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Abstract

Phylogenetic trees are models of the evolutionary relationships among species, with species typically placed
at the leaves of trees. We address the following problems regarding the calculation of phylogenetic trees.
(1) Leaf-labeled phylogenetic trees may not be appropriate models of evolutionary relationships among
rapidly evolving pathogens which may contain ancestor-descendant pairs. (2) The models of gene evolution
that are widely used unrealistically assume that the base composition of DNA sequences does not evolve.
Regarding problem (1) we present a method for inferring generally labeled phylogenetic trees that allow
sampled species to be placed at non-leaf nodes of the tree. Regarding problem (2), we present a structural
expectation maximization method (SEM-GM) for inferring leaf-labeled phylogenetic trees under the general
Markov model (GM) which is the most complex model of DNA substitution that allows the evolution of base
composition. In order to improve the scalability of SEM-GM we present a minimum spanning tree (MST)
framework called MST-backbone. MST-backbone scales linearly with the number of leaves. However, the
unrealistic location of the root as inferred on empirical data suggests that the GM model may be overtrained.
MST-backbone was inspired by the topological relationship between MSTs and phylogenetic trees that was
introduced by Choi et al. (2011). We discovered that the topological relationship does not necessarily hold if
there is no unique MST. We propose so-called vertex-order based MSTs (VMSTs) that guarantee a topological
relationship with phylogenetic trees.
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Kurzfassung

Phylogenetische Bäume modellieren evolutionäre Beziehungen zwischen Spezies, wobei die Spezies typischer-
weise an den Blättern der Bäume sitzen. Wir befassen uns mit den folgenden Problemen bei der Berech-
nung von phylogenetischen Bäumen. (1) Blattmarkierte phylogenetische Bäume sind möglicherweise keine
geeigneten Modelle der evolutionären Beziehungen zwischen sich schnell entwickelnden Krankheitserregern,
die Vorfahren-Nachfahren-Paare enthalten können. (2) Die weit verbreiteten Modelle der Genevolution gehen
unrealistischerweise davon aus, dass sich die Basenzusammensetzung von DNA-Sequenzen nicht ändert.
Bezüglich Problem (1) stellen wir eine Methode zur Ableitung von allgemein markierten phylogenetischen
Bäumen vor, die es erlaubt, Spezies, für die Proben vorliegen, an inneren des Baumes zu platzieren. Bezüglich
Problem (2) stellen wir eine strukturelle Expectation-Maximization-Methode (SEM-GM) zur Ableitung von
blattmarkierten phylogenetischen Bäumen unter dem allgemeinen Markov-Modell (GM) vor, das das kom-
plexeste Modell von DNA-Substitution ist und das die Evolution von Basenzusammensetzung erlaubt. Um
die Skalierbarkeit von SEM-GM zu verbessern, stellen wir ein Minimale Spannbaum (MST)-Methode vor,
die als MST-Backbone bezeichnet wird. MST-Backbone skaliert linear mit der Anzahl der Blätter. Die Tat-
sache, dass die Lage der Wurzel aus empirischen Daten nicht immer realistisch abgeleitet warden kann, legt
jedoch nahe, dass das GM-Modell möglicherweise übertrainiert ist. MST-backbone wurde von einer topolo-
gischen Beziehung zwischen minimalen Spannbäumen und phylogenetischen Bäumen inspiriert, die von Choi
et al. 2011 eingeführt wurde. Wir entdeckten, dass die topologische Beziehung nicht unbedingt Bestand hat,
wenn es keinen eindeutigen minimalen Spannbaum gibt. Wir schlagen so genannte vertex-order-based MSTs
(VMSTs) vor, die eine topologische Beziehung zu phylogenetischen Bäumen garantieren.
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Chapter 1

Introduction

This chapter provides an introduction to phylogenetic trees, explains the limitations of current methods that
are used to infer phylogenetic trees, and highlights the steps taken in this thesis towards inferring phyloge-
netic trees under more realistic models of evolution than those that are commonly used. The phylogenetic
terminology that is introduced in this chapter is explained in detail in Chapter 2.

1.1 What are phylogenetic trees?

The word species is Latin for kind or type. A species is canonically defined as a group of organisms
(individual life forms) that are capable of mating with each other, and giving birth to fertile offspring
(de Queiroz, 2005). Darwin (1859) hypothesized that living species have descended from a common origin.
The only illustration in “The origin of species” depicts a birth-death process that started from ancestral
species that have gone extinct, and proceeded to give rise to living species (see Figure 1.1). How do new
species come to exist?

The information that is necessary for the reproduction of organisms is present in the form of deoxyri-
bonucleic acid (DNA) molecules known as genomes. The Dobzhansky-Muller model of speciation states that
if the members of a species split and form mutually exclusive reproducing populations, then, over gener-
ations of isolated reproduction, each population will independently accumulate changes in their genomes,
and members from separated populations will not be able to successfully reproduce, thus forming distinct
species (Johnson, 2008). Phylogenetic trees are models of how species are related to each other. The process
of speciation enables a hierarchical classification of species. Each level of the hierarchical classification is a
taxonomic rank, with species being the lowest taxonomic rank. The term taxa is used instead of species if
the phylogenetic tree under consideration has a higher taxonomic rank at the leaves instead of species.

All organisms are cellular, and are capable of reproducing on their own via the use of molecules that are
synthesized within their cells (Alberts et al., 2002). Viruses are parasites that cannot replicate on their own;
instead, viruses replicate using the molecules that exist within the cells of the organisms that they infect.
Viruses evolve rapidly and don’t easily fit the species definition. The term taxa is used in this thesis to
describe organisms and viruses that are related via common descent.

The functions of organisms are carried out by ribonucleic acid (RNA) molecules and amino-acid molecules
known as proteins. A characteristic feature of RNA molecules and proteins is that they are synthesized as
linear polymers, and are subsequently modified in order to form functional molecules. Genes are DNA se-
quences that contain the information that specifies the order of RNA monomers and amino-acid monomers
in RNA molecules and proteins, respectively, Epp (1997). Genes that are transcribed into RNA, and subse-
quently translated in protein(s) are called protein-coding genes.

The nucleic acids DNA and RNA are polymers of nucleotides. Each nucleotide is comprised of a sugar
(deoxyribose for DNA, and ribose for RNA) that is attached to a phosphate group, and a nucleobase/base
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Figure 1.1: The only illustration in “The origin of species” by Darwin (1859). Time’s arrow is directed from
bottom to top. Species A through L are ancestral species that are hypothesized to have given birth to living
species. The dashed lines indicate genetic lineages.

(see Figure 1.2). The bases that constitute DNA are Adenine (A), Thymine (T), Guanine (G) and Cytosine
(C). RNA is comprised of the bases Uracil (U), Adenine (A), Guanine (G) and Cytosine (C). Adenine
and Guanine are purines, and Thymine, Uracil and Cytosine are pyrimidines. DNA sequences in genomes
form double-stranded helical structures such that a pyrimidine on one strand pairs with a purine on the
complementary strand (see Figure 1.2) . The base pairs A:T and G:C are referred to as Watson-Crick pairs.

New genes are created by (i) gene duplication, (ii) mutations that transform non-genic genomic regions
to genes, (iii) gene fusion, and (iv) horizontal gene transfer (Andersson et al., 2015).

1.1.1 Gene trees and species trees

A set of genes is said to be homologous if the genes have evolved from a common ancestral gene (see
Figure 1.3 for a set of homologous HIV-1 pol gene sequences). A gene tree is a tree-structured representation
of the evolutionary history of homologous genes. Two evolutionarily related genes are said to have diverged
from a common ancestral gene if the two genes have accumulated distinct mutations when compared to the
common ancestral gene. The branches of a gene tree are scaled in units of DNA substitutions per site.

Homologous genes are either orthologs or paralogs (Koonin, 2005). Orthologous genes are genes from
different species that have diverged from a common ancestral gene. Paralogous genes are genes that have
evolved from a common ancestral gene via gene duplication that is subsequently followed by divergence.

2
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Figure 1.2: The structure and composition of ribonucleic acids (RNA) and deoxyribonucleic acids (DNA)
(Figure adapted from Wikimedia (2017)).

Figure 1.3: A set of orthologous HIV-1 pol gene sequences. The sequences shown above were downloaded
from the HIV sequence database that is hosted at the Los Alamos National Laboratory (HIVLANL). SEAV-
IEW (Galtier et al., 1996) was used to visualize the sequence alignment.
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Figure 1.4: Types of gene conversion: (a) conversion between paralogs located on different chromosomes (b)
conversion between paralogs located on the same chromosome, (c) conversion between alleles. The curved
arrows are directed from donor sequence to the acceptor sequence. The acceptor sequence contains a double-
strand break that is repaired using the donor sequence. The straight arrows are oriented in the direction
of the gene conversion process. The illustration shown above has been adapted with permission from Chen
et al. (2007).

A species tree is a tree-structured representation of the evolutionary history of a set of related species.
Gene trees that are constructed using orthologous genes can help infer the evolutionary relationships of the
species from whose genomes the orthologous genes were sampled.

There are limitations to tree-like models of species relationships. Hybridization and horizontal gene
transfer cannot be represented using species trees. Additionally, gene evolution via recombination cannot be
modeled using gene trees.

1.2 Evolution of GC content
DNA molecules are replicated during cellular reproduction. DNA replication is not an error-free process.
Mutations are changes in the DNA sequence of daughter DNA molecules when compared with the cor-
responding DNA sequence in the parental DNA molecule. Mutations that result in the change of a single
nucleotide are known as point mutations. DNA substitutions are point mutations that change one nucleotide
with another nucleotide.

Methylated Cytosine that spontaneously deaminates to Thymine results in a base pair mismatch (G:C
converts to G:T). Subsequently DNA replication at the site containing G:T in the parental strand would
create one of two distinct base pairs G:C and A:T, respectively, in the daughter strands, consequently
reducing the GC content in one daughter strand. Methylated Cytosine is found in the CpG dinucleotides of
genomes.

Transitions are DNA substitutions where a purine is replaced by a purine (e.g., A is replaced by G),
or a pyrimidine is replaced by a pyrimidine (e.g., C is replaced by T). Each transition event results in a
change in GC content. Transversions are DNA substitutions where a purine is replaced by a pyrimidine
(e.g., A is replaced by T or C), or vice-versa. Transversions do not necessarily change GC content. There
are four possible transitions and eight possible transversions. If each nucleotide substitution was equally
likely then the ratio ti/tv of transitions (ti) to transversions (tv) would be around 0.5. Empirical findings
suggest that ti/tv is around two and four for Drosophila melanogaster (Begun et al., 2007), and Homo sapiens
(Hodgkinson and Eyre-Walker, 2010), respectively. GC content may change because transitions are more
frequent than transversions.

Double-strand breaks (DSB) that occur either as part of meiosis (a type of cell division that is used to
produce the gametes: sperm cells and egg cells) or due to replication errors such as stalled DNA replication,
can result in cell death if left unrepaired. Gene conversion is one of the end products of repairing DSB
using homologous recombination. Gene conversion usually occurs by replacing the sequence in the gene
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that contains the DSB (acceptor sequence) with the sequence from an intact gene (donor sequence) that
is homologous to the acceptor sequence (Chen et al., 2007). Gene conversion can occur between paralogs
or between alleles, i.e., variants of a gene that are found on the same genetic locus (see Figure 1.4). The
repair of the acceptor sequence involves the DNA mismatch repair machinery. Gene conversion is said to
be biased if DNA mismatches are repaired in a manner that is biased towards one purine-pyrimidine pair
over the other. GC-biased gene conversion would increase GC content, whereas AT-biased gene conversion
reduces GC content. GC-biased gene conversion that occurs during meiosis is thought to have contributed
to the non-uniform distribution of GC content along chromosomes (Duret and Galtier, 2009).

1.3 Current approaches for inferring of phylogenetic trees
The commonly used model of evolutionary relationships is a tree with observed species placed at the leaves
and unobserved ancestors placed at branching points. The widely adopted approach to inferring gene trees
involves modeling gene evolution using probabilistic models (Felsenstein, 2003). The probabilistic modeling
approach can be formulated as a combinatorial optimization problem that involves selecting a combination
of phylogenetic tree and model parameters that maximizes the likelihood score. Phylogeny inference via
maximum-likelihood is NP-hard (Chickering, 1996; Roch, 2006; Chor and Tuller, 2006), and the correspond-
ing decision problem is NP-complete.

Leaf-labeled trees may not be appropriate for modeling the relationships among rapidly evolving pathogens
such as viruses that are sampled over similar time-scales as their evolution. Choi et al. (2011) model evolu-
tionary relationships using trees that allow internal nodes to be labeled, and describe a minimum spanning
tree method for constructing generally labeled trees using a clustering algorithm known as Chow-Liu group-
ing. Minimum spanning trees (MSTs) can be computed quickly using fast algorithms (Kruskal, 1956). As
Kalaghatgi et al. (2016b) implemented Chow-Liu grouping, they discovered that Choi et al. (2011)’s proof
of correctness that was based on additive distances was incorrect. Kalaghatgi et al. (2016b) modified a
distance-based clustering method known as neighbor-joining that is popular in the field of phylogeny infer-
ence in order to construct generally labeled trees in a manner that is guaranteed to be correct that distances
are additive. The method introduced in Kalaghatgi et al. (2016b) is called family-joining and is described
in Chapter 3. Kalaghatgi and Lengauer (2017) corrected the proof by Choi et al. (2011) and performed a
detailed analysis of the amount of phylogenetic information that is contained in minimum spanning trees
(see Chapter 4)

Current approaches for inferring phylogenetic trees search through the set of possible phylogenetic trees
in order to find a tree that maximizes the likelihood score. The large computational cost of optimizing
the likelihood score has led to the wide-spread adoption of time-reversible models of gene evolution (Kozlov
et al., 2019; Nguyen et al., 2015; Hohna et al., 2016). It is not possible to identify the location of the root
of a phylogenetic tree under a time-reversible model of evolution (Felsenstein, 1981).Jermiin et al. (2004)
used sequences simulated under a non-stationary model in order to claim that phylogenetic trees inferred
under time-reversible models are systematically biased. The evolutionary history of genes is not known.
Consequently, systematic error in phylogenies inferred using empirical data is determined by measuring the
similarity of distinct gene trees from the same set of species (Naser-Khdour et al., 2019). Systematic error
is inferred if gene sequences tend to be closer to each other on the basis of base composition and not species
relationships. Sheffield et al. (2009) claim to have found evidence for systematic bias in the phylogenetic trees
of beetle mitochondria that were inferred using time-reversible models of sequence evolution. Additionally,
Sheffield et al. (2009) claim to have overcome systematic bias using methods that perform phylogeny inference
under non-stationary models of sequence evolution. Current methods that perform phylogeny inference under
non-stationary models of gene evolution are not scalable, and have not been widely applied (Betancur-R et al.,
2013).

All of the phylogeny inference software that is commonly used makes use of phylogenetic trees with
branch lengths that are scaled in units of substitutions per site. The parameter known as branch length
is utilized to construct time-calibrated phylogenetic trees which are phylogenetic trees with branch lengths
scaled in units of calendar time.
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Figure 1.5: Humans (Homo sapiens) and chimpanzees (Pan trogdolytes) diverged from a common ancestor
(represented as an unfilled circle) around 7 million years ago (MYA). The time-calibrated phylogenetic tree
that is shown above was created using TimeTree (Hedges et al., 2006).

1.4 Time-calibrated phylogenetic trees
The branches of a phylogenetic tree are usually scaled in units of molecular substitutions per site. The rate
at which molecular substitutions take place can be used to scale the branches of a phylogenetic tree in units
of calendar time resulting in the construction of time-calibrated phylogenetic trees. The time-calibrated
phylogenetic tree shown in Figure 1.5 dates the divergence of humans (Homo sapiens) and chimpanzees (Pan
troglodytes) from their most recent common ancestor to a time point around 7 million years ago (Hedges
et al., 2006). Molecular clocks are widely used to construct time-calibrated phylogenetic trees, and are
described below.

The molecular clock hypothesis assumes that the molecular substitution rate (nucleotide substitution
rate or amino-acid substitution rate) is constant (Zukerkandl and Pauling, 1965). Observations of constant
substitution rates of the amino-acid sequences of hemoglobin and cytochrome c among closely related species
provided empirical evidence for the molecular clock assumption (Zukerkandl and Pauling, 1962; Margoliash,
1963).

Each branching point in a phylogenetic tree corresponds to a time point when an ancestral species
diverged into multiple descendant species. Estimates of one or more divergence times are used to calibrate a
molecular clock. Subsequently the calibrated molecular clock is used to scale all branches of the phylogenetic
tree in units of time. Sampling times of rapidly evolving pathogens such as HIV provide an alternate source
of data for calibrating molecular clocks. Models that are used for calibrating molecular clocks are discussed
in Subsection 2.8.3.

1.5 Overview of contributions made in this thesis
The general Markov model (GM; Barry and Hartigan (1987)) is the most complex non-stationary model
of DNA substitutions. In contrast to commonly used models that are parameterized in terms of branch
lengths, the GMmodel is parameterized in terms of transition matrices (also known as conditional probability
distributions). Currently, there is no scalable method for inferring phylogenetic trees under the GM model.
The main contribution of this thesis is to show that MSTs can be used to constrain the search for phylogenetic
trees, thereby allowing the use of more complex models of gene evolution than the models that are widely
used. We used the minimum spanning tree framework to perform phylogeny inference under the GM model.

The total contributions made in this thesis are: (i) a method that models ancestor-descendant relation-
ship among serially sampled pathogens by placing species at ancestor nodes of phylogenetic trees (Kalaghatgi
et al., 2016a), (ii) a rigorous analysis of the relationship between phylogenetic trees and minimum spanning
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trees (Kalaghatgi and Lengauer, 2017), and (iii) a computationally efficient framework for inferring phylo-
genetic trees under the general Markov model (unpublished).

The following parts of the thesis are structured as described below. Chapter 2 gives a technical overview
of current approaches for inferring phylogenetic trees. Chapters 3, 4, and 5 provide detailed description of
each contribution made in this thesis.
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Chapter 2

Background

A brief introduction to some of the graph-theoretic terminology that is used in this thesis is provided in
Section 2.1. Probabilistic models that are used for inferring phylogenetic trees are introduced in Section 2.4.
Approaches to optimize model parameters are discussed in Section 2.5 and Section 2.6. Methods for placing
the root on unrooted phylogenetic trees are discussed in Section 2.8. The chapter concludes with a summary
of the contributions that have been made in this thesis.

2.1 Graph-theoretic terminology
The graph-theoretic notions that are presented here have been adapted from “Data Structures and Network
Algorithms” by Tarjan (1992), and “Phylogeny: discrete and random processes in evolution” by Steel (2016).

Graphs are models of pairwise relationships among objects. Objects are represented by nodes or vertices.
Pairwise relationships between vertices are referred to as edges. Given a set of edges E between vertices in
the set V , a graph G is an ordered pair (V,E).

A graph G is either undirected in which case each edge is an unordered pair of distinct vertices, or G is
directed in which case each edge is an ordered pair of distinct vertices. In order to avoid repeating definitions
for directed graphs and undirected graphs the notation [u, v] is used to either represent an undirected edge
{u, v} or a directed edge (u, v), using the context to resolve the ambiguity. If [u, v] is any edge then u and v
are its ends; [u, v] is said to be incident to u and v, and u and v are said to be incident to [u, v]. If {u, v} is
an undirected edge then u and v are adjacent . A directed edge (u, v) exits u and enters v. An edge [u, u] is
a self-loop.

If v is a vertex in an undirected graph then the degree of v is the number of vertices that are adjacent
to v. If v is a vertex in a directed graph then the in-degree of v is the number of directed edges that enter
v, and the out-degree of v is the number of directed edges that exit v. A vertex v in an undirected graph is
a leaf if the degree of v is one. A vertex v in a directed graph is a leaf if the in-degree of v is one, and the
out-degree of v is zero. Any vertex that is not a leaf is an internal vertex. A terminal edge is an edge that
is incident to a leaf. An internal edge is any edge that is not a terminal edge.

The undirected version of a directed graph can be obtained by replacing each edge (u, v) with the edge
{u, v}. Conversely, the directed version of an undirected graph can be obtained by replacing each edge {u, v}
with the edges (u, v) and (v, u).

An edge-weighted graph is a graph G = (V,E) such that each edge in E is assigned a real number
called the weight of the edge. The edge weights of an edge-weighted graph G = (V,E) are denoted by
w = {we : e ∈ E}. The terms edge length and edge weight are used interchangeably in this thesis. A
spanning tree of a graph G is a connected subgraph of G with no cycles. A minimum spanning tree (MST)
of an edge-weighted undirected graph G is a spanning tree of G with the minimum sum of edge weights.

Contraction of an edge {u, v} in an undirected graph G = (V,E) comprises the following operations: (i)
adding a new vertex w to V , (ii) adding edges {w, n} to E for each n that is adjacent either to u or to v,
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(iii) removing u and v from V , and (iv) removing each edge from E that is incident either to u or to v.
Contraction of an edge (u, v) in an directed graph G = (V,E) comprises the following operations: (i) adding
a new vertex w to V , (ii) adding edges (w, n) to E for each n such that there is an edge in E that enters
n and exits either u or v, (iii) adding edges (n,w) to E for each n such that there is an edge in E that is
exits n and enters either u or v, (iv) removing u and v from V , and (v) removing each edge from E that is
incident either to u or to v.

Vertices a and b are said to be neighbors if there is an edge that is incident to a and b. Given two non-leaf
vertices v and w such that a and b are neighbors of v and w, respectively. v and w are said to swap their
neighbors if a neighbor of w is a neighbor of v, and vice-versa, subsequent to the swap operation.

A path in a graph from vertex v1 to vertex vk is an ordered set of vertices (v1, v2, . . . , vk) such that
[vi, vi+1] is an edge for i ∈ [1, . . . , k− 1]. The path contains vertex vi for i ∈ [1, . . . , k] and edge [vi, vi+1] for
i ∈ [1, . . . , k− 1]. Vertices v1and vk are the ends of the path. An edge [u, v] is contained in a path if there is
an index i ∈ [1, . . . , k − 1] such that [vi, vi+1] equals [u, v]. A path is simple if the vertices contained in the
path are distinct. A path in a directed graph is a cycle if k is greater than one, and vk equals v1, and the
edges in the path are distinct. A path in an undirected graph is a cycle if k is greater than one, vk equals
v1, and the edges in the path are distinct. A graph with no cycles is acyclic. If there is a path from vertex v
to vertex w then w is reachable from v. An undirected path in a directed graph is a path in the undirected
version of the graph. The weighted path length pwT (v1, vk) is the sum of edge weights of the edges that are
contained in the path. The unweighted path length puT (v1, vk) is the number of edges that are contained in
the path.

An undirected graph is connected if every vertex is reachable from every other vertex, and disconnected
otherwise. An undirected graph is said to be complete if each vertex is adjacent to every other vertex. A
tree is a connected undirected graph with no cycles. A disconnected graph is a forest if each component of
the graph is a tree. A directed graph is said to be weakly connected if the undirected version of the graph
is connected. A directed graph is said to be strongly connected if every vertex is reachable from every other
vertex. The diameter of a tree is the largest unweighted path length of all paths in the tree. A rooted tree
T = (V,E) is a directed graph such that the undirected version of T is a tree, and all the edges in E are
directed away from a single vertex known as the root. If v and w are distinct vertices in a rooted tree such
that v is contained in the path from the root to w then v is an ancestor of w, and w is a descendant of v. If
(v, w) is an edge in a rooted tree then v is the parent of w, and w is a child of v. The least common ancestor
(lca) of any pair of distinct vertices u and v is the vertex lcaT (u, v) that is a common ancestor of u and v
such that no descendant of lcaT (u, v) is a common ancestor of u and v.

A tree traversal is the process of visiting each of the vertices in a rooted tree exactly once. A preorder
tree traversal visits parents before children. The postorder tree traversal visits children before parents.

A graph Gs = (Vs, Es) is said to be a subgraph of a graph G = (V,E) if Vs ⊆ V , and Es ⊆ E. A subtree
τv = (Vτv , Eτv ) of a rooted tree T = (V,E) is any weakly connected subgraph of T such that the descendants
in T of each non-leaf vertex in Vτv are contained in Vτv . A subtree τv = (Vτv , Eτv ) is said to be rooted at
vertex v in Vτv if each other vertex in Vτv is a descendant of v. A subtree τv = (Vτv , Eτv ) of an undirected
tree Tu = (V,E) is a connected subgraph of T such that there is exactly one edge {u, v} in ET such that v
is in Vτv and u is in VT \Vτv . The subtree τv of the undirected tree T is said to be rooted at v. The edges of
any subtree are directed away from the root of the subtree.

2.1.1 Phylogenetic trees

A rooted phylogenetic tree T = (V,E) is a rooted tree with two types of vertices in V = {H,L}: hidden
vertices H representing unknown ancestral gene sequences, and labeled vertices L representing observed gene
sequences. An unrooted phylogenetic tree is tree with hidden vertices and labeled vertices. Phylogenetic trees
are assumed to be rooted unless specified otherwise.

A leaf-labeled phylogenetic tree is a phylogenetic tree such that each labeled vertex is a leaf (see Figure
2.1A). A generally labeled phylogenetic tree is a phylogenetic tree such that all leaves are labeled but not all
labeled vertices are leaves (see Figure 2.1B). A generally labeled phylogenetic tree with no hidden vertices is
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A leaf-labeled rooted phylogenetic tree A generally labeled rooted phylogenetic tree

rootA B

Figure 2.1: Types of phylogenetic trees. A leaf-labeled phylogenetic tree is shown in panel A. A generally
labeled phylogenetic tree is shown in panel B. Labeled vertices and unlabeled vertices are represented by
filled circles and unfilled circles, respectively.

a fully labeled phylogenetic tree. The phylogenetic trees that are inferred by majority of current software are
unrooted leaf-labeled phylogenetic trees. Phylogenetic trees are assumed to be leaf-labeled unless specified
otherwise. Ultrametric trees are rooted phylogenetic trees such that each leaf is equidistant from the root.

Given an unrooted phylogenetic tree T = (VT , ET ) and any edge e = {v, w} in ET , consider the subtrees
τv and τw of T that are rooted at v and w, respectively. Let Lτv be the set of labeled vertices in τv, and let
Lτw be the set of labeled vertices in τw. Lτv |Lτw denotes a split in Tu that is induced by the edge e = {v, w}.
Lτv and Lτw are the sides of the split Lτv |Lτw . A split is said to be a trivial split if the cardinality of one
side of the split equals one. Given a rooted tree Tρ, a group of species is said to be monophyletic if the
species are the leaves of a subtree in Tρ.

Given an unrooted phylogenetic tree T = (VT , ET ). The distance between a vertex set Vs ⊂ VT and a
vertex v ∈ VT \Vs is defined as the unweighted path length of the shortest path in T from v to a vertex in
Vs. Given a split Lτv |Lτw that is induced by an edge {v, w} the side Lτv is said to closer to v in comparison
to w. Conversely Lτw is said to be closer to w in comparison to v.

Given any non-leaf vertex u of a rooted tree, let u.l and u.r be the children of u. Consider the subtrees
τu.l and τu.r that are rooted at u.l and u.r, respectively. Without loss of generality (wlog), the subtrees τu.l
and τu.r are said to be the left subtree and the right subtree that subtend from vertex u. The imbalance of
a rooted tree, as quantified using Colless’s index (IC see equation 2.1; Colless (1982)), is a measure of how
differently sized the left subtree and the right subtree that subtend from each non-leaf vertex are, where the
the size of a subtree is the number of leaves that are contained in the subtree.

IC =
∑
u∈H

(|Lτu.l | − |Lτu.r |) (2.1)

Two special cases of phylogenetic trees are described below. A rooted caterpillar is a rooted phylogenetic
tree such that all hidden vertices are contained in a single path (see Figure 2.2 A). A balanced tree is a
rooted phylogenetic tree for which the path from each leaf to the root contains the same number of edges
(see Figure 2.2 B).

The following restrictions are placed on the degrees of vertices in phylogenetic trees. Non-leaf vertices
in rooted phylogenetic trees are restricted to have an out-degree that is at least one. Non-leaf vertices in
unrooted phylogenetic trees are restricted to have a degree that is at least three. A rooted phylogenetic
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Figure 2.2: Imbalance of rooted phylogenetic trees. The tree shown on panel A is least balanced, and is
known as a rooted caterpillar phylogenetic tree. The tree shown on panel B is maximally balanced, and is
called a rooted balanced phylogenetic tree.

tree Tρ = (VTρ , ETρ) is said to be fully resolved if each non-leaf vertex in VTρ has out-degree two. A fully
resolved rooted phylogenetic tree is also referred to as a bifurcating tree. An unrooted phylogenetic tree
T = (VT , ET ) is said to be fully resolved if each non-leaf vertex in VT has degree three. Hidden vertices in
rooted phylogenetic trees with out-degree greater than two are polytomies. A hidden vertex in an unrooted
phylogenetic tree is a polytomy if the degree of the hidden vertex is greater than three. Phylogenetic trees
are assumed to be fully resolved unless specified otherwise.

Edge lengths are numerical values that are assigned to the edges of a phylogenetic tree. Edge lengths are
usually scaled in units of substitutions per site. The edge lengths of a time-calibrated phylogenetic tree are
scaled in units of time. The terms edge and branch are used interchangeably in this thesis. Additionally,
the terms edge length and branch length are also used interchangeably. The term phylogeny as used in this
thesis is short for phylogenetic tree.

We define below two graph operations involving the removal of vertices and the insertion of vertices in
phylogenetic trees with undirected edges. Given a phylogenetic tree T = (VT , ET ) with undirected edges
let t denote the edge lengths of edges in ET . Let vertices u and v be adjacent to a vertex w with degree
two. Suppressing the vertex w involves (i) removing the edges {u,w} and {v, w} from ET , (ii) removing the
vertex w from VT , (iii) adding the edge {u, v} to ET , (iv) removing the edge lengths t{u,w} and t{v,w} from
t, and adding the edge length t{u,v} = t{u,w} + t{v,w} to t. Conversely, inserting a vertex w along an edge
{u, v} in ET at a non-negative distance δ away from u such that δ is smaller than t{u,v} involves (i) adding
w to VT , (ii) removing {u, v} from ET , (iii) adding {u,w} and {v, w} to ET , (iv) removing t{u,v} from t,
and (v) adding t{u,w} = δ and t{v,w} = t{u,v} − δ to t.

Given an unrooted phylogenetic tree T = (VT , ET ) with edge lengths t = {te : e ∈ ET } let e = {a, b} be
an edge in ET and let te in t be the edge length of e. Rooting T along the edge e = {a, b} at a distance d
(such that (s.t.) 0 ≤ δ ≤ t{a,b}) from a involves (i) inserting a vertex ρ at distance δ along e away from a,
(ii) directing all edges in ET away from ρ, and (iii) replacing the length of each undirected edge t{u,v} in t
with t(u,v) = t{u,v} such that ET contains (u, v). Conversely, given a rooted phylogenetic tree T = (VT , ET )
with edge lengths t = {te : e ∈ ET } let ρ in VT be the root of T . Constructing the unrooted version of T
involves (i) replacing each directed edge in ET with the undirected version of the edge, (ii) replacing the
length of each directed edge t(u,v) in t with t{u,v} = t(u,v), and (iii) suppressing the root ρ.

Given a phylogenetic tree T = (VT , ET ) the edge lengths t of edges in ET are denoted by t = {te : e ∈
ET }. An unrooted phylogenetic tree T = (VT , ET ) with edge lengths is equipped with a distance function
dT : VT × VT → R+ over pairs of vertices in VT . The tree-distance dT (u, v) between vertices u and v in VT
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is the weighted path length pwT (u, v). Tree-distances of T are additive in T , and are referred to as additive
distances of T . Tree-distances of a rooted tree T = (V,E) is computed on the basis of the unrooted version
of T . The location of the root can not be recovered using tree-distances.

The topology of a phylogenetic tree T = (VT , ET ) is the graph structure comprising the vertex set VT
and the edge set ET . Edge lengths are not included in the topology of a phylogenetic tree.

2.2 Three ways to score trees: parsimony, likelihood, and tree
length

Phylogeny inference is a combinatorial optimization problem. The three scores that are commonly used
are parsimony, likelihood and tree length. Parsimony and likelihood are character-based scores and are
defined with respect to (wrt) a leaf-labeled phylogenetic tree T = (V = {H,L}, E) and a multiple sequence
alignment XL = {X il : l ∈ L∧ 1 ≤ i ≤ k}, where k is the number of columns in the alignment, and the states
represented by V are characters from alphabet of size a. The number of leaves in T is denoted by n. Tree
length is a distance-based score, where distances are estimates of tree-distances.

The maximum parsimony score is the minimum number of state changes required to generate the states
that are observed at the leaves of a phylogenetic tree. Given an assignment to the states in XH, the total
number of state changes cT (XH|XL) over edges E is computed as

cT (XH|XL) =

k∑
i=1

∑
(u,v)∈E

δ(X iu,X iv)

where δ(x, y) is the Kroenecker delta function that is defined as

δ(x, y) =

{
1 x = y

0 x 6= y

The maximum parsimony score c∗T (XL) is computed by selecting a character assignment XH that mini-
mizes the total number of character changes, i.e.,

c∗T (XL) = argmin
XH

cT (XH|XL) (2.2)

The maximum parsimony score can be computed in time O(na2k) using Fitch’s algorithm (Fitch, 1971).
A maximum parsimony estimate is a phylogenetic tree T and character assignment for hidden states XH
that minimizes the maximum parsimony score. Given a character assignment that minimizes the number of
changes over the edges of a rooted tree, it is possible to change the location of the root without modifying
the maximum parsimony score. Consequently, it is not possible to infer the location of the root using the
maximum parsimony score (Felsenstein, 2003).

The likelihood score is defined on the basis of a probabilistic generative model M . The likelihood score
is computed by (i) conditioning the joint probability distribution over XL wrt observed states XL, and (ii)
marginalizing over the a|H| possible assignments to the hidden states XH. It is often necessary to assume
that each column of XL has been generated independently by a common model in order to have a sufficiently
large sample for estimating model parameters. The likelihood score `T (M |XL) is defined as

`T (M |XL) =

k∏
i=1

∑
X ih:h∈H

P ({X iv : v ∈ V }|M) (2.3)

where P ({X iv : v ∈ V }|M) is the conditional probability distribution over the states in column i of the
sequence alignment. The maximum likelihood score `*T (XL) of a tree T is defined as

`*T (XL) = argmax
M

`T (M |XL)
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The likelihood score can be computed in timeO(na2k) using Felsenstein’s tree pruning algorithm (Felsenstein,
1981). The maximum likelihood estimate (MLE) of phylogenetic trees is the combination of model M and
tree T that maximizes the likelihood score. Likelihood scores can be used to infer the location of the root if
the underlying Markov model is not time-reversible, as is explained in detail in Section 2.4.

The tree length score is a distance-based score that is defined as the sum of edge lengths, where edge
lengths are usually estimated by regressing weighted path lengths on estimates of tree-distances (Desper
and Gascuel, 2002). Tree length can be computed in time O(n), and the estimation of edge lengths via
ordinary-least-squares regression (OLS) can be performed in time O(n2) (Bryant, 1997). A minimum tree
length estimate is the combination of edge lengths and tree that minimizes tree length. Trees that are inferred
based on tree length are unrooted by definition because distances do not generally contain information about
the location of the root.

2.3 Statistical consistency
An estimator is said to be statistically consistent if, given k samples of data that are generated under a
model θ, the estimated model θ̂ converges to the generative model θ as k tends to infinity. Felsenstein (1978)
used a two-state model of evolution to show that the maximum parsimony estimator is not statistically
consistent. On the other hand, the maximum likelihood estimator is statistically consistent (RoyChoudhury,
2014). The minimum tree length estimator is statistically consistent if the distance estimator converges to
tree-distances as sample size k tends to infinity. Developers of distance-based methods use model-based
estimates of tree-distances in order to ensure statistical consistency.
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Figure 2.3: Two hidden Markov models on leaf-labeled rooted phylogenetic trees are shown here. The general
Markov model (GM) is shown in panel A. The GM model is parameterized in terms of transition matrices.
The general time-reversible model (GTR) is shown in panel B. The GTR model is parameterized in terms of
rate matrices. The restrictions that are placed on the rate matrices of the GTR model are shown in panel B.
The observed states of the hidden Markov models are represented by the labeled vertices of the phylogenetic
tree.

2.4 Hidden Markov models on trees

Model-based approaches to phylogenetic tree inference assume that the observed gene sequences have
evolved from a common ancestral sequence according to a tree-structured graphical model. The appeal
of using models for inferring phylogenetic trees is that the parameters of the fitted models enable us to
make statements about the nature of evolutionary processes that have brought about the observed genomic
changes.

The probabilistic models that are used for modeling sequence evolution are hidden Markov models (HMM)
on rooted phylogenetic trees. A HMM M on a phylogenetic tree (T = V,E) specifies the joint probability
distribution over vertices in V . Each nucleobase is assumed to have evolved independently according to
a common model (independent and identically distributed (iid) assumption). Let seq(v) be the sequence
represented by a vertex v, and let X iv be the variable representing the character at site i of seq(v). Let Xv
denote the ordered set (X 1

v ,X 2
v , . . . ,X kv ) of characters in the sequence seq(v) comprising k characters. Let

XL and XH denote the set of sequences for labeled vertices L and hidden vertices H.
Two types of hidden Markov models (HMM) on phylogenetic trees will be discussed in this subsection:

discrete-time HMM (DT-HMM) and continuous-time HMM (CT-HMM). DT-HMM are parameterized in
terms of transition matrices. A square matrix P is a transition matrix if (i) each element of P is non-
negative, and (ii) the sum of elements of each row of P equals one. CT-HMM are parameterized in terms of
rate matrices. A square matrix Q is a rate matrix if (i) each off-diagonal element of Q is non-negative, and
(ii) the sum of elements of each row of Q equals zero.

Barry and Hartigan (1987) introduced a DT-HMM on rooted phylogenetic trees that is referred to as
the general Markov model (GM). The parameters of a GM model MGM = (πρ,P) on a phylogenetic tree
T = (V,E) comprise (i) a root probability distribution π, and (ii) the set of transition matrices P = {Pe :
e ∈ E} (see Figure 2.3A). Each entry P (a, b) of a transition matrix P specifies the conditional probability
of observing state b given state a. The sum of elements of each row of P equals one.

The Markov models that are commonly used for inferring phylogenetic trees are CT-HMM. A continuous-
time hidden Markov model MCT = (πρ,Q, t) on a phylogenetic tree T = (V,E) is parameterized in terms
of (i) a root probability distribution πρ, (ii) the set of rate matrices Q = {Qe : e ∈ E}, and (iii) the set of
edge lengths t = {te : e ∈ E}. The transition matrix Pe for edge e is computed as Pe = eQete .

If a probability distribution πs satisfies the condition that πsQ = 0 then it follows that πsP = πs,
where P = eQt for any non-zero positive t (Steel, 2016). πs is said to be the stationary distribution of
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Q. The summation −Σiπs(i)Q(i, i) is the expected number of substitutions per unit time for a stationary
homogeneous continuous-time Markov process that is defined by the rate matrix Q (Steel, 2016). It is
common to scale Q such that −Σiπs(i)Q(i, i) is equal to one, where πs is the stationary distribution of Q,
because edge lengths are scaled in units of substitutions per site. A rate matrix Q is said to be a normalized
rate matrix if −

∑
i πs(i)Q(i, i) equals one. All the rate matrices that are referred to in the following text

are normalized rate matrices unless specified otherwise.
There are two classes of CT-HMM that will be discussed below. The first class of models are time-

reversible models that are characterized by a property that makes it impossible to identify the location of
the root (Felsenstein, 1981). The second class of models are Lie Markov models; Lie Markov models are
a hierarchical family of Markov models that are closed under matrix multiplication (Sumner et al., 2012;
Woodhams et al., 2015).

2.4.1 Time-reversible models
In the following paragraph we define the three constraints that are commonly placed on CT-HMM on
phylogenetic trees: (i) stationarity, (ii) homogeneity, and (iii) time-reversibility.

Given a CT-HMM MCT = (πρ,Q, t) on a phylogenetic tree T . MCT is stationary if πρQ equals 0 for
each rate matrix Q in Q. MCT is homogeneous if the rate matrices in Q are identical. A stationary and ho-
mogeneous CT-HMM on a phylogenetic tree MCT = (πρ,Q, t) is said to be time-reversible if π(a)P(u,v)(a, b)
equals π(b)P(v,u)(b, a) for each pair of adjacent vertices u, v. Time-reversibility is enforced by constraining
ΠQ to be symmetric for each Q in Q, where Π is a diagonal matrix such that Π(i, i) = π(i). The widely
used general time-reversible (GTR; Tavare (1986)) model is a stationary, homogeneous, and time-reversible
CT-HMM on rooted phylogenetic trees (see Figure 2.3B). The unrestricted model (UNREST; Yang (1994b))
is the stationary and homogeneous CT-HMM on a phylogenetic tree which does not impose any constraints
on the parameters of the rate matrix.

The model parameters of probabilistic models are estimated by maximizing the likelihood score (see
equation 2.3). Time-reversible CT-HMM on rooted phylogenetic trees share the following property that
makes it impossible to infer the location of the root using the likelihood score. Given a time-reversible
CT-HMM MTR = (πρ,Q, t) on a phylogenetic tree Tρ, let T = (VT , ET ) be the unrooted version of Tρ. Let
e = {u, v} be any edge in ET , and let δ be a non-negative number that is smaller than te. Let T e,δρ be the
phylogenetic tree that is constructed by rooting T at distance δ away from vertex u along edge e = {u, v}.
Let Me,δ

TR = (πe,δρ ,Qe,δ, te,δ) be a CT-HMM on T e,δρ such that πe,δρ equals πρ, Qe,δ equals Q, and te,δ is the
set of edge lengths of T e,δρ . The likelihood scores `Tρ(MTR|XH) and `T e,δρ (MTR|XH) are identical for any edge
e in ETu and any non-negative δ that is smaller than te (Felsenstein, 1981). The property of time-reversible
CT-HMM on rooted phylogenetic trees which is that the likelihood score does not depend on the location of
the root is known as Felsenstein’s pulley principle (Felsenstein, 1981).

2.4.2 Lie Markov models

Lie Markov models (Sumner et al., 2012; Fernández-Sánchez et al., 2015; Woodhams et al., 2015) are
a set of nested Markov models that were designed to ensure statistical consistency in case of incomplete
species sampling (see Figure 2.4). It turns out that the GTR model is not statistically consistent if there is
incomplete sampling (Sumner et al., 2012), as explained in detail below.

Consider the following scenario. The gene sequences of four species l1, l2, l3 and l4 have evolved according
a non-homogeneous Markov model (model A in Figure 2.4). However, sequences are only available for species
l1, l2 and l4 because of incomplete sampling (see Figure 2.4 B). The Markov model that is used for inference
is shown in Figure 2.4 C. Assume that each transition matrix shown in Figure 2.4 belongs to a set P of
transition matrices. In order to ensure that the set P of transition matrices is statistically consistent wrt
incomplete sampling, it is necessary that there exists a transition matrix P6 in P such that P6 = P3P5.
Statistical consistency wrt incomplete sampling is guaranteed if P is closed under matrix multiplication.
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Figure 2.4: Panel A shows a non-homogeneous Markov model on a phylogenetic tree with leaves l1through
l4. Sequences are only available for species l1,l2 and l4 because of incomplete sampling (panel B). Let P6 be
a transition matrix such that P6 = P3P5 (panel C).

Continuous-time HMM on trees are more widely used for phylogeny inference than discrete-time HMM
on trees because the parameter known as branch length is used to construct phylogeny-based models such as
the molecular clock (see subsection 2.8.3). Consequently, the development of Lie Markov models has been
restricted to CT-HMM (Sumner et al., 2012; Fernández-Sánchez et al., 2015; Woodhams et al., 2015).

Let eQ3t3 and eQ5t5 be continuous-time realizations of the transition matrices P3 and P5 that are shown
in Figure 2.4. Let the rate matrices Q3 and Q5 belong to a set Q of rate matrices. The set Q of rate matrices
is said to form a Lie algebra (Steel, 2016) if

1. Each matrix in Q is closed under addition and scalar multiplication, and

2. The matrix commutator [Q1, Q2] := Q1Q2 −Q2Q1 for each matrix pair in Q is closed.

An operation on a set S is said to be closed if the operation on elements in S always maps to elements in S.

If a set Q of rate matrices form a Lie algebra then, according to the Baker-Campbell-Hausdoff formula
(Campbell, 1987) it follows that for each pair of rate matrices Q1, Q2in Q there exists a rate matrix Q3 in
Q such that

eQ1t1+Q2t2 = eQ3t3 (2.4)

Thus, in order to ensure statistical consistency for the case of incomplete sampling, it suffices that the rate
matrices that are used to parameterize a CT-HMM on a phylogenetic tree belong to a set of rate matrices
that form a Lie algebra.

Fernández-Sánchez et al. (2015) constructed a hierarchy of 37 Lie Markov models such that the rate
matrix of each Lie Markov model is a linear combination of a common set of basis matrices (see Figure 2.5).
A rate matrix QLiethat forms Lie algebra can be expressed as Q = ΣαiBi where Bi is a basis matrix and αi is
a non-negative weight. Consequently, each element of a rate matrix that forms Lie algebra can be expressed
as a linear combination of weights. The nomenclature of Lie Markov models is explained below using the
example RY5.6B that is listed in Woodhams et al. (2015). The columns of rate matrix QRY 5.6b are indexed
A, G, C, T. The first two columns are indexed with purines, and the latter two columns are indexed with
pyrimidines. The Lie Markov models have been developed with nucleotide-pair symmetry in mind. The
model RY5.6B has purine/pyrimidine (RY) symmetry which will be explained later in this subsection. Note
that in contrast to the convention of having the rows of rate matrices sum to 0, as has been adopted in this
thesis, the convention used in the development of Lie Markov models is to have the columns of rate matrices
sum to 0. The rate matrix QRY 5.6b is constructed as the linear combination aA+ a2A2 + dD+ e1E1 + e2E2

QRY 5.6b =


−3a+ d+ e1 a+ 2a2 + d+ e1 a-a2 + d+ e1 a− a2 + d+ e1

a+ 2a2 + d− e1 −3a+ d-e1 a− a2 + d-e1 a-a2 + d-e1
a− a2 − d+ e2 a− a2 − d+ e2 −3a− d+ e2 a+ 2a2 − d+ e2
a− a2 − d− e2 a− a2 − d− e2 a+ 2a2 − d− e2 −3a− d− e2

 (2.5)
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Figure 2.5: The set of Lie Markov models that have been developed by Sumner et al. (2012) and Fernández-
Sánchez et al. (2015) (Figure adapted from Woodhams et al. (2015)). Arrows are directed from special
models to more general models. Alternate names of models are shown in parentheses. Model 12.12 is the
GM model. The use of dotted lines and solid lines is for visual clarity. The nucleotide pairing symmetry that
is inherent in each Lie Markov model is not shown in the model name. Boxes that are shaded do not have
distinct RY, WS or MK variants. The shape of the box that outlines model names represents constraints on
the stationary distribution of the Lie Markov model.
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where A,A2, D,E1and E2 are basis matrices, and a, a2,d, e1 and e2 are non-negative weights. The number 5
in the model name 5.6b indicates the number of free parameters of the model. Rate matrices are constrained
to have non-negative entries in their off-diagonal element. Fernández-Sánchez et al. (2015) add a non-
negativity constraint, e.g., a + 2a2 + d + e1 ≥ 0, for each off-diagonal element. The inequality constraints
define a convex polyhedral cone, enabling a reparameterization of the off-diagonal entries of the rate matrix
as a convex combination of the rays (linearly independent vectors) of the convex polyhedral cone. A set S of
vectors is said to be linearly independent if the no vector v in the set can be derived as a linear combination of
S\v.The number 6 in the model name is the number of linearly independent vectors of the convex polyhedral
cone. The reparameterized version of QRY 5.6b is given below

QRY 5.6b =


∗ α+ ρA β + ρA β + ρA

α+ ρG ∗ β + ρG β + ρG
β + ρC β + ρC ∗ α+ ρ
β + ρT β + ρT α+ ρT ∗

 (2.6)

where ∗ is set such that each column sums to zero. Note that any modification of the index of the rate matrix
that preserves purine/pyrimidine grouping will result in a row and column permutation operation such that
there is no change in the resulting rate matrix (Woodhams et al., 2015). The suffix “b” in the model name
is used to distinguish between multiple rate matrices that share the same number of free parameters, and
the same number of parameters in the reparameterized versions.

In addition to purine/pyrimidine grouping {{A,G},{C,T}}, two additional groupings have been devel-
oped: {{A,T},{G,C}} which is denoted by WS, and {{A,C},{G,T}} which is denoted by MK (Woodhams
et al., 2015). R, Y, W, S, M, and K are the IUPAC ambiguity codes for the pairs: {A,G}, {C,T}, {A,T},
{G,C}, {A,C}, {G,T}. Six out of 37 Lie Markov models are identical wrt RY, WS, and MK grouping. In
total there are 99 Lie Markov models that have been implemented in IQ-TREE v1.6.1 (Nguyen et al., 2015)
and BEAST v2.0 (Bouckaert et al., 2014).

2.4.3 Mixture models that account for heterogeneous rate of substitutions across
sites

Base-pair substitutions have been observed to occur at different rates across sites. For example, nucleotides in
the third codon position are substituted more frequently than the nucleotides in the first two codon positions
because of redundancy in the genetic code at the third codon position. There is a family of models that
is commonly modeled to account for site-heterogeneity in substitution rates comprising: (i) the invariable
sites model (I) restricts a proportion of sites to be invariable by setting edge lengths to zero (Steel et al.,
2000), (ii) a mixture model that draws rates from a discrete Gamma distribution Γk with k classes (Yang,
1994a), and (iii) a mixture model Rk that allows k rates to vary independently instead of constraining the
rates to be drawn from the same probability distribution (Yang, 1995). The free-rate model is known as the
discrete-rate CAT model as implemented in FastTree.

2.5 Tree-search under continuous-time HMM on trees
Let `∗Tρ(D) = argmax

M
`Tρ(M |D) denote the maximum likelihood score of a phylogenetic tree Tρ. The

maximum likelihood (ML) problem is the combinatorial optimization problem of finding a phylogenetic tree
Tρ such that `∗Tρ(D) is maximum. The total number of distinct rooted phylogenetic trees with n leaves is∏n−2
i=0 (2i + 1) for n ≥ 2 (Felsenstein, 2003). The total number of distinct unrooted phylogenetic trees with

n leaves is
∏n−3
i=0 (2i+ 1) for n ≥ 3 (Felsenstein, 2003).

The general approach to approximate the ML problem is to compute initial trees using fast approaches
such as neighbor-joining (Saitou and Nei, 1987) or stepwise addition (Wagner, 1961). Subsequently, the tree
space is explored via tree modification operations such that incremental improvements to `∗Tρ(D) are smaller
than a threshold that is specified a priori . Tree modification operations that are used in practice are nearest
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Figure 2.6: Nearest neighbor interchange (NNI) moves for unrooted phylogenetic trees operating on the edge
{v, w}.

neighbor interchange (NNI) , subtree prune and regraft (SPR), and tree bisection and reconnection (TBR)
Steel (2016).

Tree modification operations on unrooted phylogenetic trees are described below because the majority of
software implement time-reversible CT-HMM on phylogenetic trees. Tree modification operations on rooted
phylogenetic trees are not described in this thesis.

2.5.1 Searching through tree space

A nearest neighbor interchange (NNI) move involves swapping the neighbors of adjacent non-leaf vertices.
An NNI move on an unrooted phylogenetic tree T = (VT , ET ) is defined with respect to any edge {v, w} in
ET that is not incident to a leaf, and neighbors nv of v and nw of w, respectively. The two possible NNI
moves involving an edge {v, w} are shown in Figure 2.6.

A subtree prune and regraft (SPR) move involves removing (pruning) a subtree and inserting (grafting)
the subtree at a new location. An SPR move on an unrooted phylogenetic tree T = (VT , ET ) is defined
with respect to a subtree τv = (Vtv , Eτv ) of T , an edge {y, z} in ET \Eτv , and a non-negative distance d
smaller than t{y,z}. Given a subtree τv, an edge e = {y, z}, and a distance d, an SPR move involves the
following steps (i) removing the edge {v, w} in ET such that w is not in Vτv , (ii) suppressing the vertex w,
(iii) selecting an edge e = {y, z} in ET \Eτv , (iv) adding a vertex x at a feasible distance d from y along the
edge e, and (v) adding the edge {v, x} to ET resulting in a connected graph.

A tree bisection and reconnection (TBR) move involves removing an edge and connecting the subsequently
disconnected components by a newly added edge. A TBR move on an unrooted phylogenetic tree T = (V,E)
that removes edge {v, w} in E is performed as follows. The edge {v, w} in E is removed resulting in the
construction of connected components Cv = (VCv , ECv ) containing v, and Cw = (VCw , ECw) containing w,
respectively. Subsequently vertices v and w are suppressed. Finally two edges ev = (yv, zv) in ECv , and
ew = (yw, zw) in ECw are selected. A new vertex v′ is inserted along ev at distance dv away yv, and a new
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Figure 2.7: A subtree prune and regraft (SPR) move on an unrooted phylogenetic tree. The SPR move
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Figure 2.8: A tree bisection and reconnection (TBR) move on an unrooted phylogenetic tree. The TBR
move shown above involves removing the edge colored in orange and adding the edge colored in blue.
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vertex w′ is inserted along ew at distance dw away yw. Finally the edge {v′, w′} is added to Eu (see Figure
2.8).

The tree space of rooted phylogenetic trees can be explored using modified versions of the NNI, SPR and
TBR moves described above, and are not explained in detail in this thesis.

Parameter optimization is performed alongside tree modification operations. Approaches for optimizing
the parameters of CT-HMM on phylogenetic trees are described in the following Subsection.

2.5.2 Optimizing the parameters of CT-HMM on phylogenetic trees
The parameters of CT-HMM on phylogenetic trees include the free parameters of rate matrices and edge
lengths. Optimization of the parameters mentioned above involves increasing the likelihood score such that
incremental changes to the likelihood score are below a threshold that is specified a priori . A commonly
adopted strategy is to iteratively optimize rate matrix parameters for fixed edge lengths, and optimize edge
lengths for fixed rate matrix parameters (Yang, 2000). Edge lengths are usually optimized sequentially using
Brent’s method or Newton-Raphson’s method (Bryant et al., 2005; Nocedal and Wright, 2006).

The task of computing the likelihood score (equation 2.3) is computationally demanding. The likelihood
score can be computed in O(nkA2) using a dynamic programming algorithm (Felsenstein’s tree pruning
algorithm) where n is the number of leaves in the phylogenetic tree, k is the number of columns in the
sequence alignment, and A is the number of states in the HMM which is four for DNA substitution models
(Felsenstein, 1981).

The tree pruning algorithm computes the likelihood score in equation 2.3 as follows. The conditional
likelihood Liu(x) of observing character x at base pair (site) i at an unlabeled vertex u is computed recursively
as

Liu(x) =

(∑
y

P(u,v)(y|x)Liv(y)

)(∑
z

P(u,w)(z|x)Liw(z)

)
(2.7)

where v and w are the children of u. The conditional likelihood vector Liu is the marginal probability

Liu =
∑

X ih:h∈Hτu\{u}

P ({X iv : v ∈ Vτu},Mτu)

where Hτu is the set of hidden vertices in the subtree τu = (Vτu , Eτu) that is rooted at vertex u. Mτu is the
set of transition matrices Mτu = {Pe : e ∈ Eτu} The conditional likelihood vector Liu at a leaf u is defined
as follows. Let X il be the character that is observed at site i of the sequence that is represented by leaf l.

Lil(x) =

{
0 x 6=X il
1 x = X il

The likelihood score Li for site i is computed as

Li =
∑
x

πρ(x)Liρ(x),

where ρ is the root. Under the iid assumption the total likelihood score L is given by L = ΠiL
i. The log

likelihood score ` is computed instead of the likelihood score in order to avoid numerical underflow.

` =

k∑
i=1

logLi

The computational burden of computing the log likelihood score is high. One technique that is commonly
used to reduce computational burden is to compute site likelihood scores Li for sites with distinct site
patterns.
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The site pattern for site (base pair) i is the ordered set of characters (X il : l ∈ LT ) that are present in a
column of a multiple sequence alignment. Identical site patterns have identical likelihood scores (Felsenstein,
1981). It is standard practice to compute conditional likelihood vectors for each unique site pattern, and
reuse conditional likelihood vectors for each repeated site pattern (Felsenstein, 1981).

` =
∑
i

wi logLi

where wi is the number of times that site pattern i repeats.
Additionally, conditional likelihood vectors are rescaled in order to avoid numerical underflow, and log

transformed values of scaling factors are added to the log likelihood score (Yang, 2000).
The task of optimizing the lengths of newly added edges, and the lengths of edges that are modified sub-

sequent to a tree modification operation is made less computationally demanding by reusing the conditional
likelihood vectors (see equation 2.7) that correspond to the root vertices of subtrees that are unchanged
subsequent to the tree modification operation.

A commonly used compute-time saving technique is to use a fast-to-compute score that can be used to
avoid tree-rearrangements that are likely to reduce the likelihood score (Hordijk and Gascuel, 2005). The
alternative criterion that is used instead of maximum likelihood is minimum evolution. The score that is
optimized by minimum evolution is tree length.

The parameters of rate matrices are optimized using quasi-Newton methods such as Broyden-Fletcher-
Goldfarb-Shano (Fletcher, 1987; Yang, 2000) or gradient-free methods such as Powell’s method (Powell,
1964; Holder et al., 2008). The computational burden of optimizing the parameters of the rate matrix of a
homogeneous CT-HMM on a phylogenetic tree Tρ = (VTρ , ETρ) cannot be reduced by reusing conditional
likelihood vectors subsequent to each tree-modification operation because a change to any entry of a rate
matrix parameter results in a change in the transition matrix for each edge in ETρ . In practice the free
parameters of the rate matrix are optimized infrequently after a considerable number of tree modification
operations have been performed (Sullivan et al., 2005). The use of non-homogeneous CT-HMM further
increases the number of rate matrix parameters that need to be estimated. A brief overview of methods that
perform phylogeny inference under non-stationary non-homogeneous Markov models are presented below.

Galtier and Gouy (1998) introduced a non-stationary non-homogenous CT-HMM that allows base com-
position to vary over each the edges of a phylogenetic tree. Boussau and Gouy (2006) implemented a tree
search algorithm called nhPhyML that searches for maximum likelihood phylogenetic trees under the Galtier
and Gouy (1998) model. Yang and Roberts (1995) implemented a non-homogenous CT-HMM such that the
rate matrix for each edge is a rate matrix of the HKY model. Additionally, Yang and Roberts (1995)
allowed base composition to vary across edges. p4 (Foster, 2004), PHASE (Gowri-Shankar and Rattray,
2007), and PhyloBayes (Blanquart and Lartillot, 2006) perform Bayesian inference via Markov chain Monte
Carlo (MCMC) sampling under non-stationary non-homogeneous CT-HMM. Jayaswal et al. (2005) provide
a method for fitting the general Markov model which takes as input an unrooted phylogenetic tree. In recent
work Williams et al. (2015) developed a MCMC sampling scheme for inferrinxg phylogenetic trees under
non-reversible, and non-homogenous CT-HMM. None of the methods mentioned above are applicable to
large data sets comprising more than 1000 species.

The CT-HMM that are currently implemented by most of the widely used software are stationary, ho-
mogeneous, and time-reversible (RAxML-NG (Kozlov et al., 2019), PhyML (Guindon et al., 2010), FastTree
(Price et al., 2010), RevBayes (Hohna et al., 2016) and BEAST v1.10 (Suchard et al., 2018)). IQ-TREE
v1.6.1 (Nguyen et al., 2015) and BEAST v2.0 (Bouckaert et al., 2014) implement Lie Markov models and
time-reversible models that are not Lie Markov models, such as the GTR model. Bettisworth and Stamatakis
(2020) described a method called RootDigger for placing the root on an unrooted tree using the UNREST
model.

Popular programs that perform model selection for DNA substitution models such as ModelTest-NG
(Darriba et al., 2020), ModelFinder (Kalyaanamoorthy et al., 2017) and Smart Model Selection (Lefort
et al., 2017) evaluate the GTR model, and special cases of the GTR model such as the Tamura-Nei 93 model
(TN93; Tamura and Nei (1993)) and the Hasegawa-Kishino-Yano 85 model (HKY85; Hasegawa et al. (1985)).
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IQ-TREEv1.6.1 (Nguyen et al., 2015) performs model selection using Lie Markov models and time-reversible
models that are not Lie Markov models, such as the GTR model.

It is common practice to select the most appropriate CT-HMM on phylogenetic trees using criteria such
as Akaike information criterion (AIC; Akaike (1974)), and Bayesian information criterion (BIC; Schwarz
(1978)), which are defined as

AIC = −2 log−likelihood + 2m (2.8)

BIC = −2 log−likelihood +m log k, (2.9)

where m is the number of free parameters and k is the number of observations. The number of observations
equals the number of alignment columns.

2.5.3 Matrix exponentiation of rate matrices
It is necessary to exponentiate rate matrices in order compute the likelihood score using CT-HMM. The wide
use of time-reversible CT-HMMs models is commonly justified on the basis of mathematical convenience
because it is always possible to exponentiate time-reversible rate matrices using eigenvalue decomposition
(Felsenstein, 2003). This is because (i) given a time-reversible rate matrix Q, the matrix ΠQ is symmetric
where the diagonal matrix Π has the stationary distribution of Q as its diagonal elements, (ii) symmetric
matrices with real entries are guaranteed to be diagonalizable such that the diagonal matrix comprises
real numbers (Golub and Van Loan, 1996), (iii) it is mathematically easy to exponentiate diagonalizable
matrices that contain real numbers as explained below. We explain how time-reversible rate matrices are
exponentiated using the derivation given by Bryant et al. (2005). Given a time-reversible rate matrix Q
construct the matrix Π1/2QΠ−1/2, which is symmetric because it can be constructed by multiplying the
symmetric matrix Π−1/2 to the left of ΠQ, and multiplying Π−1/2 to the right of Π1/2Q. Diagonalize
Π1/2QΠ−1/2 as BDB−1. Note that Q can be factorized as ADA−1 where A is Π−1/2B. Compute the
matrix exponential eQ using the Taylor series expansion as follows.

eQ =

∞∑
k=0

(Q)k

k!

=

∞∑
k=0

(Q)k

k!

=

∞∑
k=0

(
ADA−1

)k
k!

=

∞∑
k=0

(
ADA−1ADA−1 . . . ADA−1

)
k!

(there are k ADA−1 terms)

=

∞∑
k=0

(
ADkA−1

)
k!

= A

( ∞∑
k=0

Dk

k!

)
A−1

= AeDA−1

where the matrix exponential of a diagonal matrix D is the diagonal matrix with the scalar exponential edi
as the ith diagonal entry where di is the ith diagonal entry of D. ΠQ is not necessarily symmetric if the
rate matrix is the unrestricted rate matrix (UNREST). Consequently, it is not always possible to diagonalize
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the UNREST rate matrix such that the diagonal elements are guaranteed to be real. The alternate way of
exponentiating rate matrices that does not involve eigenvalue decomposition is to numerically approximate
the Taylor series expansion. We used the numerical approximation techniques that are implemented in
the scientific computing package for python, Scipy (Virtanen et al., 2020), and the C++ library Eigen v3
(Guennebaud and Benoit, 2010) in order to exponentiate unrestricted rate matrices.

2.6 Related work on the general Markov model
All popular phylogeny inference software exclusively implements CT-HMM on phylogenetic trees. The
general Markov model (GM) is a DT-HMM on phylogenetic trees. The following section discusses related
work on inferring phylogenetic trees under the assumption that sequences were generated according to a
general Markov model.

2.6.1 Barry and Hartigan’s paper
The GM model on phylogenetic trees was introduced by Barry and Hartigan (1987), who stated that their
model was not identifiable, i.e., it is not possible to identify the GM model using the likelihood score because
there are several models that yield identical likelihood scores. Barry and Hartigan reparameterized the GM
model in terms of edge-wise joint probability matrices, and provided an EM algorithm for optimizing model
parameters. The EM algorithm for the reparameterized version of the GM model has been implemented
by Jayaswal et al. (2005). Additionally, Barry and Hartigan introduced a distance measure which is more
widely known than the general Markov model. The distance measure has come to be known as the logDet
which is defined as follows. Given species u and v, let F(u,v) be the estimated joint probability matrix such
that F(u,v)(x, y) is the fraction of sites at which character Xu equals x, and Xv equals y.

logDet(u, v) = − ln |det(F(u,v))| (2.10)

logDet distances are tree-distances for all u, v s.t. u 6= v. The notion of tree-distances is defined wrt
phylogenetic trees with edge lengths. Given a GM model on a rooted phylogenetic tree Tρ, Steel (1994)
showed that there exists an edge length function λ that is defined on the edges of the unrooted version T of
Tρ such that logDet distances (see equation 2.10) are additive in T with respect to λ. Given a GM model
M on a rooted tree Tρ, logDet distances are additive in the unrooted version of T under the assumption
that F(u,v) equals the joint probability distribution over Xu and Xv that is defined by M on Tρ (Steel,
1994). The widely known distance-based clustering method neighbor-joining (NJ; Saitou and Nei (1987)) is
statistically consistent if distances are tree-distances in the model tree. NJ using logDet distances is one the
most common methods to construct trees under the GM model (Sheffield et al., 2009).

2.6.2 Phylogenetic invariants
The typical approach to tree search involves computing the odds that the observed site patterns were gen-
erated by the combination of tree and parameters of interest, and selecting the combination of tree and
model parameters that has the greatest odds of generating the observed data. Phylogenetic invariants are
a radically different way of finding trees. Invariants of a HMM on a tree are polynomials in site pattern
frequencies that vanish (evaluate to zero) at observed site pattern frequencies if the observed data was gen-
erated by the HMM on trees under consideration (Allman and Rhodes, 2007). Note that invariants provide
a way of selecting topologies without having to concern oneself with parameter estimation. Consequently,
invariant-based methods can be used to infer the topology of a GM model on trees without having to learn
model parameters. A simple example of a phylogenetic invariant will be given below. Consider a GM model
on a two-species tree T = (V = {ρ, a, b}, E = {(ρ, a), (ρ, b)}) . The joint probability over {a, b} is given by

P (Xa = j,Xb = k) = pjk =

4∑
i=1

πρ(i)P(ρ,a)(i, j)P(ρ,b)(i, k)
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The joint distribution P (Xa,Xb) can be expressed as a 4× 4 matrix, with pjk as the entry in row j and
column k, such that each entry is a degree-3 polynomial comprising four terms. The following polynomial,
known as the stochastic invariant , is an example of a phylogenetic invariant.∑

j,k

pjk − 1

The stochastic invariant is a trivial invariant because any joint probability distribution must sum to one.
Invariants can be used to infer the topology of the generative model can be identified if the invariants are
constructed based on topological information about the underlying model. Consider a further simplification
of the example shown above where the state at the root is constrained to be A, i.e., πρ = (1, 0, 0, 0). pjk can
be expressed as

pjk = πρ(1)P(ρ,a)(1, j)P(ρ,b)(1, k) = P(ρ,a)(1, j)P(ρ,b)(1, k)

It follows that the polynomial pjkpmn − pjmpkn is an invariant because

pjkpmn = pjmpkn = P(ρ,a)(1, j)P(ρ,b)(1, k)P(ρ,a)(1,m)P(ρ,b)(1, k)

In general, invariants can be used to discriminate between competing topologies based on how closely the
corresponding polynomials approach zero if evaluated at observed site pattern frequencies. The construction
of invariants is a daunting task. There are an exponential number of polynomials in an exponential number
of variables that need to be evaluated for an exponential number of tree topologies. Phylogenetic invariants
for the general Markov model do not depend on the location of the root (Allman and Rhodes, 2008).
Consequently, all the invariant-based methods that have been developed for the GM model have either been
used to construct unrooted trees, or to score splits. There are two programs that make use of invariants. The
first program is by Nicholas Eriksson. Eriksson computes unrooted trees in a neighbor-joining like fashion
by identifying splits using singular-value decomposition (Eriksson, 2005). The second program SpitSup
(Allman et al., 2017) takes as input a multiple sequence alignment and a set of splits, and scores the splits by
constructing split-specific invariants and evaluating the invariants using observed site pattern frequencies.
Additionally, SplitSup can perform a scanning window analysis to assign window-specific scores to input
splits.

Pachter and Sturmfels (2005) note that the parameters of the GM model on phylogenetic trees can be
optimized using an expectation-maximization algorithm (EM). An EM algorithm for the GM model on
phylogenetic trees is described in the following Section.

2.6.3 Expectation-maximization

Consider a phylogenetic tree T
′

CAT that is constructed by removing one edge and one labeled vertex from
the edge set and the vertex set, respectively, of a rooted caterpillar tree such that each hidden vertex has
exactly one child vertex that is labeled. T

′

CAT resembles the hidden Markov model (Cappé et al., 2005) that
is commonly used for finding DNA sequence patterns (see Figure 2.9 A that was adapted from Pachter and
Sturmfels (2005)). The parameters of the hidden Markov model can be optimized using an expectation-
maximization algorithm (EM; Dempster et al. (1977)), known as the Baum-Welch algorithm (Cappé et al.,
2005).

EM algorithms are a class of algorithms that are used to infer the parameters of models with hidden vari-
ables. If all the variables of interest were observed then the desired maximum likelihood estimates of model
parameters could be inferred in closed form. If there are hidden variables then one can make the problem
of parameter estimation feasible by (i) filling in values for hidden variables using a suboptimal estimate of
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Figure 2.9: A phylogenetic tree with each hidden vertex having one labeled vertex as a child is shown in
panel A. The tree shown in panel A is redrawn in panel B to resemble the hidden Markov model. The Figure
shown above has been adapted from Pachter and Sturmfels (2005).

model parameters, and subsequently (ii) using the complete data set to estimate model parameters. Steps
(i) and (ii) are performed iteratively such that the likelihood score increases with each iteration.

Koller and Friedman (2009) describe an EM algorithm for optimizing the parameters of Bayesian net-
works. A Bayesian network generalizes the general Markov model on phylogenetic trees by allowing multiple
parents. The EM algorithm described by Koller and Friedman (2009) makes use of Pearl’s belief propagation
algorithm (Pearl, 1982) for performing the expectation step, and closed-form solutions for the maximization
step. The belief propagation algorithm was developed for the special case of Bayesian networks where the
number of parents is limited to one, in which case the Bayesian network is the general Markov model on
phylogenetic trees.

First, we described the maximization step for the case where there are no hidden variables. Subsequently,
we show how to compute expectation statistics that are sufficient to optimize the parameters of a suboptimal
general Markov model on a leaf-labeled phylogenetic tree.

2.6.3.1 Maximization step:

If there are no hidden variables then the maximum likelihood estimate can be computed in closed form (Koller
and Friedman, 2009). Consider a GM model MGM on a fully labeled phylogenetic tree Tfull = (Vfull, Efull).

Let Cu be the normalized observed count matrix for any vertex u in Vfull, which can be computed as

Cu(x) =
1

k

k∑
i=1

δ(X iu, x), (2.11)

where x denotes nucleotides and δ(x, y) is the Kroenecker delta function.
Let C(u,v) be the normalized observed count matrix for any edge (u, v) in Efull, which can be computed

as

C(u,v)(x, y) =
1

k

k∑
i=1

δ(X iu, x)× δ(X iv, y) (2.12)

The maximum likelihood estimate (MLE) of parameters of MGM can be computed in closed form as
follows (Koller and Friedman, 2009):

πMLE
ρ (x) = Cρ(x), and (2.13)

PMLE
(u,v) (x, y) =

C(u,v)(x, y)

Cu(x)
(2.14)

26



l1 l2 l3 l4 l5

l6

h1

h2 h3

h4

P(  , h1)

P(  , h4)

P(h4, l6)P(h4, l5)

P(h3, l4)

P(h3, l3)

P(h1, h3)P(h1, h2)

P(h2, l1)
P(h2, l2)

Figure 2.10: A general Markov model (GM) on a phylogenetic tree T = (VT , ET ). Each edge e in ET is
labeled with transition matrix Pe. The root ρ is labeled with the root probability distributionπρ.

2.6.3.2 Expectation step:

If we have suboptimal estimates of a GM model M on a leaf-labeled phylogenetic tree then the parameter
estimates of M that are guaranteed to improve the likelihood score can be computed using the expected
values of the count matrices listed in equation 2.11 and equation 2.12.

The expected counts EM [Cu(x)] of variable Xu can be computed as follows (Koller and Friedman, 2009):

EM
[
C(u)(x)

]
=

k∑
i=1

P (X iu = x), (2.15)

where P (X iu) is the marginal probability

P (X iu) =
∑

X ih:h∈HTρ\{u}

P ({X iv : v ∈ VTρ}|M)

Similarly, the expected counts EM
[
C(u,v)(x, y)

]
of variable pair Xu,Xv can be computed as follows

EM
[
C(u,v)(x, y)

]
=

k∑
i=1

P (X iu = x,X iv = y), (2.16)

where P (X iu,X iv) is the marginal probability

P (X iu,X iv) =
∑

X ih:h∈HTρ\{u,v}

P ({X iv : v ∈ VTρ}|M)

The marginal probabilities listed in equation 2.15 and equation 2.16 can be computed efficiently using
the belief propagation algorithm by Pearl (1982), as described below.

Belief propagation makes use of a graphical structure known as clique tree. Here we define clique trees
for the special case of phylogenetic trees. Given a phylogenetic tree T , a clique tree TCT = (VTCT , ETCT)
of T = (VT , ET ) is a undirected tree such that each edge in ET is represented by a distinct vertex in VTCT .
Figure 2.11 depicts the clique tree for a GM model on the phylogenetic tree shown in Figure 2.10. Each
vertex of a clique tree is referred to as a clique. The scope of a clique is the variable pair that is represented
by the clique. For instance the scope of clique C(h3,l3) is (Xh3 ,Xl3). Operations on a clique tree are defined
in terms of factors which are clique-specific functions that are defined on the variables included in the scope
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Figure 2.11: A clique tree of the phylogenetic tree T that is shown in Figure 2.10. Each vertex of a clique
tree represents an edge in T . Each model parameter of the HMM on T is assigned to exactly one vertex of
the clique tree (shown with dashed edges). The parameters πρ and P(ρ,h4) are assigned to the clique C(ρ,h4).
Each edge of the clique tree is labeled with the scope of messages that are sent across the edge.

of one of more cliques. Factors provide a means of reparameterizing joint probability distributions in terms
of clique-specific parameters. Three types of factors will be introduced in this section: potentials, messages,
and beliefs.

The potential ψ(u,v) of a clique C(u,v) is a measure of co-occurrence of variables Xu and Xv. The potential
of a clique is initialized using one or more model parameters such that each model parameter is assigned to
one clique, as defined in equation 2.17. An example of parameter assignment is shown in Figure 2.11.

ψ(u,v)(x, y) =

{
P(u,v)(x, y) if the factor P(u,v) is assigned to the clique C(u,v)

πu(y)P(u,v)(x, y) if factors P(u,v) and πu are assigned to the clique C(u,v)

(2.17)

Conditioning on observed data is performed by restricting the potential of cliques that contain an observed
variable in their scope. Consider a clique C(h,l) that contains the observed variable Xl in its scope. Let the
initial potential ψinit

(h,l) of C(h,l) be

ψinit
(h,l) =

A T G C
A 0.89 0.01 0.05 0.05
T 0.05 0.85 0.04 0.06
G 0.02 0.02 0.95 0.01
C 0.03 0.01 0.01 0.95

(2.18)

where rows and columns are indexed by nucleotides. Let the observed state X il for Xl be G for site i. The
initial potential ψinit

(h,l) is restricted to state G by setting to zero all entries in each column of ψinit
(h,l) that is

not indexed by G, resulting in the following matrix.
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ψ(h,l) =

A T G C
A 0 0 0.05 0
T 0 0 0.04 0
G 0 0 0.95 0
C 0 0 0.01 0

(2.19)

A message is a factor that is computed by marginalizing over a variable in the domain of the potential
of a clique. The message µv is computed by marginalizing ψ(u,v) over the variable Xu. The message µh for
the factor ψ(h,l) shown in equation 2.19 is the column vector

µh =

0.05
0.04
0.95
0.01

Messages can be multiplied into potentials via matrix multiplication. The belief β(u,v) of a clique C(u,v)

for site i is the marginal probability P (X iu,X iv) =
∑
X ih:h∈HTρ\{u,v}

P ({X iv : v ∈ VTρ}|M). Belief propagation
is an operation on a clique tree that computes the belief of each clique by passing messages along the edges
of a clique tree as defined in Algorithm 1.

Algorithm 1: Belief propagation

Input: A GM model MGM on T = (V = {H,L}, E), and the observed state for each labeled vertex.
Initialize:
Compute clique tree TCT = (VCT, ECT)
Assign parameters of MGM to cliques in VCT
Set initial potential ψinit

(u,v) of each clique C(u,v) in VCT
Pick any non-leaf vertex in TCT as the root clique, and direct all edges away from the root
Let V pre

CT and V post
CT be the ordered sets comprising vertices in VCT that are visited in preorder

traversal on TCT, and postorder traversal on TCT, respectively
Set potential of each clique to the initial potential of the clique
For clique C(v,w) in V

post
CT

If w is a labeled vertex
Condition on Xw by restricting ψ(v,w) based on observed state Xw

Else
Multiply messages from each child clique into ψ(v,w)

If C(v,w) is not the root clique
Let vertex v represent the variable that is common to C(v,w) and the parent clique of C(v,w)

Compute message µv by marginalizing ψ(v,w) over variable χw
Send message µv to parent clique

For clique C(a,b) in V
pre
CT

Set belief β(a,b) as ψinit
(a,b) multiplied with messages received from each neighbor of C(a,b)

For each child clique C(x,y)

Let vertex v represent the variable that is common to C(a,b) and C(x,y) (there is exactly one such
variable)

Set ψ(a,b) as ψinit
(a,b) multiplied with messages received from each each neighbor of C(a,b) except

C(x,y)

Compute message µv by marginalizing ψ(a,b) over variable χv
Send message µv to C(x,y)

Output: Beliefs of each clique
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Executing belief propagation for site i results in computing the marginal probabilities P (X iu,X iv) for each
pair of adjacent vertices. The marginal probability P (X iu) for each variable Xu can be computed by selecting
a probability distribution P (X iu,X iv) that contains Xu in its domain, and marginalizing over the variable
Xv. Expected count matrices can be computed using equation 2.15 and equation 2.16. The MLE of model
parameters can be computed using equation 2.13 and equation 2.14 where the observed count matrices are
substituted with expected count matrices.

2.7 Divide-and-conquer approaches
The large computational cost incurred in searching through tree space for maximum likelihood phylogenetic
trees motivated the development of divide-and-conquer methods that compute local phylogenetic trees for
small sets of species, and combine local phylogenetic trees into a global phylogenetic tree. The trees that are
inferred by the divide-and-conquer approaches described below combine local unrooted phylogenetic trees
into a global unrooted phylogenetic tree. The method that is used for constructing local phylogenetic trees
is referred to as the base method. Quartet puzzling (QP; Strimmer and von Haeseler (1996)) is a divide-
and-conquer method that works as follows. First all possible sets of four species are constructed. For each
such quartet of species a quartet with the maximum likelihood is selected. Let {a, b|c, d} denote a quartet
tree that contains the split {a,b}|{c,d}. The selected quartets are combined (the puzzling step) to construct
a global phylogenetic tree. St. John et al. (2003) compare the reconstruction accuracy of QP with neighbor-
joining and find that NJ performs better. The relatively poor performance of QP is because quartet trees
comprising distantly related species are not reliably estimated.

Erdös et al. (Erdös et al., 1999a,b) designed an efficient quartet-based method called the dyadic closure
method that outperforms QP because the dyadic closure method only considers quartets comprising closely
related species. The dyadic closure method was subsequently implemented as a family of methods referred to
as disc-covering methods (DCM). The DCM (Huson et al. (1999)) partition species on the basis of a threshold
graph. Given pairwise distances d over species V a threshold graph G = (V,E) is constructed by adding
edges {u, v} such that d(u, v) is smaller than a threshold that is selected a priori . The most sophisticated
DCM is Rec-I-DCM3 (Roshan et al., 2004) which stands for recursive-iterative-DCM3. Roshan et al. (2004)
applied Rec-I-DCM3 to search for maximum parsimony (MP) phylogenetic trees. TNT by Goloboff (1999)
is a popular method for finding MP phylogenetic trees. Roshan et al. (2004) used TNT as the base-method
of Rec-I-DCM3 for inferring local MP phylogenetic trees and report a substantial reduction in compute-time
combined with an improvement in reconstruction accuracy when compared with the use of TNT to infer
global MP phylogenetic trees.

Adkins designed a Kruskal-like agglomerative clustering algorithm that starts with a forest of singletons,
iteratively joins a tree pair, and terminates if the forest is a tree (Adkins, 2010). The tree-pair to join
at each iteration is selected as follows. A tree-pair T1 = (V1, E1) and T2 = (V2, E2), and edges {u1, v1}
and {u2, v2} in E1 and E2, respectively, are selected that minimize the length of the interior edge of the
quartet {u1, v1|u2, v2}, where length of the interior edge is computed as follows. First the trees T1 and T2
are disconnected by removing edges {u1, v1} and {u2, v2}. Subsequently, ancestral sequences are inferred at
u1, v1, u2 and v2. The length of the interior edge is estimated using pairwise distances computed using the
ancestral sequences. Given a tree pair T1 = (V1, E1) and T2 = (V2, E2), and edges {u1, v1} and {u2, v2} in
E1 and E2, tree-joining is performed by removing the edges {u1, v1} and {u2, v2}, adding vertices w1, w2

and edges {u1, w1},{v, w1},{u2, w2}, {v2, w2}, and {w1, w2}. The algorithm terminates if the the forest is a
tree. Adkins noted that some of the trees and edges selected are incorrect because the algorithm does not
have a global view of how the initial set of observed sequences are related to each other.

Chow-Liu grouping by Choi et al. (2011) improves upon Adkins’s algorithm by using a minimum spanning
tree to maintain a global view. However, Chow-Liu grouping is a distance-based divide-and-conquer method
that uses minimum spanning trees (MSTs) as follows. An MST is computed using pairwise distances.
Subsequently, each non- leaf vertex v of the MST is visited, and a local phylogenetic tree is computed over
the set v ∪ N(v) where N(v) comprises the neighbors of v. The MST is used as a guide tree to join the
local phylogenetic trees into a global phylogenetic tree. Huang et al. (2014) demonstrated that Chow-Liu
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grouping enables distributed computation of local trees followed by merger of local trees with respect to
minimum spanning tree. Chow-Liu grouping is discussed in detail in Chapter 4. In contrast to Adkins’s
algorithm, Chow-Liu grouping does not perform ancestral state reconstruction and thus avoids parameter
estimation that is necessarily required when inferring ancestral states using a Markov model.

In recent work Zhang et al. (2019) presented a minimum spanning tree-based method called incremental
tree construction (INC) for building distance-based phylogenetic trees. INC involves the following steps: (i)
computing an MST M using pairwise distance estimates, (ii) selecting the first three vertices of the MST
that are visited by performing a BFS/DFS starting at any leaf of the MST, (iii) constructing a three-leaf
tree T using the vertices selected in step (ii), incrementally growing T by adding vertices in M that are
adjacent to vertices in T on the basis of constraints derived from quartet trees constructed using Buneman’s
four point condition (Buneman, 1971). Buneman’s four-point condition is defined wrt to an unrooted tree
T = (V,E) as follows. Any four vertices x, y, u, v in V that satisfy the following inequality

dT (x, y) + dT (u, v) ≤ max {{dT (x, v) + dT (u, y)} , {dT (x, v) + dT (u, y)}} (2.20)

are the leaves of a quartet tree which contains the split {x, y}|{u, v}. INC is similar to Chow-Liu grouping in
that a global constraint tree (the MST) is used to guide tree construction. In contrast to Chow-Liu grouping,
INC does not allow distributed computation of local trees.

Le et al. (2019) implemented INC, and a related method called INC-ML which uses constraints based on
trees provided by ML inference methods such as RAxML in order to incrementally construct a phylogenetic
tree. Le et al. (2019) performed a comparative analysis on simulated data and found that the reconstruction
accuracy of INC-ML was worse than RAxML but much better than INC.

All the divide-and-conquer methods mentioned above compute unrooted phylogenetic trees. A majority
of phylogeny inference software infer unrooted trees. We discuss how unrooted trees are rooted in practice.

2.8 Placing the root on unrooted phylogenetic trees
The phylogenetic trees that are inferred using time-reversible Markov models are unrooted phylogenetic trees.
Unrooted phylogenetic trees are less meaningful than rooted phylogenetic trees. Three methods that are
commonly used for inferring rooted phylogenetic trees are discussed below. The methods are (i) outgroup-
based rooting, (ii) midpoint rooting, and (iii) molecular clock based rooting. The current section ends with
a discussion of how molecular clocks can be used to construct time-calibrated phylogenetic tree, i.e., rooted
phylogenetic trees with edge lengths that are scaled in units of time.

2.8.1 Outgroup-based rooting
If one has prior knowledge that the species in a subtree τv = (Vτv , Eτv ) of an unrooted phylogenetic tree
T = (VT , ET ) are distantly related to species that are not in τv then it is reasonable to root the tree along
the edge {u, v} in ET \Eτv . The species in τv are referred to as outgroup, and the species that are not in the
outgroup are referred to as ingroup. For instance if the unrooted phylogenetic tree comprised sequences from
two species of cats and twenty species of dogs then it seems reasonable to consider the cats as an outgroup.

2.8.2 Midpoint rooting
Given an unrooted phylogenetic tree with edge lengths, let p be a path with the longest sum of edge lengths.
Let the end points of p be u and v. Midpoint rooting is performed by selecting an edge and placing the root
ρ along the edge such that the distance dρu from the root to u equals the distance dρv from the root to v.

2.8.3 Molecular clock based rooting
The existence of a molecular clock was proposed based on the empirical observation that protein sequences
seemed to evolve at a constant substitution rate (Zukerkandl and Pauling, 1965). The rate at which sequences
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evolve is known as substitution rate. Strict molecular clocks assume that the substitution rate is identical for
each edge of a rooted phylogenetic tree. Relaxed molecular clocks allow substitution rate to vary across the
edges of a rooted phylogenetic tree. The discussion in this thesis focuses on strict molecular clocks. Unless
specified otherwise the term molecular clock refers to a strict molecular clock.

A molecular clock imposes constraints on the edge lengths of phylogenetic trees. Two types of constraints
are considered below that differ with respect to rapidity of molecular evolution relative to the time scale
of sampling. Slowly-evolving species, e.g., all living species of the animal kingdom, are modeled as being
contemporaneously sampled. The distance from the root to each species in a time-calibrated phylogenetic
tree of slowly-evolving species is constrained to be identical. Fast-evolving species such as HIV are modeled
as being sampled at distinct time points. The distance from the root to any species in a time-calibrated
phylogenetic tree of fast-evolving species is proportional to the sampling time of the species. The edge
lengths of a rooted phylogenetic tree are said to be clock-like if root-to-leaf distances satisfy the constraints
of a molecular clock. Distance-based methods and model-based methods for rooting phylogenetic trees are
described below.

Distance-based methods root an unrooted phylogenetic tree such that the edge lengths of the rooted
phylogenetic tree best satisfy the clock-based constraints. Mai et al. (2017) provide a method for rooting
phylogenetic trees by minimizing the variance of root-to-leaf distances. Phylogenetic trees of fast-evolving
species can be rooted by placing the root such that the sum-of-squared-errors of regressing path length from
root-to-leaf on sampling time via ordinary-least-squares (OLS) regression is minimized (Rambaut et al.,
2016).

Model-based methods can be used to root an unrooted phylogenetic tree as follows. Given the topology
of a rooted phylogenetic tree, edge lengths are optimized under a CT-HMM according to the constraints of
the molecular clock. The optimal rooted phylogenetic tree is inferred by selecting the combination of rooted
phylogenetic tree topology and constrained edge lengths that maximize the likelihood score (Huelsenbeck
et al., 2002; Rambaut, 2000).

The edge lengths of non-calibrated rooted phylogenetic trees are in units of substitution per site. Calibrat-
ing a phylogenetic tree involves scaling edge lengths in units of calendar time using substitution rates which
are estimated as follows. Substitution rate can be computed by dividing the tree-distance from the ancestor
to its living descendants by the divergence time as follows (Kumar and Hedges, 1998). Let divTime(u, v)
be an estimate of the time since species u and v diverged from their most recent common ancestor a. The
substitution rate λ is computed as follows:

λ =
duv

2× divTime(u, v)
(2.21)

where duv is the sum of edge lengths on the shortest path from u to v. The factor of two in the denominator of
equation 2.21 is present because (i) duv = dau+dav for tree-distances, and (ii) dau = dav = λ×divTime(u, v)
for clock-like distances. A time-calibrated phylogenetic tree can be constructed by scaling edge lengths using
the estimated substitution rate. Probabilistic approaches can also be used for estimating substitution rates
(Rambaut and Bromham, 1998). Molecular clocks for fast-evolving species are calibrated using sampling
times that correspond to leaf ages. For instance root-to-leaf distances can be regressed on sampling times
(Rambaut et al., 2016) via OLS regression. Substitution rate can be computed using the slope of the linear
model that is fitted via OLS.

2.8.4 Drawbacks of current methods for rooting phylogenetic trees
Methods that use molecular clocks for rooting fail if substitution rates vary across species (Li, 1993). Midpoint
rooting usually gives realistic estimates of the location of the root only if the species under consideration
can be split into two sets of pairwise distantly related species. Outgroup-based rooting requires the use of
distantly related species. Methods that rely on the selection of distantly related species have the following
shortcoming. Sequences that corresponding to distantly related species may share common characters due
to independent evolution of the common character during evolutionary history resulting in distantly related
species being erroneously close to each other in the inferred phylogenetic tree. This phenomenon is known as
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long-branch-attraction (Felsenstein, 1978) and is thought to be a source of error for outgroup-based rooting
(Graham et al., 2002).

Molecular clock based rooting gives a realistic estimate of the location of the root if the assumption of
a molecular clock is appropriate. The use of molecular clocks has been criticized because of observation of
variation in the substitution rates among closely related lineages (Li, 1993).

2.9 Summary of contributions made in thesis

2.9.1 Modeling ancestor-descendant relationships using generally labeled trees
Fast-evolving species that have been sampled at distinct time points may contain ancestor-descendant pairs.
Leaf-labeled phylogenetic trees that are commonly used to represent evolutionary relationships do not al-
low sampled species to have ancestor-descendant relationships. In Kalaghatgi et al. (2016a) we developed
a clustering method called family-joining for inferring generally labeled phylogenetic trees that better rep-
resent the evolutionary relationships among fast-evolving species using generally labeled phylogenetic trees
that place species at non-leaf vertices. Family-joining compared favorably with related methods: sampled
ancestors by Gavryushkina et al. (2014) and recursive-grouping and Chow-Liu recursive grouping by Choi
et al. (2011). Family-joining was validated on empirical data using HIV-1 sequences that were sampled from
individuals from a known transmission chain. The inferred phylogenetic tree was compatible with 9 out of
10 transmission events. Further details about family-joining are provided in Chapter 3.

2.9.2 Conditions under which MSTs share a topological correspondence with
phylogenetic trees

Choi et al. (2011) introduced a minimum spanning tree (MST)-based method called CLGrouping, for con-
structing tree-structured probabilistic graphical models, a statistical framework that is commonly used for
inferring phylogenetic trees. While CLGrouping works correctly if there is a unique MST, we observed an
indeterminacy in the method in the case where there are multiple MSTs. We demonstrated the indeter-
minacy of CLGrouping using a synthetic quartet tree and a tree over primate genera. The indeterminacy
of CLGrouping can be removed if the input MST shares a topological relationship with the corresponding
phylogenetic tree. In Kalaghatgi and Lengauer (2017) we introduced so-called vertex order based MSTs
(VMSTs) that are guaranteed to have the desired topological relationship. We related the number of leaves
in the VMST to the degree of parallelism that is offered by CLGrouping. We provided polynomial-time
algorithms for constructing VMSTs and for selecting a VMST with the optimal number of leaves. Details re-
garding the indeterminacy of Chow-Liu group, and a rigorous analysis of algorithms for constructing VMSTs
are provided in Chapter 4.

2.9.3 Structural expectation-maximization under the general Markov model via
a minimum spanning tree backbone

The Markov models that are commonly used in phylogeny inference such as the GTR model are stationary,
homogeneous and time-reversible. Stationary models assume that base frequencies do not change over the
course of evolutionary history. The GC content of bacterial genomes ranges from 13% to 75% across bacterial
species (Agashe and Shankar, 2014) indicating that the assumption of stationarity is unreasonable. The
current strategy of searching through tree space for maximum likelihood phylogenetic trees is computationally
demanding. Simpler models such as the GTR model are used because they have a small number of free
parameters that need to be estimated. The general Markov model (GM; Barry and Hartigan (1987)) is
a non-stationary, non-homogeneous, non-reversible Markov that allows for variation in GC content. A
method for performing tree-search under the GM model is missing. In Chapter 5 we adapt the structural
expectation-maximization framework (Friedman et al., 2002) to perform tree search under the GM model
(SEM-GM). SEM-GM is a computationally expensive method. Inspired by the topological correspondence
between phylogenetic trees and minimum spanning trees due to Choi et al. (2011) we developed a framework
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called MST-backbone for constraining the search through tree space. We applied MST-backbone to improve
the scalability of SEM-GM without loss in performance. On simulated data with substantial variation in GC
content we demonstrated that the use of stationary models leads to a worse performance when compared to
the GM model. We validated our framework on multiple empirical datasets. Our method inferred rooted
trees under the GM model for two experimental phylogeny data sets with recall of 0.8. The unrooted topology
of the inferred phylogenetic trees appeared to be realistic for a majority of empirical datasets. However the
location of the root was not robustly supported. The location of the root was robustly recovered using
stationary homogeneous non-reversible Markov models. Details regarding the MST-backbone framework
and the validation studies are provided in Chapter 5.
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Chapter 3

Modeling ancestor-descendant
relationships using generally labeled
trees

The work that is presented in this chapter has been published in Kalaghatgi et al. (2016a).

Fast-evolving species that have been sampled at multiple time points may contain ancestor-descendant
pairs. The current approach to modeling evolutionary relationships makes use of leaf-labeled phylogenetic
trees. Leaf-labeled phylogenetic trees place all the sampled species at the leaves, and do not model direct
ancestor-descendant relationships. In this chapter we model evolutionary relationships using so-called gen-
erally labeled phylogenetic trees. Generally labeled trees allow sampled species to be placed at non-leaf
vertices. We present a clustering method called family joining (FJ) for constructing unrooted generally la-
beled phylogenetic trees. FJ compares favorably with respect to related methods on simulated data. FJ was
validated using HIV-1 env gene sequences that were sampled from individuals that were part of a partially
known HIV transmission network.

3.1 Current methods for modeling ancestor-descendant relation-
ships

Leaf-labeled phylogenetic trees are widely used to model evolutionary relationships, and are appropriate
models of evolutionary relationships among distantly related species such as the group of extant marine
mammals that includes manatees, walruses, whales, and dolphins (Foote et al., 2015). Pathogens such
as HIV replicate within individuals that are infected with the pathogen. A set of pathogens that are
sampled from individuals that are part of a common transmission network may contain ancestor-descendant
pathogen pairs. The evolutionary relationships of fast-evolving species such as HIV are better represented
using generally labeled phylogenetic trees that allow species to be placed at non-leaf vertices.

To account for ancestor-descendant relationships Jombart et al. (2011) model evolutionary relationships
using a directed acyclic graph (DAG) with no hidden vertices. Fully labeled DAGs do not account for
unsampled ancestral species. Additionally the DAGs that are used by Jombart et al. (2011) are not nec-
essarily connected. A disconnected graph with no hidden vertex does not fully represent the evolutionary
relationships.

Three types of methods are compared in this chapter. The first type is a likelihood-based method called
sampled ancestors (Gavryushkina et al., 2014) that performs Bayesian inference over phylogenetic trees
via Markov chain Monte Carlo sampling. The second type of method performs agglomerative clustering.
The agglomerative clustering methods discussed in this chapter include recursive grouping (RG; Choi et al.
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(2011)), neighbor-joining with edge contraction (NJc; Saitou and Nei (1987), Choi et al. (2011)), and family-
joining (FJ) which is the method that was developed by Kalaghatgi et al. (2016a). The agglomerative
clustering methods construct unrooted generally labeled phylogenetic trees. The final type of method is a
supertree method called Chow-Liu grouping that uses RG as the base method for constructing unrooted
generally labeled phylogenetic tree.

3.1.1 Sampled ancestor trees
Gavryushkina et al. (2014) provide a method for constructing so-called sampled ancestor (SA) trees that are
rooted generally labeled phylogenetic trees with labeled ancestors restricted to having a single child. The
restriction on the the number of children of a non-leaf labeled vertex seems unnecessary. The authors infer
sampled ancestor trees via Bayesian inference that is performed using Markov chain Monte Carlo (MCMC)
sampling. The procedure of sampling phylogenetic trees via MCMC sampling is not applicable to reasonably
sized data sets comprising more than a few hundred species.

3.1.2 Agglomerative clustering methods
A common feature of all the agglomerative clustering methods discussed in this chapter is the use of so-called
active vertex set Va that is initialized as the set of observed species. Va is partitioned iteratively into one
of more generally labeled phylogenetic trees which are combined in order to construct a connected generally
labeled phylogenetic tree.

Recursive grouping (RG) iteratively partitions closely related vertices in Va into clusters called families
(MacQueen, 1967). The relationships of vertices in a family are modeled as an unrooted generally labeled
phylogenetic tree (Choi et al., 2011) on the basis of distances for each vertex pair, and a distance threshold
ε. Vertices in Va that are present in a family are removed from Va. Newly introduced hidden vertices in each
phylogenetic tree are added to Va. This procedure is iterated until a connected unrooted phylogenetic tree
is constructed.

3.1.3 Neighbor joining with edge contraction
Neighbor-joining with edge contraction (NJc) constructs a neighbor-joining tree (Saitou and Nei, 1987).
Subsequently all edges that are shorter than a small threshold ε are contracted in order to construct an
unrooted generally labeled phylogenetic tree.

3.1.4 Chow-Liu Recursive grouping
Chow-Liu grouping (CLGrouping) is a minimum spanning tree (MST)-based supertree method that was
introduced by Choi et al. (2011). Choi et al. (2011) provided an application of CLGrouping that uses RG
as the base method for constructing generally labeled phylogenetic trees. The application is referred to as
CLRG. CLRG starts by constructing a minimum spanning treeM over all the labeled vertices. Subsequently
for each non-leaf vertex vi, the vertex set Vi consisting of vi and its neighbors is constructed and a generally
labeled phylogenetic tree Ti over Vi is constructed using RG. The subgraph in M that is induced by Vi is
replaced by Ti.

Choi et al. (2011) compared the performance of RG, CLRG, and NJc on simulated data where only the
tree topology was varied. In that study, no method clearly outperformed the others.

The work in the current chapter presents a novel agglomerative clustering method called family-joining
(FJ) that constructs generally labeled phylogenetic trees. Additionally, we perform a comparative analysis
on the basis of a large variety of simulation scenarios. Finally we validate FJ using HIV sequences sampled
from individuals that are part of a known HIV transmission network.
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3.2 Family joining: a clustering approach for constructing generally
labeled phylogenetic trees

First we provide a brief description of the main steps of FJ. Subsequently each step is explained in detail.

3.2.1 Overview of family-joining (FJ)
The family-joining (FJ) method takes as input distances d between each species pair, and a distance threshold
ε. FJ consists of the two following algorithms. (i) A distance-based algorithm for constructing the topology
of an unrooted generally labeled phylogenetic tree T = (VT , ET ), and (ii) an algorithm for computing edge
lengths by regressing weighted path lengths in ET of each pair of labeled vertices on distances between
labeled vertex pairs, via ordinary least squares (OLS) regression.

Tree topologies are inferred using the following agglomeration clustering procedure. A vertex set Va is
initialized with the set of species. At each iteration we select from Va, the vertex pair i, j that optimizes
the neighbor-joining objective, as defined by Saitou and Nei (1987), see equation 3.1. Subsequently, we
classify the selected vertex pair i, j as being either parent-child or siblings on the basis of a threshold ε, see
equation 3.2. If they are found to be siblings we check if there is another vertex that is the parent of both
the siblings. If no such vertex is found, a hidden vertex is introduced as the parent of both the siblings.
The distance matrix is augmented by adding distances from the newly introduced hidden vertex to each of
the other vertices in Va, obtained using the formula by Studier and Keppler (1988), see equation 3.5. Rows
and columns of the distance matrix corresponding to the children are removed, and the procedure is iterated
until a connected graph is obtained.

Subsequently, we estimate edge lengths using OLS regression. For efficient calculation of OLS edge
lengths we extended the algorithm by Bryant (1997), which was designed for leaf-labeled trees, to generally
labeled trees. OLS edge lengths may be negative, which has no biological interpretation. To account for this
all edges that are shorter than ε, and are incident to a hidden vertex are contracted.

The trees that are constructed by family-joining are unrooted generally labeled phylogenetic trees. In
this chapter two vertices are said to be siblings if they are adjacent to a common vertex. What we refer to as
siblings is referred to as neighbors by Saitou and Nei (1987) in the context of the neighbor-joining algorithm.
Labeled vertices that are adjacent to each other are said to be in a parent-child relationship.

The inference of tree topology is described in Subsection 3.2.2. Edge length estimation is discussed
in Subsection 3.2.3. A time complexity analysis of family-joining is performed in Subsection 3.2.4. The
statistical consistency of family-joining is discussed in Subsection 3.2.6. Methods for selecting the distance
threshold ε via model selection is discussed in Subsection 3.3.3.

3.2.2 Inferring tree topology
Given distances d between each pair of labeled vertices LT , and a distance threshold ε, the topology of
an unrooted generally labeled phylogenetic tree T = (VT = {LT ,HT }, ET ) is inferred using the algorithm
GetTreeTopology. Criteria for selecting an appropriate ε are discussed later in Subsection 3.3.3. An overview
of GetTreeTopology is provided in Algorithm 2. GetTreeTopology initializes a so-called active vertex set Va
with the set of all labeled vertices. HT and ET are initialized as empty sets. GetTreeTopology performs
agglomerative clustering where the following actions are performed at each iteration.

A pair of vertices i, j in Va is selected such that i, j minimize the neighbour-joining criterion (Saitou and
Nei, 1987) given below.

(n− 2)d(i, j)−
∑
k 6=i

d(i, k)−
∑
k 6=j

d(j, k) (3.1)

where n is the number of vertices in Va.
Neighbors i and j are classified as parent-child or siblings based on the following quantity.

∆(i, j) =
∑
k 6=i,j

d(j, i) + d(i, k)− d(j, k)

2(n− 2)
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Figure 3.1: An illustration of the family-joining algorithm. The main steps have been labeled with their
worst-case time complexity.
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sibling parent-child

 

Figure 3.2: Relation types. Siblings s1 and s2 are leaves that are adjacent to a common vertex. The leaf c is
a child of the vertex p. Filled circles represent labeled vertices, and unfilled circles represent hidden vertices.
The measure ∆ij is used to classify neighbors i, j as siblings or parent-child.

The motivation for using ∆(i, j) is as follows. If distances d are additive in T then it can be easily shown
that:

∆(i, j) = 0 if i is the parent of j
∆(i, j) = d(i, j) if j is the parent of i ,
0 < ∆(i, j) < d(i, j) if i and j are siblings

The criteria mentioned above are proved as follows. If i is the parent of j then the path from j to any
vertex k 6= i, j will visit i (see Figure 3.2). Thus d(j, k) = d(j, i) + d(i, k), which gives ∆(i, j) = 0 and
∆(j, i) = d(i, j). If i and j are siblings then d(j, k) = d(j, u)+d(u, k) where u is the vertex adjacent to both i
and j. Similarly d(i, k) = d(i, u) + d(u, k), which gives ∆(i, j) = d(i, u). It follows that 0 < ∆(i, j) < d(i, j).

When using distances that are estimated from sequences we use a threshold ε for classifying neighbors
as parent-child or sibling. Specifically i is the parent of j if |∆(i, j)| < ε. Neighbors i, j are said to be in a
parent-child relationship if

min{|∆(i, j)|, |∆(j, i)|} < ε (3.2)

If i and j are in a parent-child relationship, then wlog let i be the parent of j. An edge {i, j} is added
to ET . All distances d(j,m) where m ∈ Va\{j} are removed from d. Subsequently, j is removed from Va.

If i and j are found to be siblings then we search for another vertex k in Va that minimizes the following
quantity.

|d(i, k) + d(k, j)− d(i, j)| (3.3)

If |d(i, k) +d(k, j)−d(i, j)| < 2ε then k is the parent of i and j. Edges {k, i} and {k, j} are added to ET and
distances d(l,m) for each l ∈ {i, j} ∧m ∈ Va\{l} are removed from d. Subsequently, i and j are removed
from Va. We tried one additional criterion for checking if there is a vertex k that is the parent of i and j.
We computed

min{|∆(k, i)|, |∆(k, j)|}, (3.4)

and considered k to be the parent of i and j if min{|∆(k, i)|, |∆(k, j)|} < 2ε. We found that reconstruction
accuracy on simulated data was higher when we used the quantity in equation 3.3 as opposed to equation
3.4 (see Supplementary Figure A.4). This is probably because the quantity in equation 3.3 is more robust
to noise in the estimates of large distances. We have used the criterion derived from equation 3.3 in the rest
of this chapter.

If k is not the parent of i and j, a hidden vertex h is introduced as the parent of i and j. Edges {h, i}
and {h, j} are added to ET . Vertices i and j are removed from Va. Vertex h is added to Va and HT .
Subsequently, distances d(h,m) from vertex h to any other vertex m in Va\{i, j} are calculated using the
following estimate by Studier and Keppler (1988), and added to d.

d(h,m) = (d(i,m) + d(j,m)− d(i, j))/2 for m 6= i, j (3.5)

Subsequently i and j are removed from Va, and each distance d(l,m) where l ∈ {i, j}∧m ∈ Va\{l} is removed
from d.
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The agglomeration step described above is repeated until the number of vertices in Va is less than four.
After each iteration the number of vertices in Va decreases either by one or two. If Va has reached the size
three, we check using equation 3.3 if there are vertices i, j, and k in Va such that k is the parent of both i
and j. If we find such vertices, corresponding edges are added. Otherwise a hidden vertex h is introduced
and edges {h, i}, {h, j}, and {h, k} are added to ET . If Va has reached size two then an edge {i, j} is added
to ET , where i, j are the vertices in Va.

Algorithm 2: GetTreeTopology.

Input: Labeled vertices L, pairwise distances d for each vertex pair in L, and a distance threshold ε
Initialize: HT ← ∅, ET = ∅, Va ← L
While|Va| > 3 do

Pick vertices i, j from Va that minimize equation 3.1
Identify relationship between i, j using equation 3.2
If i, j are in parent-child relationship then

Let j be the child
Add edge {i, j} to ET
Remove j from Va
Remove distances d(j,m) from d for each m ∈ Va\{j}

Else
Remove i and j from Va
Pick a k from Va that minimizes equation 3.3
If i and j are children of k then

Add edges {i, k} and {j, k} to ET
Else

Introduce vertex h, add h to HT , and add h to Va
Add edges {i, h}and {j, h}to ET
Get distances d(h,m) for each m ∈ Va\{i, j, h} using equation 3.5 , and add the distances to d

Remove distances d(l,m) from d for each l ∈ {i, j} ∧m ∈ Va\{l}
If |Va| = 2 then

i, j ← Va
Add edge {i, j} to ET

Else
Pick i, j, k from Va that minimize equation 3.3
If i and j are children of k then

Add edges {i, k} and {j, k} to ET
Else

Introduce vertex h, and add h to HT
Add edges {i, h},{j, h}, and {k, h} to ET

Output: T = (VT = {LT ,HT }, ET )

3.2.3 Estimation of edge lengths
Edge lengths t = {te : e ∈ ET } of T = (VT , ET ) are estimated by OLS. This is done by solving Atc = dc

where dc is the column vector

dc =


d(1, 2)
d(1, 3)

...
d(n− 2, n)
d(n− 1, n)
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containing entries d(i, j) such that i < j. A is the edge incidence matrix of T and is constructed as follows.
If the mth entry of dc is dij , then

ame =

{
1 if the path from i to j contains e
0 otherwise

(3.6)

A has the dimension n(n− 1)/2× |ET | where |ET | is the number of edges in T , n is the number of labeled
vertices, and tc is the column vector of edge lengths that we wish to estimate.

The OLS estimate of edge lengths is given by

tc = (AtA)−1Atdc. (3.7)

We do not make the assumption that distances are additive for the estimation of OLS edge lengths.
There is a O(n2) algorithm for computing the OLS edge lengths (Bryant, 1997) for leaf-labeled trees. We
show that this algorithm extends to generally labeled trees. The main steps involved in this computation
are computing first Atdc and then (AtA)−1Atdc. We describe both of these steps below.

Computing Atdc

The ith entry of Atdc, δtidc, is the sum of all distances d(a, b) such that a ∈ Ai and b ∈ Bi where Ai|Bi
is the split that is induced by edge ei. δi is the ith column of A. Edges are visited in order of increasing
distance from leaves for efficient computation of Atdc. The distance dLT (ei) of an edge ei from leaves LT is
defined below.

dLT (ei) = argmin
v∈ei,l∈LT

puT (v, l)

where puT (v, l) is the unweighted path length of the path in T from v to l.
We first compute δtidc for every terminal edge ei as follows.

δtid
c =

∑
j,j 6=i

d(i, j) (3.8)

Next we compute δtidc for every internal edge ei which is visited in the order of increasing distance from
leaves. Consider the non-leaf vertex α such that there is only edge ei that is incident to α such that δtidc has
not been calculated. Consider the list Ej of edges ej1 , . . . , ejm such that ei and each edge in Ej are incident
to a common vertex.

Let Ci|C̄i be the split that is induced by edge ei such that α is closer to Ci in comparison to C̄i. Similarly
Cjk is the side of the split induced by ejk that is closer to α.

δtid
c is computed as follows depending on whether or not α is labeled:

Case 1: Vertex α is not labeled

δtid
c =

∑
k

∑
a∈Cjk ,b∈Ci

d(a, b)

=
∑
k

δtjkd
c − 2

∑
k<l

∑
a∈Cjk ,b∈Cjl

d(a, b)
(3.9)

Case 2: Vertex α is labeled.

δtid
c =

∑
k

∑
a∈Cjk ,b∈Ci

d(a, b) +
∑
b∈Ci

d(α, b)

=
∑
k

δtjkd
c − 2

∑
k<l

∑
a∈Cjk ,b∈Cjl

d(a, b)−
∑
k

∑
b∈Cjk

d(α, b) +
∑
b∈Ci

d(α, b)
(3.10)
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Figure 3.3: The three cases for the internal edge e0. Case 1: Both α and β are not labeled. Case 2: Only α
is labeled. Case 3: Both α and β are labeled. The triangles represent subtrees.

Computing (AtA)−1(Atdc)

The current section lists the formulae by Bryant (1997) which allows the computation of the OLS estimate of
edge lengths in closed form. Edges can be visited in any order to facilitate the computation of edge lengths.
First we compute the edge length for an internal edge.

Consider the internal edge e0 = {α, β} shown in Figure 3.3 Case 1 such that edges e1, e2, . . . , ek are
incident to α but are not incident to β, and edges ek+1, ek+2, . . . , em are incident to β but are not incident to
α. Let Lα|Lβ be the split in T that is induced by {α, β} such that the side Lα is closer to α in comparison
to β. Let nα and nβ be the sizes of Lα and Lβ , respectively.

For each edge ei define Wi =
∑
x∈Ai,y∈Bi pxy where Ai and Bi are the sides of the split induced by edge

ei. The notation pxy is used instead of pwT (x, y) to denote the weighted path length of the path from x to y
where edge lengths are determined by OLS. It turns out that Wi = δtid

c.
For each edge ei such that 1 ≤ i ≤ k, let Ci be the side of the split induced by ei that is closer to α in

comparison to β. For each edge ei such that k+ 1 ≤ i ≤ m, let Ci be the side of the split induced by ei that
is closer to β in comparison to α. Let ni be the cardinality of Ci. Define

Yi =

{∑
x∈Ci pαx, if 1 ≤ i ≤ k∑
x∈Ci pβx, if k + 1 ≤ i ≤ m

For the case where neither α nor β are labeled Bryant (1997) showed that

W = (nI − 2N)Y +NUY + te0Nv

where N is the m × m diagonal matrix with (n1, n2, . . . , nm) on the diagonal, I is the identity matrix,
Y = (Y1, Y2, . . . , Ym)T , U is the m ×m matrix of ones, v is the vector with nβ in positions 1 to k followed
by nα in positions k + 1 to m, W = (W1,W2, . . . ,Wm)T , n is the total number of labeled vertices, and te0
is the edge length of the edge e0 .

Similarly for the internal edge e0
W0 = vTY + nαnβte0

Letting X = (nN−1 − 2I + U) and substituting Y gives the following estimate of edge length te0 .

te0 =
W0 − vTX−1N−1W
nαnβ − vTX−1v

(3.11)

For cases where only α is labeled, and both α and β are labeled, respectively, the derivation of the above
mentioned equations is similar to that described in Bryant (1997) and is provided in Appendix A.1.1.

The formula, equation 3.11, for edge length is valid only if X−1 exists. Bryant (1997) showed that X is
invertible as long as there is at most one zero on the diagonal of the matrix (nN−1 − 2I). The ith diagonal
element is zero if ni/n = 2 which occurs if there is an edge where both parts of the split have equal size.
Even in generally labeled trees there can be at most one such edge.

There are two cases to consider for terminal edges depending on whether or not α is labeled (see Figure
3.4). In both cases the derivation of the edge length formula is similar to what has been described for internal
edges and is presented in Appendix A.1.2.
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Figure 3.4: The two cases for the terminal edge e0. α is not labeled in case 1, and is labeled in case 2. The
triangles represent subtrees.

OLS edge lengths may be negative which has no biological interpretation. After estimating the edge
lengths all edges that are shorter than ε and are incident to a hidden vertex are contracted. The length of
every edge that has a negative length is set to 10−7. 10−7 is smaller than the smallest non-zero distance
estimate computed in any of the simulation scenarios.

3.2.4 Time-complexity analysis of family-joining
At first glance it appears that the neighbor identification step requires Ω(n3) time. This can be reduced to
O(n2) with the observation that the neighbor-joining objective can be reformulated as follows (Studier and
Keppler, 1988):

(n− 2)d(i, j)−Ri −Rj
where Ri =

∑
k 6=i

d(i, k) (3.12)

From equation 3.12 it is evident that initializing each row sum Ri with the original distances takes O(n)
time. Updating each Ri after each agglomeration step is done by subtracting distances from children and,
if applicable, adding distances to the newly introduced hidden vertices. Thus the process of updating each
Ri takes O(1) time. Additionally, storing all the Ri in memory requires O(n) space which incurs very little
memory overhead compared to the O(n2) space required to store all the pairwise distances. If all distances
and row sums are stored in memory then identifying the neighbors takes O(n2) time. Note that ∆ij can also
be reformulated for faster computation as follows.

∆(i, j) =
∑
k 6=i,j

d(j, i) + d(i, k)− d(j, k)

2(n− 2)

=
d(j, i)

2
+

(
∑
k 6=i,j d(i, k))− (

∑
k 6=i,j d(j, k))

2(n− 2)

=
d(j, i)

2
+

(d(i, j) +
∑
k 6=i,j d(i, k))− (d(j, i) +

∑
k 6=i,j d(j, k))

2(n− 2)

=
d(j, i)

2
+

(
∑
k 6=i d(i, k))− (

∑
k 6=j d(j, k))

2(n− 2)

=
d(j, i)

2
+
Ri −Rj
2(n− 2)

.

Thus, once the neighbors {i, j} have been identified, it takes O(1) time to compute both ∆(i, j) and ∆(j, i).
It takes O(n) time to find the vertex k which minimizes |d(k, i) + d(k, j)− d(i, j)|.
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The worst-case time-complexity of GetTreeTopology is O(n3). The time-complexities associated with the
main steps of GetTreeTopology are shown in Figure 3.1.

The worst-case time-complexity of the procedure for estimating edge lengths via OLS regression is given
below. The procedure involved two main steps: (i) computation of Atdc , and (ii) computation of edge
lengths in closed form.

Computing Atdc involved summation of entries of the distance vector (see equation 3.8). Since each
element of the distance vector is summed over just once, Atdc is computed in O(n2) time. Given Atdc,
each edge length can be calculated in O(n) time (Bryant, 1997). Since there are O(n) edges the worst-case
time-complexity of computing OLS edge lengths is O(n2).

Thus, the worst-case time-complexity of FJ is O(n3) +O(n2) = O(n3).

3.2.5 Vertex augmentation procedure to construct leaf-labeled phylogenetic
trees

We made use of software for simulating sequences under the GTR + Γ model (Seq-Gen; Rambaut and
Grassly (1997)), and computing likelihood scores under the GTR + Γ model (RAxML; Stamatakis (2014)).
The software mentioned above is not designed to handle generally labeled phylogenetic trees. In order
to use Seq-Gen and RAxML we use the following vertex augmentation procedure that converts generally
labeled phylogenetic trees to leaf-labeled phylogenetic trees. Leaf-to-leaf distances are only slightly perturbed
subsequent to the application of the vertex augmentation procedure.

Let a generally labeled tree Tg = (VTg = {LTg ,HTg}, ETg ) with hidden vertices that have degree
greater than three be given. Let tg be the set of edge lengths of Tg. The desired leaf-labeled tree
Tl = (VTl = {LTl ,HTl}, ETl) with edge length tl is constructed as follows. LTl ,HTl , ETl , and tl are ini-
tialized as LTg ,HTg , ETg and tg, respectively.

If there is a labeled vertex l in Tl with degree greater than one then (i) a new hidden vertex h is added
to HTl , (ii) edge {h,m} is added to ETl for each {h, l} in ETl , and {h, l} is removed from ETl , (iii) edge
length t{h,m} = t{l,m} is added to tl for each t{l,m} in tl, and t{l,m} is removed from tl, (iv) edge {h, l} is
added to ET , and (v) edge length t{h,l} = εsmall is added to tl.

If there is a hidden vertex hm in Tl with degree greater than three then (i) a new hidden vertex hn is
added to HTl , (ii) vertices i, j that are adjacent to hm are selected at random, (iii) edges {i, hm} and {j, hm}
are removed from ETl and edges {i, hn} and {j, hn} are added to ETl , (iii) edge lengths t{i,hn} = t{i,hm}
and t{j,hn} = t{j,hm} are added to tl, and edge lengths t{i,hm} and t{j,hm} are removed from tl, (iv) edge
{hm, hn} is added to ETl , and (v) edge length t{hn,hm} = εsmall is added to tl.

The vertex augmentation operations mentioned above are performed iteratively until there is no labeled
vertex in Tl that is not a leaf, and there is no hidden vertex in Tl with degree greater than three.

If εsmall is set to zero then leaf-to-leaf distances are unchanged subsequent to the vertex augmentation
operations. However RAxML requires does not allow the use of edges with length zero. We set εsmall to a
small value of 10−7.

3.2.6 Statistical consistency
We establish the statistical consistency of FJ by applying it to distances d that are additive in a generally
labeled phylogenetic tree T such that T may contain hidden vertices with degree greater than three. We
assume that all edge lengths of T are strictly greater than zero.

Theorem 1. Given distances d that are additive in an unrooted generally labeled phylogenetic tree T , and
any ε that is smaller than the smallest entry in d. Let TFJ be the generally labeled tree that is constructed by
applying FJ to distances d, and threshold ε. TFJ equals T.

Proof. We are given T = (VT = {LT ,HT }, ET ), distances d that are additive in T , and a threshold ε.
Let Tmax be the set of all trees such that for each tree T0 = (VT0

= {LT0
,HT0

}, ET ) in Tmax. (i) The
leaf-set LT0equals LT , (ii) The degree of each hidden vertex in T0 equals three, and (iii) d is the additive in
T0. Some of the edge lengths of T0 may be zero.
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Table 3.1: Simulated data sets were constructed by varying either the tree type, fraction of hidden vertices,
type of contracted edge, number of labeled vertices, sequence length or edge length. All settings that were
considered for each parameter are shown below. Default parameter settings are indicated using (d).

Tree type balanced random (d) caterpillar
Fraction of hidden vertices 0.5 0.37 0.25 (d) 0.12 0
Type of contracted edge leaf/hidden labeled/hidden any/hidden (d) hidden/hidden
Average edge length 0.001 0.004 0.016 0.064 0.256

Number of labeled vertices 20 40 80 160 (d) 320
Sequence length 250 500 1000 (d) 2000 4000

Given any T0 in Tmax, each split in T is a split in T0. If this were not true then there would be distinct
splits A|B in T , and A0|B0 in T0, and four labeled vertices i, j, k and l such that (i) i, j would be in A, (ii)
k, l would be in B, (iii) i, k would be in A0, and (iv) j, l would be in B0.

Applying Buneman’s 4-point condition (see equation 2.20) would result in the following contradictory
inequalities:

d(i, j) + d(k, l) < d(i, k) + d(j, l) for T
d(i, j) + d(k, l) ≥ d(i, k) + d(j, l) for T0

The inequality is strict for T as all edge lengths in T are greater than zero.
Thus any tree in Tmax can be constructed using the vertex augmentation operation described in Subsection

3.2.5 with εsmall set to zero.
Applying the neighbor-joining algorithm using distances in d yields a leaf-labeled tree TNJ such that each

hidden vertex in TNJ has degree three. TNJ belongs to Tmax because d is additive in TNJ. It follows that
neighbors in TNJ are either parent-child or siblings in T . Since d is additive any ε that is smaller than the
smallest entry in d can be used for correctly classifying neighbors as parent-child or siblings.

It follows that each iteration of the topology construction algorithm of FJ correctly adds parent-child,
and sibling edges. Thus the topology of the tree TFJ is identical to the topology of T .

3.3 Comparative analysis on simulated data

3.3.1 Simulation scenarios
Simulated sequences were generated by evolving sequences along the edges of generally labeled trees. The
simulation scenarios that were considered in this study are described below.

Simulated data sets were constructed by varying either the tree type, fraction of vertices that are hidden,
type of contracted edge, number of labeled vertices, sequence length or edge length. Each of these parameters
is described in detail below. An overview of the parameter settings is provided in Table 3.1.

Three types of trees were generated: balanced, caterpillar and random. We chose caterpillar trees because
it has been shown that the accuracy of the neighbor identification step (see equation 3.1), which forms a
part of FJ, is inversely related to tree diameter (St. John et al., 2003). Balanced trees are leaf-labeled
phylogenetics trees with minimum diameter. A random tree T = (VT = {LT ,HT }, ET ) was generated as
follows. (i) An active vertex set Va was initialized with the labeled vertices LT . Subsequently, the following
steps were performed iteratively until a connected tree was constructed. (i) A vertex pair {i, j} was selected
at random and removed from Va, (ii) a new hidden vertex h was introduced and added to Va and VT , and
(iii) edges {h, i}, and {h, j} were added to ET . The trees that are generated are leaf-labeled phylogenetic
trees such that each the degree of each hidden vertex was three.

The fraction of hidden vertices ranges from zero to (n − 2)/(2n − 2) where n is the number of labeled
vertices. We simulated generally labeled trees by varying the fraction of hidden vertices over this range in
four equal steps.
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Generally labeled phylogenetic trees with the desired proportion of labeled vertices were constructed by
contracting the edges of leaf-labeled phylogenetic trees with degree-3 hidden vertices. Depending on the type
of simulation experiment, the following edges were contracted: leaf/hidden, labeled/hidden, hidden/hidden,
and any/hidden.

Given the topology of generally labeled trees, edge lengths were drawn from the uniform distribution
U(1, 100), and scaled such that the expected edge length was equal to a pre-selected edge length average.
The following edge length averages were generated: 0.001, 0.004, 0.016, 0.064, and 0.256 subs/site. Sequence
evolution was performed as follows. A vertex was randomly selected as the root and sequences were evolved
along the edge according to a GTR+Γ model of substitution (Lanave et al., 1984). The parameters of the
GTR model were set using estimates from a real data set (Waddell and Steel, 1997). The parameters shape
and scale of the Γ model were set to 1 which resulted in a moderate variation of substitution rate across
sites. Seq-Gen was used for simulating sequence evolution (Rambaut and Grassly, 1997). Sequence lengths
took values of 250, 500, 1000, 2000, and 4000 bp. The number of labeled vertices (species) took values of
20, 40, 80, 160, and 320. As Seq-Gen only takes leaf-labeled trees as input, the simulated generally labeled
trees were converted to leaf-labeled trees using the vertex augmentation procedure described in Subsection
3.2.5 with εsmall set to 10−7.

Simulation scenarios were defined by varying each parameter over its range while keeping the remaining
parameters fixed at their default setting. This procedure results in 22 simulation scenarios. The default
settings for each parameter are described below.

For the categorical parameters tree type and contracted edge type, the respective default settings were
random and any/hidden. These settings were selected as the defaults as they do not restrict the generation of
generally labeled trees. The continuous parameter, fraction of vertices that are hidden, which has a bounded
range, the midpoint was considered as the default value. For the following continuous parameters with no
upper bound: number of labeled vertices, sequence length, and average edge length, we selected the range
and default settings such that the trend in performance over each parameter range was apparent. The default
setting for the number of labeled vertices was 160, for the sequence length it was 1000 bp, for the average
branch length was 0.016 subs/site.

100 trees and corresponding sequences were simulated for each setting of parameter values.
We provided sampling times for SA which constructs rooted trees under a molecular clock. In order to

provide sampling times we rooted simulated trees along edges that were selected at random. We defined the
sampling time of a labeled vertex as the weighted path length from the root to the labeled vertex. Note that
this method of defining sampling times is equivalent to assuming a strict molecular clock with a clock rate
of 1.0. When substitution rates (subs./site/time) follow a strict molecular clock, the distance from the root
to each labeled vertex is proportional to the time elapsed since divergence from the root. SA recovers the
correct clock rate of 1.0 under the strict molecular clock model in all scenarios except two where the average
branch length is very small (0.001 and 0.004; see Supplementary Figure A.3)

3.3.2 Maximum likelihood distances
The estimated distances that were used in this study are maximum likelihood (ML) distances that were
estimated under the GTR +Γ model using RAxMLv8.2.8. The procedure for computing ML distances
is described below. First a maximum parsimony tree was constructed using stepwise addition and the
parameters of the substitution model GTR+Γ were optimized. The optimized substitution model was used
to compute maximum likelihood distances for all species pairs as follows.

Given parameters of a GTR + Γ model, and sequences for species l1 and l2. Let T12 be the two-leaf
phylogenetic tree where l1 and l2 are the leaves of the tree. The maximum likelihood distance is the sum of
edge lengths where edge lengths are optimized via maximum likelihood.

3.3.3 Model selection
Values of ε are inversely related to the number of hidden vertices and thus inversely related to model
complexity. We performed model selection using three estimates of test error, Akaike information criterion
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(AIC), Bayesian information criterion (BIC), and cross-validation error.
Likelihood was computed using RAxML as follows. RAxML was provided with a tree topology and

edge lengths, and a GTR + Γ model was optimized such that tree topology and edge lengths were fixed.
Because RAxML is not designed for generally labeled trees we constructed leaf-labeled trees using the vertex
augmentation operations described in Subsection 3.2.6 with εsmall set to 10−7.

For computing cross-validation error the original sequence alignment with k columns was partitioned
into B validation alignments by randomly sampling k/B columns without replacement. For each validation
alignment, the corresponding training alignment was constructed using the complimentary set of k − k/B
alignment columns. This procedure was repeated R times, giving RB training and validation alignments in
total. ML distances were computed for all training and validation alignments. For a fixed value of ε, FJ trees
were constructed for each training distance matrix. We set R to 10 and tried two values for B, i.e., 3 and 5.
Test error was computed as the residual sum of squares between the fitted distances (weighted path length
on the tree) and the corresponding distances computed from the validation alignment. We then found the ε
that minimized expected test error as this would yield the most generalizable model.

arg min
ε

B∑
b=1

∑
i,j

(dT (ε,b)(i, j)︸ ︷︷ ︸
distance in fitted tree

− dV (b)(i, j))
2︸ ︷︷ ︸

distance in validation set

where T (ε, b) is the tree constructed at threshold ε using distances from the bth training alignment and V (b)
is the bth validation alignment. Model selection was performed by identifying the value of ε that minimizes
the estimate of test error.

3.3.4 Performance metrics
Reconstruction accuracy was quantified using precision and recall as defined below.

PrS(T, T̂ ) =
|Sall(T ) ∩ Sall(T̂ )|

|Sall(T̂ )|
, and

ReS(T, T̂ ) =
|Sall(T ) ∩ Sall(T̂ )|

|Sall(T )|
,

where Sall(T ) and Sall(T̂ ) are the set of all splits in the simulated tree T and the reconstructed tree T̂ ,
respectively. Note that Sall(T ) contains the split of every edge in T , including the terminal edges. Precision
and recall range from zero to one. Precision is equal to one only if all the splits in the reconstructed tree
are present in the simulated tree. Similarly, recall is equal to one only if all the splits in the simulated tree
are present in the reconstructed tree. Note that we do not report Robinson-Foulds (RF) distance in this
chapter since the RF distance would be biased against methods that do not allow polytomies (hidden vertex
with degree greater than three). The Robinson-Foulds distance (RFS(T, T̂ )) is computed as the fraction of
unique splits that are present in one tree and not the other.

RFS(T, T̂ ) = 1− |Sall(T ) ∩ Sall(T̂ )|
|Sall(T ) ∪ Sall(T̂ )|

Each of the reconstruction methods that we tested can achieve the highest and the lowest possible value
of recall. Among the reconstruction methods that were compared, only SA can not achieve a precision of
one if the simulated tree contains polytomies. We feel that both precision and recall are important measures
of reconstruction accuracy.

3.3.5 Implementation details
We used the sampled ancestors package (Gavryushkina et al., 2014) of BEASTv2.3.0 (Drummond et al.,
2012). The following models were considered: the GTR model for substitution, the four-category Γ model
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Table 3.2: Methods with the highest precision. F, N, R, C, and S stand for FJ-BIC, NJc-BIC, RG-BIC,
CLRG-BIC, and SA, respectively.The default setting for each simulation parameter is indicated with (d).

Tree type Balanced Random (d) caterpillar
F F C

Type of contracted edge leaf/hidden labeled/hidden any/hidden (d) hidden/hidden
F,N F F R

Fraction of hidden vertices 0.5 0.37 0.25 (d) 0.12 0
N N,C F F C

Average branch length 0.001 0.004 0.016 0.064 0.256
C F F F C

Number of labeled vertices 20 40 80 160(d) 320
F F F F F

Sequence length 250 500 1000(d) 2000 4000
F,C F F F,N,C F,N,C

for rate heterogeneity across sites, the strict molecular clock model and the fossilized birth death model
for generating trees. Uniform priors were set for all model parameters. For all datasets, 108 states were
visited using Markov chain Monte Carlo (MCMC) and every 105 state was sampled. The first 5% of the
sampled states were discarded as burn-in and the effective sample size (ESS) was computed for all model
parameters using the R package CODA (Plummer et al., 2006). ESS were found to be greater than 200 for
all parameters across all the MCMC chains indicating that the chains were sufficiently long. The trees that
are produced by BEAST are rooted and contain the maximum number of hidden vertices. The sampled
trees were post-processed by unrooting them and contracting all terminal edges of length zero. We reported
the average precision and recall of the post-processed sampled trees from the true tree.

RG and CLRG require the setting of two thresholds, εs and εl. εs is used for performing the relationship
test. RG and CLRG additionally contract branches that are smaller than this threshold. We optimized
εs using BIC. The second threshold, εl is used to filter out large distances and only distances below this
threshold are used when performing the relationship test. We set εl to a large value of 0.5.

The distance threshold ε for NJc was selected using BIC.

3.3.6 Results
We present the results of applying FJ-BIC, NJc-BIC, RG-BIC, CLRG-BIC and SA to all simulated data
sets. For methods which have the suffix BIC, we performed threshold selection by minimizing Bayesian
information criterion (BIC). For FJ, we also tested FJ-AIC and FJ-CV which optimized Akaike information
criterion (AIC), and cross-validation error (CV), respectively. As FJ-AIC and FJ-CV never performed better
than FJ-BIC in any simulation scenario we do not show the results in the current chapter. The results for
FJ-AIC and FJ-CV can be found in Supplementary Figure A.4. A change in precision or recall is considered
to be statistically significant if the corresponding Welch’s t-test has a p-value that is smaller than 0.01. A
method is said to have the highest precision or recall if no other method has significantly higher precision or
recall, respectively.

Tree type

FJ-BIC and NJc-BIC had significantly higher precision and recall on balanced trees than on caterpillar
trees. This behavior is expected, since the accuracy of the step of FJ, in which neighbors are identified,
is inversely related to tree diameter (St. John et al., 2003). Even on caterpillar trees, which have large
diameters, FJ-BIC and NJc-BIC have moderately large (median) precision/recall values of 0.79/0.81 and
0.76/0.87 respectively (see Figure 3.5A). RG-BIC performs poorly on caterpillar trees in comparison to
balanced trees, which is in agreement with previous work (Choi et al., 2011). In contrast, CLRG-BIC
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Figure 3.5: A comparison of the reconstruction accuracy of all methods in six simulation categories. One
parameter (x-axes) was varied in each category. The default parameter settings are denoted as (d) on each
x-axis. For each parameter setting, 100 data sets were created. Precision is shown in blue and recall is shown
in orange.
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Table 3.3: Methods with the highest recall. F, N, R, C, and S stand for FJ-BIC, NJc-BIC, RG-BIC,
CLRG-BIC, and SA, respectively. The default setting for each simulation parameter is indicated with (d).

Tree type Balanced Random (d) caterpillar
N,S F,N,C,S C,S

Type of contracted edge leaf/hidden labeled/hidden any/hidden (d) hidden/hidden
F,N,C N F,N,C,S S

Fraction of hidden vertices 0.5 0.37 0.25 (d) 0.12 0
S S F,N,C,S N,C,S C

Average branch length 0.001 0.004 0.016 0.064 0.256
S S F,N,C,S C,N,S N,S

Number of labeled vertices 20 40 80 160 320
N,C N,C N,C,S F,N,C,S N,C,S

Sequence length 250 500 1000 2000 4000
C,S S F,N,C,S F,N,C,S F,N,C,S

performs significantly better on caterpillar trees than on balanced trees with median precision/recall values
of 0.89/0.93 and 0.89/0.91, respectively. CLRG constructs an MST and then iteratively applies RG to the
neighborhood of each non-leaf vertex. The better performance of CLRG-BIC on caterpillar trees is most
likely due to the MST being topologically similiar to the caterpillar tree. SA has a median precision and
recall of 0.77 and 0.96, respectively, across all tree types. SA has low precision because SA restricts the
maximum out degree of labeled vertices to two, and the maximum out degree of hidden vertices to three.

Type of contracted edge

FJ-BIC has significantly higher precision than other methods for all types of contracted edges, except hid-
den/hidden. SA has a high median recall of 0.96 for all types of contracted edges. However the recall values
of SA are not significantly higher than those of FJ-BIC if the contracted edge is leaf/hidden. This is due to
a large variance in the performance of SA, quantified with an inter-quantile range of 0.26 (see Figure 3.5B).
SA has high median precision of 0.94 if the contracted edge is leaf/hidden. Contracting leaf/hidden edges
results in trees in which a labeled vertex can have up to one child and all other non-leaf vertices have degree
three. The high performance of SA in this category is because these are the same type of trees which SA
samples when optimizing tree topology. SA has lower performance when any other edge type is contracted.
RG-BIC and CLRG-BIC have significantly higher precision and recall if hidden/hidden edges are contracted,
when compared to precision and recall for other edge types.

Fraction of vertices that are hidden

All methods have a median precision higher than 0.95 (see Figure 3.5C) for leaf-labeled trees which have the
maximal fraction (0.5) of hidden vertices. In this simulation scenario, with a median recall of 0.97, SA has
significantly higher recall than other methods, even though FJ-BIC also has a high median recall of 0.94. A
common trend for each method is that precision reduces and recall rises with a decrease in the fraction of
hidden vertices. FJ-BIC has a median precision and recall greater than 0.89 across all settings of fraction
of hidden vertices. CLRG-BIC has significantly higher precision and recall than other methods when all
vertices are labeled. This is because the CLRG algorithm involves the construction of a MST which should
be topologically similar to the completely labeled tree.

Average edge length

All methods perform poorly on trees with short average branch lengths of 0.001 subs/site with median recall
smaller than 0.8 each (see Figure 3.5D). This is because a significant portion of the simulated sequences are
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identical. Thus, in FJ-BIC, NJc-BIC, RG-BIC, and CLRG-BIC there is a preference for choosing parent-
child relationship over siblings. CLRG-BIC has significantly higher precision than other methods if branch
lengths are either very small or very large. FJ-BIC has high precision if the average branch length is between
0.004 and 0.064. In trees with larger branch lengths there is a high chance that sequences undergo multiple
substitutions at the same site. This effect has been termed site saturation and results in an underestimation
of the evolutionary distance. Additionally, estimates of large distances are associated with large variance
(Hoyle and Higgs, 2003) which results in the selection of wrong neighbors in the neighbor-joining step.
CLRG-BIC has higher performance for trees with large branch lengths because the input to CLRG-BIC is
the MST and the construction of the MST is probably robust to noise in distance estimates. The performance
of SA is not greatly affected by long branches.

Number of labeled vertices (species)

RG shows significant reduction in precision/recall as tree size (number of species) is increased with corre-
sponding median values changing from 0.88/0.75 (5 labeled vertices) to 0.83/0.61 (80 labeled vertices) (see
Figure 3.5E). The change in precision and recall shown by SA is not significant. FJ-BIC and CLRG-BIC
show a significant drop in precision with increasing tree size, but recall does not change significantly. Even
for trees with 320 species, FJ-BIC has high median precision and recall of 0.92 and 0.9 respectively. NJc-BIC
shows significant reduction in both precision and recall with increasing tree size , with median precision/recall
changing from 0.93/0.93 to 0.89/0.91.

Sequence length

The performance of all methods improves with increasing sequence length. For all settings of sequence
length, FJ-BIC is one of the best performing methods (see Figure 3.5F). FJ-BIC is among the methods
with significantly high recall for sequences of length 1000 bp to 4000 bp. SA is one of the methods with
significantly high recall for all settings of sequence length.

3.3.6.1 Summary of results

For the simulations performed using the default parameter settings, the methods listed in order of decreasing
median precision are FJ-BIC (0.93), NJc-BIC (0.9), CLRG-BIC (0.89), RG-BIC (0.82), and SA (0.77), and
the methods listed in order of decreasing median recall are SA (0.96), NJc-BIC (0.92), CLRG-BIC (0.92),
FJ-BIC (0.91) and RG-BIC (0.63). In 15 out of the 22 simulated scenarios FJ-BIC is among the methods
with significantly high precision (see Table 3.2). In 17/22 simulated scenarios SA is among the methods with
significantly high recall (see Table 3.3). In 13/22 simulated scenarios NJc-BIC is among the methods with
significantly high recall. FJ-BIC has a median recall that is greater than 0.9 in 16/22 simulated scenarios.
The remaining scenarios are (i) trees with 20 species (recall of 0.89), (ii) trees in which branches are very
short (0.001 and 0.004 subs/site; recall of 0.6 and 0.84 respectively), (iii) caterpillar trees (0.81), and (iv)
trees constructed using short sequences (250 and 500 bp; recall of 0.77 and 0.85 respectively).

3.3.7 Comparison of time-complexities and run times
We report the worst-case time-complexity for the clustering procedures. FJ and NJ run in time O(n3).
RG runs in time O(n4) which makes it infeasible to run on large datasets. CLRG runs in O(n2 log n +
niδ

3
max(MST)) where ni is the number of non-leaf vertices of the MST and δmax(MST) is the largest vertex

degree in the MST. Model selection with BIC or AIC requires the repeated optimization of the likelihood
function with respect to parameters of the substitution model. Computing the likelihood with Felsenstein’s
tree pruning algorithm (Felsenstein, 1981) takes O(nA2L) time where L is the sequence length and A is the
size of the alphabet. A is four for genetic sequences and 20 for protein sequences. We used RAxML for
computing likelihoods, and optimizing parameters of substitution model. SA performs Bayesian inference
by MCMC sampling, a stochastic procedure whose runtime depends on how easily the MCMC chain moves
through the space of trees and model parameters. The observed run times (see Figure 3.6) suggest that
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Figure 3.6: A comparison of run times of all methods in the scenario where the number of labeled vertices
was varied. Run times are shown on a log-scale.

FJ-BIC and NJc-BIC are the fastest methods for trees containing up to 320 species, with both the methods
having a median run time of 5.4 and 4.8 minutes respectively. CLRG-BIC took around 9.3 minutes to
reconstruct trees containing 320 species and showed the slowest growth in run time. RG showed the largest
growth in run time taking 4.8 hours for reconstructing trees with 320 species. SA was run with MCMC
chain-length set to 108 states. SA took around two hours to construct trees containing 20 species and 30
hours for constructing trees containing 320 species.

3.4 Validation of family joining using HIV transmission network
data

We applied FJ-BIC to a dataset of HIV-1 subtype C env gene sequences that were sampled from 11 hosts
who are part of a partially known transmission chain (Lemey et al., 2005; Vrancken et al., 2014). We
discarded 31 sequences which had gaps and analyzed the remaining 181 sequences of length 1376 bp. The
hosts are labeled A,B,C,D,E, F,G,H, I,K, and L. Sequences from multiple time points are available for
A,B,C,D,E, and H. The sampling times for all sequences are known. All the host pairs who were involved
in a transmission event are known, and were inferred by interviewing the hosts. The direction of transmission
is known for all transmission events except for the transmission between A and B.

Additionally we compared the bootstrap support of branches in the FJ-BIC tree with the branches in the
maximum likelihood tree constructed using RAxMLv8.2. (Stamatakis, 2014). We first identified the most
appropriate model of substitution using JModelTest2 (Darriba et al., 2012). The models that we considered
were limited to the set of time-reversible Markov models that were made available by JModelTest2. Variants
of all available substitution models which included a parameter for invariant sites (I) and/or a Gamma
model (Γ) for across-site rate variation were also tested. GTR+Γ+I was the best model, i.e., the one with
the smallest AIC score. We constructed a tree with RAxML using the original sequence alignment and the
GTRCATI model of substitution, which we refer to as the RAxML tree. The CAT model is an alternative
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Figure 3.7: The FJ-BIC tree of 181 HIV-1 env gene sequences sampled from hosts involved in a known
transmission chain. Each vertex is represented by a circle whose inner color is black if the vertex is labeled
and white if the vertex is hidden. The outer color of each circle indicates the host of the corresponding
vertex. Edges indicating transmission events have been labeled. 9/10 transmission events are compatible
with the FJ-BIC tree. The red box highlights the transmission event B → I which is not compatible with
the FJ tree.

to the Gamma model that enables fast computation (Stamatakis, 2006). We inferred a generally labeled tree
using FJ-BIC.

The FJ-BIC tree was rooted assuming a strict molecular clock model. We define the optimal position of
the root as that position which minimizes the sum of squared residuals (RSS) of regressing distances from
the root to each labeled vertex against sampling times. We searched for the optimal position of the root as
follows. First we placed the root at the midpoint of each edge, and selected the edge that minimized the
RSS. Subsequently, we searched along the edge for the position of the root which minimized the RSS.

Compatibility of the FJ-BIC tree with known transmission events
In order to check if the known transmission events are compatible with a rooted tree we needed to label all
hidden vertices with a host. Hidden vertices were visually labeled with hosts via maximum parsimony. The
labeling that we applied resulted in the minimum possible total cost of 10 (see Figure 3.4).

Given a rooted tree with all vertices labeled with a host, we define a transmission event (X → Y ) to be
compatible with the tree if there is an edge that exits a vertex labeled X and enters a vertex labeled Y . 9
out of 10 transmission events are compatible with the FJ-BIC tree. The direction of transmission between
A and B is not known. The FJ-BIC tree suggests that A was infected by B. The branch of the FJ-BIC tree
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Figure 3.8: Left: Comparing the support of common branches in the FJ-BIC tree and the RAxML tree.
Right: Supports for branches that are only present in either the FJ-BIC tree or the RAxML tree.

that suggests this transmission event has been labeled with the known transmission event A ↔ B. 8 out
the remaining 9 transmission events are compatible with the FJ-BIC tree and branches indicative of these
transmission events are labeled in Figure 3.4. The transmission event B → I is not compatible with the
FJ-BIC tree (red solid box in Figure 3.4) which may be due to insufficient sampling. Only three sequences
were available from host I. It is possible that the polytomy present inside the red dotted box in Figure 3.4
may be resolved if more sequences from I were available, in such a way that the resulting tree would be
compatible with the transmission B → I.

Branch support in the FJ-BIC tree and the RAxML tree
The bootstrap support of an edge is defined as the number of bootstrap replicate trees that contain the split
that is induced by the edge. Given trees T1 and T2 that have the same set of labeled vertices. An edge e1
in T1 is said to be contained in T2 if the split in T1 that is induced by e1 is contained in T2. The bootstrap
support of edges in the FJ-BIC tree and the RAxML tree were computed using 1000 replicates. Since each
labeled vertex is a leaf in all bootstrap RAxML trees, all terminal branches of the RAxML tree trivially
have a support of one. The support of a terminal edge in the generally labeled tree that are constructed by
FJ-BIC is not necessarily one.

75 internal edges were common to the FJ-BIC tree and the RAxML tree. The median (IQR) supports for
the common edges were 0.73 (0.43) and 0.76 (0.38) in the FJ-BIC and the RAxML tree respectively. Supports
for the common edges in both trees were strongly correlated (Pearson’s ρ = 0.84, see Figure 3.8). There
are 44 and 103 internal edges that are present only in the FJ-BIC tree and the RAxML tree respectively
with lower median (IQR) edge supports of 0.22 (0.28) and 0.18 (0.33) respectively (see Figure 3.8). The 124
terminal edges in the FJ-BIC tree have a median (IQR) branch support of 0.95 (0.16).

On average an internal edge in the FJ-BIC tree has a higher support than an internal edge in the RAxML
tree. 36% of FJ-BIC edges and 25% of RAxML edges have bootstrap supports greater than 0.7.
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3.5 Summary and Outlook
In this chapter a distance-based clustering method called FJ for constructing generally labeled trees was
presented. Given pairwise distances between 320 species, FJ-BIC took around 5.4 min (±0.76) to estimate
a tree. The FJ algorithm treats short edges as unreliable and identifies an optimal threshold for contracting
short edges by minimizing test error. We tested three methods: FJ-AIC, FJ-BIC, and FJ-CV, which minimize
AIC, BIC and CV error, respectively. BIC was the best model selection criterion. When compared with
related methods FJ-BIC was the best at reconstructing generally labeled phylogenetic trees across a wide
range of simulation settings. FJ-BIC was applied to HIV sequences sampled from individuals that were
involved in a known transmission chain. The FJ-BIC tree was compatible with ten out of eleven transmission
events. On average, internal edges in the FJ-BIC tree were found to have higher support than internal edges
in the tree constructed using RAxML. A method for reconstructing phylogenetic trees with high precision
circumvents the need for time-consuming bootstrap analyses.

As part of this study we tried implementing the distance-based supertree method by Choi et al. (2011)
called Chow-Liu grouping because we were interested in better understanding how minimum spanning trees
can be used in the inference of phylogenetic trees. During our attempt at implementing CLGrouping with
NJ as the base method we discovered that given the input distances that are additive in a phylogenetic
tree T there are instances where the phylogenetic tree that is reconstructed using CLGrouping(NJ) differs
from T . Since NJ is guaranteed to recover T if NJ is applied to distances that are additive in T , the
indeterminacy of CLGrouping appeared to stem from an issue with the input MST that is used by the
supertree method. Additionally, we noticed that if we used the MST that was constructed by the authors’
Matlab implementation of CLGrouping then there was no indeterminacy in CLGrouping(NJ). The cause of
indeterminacy of CLGrouping is clarified in the following chapter.
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Chapter 4

Topological relationship between MSTs
and phylogenetic trees

The work that is presented in this chapter has been published in Kalaghatgi and Lengauer (2017).

Choi et al. (2011) claimed that minimum spanning trees (MSTs) constructed using tree-distances share a
topological relationship with corresponding phylogenetic trees. We discovered that the topological relation-
ship does not necessarily hold if the MST is not unique. We proposed so-called vertex-order based MSTs
(VMSTs) that are guaranteed to share a topological relationship with phylogenetic trees. We show that the
number of leaves in a VMST is an indicator of the amount of phylogenetic information that is contained in
the VMST. Additionally, we provide a polynomial-time algorithm for selecting a VMST with the maximum
amount of phylogenetic information.

4.1 Motivation
Choi et al. (2011) introduced a distance-based divide-and-conquer method called Chow-Liu grouping (CLGroup-
ing). The distances that are used in this chapter are tree-distances that are defined on phylogenetic trees.
CLGrouping makes use of the minimum spanning trees (MSTs) of a graph structure that is referred to as
the distance graph. Distance graphs are constructed as follows. Given distances d for each vertex pair in V
the distance graph G = (V,E) is an edge-weighted undirected complete graph over V such that for any edge
{u, v} the edge-weight w{u,v} equals the distance d(u, v).

CLGrouping consists of two stages. The first stage involves the construction of a minimum spanning
tree (MST) M of the distance graph G. The second stage iterates over the non-leaf vertices of M and, for
each non-leaf vertex i that is visited, a vertex set Vi comprising i and the neighbors of i is constructed.
Subsequently a phylogenetic tree Ti is constructed using distances between vertices in Vi. In the final step of
the iteration, the graph in M , which is induced by Vi is replaced by Ti (see Figure 4.1E for an illustration).
If i is not the first vertex to be visited then Vi may contain newly introduced hidden vertices. Let hj be a
hidden vertex that was introduced when processing the labeled vertex j. The distance from hj to a labeled
vertex l in Vi is computed as d(hj , l) = d(j, l) − d(j, hj). The distance between two hidden vertices hj and
hk is computed as d(hj , hk) = d(j, k)− d(j, hj)− d(k, hk).

The order in which the non-leaf vertices are visited is not specified by the Choi et al. and does not seem
to be important. CLGrouping terminates once all the non-leaf vertices of M have been visited once.

This procedure is called Chow-Liu grouping because the MSTs that are constructed using tree-distances
are topologically equivalent to Chow-Liu trees (Chow and Liu, 1968), for certain probability distributions.
Please refer to Choi et al. (2011) for further details.

Choi et al. (2011) compared the reconstruction accuracy of neighbor joining (NJ; (Saitou and Nei, 1987)),
a popular distance-based clustering method, with CLGrouping(NJ) which is an application of CLGrouping
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Figure 4.1: The example used to demonstrate that CLGrouping may not reconstruct the correct tree if there
are multiple MSTs. The phylogenetic tree T that is used in this example is shown in panel A. The distance
graph G of T is shown in panel B. Two MSTs of G, MO and MU are shown in panels C and D, respectively.
Panels E and F show the intermediate steps, and the final result of implementing CLGrouping using MO

and MU respectively. CLGrouping reconstructs the original phylogenetic tree if it uses MO but not if it is
uses MU .

that uses NJ as the base method. Choi et al. (2011) showed that CLGrouping(NJ) is more accurate than
NJ at reconstructing phylogenetic trees with large diameter. Huang et al. (2014) showed that CLGrouping
affords a high degree of parallelism because phylogenetic tree reconstruction can be performed independently
for each vertex group.

Unless specified otherwise each mention of CLGrouping in the following text in this chapter refers to the
application of CLGrouping with NJ as the base method. Additionally, distances that are used in this chapter
are assumed to be tree distances. Unless specified otherwise the proofs that are included in this chapter are
applicable to generally labeled phylogenetic trees.

4.2 Indeterminacy of Chow-Liu grouping

4.2.1 A quartet tree
We demonstrate the indeterminacy of CLGrouping for the quartet tree T (Figure 4.1). Two MSTs MU and
MO of the distance graph G of T were constructed by hand. The intermediate steps, and the final result of
applying CLGrouping to MU and MO are shown in Figure 4.1E and Figure 4.1F, respectively. CLGrouping
reconstructs the original phylogenetic tree if it is applied to the VMST MO but not if it is applied to MU .
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4.2.2 A primate phylogenetic tree
In this subsection we demonstrate the indeterminacy of CLGrouping using the phylogeny over the primate
genera (Pozzi et al., 2014). CLGrouping will infer the correct topology if the input MST shares the topological
relationship with phylogenetic trees that was introduced by Choi et al. (2011).

Methodological details

The primate phylogeny was downloaded from the TimeTree database which is a comprehensive collection of
published phylogenies (Hedges et al., 2006; Kumar and Hedges, 2011; Hedges et al., 2015). The branches of
the primate phylogeny are scaled in units of calendar time. The primate phylogeny contains three branches
of length zero that cannot be inferred from the corresponding tree metric. A modified primate phylogenetic
tree T was constructed by contracting all branches of length zero. One hundred MSTs were constructed using
the following procedure. Kruskal’s algorithm was applied to the edges of the distance graph of T that were
arranged in a randomly shuffled order. We applied CLGrouping to each MST, and computed the topological
distance between each output phylogeny and the primate phylogeny using the Robinson-Foulds distance
(Robinson and Foulds, 1981). The Robinson-Foulds distance (RFS(T, T̂ )) is computed as the fraction of
unique splits that are present in one tree and not the other.

RFS(T, T̂ ) = 1− |Sall(T ) ∩ Sall(T̂ )|
|Sall(T ) ∪ Sall(T̂ )|

where Sall(T ) is the set of all splits that are contained in the tree T .
We selected a CLGrouping tree that maximizes the RF distance from the primate phylogeny. The selected

CLGrouping tree is 0.4 RF distance away from the primate phylogeny and is shown in Figure 4.2. In order
to enable a visual comparison we rooted the CLGrouping tree at the midpoint of the least imbalanced edge.
The primate phylogeny is an ultrametric tree and has been rooted such that the root is equidistant from the
leaves. As can be seen, both the trees in Figure 4.2 are substantially different.

Topological relationship between MSTs and phylogenetic trees
The correctness of CLGrouping depends on a topological relationship between MSTs and phylogenetic trees
that was introduced by Choi et al. (2011).

In order to establish the topological relationship between minimum spanning trees and phylogenetic trees
Choi et al. (2011) introduced the notion of a surrogate vertex.

The surrogate vertex of a hidden vertex is the closest labeled vertex w.r.t. tree distance. Choi et al.
(2011) claim that minimum spanning trees can be constructed by contracting all edges along the path from
each hidden vertex h to the surrogate vertex of h. In the example shown in Figure 4.1, the MST MO can be
constructed by contracting the edges {h1, l1}, and {h2, l3}. Clearly there is no selection of surrogate vertices
such thatMU can be constructed by contracting the path between each hidden vertex and the corresponding
surrogate vertex.

Choi et al. (2011) assume that for any MST there exists a selection of surrogate vertices such that the
MST can be constructed by contracting paths between each hidden vertex and the corresponding surrogate
vertices. The indeterminacy of CLGrouping only occurs if there are multiple MSTs. The problem of selecting
surrogate vertices for the case where multiple labeled vertices are closest to hidden vertices is discussed below.

Let the surrogate vertex set S(h) of a vertex h be the set of all labeled vertices that are closest to h.
Consider two hidden vertices h1 and h2, such that there are multiple labeled vertices, l1 and l2, that are
common to the corresponding surrogate vertex sets S(h1) and S(h2). Choi et al. (2011) assume that it is
always possible to apply the following tie-breaking rule for implicitly selecting the corresponding surrogate
vertices. A labeled vertex that is common to S(h1) and S(h2) (either l1 or l2) is selected as the surrogate
vertex of both h1 and h2.
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The phylogeny over primate genera
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Figure 4.2: Left: The empirically established phylogeny T over primate genera (Hedges et al., 2006; Pozzi
et al., 2014). Right: A phylogeny that was constructed by applying CLGrouping to an MST of the distance
graph of T . The edges that are highlighted in red correspond to splits that are contained in one tree but not
the other tree.
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Figure 4.3: The phylogenetic tree that is used to demonstrate that the tie-breaking rule as defined by Choi
et al. (2011) cannot be applied in general.
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This rule for selecting surrogate vertices cannot be applied in general. We demonstrate this with an exam-
ple. For the tree shown in Figure 4.3 we have S(h1) = {l1, l2}, S(h2) = {l4, l5}, and S(h3) = {l1, l2, l3, l4, l5}.
There is no selection of surrogate vertices that satisfies the tie-breaking rule.

4.3 Vertex order based MSTs
In order to construct an MST that is guaranteed to have the desired topological correspondence with the
phylogenetic tree, we propose the following definition of a surrogate vertex.

Definition 1. Given a phylogenetic tree T = (VT = {LT ,HT }, ET ) and distances dT that are additive in
T , let there be a total order <V over the set of all labeled vertices of T . The vertex order based surrogate
vertex of a vertex v in VT is the labeled vertex in LT that is closest w.r.t. dT , and smallest w.r.t to the
vertex order <V . That is,

s(v) = argmin
l∈LT

(dT (l, v), l<V ),

where l<V is the rank of l in the order <V , and the lexicographic order is applied to the ordered pair following
“argmin” in the formula.

The inverse surrogate set S−1(l) of a labeled vertex l is the set of all vertices whose surrogate vertex is
l. Note that each labeled vertex is contained in its inverse surrogate set.

In order to ensure that the surrogate vertices are selected on the basis of tree distances and vertex order,
it is necessary that information pertaining to vertex order is used when selecting the edges of the MST. We
use Kruskal’s algorithm (Kruskal, 1956) for constructing the desired MST. Since Kruskal’s algorithm takes
as input a set of edges sorted w.r.t. edge weight, we modify the input by sorting edges with respect to edge
weight and vertex order as follows. It is easy to modify other algorithms for constructing MSTs in such a
way that vertex order is taken into account.
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Definition 2. Given an edge-weighted graph G = (V,E), and a total order <V over the vertices in V . Let
w{u,v} be the weight of the edge {u, v}. Edges in E are sorted w.r.t. edge weight and vertex order using the
lexicographic order that is defined below. Let the sorting be defined using the total order <E . For each pair
of edges {a, b} and {c, d} in E,

{a, b} <E {c, d}, if and only if

(w{a,b},min(a<V , b<V ),max(a<V , b<V )) < (w{c,d},min(c<V , d<V ),max(c<V , d<V ))

where the tuples are compared lexicographically
The modified algorithm for constructing a vertex order based MST (VMST) is described in Algorithm 3.

Algorithm 3: Constructing a vertex order based MST (VMST)
Input: (G = (V,E), <V )
E<V ← edges in E ordered w.r.t. edge weight and vertex order
M<V ← MST constructed by applying Kruskal’s algorithm to E<V
Output: M<V

Using the notion of VMSTs we will prove Lemma 1, and consequently show that the indeterminacy of
CLGrouping can be removed if CLGrouping is applied to a VMST.

Lemma 1. Adapted from parts (i) and (ii) of Lemma 8 in Choi et al. (2011). Given a phylogenetic tree
T = (VT , ET ) and a total order <LT over the labeled vertices in T , let G = (VG, EG) be the distance graph of
T . Let M = (VM , EM ) be the VMST constructed by applying Algorithm 3 to (G,<LT ). The surrogate vertex
of each hidden vertex is defined with respect to the tree metric dT and a vertex order as given in Definition
1. M is related to T as follows.

1. If l ∈ VM and h ∈ S−1(l) s.t. h 6= l, then every vertex in the path in T that connects l and h belongs
to the inverse surrogate set S−1(l).

2. For any two vertices that are adjacent in T , their surrogate vertices, if distinct, are adjacent in M , i.e.,
for all i, j ∈ VT with s(i) 6= s(j),

{i, j} ∈ ET ⇒ {s(i), s(j)} ∈ EM .

Proof. (i). Assume that there is a vertex u on the path between h and l, such that s(u) = k 6= l. Since
s(u) = k implies that (dT (u, k), k<V ) < (dT (u, l), l<V ), we have dT (u, k) ≤ dT (u, l), with equality holding
only if k<V < l<V .

There are seven ways to position k w.r.t. h, u, and l (see Figure 4.4). We only consider the general
positions.

For case 1 we have dT (h, l) ≤ dT (h, k)

⇔dT (h, j) + dT (j, u) + dT (u, l) ≤ dT (h, j) + dT (j, k)

⇔dT (j, u) + dT (u, l) ≤ dT (j, k)

⇒dT (u, l) < dT (u, j) + dT (j, k)

⇔dT (u, l) < dT (u, k) (contradiction since s(u) = k)
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For case 2 we have dT (h, l) ≤ dT (h, k)

⇔dT (h, u) + dT (u, j) + dT (j, l) ≤ dT (h, u) + dT (u, j) + dT (j, k)

⇔dT (u, j) + dT (j, l) ≤ dT (u, j) + dT (j, k)

⇔dT (u, l) ≤ dT (u, k) (contradiction since s(u) = k)

For case 3 we have dT (h, l) ≤ dT (h, k)

⇔dT (h, u) + dT (u, l) ≤ dT (h, k)

⇒dT (u, l) < dT (h, k) + dT (h, u)

⇔dT (u, l) < dT (u, k) (contradiction since s(u) = k)

For case 4 we have dT (u, k) = dT (u, l) + dT (l, k)

⇒dT (u, k) > dT (u, l) (contradiction since s(u) = k)

(ii). Consider the edge {i, j} in ET such that s(i) 6= s(j). Let Vi and Vj be the vertex sets of the
connected components that are constructed by removing the edge {i, j}, such that Vi and Vj contain i and j,
respectively. Let Li and Lj be sets of labeled vertices that are defined as Vi ∩ VM and Vj ∩ VM respectively.
From part (i) of Lemma 1 we know that s(i) ∈ Li and s(j) ∈ Lj . Consider the labeled vertices li ∈ Li\{s(i)}
and lj ∈ Lj\{s(j)}.

We have

dT (li, lj) = dT (li, i) + dT (i, j) + dT (l, j)

≥ dT (s(i), i) + dT (i, j) + dT (s(j), j)

= dT (s(i), s(j))

It follows that
dT (s(i), s(j)) ≤ dT (li, lj), (4.1)
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with equality holding only if
s(i)<V < li<V and s(j)<V < lj<V . (4.2)

The cut property of MSTs states that given a graph G = (V,E), for each pair V1, V2 of disjoint sets
such that V1 ∪ V2 = V , each MST of G contains one of the smallest edges (w.r.t. edge weight) which have
one endpoint in V1 and the other endpoint in V2. Thus M contains at most one of the following edges
{li, lj}, {s(i), lj}, {li, s(j)} and {s(i), s(j)}. Note that the vertex order based MST M is constructed using
edges that are sorted w.r.t. edge weight and the vertex order <V . Let the ordered set of edges be defined
using the total order <E over E.

From equations (4.1) and (4.2) we have

(dT (s(i), s(j)),min(s(i)<V , s(j)<V ),max(s(i)<V , s(j)<V )) < (dT (li, lj),min(li<V , lj<V ),max(li<V , lj<V ))

Thus, according to Definition 2, it follows that {s(i), s(j)} <E {li, lj}. Through a similar construction it can
be shown that {s(i), s(j)} <E {s(i), lj} and {s(i), s(j)} <E {li, s(j)}. It follows that {s(i), s(j)} ∈ EM .

CLGrouping can be shown to be correct using Lemma 1 and the rest of the proof that was provided by Choi
et al. (2011).

The authors of CLGrouping provide a Matlab implementation of their algorithm. The implementation
takes as input a distance matrix which has the following property: the row index, and the column index
of each labeled vertex is equal. The MST that is constructed in the authors implementation is a vertex
order based MST. The vertex order is equal to the order over the column/row indices of the labeled vertices.
The implementation provided by Choi et al. (2011) correctly reconstructs the model tree even if there are
multiple MSTs in the underlying distance graph.

4.4 An optimality criterion for selecting vertex order

4.4.1 Split information in a VMST
Consider a minimum spanning tree to be a generally labeled unrooted phylogenetic tree with no hidden
vertices. The notion of split that is usually only used for unrooted phylogenetic trees can be easily extended
to minimum spanning trees. In the following lemma we will show that each split that occurs in a VMST is
also contained the corresponding phylogenetic tree.

Lemma 2. Given a phylogenetic tree T = (VT = {LT ,HT }, ET ). Let M = (VM , EM ) be a VMST of T .
Each split Va|Vb in M is a split in T.

Proof. Without loss of generality let {a, b} in EM be the edge that induces the split Va|Vb such that Va
contains a, and Vb contains b.

From Lemma 1 part (ii) we know that a and b are the surrogate vertices of hidden vertices that are
adjacent in T . Let ha and hb be hidden vertices in HT that are adjacent in T such that a is the surrogate
vertex of ha, and b is the surrogate vertex of hb.

Consider the split Lha |Lhb in T that is induced by edge {ha, hb} in ET . Without loss of generality let
Lhacontain a, and let Lhbcontain b.

From Lemma 1 it follows that M is constructed by contracting paths in T between each hidden vertex
and the corresponding surrogate vertex. By construction of M from path operations it follows each vertex
in Va is contained in La but not Lb. Conversely each vertex in Vb is contained in Lb but not La. Since
Va ∪ Vb = LT = La ∪ Lb, and Va ∩ Vb = ∅ = La ∩ Lb, it follows that each split in M is a split in T

Consider an unrooted phylogenetic tree T and a corresponding VMST M . Each terminal edge in M
induces a trivial split in T . Each internal edge in M induces a nontrivial split in T . With respect to
maximizing the number of non-trivial splits, an optimal VMST would have the minimum number of leaves.

In the context of parallel programming, Huang et al. (2014) showed that it is possible to parallelize
CLGrouping by independently constructing phylogenetic trees over the vertex group that is associated with
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Figure 4.5: Each panels above shows (i) an ultrametric tree (left), (ii) a VMST with the maximum number
of leaves (VMSTmax, top right), and (iii) a VMST with the minimum number of leaves (VMSTmin, bottom
right). The edge contraction operations in orange and blue were used to construct VMSTs with the maximum
number of leaves, and minimum number of leaves, respectively. The difference in the number leaves between
VMSTmax and VMSTmin is largest for the caterpillar tree shown in panel A, and smallest for the balanced
tree shown in panel B.

each non-leaf vertex, and merging them in order to construct the full phylogenetic tree. The step involving
tree mergers requires a shared memory architecture.

Thus, with respect to parallelism, an optimal VMST would have the maximum number of vertex groups,
and equivalently, the minimum number of leaves.

4.4.2 Tree shape
In order to relate the shape of a phylogenetic tree to the number of leaves in a corresponding VMST, we
consider ultrametric caterpillar trees and ultrametric balanced trees (Semple and Steel, 2003).

A VMST of a rooted phylogenetic tree is constructed by suppressing the root of the phylogenetic tree,
followed by contracting paths in the unrooted phylogenetic tree between each hidden vertex and the corre-
sponding surrogate vertex.

Consider an ultrametric caterpillar tree. There exists a vertex-order based MST VMSTmax which has a
star topology that can be constructed by contracting edges between each hidden vertex and one labeled vertex
that is in the surrogate vertex set of each hidden vertex (see Figure 4.5 A). VMSTmax has the maximum
number of leaves and does not contain any information regarding the splits of the phylogenetic tree.

Instead, if a vertex-order based MST VMSTmin was to be constructed by contracting edges between each
hidden vertex h and a labeled vertex that is adjacent to h, then the number of the vertex groups would be
n − 2, where n is the number of vertices in the phylogenetic tree. VMSTmin has the minimum number of
leaves (two), and the maximum amount of split information about the phylogenetic tree.

Consider a phylogenetic tree T = (VT = {LT ,HT }, ET ) which is an ultrametric balanced tree. For each
leaf l1in LT there is another leaf l2 in LT such that l1 and l2 are adjacent to the same hidden vertex h in
HT . Since l1 and l2 are closest to h, the surrogate vertex of h is either l1 or l2. In each VMST of T , either
l1 or l2 will be a leaf in the VMST. Since this is true for all leaves in LT , each VMSTs of T will have |LT |/2
leaves (see Figure 4.5 B).

Whether or not the phylogenetic trees that are estimated from real data are ultrametric depends on the
set of organisms that are being studied. Genetic sequences that are sampled from closely related organisms
have been estimated to undergo substitutions at a similar rate, resulting in ultrametric phylogenetic trees
(dos Reis et al., 2016). With respect to the phenomenon of adaptation by natural selection, phylogenetic
trees are caterpillar-like if there is strong selection; the longest path from the root represents the best-adapted
lineage.
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Figure 4.6: Panel A shows a generally labeled phylogenetic tree T with surrogate vertices selected such
that the edge contraction would construct the VMST with the minimum number of leaves shown in Panel
B. Panel C shows the VMST (in red) superimposed with the common laminar family and the MST union
graph. Additionally, each vertex has been labeled with the corresponding δmax.

4.4.3 Overview of our approach
Our approach to selecting optimal VMSTs makes use of three notions,(i), the maximum degree δmax of each
vertex across all MSTs, (ii), the so-called MST union graph which is a graph containing all the edges that
are present in at least one MST, and, (iii), a common structure over the MSTs that can be defined as a
laminar family.

The intuition behind our approach is as follows. From Lemma 1 it follows that each non-leaf vertex of a
VMST is a surrogate vertex. Thus we want to choose a vertex order such that we maximize the number of
distinct surrogate vertices. In Section 4.5, we show that such a vertex order can be constructed by arranging
vertices in order of non-decreasing δmax. In Section 4.4.4 we show how the common laminar family and the
MST union graph can be used to compute δmax. The construction is exemplified graphically in Figure 4.6.

On a related note, the general problem of selecting an MST with the minimum number of leaves (MLMST)
is in NP-complete by reduction from the Hamiltonian path problem. MLMST specializes the problem of
finding spanning trees with the minimum number of leaves which is also in NP-complete by a similar
reduction (Salamon and Wiener, 2008).

4.4.4 A structure that is common to all MSTs of a graph
In this subsection we will prove the existence of a so-called common laminar family over the vertex set
of an edge-weighted graph G. A collection F of subsets of a set S is a laminar family over S if, for any
two intersecting sets in F , one set contains the other. That is to say, for each pair S1, S2 in F such that
|S1| ≤ |S2|, either S1 ∩ S2 = ∅, or S1 ⊂ S2.

The common laminar family defines a representation of a tree structure that is common to each MST of
G. The notion of a laminar family has been utilized previously by Ravi and Singh (2006) for designing an
approximation algorithm for computing a minimum-degree MST.
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Semple and Steel (2003) note that each rooted phylogenetic tree can be uniquely described as a laminar
family over the set of labeled vertices. Laminar family representations of rooted phylogenies are used for
comparing and combining information from multiple rooted phylogenetic trees. Later in this section we show
that the laminar family representation of an ultrametric tree is equivalent to the common laminar family.

Lemma 3. Given an edge-weighted graph G = (V,E) with k distinct weight classes W = {w1, w2, . . . , wk},
and an MST M of G, let Fi be the forest that is formed by removing all edges in G that are heavier than wi.
Let Ci be the collection comprising the vertex set of each component of Fi. Consider the collection F which
is constructed as follows: FC =

{
∪ki=1Ci

}
∪ V . The following is true:

1. FC is a laminar family over V

2. Each vertex set in FC induces a connected graph in each MST of G

Proof. (i). Consider any two vertex sets V1 and V2 in F . Let w1 and w2 be the weights of the heaviest edges
in the subgraphs of M that are induced by V1 and V2, respectively. Let F1 and F2 be the forests that are
formed by removing all edges in M that are heavier than w1 and w2, respectively. Let C1 and C2 be the
collections comprising the vertex set of each component in F1 and F2, respectively.

By construction, we have V1 ∈ C1 and V2 ∈ C2. Consider the case where w1 = w2. Since C1 = C2, it
follows that V1 ∩V2 = ∅. If w1 6= w2, then without loss of generality, let w1 < w2. F2 can be constructed by
adding to F1 all edges in M that are no heavier than w2. The vertex set of each component in F1 that is
not in F2 induces a connected subgraph in exactly one component of F2. If V1 ∈ C1 ∩C2 then V1 ∩ V2 = ∅.
Otherwise, if V1 ∈ C1\C2, then V1 is a subset of exactly one set in C2. This implies that either V1 ⊂ V2, or
V1 ∩ V2 = ∅. Thus FC is a laminar family over V .

(ii). Let Vi be the vertex set of a component in the graph Gi of G that is created by removing all edges in
Gi that are heavier than wi. It follows that Vi induces a connected graph in each minimum spanning forest
of Gi. Consider an MST M of G. Removing all edges in M that are heavier than wi constructs a minimum
spanning forest F of G. Thus Vi induces a connected graph in M . It follows that Vi induces a connected
graph in each MST of G. By construction Vi ∈ FC .

4.4.5 Ultrametric trees
Semple and Steel (2003) note that the hierarchical structure of a rooted tree can be represented using a
laminar family. We show that the laminar family FT that represents an ultrametric tree T is equivalent to
the laminar family FC that is common to all the MSTs of the distance graph associated with T .

Lemma 4. We are given an ultrametric tree T = (VT , ET ) and the corresponding distance graph G. Let FC
be the laminar family that is common to each MST of G. Let FT be the laminar family representation of T .
The following is true.

FT = FC .

Proof. Consider a vertex set Vw ⊂ FT . Let w be the largest distance between vertices in Vw. Consider the
forest Fw that is constructed by removing all edges in G that are heavier than w. Vw induces a connected
component Cw in Fw since each pairwise distance between vertices in Vw is not larger than w. Since the
distance between each vertex in Vw and each vertex in VT \Vw is larger than w, it follows that Cw does
not contain any vertex that is not in Vw. Since the common laminar family FC contains the vertex set of
each component in F , it follows that Vw ⊂ FC . Since this is true for each vertex set in FT , it follows that
FT = FC .

Note that the laminar family representation FT of a rooted tree, and the corresponding common laminar
family FC , are not equivalent in general. See Figure 4.7 for an example.
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Figure 4.7: The equivalence between the laminar family representation FT of a rooted phylogenetic tree,
and the common laminar family FC , is not true in general.

4.4.6 Computing the common laminar family and the MST union graph
In this subsection we present an algorithm for constructing the common laminar family and the MST union
graph. The MST union graph of a graph G is the subgraph of G that contains all the edges that are present
in at least one MST of G.
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Algorithm 4: Construct the common laminar family FC and the MST union graph GU

Input: G = (VG, EG)
Initialize:
M = (VM , EM )← singleton graph over VG
GU = (VU , EU )← singleton graph over VG
FC ← VG
EG≤ ← edges in EG that are sorted in order of increasing weight
wprevious ← weight of the lightest edge in EG
Vw ← ∅
Functions:
CM (v) : Returns the vertex set of the component of M containing v
FM (v) : Returns id of the component of graph M containing v
UM (u, v): Adds edge {u, v} to EM and updates component ids
for {u, v} in EG≤
wcurrent ← weight of {u, v}
if wcurrent > wprevious
for {u, v} in Ew
if FM (u) 6= FM (v)
UM (u, v)

Ew ← ∅
for v in Vw
FC ← FC ∪ CM (v)

Vw ← ∅
else if FM (u) 6= FM (v)
EU ← EU ∪ {{u, v}} // ensures that GU contains all the edges that are present in at least one

MST of G
Ew ← Ew ∪ {{u, v}}
Vw ← Vw ∪ {u}

wprevious ← wcurrent
Output: FC , GU = (VU , EU )
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Lemma 5. Given an edge-weighted graph G = (VG, EG) with k distinct weight classesW = {w1, w2, . . . , wk},
the outputs FC and GU of Algorithm 4 are the common laminar family of G, and the MST union graph of
G, respectively.

Proof. Algorithm 4 adds edges to the singleton graph M in order of increasing weight, in such a way that
M does not contain any cycles. From Kruskal (1956), we know that M is an MST of G.

Consider the forest Fi that is constructed by removing all edges in M that are heavier than wi. By
construction, FC includes the vertex set of each component of Fi. Let Ci be the collection comprising the
vertex set of each component of Fi. It follows that FC =

{
∪ki=1Ci

}
∪ V . From Lemma 3, we know that FC

is the common laminar family of G.
EU is constructed by adding the lightest edges that are incident to vertices in different components. The

cut property of MSTs states that given a graph G = (V,E), for each pair V1, V2 of disjoint sets such that
V1 ∪ V2 = V , each MST of G contains one of the lightest edges which have one endpoint in V1 and the other
endpoint in V2. It follows that each edge in EU is present in at least one MST of G.

4.5 Selecting VMSTs with the minimum number of leaves

4.5.1 Implicitly selecting optimal surrogate vertices
Lemma 6. We are given a phylogenetic tree T , the corresponding distance graph G = (V,E). Let FC be the
common laminar family of G. Let GU = (VU , EU ) be the MST union graph of G. Let h be a hidden vertex
in T such that there is a leaf l in S(h) that is adjacent to h. Let Vi be a vertex set in F and let wi be the
corresponding edge weight. Then the following is true:

1. Let N(v) be the set of all vertices that are adjacent to vertex v in GU . Let C(v) be a smallest sub-
collection of F that covers N(v) but not v. Among all MSTs, the maximum vertex degree δmax(v) of
v is |C(v)|.

2. δmax(l) ≤ δmax(v) for each vertex v in S(h)

Proof. (i). Let N(v) = {j1, j2, . . . , jk} be the neighbors of v in GU . Let M be an MST of G. Let C(v) =
{c1, c2, . . . , cm} be a smallest sub-collection of F that covers N(v) and does not include v.

Let C(v) contain a set ci that covers multiple vertices in N(v). Let j1 and j2 be any two vertices in ci.
Let wi be the heaviest weight on the path between j1 and j2 in M . The edges {v, j1} and {v, j2} are heavier
than wi. If they were not, then we would have v ∈ ci. Since v, j1 and j2 are on a common cycle, each MST
of G can only contain one of the two edges {v, j1}, and {v, j2}. It follows that, for each set ci ∈ C(v), each
MST can contain at most one edge which is incident to v and to a vertex in ci. Thus the maximum number
of edges that can be incident to v in any MST is the number of vertex sets in C(v), i.e., δmax(v) = |C(v)|.

(ii). Let N(l) and N(v) be the neighbors of l and v in GU , respectively. Let j ∈ N(l)\S(h). The weight
of the edge {j, l} ∈ EU is given by dT (j, l). dT (j, h) > dT (v, h) since j /∈ S(h). Thus dT (l, j) > dT (l, v), and
consequently v ∈ N(l). We have dT (j, l) = dT (j, h) + dT (h, l) = dT (j, h) + dT (h, v) = dT (j, v). Consider the
MSTM = (VM , EM ) that contains the edges {l, v} and {l, h}. Consider the spanning treeM ′ that is formed
by removing {l, h} from EM and adding {v, h}. M ′ and M have the same sum of edge weights. Thus we
also have j ∈ N(v). Consequently N(l) ⊆ N(v). Let C(l) and C(v) be the smallest sub-collections of F such
that C(l) covers N(l) but does not contain l, and C(v) covers N(v) but does not contain v. C(v) covers
both N(l) and N(v) since N(l) ⊆ N(v). Thus |C(l)| ≤ |C(v)|. From part (i), we know that |C(l)| = δmax(l)
and |C(v)| = δmax(v). Thus δmax(l) ≤ δmax(v).

4.5.2 Computing a VMST with the minimum number of leaves
Theorem 2. We are given a phylogenetic tree T and the corresponding distance graph G. Let M be the
vertex order based MST that is computed using Algorithm 5. Among all VMSTs of G, M has the minimum
number of leaves.
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Algorithm 5: Construct a minimum leaves VMST (MLVMST)

Input: G = (V,E)
FC ←the common laminar family of G
F≥C ←sets of FC ordered in order of decreasing size
GU ←the MST union graph of G
δmax ←empty array
for i in V
N(i)←neighbors of i in GU
δmax(i)← 0

for C in F≥C :
if C∩N(i) 6= ∅ and C∩{i} = ∅
δmax(i)← δmax(i) + 1
N(i)← N(i)\C

<∗← A total order over V such that u<∗ < v<∗ =⇒ δmax(u) ≤ δmax(v)
M∗ ← VMST constructed by applying Algorithm 3 to (G,<∗)
Output: M∗

Proof. Let S(h) be the set of vertices that are closest to h w.r.t the tree metric dT that is associated with
T . From Lemma 6(ii), we know that if there is a leaf l in S(h) that is adjacent to h in T then, among all
vertices in S(h) δmax(l) is smallest. By construction of <∗, among all vertices in S(h), the vertex rank l<∗of
l is the smallest. It follows that Algorithm 5 implicitly selects l as the surrogate vertex of h. Since each leaf
in T is adjacent to at most one hidden vertex, the vertex order that is selected by Algorithm 5 maximizes the
number of distinct leaves that are selected as surrogate vertices. M is constructed by contracting the path
in T between each hidden vertex and the corresponding surrogate vertex. Contracting the path between a
hidden vertex and the corresponding surrogate vertex increases the degree of the surrogate vertex. Thus,
among all vertex order based MSTs, M has the minimum number of leaves.

4.5.3 Implementation details and time complexity analysis
Algorithm 5 takes as input an edge-weighted graph G = (V,E) and performs the following actions. First, the
common laminar family FC and the MST union graph GU are constructed by applying Algorithm 4 to G.
Subsequently, a vertex order <V is computed on the basis of FC and GU . Finally, a VMST is constructed
by applying Algorithm 3 to (G,<V ).

Algorithms 3 and 4 are variants of Kruskal’s algorithm and were implemented using a disjoint-set data
structure with balanced Union, and Find with path compression (Tarjan, 1975). The functions FM and UM
correspond to a Find operation and a Union operation, respectively. A disjoint-set data structure can be
represented as a forest with self-loops and directed edges. Each vertex points to its parent. The root of a
component points to itself. A Find operation on a vertex v deletes the edge (v, vpf ) that enters its former
parent vpf and adds the edge (v, vr) that enters the root of the component that contains v. A Union operation
takes as input the roots of two components and creates an edge that exits the root of the smaller component
and enters the root of the larger component, breaking ties arbitrarily. The function CM (u) is designed to
return the set of vertices that are in the same component as u. CM is implemented as follows. We store the
vertex set of a component in the root of the component. Each time we perform a union operation UM (r1, r2)
we combine the vertex sets and store the combined vertex set in the root of the component containing r1and
r2.

The main steps of Algorithms 3 and 4 are (i), sorting O(n2) edges and, (ii), performing O(n2) Find
operations and O(n) Union operations, where n is the number of vertices in V . Step (i) can be done using
mergesort in time O(n2 log n2), which simplifies to O(n2 log n). Step (ii) takes time O(n2α(n2, n)) where α
is the inverse of Ackermann’s function (Tarjan, 1975). Since α(n2, n) < log n, both the algorithms complete
their computations in time O(n2 log n).
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In addition to calling Algorithms 3 and 4, Algorithm 5 sorts the sets in FC and computes δmax for each
vertex in V . FC has O(n) sets which can be sorted using mergesort in time O(n log n). For each vertex,
δmax can be computed in time O(n).

Thus the total time complexity of Algorithm 5 is O(n2 log n).

4.6 Summary and Outlook
The current chapter identified the conditions under which MSTs constructed using tree-distances dT share
a topological relationship with phylogenetic trees T . The topological relationship that was introduced by
Choi et al. (2011) states that MSTs can be constructed by contracting paths in phylogenetic trees between
hidden vertices and their corresponding surrogate vertices. We showed that the indeterminacy in the proof
by Choi et al. (2011) occurred because surrogate vertices were not properly defined in the case that there
are multiple labeled vertices that could each be the surrogate vertex of a hidden vertex. We removed this
indeterminacy by ensuring that surrogate vertices are uniquely defined on the basis of a vertex order over
labeled vertices. Subsequently we provided an algorithm for constructing vertex-order based MSTs (VMSTs)
that are guaranteed to share the topological relationship with phylogenetic trees. We related the number of
leaves in a VMST to the number of non-trivial splits, which showed that VMSTs with the minimum number
of leaves contained the maximum amount of information about phylogenetic trees. Finally we provided a
polynomial-time algorithm for constructing VMSTs with the fewest number of leaves.

The proofs in this chapter required the use of tree-distances. Empirical estimates of evolutionary distances
such as the Hamming distance, or model-based maximum likelihood distances are not additive in general. In
the following Chapter we present an MST-based framework called MST-backbone that constrains the search
for maximum-likelihood phylogenetic trees. In the following chapter we do not assume that distances are
additive, and we do not make use of VMSTs in MST-backbone.
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Chapter 5

Structural EM under the general
Markov model via an MST backbone

The work that is presented in this chapter is unpublished.

The current approach to inferring model-based phylogenetic trees involves searching through tree space
via tree-modification operations. The size of tree space is exponential in number of leaves. Consequently,
popular software for phylogenetic tree inference make simplifying model assumptions about sequence evolu-
tion in order to reduce the number of free parameters, and facilitate fast search through tree space. The most
commonly adopted assumption are stationarity and homogeneity. The stationarity assumption is violated
by empirical observations of large variation in GC content (Agashe and Shankar, 2014). Currently available
methods for inferring trees under non-stationary Markov models are limited to small data sets comprising
less than 100 species due to high computational cost (Foster, 2004). The current chapter introduces a min-
imum spanning tree (MST) framework called MST-backbone that constrains the search for model-based
phylogenetic trees. We extend the structural expectation-maximization (SEM) framework for phylogenetic
tree inference (Friedman et al., 2002) in order to enable searching through tree space for maximum-likelihood
trees under the general Markov model (GM). The GM model is a non-stationary, non-homogeneous and non-
reversible Markov model that allows GC content to evolve through evolutionary history. We show on simu-
lated data that it is possible to reconstruct large phylogenetic trees without loss of accuracy. We validated
our method on six empirical data sets. Additionally, we compared our method with IQ-TREE, a phylogeny
inference software that implements the largest selection of time-reversivle and irreversible stationary homoge-
nous CT-HMM. We found that the unrooted topology of trees reconstructed by MST-backbone(SEM-GM)
and IQ-TREE were realistic for five data sets. The location of the root as inferred by the GM model was
accurate for two experimental phylogeny data sets but showed signs of overfitting for two virus data sets.
We found that trees that are rooted under the UNREST model using MST-backbone(SEM-GM)+UNR, and
IQ-TREE are realistic for four data sets.

To the best of our knowledge, there is currently no method that performs tree search under the general
Markov model (GM; Barry and Hartigan (1987)). We extend the structural expectation-maximization (EM)
framework by Friedman et al. (2002) in order to perform tree search under the GM model. We refer to this
method as SEM-GM. In order to improve the scalability of SEM-GM we designed an easily implementable
threshold-based divide-and-conquer framework called MST-backbone. We refer to the MST constrained
tree-search method as MST-backbone(SEM-GM).

The structure of this chapter is as follows. SEM-GM and MST-backbone are described in Section 5.1
and Section 5.2, respectively. We performed a comparative analysis of MST-backbone(SEM-GM) with three
popular software packages: FastTree v2.1.10 (Price et al., 2010), RAxML-NG v0.8.1 (Kozlov et al., 2019),
and IQ-TREE v1.6.1 (Nguyen et al., 2015) using sequences that were simulated under non-stationary Markov
models. We validated MST-backbone(SEM-GM) on empirical data and discovered that the location of the
root was unrealistic for a majority of data sets. Subsequently, we performed model selection using BIC and
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found that the UNREST model was selected for five empirical data sets. We compared the trees rooted under
UNREST (Yang, 1994b) with trees inferred by IQ-TREE under non-reversible stationary and homogeneous
Lie Markov models. Results of the comparative analysis on simulated data is described in Section 5.4. The
comparative analysis with IQ-TREE on empirical data is described in Section 5.5. The chapter concludes
with a summary of results, and an outlook on how the methods described in this chapter might impact
current research in phylogeny inference.

5.1 A structural EM algorithm for the general Markov model
Expectation-maximization algorithms (EM) are a class of algorithms that are commonly used to infer the
parameters of models with hidden variables (Dempster et al., 1977). Friedman (1997) designed an EM
algorithm called structural EM for inferring Bayesian networks with hidden vertices. Friedman et al. (2002)
applied SEM to infer phylogenetic trees under the GTR model. In this chapter we adapt SEM to the GM
model, and refer to the method as SEM-GM.

The search problem of finding maximum likelihood phylogenetic trees given sequences of extant species
(leaf vertices) is NP-hard (Chickering, 1996; Roch, 2006; Chor and Tuller, 2006), and the corresponding
decision problem is NP-complete. If sequences of all species (extinct and extant) were available then the
decision problem that corresponds to the search problem of finding maximum likelihood phylogenetic trees
is P because maximum likelihood fully labeled phylogenetic trees can be found in polynomial-time (Chow
and Liu, 1968).

The general principle of EM algorithms is as follows. If there are no hidden variables then observed
statistics are sufficient to compute optimal estimates of model parameters using closed-form solutions. If there
are hidden variables then, given suboptimal estimates of model parameters, it is possible to compute expected
statistics over hidden variables that are sufficient to optimize parameters using closed-form solutions. In
the following Subsection, we consider the case where there are no hidden variables, i.e, we are interested in
finding maximum likelihood fully labeled phylogenetic trees. Subsequently, we show how to compute expected
statistics such that we can simplify the problem of finding maximum likelihood leaf-labeled phylogentic trees.

5.1.1 Inferring maximum likelihood fully labeled phylogenetic trees
Chow and Liu (1968) showed that the undirected version of a maximum-likelihood Markov model M on a
fully labeled phylogenetic tree TMLE

full = (Vfull, Efull) is a maximum mutual information spanning tree TMI
full

of the edge-weighted complete graph Gall = (Vfull, Eall) over Vfull with edges in Eall weighted using mutual
information scores. A maximum mutual information spanning tree is a maximum weight spanning tree of
Gall. The mutual information score I(Xu;Xv) for any edge {u, v} in Eall is computed as

I(Xu;Xv) =
∑
x

∑
y

P (Xu = x,Xv = y) log

(
P (Xu = x,Xv = y)

P (Xu = x)P (Xv = y)

)
where the entries in the probability distributions P (Xu) and P (Xu,Xv) are estimated using observed se-
quences as follows. Let Cu be is the fraction of sites at which the observed sequence seq(u) equals x , and
let C(u,v) be the fraction of sites at which seq(u) equals x and seq(v) equals y. The observed count matrices
Cu and C(u,v) are computed as

Cu(x) =
1

k

k∑
i=1

δ(X iu, x), (5.1)

and

C(u,v)(x, y) =
1

k

k∑
i=1

δ(X iu, x)× δ(X iv, y) (5.2)
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where δ(x, y) is the Kroenecker delta function that is one if x equals y, and is zero otherwise. P (Xu = x) is
estimated as Cu(x), and P (Xu = x,Xv = x) is estimated as C(u,v)(x, y) .

Consider a complete graphGMI over all labeled vertices whose edges are weighted with mutual information
scores. A maximum mutual information spanning tree TMI of GMI can be computed in polynomial time
using Prim’s algorithm (Prim, 1957). Given TMI, the maximum-likelihood estimate of the fully labeled tree
TMLE
full can computed in polynomial time as

TMLE
full = arg max

ρ∈Vfull

k∏
i=1

πMLE
ρ (X iρ)

∏
(u,v)∈Eρ

PMLE
(u,v) (X iu,X iv) (5.3)

where edges Eρ are directed away from the vertex ρ in Vfull that is selected as the root, and the maximum
likelihood estimate of model parameters M are given by the following closed-form solutions (Koller and
Friedman, 2009):

πMLE
ρ (x) = Cρ(x), and (5.4)

PMLE
(u,v) (x, y) =

C(u,v)(x, y)

Cu(x)
(5.5)

In the following Subsection we describe how to perform the expectation step.

5.1.2 Expectation (E) step
Given a hidden Markov model M on a rooted leaf-labeled phylogenetic tree T = (VTρ , ETρ), let LTρ and HTρ
be the set of labeled vertices and hidden vertices, respectively. The expected counts EM

[
Cu(x)

]
of a hidden

vertex u can be computed as follows (Koller and Friedman, 2009).

EM
[
Cu(x)

]
=

k∑
i=1

P (X iu = x), (5.6)

where P (X iu) is the marginal probability

P (X iu) =
∑

X ih:h∈HTρ\{u}

P ({X iv : v ∈ VTρ}|M)

Similarly, the expected counts EM
[
C(u,v)(x, y)

]
for any vertex pair u, v can be computed as follows

EM
[
C(u,v)(x, y)

]
=

k∑
i=1

P (X iu = x,X iv = y), (5.7)

where P (X iu,X iv) is the marginal probability

P (X iu,X iv) =
∑

X ih:h∈HTρ\{u,v}

P ({X iv : v ∈ VTρ}|M)

P (X iu,X iv) for adjacent vertices u and v can be computed efficiently using belief propagation as de-
scribed in Section 2.6.3.2. P (X iu,X iv) for non-adjacent vertices u, v is computed in order of increasing un-
weighted path length from u to v on Tρ as follows: consider a path (v1, v2, . . . , vn−1, vn) in the undirected
version of Tρ such that P (X iv1 ,X

i
vn−1

) is known and we are interested in computing the marginal prob-
ability P (X iv1 ,X

i
vn). Note that variables X ivn and X iv1 are independent if conditioned on X ivn−1

. Thus
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P (X ivn |X
i
vn−1

,X iv1) equals P (X ivn |X
i
vn−1

). This enables us to decompose the joint marginal probability
P (X iv1 ,X

i
vn−1

,X ivn) as P (X iv1 ,X
i
vn−1

)P (X ivn |X
i
vn−1

).
The marginal probability P (X iv1 ,X

i
vn) can be computed as follows:

P (X iv1 ,X
i
vn) =

∑
X ivn−1

P (X iv1 ,X
i
vn−1

,X ivn) =
∑
X ivn−1

P (X iv1 ,X
i
vn−1

)P (X ivn |X
i
vn−1

) (5.8)

where P (X ivn |X
i
vn−1

) is computed from the joint probability distribution P (X ivn ,X
i
vn−1

).

5.1.2.1 Maximization (M) step

The maximization step of SEM-GM is similar to the case of fully labeled phylogenetic trees with the difference
being that observed count matrices are substituted with expected count matrices. The log-likelihood score
increases subsequent to each iteration of an expectation step and a maximization step. The log-likelihood
score is said to converge if successive increment of the log-likelihood score is smaller than a preselected
log-likelihood threshold (known as convergence threshold). We used a convergence threshold of 10−2 log-
likelihood units.

5.1.3 Transformation into a bifurcating tree
The rooted phylogenetic tree Tρ that is computed by the maximization step is not necessarily a bifurcating
tree. In the case that Tρ is not a bifurcating tree we transform it into a bifurcating tree Tbi, and compute a
GM model Mbi on Tbi using the steps described in Algorithm 6, such that the log-likelihood score remains
unchanged.

The proof of correctness of Algorithm 6 is provided below.

Lemma 7. The output of Algorithm 6 is a rooted bifurcating phylogenetic tree such that log-likelihood remains
unchanged.

Proof. The removal of edges incident to hidden vertices in cases (i) through (iii) results in the construction
of the singleton hidden vertices that are used in cases (iv) through (vi).

We use conditional likelihood vectors in order to show that the likelihood score for any site i remains
unchanged subsequent to the operations applied for each case considered by Algorithm 6. Note that P(u,v)

denotes the conditional probability P (Xv|Xu)
Case (i): Tρ contains a hidden leaf h.
Let D(v) be the set of children of the parent v of h. The conditional likelihood vector Liv is computed as

follows

Liv(x) =

(∑
y

P(v,h)(y|x)Lih(y)

) ∏
d∈D(v)\{h}

(∑
z

P(v,d)(z|x)Lid(z)

)

=

(∑
y

P(v,h)(y|x)

) ∏
d∈D(v)\{h}

(∑
z

P(v,d)(z|x)Lid(z)

)
(Lih(y) equals one for all y because h is not observed)

=
∏

d∈D(v)\{h}

(∑
z

P(v,d)(z|x)Lid(z)

)
(Each row of P(v,h) sums to one)

Case (ii): Tρ contain a hidden vertex h with in-degree one and out-degree one.
Let u and v be the parent and child, respectively, of h. The conditional likelihood vector Liu is computed

as follows
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Algorithm 6: Transform non-canonical tree to leaf-labeled bifurcating tree

Input: A non-bifurcating tree Tρ = (VTρ , ETρ), and a GM model M = (πρ,P = {Pe : e ∈ ETρ})
While Tρ is a non-bifurcating tree do:

Case (i): Tρ contains a hidden leaf h
Let v be the parent of h
Remove edge (v, h), and matrix P(v,h)

Case (ii): Tρ contain a hidden vertex h with in-degree one
and out-degree one
Let u and v be the parent and child, respectively, of h
Remove edges (u, h) and (h, v), and add edge (u, v)
Remove matrices P(u,h) and P(h,v), and add matrix P(u,v) such that
P(u,v) =P(u,h)P(h,v)

Case (iii): The root is a hidden vertex with out-degree one
Let πcurρ denote the current root probability distribution
Compute new root probability distribution πnewρ as
πnewρ (y) =

∑
x π

cur
ρ (x)P(ρ,v)(x, y)

,where v is the child of ρ
Remove edge (ρ, v) and matrix P(ρ,v)

Set v as the new root of Tρ

Case (iv): Tρ contains a non-leaf labeled vertex l
Let D(l) be the children of l, and let h be a singleton
vertex.
Add edge (h, l), and add matrix P(h,l) = I (identity matrix)
for each vertex v in D(l) do
Remove edge (l, v), and add edge (h, v)
Remove matrix and P(l,v), and add matrix P(h,v) = P(l,v)

if l has a parent u then
Add edge (u, h) and matrix P(u,h) = P(u,l)

Remove edge (u, l) and matrix P(u,l)

else set h as the root

Case (v): Tρ contains a hidden vertex h1 with out-degree greater than two
Let u and v be a two children of h1 selected at random, and let h2 be a
singleton vertex.
Remove edges (h1, u) and (h1, v), and add edges (h2, h1), (h2, u), and (h2, v)
Remove matrices P(h1,u) and P(h1,v), and add matrices P(h2,u), P(h2,v), and P(h2,h1)such that
P(h2,u) = P(h1,u), P(h2,v) = P(h1,v), and P(h2,h1) = I (identity matrix)

Set Tbi as Tbi ← Tρ, and set Mbi as Mbi ←M
Output: Tbi and the GM model Mbi on Tbi

76



Liu(x) =

(∑
y

P(u,h)(y|x)Lih(y)

) ∏
d∈D(u)\{h}

(∑
z

P(u,d)(z|x)Lid(z)

)

=

(∑
y

P(u,h)(y|x)
∑
w

P(h,v)(w|y)Liv(w)

) ∏
d∈D(u)\{h}

(∑
z

P(u,d)(z|x)Lid(z)

)

=

(∑
w

(∑
y

P(h,v)(w|y)P(u,h)(y|x)

)
Liv(w)

) ∏
d∈D(u)\{h}

(∑
z

P(u,d)(z|x)Lid(z)

)

=

(∑
w

P(u,v)(w|x)Liv(w)

) ∏
d∈D(u)\{h}

(∑
z

P(u,d)(z|x)Lid(z)

)
(where P(u,v) = P(u,h)P(h,v))

Case (iii): The root is a hidden vertex with out-degree one.
Let πcurρ denote the current root probability distribution.
The likelihood Li for site i is computed as

Li =

(∑
x

πcurρ (x)Liρ(x)

)

=

(∑
x

πcurρ (x)
∑
y

P(ρ,v)(y|x)Liv(y)

)

=

(∑
y

∑
x

πcurρ (x)P(ρ,v)(y|x)Liv(y)

)

=

(∑
y

πnewρ (y)Liv(y)

)
(where πnewρ (y) =

∑
x

πcurρ (x)P(ρ,v)(y|x))

Case (iv): Tρ contains a non-leaf labeled vertex l.
The conditional likelihood vector Lil of a labeled vertex l with children D(l) is defined as

Lil(x) = X il (x)
∏

d∈D(l)

(∑
z

P(l,d)(z|x)Lid(z)

)

= X il (x)
∏

d∈D(h)\{l}

(∑
z

P(h,d)(z|x)Lid(z)

)
(5.9)

where h is the hidden vertex that is referred to in the operations defined for case (iv).
Consider the conditional likelihood vector Lih of the hidden vertex h.
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Lih(x) =
∏

d∈D(h)

(∑
z

P(h,d)(z|x)Lid(z)

)

=

(∑
y

P(h,l)(y|x)Lil(y)

) ∏
d∈D(h)\{l}

(∑
z

P(h,d)(z|x)Lid(z)

)

=

(∑
y

P(h,l)(y|x)X il (y)

) ∏
d∈D(h)\{l}

(∑
z

P(h,d)(z|x)Lid(z)

)
(because Lil = X il for labeled leaves)

= P(h,l)(x|x)X il (x)
∏

d∈D(h)\{l}

(∑
z

P(h,d)(z|x)Lid(z)

)
(because P(h,l) is the identity matrix )

= X il (x)
∏

d∈D(h)\{l}

(∑
z

P(h,d)(z|x)Lid(z)

)
(5.10)

The conditional likelihood vectors Lih and Lil are unchanged (see equation 5.9 and equation 5.10)
Case (v): Tρ contains a hidden vertex h1 with out-degree greater than two. Let D1 be the set of all

children of h1 prior to the operations performed in case (v). Let Duv be D1\{u, v}
The conditional likelihood vector Liu prior to transformation operations is given by

Lih1
(x) =

(∑
y

P(h1,u)(y|x)Liu(y)

)(∑
y

P(h1,v)(y|x)Liv(y)

) ∏
d∈Duv

(∑
z

P(h1,d)(z|x)Lid(z)

)

=

(∑
y

P(h2,u)(y|x)Liu(y)

)(∑
y

P(h2,v)(y|x)Liv(y)

) ∏
d∈Duv

(∑
z

P(h1,d)(z|x)Lid(z)

)
(because P(h2,u) = P(h1,u), and P(h2,v) = P(h1,v))

= Lih2
(x)

∏
d∈Duv

(∑
z

P(h1,d)(z|x)Lid(z)

)

=

(∑
y

P(h2,h1)(y|x)Lih2
(y)

) ∏
d∈Duv

(∑
z

P(h1,d)(z|x)Lid(z)

)
(because P(h2,h1) is the identity matrix)

It follows that the log-likelihood score remains unchanged after the transformation operation. The algo-
rithm terminates only if none of the cases apply, which will happen only if Tρ is a leaf-labeled phylogenetic
tree.

5.1.4 Initial estimate of the general Markov model on a rooted phylogenetic
tree

The expectation step requires an initial estimate T 0
ρ of the rooted phylogenetic tree, and initial estimates

of the parameters of a general Markov model M0 on T 0
ρ . We compute the initial estimates as follows. An

unrooted phylogenetic tree TNJ = (VTNJ , ETNJ) is constructed by applying neighbor-joining (Saitou and Nei,
1987) to normalized Hamming distances. TNJ is rooted along the midpoint of an edge that is selected at
random in order to construct the initial estimate of the rooted tree T 0

ρ . The parameters of a general Markov
model M0 = (π0

ρ,P
0 = {P 0

e : e ∈ ET 0
ρ
}) on T 0

ρ are estimated as follows.
Given an assignment of characters to XH , the parsimony score parsTρ(XH) is the sum of character changes

over edges
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parsTρ(XH) =

k∑
i=1

∑
(u,v)∈ETρ

1(X iu 6= X iv)

We compute a character set XH that minimizes the parsimony score using Fitch-Hartigan’s algorithm
(Fitch, 1971; Hartigan, 1973). Given an assignment of characters that minimizes the parsimony score, we
compute counts for each hidden vertex, and each vertex pair by treating each vertex as a labeled vertex.
Subsequently, we compute the initial estimate of root probability using equation 5.4, and we compute the
initial estimate of each transition matrix using equation 5.5.

5.2 MST-backbone: a divide-and-conquer framework for constrain-
ing search through tree space

Structural EM is a computationally expensive procedure (Friedman et al., 2002). We designed an MST-
based framework called MST-backbone for constraining the search through tree space. The design of MST-
backbone is inspired by a topological relationship between MSTs and unrooted phylogenetic trees (Choi
et al., 2011) which is described below. Given an unrooted phylogenetic tree T and distances dT that are
additive in T , let M be an MST that is computed using dT . The topological relationship can be described
in terms of splits as follows. Each edge of M induces a split in T . It follows directly that each vertex set Vs
that induces a subtree of M is the leaf-set of a subtree in T .

The correspondence between MSTs and phylogenetic trees holds for a subset of all possible MSTs
(Kalaghatgi and Lengauer, 2017). Additionally, the topological correspondence holds only if MSTs are com-
puted using tree distances. We do not assume that distances are additive in this Chapter. MST-backbone is
a divide-and-conquer method that builds a global phylogenetic tree T by combining local phylogenetic trees.
The main steps of MST-backbone are (i) computing a minimum spanning tree (MST); (ii) selecting smallest
mutually independent vertex sets Vs and Ve comprising more than s vertices each such that (a) Vs induces
a subtree in M , (b) Vs ∪ Ve induces a connected subgraph in M ; (iii) computing a local phylogenetic tree t
over Vs ∪ Ve; (iv) updating the global phylogenetic tree T by adding edges in subtrees of t that are induced
by Vs; (v) updating the MST; and (vi) rooting the global unrooted phylogenetic tree (see Figure 5.1 for an
illustration).

Each step of MST-backbone is explained in detail below. See Algorithm 7 for an overview of MST-
backbone.

Initialization A minimum spanning tree (MST) M is computed using the Hamming distance for each
sequence pair in XL, where L represents the set of labeled vertices (species). We used Prim’s algorithm
(Prim, 1957) for computing the initial MST. The global phylogenetic tree T = (VT , ET ) is initialized by
adding L to VT , and setting ET to the empty set ∅.

Selecting vertices of the MST Given a subtree size threshold s, select a smallest subtree τs = (Vs, Es)
of M comprising more than s sequences. Subsequently, perform a breadth-first-search (BFS) on M starting
at the root of τs, and selecting s vertices Ve such that Ve and Vs are mutually exclusive.

Computing local phylogenetic trees An ML phylogenetic tree T lρ over Vs ∪ Ve is inferred using SEM-
GM. A maximum a posteriori (MAP) sequence seqMAP(h) for each hidden vertex h is computed as

XMAP,i
h = argmax

x
P (X ih = x)
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Figure 5.1: An illustration of the main steps of MST-backbone
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Algorithm 7: Improving the scalability of SEM-GM using MST-backbone

Input: Distances d for species in L, and a subtree threshold size s
Initialize: A global phylogenetic tree T = (VT , ET ) as VT ← L and ET ← ∅
M = (VM , EM )← a minimum spanning tree (MST) computed using d
While T is not connected do

If M contains a subtree τs = (Vs, Es) with more than s vertices, and |VM | − |Vs| > s then
Select a smallest subtree τs of M containing more than s vertices
Select s vertices Ve of M that are visited using a BFS starting at the root of τs
such that Ve ∩ Vs = ∅
Compute a ML phylogenetic tree tρ over vertices Vs ∪ Ve by performing tree search using
SEM-GM
Construct t by suppressing the root of tρ, and select the largest non-singleton subtrees Ts
of t that are induced by Vs
Add edges of each selected subtree to global phylogenetic tree T
Update M by removing leaves of subtrees, and adding the root of each subtree.

Else
Compute a ML phylogenetic tree tρ over all vertices in VM using SEM-GM
Construct an unrooted phylogenetic tree t by suppressing the root in tρ,
and add all edges in t to T

Construct a rooted tree Tρ using SEM-GM such that the undirected topology of Tρ is constrained to
be T .
Output: Tρ

where P (X ih = x) is the marginal probability for observing character x at site i for the sequence seq(h) that
is represented by vertex h, and XMAP,i

h is the character at position i in seqMAP(h).
The location of the root as inferred in T lρ is not necessarily an optimal location of the root in the

global phylogenetic tree. An unrooted phylogenetic tree T l is constructed by suppressing the root in T lρ.
Subsequently, the subforest Fs of T l is selected such that (i) the leaves of each subtree in Fs are a subset of
Vs, and (ii) no component of Fs is a singleton vertex.

Updating the global phylogenetic tree The global phylogenetic tree T g = (VTg , ETg ) is updated as
follows. Non-leaf vertices of Fs are added to VTg . All edges of Fs are added to ETg .

Updating the MST Vertices that are leaves in Fs are removed from VM . The root of each subtree in Ts
is added to VM . MAP sequences of each root are used to compute the Hamming distances d(r, v) for each
root r in Fs, and each vertex v in VM ∩ {Vs ∪ Ve}. A new MST is computed using Prim’s algorithm using
the newly computed distances.

Rooting the global phylogenetic tree The global phylogenetic tree T g is rooted using structural EM
such that the undirected topology of the rooted tree T gρ is restricted to be identical to T g. Restricted SEM-
GM (rSEM-GM) is performed as follows: (i) Root T g = (Vg, Eg) at a hidden vertex in Vg that is selected
at random, (ii) Estimate MP sequences for hidden vertices, and initialize the parameters of a GM model
(see Subsection 5.1.4), (iii) root T g at a hidden vertex in Vg by maximizing expected log-likelihood score,
(iv) compute MLE of GM model parameters (equations 5.4 and 5.5). Steps (iii) and (iv) are performed
iteratively until the log-likelihood score converged.
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5.3 Model selection
We implemented a model selection framework that selects the optimal number of rate matrices of a CT-HMM
using BIC. Time-reversible models were not included in the model selection framework because we wanted to
investigate whether or not phylogenetic trees that are rooted under CT-HMM are biologically meaningful. We
validated phylogenetic trees using non-genetic information pertaining to evolutionary relationships. Model
selection was performed as follows.

A rooted phylogenetic tree Tρ = (Vρ, Eρ) is inferred using MST-backbone(SEM-GM). A maximum a
posteriori (MAP) estimate of ancestral sequence seqMAP(h) is inferred for each hidden vertex h in Vρ. The
edge length te of any edge e = (u, v) in Eρ is defined as the Hamming distance between sequences seqMAP(u),
and seqMAP(v). The change in base frequency ∆f (u, v) for each edge (u, v) in Eρ is computed as follows:

∆f (u, v) =
∑

x∈{A,C,G,T}

|fu(x)− fv(x)| (5.11)

where fu(x) is the fraction of characters in seqMAP(u) that are x. We construct CT-HMM on the basis of
a base frequency threshold εf as defined below. Given a base frequency threshold εf , vertex-specific rate
categories are assigned to each vertex in Vρ as follows. The rate category of each vertex v in Vρ is denoted
by vcat. The rate category ρcat of the root is set to zero. Vertices are visited by performing a preorder tree
traversal. Each non-root vertex c that is visited is assigned the rate category of its parent p if ∆f (p, c) is not
larger than εf , otherwise ccat is set to pcat+1. A distinct UNR rate matrix Qi is defined for each rate category
i. The rate category Q(p,c) for each edge (p, c) in Eρ is defined as Qccat . The root probability distribution
πρ is defined as the stationary distribution of the rate matrix Qρcat . The number of free parameters equals
(11× r) + |Eρ|, where r is the number of rate catergories.

Parameter estimation is performed by optimizing edge lengths, and rate matrices, iteratively until the
log-likelihood score converges, using a convergence threshold of 10−2 log-likelihood units. Edge lengths are
optimized using Newton-Raphson (details provided in Section B.1). Note that the transition matrix Pe for
each e in Eρ is computed as the matrix exponential Pe = eQete . It is necessary to constrain the elements of
Qe because it is possible to scale Qe and te such that the product Qete remains unchanged. The rate matrix
Qi for each rate category i is optimized using a simplex method called Nelder-Mead (Nelder and Mead,
1965) subject to the restriction that a non-diagonal element of Qi was constrained to be one. Subsequently,
each rate matrix is scaled in order to construct a normalized rate matrix. Threshold εf is initially set to the
largest observed change in base composition. For each subsequent iteration, εf is set to the largest observed
change in base composition that is smaller than the value of εf for the previous iteration. Model selection
is terminated if BIC increases between successive iterations. We refer to the model selection framework
described above as UNRmodelSelector in the following text.

5.4 Comparative analysis on simulated data
Current software performs tree-search under stationary and homogeneous Markov models. Empirical studies
suggest that violation of the stationarity assumption leads to the construction of phylogenetic trees where
species are incorrectly grouped close to each other due to similarity in base composition (Foster and Hickey,
1999; Nabholz et al., 2011). We compared the reconstruction accuracy of MST-backbone(SEM-GM) with
three widely used software: FastTree v2.1.10 (Price et al., 2010), RAxML-NG v0.8.1 (Kozlov et al., 2019),
and IQ-TREE v1.6.1 (Nguyen et al., 2015) using sequences simulated under non-stationary Markov models.

Phylogenetic trees that were used for simulating sequence evolution were generated using the R package
apTreeshape v1.4.5 (Bortolussi et al., 2006). Rooted phylogenetic trees were generated by sampling from
the uniform distribution over rooted trees. A general Markov model was constructed for each phylogenetic
tree as follows. The root probability distribution πρ was generated by sampling each element of πρ from the
uniform distribution U(0, 1) and scaling such that the sum of the entries in πρ was equal to one. Transition
matrices P were generated as follows. Each diagonal element of P was sampled from the uniform distribution
U(pmin, 1), where pmin was varied from 0.99 to 0.7. Smaller values of pmin result in greater change in GC
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Table 5.1: Percentage of simulated sequences that reject the null hypothesis of homogeneity in base compo-
sition. Median and inter-quartile range (shown in parentheses) are listed below.

pmin Median edge length p < 0.05 (%)
0.7 0.15 (0.064) 89.8 (0.8)
0.8 0.1 (0.043) 83.2 (2.5)
0.9 0.05 (0.022) 68.0 (8.3)
0.95 0.025 (0.012) 53.5 (19.9)
0.99 0.005 (0.004) 19.9 (34.8)
0.995 0.0025 (0.0014) 2.5 (19.1)

content. Each non-diagonal element of P was sampled from the uniform distribution U(0, 1) and scaled such
that the sum of elements of each row of P was equal to one.

In order to check for systematic error caused by using stationary homogeneous Markov models, we
simulated non-stationary non-homogeneous sequence evolution. We varied the amount of sequence change per
edge by setting pmin to 0.995, 0.99, 0.95, 0.9, 0.8, and 0.7. We measured edge length for each setting of pmin in
order to facilitate comparison with simulation experiments that are usually performed using continuous-time
Markov models (see Table 5.1). The length of each edge (u, v) was computed as the normalized Hamming
distance between simulated sequences seq(u) and seq(v). The largest setting of pmin (0.995) corresponds
to short edges (0.0025 subs/site). We included this setting because RAxML-NG and IQ-TREE perform
extensive search and are good at recovering short edges. The smallest value of pmin (0.70) corresponds to
large edges (0.15 subs/site). We included this setting in order to generate sequences with large change in
base composition. In order to compare scalability we set pmin to 0.99, and varied the number of leaves from
1000 to 5000 in increments of 1000 leaves. Sequence length was set to 1000 base pairs which is comparable
to the number of columns in the empirical alignments (ranging from 128 bp to 2214 bp, see Table 5.5) that
we analyzed.

Chi-square test for significance in variation of base composition was performed for each simulation scenario
using a p-value cut-off of 0.05 (implemented in the stats package of SciPy (Virtanen et al., 2020)). The
percentage of sequences that exhibited significant deviation in base composition when compared with the
average base composition ranged from 89.8% for pmin of 0.7 to 2.5% for pmin of 0.995 (see Table 5.1).
The number of sequences that reject the null hypothesis are large (19.9% for average edge length of 0.005
subs/site) because the size of the tree is not taken into account when performing the test. The large inter-
quartile-range of 19.9% for pmin of 0.95 and 34.8% for pmin of 0.99 can probably be attributed to variance in
the imbalance of trees that are sampled from the uniform distribution over rooted trees. It may be possible
that the number of sequences that show significant deviation in base composition increases with increasing
imbalance of the model tree. The chi-square test that we have used is commonly used by practitioners of
phylogeny inference (Nguyen et al., 2015).

5.4.1 Measures of reconstruction accuracy
We measured the extent to which the rooted topology, and the unrooted topology of the simulated trees
were recovered using the following metrics. A rooted phylogenetic tree Tρ specifies a hierarchical clustering
C(Tρ) over labeled vertices as follows.

C(Tρ) = {Lτv : v ∈ VTρ}
where Lτv is the set of labeled vertices in the subtree τv in Tρ that is rooted at v. We measured reconstruction
accuracy using recall values. ReC(T ρ, T̂ ρ) is the fraction of clusters in the model tree that are present in the
estimated tree. ReC(T ρ, T̂ ρ) is computed as
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Table 5.2: Accuracy (RenontrivS ) with which the unrooted topology was recovered. Median and inter-quartile
range (shown in parentheses) of recall values are listed below, and were computed using 100 replicates.

pmin MST-backbone(SEM-GM) FastTree RAxML-NG IQ-TREE
0.7 0.88 (0.014) 0.81 (0.035) 0.75 (0.04) 0.82 (0.061)
0.8 0.95 (0.009) 0.87 (0.044) 0.9 (0.03) 0.93 (0.063)
0.9 0.99 (0.004) 1.0 (0.0) 1.0 (0.0) 1.0 (0.034)
0.95 1.0 (0.001) 1.0 (0.0) 1 (0.0) 1.0 (0.036)
0.99 0.98 (0.0045) 0.99 (0.005) 0.98 (0.004) 0.98 (0.034)
0.995 0.92 (0.013) 0.92 (0.013) 0.92 (0.013) 0.92 (0.014)

ReC(T ρ, T̂ ρ) =
|C(Tρ) ∩ C(T̂ρ)|
|C(Tρ)|

(5.12)

ReS(T ρ, T̂ ρ) is the fraction of splits in the model tree that are present in the estimated tree. ReS(T ρ, T̂ ρ) is
computed as

ReS(T, T̂ ) =
|S(T ) ∩ S(T̂ )|
|S(T )|

(5.13)

where S(T ) is the set of splits in the unrooted phylogenetic tree T that is constructed by suppressing the
root of simulated tree Tρ. A split is said to be a trivial split if the smallest side of the split contains one
labeled vertex. A singleton cluster is said to be a trivial cluster. RenontrivC and RenontrivS are recall values that
have been computed using nontrivial clusters and nontrivial splits, respectively. ReallC and ReallS are recall
values that have been computed using all clusters, and all splits, respectively.

5.4.2 Systematic error due to model misspecification
A Markov process is an information destroying process. The amount of sequence information that is lost is
proportional to edge length. A general trend in recall values is that each method has high recall values for
pmin values that range from 0.9 to 0.99, and the recall values decrease as pmin is lowered to 0.8, and 0.7, and
recall values decrease as pmin is increased to 0.995 (see Table 5.2). The relatively lower recall values for pmin
of 0.7 and 0.8 are probably because of greater information loss over each edge. The reduction in recall value
as pmin is increased to 0.995 is probably because there are some edges where no change takes place.

That said, MST-backbone(SEM-GM) outperformed competing methods at reconstructing the unrooted
topology for pmin values of 0.7 and 0.8. The relatively better performance of MST-backbone(SEM-GM) for
small values of pmin is probably because of large amount of change in base composition that takes place
across each edge. The high ReC of all methods for simulation scenarios where pmin ranges from 0.9 to 0.99
seems odd at first glance given that the number of sequences that deviate in base composition ranges from
20% to 68%. The results suggest that edge length is a better predictor of reconstruction accuracy than the
total number of sequences that exhibit significant deviation in base composition.

MST-backbone(SEM-GM) + rSEM-GM has similar ReC values when compared with IQ-TREE except
for the marginally worse performance of MST-backbone(SEM-GM) + rSEM-GM at pmin of 0.95 (ReC of
0.94 vs 0.95), and the marginally better performance of MST-backbone(SEM-GM) + rSEM-GM at pmin of
0.7 (ReC of 0.83 vs 0.81).
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Table 5.3: Accuracy (RenontrivC ) with which the rooted topology was recovered. Median and inter-quartile
range (shown in parentheses) of recall values are listed below, and were computed using 100 replicates.

pmin average edge length MST-backbone(SEM-GM) + rSEM-GM IQ-TREE
0.7 0.15 (0.064) 0.83 (0.033) 0.81 (0.042)
0.8 0.1 (0.043) 0.9 (0.045) 0.9 (0.046)
0.9 0.05 (0.022) 0.93 (0.038) 0.95 (0.035)
0.95 0.025 (0.012) 0.94 (0.037) 0.95 (0.038)
0.99 0.005 (0.004) 0.93 (0.035) 0.93 (0.035)
0.995 0.0025 (0.0014) 0.87 (0.044) 0.87 (0.034)

5.4.2.1 Scalability

We compare the worst-case time complexity and the CPU time of the algorithms implemented in MST-
backbone(SEM-GM) and rSEM-GM with the algorithms implemented by FastTree, RAxML-NG, and IQ-
TREE. A comparison of CPU times is shown in Figure 5.2. The number of rate categories was set to one
because simulated sequences were generated using a common rate category across sites. All methods were run
using a single thread in order to facilitate a fair comparison with our method which has not been developed
for distributed computing.

MST-backbone(SEM-GM) computes Hamming distances in time O(n2k) where n is the number of input
sequences and k is the number of alignment columns. Maximum parsimony spanning trees (MSTs) of the
complete graph G = (V,E) over input sequences are computed using Prim’s algorithm, which as implemented
in the boost graph library (Siek et al., 2000), takes time O(|E| log |V |). The number of edges |E| is n(n−1)/2.
Thus the total time complexity of computing the initial MST is bounded from above by O(n2 log n). The
time complexity of updating the MST is bounded from above by O(n log n). The total time complexity of
computing the MST and updating the MST is O(n2 log n) + O(

n

nmin
× n log n)=O(n2 log n), where nmin is

the size of smallest local phylogenetic tree. The time complexity of each iteration of SEM-GM is dominated
by the time required to compute expected counts which is bounded from above by O(n2l a

3kl) (Friedman
et al., 2002), where nl is the number leaves in the local phylogenetic tree, a is the size of the alphabet, and kl
is the number of distinct columns in the alignment comprising the sequences represented by the leaves in the

local phylogenetic tree. Thus the total time complexity of steps involving SEM-GM is O
(
n× n2maxa

3kl
nmin

)
,

where nmax is the size of the largest local phylogenetic tree. The cumulative time required to compute the
local phylogenetic trees grows linearly in the number of input sequences under the assumption that nmax is
substantially smaller than the total number of sequences.

The total time complexity of MST-backbone(SEM-GM) is dominated by time O(max{n2k, n2 log n}).
However, the CPU time that is taken by MST-backbone(SEM-GM) scales linearly with the number of input
sequences n (see Figure 5.2 B). This is because CPU time is dominated by the time required to perform
SEM-GM which involves computationally expensive floating-point arithmetic, whereas the computation of
Hamming distances, and the computation of MSTs involves relatively cheaper integer type based arithmetic.
The global unrooted phylogenetic tree T is rooted using restricted SEM-GM. The time complexity of each
iteration of restricted SEM-GM is bounded from above by the O(na2k) steps that are required to compute
expected counts via belief propagation on clique trees (Koller and Friedman, 2009), where n is the number of
leaves. The CPU time taken to root the global phylogenetic tree via restricted SEM-GM scales quadratically
in the number of leaves (see Figure 5.2 A). This may be because the number of iterations of restricted
SEM-GM that are required for the convergence of the log-likelihood score scales linearly with the number of
leaves.

FastTree employs a large list of heuristics in order to quickly perform tree search (Price et al., 2010).
The main heuristics employed by FastTree are (i) extensive use of tree length score instead of likelihood
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Figure 5.2: A comparison of CPU times used by MST-backbone(SEM-GM), RAxML-NG, and IQ-TREE
is shown in panel A. MST-backbone(SEM-GM) + rSEM-GM is the time taken to root the global unrooted
phylogenetic tree that is computed by MST-backbone(SEM-GM). Error bars represent inter-quartile range
computed using 20 replicates.

score, (ii) restriction of SPR moves to moves that can be performed in linear time, (iii) optimization of edge
lengths via ML using Brent’s line search, an operation that takes as input the conditional likelihood vectors
of the vertices that are incident to the edge under consideration, i.e., Brent’s line search does not require a
tree traversal, (iv) optimizing the time-reversible rate matrix only once. The operation that optimizes rate
matrices necessarily involves tree traversal and computationally expensive floating-point arithmetic.

RAxML-NG and IQ-TREE are orders of magnitude slower than MST-backbone(SEM-GM) and FastTree
because they optimize edge lengths using Newton-Raphson, an operation that involves O(n) floating-point
arithmetic operations where n is the number of leaves in the global tree. Additionally, IQ-TREE and RAxML-
NG repeatedly optimize the rate matrix. That said, the CPU times used by RAxML-NG and IQ-TREE do
not increase exponentially because the SPR moves that are employed by these programs are restricted in
order to avoid evaluating the likelihood score for trees that are unlikely to improve the likelihood score. MST-
backbone(SEM-GM)+rSEM-GM is substantially faster than RAxML-NG and IQ-TREE. This is probably
because the log-likelihood score of the general Markov model convergences faster via EM in comparison to the
slower convergence of the log-likelihood score of CT-HMMs which are optimized via numerical optimization
techniques such as Newton-Raphson and BFGS.

5.4.3 Subtree size threshold

MST-backbone(SEM-GM) is a threshold-based framework for constraining search through phylogenetic
tree space. We measured the effect of varying subtree size threshold on reconstruction accuracy using
simulated data with pmin set to 0.99. We varied subtree size from 10 to 40 and measured RenontrivS and
RenontrivC . Median values of RenontrivS and RenontrivC were 0.98 and 0.93, respectively (see Table 5.4). There
was no significant change in either RenontrivS or RenontrivC across subtree size thresholds, suggesting that any
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Table 5.4: Comparison of recall values for MST-backbone(SEM-GM) at different subtree sizes. Sequences
were simulated by setting pmin to 0.99. Median and inter-quartile range (in parentheses) values are reported
below, and were computed using 100 replicates.

subtree size RenontrivS RenontrivC

10 0.98 (0.0045) 0.93 (0.035)
20 0.98 (0.0055) 0.93 (0.038)
30 0.98 (0.005) 0.93 (0.038)
40 0.98 (0.006) 0.93 (0.041)

reasonable threshold can be selected when implementing MST-backbone.

5.5 Validation on empirical data
Two datasets were selected where GC content varied across species. The first data set comprised beetle
mitochondrial gene sequences exhibiting large variation in GC content (Sheffield et al., 2009). The second
data set comprised 16S ribosomal RNA (16S rRNA) sequences of bacteria, archaea, and eukaryotes (Hug
et al., 2016). Ribosomes are essential RNA-protein complexes that are used by all known forms of life to
synthesize proteins. We downloaded 1425 16S rRNA sequences from the supplementary material provided
by Hug et al. (2016).

The true evolutionary history of genes is not known in general. We selected two experimental phylogeny
data sets where gene sequences were evolved in vitro according to a specified phylogenetic tree (Sanson
et al., 2002; Randall et al., 2016). An experimental phylogeny setup performs in vitro simulation of sequence
evolution along the edges of a phylogenetic tree. Sequences are evolved in flasks using error-prone polymerase
chain reaction (PCR). Flasks can be treated as species in the context of experimental phylogenetic trees.
Evolutionary relationships are represented by a fully labeled phylogenetic tree over flasks. Sequences from an
ancestral flask are sampled subsequent to PCR runs, and sampled sequences are used to start PCR runs in
the flasks that descend immediately from the ancestral flask. We analyzed sequences from the experimental
phylogeny data sets that were generated by Sanson et al. (2002) and Randall et al. (2016). The sequences for
Randall et al. (2016) were obtained directly from the authors. The sequences for Sanson et al. (2002) were
downloaded using Genbank ids that were provided by the authors (Sanson et al., 2002). The experimental
phylogeny for Randall et al. (2016) comprised 19 leaves and 330 ancestors. The experimental phylogeny
for Sanson et al. (2002) comprised 16 leaves and 15 ancestors. In the following we use Randall2016 and
Sanson2002, respectively, to refer to sequences obtained from Randall et al. (2016) and Sanson et al. (2002).

Additionally, we selected two virus data sets (HIV and Influenza A H3N2) for which the collection times
of viruses are known. Rapidly evolving pathogens such as the Influenza virus facilitate the observation of
molecular evolution on a time scale of years. We downloaded all Influenza A H3N2 virus sequences from the
GISAID data base (Shu and McCauley, 2017) whose collection times ranged from 1968 to 2017. Subsequently,
we discarded all duplicate sequences, and created a smaller data set by sampling at random at most five
sequences per year of collection. The resulting data set comprised 156 sequences. The high mutation rate of
viruses such as HIV enables the reconstruction of transmission networks from phylogenetic trees (Ratmann
et al., 2019). We validated MST-backbone(SEM-GM) using 181 HIV env gene sequences that were sampled
from 11 individuals that were involved in a partially known transmission network (see Figure 5.6 A). The
direction of transmission involving individuals A and B is not known. The HIV sequences were made available
by Vrancken et al. (2014) on the HIV Los Alamos National Laboratory database (HIVLANL).

We performed multiple sequence alignment using MAFFTv7.3.3 (Katoh et al., 2002; Katoh and Stand-
ley, 2013) and removed all alignment columns that contained gaps or ambiguous characters because MST-
backbone(SEM-GM) is a prototype method that is not designed to handle gaps or ambiguous characters.
The size of the alignment constructed using MAFFT and the size of the trimmed alignment is shown in Table
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Table 5.5: Results of chi-square test, and alignment size

Gene type p < 0.05 (%) Original alignment (bp) Trimmed alignment (bp)
16S rRNA 19.3 1947 971
mt ATP6 33.33 750 652
mt ATP8 83.33 218 128
mt COX1 11.11 1549 1530
mt COX2 44.44 689 659
mt COX3 44.44 792 712
mt CYTB 11.11 1156 1085
mt ND1 50.0 988 902
mt ND2 5.56 1099 890
mt ND3 50.0 361 337
mt ND4 16.67 1391 1249
mt ND4L 77.78 306 234
mt ND5 16.67 1773 1649
mt ND6 38.89 561 308

ExpPhylo Randall2016 0 678 678
ExpPhylo Sanson2002 0 2236 2214

H3N2 0 1701 1701
HIV 0 2873 1357

5.5. We used trimmed alignment to quantify the extent to which empirical data violated the stationarity
assumption using a chi-square test with a p-value cutoff of 0.05 (see Table 5.5).

5.5.1 Test for violation of stationarity assumption
19.3% of 16S rRNA sequences showed significant deviation in base composition. All of the mitochondrial
genes exhibited large variation in base composition. More than 70% of two mitochondrial gene sequences,
ATP8 and ND4L, had significantly different base composition in comparison to the average base composition.
None of the experimental phylogeny data sets, and none of the virus data sets exhibited any significant
variation in base composition. We performed model selection to select simpler non-reversible models for
each data set because the general Markov model has a large number of free parameters. The results of model
selection are shown in the following Subsection.

5.5.2 Results of model selection

The experimental phylogeny data sets comprise leaf sequences and ancestral sequences. We wanted to
compare the effect of including ancestral sequences in the experimental phylogeny data sets on reconstruction
accuracy. We constructed two alignments for each experimental phylogeny data set, one containing leaf
sequences and ancestral sequences, and one containing only leaf sequences.

Our model selection framework selected one UNREST (UNR) matrix for all gene alignments except for
three mitochondrial genes, COX1, CYTB and ND1 where two UNR matrices were selected. Additionally,
we performed model selection using IQ-TREE because IQ-TREE implements the largest number of time-
reversible and non-reversible Markov models. The results of model selection are presented in Table 5.6. The
Lie Markov models that are implemented in IQ-TREE are stationary and homogeneous. The stationary
and homogeneous version of model 12.12 is the UNREST model. We refer to model 12.12 as UNR in the
following text. IQ-TREE reports the results of model selection using AIC, AIC corrected for small sample
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Table 5.6: Models selected by us and by IQ-TREE. The Lie Markov models that are implemented in IQ-
TREE are stationary and homogeneous. The stationary and homogeneous version of 12.12 is UNREST.
Models shown in bold are time-reversible.

Data type Number of UNREST
matrices selected

using BIC

Model selected using IQ-TREE

AIC AICc BIC
16S rRNA 1 12.12+R7 12.12+R7 12.12+R6

ATP6 1 RY8.18+I+Γ4 RY8.18+I+Γ4 RY8.18+I+Γ4

ATP8 1 WS8.18+I+Γ4 WS8.18+I+Γ4 WS8.18+I+Γ4

COX1 2 MK10.34+R2 MK10.34+R2 RY8.18+R3

COX2 1 12.12+R2 12.12+R3 GTR+F+R3

COX3 1 12.12+I+Γ4 12.12+I+Γ4 WS10.34+I+Γ4

CYTB 2 12.12+I+Γ4 12.12+I+Γ4 12.12+Γ4

ND1 2 RY10.12+R3 RY10.12+R3 RY8.18+I+Γ4

ND2 1 12.12+I+Γ4 12.12+I+Γ4 12.12+I+Γ4

ND3 1 MK10.34+Γ4 MK10.34+Γ4 TIM+F+Γ4

ND4 1 MK10.34+I+Γ4 MK10.34+I+Γ4 RY8.18+I+Γ4

ND4L 1 MK10.34+R3 TVM+F+R3 K3Pu+F+I+Γ4

ND5 1 RY10.12+I+Γ4 RY10.12+I+Γ4 RY8.10a+I+Γ4

ND6 1 MK10.34+Γ4 MK10.34+Γ4 RY8.18+Γ4

Sanson2002All 1 WS6.6+Γ4 WS6.6+Γ4 TVMe+Γ4

Sanson2002Leaf 1 TVMe TVMe TVMe
Randall2016All 1 12.12+I+Γ4 JC TVMe+Γ4

Randall2016Leaf 1 12.12+R2 12.12+R2 WS10.12+I+Γ4

H3N2 1 12.12+R2 12.12+Γ4 RY8.17+Γ4

HIV 1 TVM+F+R4 TVM+F+R4 TVM+F+R4
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size (AICc), and BIC. AIC and BIC are defined in equation 2.8 and equation 2.9, respectively. AICc is
computed as

AICc = AIC +
2m2 + 2m

k −m− 1

where m is the number of free parameters, and k is the sample size which is equal to the number of alignment
columns for phylogeny inference.

Non-reversible models were selected by IQ-TREE for all but two empirical datasets on the basis of AIC.
The symbols I,Γ,and R in the mixture models that are selected by IQ-TREE account for heterogeneity of
substitution rate across sites (see Subsection 2.4.3). The symbol F indicates that the stationary distribution
is set to the sample estimate of the base composition of the sequence alignment. The time reversible models
that were selected by IQ-TREE are (i) the GTR model, (ii) the transition model (TIM; Posada et al. (2003)),
(iii) the Jukes-Cantor model (JC, Jukes and Cantor (1969)), (iv) the transversion model (TVM; Posada
et al. (2003)), and (v) the transversion model with equal base frequency (TVMe). The rate matrix of the
transition model allows a different rate for each transition and a two rates for transversions.

We wanted to compare the trees constructed by MST-backbone(SEM-GM) and subsequently rooted by
UNR — hereafter called MST-backbone(SEM-GM) + UNR — , with rooted trees inferred using IQ-TREE.
We inferred rooted trees using IQ-TREE via the non-reversible models that were selected on the basis of
AIC. There were two datasets, Sanson2002_leaf and HIV, where IQ-TREE selected time-reversible models.
We inferred rooted trees for Sanson2002_leaf and HIV using IQ-TREE via the UNREST model allowing for
two free rate categories, i.e., UNR +R2. We chose two rate categories because the genes included in HIV
and Sanson2002_leaf are protein-coding genes; nucleotides in the third codon position evolve faster than the
nucleotides in the first codon position and the second codon position due to degeneracy in the genetic code
at the third codon position (Bofkin and Goldman, 2006).

We compared the CPU times used by MST-backbone(SEM-GM) and IQ-TREE to infer phylogenies.
Additionally we compared the CPU times used by UNRmodelSelector and IQ-TREE to perform model
selection (see Table 5.7). The most notable difference is the time required for IQ-TREE to perform model
selection in comparison to the the time required for UNRmodelSelector to select an optimal number of rate
matrices on the basis of the BIC score. IQ-TREE took less than a second to perform model selection whereas
UNRmodelSelector took around 25 days for the largest dataset (Randall2016 all) comprising 349 sequences,
for a single bootstrap replicate. The reason for the drastic time difference is because IQ-TREE employs a
fast EM method to perform model selection (Kalyaanamoorthy et al., 2017), whereas UNRmodelSelector
optimizes branch lengths and rate matrices by optimizing the log-likelihood score instead of the expected
log-likelihood score. Our initial attempt to optimize rate matrices and branch lengths using EM met with
issues involving lack of convergence of the log-likelihood score. MST-backbone (SEM-GM) inferred unrooted
phylogenies 12 times faster (on average) than IQ-TREE took to infer a rooted phylogeny under the model
selected selected by IQ-TREE.

5.5.2.1 Beetle mitochondrial genomes

Jermiin et al. (2004) used simulated data to establish that phylogeny inference under stationary models
of gene evolution may lead to systematic error, a result that is in agreement with our simulation based
comparative analysis. It is difficult to make decisive statements regarding systematic error using empirical
data, except in the case of experimental phylogenies, because the true evolutionary history of species has not
been observed and is inferred via comparative analysis. Sheffield et al. (2009) used evolutionary relationships
among beetles that were established on the basis of morphological similarity in order to check for systematic
error in phylogenies inferred using beetle mitochondrial genes that exhibited large variation in GC content.
The established relationships among the beetles include (i) the monophyly of six species in the infraorder
Cucujiformia, (ii) the monophyly of four species in the superfamily Elateroidea, and (iii) sister relationship
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Table 5.7: A comparison of CPU times used by MST-backbone(SEM-GM), UNRmodelSelector, and IQ-
TREE. MSTB(SEM-GM) is short for MST-backbone (SEM-GM). UNR ms is short for UNRmodelSelector.
The columns indexed by IQ-TREE inf and IQTREE ms are populated with the times used to infer a rooted
phylogeny and perform model selection, respectively. The times shown below are the average times taken
for one bootstrap alignment.

Data set aln cols (distinct) leaves MSTB(SEM-GM) UNR ms IQ-TREE inf IQ-TREE ms
16S rRNA 971 (739) 100 0h:2m:17s 4d:22h:11m:46s 0h:4m:9s 0h:0m:9s
mt ATP8 128 (99) 18 0h:0m:1s 1h:07m:51s 0h:9m:0.1s 0h:0m:0.1s
mt ND4L 234 (186) 18 0h:0m:1s 3h:30m:15s 0h:0m: 8s 0h:0m:0.01s
mt ND6 308 (249) 18 0h:0m:3s 0h:26m:01s 0h:0m:8s 0h:0m:0.03s
mt ND3 337 (243) 18 0h:0m:2s 1h:12m:00s 0h:0m:11s 0h:0m:0.04s
mt ATP6 652 (426) 18 0h:0m:3s 1h:25m:05s 0h:0m:41s 0h:0m:15s
mt COX2 659 (405) 18 0h:0m:3s 2h:54m:37s 0h:0m:17s 0h:0m:3s
mt COX3 712 (417) 18 0h:0m:4s 7h:43m:32s 0h:0m:33s 0h:0m:23s
mt ND2 890 (674) 18 0h:0m:6s 2h:05m:26s 0h:0m:29s 0h:0m:3s
mt ND1 902 (557) 18 0h:0m:3s 3h:24m:23s 0h:0m:18s 0h:0m:4s
mt CYTB 1085 (646) 18 0h:0m:8s 10h:08m:09s 0h:0m:19s 0h:0m:33s
mt ND4 1249 (832) 18 0h:0m:7s 7h:27m:16s 0h:0m:17s 0h:0m:35s
mt COX1 1530 (759) 18 0h:0m:8s 11h:25m:47s 0h:0m:15s 0h:0m:14s
mt ND5 1649 (1086) 18 0h:0m:6s 9h:19m:10s 0h:0m:19s 0h:0m:5s
Randall2016 all 678 (341) 349 0h:0m:4s 25d:5h:39m:44s 0h:5m:5s 0h:0m:0.1s
Randall2016 leaf 678 (293) 19 0h:0m:2s 0h:51m:27s 0h:0m:5s 0h:0m:0.01s
Sanson2002 all 2214 (98) 31 0h:0m:1s 0h:38m:05s 0h:0m:2s 0h:0m:0.01s
Sanson2002 leaf 2214 (96) 16 0h:0m:1s 0h:06m:11s 0h:0m:2s 0h:0m:0.01s
H3N2 1701 (588) 156 0h:0m:14s 4d:19h:39m:32s 0h:5m:51s 0h:0m:0.3s
HIV 1357 (488) 181 0h:0m:52s 9d:6h:29m:44s 0h:10m:36s 0h:0m:2s
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●

Elateroidea (Polyphaga)
Cucujiformia (Polyphaga)
Misc. Polyphaga
Tetraphalerus bruchi
Outgroup

Figure 5.3: The established phylogenetic tree of the beetles that were analyzed in this study. Edge
lengths are set to a common value for better illustrating evolutionary relationships, and are not biologically
meaningful.
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Table 5.8: Number (and name) of established evolutionary relationships that are compatible with inferred
gene trees.

Data set rSEM-GM UNRmodelSelector IQ-TREE
ATP6 0/3 0/3 0/3
ATP8 0/3 0/3 0/3
COX1 0/3 0/3 0/3
COX2 1/3 (Cucujiformia) 1/3 (Cucujiformia) 1/3 (Cucujiformia)
COX3 0/3 0/3 0/3
CYTB 0/3 0/3 0/3
ND1 0/3 0/3 1/3 (Cucujiformia)
ND2 0/3 0/3 1/3 (Elateroidea)
ND3 0/3 0/3 0/3
ND4 0/3 0/3 0/3
ND4L 0/3 0/3 0/3
ND5 0/3 0/3 1/3 (Cucujiformia)
ND6 0/3 0/3 0/3

between the suborders Polyphaga and Archostemata constituting, 12 species and 1 species, respectively, (see
Figure 5.3).

Sheffield et al. (2009) constructed a concatenated alignment of 13 mitochondrial genes and inferred phy-
logenetic trees using a software that performs Bayesian inference via MCMC sampling using time-reversible
models (MrBayes v3 Ronquist and Huelsenbeck (2003) and PhyloBayes (Blanquart and Lartillot, 2006), ),
and four software that perform Bayesian inference via MCMC sampling using nonstationary Markov mod-
els: p4 (Foster, 2004), PHASE (Gowri-Shankar and Rattray, 2007), and nhPhyML (Guindon et al., 2010).
Sheffield et al. (2009) found that the consensus tree inferred by MrBayes and PhyloBayes violated all es-
tablished evolutionary relationships among beetles. The consensus trees inferred by p4 and PHASE were
in agreement with all established relationships. Trees inferred by nhPhyML agreed with the established
relationships varied depending on the input tree. The authors used the tree inferred by p4, and the tree
inferred by neighbor joining using LogDet distances as input trees. The bootstrap consensus tree that was
inferred by nhPhyML using the tree inferred by p4 as the starting tree (nhPhyML-p4) was compatible with
all established relationships. However, the consensus tree inferred by nhPhyML using a neighbor-joining tree
computed using LogDet distances as the starting tree (nhPhyML-NJLogDet) was not compatible with any
established relationship.

Genes have individual evolutionary histories that are not necessarily identical. Additionally, individual
genes may evolve at different rates. The conflicting results of PhyloBayes, p4 and phase may have resulted
due to use of a concatenated alignment. We inferred a separate tree for each mitochondrial gene. We inferred
phylogenetic trees using MST-backbone(SEM-GM)+rSEM-GM, MST-backbone(SEM-GM)+UNR. The re-
sults on simulated data suggest that the number of sequences that violate the assumption of homogeneity
in base composition are not a reliable indicator of systematic error. Consequently the rooted trees inferred
using IQ-TREE might be accurate estimators of mitochondrial gene relationships even though there is sub-
stantial variation of GC content among gene sequences. We used IQ-TREE to infer a rooted tree for each
mitochondrial gene using the non-reversible mixture model that was selected via AIC (see Table 5.6).

Four out of thirteen gene trees that were inferred using IQ-TREE were compatible with one out of three
established relationships each. One out of thirteen gene trees that were inferred by us was compatible
with one out of three established relationships. The gene trees that were inferred by IQ-TREE for COX2 ,
ND1 , and ND5 were compatible with the monophyly of Cucujiformia, and the gene tree that was inferred
by IQ-TREE for ND2 was compatible with the monophyly of Elateroidea. The gene tree for COX2 that
was inferred by MST-backbone(SEM-GM) and rooted using rSEM-GM was compatible with the monophyly
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Figure 5.4: Phylogenetic trees of 16S rRNA gene that were (i) inferred using MST-backbone(SEM-GM) and
rooted using restricted SEM-GM (panel A), (ii) inferred using MST-backbone(SEM-GM) and rooted using
a single UNR matrix (panel B), (iii) inferred using IQ-TREE under the model UNR +R7 (panel C).

of Cucujiformia. The gene tree for COX2 that was rooted under the CT-HMM that was selected using
UNRmodelSelector was compatible with the monophyly of Cucujiformia. None of the gene trees that were
inferred by us and none of the gene trees that were inferred using IQ-TREE were compatible with all
established relationships. The poor empirical support for IQ-TREE may be because IQ-TREE performs tree
search under stationary models. Sheffield et al. (2009) found that Mr. Bayes and PhyloBayes, software that
perform Bayesian inference under stationary models, were also unable to reconstruct trees that supported
all established relationships. The poor performance of MST-backbone(SEM-GM) could be because of lack
of extensive search through tree space.

5.5.2.2 16S RNA

There are three domains of life: the prokaryotic domains — archaebacteria (archaea) and eubacteria (bacte-
ria) — and the eukaryota (Woese et al., 1990). We used the three domain classification to validate phyloge-
netic trees inferred using MST-backbone(SEM-GM), and IQ-TREE. The bootstrap support for three domain
classification was greater than 95% for the unrooted trees inferred by MST-backbone (SEM-GM) and IQ-
TREE (see Figure 5.5). All consensus trees discussed hereafter have been constructed using sumtrees.py
v4.4.0 (Sukumaran and Holder, 2015, 2010) by collapsing all edges with bootstrap support smaller than
70%. The phylogenetic tree that was inferred by MST-backbone(SEM-GM) + rSEM-GM was rooted among
bacteria. We rooted the tree that was inferred using MST-backbone(SEM-GM) using a single UNR matrix
which was the model that was selected by UNRmodelSelector. The rooted phylogenetic tree that was in-
ferred using MST-backbone(SEM-GM) + UNR was placed at a bacterium. Subsequently, we checked the
placement of the root as inferred by IQ-TREE under the UNR+R7 model that was selected by IQ-TREE
using AIC. The phylogenetic tree that was inferred by IQ-TREE was rooted among archaea. It is generally
accepted that the two prokaryotic domains, bacteria and archaea, have evolved independently from a com-
mon ancestral cell and thus the root should be ancestral to the lca of bacteria, and the lca of archaea and
eukaryota (Lake et al., 2009). It may be possible that horizontal gene transfer of the ribosomal RNA gene
makes it difficult to obtain a realistic location of the root.
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Figure 5.5: Bootstrap consensus phylogenetic trees of 16S rRNA genes inferred using MST-backbone(SEM-
GM) and rooted under a single UNR matrix (panel A), and the bootstrap consensus phylogenetic tree
inferred using IQ-TREE under the UNR + R7 model (panel B). All edges with bootstrap support less than
70% are contracted.

5.5.2.3 Experimental phylogeny

Experimental phylogenies are ideal hypotheses for falsifying inferred evolutionary relationships because
true evolutionary relationships are part of experimental design. We measured reconstruction accuracy of
phylogenetic trees that were inferred using all sequences using recall computed with all splits, i.e., ReallS , and
recall computed with all clusters, i.e., ReallC . The reconstruction accuracy of phylogenetic trees that were
inferred using leaf sequences was measured using recall computed using all non-trivial splits, i.e., RenontrivS ,
and recall computed using all non-trivial clusters, i.e., RenontrivC . We measured recall values for the complete
alignment and bootstrapped alignments.

MST-backbone(SEM-GM) recovered almost all the splits in the experimental phylogeny if all sequences
were used (ReallS values of 0.99 and 1.0, for Randall2016 and Sanson2002, respectively, see Table 5.9), with a
reduction in accuracy if only leaf sequences were used (RenontrivS values of 0.86 and 1.0, for Randall2016 and
Sanson2002, respectively). IQ-TREE recovered splits with ReallS values of 0.98 and 1.0 for Randall2016All and
Sanson2002All, respectively., with a reduction in accuracy if only leaf sequences were used (RenontrivS values
of 0.94 and 1.0, for Randall2016 and Sanson2002, respectively). IQ-TREE recovered splits with significantly
lower recall values (p < 0.01) than MST-backbone(SEM-GM) for Randall2016All and Sanson2002Leaf,
where significance was calculated using recall values for bootstrap data sets. IQ-TREE recovered splits with
significantly higher recall values for Randall2016Leaf (p < 0.01).

Phylogenetic trees that were inferred by MST-backbone(SEM-GM)+rSEM-GM recovered clusters with
high ReallC values of 0.94 and 0.93, for Randall2016 and Sanson2002, respectively, and relatively lower RenontrivC

values of 0.82 and 0.79, for Randall2016 and Sanson2002, respectively. It appears that it is possible to infer
rooted phylogenetic trees under the general Markov model. We wanted to check if recall values would
change substantially if we rooted trees under simpler CT-HMM. Phylogenetic trees were inferred using
MST-backbone(SEM-GM)+UNR. Additionally, phylogenetic trees were inferred under the non-reversible
model that was selected by IQ-TREE using AIC. IQ-TREE selected a time-reversible model (TVMe) for
the Sanson2002Leaf data set. We inferred rooted trees using IQ-TREE for Sanson200Leaf under the model
UNR+R2.
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Table 5.9: Recall for experimental phylogeny data sets for complete alignment with recall at the 25th
percentile and the 75th percentile for bootstrap alignments shown in parentheses. MSTB(SEM-GM) is short
for MST-backbone(SEM-GM). Phylogenetic trees were inferred using IQ-TREE using the model selected via
AIC, except for Sanson2002Leaf where the model UNR+R2 was used.

Data set MSTB(SEM-GM) rSEM-GM UNR IQ-TREE
Splits Clusters Clusters Splits Clusters

Randall2016All 0.99 (0.82–0.85) 0.94 (0.76–0.79) 0.96 (0.76–0.81) 0.98 (0.82–0.84) 0.96 (0.76–0.88)
Randall2016Leaf 0.86 (0.75–0.87) 0.82 (0.59–0.76) 0.76 (0.59–0.71) 0.94 (0.81–0.94) 0.88 (0.76–0.88)
Sanson2002All 1.0 (0.97–1.0) 0.93 (0.87–0.93) 0.9 (0.87–0.9) 1.0 (0.97–1.0) 0.9 (0.87–0.9)
Sanson2002Leaf 1.0 (1.0–1.0) 0.79 (0.79–0.79) 0.79 (0.79–0.79) 1.0 (0.92–1.0) 0.79 (0.71–0.79)

IQ-TREE recovered clusters with higher ReallC and RenontrivC values on bootstrapped data sets when com-
pared with rooting via rSEM-GM and rooting under UNR for Randall2016. and relatively lower RenontrivC val-
ues of 0.82 and 0.79, for Randall2016 and Sanson2002, respectively. All methods for constructing rooted trees
had similar recall values on bootstrapped alignments for the Sanson2002 dataset, although ReallC for MST-
backbone(SEM-GM)+rSEMGM was 0.93 compared to ReallC values of 0.9 and 0.9 for MST-backbone(SEM-
GM)+UNR, and rooting using IQ-TREE. Recall values are lower for bootstrap alignments compared to the
original alignment because there are fewer distinct site patterns that contain information for rooting trees.

5.5.2.4 HIV transmission network

HIV spreads through inter-personal contact making it possible to use transmission history to falsify inferred
evolutionary relationships. A rooted pathogen phylogenetic tree is said to be compatible with a transmis-
sion event if pathogens from the recipient have descended from pathogens of the transmitter. We inferred
phylogenetic trees using 181 HIV env gene sequences that were sampled from 11 individuals that were part
of a transmission network (see Figure 5.6).

The phylogenetic tree for HIV that was inferred by MST-backbone(SEM-GM)+rSEM-GM was not rooted
realistically because it was rooted at a sequence from individual C which is not compatible with the transmis-
sion from B to C (see Figure 5.6). We rooted the tree that was inferred using MST-backbone(SEM-GM) with
a single UNR matrix, and found that the tree was compatible with nine out of ten transmission events (see
Figure 5.6 A). The transmission event B→I was not compatible with the phylogenetic tree. We performed
model selection using IQ-TREE and found that IQ-TREE selected the time-reversible model TVM+F+R4.
We inferred phylogenetic trees using IQ-TREE with the UNR +R2 model because we wanted to check if
rooted trees inferred by IQ-TREE with the UNR + R2 model were compatible with transmission history.
The rooted tree that was inferred by IQ-TREE was compatible with all transmission events (see Figure
5.6 B). A reason why the phylogenetic tree that was inferred by MST-backbone(SEM-GM) and rooted
with a single UNR matrix was not compatible with the transmission B→I could be because the initial tree
for SEM-GM, which is the neighbor-joining tree, is suboptimal, and that SEM-GM gets stuck in a local
optima. The HIV tree that was inferred using FJ-BIC, which is a modification of neighbor-joining, was
not compatible with B→I (see Figure 3.4 in Chapter 3 ). The consensus tree for MST-backbone(SEM-
GM)+UNR and IQ-TREE had poor bootstrap support. Out of a total of 179 clusters, only 48 clusters for
MST-backbone(SEM-GM)+UNR were supported, and only 44 clusters for IQ-TREE were supported (see
Figure 5.8).
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Figure 5.6: Panel A: The known HIV transmission network of 11 individuals. The direction of transmission
is known for all transmission events except for the transmission between patients A and B. Panel B: A
phylogenetic tree inferred via MST-backbone(SEM-GM)+rSEM-GM.
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Figure 5.7: Rooted HIV phylogenetic trees labeled with transmission edges. Panel A shows trees inferred
using MST-backbone(SEM-GM)+UNR. Panel B shows trees inferred using IQ-TREE. The transmission
B → I is not compatible with the tree inferred using MST-backbone(SEM-GM)+UNR.
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Figure 5.8: Bootstrap consensus trees for HIV as inferred by MST-backbone(SEM-GM)+UNR (panel A),
and IQ-TREE with the model UNR + R2 (panel B).

5.5.2.5 Influenza A H3N2

Under the assumption of a strict molecular clock, the number of character changes that accumulate in a
sequence are proportional to the collection time of the sequence. The Influenza A H3N2 virus exhibits a
strict molecular-clock-like evolution (Gojobori et al., 1990). We validated inferred phylogenetic trees by
measuring the Pearson’s correlation coefficient of collection times with weighted root-to-leaf path lengths in
inferred phylogenetic trees.

The phylogenetic tree that was inferred under the GM model had a Pearson’s correlation coefficient of -
0.92 indicating that the location of the root was not realistic (see Figure 5.9A). We performed model selection
as described in Section 5.3 in order to select the optimal number of distinct rate matrices. The UNR model
was selected as the optimal model. Collection times were highly correlated with root-to-leaf path lengths in
the phylogenetic tree that inferred with MST-backbone(SEM-GM)+UNR model with a Pearson’s correlation
coefficient of 0.99 suggesting that the inferred phylogenetic tree accurately represents the evolutionary history
of the Influenza A H3N2 virus (see Figure 5.9B). The phylogenetic tree inferred using IQ-TREE: UNR +
R2 seemed realistic because collection times were correlated with root-to-leaf path lengths with Pearson’s
correlation coefficient of 0.99. Collection times were highly correlated with root-to-leaf path lengths in the
consensus phylogenetic tree for MST-backbone(SEM-GM)+UNR (Pearson’s ρ of 0.99) and IQ-TREE: UNR
+ R2 (Pearson’s ρ of 0.99) (see Figure 5.10).
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Figure 5.9: Phylogenetic trees for Influenza H3N2 as inferred by MST-backbone(SEM-GM)+rSEM-GM
(panel A), MST-backbone(SEM-GM)+UNR (panel B), and IQTREE:UNR+R2 (panel C). The leaves of
each phylogenetic tree have been colored according to year of sampling.
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Figure 5.10: Bootstrap consensus trees for H3N2 as inferred using MST-backbone(SEM-GM)+UNR (panel
A), and IQ-TREE with UNR+R2(panel B). The leaves of each phylogenetic tree have been colored according
to year of sampling.
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5.6 Summary and Outlook
Time-reversible hidden Markov models such as the GTR model are widely used for inferring phylogenetic
trees. The GTR model is widely used because homogeneous Markov models enable fast search through tree
space by allowing the reuse of conditional likelihood vectors of roots of subtrees that are not changed due to
tree modification operations. The GTR model makes restrictive assumptions about the nature of sequence
evolution such as stationarity of base composition. Comparison of GC content across species has established
that base composition have evolved over the course of evolution. Phylogenetic tree inference under more
realistic non-stationary non-homogenous Markov models is limited to small number of species due to the
computational burden of optimizing the parameters of non-stationary non-homogeneous Markov models.

Inspired by the topological correspondence between MSTs and phylogenetic trees, we designed a threshold-
based framework for inferring phylogenetic trees called MST-backbone. We developed a method called
SEM-GM for performing tree search under the GM model.

MST-backbone(SEM-GM) demonstrated higher recall in comparison to RAxML-NG and IQTREE for
simulated data that were evolved under non-stationary non-homogeneous Markov models with average edge
length greater than 0.1 substitutions per site. The recall values for MST-backbone(SEM-GM) did not
significantly vary with threshold suggesting that MST-backbone(SEM-GM) is effectively threshold-free (see
Table 5.4). The CPU time taken to infer a global unrooted phylogenetic tree via MST-backbone(SEM-GM)
and FastTree increased linearly with number of leaves whereas the CPU time for MST-backbone(SEM-
GM)+rSEM-GM, RAxML-NG and IQTREE increased quadratically with number of leaves.

Empirical phylogenetic trees rooted under the GM model were realistic for experimental phylogeny data
sets. The topology of the unrooted phylogenetic tree was realistic for all data sets except the beetle mi-
tochondrial data set by Sheffield et al. (2009). The location of the root was not realistic for the Influenza
trees and the HIV trees that were inferred under the GM model. Realistic rooted trees were inferred for
the Influenza data set and the HIV data set if trees were rooted under the UNR model (either using MST-
backbone(SEM-GM)+UNR, or IQTREE) suggesting that the GM model may be over-parameterized for
empirical data sets that contain sequences with limited variation in GC content.

Sheffield et al. (2009) reported that phylogenetic trees inferred under non-stationary non-homogeneous
HMM recovered established evolutionary relationships whereas phylogenetic trees inferred under the GTR
model did not. The phylogenetic trees inferred by MST-backbone(SEM-GM) did not support the established
relationships. Although it is possible that the lack of empirical support for the trees inferred by MST-
backbone(SEM-GM) is because the GM model is over parameterized, note that the consensus phylogenetic
tree inferred by PhyloBayes under a non-stationary non-homogeneous Markov model did not recover any of
the established evolutionary relationships.
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Chapter 6

Conclusions

Phylogenetic trees are essential for better understanding the molecular basis of phenotypes via compara-
tive analysis. In practice, phylogenetic trees are inferred by solving a combinatorial optimization involving
searching through tree space, and parameter optimization. A commonly used strategy for finding optimal
phylogenetic trees is to search through the set of phylogenetic trees via tree modification operations (Sta-
matakis, 2014). Parameter optimization involves CPU-intensive operations that optimize the parameters of
the hidden Markov model (HMM) that is used to model sequence evolution. Homogeneous Markov mod-
els such as the general time-reversible model (GTR) are widely used in order to reduce the computational
burden of parameter optimization.

The GTR model assumes that base composition (including GC content) remains constant throughout
evolutionary history. The widespread variation of GC content across species indicates that the stationarity
assumption of the GTR model is violated in practice. Complex Markov models such as the general Markov
model (GM) by Barry and Hartigan (1987) allow GC content to vary across species, and may be more realistic
than the GTR model. Additionally the GM model allows inferring rooted phylogenetic trees, whereas the
trees inferred by the GTR model are unrooted.

We implemented a method called SEM-GM for performing tree search under the GM model. SEM-
GM adapts the structural expectation maximization framework by Friedman (1997) to the GM model. We
implemented a minimum spanning tree framework called MST-backbone in order to improve the scalability
of SEM-GM. We validated our method extensively using multiple empirical data sets. We found that the
experimental phylogenetic trees were accurately reconstructed via MST-backbone(SEM-GM)+rSEM-GM.
The rooted topology of the trees rooted under the GMmodel seemed to be incorrect for the pathogen datasets.
We found that the pathogen trees that were rooted under the UNR model were realistic, however the location
of the root was not robust across bootstrap replicates for the HIV. The unrooted ribosomal phylogenetic tree
supported the expected monophyly of bacteria, archaea, and eukaryotes. Sheffield et al. (2009) report that the
phylogenetic trees of beetle mitochondrial that were inferred under the GTR model were incorrect whereas
phylogenetic trees inferred under non-stationary Markov models were correct w.r.t. independently established
evolutionary relationships. The phylogenetic trees that were inferred by MST-backbone(SEM-GM) did not
support any established evolutionary relationship. Note that the beetle mitochondrial phylogenetic trees
that inferred by PhyloBayes, a method that searches for optimal phylogenetic trees under non-stationary
Markov models, also did not support any established evolutionary relationship (Sheffield et al., 2009).

The design of MST-backbone was inspired by the topological relationship between minimum spanning
trees (MST) and phylogenetic trees proposed by Choi et al. (2011). Choi et al. claimed that given distances
that are additive in a phylogenetic tree, an MST that is constructed using the tree-distances shares a
topological relationship with the phylogenetic tree. In Kalaghatgi and Lengauer (2017) we showed that
MSTs constructed using tree-distances do not necessarily share the topological relationship introduced by
Choi et al. We introduced so-called vertex order based MSTs (VMSTs) that are guaranteed to share a
topological relationship with phylogenetic trees. We related the number of leaves in a minimum spanning
tree to the number of non-trivial splits of a phylogenetic tree, showing the a VMST with the fewest number
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of leaves contained the maximum amount of non-trivial split information about a phylogenetic tree.
Rapidly evolving pathogens such as Influenza and HIV enable the study of molecular evolution over short

time scales. Pathogens collected at multiple time points from infected individuals may contain ancestor-
descendant pairs. The standard model of evolutionary relationships is a leaf-labeled phylogenetic tree that
does not allow species to be placed at ancestral vertices. In Kalaghatgi et al. (2016a) we developed a method
called family-joining (FJ) for modeling ancestor-descendant relationships using generally labeled trees. FJ
constructs generally labeled trees by contracting short edges using a threshold that is selected using BIC.
FJ was validated using HIV sequences sampled from individuals that were part of a common transmission
network. The HIV tree that was inferred by FJ was rooted under a strict molecular clock. The rooted HIV
tree was compatible with nine out of ten transmission events.

In conclusion we state that minimum spanning trees enable large scale inference of phylogenetic trees
under non-stationary Markov models such as the general Markov model. The unrooted topology can be
recovered using MST-backone(SEM-GM) but it may be necessary to perform model selection under simpler
non-reversible CT-HMM in order to recover a realistic location of the root. The GTR model need not be
used for the sake of computational ease.

101



Bibliography

D. G. Adkins. A Minimum Spanning Tree Framework for Inferring Phylogenies. PhD thesis, Univer-
sity of California at Berkeley, 2010. URL https://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/
EECS-2010-157.pdf.

D. Agashe and N. Shankar. The evolution of bacterial DNA base composition. Journal of Experimental
Zoology (Molecular and Devolpmental Evolution), 322B:517–528, 2014.

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19:
716–723, 1974.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, et al. Molecular Biology of the Cell, Fourth Edition.
Garland Science, 4 edition, 2002.

E. S. Allman and J. A. Rhodes. Phylogenetic Invariants. In O. Gascuel and M. Steel, editors, New Mathe-
matical Models of Evolution, pages 108–147. Oxford University, 2007.

E. S. Allman and J. A. Rhodes. Phylogenetic ideals and varieties for the general Markov model. Advances
in Applied Mathematics, 40:127–148, 2008.

E. S. Allman, L. S. Kubatko, and J. A. Rhodes. Split Scores: A Tool to Quantify Phylogenetic Signal in
Genome-Scale Data. Systematic Biology, 66:620–636, 2017.

D. I. Andersson, J. Jerlström-Hultqvist, and J. Näsvall. Evolution of new functions de novo and from
preexisting genes. Cold Spring Harbor perspectives in biology, 7:1–18, 2015.

D. Barry and J. Hartigan. Statistical Analysis of Hominoid molecular evolution. Statistical Science, 2:
191–210, 1987.

D. J. Begun, A. K. Holloway, K. Stevens, L. W. Hillier, Y. Poh, et al. Population genomics: whole-genome
analysis of polymorphism and divergence in Drosophila simulans. PLoS Biology, 5:e310, nov 2007.

R. Betancur-R, C. Li, T. A. Munroe, J. A. Ballesteros, and G. Ortí. Addressing gene tree discordance
and non-stationarity to resolve a multi-locus phylogeny of the flatfishes (Teleostei: Pleuronectiformes).
Systematic Biology, 62:763–85, 2013.

B. Bettisworth and A. Stamatakis. RootDigger: a root placement program for phylogenetic trees. bioRxiv,
page 2020.02.13.935304, 2020.

S. Blanquart and N. Lartillot. A Bayesian compound stochastic process for modeling nonstationary and
nonhomogeneous sequence evolution. Molecular Biology and Evolution, 23:2058–2071, 2006.

L. Bofkin and N. Goldman. Variation in Evolutionary Processes at Different Codon Positions. Molecular
Biology and Evolution, 24:513–521, 2006.

N. Bortolussi, E. Durand, M. Blum, and O. François. apTreeshape: Statistical analysis of phylogenetic tree
shape. Bioinformatics, 22:363–364, 2006.

102

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-157.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-157.pdf


R. Bouckaert, J. Heled, D. Kühnert, T. Vaughan, C. H. Wu, et al. BEAST 2: A Software Platform for
Bayesian Evolutionary Analysis. PLoS Computational Biology, 10:1–6, 2014.

B. Boussau and M. Gouy. Efficient likelihood computations with nonreversible models of evolution. System-
atic Biology, 55:756–68, 2006.

D. Bryant. Building Trees, Hunting for Trees, and Comparing Trees–Theory and methods in phylogenetic
analysis. PhD thesis, University of Canterbury, Christchurch, New Zealand., 1997.

D. Bryant, N. Galtier, and M.-A. Poursat. Likelihood calculation in molecular phylogenetics. In O. Gascuel,
editor, Mathematics of Evolution and Phylogeny, pages 33–62. Oxford University Press, Oxford, 2005.

P. Buneman. The recovery of trees from measures of dissimilarity. In F. R. Hodson, D. G. Kendall, and
P. Tautu, editors, Mathematics in the Archaeological and Historical Sciences, pages 387–395. Edinburgh
University Press, Edinburgh, UK, 1971.

J. E. Campbell. On a law of combination of operators (second paper). Proceedings of the London Mathematical
Society, 28:381–390, 1987.

O. Cappé, E. Moulines, and T. Ryden. Inference in Hidden Markov Models. Springer-Verlag, Berlin,
Heidelberg, 2005.

J. M. Chen, D. N. Cooper, N. Chuzhanova, C. Férec, and G. P. Patrinos. Gene conversion: Mechanisms,
evolution and human disease. Nature Reviews Genetics, 8:762–775, 2007.

D. M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and H.-J. Lenz, editors, Learning
from Data: Artificial Intelligence and Statistics, pages 121–130. Springer-Verlag, 1996.

M. J. Choi, V. Y. F. Tan, A. Anandkumar, and A. S. Willsky. Learning latent tree graphical models. Journal
of Machine Learning Research, 12:1771–1812, 2011.

B. Chor and T. Tuller. Finding a maximum likelihood tree is hard. Journal of the ACM, 53:722–744, 2006.

C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE Trans-
actions on Information Theory, 14:462–467, 1968.

D. H. Colless. [Review of] Phylogenetics: the theory and practice of phylogenetic systematics. Systematic
Zoology, 31:100–104, 1982.

D. Darriba, G. L. Taboada, R. Doallo, and D. Posada. jModelTest 2: more models, new heuristics and
parallel computing. Nature methods, 9:772, 2012.

D. Darriba, D. Posada, A. M. Kozlov, A. Stamatakis, B. Morel, et al. ModelTest-NG: A New and Scalable
Tool for the Selection of DNA and Protein Evolutionary Models. Molecular Biology and Evolution, 37:
291–294, 2020.

C. Darwin. On the origin of species by means of natural selection, or the preservation of favoured races in
the struggle for life. John Murray, London, 1859.

C. Darwin. The Life and Letters of Charles Darwin: Including an Autobiographical Chapter, volume 1 of
Cambridge Library Collection — Darwin, Evolution and Genetics. Cambridge University Press, 1887.

K. de Queiroz. Ernst Mayr and the modern concept of species. Proceedings of the National Academy of
Sciences of the United States of America, 102:6600–7, 2005.

A. Dempster, N. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society Series B Methodological, 39:1–38, 1977.

103



R. Desper and O. Gascuel. Fast and accurate phylogeny reconstruction algorithms based on the minimum-
evolution principle. Journal of Computational Biology: a Journal of Computational Molecular Cell Biology,
9:687–705, 2002.

M. dos Reis, P. C. J. Donoghue, and Z. Yang. Bayesian molecular clock dating of species divergences in the
genomics era. Nature Reviews Genetics, 17:71–80, 2016.

A. J. Drummond, M. A. Suchard, D. Xie, and A. Rambaut. Bayesian phylogenetics with BEAUti and the
BEAST 1.7. Molecular Biology and Evolution, 29:1969–1973, 2012.

L. Duret and N. Galtier. Biased Gene Conversion and the Evolution of Mammalian Genomic Landscapes.
Annual Review of Genomics and Human Genetics, 10:285–311, 2009.

C. D. Epp. Definition of a gene. Nature, 389:537, 1997.

P. L. Erdös, M. A. Steel, L. Székely, and T. J. Warnow. A few logs suffice to build (almost) all trees (I).
Random Structures and Algorithms, 14:153–184, 1999a.

P. L. Erdös, M. A. Steel, L. Székely, and T. J. Warnow. A few logs suffice to build (almost) all trees: Part
II. Theoretical Computer Science, 221:77–118, 1999b.

N. Eriksson. Tree Construction using Singular Value Decomposition. In L. Pachter and B. Sturmfels, editors,
Algebraic Statistics for Computational Biology, pages 347–358. Cambridge University Press, Berkeley, 2005.

J. Felsenstein. Cases in which Parsimony or Compatibility Methods Will be Positively Misleading. Systematic
Zoology, 27:401–410, 1978.

J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of
Molecular Evolution, pages 368–376, 1981.

J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Sunderlands, Massachusetts, 2003.

J. Fernández-Sánchez, J. G. Sumner, P. D. Jarvis, and M. D. Woodhams. Lie Markov models with
purine/pyrimidine symmetry. Journal of Mathematical Biology, 70:855–891, 2015.

W. M. Fitch. Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology.
Systematic Zoology, 20:406–416, 1971.

R. Fletcher. Practical Methods of Optimization. John Wiley and Sons, New York, 2 edition, 1987.

A. D. Foote, Y. Liu, G. W. C. Thomas, T. Vinař, J. Alföldi, et al. Convergent evolution of the genomes of
marine mammals. Nature Genetics, 47:272–5, 2015.

P. G. Foster and D. A. Hickey. Compositional bias may affect both DNA-based and protein-based phyloge-
netic reconstructions. Journal of Molecular Evolution, 48:284–90, 1999.

P. G. Foster. Modeling compositional heterogeneity. Systematic Biology, 53:485–495, 2004.

N. Friedman. Learning Belief Networks in the Presence of Missing Values and Hidden Variables. International
Conference on Machine Learning, pages 125–133, 1997.

N. Friedman, M. Ninio, I. Pe’er, and T. Pupko. A structural EM algorithm for phylogenetic inference.
Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 9:331–353, 2002.

N. Galtier, M. Gouy, and C. Gautier. SEAVIEW and PHYLO_WIN: two graphic tools for sequence align-
ment and molecular phylogeny. Computer applications in the biosciences : CABIOS, 12:543–8, 1996.

N. Galtier and M. Gouy. Inferring pattern and process: maximum-likelihood implementation of a nonho-
mogeneous model of DNA sequence evolution for phylogenetic analysis. Molecular Biology and Evolution,
15:871–879, 1998.

104



A. Gavryushkina, D. Welch, T. Stadler, and A. J. Drummond. Bayesian inference of sampled ancestor trees
for epidemiology and fossil calibration. PLoS Computational Biology, 10:e1003919, 2014.

T. Gojobori, E. N. Moriyama, and M. Kimura. Molecular clock of viral evolution, and the neutral theory.
Proceedings of the National Academy of Sciences of the United States of America, 87:10015–8, 1990.

P. Goloboff. Analyzing large data sets in reasonable times: solution for composite optima. Cladistics, 15:
415–428, 1999.

G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press, 3 edition,
1996.

V. Gowri-Shankar and M. Rattray. A reversible jump method for Bayesian phylogenetic inference with a
nonhomogeneous substitution model. Molecular Biology and Evolution, 24:1286–99, 2007.

S. W. Graham, R. G. Olmstead, and S. C. H. Barrett. Rooting phylogenetic trees with distant outgroups:
a case study from the commelinoid monocots. Molecular Biology and Evolution, 19:1769–81, 2002.

G. Guennebaud and J. Benoit. Eigen v3. 2010. URL http://eigen.tuxfamily.org.

S. Guindon, J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, et al. New algorithms and methods to
estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology,
59:307–321, 2010.

J. A. Hartigan. Minimum mutation fits to a given tree. Biometrics, 29:53–65, 1973.

M. Hasegawa, H. Kishino, and T. A. Yano. Dating of the human-ape splitting by a molecular clock of
mitochondrial DNA. Journal of Molecular Evolution, 22:160–174, 1985.

S. B. Hedges, J. Dudley, and S. Kumar. TimeTree: a public knowledge-base of divergence times among
organisms. Bioinformatics, 22:2971–2972, 2006.

S. B. Hedges, J. Marin, M. Suleski, M. Paymer, and S. Kumar. Tree of life reveals clock-like speciation and
diversification. Molecular Biology and Evolution, 32:835–845, 2015.

HIVLANL. The hiv sequence database that is hosted at the los alamos national laboratory. URL http:
//www.hiv.lanl.gov/. Accessed: 22-03-2019.

A. Hodgkinson and A. Eyre-Walker. Human triallelic sites: evidence for a new mutational mechanism?
Genetics, 184:233–41, jan 2010.

S. Hohna, M. J. Landis, T. A. Heath, B. Boussau, N. Lartillot, et al. RevBayes: Bayesian phylogenetic
inference using graphical models and an interactive model-specification language. Systematic Biology, 65:
726–736, 2016.

M. T. Holder, D. J. Zwickl, and C. Dessimoz. Evaluating the robustness of phylogenetic methods to among-
site variability in substitution processes. Philosophical transactions of the Royal Society of London. Series
B, Biological sciences, 363:4013–21, 2008.

W. Hordijk and O. Gascuel. Improving the efficiency of SPR moves in phylogenetic tree search methods
based on maximum likelihood. Bioinformatics, 21:4338–4347, 2005.

D. C. Hoyle and P. G. Higgs. Factors affecting the errors in the estimation of evolutionary distances between
sequences. Molecular Biology and Evolution, 20:1–9, 2003.

F. Huang, N. U. N, I. Perros, Robert, J. Sun, et al. Scalable latent tree model and its application to health
analytics. arXiv preprint, arXiv:1406.4566, 2014.

105

http://eigen.tuxfamily.org
http://www.hiv.lanl.gov/
http://www.hiv.lanl.gov/


J. P. Huelsenbeck, J. P. Bollback, and A. M. Levine. Inferring the root of a phylogenetic tree. Systematic
Biology, 51:32–43, 2002.

L. A. Hug, B. J. Baker, K. Anantharaman, C. T. Brown, A. J. Probst, et al. A new view of the tree of life.
Nature Microbiology, 1:1–6, 2016.

D. H. Huson, S. M. Nettles, and T. J. Warnow. Disk-covering, a fast-converging method for phylogenetic tree
reconstruction. Journal of Computational Biology: a journal of Computational Molecular Cell Biology, 6:
369–86, 1999.

V. Jayaswal, L. S. Jermiin, and J. Robinson. Estimation of phylogeny using a general Markov model.
Evolutionary Bioinformatics Online, 1:62–80, 2005.

L. Jermiin, S. Y. Ho, F. Ababneh, J. Robinson, and A. W. Larkum. The biasing effect of compositional
heterogeneity on phylogenetic estimates may be underestimated. Systematic Biology, 53:638–43, 2004.

N. A. Johnson. Hybrid incompatibility and speciation. Nature Education, 1:20, 2008.

T. Jombart, R. M. Eggo, P. J. Dodd, and F. Balloux. Reconstructing disease outbreaks from genetic data:
a graph approach. Heredity, 106:383–390, 2011.

T. H. Jukes and C. R. Cantor. Evolution of protein molecules. In Mammalian Protein Metabolism, pages
21–132. Elsevier, 1969.

P. Kalaghatgi and T. Lengauer. Computing phylogenetic trees using topologically related minimum spanning
trees. Journal of Graph Algorithms and Applications, 21:1003–1025, 2017.

P. Kalaghatgi, N. Pfeifer, and T. Lengauer. Family-joining: a fast distance-based method for constructing
generally labeled trees. Molecular Biology and Evolution, 33:2720–2734, 2016a.

P. Kalaghatgi, A. M. Sikorski, E. Knops, D. Rupp, S. Sierra, et al. Geno2pheno[HCV] - A web-based
interpretation system to support Hepatitis C treatment decisions in the era of direct-acting antiviral
agents. PLoS ONE, 11:e0155869, 2016b.

S. Kalyaanamoorthy, B. Q. Minh, T. K. F. Wong, A. von Haeseler, and L. S. Jermiin. ModelFinder: fast
model selection for accurate phylogenetic estimates. Nature methods, 14:587–589, 2017.

K. Katoh and D. M. Standley. MAFFT multiple sequence alignment software version 7: improvements in
performance and usability. Molecular Biology and Evolution, 30:772–80, 2013.

K. Katoh, K. Misawa, K.-i. Kuma, and T. Miyata. MAFFT: a novel method for rapid multiple sequence
alignment based on fast Fourier transform. Nucleic Acids Research, 30:3059–66, 2002.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques – Adaptive Compu-
tation and Machine Learning. The MIT Press, 2009.

E. V. Koonin. Orthologs, Paralogs, and Evolutionary Genomics. Annual Review of Genetics, 39:309–338,
2005.

A. M. Kozlov, D. Darriba, T. Flouri, B. Morel, and A. Stamatakis. RAxML-NG: A fast, scalable and
user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35:4453–4455, 2019.

J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings
of the American Mathematical Society, page 48, 1956.

S. Kumar and S. B. Hedges. A molecular timescale for vertebrate evolution. Nature, 392:917–20, 1998.

S. Kumar and S. B. Hedges. TimeTree2 : species divergence times on the iPhone. Bioinformatics, 27:
2023–2024, 2011.

106



J. A. Lake, R. G. Skophammer, C. W. Herbold, and J. A. Servin. Genome beginnings: rooting the tree of life.
Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 364:2177–2185,
2009.

C. Lanave, G. Preparata, C. Saccone, and G. Serio. A new method for calculating evolutionary substitution
rates. Journal of Molecular Evolution, 20:86–93, 1984.

T. Le, A. Sy, E. K. Molloy, Q. R. Zhang, S. Rao, et al. Using INC Within Divide-and-Conquer Phylogeny Es-
timation. In I. Holmes, C. Martín-Vide, and M. A. Vega-Rodríguez, editors, Algorithms for Computational
Biology, pages 167–178, Cham, 2019. Springer International Publishing.

V. Lefort, J. E. Longueville, and O. Gascuel. SMS: Smart Model Selection in PhyML. Molecular Biology
and Evolution, 34:2422–2424, 2017.

P. Lemey, I. Derdelinckx, A. Rambaut, K. Van Laethem, S. Dumont, et al. Molecular Footprint of Drug-
Selective Pressure in a Human Immunodeficiency Virus Transmission Chain. Journal of Virology, 79:
11981–11989, 2005.

W. H. Li. So, what about the molecular clock hypothesis? Current opinion in genetics & development, 3:
896–901, 1993.

J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In N. J. Le Cam
LM, editor, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, pages
281–297. University of California Press, Berkeley, 1967.

U. Mai, E. Sayyari, and S. Mirarab. Minimum variance rooting of phylogenetic trees and implications for
species tree reconstruction. PloS ONE, 12:e0182238, 2017.

E. Margoliash. Primary structure and evolution of cytochrome c. Proceedings of the National Academy of
Sciences of the United States of America, 50:672–9, 1963.

B. Nabholz, A. Künstner, R. Wang, E. D. Jarvis, and H. Ellegren. Dynamic evolution of base composition:
causes and consequences in avian phylogenomics. Molecular Biology and Evolution, 28:2197–210, 2011.

S. Naser-Khdour, B. Q. Minh, W. Zhang, E. A. Stone, and R. Lanfear. The Prevalence and Impact of Model
Violations in Phylogenetic Analysis. Genome Biology and Evolution, 11:3341–3352, 2019.

J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The Computer Journal, 7:308–313,
1965.

L. T. Nguyen, H. A. Schmidt, A. von Haeseler, and B. Q. Minh. IQ-TREE: A fast and effective stochastic
algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32:268–274,
2015.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, NY, USA, second edition, 2006.

L. Pachter and B. Sturmfels. Algebraic statistics for computational biology. Cambridge University Press,
2005.

J. Pearl. Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach. In Proceedings of the
Second AAAI Conference on Artificial Intelligence, pages 133–136, 1982.

M. Plummer, N. Best, K. Cowles, and K. Vines. CODA: Convergence Diagnosis and Output Analysis for
MCMC. R News, 6:7–11, 2006.

D. Posada, A. Baxevanis, D. Davison, R. Page, G. Petsko, et al. Using Modeltest and PAUP* to select a
model of nucleotide substitution. In Current Protocols in Bioinformatics, chapter 6, pages 6.5.1–6.5.14.
2003.

107



M. J. D. Powell. An efficient method for finding the minimum of a function of several variables without
calculating derivatives. The Computer Journal, 7:155–162, 1964.

L. Pozzi, J. A. Hodgson, A. S. Burrell, K. N. Sterner, R. L. Raaum, et al. Primate phylogenetic relation-
ships and divergence dates inferred from complete mitochondrial genomes. Molecular Phylogenetics and
Evolution, 75:165–183, 2014.

M. N. Price, P. S. Dehal, and A. P. Arkin. FastTree 2 – Approximately Maximum-Likelihood Trees for Large
Alignments. PLoS ONE, 5:e9490, mar 2010. ISSN 1932-6203.

R. C. Prim. Shortest Connection Networks And Some Generalizations. Bell System Technical Journal, 36:
1389–1401, 1957.

A. Rambaut and N. Grassly. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence
evolution along phylogenetic trees. Computer Application in the Biosciences, 13:235–238, 1997.

A. Rambaut. Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences
into maximum likelihood phylogenies. Bioinformatics, 16:395–9, 2000.

A. Rambaut and L. Bromham. Estimating divergence dates from molecular sequences. Molecular Biology
and Evolution, 15:442–8, 1998.

A. Rambaut, T. T. Lam, L. Max Carvalho, and O. G. Pybus. Exploring the temporal structure of hete-
rochronous sequences using TempEst (formerly Path-O-Gen). Virus Evolution, 2:vew007, 2016.

R. N. Randall, C. E. Radford, K. A. Roof, D. K. Natarajan, and E. A. Gaucher. An experimental phylogeny
to benchmark ancestral sequence reconstruction. Nature Communications, 7:12847, 2016.

O. Ratmann, M. K. Grabowski, M. Hall, T. Golubchik, C. Wymant, et al. Inferring HIV-1 transmission
networks and sources of epidemic spread in Africa with deep-sequence phylogenetic analysis. Nature
Communications, 10, 2019.

R. Ravi and M. Singh. Delegate and conquer: an LP-based approximation algorithm for minimum degree
MSTs. In Proceedings of the 33rd International Colloquium on Automata, Languages and Programming,
pages 169–180. 2006.

D. F. Robinson and L. R. Foulds. Comparison of phylogenetic trees. Mathematical Biosciences, 53:131–147,
1981.

S. Roch. A short proof that phylogenetic tree reconstruction by maximum likelihood is hard. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 3:92–94, 2006.

F. Ronquist and J. P. Huelsenbeck. MrBayes 3: Bayesian phylogenetic inference under mixed models.
Bioinformatics, pages 1572–1574, 2003.

U. W. Roshan, B. M. Moret, T. Warnow, and T. L. Williams. Rec-I-DCM3: a fast algorithmic technique
for reconstructing large phylogenetic trees. In Proceedings. IEEE Computational Systems Bioinformatics
Conference, pages 98–109, 2004.

A. RoyChoudhury. Consistency of the maximum likelihood estimator of evolutionary tree. arXiv preprint,
(arXiv:1405.0760), 2014.

N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing phylogenetic trees.
Molecular Biology and Evolution, 4:406–25, 1987.

G. Salamon and G. Wiener. On finding spanning trees with few leaves. Information Processing Letters, 105:
164–169, 2008.

108



G. F. Sanson, S. Y. Kawashita, A. Brunstein, and M. R. Briones. Experimental phylogeny of neutrally
evolving DNA sequences generated by a bifurcate series of nested polymerase chain reactions. Molecular
Biology and Evolution, 19:170–178, 2002.

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

C. Semple and M. Steel. Phylogenetics, volume 24 of Oxford Lecture Series In Mathematics And Its Appli-
cations. Oxford University Press, 2003.

N. C. Sheffield, H. Song, S. L. Cameron, and M. F. Whiting. Nonstationary evolution and compositional
heterogeneity in beetle mitochondrial phylogenomics. Systematic Biology, 58:381–94, 2009.

Y. Shu and J. McCauley. GISAID: Global initiative on sharing all influenza data - from vision to reality.
Euro surveillance, 22, 2017.

J. Siek, L.-Q. Lee, and A. Lumsdaine. Boost graph library. http://www.boost.org/libs/graph/, 2000.

K. St. John, T. Warnow, B. M. E. Moret, and L. Vawter. Performance study of phylogenetic methods:
(Unweighted) quartet methods and neighbor-joining. Journal of Algorithms, 48:173–193, 2003.

A. Stamatakis. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa
and mixed models. Bioinformatics, 22:2688–2690, 2006.

A. Stamatakis. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies.
Bioinformatics, 30:1312–1313, 2014.

M. Steel. Phylogeny: discrete and random processes in evolution. Society for Industrial and Applied Math-
ematics, Philadelphia, 2016.

M. Steel. Recovering a tree from the leaf colourations it generates under a Markov model. Applied Mathe-
matics Letters, 2:19–23, 1994.

M. Steel, D. Huson, and P. J. Lockhart. Invariable sites models and their use in phylogeny reconstruction.
Systematic Biology, 49:225–232, 2000.

K. Strimmer and A. von Haeseler. Quartet puzzling: A quartet maximum-likelihood method for reconstruct-
ing tree topologies. Molecular Biology and Evolution, 13:964–969, 1996.

J. A. Studier and K. J. Keppler. A note on the neighbor-joining algorithm of Saitou and Nei. Molecular
Biology and Evolution, 5:729–31, 1988.

M. A. Suchard, P. Lemey, G. Baele, D. L. Ayres, A. J. Drummond, et al. Bayesian phylogenetic and
phylodynamic data integration using BEAST 1.10. Virus Evolution, 4:1–5, 2018.

J. Sukumaran and M. T. Holder. DendroPy: a Python library for phylogenetic computing. 26:1569–71,
2010.

J. Sukumaran and M. T. Holder. SumTrees: Phylogenetic Tree Summarization. 4.4.0, 2015. URL https:
//github.com/jeetsukumaran/DendroPy.

J. Sullivan, Z. Abdo, P. Joyce, and D. L. Swofford. Evaluating the performance of a successive-approximations
approach to parameter optimization in maximum-likelihood phylogeny estimation. Molecular Biology and
Evolution, 22:1386–92, 2005.

J. G. Sumner, J. Fernández-Sánchez, and P. D. Jarvis. Lie Markov models. Journal of Theoretical Biology,
298:16–31, 2012.

K. Tamura and M. Nei. Estimation of the number of nucleotide substitutions in the control region of
mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10:512–26, 1993.

109

https://github.com/jeetsukumaran/DendroPy
https://github.com/jeetsukumaran/DendroPy


R. E. Tarjan. Efficiency of a Good But Not Linear Set Union Algorithm. Journal of the Association for
Computing Machinery, 22:215–225, 1975.

R. E. Tarjan. Data Structures and Network Algorithms. SIAM, Society for Industrial and Applied Mathe-
matics, Philadelphia, Pennsylvania, USA, 1992.

S. Tavare. Some probabilistic and statistical problems in the analysis of DNA sequences. In R. M. Miura,
editor, Lectures on Mathematics in the Life Sciences, volume 17, pages 57–86. Providence, R.I. American
Mathematical Society, 1986.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, et al. SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python. Nature Methods, 2020.

B. Vrancken, A. Rambaut, M. a. Suchard, A. Drummond, G. Baele, et al. The Genealogical Population
Dynamics of HIV-1 in a Large Transmission Chain: Bridging within and among Host Evolutionary Rates.
PLoS Computational Biology, 10:e1003505, 2014.

P. J. Waddell and M. A. Steel. General time-reversible distances with unequal rates across sites: mixing
gamma and inverse Gaussian distributions with invariant sites. Molecular Phylogenetics and Evolution, 8:
398–414, 1997.

W. Wagner. Problems in the classification of ferns. In Recent Advances in Botany, volume 1, pages 841–844.
Univ. of Toronto press Toronto, Can UnderwritCanada., 1961.

C. Wikimedia. File difference_dna_rna-en.svg — wikimedia commons the free media repository, 2017.
URL https://commons.wikimedia.org/wiki/File:Difference_DNA_RNA-EN.svg. [Online; accessed 20-
February-2020].

T. A. Williams, S. E. Heaps, S. Cherlin, T. M. W. Nye, R. J. Boys, et al. New substitution models for
rooting phylogenetic trees. Philosophical transactions of the Royal Society of London. Series B, Biological
sciences, 370:20140336, 2015.

C. R. Woese, O. Kandler, and M. L. Wheelis. Towards a natural system of organisms: proposal for the
domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United
States of America, 87:4576–9, 1990.

M. D. Woodhams, J. Fernández-Sánchez, and J. G. Sumner. A New Hierarchy of Phylogenetic Models
Consistent with Heterogeneous Substitution Rates. Systematic Biology, 64:638–650, 2015.

Z. Yang and D. Roberts. On the use of nucleic acid sequences to infer early branchings in the tree of life.
Molecular Biology and Evolution, 12:451–8, 1995.

Z. Yang. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites:
approximate methods. Journal of Molecular Evolution, 39:306–14, 1994a.

Z. Yang. Estimating the pattern of nucleotide substitution. Journal of Molecular Evolution, 39:105–111,
1994b.

Z. Yang. A space-time process model for the evolution of DNA sequences. Genetics, 139:993–1005, 1995.

Z. Yang. Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human
influenza virus A. Journal of Molecular Evolution, 51:423–32, 2000.

Q. Zhang, S. Rao, and T. Warnow. Constrained incremental tree building: new absolute fast converging
phylogeny estimation methods with improved scalability and accuracy. Algorithms for Molecular Biology,
14:2, 2019.

110

https://commons.wikimedia.org/wiki/File:Difference_DNA_RNA-EN.svg


E. Zukerkandl and L. Pauling. Evolutionary Divergence and Convergence in Proteins. In V. Bryson and
H. Vogel, editors, Evolving Genes and Proteins, pages 97–166. New York, 1965.

E. Zukerkandl and L. Pauling. Molecular disease, evolution, and genic heterogeneity. In M. Kasha and
B. Pullman, editors, Horizons in Biochemistry, pages 189–225. Academic press, New York, 1962.

111



Appendix A

Supplementary material for Chapter 3

A.1 OLS estimate of edge length for generally labeled trees
In what follows we show that the edge length formula, equation A.1 that was derived by Bryant (1997) for
leaf-labeled trees is also applicable for generally labeled trees. We follow the terminology that was defined
in Chapter 3.

A.1.1 Internal edges
Consider the internal edge e0 = {α, β} shown in Figure A.1 such that edges e1, . . . ek are incident to α but
are not incident to β, and edges ek+1 . . . em are incident to β but are not incident to α. Let Lα|Lβ be the
split that is induced by {α, β} such that Lα is closer to α in comparison to β. Let nα be the cardinality of
Lα, and let nβ be the cardinality of Lβ .

For each edge ei, define Wi =
∑
x∈Ai,y∈Bi pxy where Ai and Bi are the sides of the split defined by edge

ei. The notation pxy is used instead of pwT (x, y) to denote the weighted path length of the path from x to y
where edge lengths are determined by OLS. It turns out that Wi = δTi d

c.
For each edge ei such that 1 ≤ i ≤ k, let Ci be the side of the split induced by ei that is closer to α in

comparison to β. For each edge ei such that k+ 1 ≤ i ≤ m, let Ci be the side of the split induced by ei that
is closer to β in comparison to α. Let ni be the cardinality of Ci. Define

Yi =

{∑
x∈Ci pαx, if 1 ≤ i ≤ k∑
x∈Ci pβx, if k + 1 ≤ i ≤ m

If both α and β are not labeled (Case 1 in Figure A.1) it can be shown that Bryant (1997)

W = (nI − 2N)Y +NUY + te0Nv

where N is the m × m diagonal matrix with (n1, n2, . . . , nm) on the diagonal, I is the identity matrix,
Y = (Y1, Y, . . . , Ym)T , U is the m ×m matrix of ones, v is the vector with nβ in positions 1 to k followed

Cm

...

Ck+2

Ck+1

C1

C2

...

Ck

e1

e2

ek

em

ek+2

ek+1

e0

Case 1

Cm

...

Ck+2

Ck+1

C1

C2

...

Ck

e1

e2

ek

em

ek+2

ek+1

e0

Case 2

Cm

...

Ck+2

Ck+1

C1

C2

...

Ck

e1

e2

ek

em

ek+2

ek+1

e0

Case 3

Figure A.1: The three cases for the internal edge e0. Case 1: Both α and β are not labeled. Case 2: Only
α is labeled. Case 3: Both α and β are labeled. The triangles represent subtrees.
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by nα in positions k + 1 to m, W = (W1,W2, . . . ,Wm)T , n is the total number of labeled vertices, and te0
is the edge length of the edge e0

Similarly for the internal edge e0,
W0 = vTY + nαnβte0

Letting X = (nN−1 − 2I + U) and substituting Y gives the following edge length estimate.

te0 =
W0 − vTX−1N−1W
nαnβ − vTX−1v

For cases where only α and both α and β are labeled, respectively, the derivation of the equations are similar
to that described in Bryant (1997) and is described below.

Case 2: α is labeled and β is not labeled

For edges ei incident to α, i = 1 . . . k, we have

Wi =
∑
x∈Ai

∑
y∈Bi

pxy

=

m∑
j=1,j 6=i

∑
x∈Ci

∑
y∈Cj

pxy +
∑
x∈Ci

pαx

=

k∑
j=1,j 6=i

∑
x∈Ci

∑
y∈Cj

(pαx + pαy) +

m∑
j=k+1

∑
x∈Ci

∑
y∈Cj

(pαx + te0 + pβy) +
∑
x∈Ci

pαx

=

k∑
j=1,j 6=i

[njYi + niYj ] +

m∑
j=k+1

[njYi + niYj + ninjte0 ] + Yi

= (n− ni − 1)Yi + ni(Y1 + . . .+ Yi−1 + Yi+1 + . . .+ Ym) + ninβte0 + Yi

= (n− 2ni)Yi + ni

m∑
j=1

Yj + ninβte0

For edges ei incident to β, i = k + 1 . . .m, we have

Wi =
∑
x∈Ai

∑
y∈Bi

pxy

=

m∑
j=1,j 6=i

∑
x∈Ci

∑
y∈Cj

pxy +
∑
x∈Ci

pαx

=

k∑
j=1

∑
x∈Ci

∑
y∈Cj

(pβx + te0 + pαy) +

m∑
j=k+1,j 6=i

∑
x∈Ci

∑
y∈Cj

(pβx + pβy) +
∑
x∈Ci

(pβx + te0)

= (

k∑
j=1

njYi + niYj + ninjte0) + (

m∑
j=k+1,j 6=i

njYi + niYj) + Yi + nite0

= (n− ni − 1)Yi + ni(Y1 + . . .+ Yi−1 + Yi+1 + . . .+ Ym) + ni(nα − 1)te0 + Yi + nite0

= (n− 2ni)Yi + ni

m∑
j=1

Yj + ninαte0

In matrix form,

W = (nI − 2N)Y +NUY + te0Nv

⇔ N(nN−1 − 2I + U)Y = W − te0Nv
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Setting X = (nN−1 − 2I + U) and rearranging, we get

Y = X−1N−1W − te0X−1v

For the internal edge e0 we have

W0 =

k∑
i=1

m∑
j=k+1

∑
x∈Ci,y∈Cj

pxy +

m∑
j=k+1

∑
x∈Cj

(te0 + pβx)

= (

k∑
i=1

m∑
j=k+1

∑
x∈Ci,y∈Cj

pαx + te0 + pβy) + nβte0 +

m∑
j=k+1

Yj

= (

k∑
i=1

m∑
j=k+1

njYi + ninjte0 + niYj) + nβte0 +

m∑
j=k+1

Yj

=

k∑
i=1

nβYi +

m∑
j=k+1

(nα − 1)Yj + (nα − 1)nβte0 + nβte0 +

m∑
j=k+1

Yj

= vTY + nαnβte0

After substituting Y and rearranging we get,

te0 =
W0 − vTX−1N−1W
nαnβ − vTX−1v

(A.1)

Case 3: α and β are labeled

For edges ei incident to α, i = 1 . . . k, we have

Wi =
∑
x∈Ai

∑
y∈Bi

pxy

=

 m∑
j=1,j 6=i

∑
x∈Ci

∑
y∈Cj

pxy

+
∑
x∈Ci

pαx +
∑
x∈Ci

pβx

=

 k∑
j=1,j 6=i

∑
x∈Ci

∑
y∈Cj

pαx + pαy

+

 m∑
j=k+1

∑
x∈Ci

∑
y∈Cj

pαx + te0 + pβy

+ 2
∑
x∈Ci

pαx + nite0

=

 k∑
j=1,j 6=i

njYi + niYj

+

 m∑
j=k+1

njYi + niYj + ninjte0

+ 2Yi + nite0

= (n− ni − 2)Yi + ni(Y1 + . . .+ Yi−1 + Yi+1 + . . .+ Ym) + nite0(1 +

m∑
j=k+1

nj) + 2Yi

= (n− 2ni)Yi + ni

m∑
j=1

Yj + ninβte0

By symmetry, for edges ei incident to β, i = k + 1 . . .m, we have,

Wi = (n− 2ni)Yi + ni

m∑
j=1

Yj + ninαte0

In matrix form,
W = (nI − 2N)Y +NUY + te0Nv
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em
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em
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Figure A.2: The two cases for the terminal edge e0. α is not labeled in case 1, and is labeled in case 2. The
triangles represent subtrees.

For the internal edge e0 we have

W0 =

k∑
i=1

m∑
j=k+1

∑
x∈Ci,y∈Cj

pxy +

 k∑
j=1

∑
x∈Cj

te0 + pαx

+

 m∑
j=k+1

∑
x∈Cj

te0 + pβx

+ te0

=

 k∑
i=1

m∑
j=k+1

∑
x∈Ci,y∈Cj

pαx + te0 + pβy

+ (nα + nβ − 1)te0 +

m∑
j=1

Yj

=

 k∑
i=1

m∑
j=k+1

njYi + ninjte0 + niYj

+ (nα + nβ − 1)te0 +

m∑
j=1

Yj

= (nβ − 1)

k∑
i=1

Yi + (nα − 1)

m∑
j=k+1

Yj + (nα − 1)(nβ − 1)te0 + (nα + nβ − 1)te0 +

m∑
j=1

Yj

= nβ

k∑
i=1

Yi + nα

m∑
i=k+1

Yi + nαnβte0

= vTY + nαnβte0

After substituting Y and rearranging we get,

te0 =
W0 − vTX−1N−1W
nαnβ − vTX−1v

m

A.1.2 Terminal edges
Consider the terminal edge e0 shown in Figure A.2 with adjacent edges e1, e2 . . . em. e0 is incident to the
vertices α and β. The respective sizes of the sides of the split defined by e0 are nα and nβ . Since e0 is
a terminal edge the leaf β is labeled. There are two cases to consider depending on if α is labeled or not
labeled.

If α is not labeled (Case 1 in Figure A.2), the edge length formula given by Bryant (1997) is

te0 =
W0 − vTX−1N−1W
nαnβ − vTX−1v
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where nα = (n− 1), nβ = 1 and k = m. If α is labeled (Case 2 in Figure A.2), the edge length formula can
be derived as follows.

For edges ei incident to α we have,

Wi =
∑
x∈Ai

∑
y∈Bi

pxy

=

m∑
j=1,j 6=i

∑
x∈Ci

∑
y∈Cj

pxy +
∑
x∈Ci

(pαx + pβx)

=

m∑
j=1,j 6=i

∑
x∈Ci

∑
y∈Cj

(pαx + pαy) +
∑
x∈Ci

(2pαx + te0)

=

m∑
j=1,j 6=i

[njYi + niYj ] + 2Yi + nite0

= (n− ni − 2)Yi + ni

m∑
j=1,j 6=i

Yj + 2Yi + nite0

= (n− 2ni)Yi + ni

m∑
j=1

Yj + nite0

In matrix form,
W = (nI − 2N)Y +NUY + te0Nv

For the terminal edge e0 we have,

W0 =

m∑
i=1

∑
x∈Ci

pβx + te0

= (

m∑
i=1

∑
x∈Ci

pαx + te0) + te0

=

m∑
i=1

Yi + (n− 1)te0

= vTY + nαnβte0

where nα = (n− 1), nβ = 1 and k = m.
After substituting Y and rearranging we get,

te0 =
W0 − vTX−1N−1W
nαnβ − vTX−1v
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Figure A.3: Rate of the strict molecular clock that is estimated by SA. The true rate of the strict molecular
clock is 1.0 subs./site/time in all simulation scenarios.

A.2 Molecular clock rate inferred by SA

A.3 Comparison of various FJ-based methods
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Figure A.4: A comparison of various FJ-based methods. FJ-BIC is the method that is presented in the main
paper. FJ2-BIC checks if siblings have a parent using the criterion shown in equation 3.4 of the Chapter 3.
FJ-AIC uses AIC for model selection. FJ-3CV and FJ-5CV performs model selection using 3-fold CV and
5-fold CV respectively.
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Appendix B

Supplementary material for Chapter 5

B.1 Optimizing edge lengths
Given a continuous-time hidden Markov model MCT = (πρ,Q, t) on a rooted phylogenetic tree Tρ =
(VTρ , ETρ), MCT is parameterized in terms of (i) a root probability distribution πρ, (ii) the set of rate
matrices Q = {Qe : e ∈ ETρ}, and (iii) the set of edge lengths t = {te : e ∈ ETρ}. The transition matrix Pe
for edge e is computed as Pe = eQete .

Edge lengths were optimized with Newton-Raphson using a convergence threshold of 10−4 substitu-
tions/site, as described below.

tue = tce −
(
∂2`

∂t2e

)−1
∂`

∂te

, where ` is the log likelihood score, tue and tce are the updated edge length and the current edge length,

respectively, of edge e. The partial derivatives
∂`

∂te
and

∂2`

∂t2e
are evaluated at te = tce.

The current Section lists the equations for computing the first and second order partial derivatives of the
log likelihood score with respect to an edge length. Assuming i.i.d. we have

` =
∑
i

wi logLi

, where wi is the number of times that the site pattern for site i is repeated, and Li is the likelihood score
for site i. Li is computed as follows:

Li =
∑
x

πρ(x)Liρ(x)

, where Liρ is the conditional likelihood for site i that is computed recursively using the following equation
that applies for each non-leaf vertex of T .

Liu(x) =

(∑
y

P(u,v)(y|x)Liv(y)

)(∑
z

P(u,w)(z|x)Liw(z)

)
where v and w are the children of u, and u has two children.

P(u,v) = eQ(u,v)t(u,v)

The first derivative of log likelihood taken with respect to any edge length t(a,b) can be computed as
follows
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∂l

∂t(a,b)
=
∑
i

wi

Li
× ∂Li

∂t(a,b)

where

∂Li

∂t(a,b)
=
∑
x

πρ(x)
∂Liρ(x)

∂t(a,b)

Let v and w be the children of u. Given an edge (a, b) the first derivative
∂Liu(x)

∂t(a,b)
can be calculated as

follows.

∂Liu(x)

∂t(a,b)
=

(∑
y

∂P(u,v)(y|x)

∂t(a,b)
Liv(y) + P(u,v)(y|x)

∂Liv(y)

∂t(a,b)

)(∑
z

P(u,w)(z|x)Liw(z)

)

+

(∑
y

P(u,v)(y|x)Liv(z)

)(∑
z

∂P(u,w)(z|x)

∂t(a,b)
Liw(z) + P(u,w)(z|x)

∂Liw(z)

∂t(a,b)

)

where v and w are children of u.

∂P(u,v)(y|x)

∂t(a,b)
=

{
Q(u,v)e

Q(u,v)t(u,v) if t(a,b) = t(u,v)

0 otherwise

∂Liu(x)

∂t(a,b)
equals zero for any x if u is a leaf.

The expression for
∂Liu(x)

∂t(a,b)
simplifies as follows for any u that is not a leaf. Let b and c be the two

children of a. Let pT (ρ, a) be the directed path in T from root ρ to a.

∂Liu(x)

∂t(a,b)
=



(∑
y

[
Q(a,b)e

Q(a,b)t(a,b)
]

(y|x)Lib(y)

)(∑
z
P(a,c)(z|x)Lic(z)

)
if u = a(∑

y
Puv(y|x)

∂Liv(y)

∂t(a,b)

)(∑
z
P(u,w)(z|x)Liw(z)

)
if u 6= a, and u, v are in pT (ρ, a)

and v are in the directed path from ρ to a0 otherwise
(B.1)

The second derivative of log likelihood taken with respect to the edge length t(a,b) can be computed as
follows

∂2`

∂t2(a,b)
=
∑
i

wi

(
1

Li
∂2Li

∂t2(a,b)
−
(

1

Li
∂Li

∂t(a,b)

)2
)

where

∂2Li

∂t2(a,b)
=
∑
x

πρ(x)
∂2Liρ(x)

∂t2(a,b)

Let v and w be the children of u. Given an edge (a, b), such that b and c are the children of a, the second

derivative
∂2Liu(x)

∂t2(a,b)
of any u that is not a leaf can be calculated as
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∂2Liu(x)

∂2t(a,b)
=



(∑
y

[
Q2

(a,b)e
Q(a,b)t(a,b)

]
(y|x)Lib(y)

)(∑
z
P(a,c)(z|x)Lic(z)

)
if u equals a(∑

y
P(u,v)(y|x)

∂2Liv(y)

∂2t(a,b)

)(∑
z
P(u,w)(z|x)Liw(z)

)
if u is not a, and u, v are in pT (ρ, a)

0 otherwise
(B.2)

, where pT (ρ, a) is the directed path in T from ρ to a.
∂2Liu(x)

∂t2(a,b)
equals zero for any x if u is a leaf.

B.1.1 Avoiding numerical underflow using scaling factors
Each element of a conditional likelihood vector is a product of fractions (see equation 2.7). The computation
of entries of conditional likelihood vectors is susceptible to numerical underflow for large trees. We applied
the commonly used technique of scaling each conditional likelihood vector with a small scaling factor, and
storing the log transformed value of the scaling factor (Yang, 2000). We used a similar technique to scale
the first derivative and the second derivative, respectively, of the conditional likelihood vector.

The scaling factor sf(Liu) of any vector Liu is defined as the entry in Li(u) that has the largest absolute
value. Scaling a vector involves dividing each element of the vector with the scaling factor of the vector. A
log transformed factor lgsf(u) is computed recursively for each vertex as follows.

lgsf(Liu) = log(sf(Liu)) + lgsf(Liv) + lgsf(Liw)

, where v and w are the children of u. lgsf(Liu) is zero if u is a leaf. Liu is computed using scaled conditional
likelihood vectors as follows.

Liu(x) =

(∑
y

P(u,v)(y|x)Liv(y)

)(∑
z

P(u,w)(z|x)Liw(z)

)

where Liv is the conditional likelihood vector that is obtained by scaling Liu.
Log likelihood ` is computed as follows.

` =
∑
i

wi
(
lgsf(Liρ) + logLi

)
, where

Li =
∑
x

πρ(x)Liρ(x)

The first derivative
∂Liu(x)

∂t(a,b)
, and the second derivative

∂2Liu(x)

∂2t(a,b)
are computed recursively using equation

B.1, and equation B.2, respectively, using scaled versions of conditional likelihood vectors, and derivatives
of conditional likelihood vectors.

The first derivative of log likelihood w.r.t. to any edge length t(a,b) is computed as follows

∂`

∂t(a,b)
=
∑
i

wi
∂`i

∂t(a,b)

, where
∂`i

∂t(a,b)
= exp

(
lgsf

(
∂Liρ
∂t(a,b)

)
− lgsf

(
Liρ
))
× 1

Li
∂Li

∂t(a,b)
(B.3)
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The log transformed factor lgsf
(
∂Liu
∂t(a,b)

)
for the first derivative of conditional likelihood vector

∂Liu
∂t(a,b)

is computed as follows.

lgsf
(
∂Liu
∂t(a,b)

)
=


log

(
sf
(
∂Liu
∂t(a,b)

))
+ lgsf(Lib) + lgsf(Lic) if u equals a

log

(
sf
(
∂Liu
∂t(a,b)

))
+ lgsf

(
∂Liv
∂t(a,b)

)
+ lgsf(Liw) if u is not a, and u, v are in pT (ρ, a)

0 otherwise

The second derivative of log likelihood w.r.t. to any edge length t(a,b) is computed as follows

∂2`

∂t2(a,b)
=
∑
i

wi
∂2`i

∂t2(a,b)

, where

∂2`i

∂t2(a,b)
=

(
exp

(
lgsf

(
∂2Liρ
∂t2(a,b)

)
− lgsf

(
Liρ
))
× 1

Li
∂Li

∂t(a,b)

)
−
(

∂`i

∂t(a,b)

)2

(B.4)

The log transformed factor lgsf

(
∂2Liu
∂t2(a,b)

)
for the second derivative of conditional likelihood vector

∂2Liu
∂t2(a,b)

is computed as follows. Let b and c be the two children of a. Let pT (ρ, a) be the directed path from the root
ρ to vertex a.

∂2Liu(x)

∂2t(a,b)
=



log

(
sf

(
∂2Liu
∂t2(a,b)

))
+ lgsf(Lib) + lgsf(Lic) if u equals a

log

(
sf

(
∂2Liu
∂t2(a,b)

))
+ lgsf

(
∂2Liv
∂t2(a,b)

)
+ lgsf(Liw) if u is not a, and u is in pT (ρ, a)

0 otherwise
The optimization procedures for estimating edge lengths were implemented in C++. We used double for

storing the derivatives of conditional likelihood vectors. We found that the exponents in equation B.3 and
equation B.4 were within the range of permissible values for double for all empirical data sets and simulated

data sets that were analyzed. Additionally, we found that L× ∂`i

∂t(a,b)
and L× ∂2`i

∂t2(a,b)
was within the range

of permissible values for double for each site i, where L is the number of columns in the multiple sequence
alignment. We concluded that we avoided numerical underflow and numerical overflow in the computation
of the first derivatives and the second derivatives, respectively, of the log likelihood score for each data set.

122


	Acknowledgements
	Abstract
	Kurzfassung
	List of Tables
	List of Figures
	Introduction
	What are phylogenetic trees?
	Evolution of GC content
	Current approaches for inferring of phylogenetic trees 
	Time-calibrated phylogenetic trees
	Overview of contributions made in this thesis 

	Background
	Graph-theoretic terminology
	Three ways to score trees: parsimony, likelihood, and tree length
	Statistical consistency
	Hidden Markov models on trees 
	Tree-search under continuous-time HMM on trees 
	Related work on the general Markov model
	Divide-and-conquer approaches  
	Placing the root on unrooted phylogenetic trees
	Summary of contributions made in thesis

	Modeling ancestor-descendant relationships using generally labeled trees 
	Current methods for modeling ancestor-descendant relationships
	Family joining: a clustering approach for constructing generally labeled phylogenetic trees
	Comparative analysis on simulated data
	Validation of family joining using HIV transmission network data
	Summary and Outlook

	Topological relationship between MSTs and phylogenetic trees  
	Motivation
	Indeterminacy of Chow-Liu grouping
	Vertex order based MSTs
	An optimality criterion for selecting vertex order
	Selecting VMSTs with the minimum number of leaves
	Summary and Outlook

	Structural EM under the general Markov model via an MST backbone
	A structural EM algorithm for the general Markov model
	MST-backbone: a divide-and-conquer framework for constraining search through tree space
	Model selection
	Comparative analysis on simulated data
	Validation on empirical data
	Summary and Outlook

	Conclusions
	Bibliography
	Supplementary material for Chapter 3
	OLS estimate of edge length for generally labeled trees
	Molecular clock rate inferred by SA
	Comparison of various FJ-based methods

	Supplementary material for Chapter 5
	Optimizing edge lengths


