature of the structural classification StructMAn is the way it
combines information from different protein structures with varying quality.
After investing four years into StructMAn and working on structural annotation
methods, I am convinced that there will be always room for improvement and
as long as there is a demand to map genomic data to protein structures, all
the time invested into the improvement of structural annotation methods is
well-invested time.
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S T R U C T U R A L A R R A N G E M E N T S O F G E N E T I C VA R I A N T S
A S S O C I AT E D W I T H G E N E T I C D I S E A S E S

In this chapter, I present an application of the methodology introduced in
Chapter 5 to biologically important data. We show the benefits of using a
high-performance annotation pipeline on datasets of phenotypically annotated
mutations. The basic idea is to compare the differences between collections
of mutations associated with genetic diseases and mutations that are known
to have no deleterious effect. This study is not focused on the analysis of
single mutations for their individual effects but was designed to show that the
structural analysis of mutations is able to discover meaningful trends.
This study was published in Oncogenesis in 2017 [152]. This chapter majorly
contains the same information as the publication but is extended in that it
is explored if the methodological updates of StructMAn since the time of
publication had any influence on the results of the study.

6.1 introduction

The fight against genetic diseases can only be won by understanding their
mechanisms. The research of the basic mechanisms behind genetic diseases is
one of the largest fields in biology and medical research, but still, there remains
a lot to explore. Next-generation sequencing technology enabled genome-wide
association studies (GWAS), in which many genomes, for which its associ-
ated phenotype is known, are sequenced. Therefore, it is possible to compare
the genomes of healthy individuals with the ones of those carrying a genetic
disease. Some genetic variants appear significantly more often in genomes,
which are associated with the same phenotype. Thus we can statistically link
certain non-synonymous single nucleotide variations (nsSNV) to specific ge-
netic disease phenotypes. We call them disease-associated nsSNV. This type of
annotated nsSNVs are used in this project.
We differentiate the disease-associated nsSNVs further into three subsets: cancer-
associated germline variants, cancer-associated somatic variants, and non-cancer
disease-associated variants. They are compared with mutations annotated as
benign and variants common in the population. For all datasets, we applied
our structural classification pipeline. From the resulting classifications, we cal-
culated the distributions, called spatial distributions, which we then compared
between the different datasets.
Previously (Section 2.4.1) we described possible ways mutations affect the func-
tion of the corresponding protein and that the magnitude of the effect is in
correlation with the effect on the phenotype. The assumption is that mutations
located on any kind of interaction interface and the mutations located in the
protein core have a higher potential to be functionally important compared to
mutations located on the protein surface and are not involved in interactions.

71
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According to this reasoning, we expected an increased propensity of surface
mutations in the spatial distribution for the datasets of benign and common
mutations and the opposite behavior for the other classes.
The distributions resulting from this comparative analysis setup confirmed
these assumptions. However, at that point, we were left with one major concern:
possible existence of biases in the analyzed data. After closer inspection, this
concern turned out to be founded. The root of the problem is that some proteins
are more frequently associated with diseases than others. These proteins are
in general more in the focus of research and consequently are more frequently
the target of protein structure determination experiments. This results in the
availability of more structures for proteins stronger associated with diseases.
Ultimately, the amount of known protein-protein interactions for these proteins
increases. Of course, mutations associated with disease, also more frequently
happen in proteins, which are associated with disease. This is the other way
around for common variants and mutations annotated as benign. Hence, the
proportion of mutations classified as located on protein-protein interaction
interfaces is artificially decreased among benign mutations. One can of course
pose the same question for other type of interactions, such as ligand and nucleic
acid interactions.
In order to correct for this bias, we moved away from the direct comparison of
spatial distributions. We developed multiple techniques for the construction of
biological control distributions, including random in-silico mutagenesis, com-
plete protein annotations, and random sampling. The first two are supposed
to identify dataset-specific biases. The random sampling had the goal to con-
struct subsets of the common and benign mutation datasets in a way, that their
proteins are covered by structural data equally well as their disease-associated
counterparts. These techniques helped to compare the results from different
datasets by correcting for biases, which are a consequence of inequality of
research quantity for different proteins.
The bias corrections had significant effects on the results of this study. We
showed that mutations associated with diseases are not enriched in protein-
protein interaction interfaces contrary to previous work [153–155]. At the same
time, we support the findings of some other studies [156] in this controversial
field. Interestingly, using these bias-correction techniques, we were able to con-
firm the enrichment of disease-associated mutations in ligand-binding pockets
and DNA-interaction interfaces.

6.1.1 Related Work

There exists ample research on mapping disease associated-variants into the
context of three-dimensional structures. For example, the idea behind Cancer3D
[125] is the construction of a database filled with genetic variants associated
with human cancer, that can be structurally annotated. In Cancer3D, an own
structural annotation pipeline is built, which interestingly works the other way
around than StructMAn. Its starting point was a database of genetic variants
associated with cancer and a list of proteins harboring them. The list of proteins
was extended by including all known alternative isoforms. Pfam [129] was used
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in order to assign all domains of all proteins, and the amino acid sequences
of the domainswere used to construct a search database. Then all sequences
from the PDB were compared to the constructed database using a BLAST [83]
search. In order to map then individual mutations into protein 3D structure, the
alignments constructed by BLAST were used. In a follow-up study, Cancer3D
was used to structurally analyze interaction interfaces of cancer-associated
proteins [155], and it was found that cancer-associated variants are strongly
enriched for interaction interfaces of cancer driver proteins.
Another study [153] also reached the same conclusion. Here protein sequences
were directly mapped on their corresponding protein structure using the
Uniprot annotation that provide PDB identifiers for each protein if its structure
has been structurally resolved. Mutations in tumor suppressor genes, onco-
genes, and all other genes were structurally compared. The mutations were
structurally classified by their solvent accessibility and by their participation
in protein-protein interactions (PPI). The same structural annotation protocol
was used by a third study [154], which extended the structural analysis to also
identify interaction interfaces to low molecular weight molecules and nucleic
acid chains. Again, the results showed enrichment for genetic variants in all
types of interaction interfaces of proteins associated with cancer.
In contrast to these studies, another study [156], first identified the bias of
well-studied proteins to have more known interaction partners and hence an
increased chance of any variant being on an interactive interface. The focus of
their study was the analysis of PPI networks, which were mainly constructed
without using any structural information. Thus the proteins with no known
association to cancer were samples to be used as frequently as baits in TAP-MS
experiments (an experimental technique for large-scale identification on PPIs)
as the cancer-associated proteins. After this correction, in fact, it was found
that there is no enrichment of the number of interactions for cancer-associated
proteins. This raised the question if our study that uses structural information
suffers from a similar bias. In particular, since cancer-associated proteins have
on average more corresponding 3D structures, if we consider only proteins that
carry benign variants and select equally well-studied ones, will we observe a
similar number of variants in PPI interfaces?

6.2 methods

6.2.1 Disease-associated Variant Databases

We constructed five datasets of nsSNVs, that are associated with different
phenotypes:

1. cancer-associated germline variants (CG)

2. cancer-associated somatic variants (CS)

3. variants associated with other genetic diseases (NCD)

4. non-common variants considered to have no effect called benign (BeV)

5. variants appearing commonly in the population (CoV)
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Dataset Positions Proteins Mapped positions Mapped into

a corresponding structure

Common 26868 10341 31.65% 23.53%

Benign 4669 944 32.47% 11.24%

Cancer germline 349 86 99.71% 72.21%

Cancer somatic 3291 372 99.42% 71.29%

Non-cancer diseases 12315 1588 99.79% 63.56%

Table 6.1: The five main datasets, including for each the total amount of positions, the total
number of proteins, the fraction of position, that could be mapped to at least one structure and
at least one corresponding structure (i.e. structure of the exactly same protein).

The origin of our datasets of phenotype-associated variants are annotated
variants from the databases ClinVar [63], COSMIC [78] and Uniprot [2]. The
variants from these three databases form the raw data pool used to compose
the datasets used in this study. All databases contain variants, which could be
observed to be in association with specific resulting phenotypes. The magnitude
of the impact of the individual variants on the phenotype is not known and we
assume all variants in the same dataset to be equally important. We normalized
the labels of the variants in order to ensure sensible collective usage. We filtered
variants from each dataset specifically.
Variants from ClinVar were only included if there rating was 2 stars or more
(stars system of ClinVar is explained in Section 3.1.3). Variants annotated as
‘pathogenic’ or ‘likely pathogenic’ are divided into cancer-associated and non-
cancer associated variants based on the NCBI MedGen disease classification,
while the cancer-associated variants were further divided into germline vari-
ants and somatic variants, based on the ‘origin’ annotation from ClinVar. The
variants that are annotated as ’benign’ or ’likely benign’ are used to construct
the dataset of benign variants.
Variants originating from COSMIC are all somatic cancer variants. Here we
only included variants associated with at least two different cancer samples in
order to select only reproducibly observed cancer variants and exclude random
variance.
Finally, we retrieved all variants from Uniprot that are associated with human
disease using the ‘humsavar.txt’ file. Based on specific keywords, we filtered
cancer-associated variants from non-cancer associated variants. The subdivision
into pathogenic or benign and somatic or germline is done similarly to variants
from ClinVar.
We used ExAc [47] to construct the fifth set containing variants, which are com-
monly carried in the population, for which we assume to have no deleterious
effects. For this we retained variants with a population frequency > 5%. The
compositions of the resulting datasets are shown in Table 6.1.
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6.2.2 Control Datasets

Since the datasets all have different protein composition, there is a risk of
potential protein-specific biases. In order to compare the disease-associated,
benign and common variant datasets we provided control datasets for them.

6.2.2.1 Random Control Datasets

For each dataset, we computed a randomized dataset. For each protein, we
introduced n random nucleotide substitutions, where n is the number of variants
of the protein in the corresponding base dataset. We repeated this process ten
times. This resulted in randomized datasets, which have the same amount of
variants per protein and the same composition of proteins as their original
datasets. All presented results for the randomized datasets report the mean
over the ten repetitions.

6.2.2.2 Sampling Control Datasets

Additionally, we designed a sampling technique that had the goal to enable
better comparison between datasets that contain variants from proteins, which
are studied to a different extent. As a proxy measure for how well a protein is
studied, we took the number of experimental structures StructMAn was able
to find matching this protein. In this technique, the BeV and CoV dataset was
used as two pools of variants. We selected variants from each pool such that the
distribution of numbers of mapped structures for all proteins is as similar as
possible to the corresponding disease-associated datasets (note that this is only
possible since we have many more variants in the BeV and CoV datasets than in
the datasets with disease-associated variants). This method allows us to directly
compare datasets with variants associated with different phenotypes, while
significantly reducing the bias introduced by a different protein composition.

6.2.2.3 All Positions Control Datasets

At the time we conducted this study, the StructMAn pipeline was not powerful
enough to annotate complete proteomes. Since we are now able to do so, for
each dataset, we added the spatial analysis for all positions of the same proteins
and also the comparison to the annotation of the whole human proteome
(reported in Chapter 5). This control datasets can capture biases introduced
by the specific composition of proteins of a dataset. However, they remove the
information about the distribution of variants per protein.

6.2.3 Spatial Distribution of Genetic Variants

For all variants of all datasets, the structural classifications by StructMAn were
calculated. Since in this study the focus was not on individual variants, we
performed a simplified analysis that takes into account only the simple position
classification (Section 5.2.8), which should be capable to show trends for spatial
location of mutations for whole datasets. We calculated the distribution of
classes for the variants belonging to the same set. We call such distributions
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spatial distributions. The intention of spatial distributions is to show statistical
trends in different datasets of variants in order to explore enrichments in specific
classes, which then may enable conclusions about the overall mechanistic trends
behind different phenotypes.

6.3 results

6.3.1 Spatial Distribution of Disease-associated and Benign Genetic Variants
from Gress et al. [152]

The spatial distribution in the different datasets (Figure 6.1) reveals that the in-
clusion of the analysis of structures of homologs not only increases the number
of total data points but also the proportion of positions classified as being in an
interaction universally for all datasets. Other than that, the inclusion of these
structures does not change the overall trends in the distribution, particularly
when it comes to the comparison of the distributions from different datasets.
The central task of this study was the structural comparison between disease-
associated variants with variants annotated as benign and common variants.
We can see an enrichment of variants classified as ligand interaction in the
three disease-associated datasets (CG, CS, NCD) compared to the BeV and CoV
datasets. For the NCD dataset, there is also a strong enrichment of variants
classified as core. Variants in CG and CS datasets are enriched in all types of
interaction interfaces, protein-protein, protein-low molecular weight molecules,
and protein-DNA. Variants in CG are especially often classified as ligand in-
teraction. We observe very few variants classified as lying on RNA-interaction
interfaces and exclude them from the further analysis.
Comparing the datasets of variants not associated with disease (BeV, CoV) to
their corresponding randomized versions, one notices a depletion in variants
classified as core in favor of variants classified as surface, whereas the pro-
portion of variants classified as lying on any of the interaction interfaces are
rather unchanged. Doing the same type of comparison for the NCD dataset
reveals that there is an enrichment of variants classified as core and variants
involved in interactions with small molecules in the actual datasets compared
to their randomized versions, confirming the previous observations drawn
from the direct comparisons. Putting the cancer-associated datasets (CG, CS)
against their randomized counterparts, we can again confirm the enrichment
of variants classified as ligand and DNA interactions, however, there is no
significant difference in the variants classified as interacting with other protein
chains. We can even see a slight depletion of variants classified as core, similarly
to the BeV and CoV datasets.
Similar conclusions can be drawn from Figure 6.2: the distances to the next
DNA chain are significantly shorter when disease-associated datasets to their
randomized versions are compared. This difference is especially noticeable
for variants from the NCD dataset. The BeV and CoV datasets show an op-
posing trend. In a direct comparison to all other datasets, variants from the
CoV dataset seem also to have shorter distances to DNA molecules, but they
are even shorter for variants from the randomized counterpart. Regarding the
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Figure 6.1: (from Gress et al., 2017 [152]): Spatial distribution of nsSNVs in the analyzed
data sets. For randomized data sets, mean values over 10 replicas are used. (top) For templates
with > 35% sequence identity. (bottom) For templates with > 90% sequence identity; RNA
interaction class was excluded, due to the very low number of detections of variants in that
class.
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Figure 6.2: (from Gress et al., 2017 [152]): Distance between residues corresponding to
nsSNVs and the nearest interaction partner (log scale). Biological data sets are shown in
a darker shade. The fraction of mapped nsSNVs, for which a template with a co-resolved
corresponding interaction partner is provided below boxes representing distribution of distances
to protein, ligand and DNA interaction partners for each biological data set. For randomized
data sets, all 10 replicas are used to create the plots. (left plot, green) Distances to the nearest
protein chain. (middle plot, blue) Distances to the nearest ligand. (right plot, yellow) Distances
to the nearest DNA chain.
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DNA contacts (%) Ligand contacts (%) Protein contacts (%) Core (%) Surface (%)

cancer germline 4.5 19.4 31.6 26.9 17.6

100 random samples

from cancer germline 1.2± 0.4 5.8± 0.7 32.8± 1.5 30.6± 1.5 29.7± 1.9
(mean ± s.d.)

cancer somatic 4.3 13.3 31.5 25.9 24.9

100 random samples

from cancer somatic 1.4± 0.2 8.6± 0.3 29.5± 0.5 27.4± 0.6 33.2± 0.6
(mean ± s.d.)

non-cancer diseases 2.8 12.7 24.5 42 18

100 random samples

from non-cancer diseases 1.6± 0.1 6.0± 0.1 24.1± 0.3 27.5± 0.3 40.8± 0.3
(mean ± s.d.)

Table 6.2: (from Gress et al., 2017 [152]) Distribution of structural classes in disease-associated
datasets compared to 100 randomly sampled equally sized sets from the sets of benign variants
with the same distribution of identified template structures as in the corresponding disease-
associated datasets. Insignificant differences (within four standard deviations) are marked in
red.

distances to the closest low molecular weight ligand, as long as we compare
the datasets to their randomized versions, we can draw the same conclusion as
drawn for the distances to DNA molecules: the expected shift towards shorter
distances for disease-associated variants (CG, CS, NCD) can be observed. For
the distances to the nearest protein chain, none of the datasets show any signif-
icant differences to their randomized versions. However, there is the expected
trend of shorter distances to the nearest protein chain in the direct comparison
of disease-associated datasets to CoV and BeV datasets, similar to the ligand
distances.

6.3.1.1 Random Sampling to Close the Gap in the Amount of Structural Information

For disease-associated variants, we can find more structural information than
for variants in the BeV and CoV datasets (see Table 6.1). This could bias the
spatial distributions of the corresponding datasets. We designed a random
sampling technique to match the amount of structural information between
two datasets and performed it to compare datasets of the disease-associated
variants (CS, CG, NCD) with the BeV dataset (Table 6.2) and with the CoV
dataset (Supplementary Table 9.4).
In Table 6.2 the spatial distributions for the disease-associated datasets (same
as in Figure 6.1) are compared to their corresponding sampled control sets
constructed using the variants from the BeV dataset. Interestingly, the increase
in variants classified as protein interaction for the disease-associated variant
datasets cannot be observed anymore. Surprisingly, this test does not show
any enrichment of variants classified as core for the CG and CS datasets, but
still, we can observe this enrichment for variants annotated as core in the NCD
dataset. This may indicate that mutations in cancer more often change protein
function instead of completely disrupting it. In unison to all here presented
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analyses, for all three datasets with disease-associated variants, we observe an
enrichment of variants that are involved in interactions with small molecules
and DNA chains. The results from the sampling control test argue against
the theory of enrichment in PPI interfaces for variants associated with cancer,
supporting the study by Schaefer et al. [156].

6.3.2 Spatial Distributions for Disease-associated and Benign Variants Calcu-
lated with the Latest Version of StructMAn

Since the publication of this study in [152], StructMAn has experienced signif-
icant improvements. The classification of disordered regions, more available
protein structures, an improved classification process and the ability to annotate
all positions of a protein are newly developed features, that can have an impact
on the results of this study.
In Figure 6.3 we compare the spatial distributions of the five datasets used
in [152] with the spatial distribution of the complete human proteome. The
spatial distribution for the CoV and BeV datasets is very close to the spatial
distribution of all positions in the proteome, and it has a strong resemblance to
the spatial distribution of the nsSNVs from an individual from the previous
chapter (Figure 5.11). This is another hint, that variants common in the popula-
tion are slightly depleted from protein core due to their deleterious nature.
The other three datasets comprise variants, which are associated with diseases.
Through the inclusion of the class for disordered regions, their spatial distribu-
tions are strikingly different from the spatial distributions of the proteome ,the
CoV, and the BeV datasets. Considering only this plot, a premature deduction
would be that variants that associated with disease are differently distributed
in the protein structure space. But since all the datasets have a different protein
composition, the question arises, if the different distributions are directly com-
parable.
In the same fashion as in the original study, we need to construct dataset-
specific control sets in order to identify the dataset-specific biases. This time we
have constructed two types of such control sets: datasets constructed from all
positions from the same set of proteins and randomized datasets. We calculated
the structural annotations and obtained the spatial distributions for all of them
(Figure 6.4).
The first thing to note is that the spatial distributions of both types of control
datasets look more similar throughout all five datasets than the five original
distributions (Figure 6.4 A-E). The distributions from the datasets covering all
positions from the same proteins directly showcase the biases introduced by
the individual protein compositions of the datasets. The distributions of the
random datasets also are able to reflect the protein composition bias, but still,
there are slight differences. For example, the spatial distribution of the random-
ized versions of the BeV dataset gets very close to the spatial distribution of the
proteome. The reason for the slight differences for both types of control datasets
is that the random control datasets are sensitive to the mutation-per-protein
distributions of the base datasets and so we believe, that the random datasets
yield spatial distributions better suited for unmasking dataset-specific biases.
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Figure 6.3: A: Spatial distributions or the five main datasets in comparison to the annotation
to the human proteome; B: Spatial distribution of the interaction classes (without protein
interactions).
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Figure 6.4: A-E: Spatial distributions of the five main datasets in comparison to control
datasets; F: Spatial distribution of the human proteome (same plot but focused on interaction
classes in Supplementary Figure 9.1).
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Disease-associated datasets show in general the same traits when compared
to their randomized versions. Variants are depleted from the less functionally
important classes (surface and disorder) and are enriched in the core and inter-
action classes. This trend is switched for the CoV and BeV datasets, showing
even less functionally important classifications than its randomized control
dataset.

6.4 discussion

The study [152] was to its date the most comprehensive structural analysis of
genetic variants associated with cancer and genetic diseases ever done. Besides
the number of analyzed variants, we also claim that we used the most precise
structural analyses. In particular, the consideration of dataset biases, by the
construction of randomized control distributions make this study unique in its
class. In that regard, the newer version of StructMAn enabled an even deeper
investigation. Especially, the class for detection of residues in disordered re-
gions made the analysis with the newer version of StructMAn a promising
undertaking.
The conclusion from the original publications mainly confirmed the findings
from the other studies mentioned in the related work section [153–155] with
the exception of the enrichment of cancer-associated variants in protein-protein
interaction interfaces, where our results agree with Schaefer et al.[156] and
are suggesting that there is no such enrichment. This agreement is especially
worthwhile since the underlying type of data differs between the two studies,
but point to a similar type of bias.
Clearly, the direct comparison of disease-associated variants to common vari-
ants shows enrichments in all interaction interfaces as was the outcome of
multiple previous studies, but the inclusion of dataset-specific biases question
the reliability of such comparisons. Still, even after the correction for biases, one
can see the enrichments in interaction interfaces of disease-associated variants,
at least if compared to common variants.
In the new analysis, the inclusion of the disorder class radically changed the
appearance of the spatial distributions. For proteins with more available experi-
mentally resolved structures, the proportion of positions classified as disorder
is decreased by definition: when disordered regions are part of a structure, the
classification based on real structural classes will have the precedence, and
most such position will be classified as surface. As a result, for datasets, for
which we can map the majority of positions into 3D structures we see nearly no
positions classified as disorder. However, the distributions will be essentially
the same when we combine surface and disorder classifications, which both
represent expected neutral effects.
Disease-associated variants are enriched in interaction interfaces with small
molecules and DNA chains. This holds true for all performed comparisons:
disease-associated variants against variants from the BeV dataset, against vari-
ants from the CoV dataset, and against their corresponding control dataset.
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P R E D I C T I O N O F E F F E C T S O F G E N E T I C VA R I A N T S O N
P R O T E I N F U N C T I O N A N D C L I N I C A L E F F E C T

In this chapter, I present unpublished data on how high-performance sequence-
to-structure annotation can be used for generation of features that are further
used for training a machine learning method for prediction of effects of nsNSVs
on the phenotype. We discuss the general process of generation of features
related to protein 3D structure and the usefulness of such features in different
prediction scenarios. This project is ongoing and presents ample room for
further development as well as open questions.

7.1 introduction

Predicting the various effects of genetic variants is one of the very competitive
fields in modern computational biology. There are methods for all thinkable
prediction scenarios, be it different types of variations and mutations or differ-
ent types of effects. They range from very specific scenarios like predicting the
change of the binding affinity between two proteins to very broad approaches
like predicting the overall clinical effect. Regarding the type of genetic variant,
most of the work is focused to single nucleotide variations (SNVs) that are one
of the most prevalent types of genetic variants (for details see Chapter 2.4), but
other types of variation, e.g. short insertions and deletions are also sometimes
considered. Of all SNV, those that happen in coding regions and lead to a
change of amino acid sequence (non-synonymous, nsSNVs) are particularly in
the focus of research. Machine learning-based prediction methods are prevalent
in this field and are characterized by two major factors: first, which machine
learning method is used, and second, which features are generated for a given
genetic variant.
The most commonly used and most successful features throughout the whole
field are the so-called evolutionary features, which roughly correspond to the
conservation of the wildtype and mutant amino acids. In order to generate
this type of features, a collection of evolutionary related sequences is needed.
The rationale behind evolutionary features is that unfavorable genetic variants
are sorted out by the evolutionary pressure over time. As a result, function-
ally important parts of the genome stay conserved through time and thus
can be discovered when comparing evolutionary related sequences. Multiple
lines of evidence suggesting correlation between amino acid conservation and
damaging effects of genetic variants [157, 158], which explains the success of
evolutionary features to predict pathogenicity of mutations, however, they do
not offer any clue for the mechanisms behind the effect.
Other features are more related to assessing the direct biochemical effect of the
change of the amino acid sequence of the protein onto its function. There are
multiple mechanisms that can mediate this as described in Section 2.4.1. The
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common characteristic of features falling into this category is that they are in
some way based on the information gained from the analysis of protein three-
dimensional (3D) structures of proteins and complexes in which they may be
involved, thus we call them structural features. In comparison to evolutionary
features, which can be generated for each variant in the genome, for which we
can find evolutionary related sequences, structural features can only be calcu-
lated for proteins with known 3D structure. At that point, our structure annota-
tion methods can be very useful. The high-performance sequence-to-structure
mapping using structural information from homologs greatly increases the
proportion of mutations, where structural features are applicable. Additionally,
for variants, for which a corresponding structure is available, we can enrich
the structural features with information gained from structures of homologous
proteins [35, 114].
It is important to differentiate between methods that aim to predict the impact
of mutations directly onto protein functions (e.g. activity of an enzyme or
affinity towards an interaction partner) and those that assess the overall effect
onto some phenotype (e.g. mutation’s pathogenicity). The general benefits of
application of structural features in scenarios, where direct effects of mutations
on protein function are predicted, are easy to justify. Thus in these scenarios,
the usage of structural features is widespread. More critically discussed are
the benefits of using structural features when it comes to scenarios predicting
effects on the entire phenotypes.
In addition to the structural features, we also implemented the computation
of evolutionary features, which are irreplaceable in the field of variant effect
prediction. We implemented our own prediction method based on the structural
annotation and classification done by StructMAn. Many tools in the field use
different types of machine learning methods, e.g. Naive Bayes [11], logistic
regression [16] or deep neural nets [15]. As the machine learning approach, we
choose the random forest technique, primarily because of the ability of random
forests to handle highly diverse feature sets. Moreover, there exists external evi-
dence that random forests perform better compared to other machine learning
methods in this particular problem setting [159]. Another advantage of random
forests compared to most other machine learning methods, especially neural
networks, is their interpretability. This helps in this setting to comprehend the
underlying mechanisms of the effect of a variant.
For the prediction of clinical effects, we are particularly interested in predicting
effects of mutations that cannot be inferred from the protein as a whole. Such
mutations are for example variants from novel proteins (i.e. proteins for which
we do not know the outcome of any mutation) and variants that lead to a
different outcome than that of other known variants of the same proteins (e.g.
benign mutations in disease-associated proteins and damaging mutations in
proteins that are not typically associated with disease). We call such variants
difficult, as one cannot predict their outcome by relying on whether the protein,
in which they occur, is associated with disease or not. Our goal is to create a
model that understands the mechanisms behind the effect of every variant and
uses that understanding for the prediction. Such a model should be able to
correctly predict the outcome of difficult as well as easy variants.
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7.1.1 Related Work

Methods for prediction of the impact of genetic variants can be categorized
by the type of effect they aim to predict. There are the clinical effect predic-
tion methods that are usually binary classification methods dividing variants
into damaging and non-damaging (or neutral and non-neutral, or benign and
pathogenic). One of the first and one of the most well-known methods is SIFT
[157], which uses a relatively simple measure based on evolutionary relation-
ships for its prediction. SIFT first determines the most frequent amino acid for
the position of the target variant, then it predicts the outcome based on whether
the mutant amino acid is chemically dissimilar to the most frequent amino acid.
Besides SIFT, most clinical effect prediction methods are supervised machine
learning methods. Polyphen-2 [11] uses a combination of evolutionary-based
features and simple protein structure-based features in order to train a naive
Bayes classifier. Other methods introduce prior knowledge from annotated
databases into the models, e.g. SNAP [13] combines evolutionary features,
simple structural features and features derived from database lookups in a
neural net. Other machine learning techniques were also used: FATHMM [12]
uses hidden Markov models, CADD [16] uses logistic regression, DANN [15]
uses a deep neural net and M-CAP [160] uses a random forest.
In most of these methods, protein 3D structure is not considered. When it is
used, features based on protein structure are comparatively simple and/or are
predicted from a sequence. The lack of experimentally resolved structures for
most of the human proteins is a major obstacle for the integration of structural
features, and thus the inclusion of more complex structural features can lead to
the inapplicability of the method for a wide array of input scenarios. However, it
has been shown [159] that the more complex structural features can increase the
performance of prediction of clinical effect for cases, where they are available.
An important paper of the field (Grimm et al. 2015 [167]) evaluated multiple
effect prediction methods using five benchmark datasets: HumVar is one of
the training datasets of Polyphen-2 [11]. ExoVar was created to evaluate the
performance of different methods for variant effect prediction for data obtained
by exome sequencing [168]. VariBench [169] was also created to evaluate pre-
diction methods, it was designed not to contain any variants present in any of
training sets of the evaluated methods [170]. PredictSNP is a consensus method
and the dataset with the same name was created to evaluate its performance
[171]. PredictSNP comprises of variants from three databases: SNPs&GO [172],
MutPred [173], and PON-P [174]. SwissVar is a collection of annotated variants
retrieved from two databases: UniMed [175] and ModSNP [176].
The conclusion of the paper is that the field is hindered by two types of biases,
which could be observed in many commonly used training datasets. Type 1

circularity describes artificially increased model evaluation performances due to
variants that are present in the training set and in the test set. It is obvious that
such cases lead to inflated test performances and should be avoided at all costs.
Type 2 circularity describes the misinterpretations introduced to the model due
to protein-specific biases in the training set. They are typically the result of the
presence of many proteins in the training set. Here the model learns to predict
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Method name Predicted effect Model type Feature types (Learning) Method

Sift [157] Clinical effect Classification Evolutionary Conservation-based

Polyphen-2 [11] Clinical effect Classification Evolutionary, Naive Bayes

structural

SNAP [13] Clinical effect Classification Evolutionary, Neural net

predicted structural,

database lookups

FATHMM-XF [12] Clinical effect Classification Evolutionary, Hidden Markov Model

database lookups

CADD [16] Clinical effect Regression Database lookups, Logistic regression

consensus method

DANN [15] Clinical effect Classification Database lookups, Deep neural net

consensus method

Dehiya et al. [159] Clinical effect Classification Evolutionary, Random forest

structural

mCSM family [161–164] Protein stability Regression Structural Supervised machine learning method*

Envision [14] Protein function Regression Evolutionary, Stochastic gradient boosting

structural

CUPSAT [5] Protein stability Regression Structural Boltzmann’ energy calculation

M-CAP [160] Clinical effect Classification Evolutionary, Gradient boosting tree

consensus method

MutationAssesor [165] Clinical effect Classification Evolutionary Conservation-based

MutationTaster2 [166] Clinical effect Classification Evolutionary Naive Bayes

Table 7.1: A collection of methods for prediction of effects of genetic variants. This table is not
exhaustive since there are too many methods in the field. in green: machine learning method, in
red: method not related to machine learning; *not further specified

Figure 7.1: Evaluation of the 10 different pathogenicity prediction tools (by AUC) over five
datasets. The hatched bars indicate potentially biased results, due to the overlap (or possible
overlap) between the evaluation data and the data used (by tool developers) for training the
prediction tool. The dotted bars indicate that the tool is biased due to type 2 circularity. (taken
with permission from (Grimm et al., 2015) [167])
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the same label for all variants from the same protein, hence the model learns
to directly associate proteins with labels. This leads to misclassifications for
variants of pure proteins with a diverging label. Additionally, models trained
in that way do not perform well on proteins that are not part of the training
dataset. Type 2 circularity typically leads to inflated prediction performances
for test sets with variants that include variants in the protein that are also
present in the training set and that carry the same label as all other variants in
those proteins. While higher accuracy values sound very tempting, the trained
model will fail on other datasets, which contains proteins with variants with
mixed labels and variants from proteins, which are not covered in the training
set (difficult variants).
In addition to the prediction of clinical effects, another scenario, the prediction
of the impact of a genetic variant on the function of a protein can also be
addressed by computational tools. Whereas a clinical effect can be caused by
the combined effect of many genetic variants and other causes (e.g. cell-type-
specific protein expression levels), the change of the function of a protein is
most commonly mediated by a singule nsSNV. Thus the relationship between
mutation and effect is much closer when predicting the impact on the function
of a protein.
The mCSM-family [161–164] contains a set of prediction methods sharing the
same framework that are specialized for specific scenarios, e.g. mCSM-lig [162]
for ligand interactions, or mCSM-PPI2 [164] for protein-protein interactions.
Their framework calculates so-called graph-signatures from structural data,
which represent chemical properties of the environment around the residue
and the change in chemical properties between wildtype and mutant residue.
These signatures are then used as features in a machine learning scenario.
Besides machine learning methods, physics-based methods that aim to calculate
or simulate the effect directly are widespread. Very often such tools are tailored
for specific effects, for example, a lot of methods predict the change in protein
stability introduced by a mutation: CUPSAT [5], PoPMuSiC [177], STRUM
[178], and INPS [179]. A similar example is the prediction of the impact of a
mutation on the protein-protein binding affinity: BeAtMuSiC [180], MutaBind
[181], BindProfX [182], and ELASPIC [183]. One could also use a method, which
calculates the binding energy of any structure (e.g. FoldX [141]) to process
the wildtype structure and the mutated structure and calculate the difference
in folding energy. In any case, one needs structural information to use these
methods and they are in general computationally expensive, which makes it
hard to process larger datasets.
Experimental high-throughput assays that are able to measure the effects on
specific protein functions for massive amounts of (or even all) mutations from
a particular protein are called deep mutational scans (DMS) [82]. DMS ex-
periments, which provide a measure of the impact of nearly every possible
mutations in nearly every position of a protein on its function (see Section 3.1.3),
offer a new source of training data, which can be used to build models for the
prediction of impact of variants on protein function that are not limited to a
specific scenario or type of function. The method, that was developed in order
to harness the results from DMS experiments is called Envision [14] and is able
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to predict the functional effects of individual variants well for some proteins
but not so well for other proteins (Figure 7.2). This leaves an open question if
one can improve the model or one simply needs more training data in order to
further improve the performance of the methods in this field.
DMS data has the highest density of mutations with measured effect per pro-
tein. Analyzing this type of data provides an opportunity to understand the
contributions of each individual amino acid to the specific function of the
protein. A large amount of annotated mutations for a very limited amount of
proteins presents the major challenge for creating models that are supposed to
be transferable to other proteins.
Another dangerous pitfall are the biases introduced by having multiple amino
acid substitutions for the same position. On the one hand, some residues are
very important for the measured function and a substitution to any amino acid
is harmful. On the other hand, some residues are exchangeable for all other
amino acid types without having any impact on the measured function. As a
consequence, there are many samples with a lot of similar features, namely the
features that depend on the amino acid position, but not on the type of the
mutant amino acid. The features for these samples differ only for features that
are dependent on the mutant amino acid (see Section 7.2.3). These samples can
have different labels, especially for functionally important residues. Samples
with different labels and similar features have the potential to confuse any
machine learning method.

7.2 methods

7.2.1 Deep Mutational Scans

The DMS dataset used in this study was taken from Gray et al. [184]. In
their study, they collected DMS data for 14 different proteins (Figure 7.3) and
introduced statistical normalization methods to measure the corresponding
effects on protein function, such that the results from the different experiments
can be compared. All values are transformed in a way, such that neutral
mutations are assigned an effect value equal to one. The lower the assigned
effect value is, the more harmful the mutation is with respect to the measured
function. One should note that zero is not the minimal value, the effect values
can be (slightly) negative as well, which is an artifact of the normalization
process . Further, values above one are possible, denoting mutations that
increase the measured the function (e.g. measured reaction turnover rate).

7.2.2 Genetic Variant Databases with Association to Pathogenic Phenotypes

For the prediction of the clinical effect of an nsSNV, we use multiple databases
that contain variants with binary labels for their clinical effect: benign or
deleterious (Table 7.2). As our main resource, we used ClinVar (Landrum et
al., 2016). Additionally, following Grimm et al. [167], we evaluated our method
on the very same datasets as used in the paper (Figure 7.1). An important
property of a dataset of variants with annotated clinical effect is the proportion
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Figure 7.2: Envision Outperforms Other Quantitative Variant Effect Predictors. (A) A hexag-
onal bin plot shows the correlation between predicted and observed variant effect scores for all
the large-scale mutagenesis data used to train Envision (Pearson’s R = 0.79). (B) To evaluate
performance on data not used in training, we retrained models excluding each one of the nine
proteins. A radar plot shows the correlation (Pearson’s R) between predicted and observed
variant effect scores when the indicated protein was left out. (C) We also compared the leave-
one-protein-out (LOPO) models with SNAP2 (left panel), EVmutation-epistatic (middle panel),
and EVmutation-independent (right panel). The log2 ratio of each LOPO model’s Pearson’s R
to another predictor Pearson’s R on the left-out data is shown. Hashed bars on the right indicate
relative performance on a set of 2, 312 TP53 transactivation activity scores measured in a
low-throughput assay and not used in training. (D) A hexagonal bin plot shows the correlation
between Envision predictions and TP53 activity scores (Pearson’s R = 0.58). (E) A violin plot
illustrates the distribution of Pearson’s correlation coefficients for variant effect scores and
Envision, SNAP2, and EVmutation predictions for different mutant amino acids. The dashed
horizontal line indicates the median Pearson’s correlation coefficients for each predictor. (taken
with permission from (Gray et al., 2018) [14])
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Figure 7.3: Large-scale mutagenesis data from 14 proteins. (A) The number of single amino
acid mutations with effect scores in each of the 14 proteins is shown. (B) A radar plot shows
the relative frequency of occurrence of each amino acid in the wild-type sequences of the 14
proteins (blue) or in 554, 515 proteins in the UniProt Knowledgebase (Magrane and UniProt
Consortium 2011) (dashed red). (C) A radar plot shows the relative frequency of each of the 20
amino acid substitutions in the large-scale mutagenesis data sets for all 14 proteins. (D) The
median mutational effect score of each amino acid substitution is shown for 34, 373 mutations
at 2236 positions in all 14 proteins. (E) A heat map shows the median mutational effect
score of each amino acid substitution for each protein separately. Yellow indicates tolerated
substitutions while orange indicates disruptive substitutions. Amino acids and proteins were
ordered according to similarity using hierarchical clustering with the hclust function from the
heatmap2 package in R. (taken with permission from (Gray et al., 2017) [184])
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Dataset #Proteins #Variants #Benign variants #Deleterious variants Proportion of pure proteins

ClinVar [63] 6085 84991 69844 15147 55.6%

HumVar [11] 9219 33110 17914 15096 91.4%

ExoVar [168] 3589 6876 3437 3439 95.7%

VariBench [169] 4193 9443 5718 3725 98.5%

predictSNP [171] 391 737 690 47 95.3%

SwissVar [185] 4476 9897 6423 3474 90.3%

Union 14368 141209 103744 37465 78.3%

Table 7.2: Composition of the six datasets.

of so-called pure proteins. All variants of a pure protein have the same label
in the dataset, either all benign or all deleterious. Non-pure or mixed proteins
have variants of both types of labels in the dataset.

In our work, we investigated the possibility to avoid type 2 circularity that
can artificially inflate methods’ performance, as discussed in Section 7.1.1. An
easy technique to avoid type 2 circularity is retaining only a part of the training
set, such that each protein contains multiple variants and variants of the same
proteins have mixed labels. However, this technique can decrease the total
number of data points quite drastically (discussed in more detail in Section
7.2.4.2).
There are features, which have a stronger effect on the introduction of type 2

circularity than others and we can distinguish between five types of features
with the potential to introduce type 2 circularity:

1. Protein-specific features (i.e. features that have the same value for all
variants in the same protein) that cannot be computed for proteins not
present in the training set. Such features are the results from calculations
based on all samples in the training set, for example, the mean target
value of all variants from the same protein in the training set.

2. Protein-specific features that can be calculated in any case, for example, if
the protein is listed in the OMIM [55] database or the number of amino
acids.

3. Features that can only be computed for some proteins. Into that category
fall all structural features.

4. Features that are identical for parts of a proteins, for example, domain
annotation.

5. Features that correlate for variants of the same proteins, for example, the
position of the mutation in the protein sequence.

The listed categories are ordered by the descrease of their potential to introduce
type 2 circularity. Currently, we exclude features from the first and second
categories from our model. The full list of features we are using is given in the
following section.



94 prediction of effects of genetic variants

7.2.3 Feature Generation

For each nsSNV, we generated three different types of features.

1. Evolutionary features

2. Amino acid property features

3. Structural features

7.2.3.1 Evolutionary Features

Evolutionary features are based on the fact that different positions in a pro-
tein experience different evolutionary pressure. Residues with important and
specific functional roles are more conserved through the evolutionary history
than residues that could be easily replaced [49–51]. This results in the fact that
proteins from different species that at one point had a common ancestor, have
some residues that were replaced and some that were kept identical. By the
alignment of many evolutionarily related protein sequences, one can calculate
different statistical measures that estimate the evolutionary pressure for each
position. We call such statistical measures evolutionary features. Since these
are widely used in the field of variant impact prediction, we reproduced the
features that other tools had already established. For example, we estimated the
frequency of every amino acid in the position in a multiple sequence alignment
(MSA), which is constructed for a list of evolutionary related protein sequences
(the exact procedure for construction of the MSA is described below). Another
measure for evolutionary pressure is the position-specific independent counts
(PSIC) measure [158]. In comparison to the frequency of an amino acid, PSIC
weights the importance of each sequence in the MSA and uses these weights
to estimate how likely it is for the amino acid to be present at the position by
chance. dPSIC is the PSIC value of the wildtype amino acid subtracted by the
PSIC value of the mutant amino acid.
There is an important difference in the generation of our evolutionary features
compared to other tools in the field: instead of constructing a real MSA of the
selected evolutionary related sequences, as it is the usual practice, we calcu-
lated a list of pairwise alignments between the sequence of the target protein
and each related sequence and stacked them on top of each other throwing
parts away that are not aligned to the target protein (Figure 7.4). We call the
resulting stacking a pseudo multiple sequence alignment (PMSA). The list of
related proteins was compiled by using MMseqs2 [86] for a sequence similarity
search against the UniRef90 [186] sequence database. In the resulting PMSA,
we calculated different types of evolutionary features (see Table 7.3).

7.2.3.2 Amino Acid Property Features

Amino acid property features are based on the physico-chemical properties
of the wild type amino acid, the mutant amino acid, and the differences of
these properties. We used a list of amino acid classes (Table 7.4) based on the
physicochemical classification of amino acids by Livingstone and Barton [187]
(Figure 7.5). We derived one binary feature for each class, whether the mutant



7.2 methods 95

Figure 7.4: The three steps of the simplified multiple sequence alignment technique; each colored
bar represents a sequence, the blue sequence is the target sequence; in the first step a sequence
similarity search returns a list of similar sequences (hits); in the second step all hits are pairwise
aligned to the target sequence; in the third step the segments of the hits, which got not aligned
to the target sequence are thrown away, all pairwise alignments are stacked similar to a multiple
sequence alignment using the target sequence as reference.

Name Description

Wildtype AA conservation Frequency of the wildtype amino acid in the PMSA

Mutant AA conservation Frequency of the mutant amino acid in the PMSA

Other AA conservation Frequency of amino acids in the PMSA

that is not the wildtype or mutant amino acid

Wildtype AA conservation gapless Frequency of the wildtype amino acid in the PMSA

where sequences that match a gap

to the position are ignored

Mutant AA conservation gapless Frequency of the mutant amino acid in the PMSA,

where sequences that match a gap

to the position are ignored

Other AA conservation gapless Frequency of amino acids in the PMSA

that is not the wildtype or mutant amino acid,

where sequences that match a gap to the position are ignored

MSA frequency Frequency of non-gap letters in the PMSA

PSIC wildtype AA PSIC value of the wildtype AA in the PMSA

PSIC mutant AA PSIC value of the mutant AA in the PMSA

dPSIC PSIC wildtype AA minus PSIC mutant AA

Table 7.3: List of evolutionary features.
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Class name List of amino acids in the class

Tiny G, A, C, S

Small G, A, C, S, V, T, D, N, P

Aliphatic I, L, V

Aromatic F, Y, W, H

Hydrophobic G, A, C, T, I, L, V, M, F, Y, W, H, K

Positive charged H, K, R

Negative charged D, E

Charged H, K, R, D, E

Polar C, S, N, T, Q, D, E, K, H, R, Y, W

Table 7.4: Amino acid classes as described in Livingstone and Barton (1993) [187]

amino acid is in the same class as the wildtype amino acid or not. Other features
are numerical values, e.g. the difference in the volume of the wildtype and
mutant amino acid. All amino acid property features are either table lookups
or simple calculations done with values from table lookups and are listed them
with a short description in Table 7.5.

7.2.3.3 Structural Features

Since one of the main goals of this study is to evaluate if protein structure-
based features produced by StructMAn can improve variant impact prediction
methods, the most interesting features in this project are the structural features
(Table 7.6). The generation of the structural features is done by StructMAn
in the structural analysis and classification steps and is in detail explained in
Chapter 5.

7.2.4 Parameters of Training and Evaluation

7.2.4.1 Deep Mutational Scan Dataset

The DMS dataset is characterized by its high variant-to-protein ratio. In order
to ensure that the model is able to predict the functional impacts of variants on
proteins unknown to the model, one has to evaluate its performance in exactly
these cases. As it is suggested in the original Envision paper [184], which was
created for predicting functional impact of variants from the DMS data, we
used the Leave-One-Protein-Out (LOPO) cross-validation, in which in each
round all variants belonging to one protein are separated from the dataset in
order to create the test set. The remaining samples are used to fit the model.
The hyperparameter optimization of the tree pruning is solely done for the first
round of LOPO, which uses the variants from the aminoglycoside kinase as the
test set. The pruning parameters obtained from that round are then used in all
other rounds without any further optimization.
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Figure 7.5: Physico-chemical classes of the amino acids. (taken with permission from (Living-
stone and Barton, 1993) [187])
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Name Description

KD mean Mean Kyte-Doolittle hydrophobicity score

of mutant and wildtype amino acid

Volume mean Mean total van-der-Waals volume

of mutant and wildtype amino acid

Chemical distance Euclidean distance of chemical descriptor vector [188]

of mutant and wildtype amino acid

Blosum62 Value for the amino acid substitution

in the Blosum62 [88] substitution matrix

Aliphatic change 0, if both amino acids are in the same

same aliphatic class, 1 otherwise

Hydrophobic change 0, if both amino acids are in the same

hydrophobic class, 1 otherwise

Aromatic change 0, if both amino acids are in the same

aromatic class, 1 otherwise

Positive charged change 0, if both amino acids are in the same

positive charged class, 1 otherwise

Negative charged change 0, if both amino acids are in the same

negative charged class, 1 otherwise

Polar change 0, if both amino acids are in the same

polar class, 1 otherwise

Charged change 0, if both amino acids are in the same

charged class, 1 otherwise

Small change 0, if both amino acids are in the same

small class, 1 otherwise

Tiny change 0, if both amino acids are in the same

tiny class, 1 otherwise

Total change Sum of all amino acid class change features

IUPred value Score [137] predicted by

IUPred for the residue

Region structure type IUpred prediction for the residue to be

in a globular or disordered region

Wildtype AA (21 features) Wildtype amino acid type,

including ‘unknown type’, one feature for each type

Mutant AA (21 features) Mutant amino acid type,

including ‘unknown type’, one feature for each type

AA change (420 features) The amino acid substitution,

one feature for each amino acid combination

Table 7.5: List of amino acid property features.
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Name Description

Distance-based classification Distance-based structural

classification by StructMAn

Distance-based simple classification Distance-based structural

simple classification by StructMAn

RIN-based classification RIN-based structural

classification by StructMAn

RIN-based simple classification RIN-based structural

simple classification by StructMAn

Structure location Surface/Core annotation by StructMAn

Secondary structure assignment Type of secondary structure the residue belongs to,

weighted majority vote over all mapped structures

Modres score The negative sum of quality scores of mapped structures,

where the mapped residue is not posttranslationally modified,

plus the sum of quality scores of mapped structures,

where the mapped residue is a posttranslationally modified

Modres probability Weighted frequency of the mapped

residue being a modified residue

B Factor Weighted B factor values over all mapped structures

Centrality Weighted size-normalized centrality

scores of mapped residue vertices in all RINs

[Amino acid part] [interaction type] score Weighted combined probe scores

(20 features) of mapped residue vertices in all RINs,

one feature for each combination of amino acid part and interaction type

[Amino acid part] [interaction type] degree Weighted vertex degree of mapped

(20 features) residue vertices in all RINs,

one feature for each combination of amino acid part and interaction type

[Amino acid part] [interaction type] H-bond score Weighted H-bond probe scores of mapped

(20 features) residue vertices in all RINs,

one feature for each combination of amino acid part and interaction type

Interactions 1, if a particular interaction

was annotated in at least one mapped structure,

0, otherwise one feature per type of interaction

Table 7.6: List of structural features. Amino acid part: side chain or main chain. Interaction
type: neighboring, short, and long intrachain interactions and protein, DNA, RNA, metal, and
ion interchain interactions.
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7.2.4.2 ClinVar Dataset

The evaluations performed on the ClinVar dataset are all ten-fold cross-validations.
Similar to the evaluation of the model on the DMS dataset, the first round of
cross-validation is used for the hyperparameter optimization.
We do not use any protein-specific feature per se, nevertheless, we want to ana-
lyze the influence of type 2 circularity on the model introduced by the training
procedure. Thus, we introduced an artificial feature, which is associated with
type 2 circularity by design. This is done in a similar fashion to Grimm et al.
[167] by calculating the mean labels for every protein in the training set and
use them as an additional feature. When the model predicts the outcome of a
sample and this mean value is not known (this happens, when the protein of the
sample is not present in the training set), 0.5 is used. We call this feature protein
bias, and while it can only be computed from the information the training set
offers, which means it does not offend the basic rules of evaluation of prediction
models, we do not suggest to use such a feature in any real applications.
In order to construct the ten cross-validation training and test set pairs, we
used two different randomization schemes (Figure 7.6). In the variant-based
randomization, we randomly dissect the full dataset into ten approximately
equally sized parts and use one of the parts as the test set, while the other nine
are used as the training set. Thus, the variant-based randomization represents
the classical way of constructing a cross-validation setup.
Additionally, we introduce a different training scenario, the protein-based ran-
domization, where we also construct ten approximately equally sized dataset
parts, but ensuring that there is no protein that appears in more than one part.
This is achieved by randomly selecting proteins from the dataset and putting
them into ten bins, such that the amount of variants in each bin is roughly equal.
This way of randomization enables the evaluation of our model in a scenario,
in which we aim to predict the effect of variants from proteins previously not
seen by the model. A model performing well in such a scenario should also
perform well in the prediction of variants of pure proteins with non-identical
labels within the same protein. Thus, protein-based randomization evaluates
the model for its ability to handle difficult variants (variants in novel proteins
and variants with different effect than those of known variants from the same
protein). Ideally, we want our model to perform equally well in both random-
ization scenarios.
Since the focus of this project is on the utility of structural features, we tested
all setups also for a subset of the dataset, where we filtered out all samples,
for which we could not generate the structural features, due to the lack of
structural data.
To estimate the influence of type 2 circularity from differently designed training
datasets, we used a set of filtering techniques that are designed to reduce
protein-specific biases:

1. Leaving out of proteins with only one variant (singleton filtering)

2. Leaving out of proteins, for which all variants share the label (pure
proteins filtering)
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Figure 7.6: The two randomization schemes. Protein sequences in the datasets are depicted as
blue rectangles of different shades, variants in the datasets are depicted as red marks in each
protein. In the Variant-based randomization the dataset is split by selecting variants, in the
protein-based randomization the dataset is split by selecting proteins.

3. Leaving out of variants, such that for all proteins the number of variants
labeled as benign is equal to the number of variants labeled as deleterious
(balanced filtering)

7.2.4.3 Benchmark Datasets

The general setup for the training and evaluation of our model for the five
benchmark datasets from Grimm et al. [167] is a Leave-One-Dataset-Out (LODO)
cross-validation. Since the datasets share some samples, in all setups and in
each validation round we filtered out all variants from the respective training
set, which are present in the test set. This filtering removes type 1 circularity
from all setups. This filtering does not include different variants from the same
protein. In order to identify the influence of type 2 circularity, we repeated all
setups with filtering all proteins from the training set, if they are present in the
test set.
Similar to the cross-validation on the ClinVar dataset, we also tried setups,
with and without the introduction of the protein bias feature as well as with
and without the filtering of samples with available structural data. In order
to analyze the effect of having an increased amount of training samples, we
repeated the previously described setups, additionally including the ClinVar
dataset into the training set of each validation round.

7.2.5 Random Forest Classifier and Regressor

The random forests used in this thesis comprises 100 random decision trees.
The amount of pruning is based on a hyperparameter optimization step, by
calculating the testing error on unseen samples for different magnitudes of
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Uniprot Access Protein Name MSE Correlation

P00552 Aminoglycoside kinase NEO 0.1400 0.5448

P46937 Transcriptional coactivator YAP1 0.0634 0.5963

Q9UK59 Lariat debranching enzyme DBR1 0.1486 0.4161

P38398 Breast cancer type 1 susceptibility protein BRCA1 0.802 0.3404

P02829 ATP-dependent molecular chaperone HSP82 0.0767 0.4140

Q9ES00 Ubiquitin conjugation factor E4 B 0.0575 0.4049

P42212 Green fluorescent protein GFP 0.0887 0.2751

P0CG63 Polyubiquitin UBI4 0.0382 0.5617

P62593 β-lactamase TEM1 0.0633 0.6583

P31016 Disks large homolog 4 DLG4 0.0450 0.4738

P04386 Regulatory protein GAL4 0.1443 0.3522

P04147 Polyadenylate-binding protein PAB1 0.0481 0.5638

P0CG48 Polyubiquitin-C UBC 0.0554 0.6389

P06654 Immunoglobulin G-binding protein G 0.0863 0.3280

Table 7.7: Results of the LOPO-cross-validation. For each protein the mean squared error
(MSE) and the Spearman’s correlation values are listed.

pruning.
For the prediction of the impact of mutations on protein function, we used a
normalized DMS dataset, in which the effect is reported as a numeric value.
Hence, we used a random forest regressor, which in the model training mini-
mizes the Mean Squared Error (MSE) of the training set. As model performance
measures, we use the MSE of the test set as well as Pearson’s correlation coeffi-
cient between the predicted values of the test set and the true values.
The other scenario, the prediction of the clinical effect of nsSNVs, is a bi-
nary classification problem. Here, the random forest maximizes the prediction
accuracy of the training set and we report the area under the Receiver-Operator-
Characteristics curve (auROC) of the predictions for the test set as the perfor-
mance measure of the model.

7.3 results

7.3.1 Prediction of Functional Impact of Genetic Variants for the DMS Dataset

The results of the LOPO cross-validation are listed in Table 7.7 and show that
the prediction performances for different proteins vary a lot, similar to the
evaluation of Envision reported in Gray et al. (2018) [14] (Figure 7.2). The
best results were achieved for UBI4, which can easily be explained by the
presence of the results from a DMS on UBC, a paralog to UBI4, in the training
set. Vice versa, this also led to good results in the UBC round of the LOPO
cross-validation. However, the varying results for the other proteins lack such
an easy explanation.
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Figure 7.7: Maximum error projection of the predictions for PAB1 (P04147) (PDB id 4F02,
chain A). Maximum error values represented as rainbow color-scale, red: 1.0 maximum error,
blue: 0.0 maximum error. The RNA chain is shown in magenta.

7.3.1.1 Maximum Error Projections

In order to get a more in-depth view of the prediction for individual residues for
each protein, we mapped the prediction performances measured as maximum
prediction error for any variant at each protein position on the corresponding
protein structures. StructMAn provides for each given position a structure
recommendation (structure with maximum quality score for all structures,
where the mapped residue has the same structural classification). Since these
recommendations are position-specific, we get multiple recommended struc-
tures for one protein. In order to visualize all variants in a single structure for
this analysis, we chose the structure, which was recommended for the largest
proportion of positions of a protein. We colored the protein residues in the
rainbow color scale, where red corresponds to positions with high maximum
error values and blue corresponds to positions with low maximum error values.
We did not visualize the segments of the structures, for which the DMS datasets
lacked values.
One of the highest correlation of predictions with experimental values was
achieved for PAB1, for which we mapped the maximum error values into the
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structure with PDB id 4F02, where the protein is in complex with an RNA
strand (Figure 7.7). Strikingly, positions with high error values are almost exclu-
sively on the RNA interaction interface. Thus, in this example, the prediction
errors coincide with the residues one expects to be functionally important based
on the observation of the structure. While this is expected since these residues
are the ones with the greatest variance in experimental values, this also means
that the model was not able to predict the correct values for the different mutant
amino acids of these residues.
An example with a slightly worse performance is GFP, which we mapped to
the structure with PDB id 6JGJ. Here one can see an interesting pattern of an
alternation of low and high errors on the single β-strands around the β-barrel
structure (Figure 7.8). If one zooms into the most striking spot of this pattern
(Figure 7.9), one can see that the sidechains of the residues with low error
values point outwards the barrel, and the sidechains of the residues with high
error values point to the center of the barrel and interact with the chromophore.

A third example, BRCA1 as seen in Figure 7.10, shows again that low and
high error values can again be interpreted in terms of their structural location.
This time, it seems that the low error values are concentrated on the α-helices
of the structures, while the high error values coincide with the loop regions.
Investigating a bit deeper into the structure reveals that the loops with the
highest error values are the more flexible ones.
In Figure 7.11 we compare the mapping of the error values for the two paralogs
UBC and UBI4 on the same structure. The paralogy of UBC and UBI4 means
in the respective training rounds for the two proteins there is a very similar
protein in the training set. Thus, a very good performance of the model for
these two examples was expected. There are more data points for UBI4 in the
dataset. Thus there are positions, for which there are no corresponding samples
from UBC in the dataset and hence the effects of mutations in these position in
UBI4 are more difficult for the model to predict. Consequently, in the segment,
where there are no values from UBC, the error values for UBI4 are much higher.
On the other hand, the positions of UBC are completely covered by data from
UBI4 and thus there are basically no high error positions.
In the last example, we took a look at a protein for which the prediction was
rather successful. For the β-lactamase TEM1 (Figure 7.12), the majority of the
residues show low error values, with the residues with higher errors are clearly
clustering in the core of the protein. Again, these are the positions with higher
variance in experimental values. Mutations introduced to the core residues
of TEM1 presumably decrease the stability of the protein, whereas the other
residues can be substituted without such harmful effect.
Overall the investigation of the individual maximum error projections reveals
that positions, where the prediction was less successful were the functional
important positions. Interestingly these can be identified in a structural investi-
gation and this leads to the question of why the model was not able to correctly
predict the effects for these positions, while it has access to many structural
features. Does the random forest rely on protein structure-based features in its
prediction in any way?
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Figure 7.8: Maximum error projection of the predictions for GFP (P42212) (PDB id 6JGJ,
chain A.). The chromophore is shown in magenta.
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Figure 7.9: Maximum error projection of the prediction for GFP (P42212) (PDB id 6JGJ, chain
A); key residues of the alternation pattern are depicted in stick representation. The chromophore
is shown in magenta.

Figure 7.10: Maximum error projection of the prediction for BRCA1 (P38398) (PDB id 1JM7,
chain A.)
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Figure 7.11: Left structure: Maximum error projection of the prediction for UBI4 (P0CG48)
(PDB id 5VIX, chain A); Right structure: Maximum error projection of the prediction for UBC
(P0CG63) (PDB id 5VIX); the magenta colored segment is not part of the UBC dataset.

Figure 7.12: Maximum error projection of the prediction for TEM1 (P62593) (PDB id 1M40,
chain A).
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Feature name Feature type Feature Importance

dPSIC Evolutionary 0.198

Frequency of mutant AA Evolutionary 0.073

Structure location Structural 0.054

B-factor Structural 0.045

WT AA conservation Evolutionary 0.041

Modres score Structural 0.040

Chemical distance AA property 0.030

Unknown mutant AA AA property 0.026

Blosum62 score AA property 0.022

WT AA match conservation Evolutionary 0.021

Sidechain long score Structural 0.020

PSIC mutant AA Evolutionary 0.018

RIN centrality score Structural 0.017

Other AA conservation Evolutionary 0.016

Mutant AA match conservation Evolutionary 0.016

PSIC WT AA Evolutionary 0.014

Volume mean AA property 0.014

KD mean AA property 0.013

Other AA match conservation Evolutionary 0.013

Mutant AA proline AA property 0.012

Sidechain short score Structural 0.011

Mutant AA conservation Evolutionary 0.011

Sidechain neighbor score Structural 0.011

Sidechain long degree Structural 0.010

Mainchain long score Structural 0.010

Table 7.8: Top list of features used by the random forest with feature importance values > 0.01.

7.3.1.2 Feature Importance Analysis

An advantage of using random forests as the machine learning method is
that they allow to calculate the individual contribution of each feature. We list
the top contributing features in Table 7.8, where one can notice a moderate
balance between all three major feature types with a slight advantage in favor of
evolutionary features. As expected, it seems to be very predictive if a mutated
residue lies on the surface of a protein or in the protein core. From some
experimentally resolved structure, we can predict for some residues, if they
are posttranslationally modified and the posttranslational modification status
plays an important role in the model. The B-factor listed for each residue in
X-ray structures is associated with the flexibility of a residue in the structure,
and residues with a high B-factor are rarely important for the stability or
function of the protein, helping the model in its prediction. On the other hand,
residues, which are important for stability tend to have high RIN centrality
scores. The model also incorporates multiple interaction scores, which reflect
different types of interactions the residue participates in. As expected, to know
if a residue is involved in an interaction is important for the model. One can
notice that a lot of top-contributing features are probably highly correlated



7.3 results 109

Variant-based randomization Protein-based randomization

No PB PB No PB PB

All variants
Without SF 0.744± 0.008 0.810± 0.011 0.723± 0.040 0.642± 0.060
With SF 0.778± 0.009 0.813± 0.005 0.736± 0.039 0.654± 0.041

Only variants Without SF 0.697± 0.008 0.786± 0.010 0.677± 0.033 0.654± 0.036
mapped to 3D structure With SF 0.734± 0.010 0.789± 0.008 0.689± 0.026 0.663± 0.024

Table 7.9: Mean auROC values (± standard deviation) for ten-fold cross-validations on ClinVar
for different training setups. SF: structural features, PB: setup includes protein bias feature

(e.g. B-factors are known to be higher on protein surface, and RIN centrality is
probably higher for position buried in the protein core). Analysis of correlations
between features and feature selection is a topic of our ongoing research.

7.3.2 Assessment of the Pathogenic Potential of Genetic Variants

7.3.2.1 Evaluation of the Model for ClinVar

We compared different cross-validation setups using ClinVar in order to esti-
mate the influence of protein-specific biases and how much structural features
can improve the quality of the model. In Table 7.9 we list the auROC values
for 16 different training setups. When the protein bias is introduced as an
additional feature, it dominates the construction of the model (as can be proven
by the feature importance analysis, data not shown), thus the forest does not
really change when we add or remove structural features. The inclusion of
structural features leads to increased auROC values, no matter if we filter only
for proteins with available experimentally resolved structures or not, in both
cross-validation setups . However, this increase is stronger in the variant-based
cross-validation than in the protein-based cross-validation holds true. As ex-
pected, the artificial protein bias inflates the performance of the model in the
variant-based randomization setup and strongly reduces the auROC of the
model in the protein-based randomization setup.
Since the inclusion of structural features improves the performance of the model
more for variant-based randomization, we can assume that they introduce type
2 circularity in some way, despite not using any protein-specific information
explicitely. This effect is weaker for the setups, where we filtered the samples for
which we couldn’t find structural data. One explanation can be: when we filter
out samples, for which we do not find any structural data, the auROC values
always are decreasing and the reason for that is the change in the proportion
of benign variants and deleterious variants (and hence auROC is not the ideal
measure to compare these particular cases). Indeed, as noted before (Chapter
6), proteins that carry a lot of known pathogenic mutations tend to be better
investigated and have more three-dimensional structures resolved. Hence, in
the full ClinVar dataset we have the proportion of pathogenic:benign variants
equal to 1:4.93, and for the variants that can be mapped into a 3D structure this
proportion is 1:3.05
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Feature name Feature type Feature Importance

dPSIC Evolutionary 0.267

Modres score Structural 0.094

Wildtype AA conservation gapless Evolutionary 0.059

B-factor Structural 0.035

Wildtype AA conservation Evolutionary 0.025

PSIC wildtype AA Evolutionary 0.021

RIN centrality score Structural 0.021

Frequency of mutant AA Evolutionary 0.019

Mainchain neighbor score Structural 0.018

PSIC mutant AA Evolutionary 0.018

Sidechain short score Structural 0.018

Mainchain short score Structural 0.018

Sidechain neighbor score Structural 0.017

Sidechain long score Structural 0.017

Mainchain long score Structural 0.016

Mainchain short H-bond score Structural 0.015

IUPred score AA property 0.015

Wildtype AA Cysteine AA property 0.014

Mutant AA conservation gapless Evolutionary 0.013

Chemical distance AA property 0.013

Sidechain protein score Structural 0.012

Sidechain long H-bond score Structural 0.012

Volume mean AA property 0.010

Other AA conservation gapless Evolutionary 0.010

Table 7.10: Features importances (> 0.01) of the random forest, when trained on ClinVar.

7.3.2.2 Feature Importance Analysis

Although, for the ClinVar dataset, we provide structural features only for a
fraction of variants, the random forest includes structural features in a normal
fashion (Table 7.10). Overall, the feature importances look similar to that of the
prediction of functional impact scenario (Table 7.8), which provides evidence
that both scenarios are related. In comparison, the evolutionary features are
slightly stronger involved for the pathogenicity prediction, especially dPSIC.
The amino acid property features are the type of features that are least present
among the top-contributing ones. While structural features provide many
equally important features, one feature, the modres score, is by far more
important than the rest. The information about posttranslational modifications
should only help the model for a small fraction of variants. This makes this
feature suspicious. The exact contribution of this features may be more clear
from the following analysis of the influence of different filtering strategies on
the model performance.
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No filtering
Filter out pure proteins Balanced labels

Keep singletons Filter singletons Keep singletons Filter singletons

Reduction of training set 0% 10.7% 11.4% 72.7% 74.3%

Feature importance of

protein bias 0.458 (rank 1) 0.453 (rank 1) 0.460 (rank 1) 0.100 (rank 3) 0.0 (last rank)

Feature importance of

modres score 0.076 (rank 3) 0.087 (rank 3) 0.089 (rank 3) 0.019 (rank 12) 0.020 (rank 10)

Feature importance of

RIN centrality 0.019 (rank 10) 0.018 (rank 10) 0.019 (rank 10) 0.019 (rank 11) 0.019 (rank 12)

mean auROC (VR) 0.778 0.774 0.775 0.659 0.658

mean auROC (PR) 0.736 0.727 0.735 0.653 0.649

mean auROC (VR, PB) 0.813 0.789 0.787 0.660 0.659

mean auROC (PR, PB) 0.654 0.647 0.657 0.646 0.650

Table 7.11: Ten-fold cross-validation on ClinVar using different filtering techniques revealing
bias-introducing features through a change in feature importance; feature importance values for
non-protein bias features measured for setup without the protein bias feature; PR: protein-based
randomization, VR: variant-based randomization, PB: protein bias features added

7.3.2.3 Filtering Identifies Bias-introducing Features

We tried different filtering techniques (described in Section 7.2.4.2) on the train-
ing dataset with the goal to identify features associated with type 2 circularity
and to estimate the effect of filtering on the prediction performance of the
model (Table 7.11). On the one hand, filtering techniques can reduce type 2

circularity intrinsic to a dataset since this bias is mainly introduced by pure
proteins. On the other hand, the reduction the number of the data points in
the training set impedes the learning of a model. Thus, a model that does
not rely on features that are associated with type 2 circularity does not profit
from filtering. However one still can identify features associated with type 2

circularity using filtering techniques.
For ClinVar, we can see that there are only very few singletons (1%, most
proteins contain more than one annotated variant), thus the effect of filtering of
singletons is subtle. Filtering out of pure protein takes away about a tenth of
the training samples, and the balanced filtering is more severe reducing the size
of the training sets by over 70%. Unfortunately, this reduction of the number
of data points in the training set directly translates into reduced mean auROC
values.
Filtering out pure proteins is not sufficient to reduce the feature importance
of the protein bias feature, and while the balanced labels filtering (keeping
only proteins with roughly equal proportion of deleterious and benign vari-
ants)allows to reduce its importance significantly, it can only completely re-
moved by combining balanced labels and singleton filtering. When we look into
the feature importances for the modres score feature, we discover a decrease
of importance after balanced labels filtering. This suggests that this feature is
actually associated with type 2 circularity. After investigating the distribution
of values for that particular feature across the samples, we found that its values
have a strong negative correlation with the number of 3D structures where
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Dataset
No bias added Protein bias introduced

All samples Only 3D All samples Only 3D

Without SF With SF Without SF With SF Without SF With SF Without SF SF

SwissVar 0.677 (0.694) 0.667 (0.674) 0.675 (0.687) 0.668 (0.669) 0.649 (0.653) 0.648 (0.649) 0.673 (0.682) 0.671 (0.681)

predictSNP 0.641 (0.653) 0.628 (0.635) 0.661 (0.658) 0.656 (0.647) 0.583 (0.606) 0.593 (0.601) 0.643 (0.675) 0.640 (0.670)

ExoVar 0.802 (0.770) 0.837 (0.793) 0.744 (0.714) 0.774 (0.701) 0.882 (0.791) 0.888 (0.794) 0.841 (0.712) 0.848 (0.740)

HumVar 0.803 (0.778) 0.813 (0.792) 0.750 (0.709) 0.748 (0.711) 0.745 (0.777) 0.762 (0.779) 0.694 (0.690) 0.695 (0.690)

VariBench 0.663 (0.671) 0.713 (0.701) 0.620 (0.696) 0.637 (0.629) 0.828 (0.644) 0.832 (0.660) 0.776 (0.610) 0.784 (0.646)

Mean 0.761 (0.747) 0.777 (0.760) 0.718 (0.691) 0.722 (0.691) 0.757 (0.738) 0.768 (0.741) 0.721 (0.680) 0.724 (0.689)

Table 7.12: auROC values for all different LODO setups using the benchmark datasets for the
evaluation of the model; in parenthesis: filtered out proteins from training set that are present in
the test set; in bold: protein-filtering increased the auROC value. SF:structural features, Only
3D: Only variants that could be mapped to 3D structure

the variant can be mapped into. However, the feature importance drops not
to zero for the combined balanced labels and singleton filtering, thus the fea-
ture contains valuable information and can still be used in specifically filtered
training sets or in a version of the feature that is normalized by the number
of mapped structures. The structural features in general can be suspected to
introduce protein-specific biases since they are missing for variants that could
not be mapped into 3D structures. However, the filtering techniques did not
find any other structural features, whose feature importance drops.
Overall, filtering techniques were not able to improve the prediction perfor-
mances, but just for this particular cross-validation setup for the ClinVar dataset,
which is a consequence of our decision to not include protein-specific features.

7.3.2.4 Evaluation of the Model on the Benchmark Datasets

The results for the evaluation of our model on the datasets from Grimm et
al. [167] are done in a LODO cross-validation (Table 7.12), and a specialized
form of LODO where we added the samples from ClinVar to the training set
in each of the five evaluation rounds (Table 7.13). Each column represents
two full rounds of LODO cross-validation runs. In parentheses, one can see
the auROC values for the LODO runs, where only those proteins from the
training set, which were not present in the test set, were retained. We call this
technique protein filtering in the following, since this technique is similar to the
protein-based randomization from Section 7.3.2.1. Looking at the mean auROC
values of a whole LODO run, we can see that protein filtering decreases the
prediction performance in all setups, which is to be expected considering that
we remove samples from the training dataset. However, there are individual
benchmark datasets and setups, for which the protein filtering increases the
auROC values (bold numbers in the table). The dataset, for which the protein
filtering decreases the auROC in all setups is ExoVar.
Adding the protein bias feature does not have such a strong effect on the mean
auROC values as for the ClinVar dataset (Table 7.9), and to a different extent for
the individual datasets. For VariBench, the effect of the protein bias feature is
especially strong, but so is also the negative effect for the setup where we per-
formed the protein filtering. When we look into the influence of the protein bias
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Dataset
No bias added Protein bias introduced

All samples Only 3D All samples Only 3D

Without SF With SF Without SF With SF Without SF With SF Without SF SF

SwissVar 0.696 (0.708) 0.695 (0.699) 0.688 (0.686) 0.691 (0.689) 0.686 (0.671) 0.684 (0.673) 0.692 (0.678) 0.690 (0.680)

predictSNP 0.677 (0.683) 0.734 (0.709) 0.706 (0.719) 0.729 (0.703) 0.588 (0.615) 0.590 (0.610) 0.624 (0.669) 0.626 (0.664)

ExoVar 0.803 (0.777) 0.833 (0.787) 0.728 (0.689) 0.753 (0.688) 0.895 (0.809) 0.898 (0.814) 0.852 (0.744) 0.856 (0.769)

HumVar 0.786 (0.771) 0.803 (0.782) 0.716 (0.694) 0.722 (0.699) 0.799 (0.822) 0.803 (0.824) 0.732 (0.760) 0.741 (0.781)

VariBench 0.676 (0.681) 0.725 (0.724) 0.605 (0.612) 0.635 (0.700) 0.788 (0.639) 0.810 (0.648) 0.733 (0.598) 0.741 (0.627)

Mean 0.754 (0.746) 0.775 (0.759) 0.694 (0.679) 0.706 (0.687) 0.787 (0.764) 0.792 (0.768) 0.738 (0.717) 0.744 (0.736)

Table 7.13: auROC values for all different LODO setups using the benchmark datasets for the
evaluation of the model and including ClinVar to the training datasets; in parentheses: filtered
out proteins from training set that are present in the test set; in red: the auROC values one
would report as the performance of the model since its the model in the most difficult evaluation
setup excluding any possible type 2 circularity; in bold: protein-filtering increased the auROC
value. SF:structural features, Only 3D: Only variants that could be mapped to 3D structure

feature on individual datasets, we can see for SwissVar, predictSNPSeleceted,
and HumVar decreased auROC values, while for ExoVar and variBench adding
the protein bias feature results in largely increased auROC values. This increase
is, of course, not present when we apply protein filtering. This shows that
different evaluation sets are more or less sensitive towards type 2 circularity
effects. An increased auROC through the protein bias feature is always present
for datasets, which contain many pure proteins that are present in the training
set. For the same reason such an increase can no longer be observed when
we apply protein filtering. Similar to the evaluation of the model on ClinVar,
structural features have a similar, but weaker, effect as the protein bias feature,
which means, we still can associate them with type 2 circularity. However, they
improve the model quality, no matter if we apply the protein filtering, which
means that despite introducing this potential bias they are valuable for the
model.
Surprisingly, adding more samples to the training datasets does not increase
the model performance in all setups (Table 7.13). It greatly inflates the auROC
values for setups with added protein bias and without protein filtering and
without structural features. And the same time, this does not hold true for
the setup where the structural features were added. This can be observed for
auROC values for VariBench that are heavily inflated for the setups that include
the protein bias feature.
Interestingly, protein filtering can increase the auROC values for setups thae
include the protein bias feature. The explanation for that is the presence of
proteins, whose variants are labeled differently in different datasets that were
used for construction of the training and test sets. In these cases, the type 2

circularity effect introduced through the protein bias feature has a negative
influence on the performance, and removing such proteins from the training
set improves the performance again. Overall, in all these setups, structural
features improve the model quality and show a decent robustness against type
2 circularity effects.
If one needs to choose the auROC values to be reported in a comparative study,
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they would come from the following setup: using all samples, performing pro-
tein filtering (this is very restricting since it forcefully removes any performance
inflations introduced by type 2 circularity), including structural features but
without the protein bias feature. Using these performance values (marked in
red in Table 7.13) and comparing them to the evaluation done in Grimm et
al. [167] (Figure 7.1), we can see that our model is very robust. It performs as
well as or better than the other methods for the datasets, which are generally
more difficult (VariBench, predictSNP and SwissVar), while performing worse
(but not too much worse) for datasets, for which the other models had less
difficulties (HumVar and ExoVar).

7.4 discussion

In this chapter, we estimated the potential benefits of using structural features
for the prediction of functional and phenotypic effects of nsSNVs. This analysis
is similar to the study by Dehiya et al.[159], where the authors analyzed how
well different machine learning methods are able to incorporate structural
features in the prediction of clinical effects. In comparison to that study, we
used only one machine learning method, the random forest, which was the one
performed best in their study [159]. On the other hand, we vastly expanded
the analysis by adding a second scenario, in which the impact of variants on
the function of a protein was assessed using the DMS datasets, and by deeply
investigating potential training biases.

7.4.1 Prediction on Functional Impact

The DMS datasets pose a tough challenge for the incorporation of structural
features, since almost all functionally important residues can be replaced by
other similar amino acids without having an effect on the function of the protein,
while other more dissimilar amino acid substitutions result in a function loss.
Since all of our current structural features are identical for mutations at the same
position, this behavior is impossible to predict using structural features. The
only features that are divergent for these cases are some evolutionary features
and the amino acid property features. We have to find a way to allow the model
more efficiently use the amino acid property features in order to differentiate
between mutations in the same position that have different functional effects.
The maximum error projections clearly showcase that it has to be possible that
these cases can be identified using structural features. But at some point our
model fails.: either it cannot identify functionally important residues, or it is
not able to estimate correctly the differences between different mutations for
functional important residues. On the other hand, the deficiencies of the model
could have another reason: the low number of proteins in the training dataset.
What one needs to be able to train good model for estimating the impact of
mutations on biochemical protein function is more training samples, and a
model that is able to generally detect functionally important residues and
understand, which amino acid substitutions exactly lead to an impact on the
function.
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7.4.2 Prediction of Clinical Effects

After the evaluation of the model using ten-fold cross-validation on ClinVar,
one could have regarded the project as a success, due to a better performance
when including structural features both in the variant-based randomization
setup and in the protein-based randomization. But the increase was smaller for
the protein-based randomization and what we actually wanted to achieve was a
model that performs equally well in both setups. In reality, the question of why
this happens goes deeper than being a failure or a success. Proteins that are
associated with diseases have more structural data associated with them (we
already observed that in Chapter 7), and variants in proteins associated with
diseases have a higher chance to have a clinical effect, which is then the cause
for type 2 circularity. This means that if the model has the information, whether
a protein has associated structural data, then it can infer a protein-specific bias
and hence type 2 circularity.
The problem of type 2 circularity is that models that are influenced by it
will mispredict the effects of difficult variants. For variants whose effects are
different from those of other variants in the same protein that are present in
the training set, a model that is influenced by type 2 circularity will predict the
effect of the variants it has seen in the dataset, which is then a misclassifcation.
For variants in proteins that are not present in the training set, a model that is
influenced by type 2 circularity will predict the effect by chance.
From the results of the different training setups on the five benchmark datasets,
we can conclude that there are three factors, which determine the influence of
type 2 circularity on the performance measures of a model:

1. Features associated with type 2 circularity (explained in Section 7.2.2)

2. Biased training datasets, which, for example, contain a lot of pure proteins.

3. The composition of the test dataset: in order to identify type 2 circularity,
one has to design the test set such that it contains no variants from
proteins present in the training dataset, and if possible single proteins
should have variants with mixed labels.

The open question is how to avoid the inclusion of type 2 circularity into the
model? We showed through the application of different filtering techniques how
to identify individual features with the potential to introduce protein-specific
bias, and we can already formulate some guidelines. (1) Never use protein-
specific features that cannot be generated for proteins that are not present in
the training set. (2) When using protein-specific features and other features,
which can be associated with type 2 circularity, design the training set in a way
to balance out the labels for each protein. (3) If using as many training samples
as possible, then avoid including any features which can be associated with
type 2 circularity (see Section 7.2.2).
Unfortunately, we cannot fully exclude the association of structural features
with type 2 circularity. Luckily, the results from the LODO evaluation including
the ClinVar dataset, show that the benefits of including structural features
already outweigh the remaining subtle type 2 circularity effects. Although, the
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model still performs slightly better in variant-based randomization setups than
in protein-based randomization setups, we proved that our model is able to
predict the clinical effects of difficult variants.

7.4.3 The Current State

After all the exciting results this project delivered so far, one must not forget
that it is still ongoing. Most probably, we are using too many features in all
performed scenarios and setups. We still have to pin-point how exactly type
2 circularity is always introduced even when do not seem to use any protein-
specific features. Alternatively, we could introduce more features that can be
associated with type 2 circularity together an appropriate filtering technique
that will not remove so many data points from the training set.
Our results so far show that the DMS dataset is particularly challenging, and we
have to design structural features that can be better interpreted by the model.
The comparison of the results for predicting the functional effect for the DMS
data and the pathogenocity for the ClinVar and other related datasets showed
clearly that the problem is extremely complicated and both scenarios have
their own challenges but are still related. We already showed the potential of
structural features, but we also see that there is a lot of room for improvement.
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P E R S P E C T I V E

8.1 conclusions

The work presented in this thesis produced algorithmic solutions for structural
annotation and structural analysis of proteins on the greatest possible scale.
This methodology was used to investigate the biological mechanisms of disease-
associated nsSNVs on an unprecedentedly large scale, adding new arguments
to an ongoing debate on the role of protein-protein interaction interfaces in
pathgenic processes. We put the high-throughput structure annotation pipeline,
StructMAn, into use in order to generate a wide array of structural features
and incorporate them into a machine-learning tool, thus contributing to the
vast field of variant effect prediction.
As a step towards developing these features, we developed a new measure for
estimating relative solvent accessible area of individual residues: SphereCon
(Chapter 4). Its simple geometrical design enable its application for protein
structures with limited information. The correlation of SphereCon to the true
relative solvent accessible area is larger than those of any other measure. Addi-
tionally, a unique feature of SphereCon is the possibility to perform predictions
without structural information per se, from predicted pairwise contact or dis-
tance matrices. This feature is not useful in our structural annotation studies,
but expands the applicability of SphereCon beyond the structural bioinformat-
ics field. SphereCon has the potential to improve any method, which relies on a
measure for relative solvent accessible area.
The most time and work was invested into the development of StructMAn
(Chapter 5). Only the combination of the high-performance processing of huge
amounts of inputs with the comprehensive structural analyses, implemented in
StructMAn, enabled to conduct the large studies described in Chapter 6 and
7. The structural annotation of every amino acid in the human proteome is
uncomparable and is the proof for the very good performance of StructMAn.
The comprehensive study presented in Chapter 6 pertains the structural analy-
sis of genetic variants associated with cancer and genetic diseases. The study
confirmed the previously suggested enrichment of disease-associated variants
in interaction interfaces with small molecules and DNA chains, while we could
not provide any evidence for an enrichment of such variants in protein-protein
interaction interfaces. This results were only possible through the correction of
dataset-specific biases with the help of control datasets.
In Chapter 7, we used structural features for the prediction of functional and
phenotypic effects of nsSNVs and investigate their potential benefits regarding
the prediction performance. Another central point in this study was the inves-
tigation of the influence of protein-specific biases on such prediction models,
in particular their connection to the structural features, which we could not
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refute completely. However, we could show that structural features in general
are beneficial for prediction performance.

8.2 outlook

8.2.1 Further Improving StructMAn

The expansion of StructMAn is ever ongoing. One major planned addition to
the functionality of StructMAn is the ability to process more types of genetic
variants, not limited to nsSNVs anymore. The first step in this direction will
be the inclusion of short genomic insertion and deletions (indels), which do
not result in a frameshift, and thus introduce small insertions and deletions in
the corresponding protein. Another step is to account for alternative splicing
events that may result in a wide array of protein-level events, from protein
truncations, insertion and retentions of whole domains to short indels. We
currently work on implementation of these methods in the framework of a
BMBF-funded project Sys_CARE that addresses alternative splicing events in
heart and renal diseases.
More technical tasks will address the distribution of the method in the scientific
community. For this we need to make StructMAn more easily available for
potential users by finishing the containerized version that can function as a
simple command-line tool. After that, we will implement a new webserver
version of StructMAn that will include all features, which got developed since
the last release.
Another possible expansion would be the structural annotation of RNA three-
dimensional structures since they can, just as proteins, fold into complex shapes
that perform a particular function and harbor mutations that can possibly alter
their function as well.
In order to further develop the functional impact prediction tools, we continue
implementing new types of structural analyses and ways to produce structural
features further improving the accuracy of prediction. It is also conceivable
to include structural analyses, which are more computationally expensive if
performed on a subset of structures. For example, in an ongoing study, we
include assessment of the change of protein and/or complex stability, estimated
by FoldX [141], for all clinically relevant variants from ClinVar [63] and all
population variants from GnomAD [189].

8.2.2 New Large-scale Studies can Reveal New Insights

New functionalities of StructMAn also enables new possible studies. For ex-
ample, we can expand the study of disease-associated variants to insertions
and deletions. Another planed study is the structural analysis of the effects
introduced by alternative splicing events, whose effects on the protein structure
are similar to those of insertions and deletions.
To follow up on the conclusions from the study of disease-associated variants,
we can also design a study around the structural analysis of variants with dif-
ferent population-wide allele frequency, possibly revealing the true structural
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background distributions of nsSNVs.

8.2.3 The Future of Structural Features in Variant Effect Prediction

The most room for improvement is offered by the variant effect prediction
method. We already started a separate project, performed by a Masters student
Max Jacob, with the aim to reduce the number of features via feature selection
and to introduce new structural features, which are better suited for the differ-
ent prediction scenarios. Another challenge is the construction of meaningful
training sets with the goal to minimize any types of training biases.
We also plan to expand the variant impact prediction methods to more specific
scenarios. Here we also started a project, performed by another Masters student
Sami Laradji, investigating the possibility to create a specialized version of our
model into the prediction of impact of nsSNVs on protein-protein interactions.
Other specific phenotypes that can be addressed are, for example, antibiotics
resistance or specific human diseases.
A completely different big question is if we can combine the both types of
training data, using the knowledge learned from the DMS data to improve the
prediction quality for clinical effects.
Finally, we plan investigate the impact of combinations of mutations on protein
function. It is well-known that some pairs of mutations can have a compensat-
ing effect on each other [190], yet most variant impact prediction tools treat
variants independently. We will address this shortcoming, in particular for
variants occurring in the same gene, by developing new structural features for
combinations of amino acid substitutions. This is particularly important in bac-
teria and viruses, but also in higher organisms, where linkage disequilibrium
does not allow handling combinations of mutations independent from each
other.
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A P P E N D I X

9.1 supplementary lists

9.1.1 Boring Ligands

List of PDB Ligand IDs of molecules filtered from the structural analysis of
StructMAn:
’MYR’, ’ARF’, ’BEZ’, ’SIA’, ’UNK’, ’DTD’, ’SQD’, ’SPD’, ’2PO’, ’DEP’, ’DPN’,
’CLA’, ’PTR’, ’CSO’, ’NTB’, ’EDO’, ’B3P’, ’MPT’, ’CL1’, ’NAG’, ’PEG’, ’P6G’,
’MYS’, ’5UA’, ’P4C’, ’PEE’, ’PHS’, ’TAR’, ’MES’, ’DMS’, ’PYR’, ’LLP’, ’LBT’,
’2HP’, ’TTP’, ’HTG’, ’PGW’, ’PE5’, ’DGL’, ’PE4’, ’ACY’, ’WO6’, ’D10’, ’PGE’,
’MRD’, ’CAC’, ’MAN’, ’3GR’, ’7PE’, ’PO3’, ’PG0’, ’DCY’, ’EPE’, ’LDA’, ’CHL’,
’U5P’, ’AE3’, ’PT5’, ’OMT’, ’DPF’, ’TYS’, ’PEU’, ’SRT’, ’DTU’, ’ETX’, ’DPR’,
’BCN’, ’MAG’, ’NCO’, ’ETE’, ’PE8’, ’C10’, ’GAL’, ’PI ’, ’HEX’, ’MC3’, ’CSW’,
’CZ2’, ’MSE’, ’FTT’, ’I42’, ’YBT’, ’ACT’, ’BCR’, ’PTL’, ’MPD’, ’EGC’, ’CSS’, ’PEF’,
’SOH’, ’UNL’, ’1PG’, ’MGE’, ’TPQ’, ’TRS’, ’VO4’, ’MOE’, ’UND’, ’C8E’, ’TBU’,
’CGU’, ’FME’, ’CXE’, ’SF4’, ’5GP’, ’ORN’, ’TOE’, ’CO3’, ’CEA’, ’PSC’, ’2PE’,
’OC9’, ’DAL’, ’CHD’, ’DGN’, ’PHF’, ’D9G’, ’LNK’, ’CSD’, ’HOH’, ’SAC’, ’P33’,
’SBY’, ’DKA’, ’PLM’, ’M2M’, ’GOL’, ’PG4’, ’CME’, ’NBU’, ’P3G’, ’PIO’, ’MPO’,
’MXE’, ’ANL’, ’CBS’, ’HF3’, ’ACD’, ’DIO’, ’DTT’, ’BME’, ’BOG’, ’TLA’, ’6JZ’,
’DHI’, ’TPO’, ’FMT’, ’DSN’, ’CXM’, ’DOD’, ’CXS’, ’12P’, ’F3S’, ’15P’, ’BTB’,
’PAM’, ’PGV’, ’DAR’, ’PLX’, ’C5P’, ’SOL’, ’NDG’, ’DTY’, ’SAR’, ’HP6’, ’CDL’,
’DIL’, ’PCA’, ’DIV’, ’TAM’, ’STE’, ’WO4’, ’CE9’, ’WO3’, ’SGN’, ’D12’, ’POP’,
’GDL’, ’HEM’, ’HYP’, ’OCT’, ’5HP’, ’PPI’, ’PG6’, ’1PE’, ’GLC’, ’DSG’, ’CSX’,
’PO4’, ’5AX’, ’KMB’, ’DD9’, ’I3P’, ’LI1’, ’ABA’, ’NLE’, ’DTR’, ’HEZ’, ’SO4’, ’D1D’,
’BU1’, ’BNG’, ’PGO’, ’SPM’, ’STY’, ’ZRC’, ’SEP’, ’MG8’, ’ACE’, ’DLE’, ’DLY’,
’HTO’, ’6PL’, ’A2G’, ’AIB’, ’LAP’, ’OCS’, ’LMG’, ’PE3’, ’IUM’, ’DVA’, ’MLE’,
’WAT’, ’DTH’, ’FUC’, ’LHG’, ’NGA’, ’SO3’, ’DTV’, ’LMT’, ’KCX’, ’MVA’, ’BMT’,
’PSE’, ’PGR’, ’TRD’, ’LMU’, ’DAO’, ’IPA’, ’2HA’, ’DSP’, ’PGM’, ’UPL’, ’PG5’,
’BMA’

9.1.2 Metals

List of PDB Ligand IDs of metals considered by the metal interaction classifica-
tion of StructMAn:
’0BE’, ’3CO’, ’3NI’, ’4MO’, ’4PU’, ’4TI’, ’6MO’, ’AG’, ’AL’, ’AM’, ’AU’, ’AU3’,
’BA’, ’BS3’, ’CA’, ’CD’, ’CE’, ’CF’, ’CO’, ’CR’, ’CS’, ’CU’, ’CU1’, ’CU3’, ’DY’,
’ER3’, ’EU’, ’EU3’, ’FE’, ’FE2’, ’GA’, ’GD’, ’GD3’, ’HG’, ’HO’, ’HO3’, ’IN’, ’IR’,
’IR3’, ’K’, ’LA’, ’LI’, ’LU’, ’MG’, ’MN’, ’MN3’, ’MO’, ’NA’, ’NI’, ’OS’, ’OS4’, ’PB’,
’PD’, ’PR’, ’PT’, ’PT4’, ’RB’, ’RE’, ’RH’, ’RH3’, ’RU’, ’SM’, ’SR’, ’TA0’, ’TB’, ’TH’,
’TL’, ’U1’, ’V’, ’W’, ’Y1’, ’YB’, ’YB2’, ’YT3’, ’ZCM’, ’ZN’, ’ZN2’, ’ZR’
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9.1.3 Ions

List of PDB Ligand IDs of ions considered by the ion interaction classification
of StructMAn:
’BR’, ’BRO’, ’CL’, ’CLO’, ’F’, ’FLO’, ’IDO’, ’IOD’, ’SB’
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9.2 supplementary figures

Figure 9.1: A-E: Spatial distributions of the interaction classes of the five main datasets in
comparison to control datasets; F: Spatial distribution of the human proteome.
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9.3 supplementary tables

3-letter code intersection sphere radius

CYS 3.03

ILE 3.32

SER 2.94

GLN 3.39

LYS 3.43

TRP 4.02

PRO 3.17

THR 3.12

PHE 3.72

ALA 2.80

GLY 2.57

HIS 3.53

ASN 3.23

LEU 3.32

ARG 3.63

ASP 3.24

VAL 3.17

GLU 3.39

TYR 3.80

MET 3.35

Table 9.1: Radii of intersecting spheres for individual amino acids (Å).
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PDB ID SCOP ID SCOP class PDB ID SCOP ID SCOP class PDB ID SCOP ID SCOP class PDB ID SCOP ID SCOP class PDB ID SCOP ID SCOP class PDB ID SCOP ID SCOP class PDB ID SCOP ID SCOP class

1DS7 d.90.1.1 d 1O5W c.3.1.2 c 1WFQ b.40.4.5 b 2RD5 c.73.1.0 c 1S70 d.211.1.1 d 2FQ3 a.4.1.18 a 2P5X c.51.4.0 c

1TQY c.95.1.1 c 1ZLP c.1.12.0 c 1CKM b.40.4.6 b 2CDQ c.73.1.3 c 2A1I c.52.1.20 c 1S4I b.1.8.0 b 4BKM c.108.1.0 c

1MZJ c.95.1.2 c 1SGJ c.1.12.5 c 1GPC b.40.4.7 b 1JNP b.63.1.1 b 1HSK d.145.1.2 d 1CVR b.1.18.12 b 1AQ6 c.108.1.1 c

1RI1 c.66.1.34 c 1MUM c.1.12.7 c 2O73 a.288.1.1 a 3CTO d.306.1.0 d 1REG d.58.27.1 d 1LSU c.2.1.9 c 1NEI d.253.1.1 d

4Q25 a.7.12.0 a 4I5Q c.47.1.9 c 1A7T d.157.1.1 d 1R1M d.79.7.1 d 4IWG c.135.1.0 c 2ROZ b.55.1.2 b 1U79 d.26.1.1 d

1QSD a.7.5.1 a 1Y7Q a.28.3.2 a 2BJO d.227.1.0 d 2OQY c.1.11.0 c 2FQM d.378.1.1 d 1Mai b.55.1.1 b 3PR9 d.26.1.0 d

1OIP a.5.3.1 a 2JS1 a.23.7.1 a 1JYO d.184.1.2 d 1S3L d.159.1.7 d 3WVJ b.29.1.2 b 1M4J d.109.1.2 d 1WOU c.47.1.16 c

2MZY d.279.1.0 d 4P0J b.42.1.2 b 1B5O c.67.1.1 c 1V0E b.68.1.2 b 2VG9 b.29.1.0 b 2NAC c.2.1.4 c 1GEF c.52.1.18 c

1JCQ a.118.6.1 a 1MNT a.43.1.1 a 2Z1Z c.67.1.0 c 1G5B d.159.1.3 d 2H7A d.350.1.1 d 1NPY c.2.1.7 c 2RR8 a.40.1.0 a

1J3P b.82.1.7 b 4J8E a.118.8.0 a 1IMJ c.69.1.23 c 1JHJ b.18.1.9 b 1QU0 b.29.1.4 b 3TU5 d.109.1.1 d 1BHD a.40.1.1 a

4BTJ d.144.1.0 d 1RI7 a.4.5.32 a 3I8Z b.34.13.2 b 4OMC b.18.1.0 b 2BQ4 a.138.1.0 a 3NGL c.2.1.0 c 4L0P b.6.1.5 b

1XQZ d.144.1.7 d 2YVX a.118.26.1 a 3K86 b.45.1.0 b 1I9G c.66.1.13 c 3MD9 c.92.2.0 c 1TLT c.2.1.3 c 1AK0 a.124.1.2 a

1ZYL d.144.1.6 d 1ECS d.32.1.2 d 1F2L d.9.1.1 d 2HJJ d.50.3.3 d 2L8D b.34.9.1 b 1LW3 b.55.1.8 b 2AAN b.6.1.0 b

2PAM b.82.1.1 b 1VF6 a.194.1.1 a 2L4N d.9.1.0 d 4CGE d.2.1.0 d 2M16 b.34.9.2 b 2GZB b.42.4.0 b 1S1G d.42.1.2 d

1ZPS b.168.1.1 b 1YK3 d.108.1.1 d 1DWY d.6.1.1 d 1KPI c.66.1.18 c 4JGX d.106.1.0 d 1NLT b.4.1.1 b 1S68 d.142.2.4 d

1IW0 a.132.1.1 a 1TD6 a.234.1.1 a 1SU0 d.224.1.2 d 1LTU d.178.1.1 d 1V74 a.24.20.1 a 4K8U b.8.1.0 b 2LV3 c.47.1.0 c

2IC1 b.82.1.19 b 1TFP b.3.4.1 b 2HTH b.55.1.12 b 1T4O d.50.1.1 d 1PVW d.115.1.2 d 3HU1 b.52.2.0 b 1OPM b.121.1.2 b

1BXY d.59.1.1 d 2J9U a.24.28.1 a 2E1F a.60.8.1 a 1EJJ c.76.1.3 c 1SV6 d.177.1.1 d 3MEZ b.78.1.0 b 4DHX a.301.1.1 a

2OAU b.38.1.3 b 1CAU b.82.1.2 b 5CFO d.387.1.0 d 1H2I d.50.1.3 d 1A1U a.53.1.1 a 2BIW b.69.15.1 b 1N0G b.129.1.2 b

1FVA d.58.28.1 d 3JXF b.74.1.0 b 2HBJ a.60.8.4 a 2A4V c.47.1.10 c 1IZJ b.1.18.2 b 1JWO d.93.1.1 d 3LPN c.61.1.0 c

2ETN a.2.1.1 a 1WY5 c.26.2.5 c 1ICH a.77.1.2 a 1EZG b.80.2.1 b 2DJL c.1.4.1 c 2W9P d.17.1.0 d 1E2B c.44.2.1 c

2P4V a.2.1.0 a 1BKC d.92.1.10 d 2LHJ a.21.1.0 a 1R5P c.47.1.15 c 1NEP b.1.18.7 b 1K12 b.18.1.15 b 3GLS c.31.1.0 c

1QWJ c.68.1.13 c 1HV5 d.92.1.11 d 1A1W a.77.1.4 a 1COM d.79.1.2 d 1OUV a.118.18.1 a 1AHH c.2.1.2 c 1DZF c.52.3.1 c

1MGT a.4.2.1 a 1OZ9 d.92.1.15 d 1QND d.106.1.1 d 1NQ3 d.79.1.1 d 4AKM b.180.1.1 b 1NAE b.18.1.10 b 2A2N b.62.1.1 b

1JAJ d.218.1.2 d 1IHM b.121.4.3 b 2VO9 d.65.1.5 d 4H2D c.23.5.0 c 1R1T a.4.5.5 a 1U8V a.29.3.1 a 4C3Z c.37.1.0 c

2JMF b.72.1.1 b 1G10 d.137.1.1 d 1R28 d.42.1.1 d 3AMR b.68.3.1 b 1BM8 d.34.1.1 d 1WER a.116.1.2 a 1S4Q c.37.1.1 c

1KKE b.21.1.2 b 2IG3 a.1.1.0 a 5BXD d.42.1.0 d 3ANS c.69.1.11 c 2ZME a.4.5.0 a 1EKG d.82.2.1 d 1SHS b.15.1.1 b

4PJ1 b.35.1.0 b 1DLY a.1.1.1 a 1MWW d.80.1.4 d 1PBV a.118.3.1 a 1UXC a.35.1.5 a 2AQX d.143.1.3 d 2Z6O d.20.1.4 d

1KOL b.35.1.2 b 3DGP d.295.1.0 d 1OTG d.80.1.2 d 1V4P d.67.1.2 d 1P27 d.58.7.1 d 3E3U d.167.1.0 d 1EGA c.37.1.8 c

1N69 a.64.1.3 a 2G19 b.82.2.15 b 1SZH a.226.1.1 a 1OZN c.10.2.7 c 2LCV a.35.1.0 a 1HKV b.49.2.3 b 3WG6 c.1.7.0 c

1NP7 a.99.1.1 a 1HQB a.28.1.3 a 1IR6 c.107.1.2 c 1SQU d.252.1.1 d 1FZA d.171.1.1 d 1BD0 b.49.2.2 b 1G99 c.55.1.2 c

2FZ6 b.138.1.1 b 2KWL a.28.1.0 a 1LN1 d.129.3.2 d 1EYV a.79.1.1 a 1BHG b.1.4.1 b 3HMB d.118.1.0 d 1HUX c.55.1.5 c

2A71 b.29.1.13 b 1KLP a.28.1.1 a 2WQL d.129.3.1 d 1D0B c.10.2.1 c 2HJ3 a.24.15.0 a 1Z6I d.118.1.1 d 1YNS c.108.1.22 c

3LX2 d.131.1.0 d 3WI7 c.69.1.0 c 3TVQ d.129.3.6 d 2J5A d.58.14.1 d 1JR8 a.24.15.1 a 2AVD c.66.1.1 c 2JGA c.108.1.21 c

1J2G d.96.1.4 d 1DQY c.69.1.3 c 3DJU d.370.1.1 d 1OGQ c.10.2.8 c 2N8G a.4.1.0 a 1I1N c.66.1.7 c 1EIX c.1.2.3 c

1B9L d.96.1.3 d 1JJF c.69.1.2 c 2DK4 a.140.6.1 a 1K9I d.169.1.1 d 2IW5 a.4.1.3 a 4A1M d.60.1.4 d 1JCQ a.102.4.3 a

3QN0 d.96.1.0 d 1S0X a.123.1.1 a 2F15 b.1.18.21 b 1Q08 a.6.1.3 a 1IUF a.4.1.7 a 2F4M a.189.1.1 a 2A8C c.53.2.1 c

1FB1 d.96.1.1 d 1LVO b.47.1.4 b 2ZL1 d.110.7.1 d 3CT7 c.1.2.0 c 3N2N c.62.1.1 c 1JYH d.60.1.3 d 3TEN c.53.2.0 c

1L5J a.118.15.1 a 1MBM b.47.1.3 b 1JRM d.206.1.1 d 2LMI d.58.7.0 d 1SGM a.4.1.9 a 1AVD b.61.1.1 b 2OHW d.79.8.1 d

1N5Z b.34.2.1 b 3DFL b.47.1.0 b 2A1J a.60.2.5 a 1JX6 c.93.1.1 c 2ARW b.1.2.0 b 2LOY b.88.1.0 b 1T90 c.82.1.0 c

3O5Z b.34.2.0 b 1ARB b.47.1.1 b 1BJ8 b.1.2.1 b 1YXY c.1.2.5 c 1I4W c.66.1.24 c 1Z9H a.45.1.1 a 1YH2 d.20.1.1 d

2AE0 b.52.1.4 b 1NJS c.65.1.1 c 1S5U d.38.1.1 d 1OMO c.2.1.13 c 1KHI b.34.5.2 b 1Y4Y d.94.1.1 d 3M9W c.93.1.0 c

3JWQ a.211.1.2 a 1CDZ c.15.1.1 c 1WU5 a.102.1.0 a 1B0P c.36.1.8 c 2ZVS d.58.1.1 d 1WTJ c.122.1.0 c 1EJF b.15.1.2 b

2O8H a.211.1.0 a 1BBY a.4.5.15 a 1CEM a.102.1.2 a 2BWB a.5.2.1 a 1M98 a.175.1.1 a 1FL9 c.37.1.18 c 2JW8 d.254.1.2 d

1UEK d.14.1.5 d 1KZQ b.6.2.1 b 1BYQ d.122.1.1 d 2NN4 a.272.1.1 a 1G8E a.145.1.1 a 1UVH a.25.1.1 a 1T43 c.66.1.30 c

2RQG a.144.1.1 a 1ZE1 b.122.1.1 b 1O0W a.149.1.1 a 1DAQ a.139.1.1 a 1B7V a.3.1.1 a 1AEP a.63.1.1 a 1NW3 c.66.1.31 c

1B1G a.39.1.1 a 3EOP b.122.1.0 b 4GKF a.70.2.0 a 1S66 d.110.3.2 d 4IZB c.14.1.0 c 1S05 a.24.3.2 a 1VE6 b.69.7.2 b

1IRJ a.39.1.2 a 2FYH d.61.1.0 d 2OEB a.70.2.1 a 2Z6C d.110.3.0 d 4U1A c.14.1.3 c 1YQE c.56.7.1 c 1KKT a.102.2.1 a

2QFB b.88.2.1 b 1JH6 d.61.1.1 d 1GGQ a.24.12.1 a 1PPR a.131.1.1 a 2HEY b.22.1.1 b 1WA8 a.25.3.1 a 1UV6 b.96.1.1 b

1AIR b.80.1.1 b 1U2P c.44.1.0 c 1U9L a.60.4.2 a 1TF7 c.37.1.11 c 4QPY b.22.1.0 b 2KX3 d.15.1.1 d 1TLJ d.282.1.1 d

1Q2V a.129.1.2 a 3JUS a.104.1.0 a 1CLX c.1.8.3 c 3LBS c.94.1.1 c 1EJ2 c.26.1.3 c 4WIP d.15.1.0 d 2Q7F a.118.8.1 a

1P5H c.123.1.1 c 1IZO a.104.1.1 a 2JIE c.1.8.0 c 4YAH c.94.1.0 c 1G71 d.264.1.1 d 3VTV d.15.1.3 d 1YNH d.126.1.7 d

2LGW a.2.3.0 a 2CC3 d.17.4.26 d 2VFW c.101.1.0 c 1L2M d.89.1.4 d 2WZL d.293.1.0 d 2HV7 a.268.1.1 a 1G61 d.126.1.1 d

2X9A b.37.1.0 b 3BAL b.82.1.21 b 1DC7 c.23.1.1 c 1S2M c.37.1.19 c 1RI6 b.69.11.1 b 2ZE5 c.37.1.26 c 4BOF d.126.1.0 d

1LVF a.47.2.1 a 3VNA c.44.3.0 c 2QV0 c.23.1.0 c 1PMI b.82.1.3 b 2KM4 a.118.9.0 a 1GFF b.121.5.1 b 1HKS a.4.5.22 a

2YYN a.29.2.0 a 4LHN b.179.1.2 b 1M2E c.23.1.5 c 1IJY a.141.1.1 a 1J1J a.118.16.1 a 1OW5 a.60.1.2 a 2DSO b.68.6.1 b

1GYM c.1.18.2 c 1YAC c.33.1.3 c 3N90 b.80.8.0 b 1Q5Z a.196.1.1 a 1C2Y c.16.1.1 c 3BQ7 a.60.1.0 a 1P4X a.4.5.28 a

1TL2 b.67.1.1 b 2VL6 b.40.4.0 b 2G0Y b.80.8.1 b 1A6J d.112.1.1 d 1IB2 a.118.1.8 a 1SV4 a.60.1.1 a 1E2T d.3.1.5 d

1JFA a.128.1.5 a 1DY2 d.169.1.5 d 1Z8L a.48.2.1 a 1FLG b.70.1.1 b 2OWI a.91.1.0 a 3C90 a.204.1.4 a 3MH8 b.125.1.0 b

1RQP b.141.1.1 b 1O7I b.40.4.3 b 1B79 a.81.1.1 a 2BTD a.208.1.0 a 2JM5 a.91.1.1 a 1P15 c.45.1.2 c 2GBZ c.55.3.0 c

1K40 a.24.14.1 a 2OX8 d.169.1.0 d 1E2A a.7.2.1 a 1PD3 a.30.3.1 a 1BK5 a.118.1.1 a 1FPZ c.45.1.1 c 1HJR c.55.3.6 c

1I1I d.92.1.5 d 2OMD d.41.5.0 d 4FD9 b.11.1.0 b 4TUM d.211.1.0 d 3BWT a.118.1.0 a 1YZ4 c.45.1.0 c 1HI9 c.99.1.1 c

1Q1R c.3.1.5 c 3B5H b.1.1.4 b 1ZOX b.1.1.0 b 1L6Z b.1.1.1 b 1HDM b.1.1.2 b 2KZF d.52.7.0 d 1TV7 c.1.28.3 c

2HKQ b.34.10.1 b 3DKU d.113.1.0 d 1EYY c.82.1.1 c 1K32 b.36.1.3 b 1F05 c.1.10.1 c 1YAV d.37.1.1 d 1J5S c.1.9.8 c

1F5M d.110.2.1 d 2D0O c.8.6.1 c 4JN6 a.5.7.0 a 3TSV b.36.1.0 b 1LFW c.56.5.4 c 3FV6 d.37.1.0 d 1J2T c.125.1.1 c

1TJN c.92.1.3 c 1RYA d.113.1.5 d 1RLM c.108.1.10 c 1WH1 b.36.1.1 b 1OBR c.56.5.2 c 4P5U c.1.9.12 c 1WLG b.152.1.1 b

3ES6 b.1.18.23 b 1HVX b.71.1.1 b 1FIQ d.41.1.1 d 2A18 d.58.56.1 d 3DH1 c.97.1.0 c 1K5D c.10.1.2 c 1KRM c.1.9.1 c

1B49 d.117.1.1 d 1MLA c.19.1.1 c 2HHL c.108.1.16 c 4OX8 d.58.56.0 d 3QKG b.60.1.0 b 3O15 c.1.3.1 c 1J6Q b.40.9.1 b

4QT4 c.56.3.0 c 1W91 b.71.1.2 b 3ESQ c.108.1.19 c 1PWE c.79.1.1 c 1S7O a.4.13.3 a 1ISF c.23.14.3 c 2IWM d.153.1.3 d

2AKJ d.58.36.1 d 1AO6 a.126.1.1 a 1FJR b.102.1.1 b 1JYO d.198.1.1 d 1J26 d.50.4.1 d 1XFK c.42.1.1 c 1ABV a.70.1.1 a

2FZP d.345.1.1 d 3KT9 b.26.1.0 b 2J49 d.379.1.1 d 1A0B a.24.10.1 a 2EBF a.296.1.1 a 1S57 d.58.6.1 d 1AHS b.19.1.1 b

1ATJ a.93.1.1 a 1ECM a.130.1.1 a 1BG8 a.57.1.1 a 1HX3 d.113.1.2 d 2DUK d.113.1.1 d

Table 9.2: Gold standard dataset of selected structures, one for each SCOP class.
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3-letter code
SC-S1 SC-S2

r a r a

CYS 7.0 0.85 7.25 0.85

ILE 7.75 0.9 7.75 0.85

SER 6.5 0.9 7.0 0.85

GLN 7.25 0.95 7.75 1.0

LYS 7.5 0.9 8.0 1.0

TRP 8.0 0.95 9.0 0.6

PRO 7.0 0.85 7.5 1.0

THR 6.75 0.85 7.0 1.0

PHE 7.75 0.85 8.25 0.9

ALA 7.0 0.85 7.0 0.85

GLY 6.75 1.0 6.75 1.0

HIS 7.25 0.8 8.0 0.95

ASN 6.75 0.95 7.25 1.0

LEU 7.75 0.9 7.75 0.85

ARG 7.75 0.95 8.5 1.0

ASP 6.75 0.95 7.25 0.9

VAL 7.5 0.85 7.5 0.9

GLU 7.0 0.95 7.5 1.0

TYR 7.75 0.85 8.75 0.85

MET 7.5 1.0 8.0 1.0

Table 9.3: Optimal search space paramaters for SphereCon SC-S1 and SC-S2.

DNA contacts (%) Ligand contacts (%) Protein contacts (%) Core (%) Surface (%)

cancer germline 4.5 19.4 31.6 26.9 17.6

100 random samples

from cancer germline (mean ± s.d.) 1.2± 0.4 5.8± 0.7 32.8± 1.5 30.6± 1.5 29.7± 1.9
(mean ± s.d.)

cancer somatic 4.3 13.3 31.5 25.9 24.9

100 random samples

from cancer somatic (mean ± s.d.) 1.4± 0.2 8.6± 0.3 29.5± 0.5 27.4± 0.6 33.2± 0.6
(mean ± s.d.)

non-cancer diseases 2.8 12.7 24.5 42.0 18.0

100 random samples

from non-cancer diseases (mean ± s.d.) 1.6± 0.1 6.0± 0.1 24.1± 0.3 27.5± 0.3 40.8± 0.3
(mean ± s.d.)

Table 9.4: (from Gress et al., 2017 [152]) Distribution of structural classes in disease-associated
datasets compared to 100 randomly sampled equally sized sets from the sets of common variants
with the same distribution of identified template structures as in the corresponding disease-
associated datasets. Insignificant differences (within four standard deviations) are marked in
red.



B I B L I O G R A P H Y

[1] Francis Crick. “Central Dogma of Molecular Biology.” en. In: Nature
227.5258 (Aug. 1970), pp. 561–563. issn: 1476-4687. doi: 10 . 1038 /

227561a0. url: https://www.nature.com/articles/227561a0 (visited
on 11/06/2019).

[2] “UniProt: a hub for protein information.” In: Nucleic Acids Research
43.Database issue (Jan. 2015), pp. D204–D212. issn: 0305-1048. doi:
10.1093/nar/gku989. url: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC4384041/ (visited on 11/08/2019).

[3] Wolfgang Kabsch and Christian Sander. “Dictionary of protein sec-
ondary structure: Pattern recognition of hydrogen-bonded and geo-
metrical features.” en. In: Biopolymers 22.12 (1983), pp. 2577–2637. issn:
1097-0282. doi: 10.1002/bip.360221211. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/bip.360221211 (visited on 06/19/2019).

[4] J. Michael Word et al. “Visualizing and quantifying molecular goodness-
of-fit: small-probe contact dots with explicit hydrogen atoms11Edited
by J. Thornton.” en. In: Journal of Molecular Biology 285.4 (Jan. 1999),
pp. 1711–1733. issn: 0022-2836. doi: 10.1006/jmbi.1998.2400. url:
http://www.sciencedirect.com/science/article/pii/S0022283698924007

(visited on 11/28/2019).

[5] Vijaya Parthiban, M. Michael Gromiha, and Dietmar Schomburg. “CUP-
SAT: prediction of protein stability upon point mutations.” In: Nucleic
Acids Research 34.Web Server issue (July 2006), W239–W242. issn: 0305-
1048. doi: 10.1093/nar/gkl190. url: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC1538884/ (visited on 02/20/2019).

[6] Douglas E. V. Pires, David B. Ascher, and Tom L. Blundell. “mCSM:
predicting the effects of mutations in proteins using graph-based signa-
tures.” In: Bioinformatics 30.3 (Feb. 2014), pp. 335–342. issn: 1367-4803.
doi: 10.1093/bioinformatics/btt691. url: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC3904523/ (visited on 02/20/2019).

[7] Joost Schymkowitz et al. “The FoldX web server: an online force field.”
In: Nucleic Acids Research 33.Web Server issue (July 2005), W382–W388.
issn: 0305-1048. doi: 10.1093/nar/gki387. url: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC1160148/ (visited on 11/08/2019).

[8] Matthias Rarey et al. “A Fast Flexible Docking Method using an In-
cremental Construction Algorithm.” en. In: Journal of Molecular Biology
261.3 (Aug. 1996), pp. 470–489. issn: 0022-2836. doi: 10.1006/jmbi.1996.
0477. url: http://www.sciencedirect.com/science/article/pii/
S0022283696904775 (visited on 12/03/2019).

127

https://doi.org/10.1038/227561a0
https://doi.org/10.1038/227561a0
https://www.nature.com/articles/227561a0
https://doi.org/10.1093/nar/gku989
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384041/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384041/
https://doi.org/10.1002/bip.360221211
https://onlinelibrary.wiley.com/doi/abs/10.1002/bip.360221211
https://onlinelibrary.wiley.com/doi/abs/10.1002/bip.360221211
https://doi.org/10.1006/jmbi.1998.2400
http://www.sciencedirect.com/science/article/pii/S0022283698924007
https://doi.org/10.1093/nar/gkl190
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538884/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538884/
https://doi.org/10.1093/bioinformatics/btt691
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904523/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904523/
https://doi.org/10.1093/nar/gki387
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1160148/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1160148/
https://doi.org/10.1006/jmbi.1996.0477
https://doi.org/10.1006/jmbi.1996.0477
http://www.sciencedirect.com/science/article/pii/S0022283696904775
http://www.sciencedirect.com/science/article/pii/S0022283696904775


128 bibliography

[9] G.C.P. van Zundert et al. “The HADDOCK2.2 Web Server: User-Friendly
Integrative Modeling of Biomolecular Complexes.” In: Journal of Molecu-
lar Biology 428.4 (2016). Computation Resources for Molecular Biology,
pp. 720 –725. issn: 0022-2836. doi: https://doi.org/10.1016/j.jmb.
2015.09.014. url: http://www.sciencedirect.com/science/article/
pii/S0022283615005379.

[10] Mark James Abraham et al. “GROMACS: High performance molec-
ular simulations through multi-level parallelism from laptops to su-
percomputers.” In: SoftwareX 1-2 (2015), pp. 19 –25. issn: 2352-7110.
doi: https://doi.org/10.1016/j.softx.2015.06.001. url: http:
//www.sciencedirect.com/science/article/pii/S2352711015000059.

[11] Ivan A. Adzhubei et al. “A method and server for predicting damaging
missense mutations.” In: Nature methods 7.4 (Apr. 2010), pp. 248–249.
issn: 1548-7091. doi: 10.1038/nmeth0410-248. url: https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC2855889/ (visited on 02/22/2019).

[12] Mark F Rogers et al. “FATHMM-XF: accurate prediction of pathogenic
point mutations via extended features.” In: Bioinformatics 34.3 (Feb. 2018),
pp. 511–513. issn: 1367-4803. doi: 10.1093/bioinformatics/btx536.
url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860356/
(visited on 11/28/2019).

[13] Yana Bromberg and Burkhard Rost. “SNAP: predict effect of non-
synonymous polymorphisms on function.” In: Nucleic Acids Research
35.11 (June 2007), pp. 3823–3835. issn: 0305-1048. doi: 10.1093/nar/
gkm238. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1920242/
(visited on 11/08/2019).

[14] Vanessa E. Gray et al. “Quantitative Missense Variant Effect Predic-
tion Using Large-Scale Mutagenesis Data.” In: Cell Systems 6.1 (Jan.
2018), 116–124.e3. issn: 2405-4712. doi: 10.1016/j.cels.2017.11.
003. url: http://www.sciencedirect.com/science/article/pii/
S2405471217304921 (visited on 02/19/2019).

[15] Daniel Quang, Yifei Chen, and Xiaohui Xie. “DANN: a deep learn-
ing approach for annotating the pathogenicity of genetic variants.” en.
In: Bioinformatics 31.5 (Mar. 2015), pp. 761–763. issn: 1367-4803. doi:
10.1093/bioinformatics/btu703. url: https://academic.oup.com/
bioinformatics/article/31/5/761/2748191 (visited on 02/19/2019).

[16] Philipp Rentzsch et al. “CADD: predicting the deleteriousness of variants
throughout the human genome.” en. In: Nucleic Acids Research 47.D1

(Jan. 2019), pp. D886–D894. issn: 0305-1048. doi: 10.1093/nar/gky1016.
url: https://academic.oup.com/nar/article/47/D1/D886/5146191
(visited on 02/19/2019).

[17] Bruce Alberts et al. Molecular Biology of the Cell. 4th. Garland Science,
2002. isbn: 978-0-8153-3218-3 978-0-8153-4072-0.

https://doi.org/https://doi.org/10.1016/j.jmb.2015.09.014
https://doi.org/https://doi.org/10.1016/j.jmb.2015.09.014
http://www.sciencedirect.com/science/article/pii/S0022283615005379
http://www.sciencedirect.com/science/article/pii/S0022283615005379
https://doi.org/https://doi.org/10.1016/j.softx.2015.06.001
http://www.sciencedirect.com/science/article/pii/S2352711015000059
http://www.sciencedirect.com/science/article/pii/S2352711015000059
https://doi.org/10.1038/nmeth0410-248
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855889/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855889/
https://doi.org/10.1093/bioinformatics/btx536
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860356/
https://doi.org/10.1093/nar/gkm238
https://doi.org/10.1093/nar/gkm238
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1920242/
https://doi.org/10.1016/j.cels.2017.11.003
https://doi.org/10.1016/j.cels.2017.11.003
http://www.sciencedirect.com/science/article/pii/S2405471217304921
http://www.sciencedirect.com/science/article/pii/S2405471217304921
https://doi.org/10.1093/bioinformatics/btu703
https://academic.oup.com/bioinformatics/article/31/5/761/2748191
https://academic.oup.com/bioinformatics/article/31/5/761/2748191
https://doi.org/10.1093/nar/gky1016
https://academic.oup.com/nar/article/47/D1/D886/5146191


bibliography 129

[18] J. D. Watson and F. H. C. Crick. “The Structure of Dna.” en. In: Cold
Spring Harbor Symposia on Quantitative Biology 18 (Jan. 1953), pp. 123–
131. issn: 0091-7451, 1943-4456. doi: 10.1101/SQB.1953.018.01.020.
url: http : / / symposium . cshlp . org / content / 18 / 123 (visited on
01/21/2020).

[19] Nelson David L et al. Lehninger Principles of Biochemistry. en. Google-
Books-ID: 7chAN0UY0LYC. W. H. Freeman, 2005. isbn: 978-0-7167-4339-
2.

[20] Christian B. Anfinsen. “Principles that Govern the Folding of Protein
Chains.” en. In: Science 181.4096 (July 1973), pp. 223–230. issn: 0036-8075,
1095-9203. doi: 10.1126/science.181.4096.223. url: https://science.
sciencemag.org/content/181/4096/223 (visited on 11/06/2019).

[21] Ken A. Dill and Justin L. MacCallum. “The Protein-Folding Problem, 50

Years On.” en. In: Science 338.6110 (Nov. 2012), pp. 1042–1046. issn: 0036-
8075, 1095-9203. doi: 10.1126/science.1219021. url: https://science.
sciencemag.org/content/338/6110/1042 (visited on 11/06/2019).

[22] Robert L. Baldwin and George D. Rose. “Is protein folding hierarchic?
I. Local structure and peptide folding.” en. In: Trends in Biochemical
Sciences 24.1 (Jan. 1999), pp. 26–33. issn: 0968-0004. doi: 10.1016/S0968-
0004(98)01346- 2. url: http://www.sciencedirect.com/science/
article/pii/S0968000498013462 (visited on 11/07/2019).

[23] Gordon M. Crippen. “The tree structural organization of proteins.”
en. In: Journal of Molecular Biology 126.3 (Dec. 1978), pp. 315–332. issn:
0022-2836. doi: 10.1016/0022-2836(78)90043-8. url: http://www.
sciencedirect.com/science/article/pii/0022283678900438 (visited
on 11/07/2019).

[24] Barry Honig. “Protein folding: from the levinthal paradox to structure
prediction.” en. In: Journal of Molecular Biology 293.2 (Oct. 1999), pp. 283–
293. issn: 0022-2836. doi: 10.1006/jmbi.1999.3006. url: http://
www.sciencedirect.com/science/article/pii/S0022283699930061

(visited on 11/07/2019).

[25] George D. Rose. “Hierarchic organization of domains in globular pro-
teins.” en. In: Journal of Molecular Biology 134.3 (Nov. 1979), pp. 447–
470. issn: 0022-2836. doi: 10.1016/0022-2836(79)90363-2. url: http:
//www.sciencedirect.com/science/article/pii/0022283679903632

(visited on 11/07/2019).

[26] T J Hubbard et al. “SCOP: a Structural Classification of Proteins database.”
In: Nucleic Acids Research 27.1 (Jan. 1999), pp. 254–256. issn: 0305-1048.
url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC148149/
(visited on 11/07/2019).

[27] A. G. Murzin et al. “SCOP: a structural classification of proteins database
for the investigation of sequences and structures.” eng. In: Journal of
Molecular Biology 247.4 (Apr. 1995), pp. 536–540. issn: 0022-2836. doi:
10.1006/jmbi.1995.0159.

https://doi.org/10.1101/SQB.1953.018.01.020
http://symposium.cshlp.org/content/18/123
https://doi.org/10.1126/science.181.4096.223
https://science.sciencemag.org/content/181/4096/223
https://science.sciencemag.org/content/181/4096/223
https://doi.org/10.1126/science.1219021
https://science.sciencemag.org/content/338/6110/1042
https://science.sciencemag.org/content/338/6110/1042
https://doi.org/10.1016/S0968-0004(98)01346-2
https://doi.org/10.1016/S0968-0004(98)01346-2
http://www.sciencedirect.com/science/article/pii/S0968000498013462
http://www.sciencedirect.com/science/article/pii/S0968000498013462
https://doi.org/10.1016/0022-2836(78)90043-8
http://www.sciencedirect.com/science/article/pii/0022283678900438
http://www.sciencedirect.com/science/article/pii/0022283678900438
https://doi.org/10.1006/jmbi.1999.3006
http://www.sciencedirect.com/science/article/pii/S0022283699930061
http://www.sciencedirect.com/science/article/pii/S0022283699930061
https://doi.org/10.1016/0022-2836(79)90363-2
http://www.sciencedirect.com/science/article/pii/0022283679903632
http://www.sciencedirect.com/science/article/pii/0022283679903632
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC148149/
https://doi.org/10.1006/jmbi.1995.0159


130 bibliography

[28] Konstantinos Sousounis et al. “Conservation of the three-dimensional
structure in non-homologous or unrelated proteins.” In: Human Genomics
6.1 (Aug. 2012), p. 10. issn: 1479-7364. doi: 10.1186/1479-7364-6-
10. url: https://doi.org/10.1186/1479- 7364- 6- 10 (visited on
11/07/2019).

[29] Vladimir N. Uversky and A. Keith Dunker. “Understanding Protein Non-
Folding.” In: Biochimica et biophysica acta 1804.6 (June 2010), pp. 1231–
1264. issn: 0006-3002. doi: 10 . 1016 / j . bbapap . 2010 . 01 . 017. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882790/ (visited
on 11/06/2019).

[30] D. E. Koshland. “Application of a Theory of Enzyme Specificity to
Protein Synthesis.” en. In: Proceedings of the National Academy of Sciences
44.2 (Feb. 1958), pp. 98–104. issn: 0027-8424, 1091-6490. doi: 10.1073/
pnas.44.2.98. url: https://www.pnas.org/content/44/2/98 (visited
on 11/06/2019).

[31] Peter E Wright and H. Jane Dyson. “Intrinsically unstructured proteins:
re-assessing the protein structure-function paradigm.” en. In: Journal
of Molecular Biology 293.2 (Oct. 1999), pp. 321–331. issn: 0022-2836. doi:
10.1006/jmbi.1999.3110. url: http://www.sciencedirect.com/
science/article/pii/S0022283699931108 (visited on 11/06/2019).

[32] Christian von Mering et al. “Comparative assessment of large-scale
data sets of protein–protein interactions.” en. In: Nature 417.6887 (May
2002), pp. 399–403. issn: 1476-4687. doi: 10.1038/nature750. url: https:
//www.nature.com/articles/nature750 (visited on 01/29/2020).

[33] Sumeet Agarwal et al. “Revisiting Date and Party Hubs: Novel Ap-
proaches to Role Assignment in Protein Interaction Networks.” In: PLOS
Computational Biology 6.6 (June 2010), pp. 1–12. doi: 10.1371/journal.
pcbi.1000817. url: https://doi.org/10.1371/journal.pcbi.1000817.

[34] C Chothia and A M Lesk. “The relation between the divergence of
sequence and structure in proteins.” In: The EMBO Journal 5.4 (Apr.
1986), pp. 823–826. issn: 0261-4189. url: https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC1166865/ (visited on 11/07/2019).

[35] Kristoffer Illergård, David H. Ardell, and Arne Elofsson. “Structure is
three to ten times more conserved than sequence–a study of structural
response in protein cores.” eng. In: Proteins 77.3 (Nov. 2009), pp. 499–508.
issn: 1097-0134. doi: 10.1002/prot.22458.

[36] Hin Hark Gan et al. “Analysis of Protein Sequence/Structure Similarity
Relationships.” en. In: Biophysical Journal 83.5 (Nov. 2002), pp. 2781–2791.
issn: 0006-3495. doi: 10.1016/S0006- 3495(02)75287- 9. url: http:
//www.sciencedirect.com/science/article/pii/S0006349502752879

(visited on 01/17/2020).

https://doi.org/10.1186/1479-7364-6-10
https://doi.org/10.1186/1479-7364-6-10
https://doi.org/10.1186/1479-7364-6-10
https://doi.org/10.1016/j.bbapap.2010.01.017
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882790/
https://doi.org/10.1073/pnas.44.2.98
https://doi.org/10.1073/pnas.44.2.98
https://www.pnas.org/content/44/2/98
https://doi.org/10.1006/jmbi.1999.3110
http://www.sciencedirect.com/science/article/pii/S0022283699931108
http://www.sciencedirect.com/science/article/pii/S0022283699931108
https://doi.org/10.1038/nature750
https://www.nature.com/articles/nature750
https://www.nature.com/articles/nature750
https://doi.org/10.1371/journal.pcbi.1000817
https://doi.org/10.1371/journal.pcbi.1000817
https://doi.org/10.1371/journal.pcbi.1000817
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1166865/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1166865/
https://doi.org/10.1002/prot.22458
https://doi.org/10.1016/S0006-3495(02)75287-9
http://www.sciencedirect.com/science/article/pii/S0006349502752879
http://www.sciencedirect.com/science/article/pii/S0006349502752879


bibliography 131

[37] Cyrus Chothia and Julian Gough. “Genomic and structural aspects of
protein evolution.” en. In: Biochemical Journal 419.1 (Apr. 2009), pp. 15–28.
issn: 0264-6021. doi: 10.1042/BJ20090122. url: /biochemj/article/
419/1/15/44959/Genomic- and- structural- aspects- of- protein

(visited on 11/07/2019).

[38] Helen M. Berman et al. “The Protein Data Bank.” In: Nucleic Acids
Research 28.1 (Jan. 2000), pp. 235–242. issn: 0305-1048. url: https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC102472/ (visited on 11/08/2019).

[39] Dennis A. Benson et al. “GenBank.” eng. In: Nucleic Acids Research
41.Database issue (Jan. 2013), pp. D36–42. issn: 1362-4962. doi: 10.1093/
nar/gks1195.

[40] Nicholas J Schork, Daniele Fallin, and Jerry S Lanchbury. “Single nu-
cleotide polymorphisms and the future of genetic epidemiology.” In:
Clinical Genetics 58.4 (Oct. 2000), pp. 250–264. issn: 0009-9163. doi:
10.1034/j.1399-0004.2000.580402.x. url: https://onlinelibrary.
wiley.com/doi/full/10.1034/j.1399-0004.2000.580402.x (visited on
11/07/2019).

[41] Lars Feuk, Andrew R. Carson, and Stephen W. Scherer. “Structural
variation in the human genome.” en. In: Nature Reviews Genetics 7.2
(Feb. 2006), pp. 85–97. issn: 1471-0064. doi: 10.1038/nrg1767. url:
https://www.nature.com/articles/nrg1767 (visited on 11/08/2019).

[42] “A global reference for human genetic variation.” In: Nature 526.7571

(Oct. 2015), pp. 68–74. issn: 0028-0836. doi: 10.1038/nature15393. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750478/ (visited
on 11/08/2019).

[43] “A map of human genome variation from population scale sequencing.”
In: Nature 467.7319 (Oct. 2010), pp. 1061–1073. issn: 0028-0836. doi:
10.1038/nature09534. url: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3042601/ (visited on 11/08/2019).

[44] Leonid Kruglyak and Deborah A. Nickerson. “Variation is the spice of
life.” en. In: Nature Genetics 27.3 (Mar. 2001), pp. 234–236. issn: 1546-1718.
doi: 10.1038/85776. url: https://www.nature.com/articles/ng0301_
234 (visited on 11/08/2019).

[45] S. T. Sherry et al. “dbSNP: the NCBI database of genetic variation.” In:
Nucleic Acids Research 29.1 (Jan. 2001), pp. 308–311. issn: 0305-1048. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC29783/ (visited on
02/20/2019).

[46] “A map of human genome variation from population scale sequencing.”
In: Nature 467.7319 (Oct. 2010), pp. 1061–1073. issn: 0028-0836. doi:
10.1038/nature09534. url: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3042601/ (visited on 11/07/2019).

[47] Monkol Lek et al. “Analysis of protein-coding genetic variation in 60,706

humans.” In: Nature 536.7616 (Aug. 2016), pp. 285–291. issn: 0028-0836.
doi: 10.1038/nature19057. url: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC5018207/ (visited on 11/11/2019).

https://doi.org/10.1042/BJ20090122
/biochemj/article/419/1/15/44959/Genomic-and-structural-aspects-of-protein
/biochemj/article/419/1/15/44959/Genomic-and-structural-aspects-of-protein
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102472/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102472/
https://doi.org/10.1093/nar/gks1195
https://doi.org/10.1093/nar/gks1195
https://doi.org/10.1034/j.1399-0004.2000.580402.x
https://onlinelibrary.wiley.com/doi/full/10.1034/j.1399-0004.2000.580402.x
https://onlinelibrary.wiley.com/doi/full/10.1034/j.1399-0004.2000.580402.x
https://doi.org/10.1038/nrg1767
https://www.nature.com/articles/nrg1767
https://doi.org/10.1038/nature15393
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750478/
https://doi.org/10.1038/nature09534
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042601/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042601/
https://doi.org/10.1038/85776
https://www.nature.com/articles/ng0301_234
https://www.nature.com/articles/ng0301_234
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC29783/
https://doi.org/10.1038/nature09534
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042601/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042601/
https://doi.org/10.1038/nature19057
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018207/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018207/


132 bibliography

[48] Tjaart A. P. de Beer et al. “Amino Acid Changes in Disease-Associated
Variants Differ Radically from Variants Observed in the 1000 Genomes
Project Dataset.” In: PLoS Computational Biology 9.12 (Dec. 2013). issn:
1553-734X. doi: 10.1371/journal.pcbi.1003382. url: https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC3861039/ (visited on 11/08/2019).

[49] Tugba G Kucukkal et al. “Structural and physico-chemical effects of
disease and non-disease nsSNPs on proteins.” In: Current Opinion in
Structural Biology. New constructs and expression of proteins / Se-
quences and topology 32 (June 2015), pp. 18–24. issn: 0959-440X. doi:
10.1016/j.sbi.2015.01.003. url: http://www.sciencedirect.com/
science/article/pii/S0959440X15000044 (visited on 09/02/2019).

[50] Marharyta Petukh, Tugba G Kucukkal, and Emil Alexov. “On human
disease-causing amino acid variants: statistical study of sequence and
structural patterns.” In: Human mutation 36.5 (May 2015), pp. 524–534.
issn: 1059-7794. doi: 10.1002/humu.22770. url: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC4409542/ (visited on 11/08/2019).

[51] Nidhi Sahni et al. “Widespread Macromolecular Interaction Perturba-
tions in Human Genetic Disorders.” In: Cell 161.3 (Apr. 2015), pp. 647–
660. issn: 0092-8674. doi: 10.1016/j.cell.2015.04.013. url: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC4441215/ (visited on
11/08/2019).

[52] Johan Henrik Wanscher. “An analysis of Wilhelm Johannsen’s genetical
genotype “term” 1909–26.” en. In: Hereditas 79.1 (1975), pp. 1–4. issn:
1601-5223. doi: 10.1111/j.1601-5223.1975.tb01456.x. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1601-5223.1975.

tb01456.x (visited on 11/08/2019).

[53] Luca Grumolato and Stuart A. Aaronson. “2 - Oncogenes and Signal
Transduction.” In: The Molecular Basis of Cancer (Fourth Edition). Ed. by
John Mendelsohn et al. Fourth Edition. Philadelphia: Content Repository
Only! 2015, 19 –34.e3. isbn: 978-1-4557-4066-6. doi: https://doi.org/10.
1016/B978-1-4557-4066-6.00002-0. url: http://www.sciencedirect.
com/science/article/pii/B9781455740666000020.

[54] David N. Cooper et al. “Where genotype is not predictive of phenotype:
towards an understanding of the molecular basis of reduced penetrance
in human inherited disease.” en. In: Human Genetics 132.10 (Oct. 2013),
pp. 1077–1130. issn: 1432-1203. doi: 10.1007/s00439- 013- 1331- 2.
url: https://doi.org/10.1007/s00439- 013- 1331- 2 (visited on
11/08/2019).

[55] Joanna S. Amberger et al. “OMIM.org: Online Mendelian Inheritance
in Man (OMIM R©), an online catalog of human genes and genetic
disorders.” In: Nucleic Acids Research 43.Database issue (Jan. 2015),
pp. D789–D798. issn: 0305-1048. doi: 10.1093/nar/gku1205. url: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC4383985/ (visited on
11/08/2019).

https://doi.org/10.1371/journal.pcbi.1003382
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861039/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861039/
https://doi.org/10.1016/j.sbi.2015.01.003
http://www.sciencedirect.com/science/article/pii/S0959440X15000044
http://www.sciencedirect.com/science/article/pii/S0959440X15000044
https://doi.org/10.1002/humu.22770
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409542/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409542/
https://doi.org/10.1016/j.cell.2015.04.013
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441215/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441215/
https://doi.org/10.1111/j.1601-5223.1975.tb01456.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1601-5223.1975.tb01456.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1601-5223.1975.tb01456.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1601-5223.1975.tb01456.x
https://doi.org/https://doi.org/10.1016/B978-1-4557-4066-6.00002-0
https://doi.org/https://doi.org/10.1016/B978-1-4557-4066-6.00002-0
http://www.sciencedirect.com/science/article/pii/B9781455740666000020
http://www.sciencedirect.com/science/article/pii/B9781455740666000020
https://doi.org/10.1007/s00439-013-1331-2
https://doi.org/10.1007/s00439-013-1331-2
https://doi.org/10.1093/nar/gku1205
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383985/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383985/


bibliography 133

[56] Maria Jackson et al. “The genetic basis of disease.” In: Essays in Bio-
chemistry 62.5 (Dec. 2018), pp. 643–723. issn: 0071-1365. doi: 10.1042/
EBC20170053. url: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC6279436/ (visited on 01/17/2020).

[57] Stylianos E. Antonarakis and Jacques S. Beckmann. “Mendelian disor-
ders deserve more attention.” en. In: Nature Reviews Genetics 7.4 (Apr.
2006), pp. 277–282. issn: 1471-0064. doi: 10.1038/nrg1826. url: https:
//www.nature.com/articles/nrg1826 (visited on 01/14/2020).

[58] William C. Hahn and Robert A. Weinberg. “1 - Cancer: A Genetic
Disorder.” In: The Molecular Basis of Cancer (Fourth Edition). Ed. by John
Mendelsohn et al. Fourth Edition. Philadelphia: Content Repository
Only! 2015, 3 –18.e1. isbn: 978-1-4557-4066-6. doi: https://doi.org/10.
1016/B978-1-4557-4066-6.00001-9. url: http://www.sciencedirect.
com/science/article/pii/B9781455740666000019.

[59] Hasan Korkaya, April Davis, and Max S. Wicha. “10 - Cancer Stem Cells
and the Microenvironment.” In: The Molecular Basis of Cancer (Fourth
Edition). Ed. by John Mendelsohn et al. Fourth Edition. Philadelphia:
Content Repository Only! 2015, 157 –164.e3. isbn: 978-1-4557-4066-6.
doi: https : / / doi . org / 10 . 1016 / B978 - 1 - 4557 - 4066 - 6 . 00010 -

X. url: http : / / www . sciencedirect . com / science / article / pii /

B978145574066600010X.

[60] Swarnali Acharyya et al. “18 - Invasion and Metastasis.” In: The Molecular
Basis of Cancer (Fourth Edition). Ed. by John Mendelsohn et al. Fourth
Edition. Philadelphia: Content Repository Only! 2015, 269 –284.e2. isbn:
978-1-4557-4066-6. doi: https://doi.org/10.1016/B978-1-4557-4066-
6.00018-4. url: http://www.sciencedirect.com/science/article/
pii/B9781455740666000184.

[61] Douglas Hanahan and Robert A Weinberg. “The Hallmarks of Can-
cer.” en. In: Cell 100.1 (Jan. 2000), pp. 57–70. issn: 0092-8674. doi: 10.
1016/S0092-8674(00)81683-9. url: http://www.sciencedirect.com/
science/article/pii/S0092867400816839 (visited on 11/08/2019).

[62] Douglas Hanahan and Robert A. Weinberg. “Hallmarks of Cancer: The
Next Generation.” en. In: Cell 144.5 (Mar. 2011), pp. 646–674. issn:
0092-8674. doi: 10.1016/j.cell.2011.02.013. url: http://www.
sciencedirect.com/science/article/pii/S0092867411001279 (vis-
ited on 11/08/2019).

[63] Melissa J. Landrum et al. “ClinVar: public archive of interpretations of
clinically relevant variants.” In: Nucleic Acids Research 44.Database issue
(Jan. 2016), pp. D862–D868. issn: 0305-1048. doi: 10.1093/nar/gkv1222.
url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702865/
(visited on 02/20/2019).

[64] F. Sanger, S. Nicklen, and A. R. Coulson. “DNA sequencing with chain-
terminating inhibitors.” en. In: Proceedings of the National Academy of
Sciences 74.12 (Dec. 1977), pp. 5463–5467. issn: 0027-8424, 1091-6490. doi:

https://doi.org/10.1042/EBC20170053
https://doi.org/10.1042/EBC20170053
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279436/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279436/
https://doi.org/10.1038/nrg1826
https://www.nature.com/articles/nrg1826
https://www.nature.com/articles/nrg1826
https://doi.org/https://doi.org/10.1016/B978-1-4557-4066-6.00001-9
https://doi.org/https://doi.org/10.1016/B978-1-4557-4066-6.00001-9
http://www.sciencedirect.com/science/article/pii/B9781455740666000019
http://www.sciencedirect.com/science/article/pii/B9781455740666000019
https://doi.org/https://doi.org/10.1016/B978-1-4557-4066-6.00010-X
https://doi.org/https://doi.org/10.1016/B978-1-4557-4066-6.00010-X
http://www.sciencedirect.com/science/article/pii/B978145574066600010X
http://www.sciencedirect.com/science/article/pii/B978145574066600010X
https://doi.org/https://doi.org/10.1016/B978-1-4557-4066-6.00018-4
https://doi.org/https://doi.org/10.1016/B978-1-4557-4066-6.00018-4
http://www.sciencedirect.com/science/article/pii/B9781455740666000184
http://www.sciencedirect.com/science/article/pii/B9781455740666000184
https://doi.org/10.1016/S0092-8674(00)81683-9
https://doi.org/10.1016/S0092-8674(00)81683-9
http://www.sciencedirect.com/science/article/pii/S0092867400816839
http://www.sciencedirect.com/science/article/pii/S0092867400816839
https://doi.org/10.1016/j.cell.2011.02.013
http://www.sciencedirect.com/science/article/pii/S0092867411001279
http://www.sciencedirect.com/science/article/pii/S0092867411001279
https://doi.org/10.1093/nar/gkv1222
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702865/


134 bibliography

10.1073/pnas.74.12.5463. url: https://www.pnas.org/content/74/
12/5463 (visited on 01/21/2020).

[65] R J Milner and J G Sutcliffe. “Gene expression in rat brain.” In: Nucleic
Acids Research 11.16 (Aug. 1983), pp. 5497–5520. issn: 0305-1048. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC326294/ (visited on
01/09/2020).

[66] S. D. Putney, W. C. Herlihy, and P. Schimmel. “A new troponin T
and cDNA clones for 13 different muscle proteins, found by shotgun
sequencing.” eng. In: Nature 302.5910 (Apr. 1983), pp. 718–721. issn:
0028-0836. doi: 10.1038/302718a0.

[67] Elaine R. Mardis. “Next-Generation Sequencing Platforms.” In: Annual
Review of Analytical Chemistry 6.1 (June 2013), pp. 287–303. issn: 1936-
1327. doi: 10.1146/annurev-anchem-062012-092628. url: https://www.
annualreviews.org/doi/10.1146/annurev- anchem-062012-092628

(visited on 01/21/2020).

[68] “A physical map of the human genome.” en. In: Nature 409.6822 (Feb.
2001), pp. 934–941. issn: 1476-4687. doi: 10.1038/35057157. url: https:
//www.nature.com/articles/35057157 (visited on 01/09/2020).

[69] “Initial sequencing and analysis of the human genome.” en. In: Na-
ture 409.6822 (Feb. 2001), pp. 860–921. issn: 1476-4687. doi: 10.1038/
35057062. url: https://www.nature.com/articles/35057062 (visited
on 01/09/2020).

[70] International Human Genome Sequencing Consortium. “Finishing the
euchromatic sequence of the human genome.” en. In: Nature 431.7011

(Oct. 2004), pp. 931–945. issn: 1476-4687. doi: 10.1038/nature03001.
url: https://www.nature.com/articles/nature03001 (visited on
12/06/2019).

[71] Sara Goodwin, John D. McPherson, and W. Richard McCombie. “Com-
ing of age: ten years of next-generation sequencing technologies.” en. In:
Nature Reviews Genetics 17.6 (June 2016), pp. 333–351. issn: 1471-0064.
doi: 10.1038/nrg.2016.49. url: https://www.nature.com/articles/
nrg.2016.49 (visited on 01/21/2020).

[72] Anton Valouev et al. “A high-resolution, nucleosome position map of
C. elegans reveals a lack of universal sequence-dictated positioning.”
en. In: Genome Research 18.7 (July 2008), pp. 1051–1063. issn: 1088-9051,
1549-5469. doi: 10.1101/gr.076463.108. url: http://genome.cshlp.
org/content/18/7/1051 (visited on 01/21/2020).

[73] Shawn E. Levy and Richard M. Myers. “Advancements in Next-Generation
Sequencing.” In: Annual Review of Genomics and Human Genetics 17.1
(Aug. 2016), pp. 95–115. issn: 1527-8204. doi: 10.1146/annurev-genom-
083115-022413. url: https://www.annualreviews.org/doi/10.1146/
annurev-genom-083115-022413 (visited on 01/09/2020).

https://doi.org/10.1073/pnas.74.12.5463
https://www.pnas.org/content/74/12/5463
https://www.pnas.org/content/74/12/5463
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC326294/
https://doi.org/10.1038/302718a0
https://doi.org/10.1146/annurev-anchem-062012-092628
https://www.annualreviews.org/doi/10.1146/annurev-anchem-062012-092628
https://www.annualreviews.org/doi/10.1146/annurev-anchem-062012-092628
https://doi.org/10.1038/35057157
https://www.nature.com/articles/35057157
https://www.nature.com/articles/35057157
https://doi.org/10.1038/35057062
https://doi.org/10.1038/35057062
https://www.nature.com/articles/35057062
https://doi.org/10.1038/nature03001
https://www.nature.com/articles/nature03001
https://doi.org/10.1038/nrg.2016.49
https://www.nature.com/articles/nrg.2016.49
https://www.nature.com/articles/nrg.2016.49
https://doi.org/10.1101/gr.076463.108
http://genome.cshlp.org/content/18/7/1051
http://genome.cshlp.org/content/18/7/1051
https://doi.org/10.1146/annurev-genom-083115-022413
https://doi.org/10.1146/annurev-genom-083115-022413
https://www.annualreviews.org/doi/10.1146/annurev-genom-083115-022413
https://www.annualreviews.org/doi/10.1146/annurev-genom-083115-022413


bibliography 135

[74] J. C. Kendrew et al. “A Three-Dimensional Model of the Myoglobin
Molecule Obtained by X-Ray Analysis.” en. In: Nature 181.4610 (Mar.
1958), pp. 662–666. issn: 1476-4687. doi: 10.1038/181662a0. url: https:
//www.nature.com/articles/181662a0 (visited on 01/14/2020).

[75] Xiao-chen Bai, Greg McMullan, and Sjors H. W Scheres. “How cryo-
EM is revolutionizing structural biology.” en. In: Trends in Biochemical
Sciences 40.1 (Jan. 2015), pp. 49–57. issn: 0968-0004. doi: 10.1016/j.tibs.
2014.10.005. url: http://www.sciencedirect.com/science/article/
pii/S096800041400187X (visited on 01/17/2020).

[76] Dominika Elmlund and Hans Elmlund. “Cryogenic Electron Microscopy
and Single-Particle Analysis.” In: Annual Review of Biochemistry 84.1
(2015), pp. 499–517. doi: 10.1146/annurev-biochem-060614-034226.
url: https://doi.org/10.1146/annurev-biochem-060614-034226
(visited on 01/17/2020).

[77] Ilkka Lappalainen et al. “dbVar and DGVa: public archives for genomic
structural variation.” In: Nucleic Acids Research 41.Database issue (Jan.
2013), pp. D936–D941. issn: 0305-1048. doi: 10.1093/nar/gks1213. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531204/ (visited
on 02/20/2019).

[78] Simon A. Forbes et al. “COSMIC: somatic cancer genetics at high-
resolution.” In: Nucleic Acids Research 45.Database issue (Jan. 2017),
pp. D777–D783. issn: 0305-1048. doi: 10.1093/nar/gkw1121. url: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC5210583/ (visited on
02/20/2019).

[79] Peter D. Stenson et al. “The Human Gene Mutation Database: towards
a comprehensive repository of inherited mutation data for medical
research, genetic diagnosis and next-generation sequencing studies.”
In: Human Genetics 136.6 (2017), pp. 665–677. issn: 0340-6717. doi: 10.
1007/s00439-017-1779-6. url: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC5429360/ (visited on 02/20/2019).

[80] N. del Toro et al. “Capturing variation impact on molecular interactions
in the IMEx Consortium mutations data set.” en. In: Nature Communica-
tions 10.1 (Jan. 2019), p. 10. issn: 2041-1723. doi: 10.1038/s41467-018-
07709-6. url: https://www.nature.com/articles/s41467-018-07709-
6 (visited on 02/27/2019).
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