
COMPREHENSIVE AND PRACTICAL POLICY

COMPLIANCE IN DATA RETRIEVAL SYSTEMS

A dissertation submitted towards the degree

Doctor of Engineering

of the Faculty of Mathematics and Computer Science

of Saarland University

by

ESLAM ELNIKETY

Saarbrücken, 2019

Day of Colloquium 24 June 2020
Dean of the Faculty Univ.-Prof. Dr. Thomas Schuster

Chair of the Committee Prof. Dr. Andreas Zeller
Reporters
First Reviewer Prof. Dr. Peter Druschel
Second Reviewer Dr. Deepak Garg
Third Reviewer Prof. Dr. Paul Francis
Fourth Reviewer Dr. Saikat Guha
Academic Assistant Dr. Isaac Sheff

ii

Abstract

Data retrieval systems such as online search engines and online social networks process many

data items coming from different sources, each subject to its own data use policy. Ensuring

compliance with these policies in a large and fast-evolving system presents a significant tech-

nical challenge since bugs, misconfigurations, or operator errors can cause (accidental) policy

violations. To prevent such violations, researchers and practitioners develop policy compli-

ance systems.

Existing policy compliance systems, however, are either not comprehensive or not prac-

tical. To be comprehensive, a compliance system must be able to enforce users’ policies re-

garding their personal privacy preferences, the service provider’s own policies regarding data

use such as auditing and personalization, and regulatory policies such as data retention and

censorship. To be practical, a compliance system needs to meet stringent requirements: (1)

runtime overhead must be low; (2) existing applications must run with few modifications;

and (3) bugs, misconfigurations, or actions by unprivileged operators must not cause policy

violations.

In this thesis, we present the design and implementation of two comprehensive and prac-

tical compliance systems: THOTH and SHAI. THOTH relies on pure runtime monitoring: it

tracks data flows by intercepting processes’ I/O, and then it checks the associated policies to

allow only policy-compliant flows at runtime. SHAI, on the other hand, combines offline anal-

ysis and light-weight runtime monitoring: it pushes as many policy checks as possible to an

offline (flow) analysis by predicting the policies that data-handling processes will be subject to

at runtime, and then it compiles those policies into a set of fine-grained I/O capabilities that

can be enforced directly by the underlying operating system.

iii

Kurzdarstellung

Datenanalysesysteme verarbeiten Dateneinträge aus verschieden Quellen, die jeweils Daten-

nutzungsregeln unterliegen. Regelkonformietät in einem großen und schnell-weiterentwickeln

dem System zu garantieren, stellt große technische Herausforderung dar, insbesondere da

Softwarefehler, falsche Konfigurationen oder Bedienfehler (versehentlichen) Regelbruch verur-

sachen können. Um diesen Regelbruch zu verhindern, entwickeln Forscher und Entwickler

regelkonforme Systeme.

Existierende regelkonforme Systeme sind jedoch nicht allumfassend und praktikabel. Ein

allumfassendes System muss in der Lage sein, benutzerspezifische, dienstleisterspezifische

oder gesetzliche Regeln zu berücksichtigen. Diese berücksichtigen die Privatsphäreeinstel-

lungen eines Nutzers, ermöglichen die Überprüfung oder Personalisierung durch den Dien-

stleister oder garantieren den Datenerhalt oder Zensur. Ein praktikables System hingegen hat

strikte Anforderungen: (1) Die Laufzeitkosten sind gering; (2) existierende Anwendungen er-

fordern wenige Anpassungen; (3) Softwarefehler, falsche Konfigurationen oder Bedienfehler

werden erkannt und der Regelbruch wird verhindert.

Diese Doktorarbeit stellt das Konzept und die Implementierung von zwei allumfassend,

praktikable, regelkonforme Systemen vor: THOTH und SHAI. THOTH stützt sich auf die

Überwachung zur Laufzeit. Kontinuierlich verfolgt es die Eingabedaten und den Daten-

fluss zwischen Prozessen und evaluiert assoziierten Regeln, um nur regelkonforme Daten-

flüsse zuzulassen. Demgegenüber kombiniert SHAI eine offline Flussanalyse mit einer vere-

infachten Laufzeitüberwachung. Dafür werden die meisten Evaluierungen bereits vor der

Ausführung durch die offline Flussanalyse evaluiert, indem alle Prozesse und deren Eingabe-

daten analysiert werden. Diese Analyse erzeugt detaillierte Zugriffsberechtigungen, die vom

Betriebssystem berücksichtigt werden.

iv

Publications

Parts of this thesis have appeared in the following publications:

• “Shai: Enforcing Data-Specific Policies with Near-Zero Runtime Overhead”. Eslam El-

nikety, Deepak Garg, and Peter Druschel. In CoRR abs/1801.04565 (2018). Available at

https://arxiv.org/abs/1801.04565.

• “Thoth: Comprehensive Policy Compliance in Data Retrieval Systems”. Eslam Elnikety,

Aastha Mehta, Anjo Vahldiek-Oberwagner, Deepak Garg, and Peter Druschel. In the

proceedings of the 25th USENIX Security Symposium (USENIX Security’16), Austin, TX,

Aug. 2016.

Additional publications while at MPI-SWS:

• “ERIM: Secure, Efficient In-process Isolation with Protection Keys (MPK)”. Anjo Vahldiek-

Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler, Deepak Garg, and Pe-

ter Druschel. In the proceedings of the 28th USENIX Security Symposium (USENIX

Security’19), Santa Clara, CA, Aug. 2019

• “Qapla: Policy compliance for database-backed systems”. Aastha Mehta, Eslam Elnikety,

Katura Harvey, Deepak Garg, and Peter Druschel. In the proceedings of the 26th USENIX

Security Symposium (USENIX Security’17), Vancouver, BC, Canada, Aug. 2017.

• “Light-weight Contexts: An OS Abstraction for Safety and Performance”. James Litton,

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby Bhattacharjee, and Pe-

ter Druschel. In the proceedings of the 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’16), Savannah, GA, Nov. 2016.

• “Guardat: Enforcing data policies at the storage layer”. Anjo Vahldiek-Oberwagner,

Eslam Elnikety, Aastha Mehta, Deepak Garg, Peter Druschel, Ansley Post, Rodrigo Ro-

drigues, and Johannes Gehrke. In the proceedings of the 10th European Conference on

Computer Systems (EuroSys’15), Bordeaux, France, Apr. 2015.

• “Protecting Data Integrity with Storage Leases”. Anjo Vahldiek, Eslam Elnikety, Ans-

ley Post, Peter Druschel, and Rodrigo Rodrigues. Technical Report 2011-008, MPI-SWS,

2011.

v

https://arxiv.org/abs/1801.04565

Acknowledgements

The research work of this thesis would not have been possible if it were not for the help of

numerous others during my time as a graduate student at MPI-SWS. First and foremost, I

thank Peter Druschel and Deepak Garg. They have been quite the advising team. I am greatly

indebted to them for their mentoring, constructive criticism, and many hours of stimulating

and enlightening discussions.

I have been fortunate to work closely with Aastha Mehta and Anjo Vahldiek-Oberwagner.

They have been fantastic colleagues. Besides creating a fun working environment, they helped

a lot with the software produced in this thesis. I am thankful for my co-authors, in particular

Bobby Bhattacharjee and James Litton, for their contagious energy. My colleagues in the Sys-

Nets group, in particular Paarijaat Aditya and Pedro Fonseca, produced an inspiring research

environment and often provided invaluable feedback to this research.

Finally, I thank my family and friends for their unwavering support and love.

vii

Contents

1 Introduction 1

1.1 Data Retrieval Systems and Data Use Policies . 1

1.2 Policy Compliance Systems: An Overview . 3

1.3 Comprehensive and Practical Policy Compliance Systems 7

1.3.1 THOTH . 7

1.3.2 SHAI . 8

1.3.3 How do THOTH and SHAI compare? . 10

1.4 Thesis Contributions . 11

1.5 Organization . 11

2 Background 13

2.1 Linux Security Module . 13

2.2 Capsicum . 13

2.3 Light-Weight Contexts . 14

3 THOTH: Policy Compliance via Runtime Monitoring 17

3.1 THOTH Design and Architecture . 19

3.1.1 Data flow model . 19

3.1.2 Policy language design . 20

3.1.3 Architecture . 21

3.1.4 Threat model . 23

3.1.5 Data flow tracking and enforcement . 24

3.1.6 THOTH API . 27

3.1.7 Summary . 29

3.2 Example Policies . 29

3.2.1 Client policies . 29

3.2.2 Index policy . 32

3.2.3 Other data retrieval policies . 33

ix

3.3 THOTH Prototype . 34

3.3.1 LSM module . 34

3.3.2 THOTH reference monitor . 35

3.3.3 Prototype limitations . 35

3.4 Policy-Compliant Data Retrieval with THOTH 36

3.4.1 Baseline configuration . 36

3.4.2 Controlling data flow with THOTH . 37

3.5 THOTH Evaluation . 42

3.5.1 THOTH-based data retrieval system . 42

3.5.2 Microbenchmarks . 47

3.5.3 Fault-injection tests . 49

3.6 THOTH Conclusion . 49

4 SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitor-

ing 51

4.1 SHAI Overview . 54

4.1.1 Data flow model and policy language . 54

4.1.2 Runtime overhead sources in THOTH . 55

4.1.3 Key ideas . 56

4.1.4 Architecture . 59

4.1.5 Threat model . 59

4.2 SHAI Design . 59

4.2.1 Example: Search pipeline . 60

4.2.2 The offline analysis (OA) . 62

4.2.3 Runtime monitor and OS sandbox . 67

4.3 SHAI Prototype . 70

4.4 Policy-compliant data retrieval with SHAI . 72

4.5 SHAI Evaluation . 74

4.5.1 Search throughput . 76

4.5.2 Scaling search throughput . 79

4.5.3 Search latency . 81

4.5.4 Offline analysis . 82

4.5.5 Indexing . 83

4.5.6 Fault-injection tests . 83

4.6 SHAI Conclusion . 84

x

5 Related Work 85

5.1 Data Retrieval Policy Compliance . 85

5.2 Cloud Policy Compliance . 87

5.3 Information Flow Control (IFC) . 87

5.4 Declarative Policies . 89

5.5 Hybrid Analysis . 90

5.6 Policy Debugging . 91

6 Concluding Remarks 93

6.1 The Evolution from THOTH to SHAI . 94

7 Future Directions 97

7.1 Further Engineering in SHAI . 97

7.2 Automatic Bootstrapping of Policy Configuration 98

7.3 Database-Backed Data Retrieval Systems . 99

7.4 Beyond Data Retrieval Systems . 99

Bibliography 101

List of Figures 111

List of Tables 113

A Policies for Data Flows in a Search Engine 117

A.1 Client Policies . 117

A.1.1 Private policy . 118

A.1.2 Friends-only policy . 118

A.1.3 Friends-of-friends policy . 118

A.2 Provider Policies . 119

A.2.1 Mandatory access logging (MAL) . 119

A.2.2 Region-based censorship . 121

A.3 Search Engine Flows . 121

A.3.1 Indexing flow . 121

A.3.2 Profile aggregation flow . 123

B Flow Description Language 125

B.1 Example Data Flow Specification . 126

xi

1 Introduction

This chapter introduces data retrieval systems and some of the data use policies that govern

how these systems ought to collect, process, and serve data. To enforce such policies, re-

searchers and practitioners develop policy compliance systems, which we cover briefly in this

chapter. The discussion regarding the existing policy compliance systems in this chapter is

at a high level and is not meant to be exhaustive. We provide only an overview to highlight

the distinguishing features of the compliance systems presented in this thesis, and we defer

further details to later chapters.

1.1 Data Retrieval Systems and Data Use Policies

Data retrieval systems are a class of online services that store, aggregate, index, recommend,

and serve information. This class includes large-scale social media sites, online search engines,

e-commerce sites, and numerous organizational, corporate, and government information ser-

vices. Examples include large providers like Amazon, Facebook, eBay, Google, Microsoft, and

numerous smaller, domain-specific sharing, trading and networking sites.

Data retrieval systems typically serve a searchable corpus of documents, web pages, blogs,

personal e-mails, online social network profiles and posts, along with real-time microblogs,

advertisements, stocks and news tickers. Figure 1.1 provides a figurative depiction of data

retrieval systems, showing an example of a typical search engine and its different data sources

and processing pipelines. The example search engine stores personal messages, e-mails, and

social network profiles and posts. It also collects public information such as web pages and

real-time data streams. The search engine makes data from these different sources available to

users (external clients and the provider’s own employees) via a search pipeline, where users

submit queries and receive mash-ups of data items from different sources. The search engine

also collects users’ queries and click streams (e.g., documents viewed) to personalize search

results. Additionally, the search engine uses an advertisement service to generate revenue.

1

Chapter 1. Introduction

FIGURE 1.1: An example search engine with processing pipelines for searching, per-
sonalization, and advertisements.

As the example shows, data retrieval systems aggregate, index, recommend, and serve

many data items from different sources. Each data item served or used by a data retrieval

system may have its own usage policy. For instance, e-mail is private to its sender/receiver(s),

online social network data and blogs may be restricted to friends, and corporate documents

are limited to (authorized) employees. Those are a few examples of the access control settings

that data items may be subject to. Additionally, systems need to comply with local laws and

regulations, which may require them, for instance, to filter certain data items within a given

jurisdiction to enforce censorship. Moreover, the system must comply with the provider’s

own privacy policy, which may stipulate, for instance, that a user’s query and click streams

be used only for personalization. Finally, other usage policies may restrict the use of specific

(meta)data, require expiration, or permit access subject to logging.

Complying with data usage policies is crucial. Policy violations and data breaches consti-

tute a serious threat [92], and many incidents get media coverage [72, 71, 84, 83, 93]. (Privacy

Rights Clearinghouse reports over 8,000 data breaches made public since 2005 [70].) Noncom-

pliance may lead to loss of reputation and customer confidence. The stakes are high: providers

may face stiff fines and legal repercussions in case of policy violations. For example, under

the EU General Data Protection Regulation (GDPR), organizations in breach may be fined up

2

1.2. Policy Compliance Systems: An Overview

to 4% of the previous financial year’s annual revenue or €20 Million, whichever is greater [82].

Similarly, US companies are legally required to publish their data use policies and are sub-

ject to penalties in cases of violation [78]. Hence, providers have a vested interest in ensuring

compliance with all applicable data use policies.

1.2 Policy Compliance Systems: An Overview

Ensuring compliance with all applicable data use policies in data retrieval systems presents a

significant technical challenge. First, there are many data items and (possibly as many) data

use policies. Moreover, the policy in effect for a data item may depend on checks, settings, and

configurations in the many components and the several layers of the software stack, includ-

ing file and operating systems, runtime frameworks, and application code. These scattered

and numerous checks, settings, and configurations make it difficult to audit and reason about

policy compliance. Second, policy violations can be caused by misconfigurations, bugs, and

vulnerabilities in the data retrieval systems’ software stacks, which are large and complex.

Traditionally, policy compliance in data retrieval systems is best-effort. Providers rely

on manual reviews and audits, which lack coverage and fall short of providing (any) policy

compliance guarantees [75]. Moreover, such manual reviews and audits are time-consuming

and labor-intensive. Therefore, many small- and medium-scale providers cannot afford such

practices given their limited IT budgets. While that might not be the case for large-scale

providers who employ hundreds or thousands of software engineers and privacy officers,

those providers have additional challenges. Large providers typically have fast-evolving ap-

plication codebases, with frequent updates to improve performance or to introduce new fea-

tures. When policy compliance checks are entangled with dynamic and agile application code,

the policies in effect are difficult to maintain. Moreover, misconfigurations or application up-

dates that introduce bugs can cause policy violations.

Hence, developing technical mechanisms for ensuring policy compliance in data retrieval

systems is important. In fact, there has been significant work on ensuring policy compliance

by both practitioners and researchers. For instance, Microsoft’s Bing relies on the Grok system

to prevent policy violations in the search engine’s back-end [75], Facebook relies on the IVD

system to prevent missing or incorrect authorization checks from violating policies [56], be-

sides many research projects that can enforce data policies such Flume [49], HiStar [101], and

Asbestos [31] .

3

Chapter 1. Introduction

Existing policy compliance systems and mechanisms, however, either lack comprehen-

siveness or are impractical for data retrieval systems. We explain the lack of comprehensive-

ness and the impracticality next.

Comprehensiveness. For a compliance system to be comprehensive, it must be able to ex-

press and enforce individual policies. An individual policy is specific to a given data item or

to a given user’s data items. In fact, many of the data use policies that arise in practice are

individual policies. For instance, Alice’s e-mails are private to Alice, whereas Bob’s e-mails

are private to Bob. A particular blog post of Alice’s may be public, whereas another of hers

may be available only to her friends. These are example individual policies that capture per-

sonal access control settings which are user- and item-specific. Other examples of individual

policies capture legal and contractual regulations. For instance, a given data item may not be

accessed in a given jurisdiction to comply with the censorship dictated by the local law of the

respective jurisdiction. A data item in a data stream (e.g., news ticker) may expire within 48

hours, whereas it may be permissible to retain another item in the same stream indefinitely.

Finally, other example individual policies reflect the provider’s own privacy policy, which

may stipulate, for instance, that the query and click streams of a given user be used only for

personalization subject to the user opting-in.

All the previously mentioned policies are examples of individual policies, constituting

an important class of data use policies. In fact, compliance with some individual policies is

required by law. For instance, the EU General Data Protection Regulation (GDPR) explicitly

grants users individual choice regarding the use of their personal data [82].

Enforcing individual policies requires dynamic analysis since individual policies are not

amenable to pure static analysis techniques for two primary reasons. First, static analysis loses

precision quickly under such policies. The same front-end program that Alice’s friend, say

Carol, uses to access the (“visible only to Alice’s friends”) blog post is used by other clients

who are not necessarily Alice’s friends. Thus, a given program variable may contain data

with very different individual policies over time at the same program point and, hence, the

abstraction of static analysis may lose precision quickly. Second, individual policies often

refer to information available only at runtime and cannot be resolved statically. For example,

whether an access is on behalf of Carol is available only during runtime from the session

information. Besides user’s identity, other runtime information which data use policies often

refer to include the geographic location of a connected client (e.g., when a data item is censored

in a specific jurisdiction), wall-clock time (e.g., when a news ticker item expires at a specific

time), or content state (e.g., when a log entry must exist before accessing sensitive content).

4

1.2. Policy Compliance Systems: An Overview

No existing work covers the important class of individual policies. Existing policy com-

pliance systems for data retrieval systems cannot enforce individual policies since they rely

on static analysis techniques, while enforcing individual policies requires dynamic analysis.

Such compliance systems usually target column-specific policies. In contrast to individual poli-

cies which are per-user and data-specific, column-specific policies apply uniformly to all data

of a specific type, e.g., the policy “no IP address can be used for advertizing.” For such poli-

cies, pure static analysis techniques may suffice. For instance, the Grok system combines

light-weight static analysis with heuristics to annotate source code in order to check for vio-

lations against column-specific policies in Bing’s back-end [75]. However, Grok cannot check

violations against individual policies for the reasons described earlier.

The missing comprehensive enforcement with regard to individual policies is a significant

and important part of policy enforcement that the compliance systems developed in this thesis

address.

Practicality. For a compliance system to be practical, it needs to meet the following require-

ments.

(1) Low runtime overhead. A policy compliance system must have low runtime overhead to

be practical. High runtime overheads on the critical path (e.g., when serving users’ requests)

may prohibit adoption, especially in medium- to large-scale data retrieval systems. Runtime

overheads directly increase the providers’ operational cost, as providers either need to sac-

rifice valuable runtime cycles for policy enforcement or need to provision more resources to

sustain performance (i.e., a specific throughput rate).

(2) Compatibility with existing systems. To be practical, a compliance system must be com-

patible with existing applications and software systems, requiring few modifications to the

existing software stack and application codebases. Otherwise, providers will have to invest

heavy resources and engineering hours to adapt (and maybe re-write) the complex data re-

trieval processing pipelines to the software stack required by the compliance system — which

tends to be impractical.

(3) Compliance despite application bugs, misconfigurations, and errors by unprivileged operators.

Given the complexity of the processing pipelines within data retrieval systems, such systems

are vulnerable to bugs, misconfigurations, and operator errors. To be practical, the compliance

system must enforce policy despite these vulnerabilities. Therefore, policy specification and

enforcement should be entirely independent of the application codebase.

5

Chapter 1. Introduction

As we have mentioned earlier, enforcing individual policies requires dynamic analysis

since individual policies are not amenable to pure static analysis techniques. There are existing

dynamic analysis systems which can enforce individual policies (and can, in principle, satisfy

the comprehensiveness requirement). These systems fall into two broad classes: dynamic

analysis for access control and for flow control. The former is categorically not suitable for policy

compliance in data retrieval systems, whereas the existing systems that fall into the latter class

fail to meet one (or more) of the practicality requirements needed for policy compliance in

data retrieval systems.

Access control systems ensure that access conditions are satisfied before releasing data.

Examples of dynamic analysis systems for access control include Guardat [87], Taos [94], and

PCFS [39]. Generally, access control systems do not track data flows and, therefore, offer only

one-point enforcement. Such systems are not suitable for data retrieval systems which have

processing pipelines with (multiple) intermediate steps.

Information flow control (IFC) systems restrict a program’s data flow to enforce (flow) poli-

cies. Such systems are suitable for the pipelined nature of data retrieval systems. Nonetheless,

the existing systems that fall into this category fail to meet one (or more) of the practicality re-

quirements needed for policy compliance in data retrieval systems. For instance, the OS-level

dynamic flow analysis techniques in Flume [49], HiStar [101], and Asbestos [31] can enforce

individual policies. However, since these systems use abstract labels as taint, they rely on

trusted application components to map between labels and access policies and to declassify

data. Hence, the correctness of policy configuration and enforcement relies on those trusted

application components —violating practicality requirement (3). Moreover, HiStar and As-

bestos are non-standard operating systems —violating practicality requirement (2). Other

systems rely on fine-grained dynamic flow analysis within the language runtime, such as

RESIN [98] and COWL [81]. Fine-grained dynamic flow analysis incurs high runtime over-

head and is language-dependent —violating practicality requirements (1) and (2). Note that

ensuring policy compliance in data retrieval systems is not a primary goal of the aforementioned

systems, which otherwise offer practical solutions in their respective domains.

To summarize, existing policy compliance systems for data retrieval systems are either

not comprehensive or are impractical. This is the gap that the work developed in this thesis

fills.

6

1.3. Comprehensive and Practical Policy Compliance Systems

1.3 Comprehensive and Practical Policy Compliance Systems

The goal of this thesis is to build comprehensive and practical policy compliance techniques

for data retrieval systems. In this section, we first present, at a high level, key principles that

guide the design of the systems developed in this thesis. Then, we describe two compliance

systems developed in this work in further detail.

Item-specific policies. As explained earlier, many of the policies that arise in practice are

user- and item-specific. Therefore, we would like to allow any data conduit —a file, key-value

tuple, named pipe or network connection— to have its own data use policy.

Concise, declarative policies. We would like a policy attached to a conduit to be a complete,

and one point description of all the confidentiality (i.e., conditions to read or disseminate) and

integrity (i.e., conditions to update) requirements in effect for the data in that conduit. A policy

is specified using a declarative language, separate from application code. This is in contrast to

policies being implicitly specified in code and configuration of multiple software layers and

large application codebases.

Enforcement at task boundary. Data retrieval systems tend to be implemented as a set of

pipelined (and parallel) tasks. Enforcing data use policies at the tasks’ boundaries is a natural

match for this architecture, can be made efficient (as we show in this thesis), and requires few

changes to existing services.

OS-level enforcement. Applications within data retrieval systems are complex and are con-

stantly subject to ongoing development by an army of software engineers, which inevitably

leads to bugs and errors. By comparison, the operating system is smaller, evolves slowly, and

is maintained by a small team of experts. Therefore, the operating system is a suitable choice

for policy enforcement in data retrieval systems.

1.3.1 THOTH

THOTH [33] is a kernel-level policy compliance layer. It performs coarse-grained runtime

flow tracking to enforce data use policies. We give a high-level description of THOTH in the

following.

In THOTH, the provider attaches policies directly to data items. A policy attached to a data

item specifies all the confidentiality and integrity requirements in effect for that data item.

7

Chapter 1. Introduction

THOTH maps the tasks of a data retrieval system to OS processes, and implements a reference

monitor (RM) in the kernel that intercepts tasks I/O and disallows data flows that would

otherwise violate data confidentiality or integrity. To ensure confidentiality, the RM maintains

a taint per process, which is the set of policies of all the data items a process has consumed in

the past. The RM allows a process to produce output under two scenarios: (1) if the output

is associated with a policy that is at least as restrictive as the process’s taint, representing

standard policy propagation; or (2) if the process’s taint permits such output, allowing data

declassification when extricating data from the system or when policy changes along the data

flow path. These checks ensure that data flows never violate data confidentiality, since either

the confidentiality restrictions on the data flow sources are carried forward, or the necessary

conditions to declassify data as dictated by the policies are satisfied. Ensuring integrity is

straightforward. A process is allowed to write/update a data item if the write does not violate

the integrity requirement as stated in the item’s policy.

We have implemented a THOTH prototype, consisting of a Linux kernel module that

plugs in the Linux Security Module (LSM) [95] interface and couples with a userspace RM

process that implements the taint tracking and policy evaluation logic. THOTH’s runtime

coarse-grained flow control incurs an overhead, but we show that the overhead is not too

high for data retrieval systems that need to sustain a few hundred requests/second/machine.

We measure an overhead of 3.6% on query throughput (with sufficiently long user sessions)

in a search pipeline based on the widely used search engine Apache Lucene [3]. While this

overhead may be too high for large-scale data retrieval systems that need to sustain higher

request rate, we believe that it is suitable for many domain-specific data retrieval systems run

by organizations, enterprises and governments.

To summarize, THOTH is a kernel-level policy compliance layer suitable for small- to

medium-throughput data retrieval systems. It tracks and controls data flows across processes

by intercepting I/O in the kernel. It prevents data leaks and corruption due to bugs and

misconfigurations in application components, as well as actions by unprivileged operators.

1.3.2 SHAI

SHAI [32] is a direct improvement on THOTH, with the goal of reducing the runtime overhead

of ensuring policy compliance in order to offer a compliance layer that is suitable for large-

scale data retrieval systems. To motivate SHAI’s design, we first outline at a high level the

main sources of THOTH’s runtime overhead.

8

1.3. Comprehensive and Practical Policy Compliance Systems

THOTH’s runtime overhead sources. As we mentioned earlier, THOTH controls data flows at

runtime by intercepting I/O in the kernel and maintaining per-process taint.

• I/O interception is expensive. An interception involves a context switch to the userspace

RM process. Also, the RM needs to maintain taint and to evaluate policies, consuming

valuable runtime cycles.

• Per-process taint requires a per-user front-end process, since a process that has consumed

Alice’s private data cannot safely serve Bob without resetting its state. This has two

implications. First, a process can serve at most one user session at a time. Second, after

session termination, a process must be re-exec’ed to serve another session.

SHAI’s design. To mitigate the sources of THOTH’s overhead, SHAI uses different policy en-

forcement mechanisms. First, instead of intercepting I/O at runtime, SHAI relies on an offline

analysis to certify accesses that do not violate policies. These accesses are then compiled into

a set of capabilities that can be enforced directly by an operating system’s capability sandbox at

runtime. This allows SHAI to intercept I/O only sparingly, for accesses that could not be cer-

tified during the offline analysis. This design is possible since many aspects of a data retrieval

system’s runtime behaviour are available (or can be predicated) statically, such as normal

flows of data items between the system’s tasks and the policies that are in effect on those data

items.

Second, instead of per-process taint, SHAI relies on operating system primitives for in-

process isolation to support per-session taint. With that in place, the same process can safely

serve multiple sessions concurrently. (As an added benefit, using in-process isolation allows

SHAI to run its RM within the same process too. This avoids the process context switch over-

head for the few accesses that could not be certified during the offline analysis and are inter-

cepted.)

We have implemented a SHAI prototype. A background job periodically performs the

offline flow analysis and can process millions of individual flows within seconds while be-

ing constrained to a single CPU core. Our prototype relies on Capsicum [89] for capability

sandboxing, and on light-weight contexts [52] (lwCs) for efficient in-process isolation. Archi-

tecturally, a process in SHAI has an unsandboxed (privileged) monitor lwC, which runs SHAI’s

RM, and possibly many Capsicum-sandboxed (unprivileged) task lwCs, where each maps to

a system’s task or to a user’s session. SHAI’s RM grants access capabilities to task lwCs allow-

ing accesses certified by the offline analysis. Using Apache Lucene and sufficiently long user

sessions, our performance measurements indicate that SHAI’s policy enforcement overhead

9

Chapter 1. Introduction

on throughput is as little as 0.02% on a setup that achieves a few hundred requests/second/-

machine. Additionally, on systems that scale up to a few tens of thousands requests/second/-

machine, SHAI’s overhead is only 1.2%, indicating that SHAI can maintain low overhead even

in high-performance data retrieval systems.

1.3.3 How do THOTH and SHAI compare?

THOTH and SHAI are policy enforcement systems for data retrieval pipelines. Both are com-

prehensive: they enforce data use policies including those specific to individual data items

or to a given user’s data items, the provider’s own policies, and policies that capture legal

requirements. Both systems are practical: they incur low runtime overhead; existing appli-

cations can run with little to no modifications; and bugs, misconfigurations, or actions by

unprivileged operators cannot violate policies.

Besides sharing the same goal, THOTH and SHAI share a number of design principles.

Policies are specified in a declarative language, separate from application code, and directly

attached to data. A policy attached to a data item is a complete and a one point description

of all confidentiality and integrity requirements in effect for that data item. Policy enforce-

ment is completely independent of application code, which could be buggy or misconfigured.

THOTH and SHAI enforce policies at task boundaries. Policy enforcement at task boundaries

matches the pipelined structure of data retrieval systems and makes these compliance systems

independent of any language, runtime, or framework used for developing applications.

However, THOTH and SHAI differ drastically in policy enforcement techniques, repre-

senting two different design points. Each design point makes different assumptions about the

information the provider is able to provide to the compliance system. THOTH’s design makes

no assumptions about the data flows that applications may attempt at runtime. Therefore, it

relies on dynamic information flow control. It tracks data flows by intercepting I/O, propa-

gates policies along these flows, and enforces policy conditions when data leaves the system

or when policy changes along the data flow path. On the other hand, SHAI assumes that the

provider can reasonably approximate the data flows that applications are expected to perform.

It uses offline analysis to determine the compliance of these flows, which are then compiled into

a set of fine-grained I/O capabilities that can be enforced directly by the operating system.

The different enforcement techniques of THOTH and SHAI result in different policy en-

forcement overheads. Our performance measurements show that SHAI’s overheads can be

10

1.4. Thesis Contributions

significantly lower than THOTH’s when the information available to (or predicted by) the of-

fline analysis about the runtime behaviour of the system are accurate. In fact, our measure-

ments indicate that SHAI’s overheads are lower than THOTH’s across the board, even when

most of the assumptions made by the offline analysis are inaccurate.

Naming. The names for THOTH and SHAI are inspired by Egyptian mythology. Thoth is a

recording angel; and Shai is the god of destiny. Dually, THOTH tracks processes’ I/O; and

SHAI configures sandboxes limiting what applications will be able to access.

1.4 Thesis Contributions

This thesis makes the following main contributions:

• A declarative policy language that can express the integrity and confidentiality require-

ments of data flows. The language can specify many individual and column-level poli-

cies that arise in practice in data retrieval systems.

• The design of two comprehensive and practical policy compliance systems, THOTH and

SHAI. THOTH enforces policies by I/O interception and taint propagation, whereas

SHAI relies on offline analysis and light-weight monitoring to enforce policies.

• The application of the proposed designs to a prototype search engine based on Apache

Lucene.

• An optimized prototype implementation and experimental evaluation of the two sys-

tems to measure overheads.

1.5 Organization

The rest of this document is organized as follows. Chapter 2 describes background material

that the systems developed in this thesis build on. Chapter 3 presents THOTH, and Chapter 4

presents SHAI. Chapter 5 discusses related work. I give concluding remarks in Chapter 6, and

I outline directions for future research in Chapter 7.

11

2 Background

This chapter presents background on some of the tools that the work developed in this thesis

uses.

2.1 Linux Security Module

Linux Security Module (LSM) [95] is a general Linux kernel framework to implement security

models that rely on kernel interception of system calls. It is part of the mainstream Linux

kernel since version 2.6 and has been adopted by a number of widely used security projects

such as SELinux [53], AppArmor [23], Smack [85], and TOMOYO Linux [86].

LSM provides hooks, which are function pointers placed strategically in the kernel proper.

When executing security-sensitive operations, these hooks direct the kernel control flow to a

model-specific kernel module, which provides the enforcement logic. A key characteristic of

LSM is that it provides comprehensive I/O interposition (i.e., complete mediation) [103]. The

LSM hooks cover I/O operations (e.g., files, sockets, and shared memory) and process creation

(e.g., fork and exec) among others.

Our THOTH prototype uses LSM as a basic building block for the kernel-level monitor. In

particular, our implementation uses a kernel module that plugs directly into the LSM interface.

2.2 Capsicum

Capsicum [89] provides capability primitives for the UNIX family of operating systems. It is

a widely used security project and is part of mainstream FreeBSD. Moreover, many popular

tools, for example dhclient [29] and openSSH [66], rely on Capsicum’s capability primitives to

enhance security.

13

Chapter 2. Background

At a high level, Capsicum’s capability primitives can be used to provide an OS-supported

sandboxing mechanism. Capsicum introduces two core primitives: capabilities and capabil-

ity mode. A capability is a file descriptor with associated access rights, such as read-only or

read-write access. Capability mode ensures process isolation. A process in capability mode

can access only process-local information, such as its existing open file descriptors. On the

other hand, accesses to global namespaces (file system and process namespaces) and several

management interfaces (mapping devices, and loading kernel modules) are denied. Denying

access to global namespaces is critical to isolating a process, since otherwise the process could

learn information about the system by querying those global namespaces (e.g., does a particu-

lar file system path exist?). A process in capability mode cannot create capabilities outside its

current capability set (since creating such capabilities requires access to global namespaces).

A system can use Capsicum’s primitives to enhance its resilience against program vul-

nerabilities. Following the principle of least privilege, a program creates (or acquires) as few

capabilities as necessary to perform its intended functionality. Once the program enters capa-

bility mode, damages due to compromises are limited to what is accessible with its capability

set.

Our SHAI prototype uses Capsicum for OS-supported capability sandboxing. Applica-

tions run in Capsicum sandboxes with just enough capabilities to perform accesses that were

certified as policy-compliant by SHAI’s offline analysis.

2.3 Light-Weight Contexts

Light-weight contexts (lwCs) [52] are an OS abstraction that provides independent units of

protection, privilege, and execution within a process. A process may contain multiple lwCs,

each with their own (or selectively shared) virtual memory mappings, file descriptor table,

and credentials/capabilities. lwCs are orthogonal to execution threads; a thread can switch

between lwCs through system calls. A lwC switch is efficient as it avoids scheduling overhead

(compared to the context switch of a process/thread). The lwC API enables efficient compart-

mentalization and monitoring.

Our SHAI prototype relies on lwCs (coupled with Capsicum) for its runtime architecture.

In SHAI, each process has an unsandboxed (privileged) monitor lwC, which runs SHAI’s RM,

and possibly many Capsicum-sandboxed (unprivileged) task lwCs, where each maps to an

application’s task or to a user’s session. SHAI’s RM grants access capabilities to task lwCs

allowing accesses certified by the offline analysis. Switching between lwCs is efficient and

14

2.3. Light-Weight Contexts

incurs little overhead when invoking the monitor lwC to acquire capabilities. The monitor

lwC protects the integrity of the reference monitor (by isolating it from application tasks and

users’ sessions), and the task lwCs prevent accidental leakage of private information across

user sessions (by isolating them from one another). If the system calls of a task lwC require

capabilities outside of the task’s current capability set, those system calls are redirected by

the underlying OS to the monitor lwC. SHAI relies on this redirection to intercept I/O to data

items outside of the capability set of task lwCs.

15

3 THOTH: Policy Compliance via

Runtime Monitoring

THOTH is a kernel-level policy compliance layer that helps data retrieval system providers

enforce confidentiality and integrity policies on the data they collect and serve. In THOTH,

the provider attaches policies to data items (documents and live streams, posts and profiles,

user click history, etc.) based on the privacy preferences of clients, external usage require-

ments (e.g., legal), and internal usage requirements (e.g., audit). The policy attached to a data

item is a complete, one point description of all privacy and integrity rules in effect for that data

item. THOTH tracks data flows by intercepting all IPC and I/O in the kernel, and it propagates

policies along these flows. It enforces policy when data leaves the system or when policy

changes along the data flow, regardless of bugs, misconfigurations, or errors by unprivileged

operators. We next briefly describe the key insights in THOTH’s design.

Policies separate from application code. A policy specifying all the confidentiality and in-

tegrity requirements may be associated with any data conduit, i.e, a file, key-value tuple,

named pipe or network connection, and is enforced on all application code that accesses the

conduit’s data or data derived from that data. THOTH provides a declarative language for

specifying policies. The language itself is novel; in addition to standard access (read/write)

policies, it also allows specifying data declassification policies by stipulating how access poli-

cies may change along a data flow.

Coarse-grained dynamic analysis. As we have mentioned earlier, individual policies may not

be amenable to static analysis (precision loss, policies refer to information available only at

runtime). Hence, THOTH uses coarse-grained dynamic analysis. It intercepts I/O in the ker-

nel, tracks the flow of data at the granularity of conduits and processes, and enforces policies

at process boundaries. This incurs a runtime overhead but we show that the overhead is low.

With an optimized prototype implementation applied to a search pipeline based on Apache

17

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

Lucene, we measure an overhead of 0.7% on indexing, and an overhead of 3.6% on query

throughput under a few hundred requests/second/machine. While this overhead may be too

high for large-scale data retrieval systems that need to sustain higher request rates, we believe

that it is suitable for many domain-specific data retrieval systems run by organizations, enter-

prises and governments. Moreover, application code requires very few changes to run with

THOTH (50 lines in a codebase of 300,000 LoC in our experiments).

Novel declassification policy constructs. The complexity of a data retrieval system often ne-

cessitates some declassification to maintain functionality. For instance, an index computed

over a corpus of the private data of more than one individual will have a policy that disal-

lows any of those individuals from reading. (Otherwise, one individual may read the private

data of another). Therefore, a search process that consults such index cannot produce any

readable results without declassification. To handle this and similar situations, we introduce

a new form of declassification called typed declassification, which allows the declassification of

data in specific forms (types). To accommodate the aforementioned search process, all source

data policies allow declassification into a list of search results (document names). Hence, the

search process can function as usual. At the same time, the possibility of data leaks is limited

to a very narrow channel: To leak information from a private file, the search process’ code

must maliciously encode the information in a list of valid document names. Given that the

provider has a genuine interest in preventing data breaches and that the search process is an

internal component that is unlikely to be compromised in a casual external attack, the chance

of having such malicious code in the search process is low. Note that typed declassification

needs content-dependent policies, which our policy language supports.

To summarize, the contributions of THOTH are:

• A policy language that can express individual access and declassification policies declar-

atively (Subsection 3.1.2 and Section 3.2).

• The design of a kernel-level monitor to enforce policies by I/O interception and light-

weight taint propagation (Section 3.1).

• Application of the design to a data retrieval systems that serves more than 300 search

requests/second/machine based on Apache Lucene (Section 3.4).

• An optimized prototype implementation and experimental evaluation to measure over-

heads (Section 3.3 and Section 3.5).

18

3.1. THOTH Design and Architecture

FIGURE 3.1: THOTH data flow.

3.1 THOTH Design and Architecture

THOTH is a policy compliance system that helps data retrieval system providers enforce confi-

dentiality and integrity policies on the data they collect and serve. We next describe THOTH’s

data flow model, policy language, overall architecture, and threat model.

3.1.1 Data flow model

Figure 3.1 shows the data flow model of a THOTH-protected system. An application consists

of a set of tasks (i.e., processes), and data flows among tasks via conduits. A file, a named pipe

or a tuple in a key-value store is a conduit. A network connection or a named pipe is a pair of

conduits, one for each direction of data traffic. THOTH identifies each conduit with a unique

numeric identifier, called the conduit id. The conduit id is the hash of the path name in case of

a file or named pipe, the hash of the 5-tuple 〈srcIP, srcPort, protocol, destIP, destPort〉 in case

of a network connection, or the key in case of a key-value tuple. Any conduit may have an

associated policy.1

The core of the application system is a set of CONFINED tasks within THOTH’s confinement

boundary. The system interacts with the outside world via conduits (typically network con-

nections) to external, UNCONFINED tasks. An UNCONFINED task represents an external user (or an

external component) and may possess the user’s authentication credentials. Neither type of

tasks is trusted by THOTH.

1If a file has multiple hard links, each of its path names can be associated with a different policy. When a path name is
used to access the file, that path name’s policies are checked.

19

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

Policies on inbound and outbound conduits that cross the confinement boundary repre-

sent the ingress and egress policies, respectively. These ingress and egress policies collectively

control how data can be used within the system, and how the data can be disseminated (and

fed) from (and into) the system.

3.1.2 Policy language design

THOTH policies are specified in a new, expressive declarative language, separate from appli-

cation code. A policy can be attached to any conduit. The policy on a conduit protects the

confidentiality and integrity of the data in the conduit. THOTH policies are specified in two

layers.

The first layer, an access control policy, specifies which principals may read and update the

conduit and under what conditions (e.g., only before or only after a certain date). This layer

has a read rule and an update rule. Both rules are written in the syntax of Datalog, which

has been used widely in the past for the declarative specification of access policies [16, 28, 51].

Briefly, the read rule has the form (read :- cond) and means that the conduit can be read if

the condition “cond” is satisfied. The condition “cond” consists of predicates connected with

conjunction (“and”, written ∧) and disjunction (“or”, written ∨). Similarly, the update rule

has the form (update :- cond).

The second layer protects data derived from the conduit by restricting the policies of all

downstream sequences of conduits in the data pipeline. This layer can declassify data by allow-

ing the access policies downstream to be relaxed progressively, as more and more declassi-

fication conditions are met. This layer contains a single rule and has the form (declassify :-

cond), where “cond” is a condition or predicate on all downstream sequences of conduits.

For instance, “cond” may say that in any downstream sequence of conduits, the access poli-

cies must allow read access only to Alice, until the calendar year is at least 2020, after which

the policies may allow read access to anyone. This represents the declassification policy “pri-

vate to Alice until 2020”. We represent such declassification policies using the notation of

linear temporal logic (LTL), which provides a well-known operator to represent predicates that

change over time [55]. We allow a new connective in “cond” in the declassify rule: c1 until

c2, which means that condition c1 must hold of all downstream conduits until condition c2

holds. Also, we allow a new predicate isAsRestrictive(p1, p2), which checks that policy p1 is at

least as restrictive as p2. The second layer that specifies declassification by controlling down-

stream policies is the language’s key novelty. Another noteworthy feature is that we allow

policy evaluation to depend on a conduit’s state—both its data and its metadata (e.g., policy).

20

3.1. THOTH Design and Architecture

!"#$%&'%(

!)!*)#+",#-./0(%

!
!)!*) -%12/212#

2'/#(.3

!)!*)#3(.42(##

5.(678# 91.&%

*29$#

:

!)!*)#&%;%&%'7%#

-.'61.&

*29$#

'

*&091%/

<'1&091%/

FIGURE 3.2: THOTH architecture.

This allows expressing content-dependent policies and, in particular, a kind of declassification

that we call typed declassification. Typed declassification permits limited information flows in

specific forms (types).

In the context of THOTH’s data flow model, the read and declassification rules of an

ingress policy control how data can be used and disseminated by the system, whereas the

update rule of an ingress policy determines who may feed data into the system. The read rule

of an egress policy defines who outside the system could read the output data.

3.1.3 Architecture

THOTH is a distributed policy enforcement layer that ensures compliance via dynamic coarse-

grained flow control. Figure 3.2 depicts THOTH’s architecture. At each participating node,

THOTH comprises a kernel module, a trusted reference monitor process, a persistent store

for metadata and transaction log, and a persistent policy store. THOTH maps applications’

tasks to processes. The kernel module intercepts I/O at the process boundary and re-directs

it to the reference monitor. The reference monitor evaluates policies and maintains per-task

taint sets. A task’s taint set is the set of policies of all the conduits it has consumed in the past.

The reference monitor has exclusive access to the policy store, which provides a consistent

view of all policies. Such consistent view can be attained by using either centralized storage

for policies or via a consensus protocol (such as Paxos [50]).

Dynamic coarse-grained flow control justification. At an abstract level, enforcing THOTH’s

policies requires determining, for each egress conduit, which ingress conduits’ data could

flow to it, and what declassification conditions (if any) must be satisfied along the flow. This

is a standard data flow analysis problem, for which many different techniques have been

21

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

proposed in the literature. We briefly outline these existing techniques and their shortcomings

in the context of (THOTH-like) data-specific policies.

Static techniques determine flows by analyzing the source code of the system [27, 2]. In

addition to requiring the source code and being language-specific, static techniques (as we

explained earlier) cannot enforce individual, data-specific policies, and therefore, are not suit-

able for THOTH.

Dynamic fine-grained techniques, also known as runtime taint tracking techniques, track

data flows between program variables, or between memory objects and machine registers at

runtime [74, 98]. Depending on the specific implementation, a dynamic fine-grained tech-

nique may not have the shortcomings of static techniques mentioned above, but dynamic

fine-grained techniques must intercept all memory and register reads and writes. This in-

terception makes their overhead prohibitively high for most online systems (in the orders of

upper 10s to 100s of percent).

Dynamic coarse-grained techniques track flows at coarser granularity, typically only across

tasks in a system but not within each task [31, 101, 49]. They only intercept reads and writes

at task boundaries. This is far more efficient than tracking all reads and writes to registers and

memory. Theoretically, this comes at the cost of precision—if a task reads a conduit f and later

writes a conduit g, a coarse-grained technique must conservatively assume that there is a flow

from f to g, even if the data written to g was independent of the data read from f. Admittedly,

such loss of precision can cause overtainting. Yet, we argue next that, despite the potential risk

of overtainting, dynamic coarse-grained tracking is a reasonable option for enforcing data use

policies in a data retrieval system. We distinguish between two causes for overtainting:

1. Overtainting can be an artifact of a given system implementation. Data subject to differ-

ent policies may accidentally intermix within a task, where the intermixing of data is not

fundamental to the computation. For instance, a web server implementation that uses

the same task to serve multiple clients falls into this category. Mitigating such overtaint-

ing can be achieved via a cautious implementation that avoids the unnecessary intermix-

ing of flows. For example, another implementation of the web server that uses a separate

task per client will mitigate that kind of overtainting.

2. Overtainting can be inherent to the computation itself where a task’s output depends

on multiple data sources that are subject to different policies. Consider, for example, a

search engine that computes a single index over a large data corpus (public web pages,

corporate documents, users’ data, etc.). Intermixing data in order to generate the index

22

3.1. THOTH Design and Architecture

is inherent to the index computation, as the quality of search results (i.e., relevance) im-

proves with a larger index that contains more documents [42, 97]. Traditionally, dynamic

coarse-grained tracking systems use trusted application components to declassify output

in the presence of overtainting [31, 101, 49]. In THOTH, the declassification requirements

are encoded in the policies (as applications are assumed to be buggy). Therefore, work-

ing around this kind of overtainting is possible only when the involved data use policies

can be (slightly) relaxed to allow legitimate data flows.

In the context of data retrieval systems, our practical experience suggests the following:

First, data retrieval systems can avoid the unnecessary, accidental intermixing of data by using

a cautious implementation that factors the computation into tasks such that no computation-

ally independent data flows are mixed within a task. In fact, many distributed computing

frameworks, such as MapReduce [25], allow computations to be factored in that manner. Sec-

ond, a slight relaxation of policies is possible to overcome overtainting inherent to the compu-

tation of data retrieval systems when it arises. (We give an example of such relaxation in 3.2.2).

Consequently, dynamic coarse-grained tracking is a reasonable option for enforcing data use

policies in a data retrieval system structured as a pipeline of tasks. We provide details of a

prototype data retrieval system where we apply coarse-grained tracking in Section 3.4.

3.1.4 Threat model

THOTH’s goal is to prevent inadvertent data leaks due to application bugs, misconfigurations,

and errors by unprivileged operators. The THOTH kernel module and reference monitor, as

well as the Linux system and policy store they depend on, are trusted. Leaks due to vulner-

abilities in these components are out of scope. We assume that correct policies are installed

on ingress and egress conduits. In our current prototype, storage systems that hold appli-

cation data are assumed to be trusted. This assumption can be relaxed by encrypting and

checksumming application data in the THOTH kernel module.

THOTH makes no assumptions about the nature of bugs and misconfigurations in applica-

tion components, the type of errors committed by unprivileged operators, or errors in policies

on internal conduits. Subject to this threat model, THOTH provably enforces all ingress poli-

cies. In information flow control terms, THOTH can control both explicit and implicit flows,

but leaks due to malicious adversaries, covert, and side-channels are out of scope.

23

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

Threat model justification

Trust assumptions. Trusting the THOTH kernel module, reference monitor, and the Linux

system they depend on is reasonable in practice because (i) reputable providers will install

security patches on the OS and THOTH components, and install correct policies; and (ii) the

OS and THOTH are maintained by a small team of experts and are more stable than the ap-

plications that are maintained by significantly larger number of engineers and evolve more

rapidly.

Malicious adversaries. As we mentioned earlier, data leaks due to malicious adversaries are

out of scope. Nonetheless, THOTH prevents direct flows to unauthorized parties, and can,

therefore, protect against some malicious applications (and active attacks on vulnerable appli-

cations) that rely on such direct flows. THOTH does not protect against malicious applications

that leak data through side-channels. Moreover, typed declassification policies admit limited

information flows, which can be exploited by malicious applications covertly. For instance,

a search process that consults an index computed over a corpus containing the private data

of more than one individual cannot produce any readable results without declassification. If

source data policies allow declassification into a list of conduit ids, the search process can then

function as usual. However, malware injected into the search engine can encode private infor-

mation in the set of conduit ids it produces. This channel is out of scope. In practice, such at-

tacks require significant sophistication. A successful attack must inject code strategically into

the data flow before a declassification point and encode private data on a policy-compliant

flow.

To summarize, THOTH prevents accidental policy violations due to application bugs, mis-

configurations, and errors by unprivileged operators. (As an added benefit from THOTH’s

data flow control, THOTH prevents active attacks that rely on direct flows to unauthorized

parties). We demonstrate THOTH’s ability to prevent data leaks in Subsection 3.5.3 where a

THOTH compliant search engine is able to enforce data policies, preventing (real and synthetic)

bugs and misconfigurations from leaking information.

3.1.5 Data flow tracking and enforcement

Tracking data flow

THOTH tracks data flows coarsely at the task-level (i.e., process boundaries). CONFINED and

UNCONFINED tasks are subject to different policy checks. A CONFINED task may read any conduit,

irrespective of the conduit’s read rule, but THOTH enforces each such conduit’s declassify

24

3.1. THOTH Design and Architecture

rule when the task writes to other conduits. To do this, THOTH maintains the declassify rules

of conduits read by each CONFINED task in the task’s metadata (these rules constitute the taint

set of the task).

UNCONFINED tasks form the ingress and egress points for THOTH’s flow tracking; they are

subject to access control checks, not tainting. An UNCONFINED task may read from (write to)

a conduit only if the conduit’s read (update) rule is satisfied. For example, to read Alice’s

private data, an UNCONFINED task must authenticate with Alice’s credentials. Conduits without

policies can be read and written by all tasks freely.

In summary, THOTH tracks data flows across CONFINED tasks coarsely, and enforces declas-

sification policies on these flows. At the ingress and egress tasks (UNCONFINED tasks), THOTH im-

poses access control through the read and update rules. Every new task starts UNCONFINED. The

task may transition to the CONFINED state through a designated THOTH API call. The reverse

transition is disallowed to prevent a task from reading private data in the CONFINED state and

leaking the data to a conduit without any policy protection after transitioning to the UNCONFINED

state.

Conduit interceptors

The THOTH kernel component includes a conduit interceptor (CI) for each type of conduit.

A CI for a given conduit type intercepts system calls that access or manipulate conduits of

that type, and associates a conduit with its policy. THOTH has built-in CIs for kernel-defined

conduit types, namely files, named pipes, and network connections. CIs for additional conduit

types can be plugged in. For instance, our prototype uses a CI for the memcached key-value

store (KV).

The CIs for files and named pipes associate a policy with the unique pathname of a file

or pipe. The socket CI associates a policy with the network connection’s 5-tuple 〈srcIP, src-

Port, protocol, destIP, destPort〉. The 5-tuple may be underspecified. For instance, the policy

associated with 〈?, ?, ?, destIP, destPort〉 applies to any network connection with the specified

destination IP address and port. Both ends of a network connection have the same policy. The

KV CI associates a policy with a tuple’s key. The KV CI can automatically derive policies from

policy templates that cover a subspace of keys (e.g., all keys with prefix #user_profile). It

can also replace template variables with metadata, e.g., the time at which the key was created.

25

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

Algorithm 1 THOTH policy enforcement algorithm.

Inputs: t, the task reading or writing the conduit
f, the conduit being read or written
op, the operation being performed (read or write)

Output: Allow or deny the access
Side-effects: May update the taint set of t

1 if t is UNCONFINED:
2 if op is read:
3 Check f’s read rule.
4 if op is write:
5 Check f’s update rule.

6 if t is CONFINED:
7 if op is read:
8 Add f’s policy to t’s taint set.
9 if op is write:

10 // Enforce declassification policies of t’s taint set
11 for each declassification rule (c until c’) in t’s taint set:
12 Check that EITHER c’ holds OR (c holds AND

f’s declassification policy implies (c until c’)).

Policy enforcement algorithm

Algorithm 1 summarizes the abstract checks that THOTH makes when it intercepts a conduit

access. If the calling task is UNCONFINED, then THOTH evaluates the read or update policy of

the conduit (lines 1–5). If the calling task is CONFINED and the operation is a read, then THOTH

adds the policy of the conduit being read to the taint set of the calling task. No policy check is

performed in this case (lines 6–8). To reduce the size of a CONFINED task’s taint set, our prototype

performs taint compression when possible: A policy is not added if the taint set already includes

an equally or more restrictive policy.

When a CONFINED task t writes a conduit f, there is a potential data flow from every conduit

that t has read in the past to f. Hence, all declassification rules in t’s taint set are enforced (lines

11–12). Suppose (c until c’) is a declassification rule in t’s taint set. Since this rule means that

condition c must continue to hold downstream until the declassification condition c’ holds,

this rule can be satisfied in one of two ways: Either the declassification condition c’ holds

now, or c holds now and the next downstream conduit (f here) continues to enforce (c until c’).

Line 12 makes exactly this check.

26

3.1. THOTH Design and Architecture

End-to-end correctness of policy enforcement. Within the threat model of THOTH, the checks

described above enforce all policies on conduits and, specifically, all ingress policies. Incor-

rect policy configuration on internal conduits cannot cause violation of ingress policies but

may cause compliant data flows to be denied by the THOTH reference monitor. Informally,

this holds because our checks ensure that the conditions in every declassification policy are

propagated downstream until they are satisfied.

Policy comparison. THOTH compares policies for restrictiveness in three cases: for taint com-

pression, when evaluating the predicate isAsRestrictive(), and in line 12 of the enforcement

algorithm (Algorithm 1). The general comparison problem is undecidable for first-order logic,

so THOTH uses the following heuristics:

(1) Equality: Compare the hashes of the two policies. Two policies are equally restrictive

when their hashes match (syntactic equality).

(2) Inclusion: Check that all predicates in the less restrictive policy also appear in the more

restrictive one, taking into account variable renaming and conjunctions and disjunctions be-

tween the predicates. Inclusion has exponential time complexity in the worst case, but is fast

in practice.

(3) Partial evaluation: Evaluate and delete an application-specified subpart of each policy,

then try equality and inclusion.

These heuristics suffice in all cases we have encountered. Note that a policy comparison

failure can never affect THOTH’s safety. However, a failure can (a) defeat taint compression

and therefore increase taint size and policy evaluation overhead; or (b) cause a compliant data

flow to be denied. In the latter case, a policy designer may re-state a policy so that the policy

comparison succeeds.

3.1.6 THOTH API

Table 3.1 lists THOTH API calls. User-level tasks can invoke these calls through a system

call that THOTH introduces. The THOTH API allows tasks to transition from the UNCONFINED

to the CONFINED state using confine(), to authenticate directly with THOTH’s reference monitor

with a private key using authenticate(), and to set/get policies on conduits using add_policy(),

set_policy(), or get_policy().

27

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

API call Description

confine () Transition the calling process from UNCONFINED to
CONFINED state.

authenticate (k) Authenticate a process with the private key k. A pro-
cess must authenticate to be able to satisfy identity-
based policies.

add_policy (p) Store a policy p in THOTH metadata, create and return
a policy id p_id for p.

set_tx_flags (c_id, flags) Set flags flags, such as partial evaluation hints, for a
transaction on conduit c_id.

open_tx (c_id) Open a transaction on conduit c_id and return a file
handle fd.

close_tx (fd) Close a transaction fd. Return 0 if successful, or error
code if a policy check fails.

set_policy (fd, p_id) Attach policy id p_id to the conduit running transaction
fd. Passing (-1) for p_id sets the null policy. The new
policy is applied only after fd is successfully closed. The
declassification condition of the conduit’s existing pol-
icy determines whether the policy change or removal is
allowed.

get_policy (c_id, buf) Retrieve the policy attached to conduit c_id into buffer
buf.

cache (fd, off, len) Cache content (for policy evaluation) from file handle
fd from offset off with length len.

TABLE 3.1: THOTH API calls.

Transactions. To check structural properties of written data (e.g., that the data is a list of

conduit ids), it is often necessary to evaluate the update rule atomically on a batch of writes.

Hence, THOTH supports write transactions on conduits. By default, a transaction starts with

a POSIX open() call and ends with the close() call on a conduit. Transactions can also be

explicitly started and ended using the THOTH API calls open_tx() and close_tx().

Tasks can pass hints to THOTH to improve the efficiency of policy evaluation during trans-

actions. Such hints are not trusted and do not affect the correctness of policy evaluation. For

28

3.2. Example Policies

instance, tasks can mark which policy parts should be subject to partial policy evaluation us-

ing set_tx_flags(), or cache conduit content relevant to policy evaluation using cache().

During a transaction, THOTH buffers writes in a persistent re-do log. When the transac-

tion is closed by the application, THOTH makes the policy checks described in Algorithm 1.

If the policy checks succeed, then the writes are sent to the conduit, else the writes are dis-

carded. The re-do log allows recovery from crashes and avoids expensive file system syncs

when a transaction commits. As an optimization, THOTH allows writes to be sent directly to

the conduit during a transaction, skipping buffering in the re-do log, when the conduit is not

subject to an integrity policy (i.e., update :- TRUE).

3.1.7 Summary

THOTH enforces conduits’ policies despite application-level bugs, misconfigurations, and ac-

tions by unprivileged operators. A data source’s policy specifies both access and declassifi-

cation conditions and completely describes the allowed usages of the source. THOTH uses

policies as taint, which differs significantly from the standard information flow control prac-

tice of using abstract labels as taint [26, 31, 101, 49]. That practice requires trusted application

processes to declassify data and to control access at system edges. In contrast, THOTH relies

entirely on its reference monitor for all access and declassification checks, and no application

processes have to be trusted.

3.2 Example Policies

In this section, we discuss example policies that clients, data sources, and the provider might

wish to enforce in a data retrieval system, and give a glimpse of how to express these policies

in THOTH’s policy language. All supported predicates in the policy language are listed in

Table 3.2.

3.2.1 Client policies

We start with client policies that capture the preferences of data owners.

Private policies

Consider a search engine that indexes clients’ private data. A relevant security goal might

be that a client Alice’s private e-mails and profile should be visible only to Alice, and only

29

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

Arithmetic/String Session

add(x,y,z) x=y+z sKeyIs(x) x is the session’s authentica-
sub(x,y,z) x=y-z tion key
mul(x,y,z) x=y*z sIpIs(x) x is the session’s source IP
div(x,y,z) x=y/z address
rem(x,y,z) x=y%z IpPrefix(x,y) x is IP prefix of y
concat(x,y) x || y timeIs(t) t is the current time
vType(x, y) is x of type y?

Relational Conduit

eq(x,y) x=y cNameIs(x) x is the conduit pathname
neq(x,y) x!=y cIdIs(x) x is the conduit id
lt(x,y) x<y cIdExists(x) x is a valid conduit id
gt(x,y) x>y cCurrLenIs(x) x is the conduit length
le(x,y) x<=y cNewLenIs(x) x is the new conduit length
ge(x,y) x>=y hasPol(c, p) p is conduit c’s policy

cIsIntrinsic does this conduit connect two
confined processes?

Content

(c,off) says (x1, .., xn) tuple x1, .., xn is in conduit c at off
(c,off) willsay (x1, .., xn) ditto for of c’s update transaction
each in (c,off) says (x1, .., xn) {cond} for each tuple in c at off: assign to x1,.., xn &

evaluate condition
each in (c,off) willsay (x1, .., xn) {cond} ditto for c’s update transaction
sListIncludes (c,(x1, .., xn)) c contains x1, .., xn (c must be sorted)
sListExcludes (c,(x1, .., xn)) c excludes x1, .., xn (c must be sorted)

Declassification rules

c1 until c2 condition c1 must hold on the downstream flow until c2
holds

isAsRestrictive(p1,p2) the permission p1 is at least as restrictive as p2

TABLE 3.2: THOTH policy language predicates and connectives.

30

3.2. Example Policies

she should be able to modify this data. This private data policy can be expressed by attaching

to each conduit holding Alice’s private items read and update rules that allow these oper-

ations only in the context of a session authenticated with Alice’s key. The latter condition

can be expressed using a single predicate sKeyIs(kAlice), which means that the active session

is authenticated with Alice’s public key, here denoted kAlice. Hence, the read rule would be

read :- sKeyIs(kAlice). The update rule would be update :- sKeyIs(kAlice). (Clients, or pro-

cesses running on behalf of clients, authenticate directly to THOTH, so THOTH does not rely

on untrusted applications for session authentication information.)

Friends-only policies

Alice’s friends-only blog and online social network profile should be readable by Alice and her

friends, which can be expressed with an additional disjunctive clause in the read rule:

read :- sKeyIs(kAlice) ∨

(sKeyIs(K) ∧ (“Alice.acl”, Offset) says isFriend(K))

The part after the ∨ is read as “the key K that authenticated the current session exists in

Alice.acl at some offset Offset.” Here, Alice.acl is a key-value tuple that contains Alice’s

friend list.

Following standard Datalog convention, terms like K and Offset that start with upper-

case letters are existentially quantified variables. The predicate sKeyIs(K) binds K to the key

that authenticates the session. During each policy evaluation, application code is expected to

provide a binding for the variable Offset that refers to a location in the tuple’s value saying

that K belongs to a friend of Alice. Note that policy compliance does not depend on applica-

tion correctness: access is denied if the application does not provide a correct offset.

Friends-of-friends policies

Extending further, visibility to Alice’s friends of friends can be allowed by modifying the read

rule to check that Alice and the owner of the current session’s key have a common friend.

Then, the application code would be expected to provide an offset in Alice’s ACL where the

common friend exists and an offset in the common friend’s ACL where the current session’s

key exists.

31

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

3.2.2 Index policy

In the previous example, we discussed confidentiality policies that reflect data owners’ pri-

vacy choices. For the retrieval system to do its job, however, the input data policies must allow

some declassification. The search pipeline is one instance where declassification is needed.

Consider an index that is computed over the entire corpus, including the private data of sev-

eral individuals. No individual should be able to read such an index (otherwise the system

risks leaking the private data of one individual to another). Consequently, the search engine,

which consults such an index would not be allowed to produce any output to any user. In

order to allow the search engine to produce readable output, all the data sources that are used

to create the index must allow some declassification.

One declassification that allows the search engine to produce readable output (and allows

the search pipeline to function properly) is declassifying the search results (i.e., pathnames). We

rely on the policy language’s novel ability to refer to a conduit’s (meta-)data to allow the

selective, typed declassification of the search engine’s output. The declassification policy can be

implemented by adding the following declassify rule to all searchable input data:

declassify :- isAsRestrictive(read, this.read) until

ONLY_CND_IDS

When this policy is set on a conduit c, data derived from c can be written into conduits

whose read rule is at least as restrictive as c’s read rule (which is bound to this.read), until it

is written into a conduit which satisfies the condition ONLY_CND_IDS. This macro stipulates

that only a list of valid conduit ids has been written. The macro expands to

cCurrLenIs(CurrLen) ∧ cNewLenIs(NewLen) ∧

each in(this, CurrLen, NewLen) says(CndId)

{cIdExists(CndId)}

and permits the declassification of a list of proper conduit ids. The predicate “each in () says

() {}” iterates over the sequence of tuples in the newly written data and checks that each is a

valid conduit id. By including this declassification rule in her data item’s policy, Alice allows

the search engine to index her item and to include it in search results. To view the contents, of

course, a querier still has to satisfy each conduit’s confidentiality policy.

Confidential conduit ids. So far, we have assumed that the conduit ids (i.e., the pathnames of

indexed files) are not themselves confidential. If the conduit ids are themselves confidential,

32

3.2. Example Policies

then the above declassify rule is insufficient since it stipulates no restriction on policies after

ONLY_CND_IDS holds. Thus, a more restrictive declassify rule is needed. Ideally, we want

that the read and declassify rules of the conduit that contains the list of conduit ids be at least as

restrictive as the read and declassify rules of all conduits in the list. This can be accomplished

by the following replacement for ONLY_CND_IDS:

cCurrLenIs(CurrLen) ∧ cNewLenIs(NewLen) ∧

each in(this, CurrLen, NewLen) willsay(CndId)

{cIdExists(CndId) ∧ hasPol(CndId , P) ∧

isAsRestrictive(read, P.read) ∧

isAsRestrictive(declassify, P.declassify)}

The predicate hasPol(CndId, P) binds P to the policy of the conduit CndId, and the predicates

isAsRestrictive(read, P.read) and isAsRestrictive(declassify, P.declassify) enforce that the read

and declassify rules of the search results are at least as restrictive as those of CndId. We call

this modified macro ONLY_CND_IDS+.

Hence, when the conduit ids themselves are confidential, the searchable input data should

have the declassify rule:

declassify :- isAsRestrictive(read, this.read) until

ONLY_CND_IDS+

With this declassify rule in place, the search engine can write the search results, following

the form (CndId1, CndId2, ..., CndIdn), only to a conduit whose read and declassify rules are

at least as restrictive as all the read and the declassify rules, respectively, of the conduits

referenced by (CndId1, CndId2, ..., CndIdn).

3.2.3 Other data retrieval policies

We briefly describe several other policies relevant to data retrieval systems that we have rep-

resented in our policy language and implemented in our prototype. For the formal encodings

of these policies, see Appendix A.

Data analytics. Many retrieval systems transform logs of user activity into a user preferences

vector, which is used for targeting ads, computing user profiles, and providing recommen-

dations. Raw logs of user clicks and queries are typically private, so a profile vector derived

from them cannot be used for any of these purposes without a declassification. A policy that

33

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

allows typed declassification into a vector of a fixed size can be attached to raw user logs to

ensure that the raw logs cannot be leaked from the system, but that the profile vector can be

used for the above-mentioned purposes.

Provider policies. The provider may need to censor certain documents when a query arrives

from a particular country. For this purpose, the system uses a map of IP address prefixes

to countries. Separately, the provider maintains a per-country blacklist, containing a list of

censored conduit ids. The censorship policy takes the form of a common declassification rule

on source files. The rule requires that, at a conduit connecting to a client, the client’s IP prefix

is looked up in the prefix map, and the corresponding blacklist is checked to see if any of the

search results are censored. Both the prefix map and the blacklist are maintained in sorted

order for efficient lookup. The sort order is enforced by an integrity policy on the blacklists

and the prefix map.

A second common provider policy allows employees to access client’s private data for

troubleshooting purposes, as long as such accesses are logged for auditing. A mandatory access

logging (MAL) policy can be added for this purpose. The policy allows accesses by authorized

employees, if and only if an entry exists in a separate log file, which includes a signature by

the employee, the conduit being accessed, and a timestamp. The log file itself has an integrity

policy that allows appends only, thus ensuring that an entry cannot be removed or overwrit-

ten. Finally, data sources must consent to provider access by allowing declassification into a

conduit readable by authorized employees subject to MAL.

3.3 THOTH Prototype

Our prototype consists of a Linux kernel module that plugs into the Linux Security Module

(LSM) interface, and a reference monitor. We also changed a few (22) lines of the kernel proper

to provide additional system call interception hooks not included in the LSM interface, and a

new system call that allows applications to interact with THOTH. A small application library

consisting of 840 LoC exports the API calls shown in Table 3.1 based on this system call.

3.3.1 LSM module

The THOTH LSM module comprises approximately 3500 LoC and intercepts I/O related sys-

tem calls including open, close, read, write, socket, mknod, mmap, etc. Intercepted system

34

3.3. THOTH Prototype

calls are redirected to the reference monitor for taint tracking and validation. The module in-

cludes conduit interceptors for files, named pipes and sockets, as well as interceptors for client

connections to a memcached key-value store [59].

3.3.2 THOTH reference monitor

THOTH’s reference monitor is implemented as a trusted, privileged userspace process. It

implements the policy enforcement logic and maintains the process taint, session state and

transaction state in DRAM. The monitor accesses the persistent THOTH metadata store, which

includes per-conduit metadata (conduit pathname, conduit id, a pointer to the policy in ef-

fect in the policy store, and for each persistent file conduit, its current size), the transaction

log, and the global policy store. The metadata and transaction log are stored in NVRAM. A

write-through DRAM cache holds recently accessed metadata and policies.

The monitor is multi-threaded so it can exploit multi-core parallelism. Each worker thread

invokes the THOTH system call and normally blocks in the LSM module waiting for work.

When an application issues a system call that requires an action by the reference monitor, a

worker thread is unblocked and returns to the reference monitor with appropriate parameters;

when the work is done, the thread invokes the system call again with the appropriate results

causing the original application call to either be resumed or terminated. As an optimization,

the LSM seeks to amortize the cost of IPC by buffering and dispatching multiple asynchronous

requests to a worker thread whenever possible. The reference monitor was implemented in

19,000 LoC of C, not counting the OpenSSL library used for secure sessions and cryptographic

operations.

3.3.3 Prototype limitations

There are few missing features in our current THOTH prototype.

• Interception is not yet implemented for all I/O-related system calls.

• Memory-mapped files are currently only supported with RO access (i.e., read-only).

Supporting RW access (i.e., read-write) for memory-mapped files is straightforward for

files whose integrity policies are not content-dependent. To fully support RW access for

memory-mapped files (including files with content-dependent policies), THOTH must

prevent syncing to the underlying filesystem until a successful close() to check integrity.

This requires engineering effort to expose THOTH’s re-do log to the kernel’s page cache,

35

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

where the page cache would flush the memory-mapped file writes to THOTH’s re-do log

instead of the underlying filesystem (pending a successful close()).

None of these missing features are used by our prototype data retrieval system.

3.4 Policy-Compliant Data Retrieval with THOTH

We use THOTH for policy compliance in a data retrieval system built around a distributed

Apache Lucene search engine. While Apache Lucene’s architecture is not appropriate for

large, public search engines like Google or Bing, it is frequently used in smaller, domain-

specific data retrieval systems.

3.4.1 Baseline configuration

We first describe the baseline configuration without THOTH.

Search engine. Apache Lucene is an open-source search engine written in Java [3]. It consists

of an indexer and a search component. The sequential indexer is a single process that scans

a corpus of documents and produces a set of index files. The search component consists of a

multi-threaded process that executes search queries in parallel and produces a set of corpus

file names relevant to a given search query. The size of the Apache Lucene codebase is about

300,000 LoC.

Lucene can be configured with replicated search processes to scale its throughput. Here,

multiple nodes run a copy of the search component, each with the full index. A search query

can be processed by any machine. Lucene can also be sharded to scale with respect to the

corpus size. In this case, the corpus is partitioned, each partition is indexed individually, and

multiple nodes run a copy of the search component, each with one partition index. A search

query is sent to all search components, and the results combined. Replication and sharding

can be combined in the obvious way.

Front-end processes. A simple front-end process accepts user requests from a remote client

and forwards search queries to one or more search process(es) via a pipe. The search pro-

cess(es) may forward the query to other search processes with disjoint shards. When the

front-end receives the search results (a list of document file names), it produces a HTML page

with a URL and a content snippet from each of the result documents, and returns the page to

the Web client. When the client clicks on one of the URLs, the front-end serves the content.

36

3.4. Policy-Compliant Data Retrieval with THOTH

A second, simple account manager front-end process accepts connections from clients for

the purpose of creating accounts, managing personal profiles and policies. Clients choose

from a set of policy templates for documents they have contributed to the corpus, and for

their personal profile information and activity history.

Search personalization and advertising. To include typical features of a data retrieval system,

we added personalized search and targeted advertising components. Since developing meth-

ods for personalized search or advertising is out of this thesis’s scope, we include only basic

components to model the data flows of these subsystems.

A memcached daemon runs on each search node to provide a distributed key-value store

for per-user information, including a suffix of the search and click histories, profile informa-

tion, and the public key. The front-end process appends a user’s search queries and clicks to

the histories. It uses the profile information to rewrite search queries, re-order search results,

and select ads for inclusion in the results page.

An aggregator process periodically analyses a user’s search and click history, and updates

the personal profile information accordingly. We are not really concerned with the details of

user profiling, personalized search, or ad targeting. It suffices for our purposes to capture the

appropriate data flows.

3.4.2 Controlling data flow with THOTH

THOTH ensures compliance with ingress and egress policies regardless of the applications

running in the system. Nonetheless, the provider may need to make minor modifications in

order to permit legitimate flows. In this section, we describe the changes we introduced to the

baseline configuration of the Apache Lucene search engine in THOTH.

Ingress/egress policies. Recall that the ingress and egress policies determine which data flows

are allowed and reflect the policies of users, data sources, and the provider. In our system, the

network connection between the client and the front-end is both an ingress and an egress con-

duit (for search queries and search results, respectively). The document files in the corpus and

the key-value tuples that contain a user’s personal information are ingress conduits. Policies

are associated with all ingress and egress conduits as described below. The primary difficulty

here is to determine appropriate policies, a task that is required in any compliant system.

Specifying the policies in THOTH’s policy language is straightforward.

37

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

Account manager flow. When Alice creates an account, credentials are exchanged for sub-

sequent mutual authentication, and stored in the key-value store, along with any personal

profile information Alice provides.

Alice can choose policies for all the ingress conduits she controls, typically from a set of

policy templates written by the provider’s compliance team. She can choose policies for her

profile entries, controlling how the personal information she provides can be used, as well as

any information the system collects (e.g., Alice’s search queries, her clicks, or the IP addresses

from which she contacts the search engine). For instance, she can choose whether her query

or click history, or any other part of her profile information may be used to personalize search

results and target ads.

If Alice contributes content, she can choose a policy for each item. The declassification

clause on each policy implicitly controls who can subsequently change the policy; normally,

Alice would choose a policy that allows only her to make such a change. Alice may also edit

her friend list stored in the key-value store, which may be referenced by her policies.

The account manager process must be trusted by Alice to install policies according to her

wishes and to use her authentication credentials appropriately. Such a trusted component is

necessary, but could be shifted to the client’s computer by allowing a remote process to interact

directly with THOTH. No other user process in the system is trusted by Alice.

The provider also associates its policies with relevant ingress and egress conduits. For

instance, the provider requires censorship and MAL policies on all indexed documents, and

adds these to the policy templates available to users.

Indexing flow. Periodically, the indexer is invoked to regenerate the index partitions. A cor-

rect indexer processes only documents with the declassification clause ONLY_CND_IDS (or

ONLY_CND_IDS+), which in turn is transferred to the index files. Note that the index may

contain arbitrary data and can be read by any CONFINED process; however, an eventual declas-

sification to an UNCONFINED process is only possible by writing a list of conduit ids.

Profile aggregation flow. A profile aggregation task periodically executes in the background,

to scan the suffix of a user’s query and click history and to update the user’s profile vec-

tor. A correct aggregator only analyzes user history data that has the declassification clause

ONLY_CND_IDS (or ONLY_CND_IDS+), which is transferred to the profile vectors.

38

3.4. Policy-Compliant Data Retrieval with THOTH

Search flow. Finally, we describe the sequence of steps when Alice performs a search query.

The search front-end authenticates itself to Alice using the credentials stored in the key-value

store. A successful authentication assures Alice that (i) she is talking to the front-end, and

(ii) the front-end process is tainted with the policy of Alice’s credentials (only Alice can read,

else declassify into a list of conduit ids) before Alice sends her search query. Next, Alice

authenticates herself to the THOTH reference monitor via the search front-end, which proves

to THOTH that the front-end process speaks for Alice.

The front-end now may rewrite the query based on the information in Alice’s profile,

before it sends Alice’s query to one or more search process(es) and adds it to her search history.

The search results are declassified as a list of conduit ids, and therefore do not add new taint

to the front-end. While producing the HTML results page, the front-end reads a snippet from

each result document using Alice’s credentials. Each document has a censorship policy, which

checks that the document’s conduit ID is not blacklisted in the client’s region. These policies

differ in the conduit IDs and so, in principle, the taint set on the front-end could become very

large. To prevent this, we use partial evaluation (Subsection 3.1.5): Before a document’s policy

is added to the front-end’s taint, we check that the document is not blacklisted. This way, the

front-end’s taint increases by a single predicate (which verifies Alice’s IP address) when it reads

the first document and does not increase when it reads subsequent documents.

Finally, the front-end sends the results page to the client. For this, it must satisfy the egress

conduit policy, which verifies Alice’s identity and her IP address.

Result caching. High-performance retrieval systems cache search results and content snip-

pets for reuse in similar queries. Although we have not implemented such caching, it can be

supported by THOTH. Intermediate results can be cached at various points in the data flow,

usually before their policies have been specialized (through partial evaluation) for a particular

client or jurisdiction.

Summary. Assuming that the account manager correctly installs ingress and egress policies,

THOTH ensures that Alice’s documents, history and profile are used according to her wishes

and that the provider’s censorship and MAL policies are enforced, despite any bugs in the

indexer, the front-end or the profile aggregator. THOTH’s use in a data retrieval system high-

lights two different ways of preventing process overtainting. The front-end process is user-

specific—it acts on behalf of one client. Consequently, the front-end must be re-exec’ed at the

end of a user session session to discard its taint. In contrast, the indexer is an aggregator pro-

cess that is designed to combine documents with conflicting policies into a single index. To

39

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

make its output (the index) usable downstream, the provider installs a typed declassification

clause (ONLY_CND_IDS or ONLY_CND_IDS+) on all documents. Due to the declassification

clause, there is no need to re-exec the search process.

Data Retrieval with THOTH: Implementation

In this section, we describe our experience implementing the data retrieval system. We pro-

vide commentary on the code changes we introduced to the baseline system in order to allow

flows while running within THOTH. Since THOTH’s policy enforcement is independent of

application code, these changes are purely to make the data flows comply with the data use

policies in place or to reduce the overhead of policy enforcement.

With THOTH, the front-end, search, indexing, and aggregation tasks execute as CONFINED

processes, and the account manager executes as an UNCONFINED process. Relative to the base-

line system, we made minimal modifications, mostly to set an appropriate policy on output

conduits. As we have noted earlier, the data retrieval system is built around Apache Lucene.

The modifications to Apache Lucene amounted to less than 20 lines of Java code and 30 lines

of C code in a JNI library. These modifications set policies on internal conduits and, like the

rest of Lucene, are not trusted. Finding the appropriate points to modify was relatively easy

because Lucene’s codebase has separate functions through which all I/O is channelled. (For

applications without this modularity, a dynamically-linked library can be used that overrides

libc’s I/O functions and adds appropriate policies.)

Indexer Process. We have introduced three changes to the stock Apache Lucene indexer.

• Transition the indexer’s state. The indexer must run as a CONFINED process since it cannot

satisfy the read rules of the searchable content’s policies such as the private and friends-

only policies.

• Set the indexer’s taint. As the indexer consumes searchable content, their policies are

checked for restrictiveness against the indexer’s current taint. If the current taint is less

restrictive, the policies get added to the taint (or dropped otherwise). The taint size

increases as the indexer consumes more content, causing the restrictiveness check to

become more expensive. To avoid this problem, the indexer sets its taint to the index

policy (see Subsection 3.2.2). With this policy as taint, the taint size does not increase as

it is more restrictive than the policies of all searchable content.

• Set policies appropriately on the index files. The indexer attaches the index policy to

newly created index files. (Otherwise, writes are denied if the created files’ polices are

40

3.4. Policy-Compliant Data Retrieval with THOTH

not at least as restrictive as the indexer’s taint). Lucene’s codebase is modularized, and

therefore, our changes to set policies on the output index files were limited to a few

places.

Search Process. We hightlight two changes that are required to make the I/O of the search

process policy compliant.

• Transition the search process’s state. The search process must run in a CONFINED state as

it cannot satisfy the read rule of the index policy. Once it consumes the index, its taint

gets the index policy.

• Set policies appropriately on search output. The search process’s taint limits declas-

sification to ONLY_CND_ID (or to ONLY_CND_ID+). Thus, the policy attached to the

results conduit (to which the search process writes the conduits ids) must be at least as

restrictive as all the policies of the conduits whose ids are being written. For this reason,

the search process creates and sets a policy on the results conduit based on the conduits

ids included in the result. We extended THOTH’s API calls to query conduits’ policies in

a batch to do this efficiently.

Front-end Processes. Front-end processes are not part of Apache Lucene’s codebase. Our

implementation mimics a simple web server that (i) accepts an external user’s connection,

(ii) submits user’s queries to the search process over a pipe, and (iii) creates a search results’

snippet based on the search engine output and sends the snippet to the external user. We next

describe core functionalities that are necessary for the front-end to function with THOTH.

• Cache system’s meta-data for policy evaluation. The front-end process may need to

perform some actions in order to satisfy the policies of conduits it needs to access. For in-

stance, Alice’s front-end needs to cache Alice’s entry in Bob’s friends list before accessing

Bob’s friends-only files (via the CACHE(...) API call). This is necessary so that THOTH’s

policy evaluation allows the access. Similarly, a front-end needs to cache parts of a re-

gion’s blacklist file when accessing content subject to region-based censorship. THOTH

provides a library to facilitate these actions, requiring few application code changes.

• Exec after session termination. Unlike in the baseline, the front-end process must be

restarted after each user session under THOTH, to shed its taint. We implement this taint

shedding by exec-ing the process when a new user session starts.

41

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

3.5 THOTH Evaluation

In this section, we present results of an experimental evaluation of our THOTH prototype.

Evaluation setup. All experiments were performed on Dell R410 servers, each with 2x Intel

Xeon X5650 2.66 GHz 6 hyperthreaded core CPUs, 48GB main memory, running OpenSuse

Linux 12.1 (kernel version 3.13.1, x86-64). The servers are connected to Cisco Nexus 7018

switches with 1Gbit Ethernet links. Each server has a 1TB Seagate ST31000424SS disk for-

matted under ext4, which contains the OS installation and a 258GB static snapshot of English

language Wikipedia articles from 2008 [91].

We allocate a 2GB memory segment on /dev/shm to simulate NVRAM used by THOTH

to store its metadata and transaction log. NVRAM is readily available and commonly used to

store frequently updated, fixed-sized persistent data structures like transaction logs.

In the following experiments, we compare a system where each OS kernel is configured

with the THOTH LSM kernel module and reference monitor against an otherwise identical

baseline system with unmodified Linux 3.13.1 kernels. This baseline configuration offers no

policy protection.

3.5.1 THOTH-based data retrieval system

First, we study the total THOTH overheads in the prototype retrieval system described in

Section 3.4.

Indexing

First, we measure the overhead of the search engine’s index computation. We run the Lucene

indexer over (a) the entire 258GB snapshot of the English Wikipedia, and (b) a 5GB part of

the snapshot. The sizes of the resulting indices are 54GB and 959MB, respectively. Table 3.3

shows the average indexing time and standard deviation across 3 runs. In both cases, THOTH’s

runtime overhead is below 1%.

Even in a sharded configuration, Lucene relies on a sequential indexer, which can become

a bottleneck when a corpus is large and dynamic. Larger search engines may rely on parallel

map/reduce jobs to produce their index. As a proof of concept, we built a Hadoop-based

indexer using THOTH, although we don’t use it in the following evaluation because it does

42

3.5. THOTH Evaluation

Dataset 258GB Dataset 5GB
Avg. (mins) σ Avg. (mins) σ

Linux 1956.1 30 27.8 0.06
THOTH 1968.6 24 28.0 0.11

Overhead 0.65% 0.7%

TABLE 3.3: Indexing runtime overhead with THOTH.

not support all the features of the Lucene indexer. All mappers and reducers run as confined

tasks, and receive the same taint as the original, sequential indexer.

Search throughput

Next, we measure the overhead of THOTH on search throughput. To ensure load balance, we

partitioned the index into two shards of 22GB and 33GB, chosen to achieve approximately

equal query throughput. We use two configurations:

• 2SERVERS: 2 server machines execute a Lucene instance with different index shards.

• 4SERVERS: Here, we use two replicated Lucene instances in each shard to scale the

throughput. The front-end forwards each search request to one of the two Lucene in-

stances in each shard and merges the results.

We drive the experiment with the following workload. We simulate a population of 40,000

users, where each user is assigned a friend list consisting of 12 randomly chosen other users,

subject to the constraint that the friendship relationship is symmetric. Each item in the cor-

pus is assigned either a private, public, or friends-only policy in the proportion 30/50/20%,

respectively. A total of 1.0% of the entire dataset is censored in some region. All simulated

clients are in a region that blacklists 2250 random items of the dataset.

We use query strings based on the popularity of Wikipedia page accesses during one

hour on April 1, 2012 [90]. Specifically, we search for the titles of the top 20K visited articles

and assign each of the queries randomly to one of the users. 24 simulated active users con-

nect to each server machine, maintain their sessions throughout the experiment, and issue 48

(2SERVERS) and 96 (4SERVERS) queries concurrently to saturate the system. In addition, a

simulated “employee” sporadically issues a read access to protected user files for a total of 200

MAL accesses.

During each query, the front-end looks up the user profile and updates the user’s search

history in the key-value store. To maximize the performance of the baseline and to fully expose

43

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

 0

 1

 2

 3

 4

 5

 6

 7

2SERVERS 4SERVERS

T
hr

ou
gh

pu
t (

x1
00

 Q
/s

)

Configuration

Linux Thothpublic Thothratio

FIGURE 3.3: Average search throughput in queries per second of 48 and 96 concur-
rent users (2SERVERS and 4SERVERS, respectively). Users maintain their sessions

for the duration of the experiment. Error bars show standard deviation.

THOTH’s overheads, the index shard and parts of the corpus relevant to our query stream are

pre-loaded into the servers’ main memory caches, resulting in a CPU-bound workload.

Figure 3.3 shows the average throughput over 10 runs of 20,000 queries each, for the

baseline (Linux) and THOTH under 2SERVERS and 4SERVERS. The error bars indicate the

standard deviation over the 10 runs. We used two THOTH configurations, THOTHpublic and

THOTHratio.

• THOTHpublic : The policies permit all accesses. This configuration helps to isolate the

overhead of THOTH’s I/O interposition and reference monitor invocation for the null

policy check.

• THOTHratio: The policies of input files are private to a user, public, or accessible to

friends-only following the ratio 30:50:20. Moreover, all files allow employee access un-

der MAL, enforce region-based censorship, and have the declassification condition with

ONLY_CONDUIT_IDS+.

The query throughput scales approximately linearly moving from 2SERVERS (320 Q/s)

to 4SERVERS (644 Q/s), as expected. THOTH with all policies enforced (THOTHratio) has an

overhead of 3.63% (308 Q/s) in 2SERVERS and 3.55% in 4SERVERS (621 Q/s). We note that

the throughput achieved with THOTHpublic (310 Q/s and 627 Q/s, respectively) is only slightly

higher than THOTHratio’s. This indicates that THOTH’s overhead is dominated by costs like

I/O interception, THOTH API calls, and metadata operations, which are unrelated to policy

44

3.5. THOTH Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 5 20

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Queries per session

Linux Thothratio

FIGURE 3.4: Average search throughput of 48 concurrent users under 2SERVERS,
normalized to the baseline Linux . Users maintain their sessions for lengths 1, 2, 5,

and 20 queries. Error bars show standard deviation.

complexity. Therefore, changing the policy configuration to different ratios of public, private,

or friends-only will have little effect on THOTH’s overhead presented in this experiment.

With THOTH, the front-end is re-exec’ed at the end of every user session to shed the front-

end’s taint. The relative overhead of doing so reduces with session length. Figure 3.4 shows

the average throughput normalized to the Linux baseline for session lengths of 1, 2, 5 and

20 queries in 2SERVERS. With THOTH, the front-end process cannot be used across sessions,

because it is tainted with a user’s policies. Therefore, front-end processes must be re-exec’ed

before accepting new user sessions. Due to the per-session front-end exec, THOTH’s overhead

is higher for small sessions (15.8% for a single query per session); however, the overhead

diminishes quickly to 8.6% for 2 queries per session, 4.0% for 5 queries per session, and 3.8%

for 20 queries per session. Overall, the throughput of 5 or more queries per session is within a

standard deviation from the achieved throughput when users maintain their sessions during

the whole experiment. This holds in all configurations, including 4SERVERS.

Search latency

Next, we measure the overhead on query latency. Table 3.4 shows the average query latency

across 5 runs of 10,000 queries in 2SERVERS. Here, a single user connects to a front-end,

submits a search query, and disconnects after receiving the search results snippet. We repeated

the experiment under 4SERVERS, and the results are similar. In all cases, THOTH adds less

than 6.7ms to the baseline latency.

45

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

Avg. (ms) σ Overhead

Linux 47.09 0.43
THOTHpublic 51.60 0.29 9.6%
THOTHratio 53.78 0.20 14.2%

TABLE 3.4: Average query search latency in milliseconds for a single user under
2SERVERS. The user re-establishes a new session with each search query.

Policy enforcement overhead breakdown

There are multiple sources contributing to THOTH’s runtime overhead.

• I/O interception: The LSM intercepts processes’ I/O. This overhead is mostly re-directing

control flow in the kernel to the LSM and allocating memory to hold arguments (such as

process identifiers, conduits’ pathnames, and content if needed).

• IPC to the reference monitor: The LSM invokes the userspace reference monitor process

when processes perform I/O or issue system calls that may require action by the refer-

ence monitor, resulting in IPC and context switches.

• Policy lookup: The reference monitor looks up the policy store to find which (if any) policy

is attached to a given conduit.

• Policy evaluation: The reference monitor performs policy evaluation to determine if access

is policy-compliant (or to check for restrictiveness when tracking taint).

• Session isolation: A front-end process must re-exec before starting a new user session.

For instance, out of THOTHratio’s overhead of 3.8% on search throughput under 20 queries

per session: I/O interception is 0.4%; IPC to reference monitor is 1.6%; policy lookup is 1.0%;

policy evaluation is 0.5%; and session isolation is 0.3%.

While I/O interception and IPC to the reference monitor contribute most to the overhead,

the overhead due to policy lookup and evaluation is also not negligible. Moreover, the ses-

sion isolation cost increases as user sessions become shorter. Hence, to drastically reduce the

runtime overhead, THOTH must optimize performance across these different dimensions.

As a proof of concept, we implemented a rudimentary reference monitor in the kernel,

which does not support session management and policy interpretation (which require libraries

that are unavailable in the Linux kernel). This reduced in-kernel monitor suffices to execute

THOTHpublic when users maintain their sessions during the whole experiment. Moving the

reference monitor to the kernel reduced the overhead of THOTHpublic from 3% to under 1%,

46

3.5. THOTH Evaluation

due to eliminating the cost of IPC between the LSM and the reference monitor. While this

suggests that THOTH’s overheads can be further reduced using careful engineering, it also

indicates that THOTH’s runtime overhead cannot be close to zero. In the next chapter, we

show how SHAI is able to effectively eliminate many sources of THOTH’s overhead, enforcing

data use policies with near-zero runtime overhead on the critical path.

3.5.2 Microbenchmarks

Next, we perform a set of microbenchmarks to isolate THOTH’s overheads on different poli-

cies. We measure the latency of opening, reading sequentially, and closing 10,000 files in the

baseline and with THOTH under different policies associated with the files. The files were pre-

viously written to disk sequentially to ensure fast sequential read performance for the base-

line, fully exposing the overheads.

In the THOTH experiments, accesses are performed by an UNCONFINED task to force an im-

mediate policy evaluation. The following policies are used:

• THOTHpublic : files can be read by anyone.

• THOTHprivate: access is restricted to a specific user.

• THOTHACL : access to friends only (all users have the same friend list).

• THOTHACL+ : access to friends only (each user has a different friend list).

• THOTHFoF: access to friends of friends (each user has a different friend list). All friend

lists used in the microbenchmark have 100 entries.

• THOTHMAL : each file has a MAL policy, where each read requires an entry in a log with

an append-only integrity policy.

Figure 3.5 shows the average time for reading a file of sizes 4KB and 512KB, normalized

to the baseline Linux latency (0.145ms and 3.6ms, respectively); the error bars indicate the

standard deviation among the 10,000 file reads. We see that THOTH’s overheads increase with

the complexity of the policy, in the order listed above. For the 4KB files, the overheads range

from 10.6% for THOTHpublic and THOTHprivate to 152.7% for THOTHMAL . The same trend holds

for larger files, but the overhead range diminishes to 0.6%–23% for 96KB files (not shown in

the figure) and 0.34%–3.3% for 512KB files.

47

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

 0

 1

 2

 3

 4

 5

4KB 512KB

N
or

m
al

iz
ed

 la
te

nc
y

Linux

Thothpublic

Thothprivate

ThothACL

ThothACL+

ThothFoF

ThothMAL

FIGURE 3.5: Read latency, normalized to Linux’s.

We also experimented with friend list sizes of 12 and 50 entries for the configurations

THOTHACL, THOTHACL+ and THOTHFoF under files sizes 4KB and 512KB; the resulting la-

tency was within 2.4% of the corresponding 100-entry friend list latency in all cases. This is

consistent with the known complexity of the friend lookup, which is logarithmic in the list

size.

We also looked at the breakdown of THOTH latency overheads. With THOTHACL and

4KB files, THOTH’s overhead for file read is on average 28µs, which are spent intercepting the

system call and maintaining the session state. Interpreting the policy and checking the friend

lists takes 6µs, but this time is completely overlapped with the disk read.

Write transaction latency. We performed similar microbenchmarks for write transactions. In

general, THOTH’s write transactions have low overhead since its transaction log is stored in

(simulated) NVRAM. As in the case of read latency, the overhead depends on the granular-

ity of writes and the complexity of the policy being enforced. Under the index policy, the

overhead ranges from 0.25% for creating large files to 2.53x in the case of small files. The base-

line Linux is very fast at creating small files that are written to disk asynchronously, while

THOTH has to synchronously update its policy store when a new file is created. The overhead

is 5.8x and 8.6x in the case of a write of 10 conduit ids to a file under the ONLY_CND_IDS

and ONLY_CND_IDS+ policies, respectively. This high overhead is due to checking that each

conduit id being written exists (and is written into a file with a stricter policy in the case of

ONLY_CND_IDS+). However, this overhead amounts to only a small percentage of the over-

all search query processing, as is evident from Table 3.4.

48

3.6. THOTH Conclusion

3.5.3 Fault-injection tests

To double-check THOTH’s ability to stop unwanted data leaks, we injected several types of

faults in different stages of the search pipeline.

Faulty Lucene indexer. We reproduced a known Lucene bug [5] that associates documents

with wrong attributes during index creation. This bug is security-relevant because, in the

absence of another mechanism, attributes can be used for labeling data with their owners.

In our experiment THOTH successfully stopped the flow in all cases where the search results

contained a conduit whose policy disallowed access to the client.

We also intentionally misconfigured the indexer to index the users’ query and click histo-

ries, which should not show up in search results. THOTH prevented the indexer from writing

the index after it had read either the query or the click history.

Faulty Lucene search. We reproduced a number of known Lucene bugs that produce incor-

rect search results. Such bugs may produce Alice’s private documents in Bob’s search. The

bugs include incorrect parsing of special characters [9], incorrect tokenization [4], confusing

uppercase and lowercase letters [10], using an incorrect logic for query expansion [6, 7], apply-

ing incorrect keyword filters [8], and premature search termination [11]. We confirmed that all

policy violations resulting from these bugs were blocked by THOTH.

To check the declassification condition ONLY_CND_IDS+, we modified the search pro-

cess to (incorrectly) output text from the index in place of conduit ids. THOTH prevented the

search process from producing such output.

Faulty front-end. We issued accesses to a private file protected by the MAL policy without

adding appropriate log entries. THOTH prevented the front-end process from extricating data

to the caller. We performed similar tests for the region-based censorship policy with similar

results.

3.6 THOTH Conclusion

Efficient policy compliance in data retrieval systems is a challenging problem. THOTH is a

kernel-level policy compliance layer to address this problem. The provider has the option

to associate a declarative policy with any data conduit, in particular, with any data source.

The policy specifies all the confidentiality and integrity requirements in effect on data in the

49

Chapter 3. THOTH: Policy Compliance via Runtime Monitoring

conduit. The policy language is rich and can express data owner’s privacy preferences, the

provider’s own data-use policy, and legal requirements. THOTH enforces these policies by

tracking and controlling data flows across tasks through kernel I/O interception. It prevents

data leaks and corruption due to bugs and misconfigurations in application components (in-

cluding misconfigurations in policies on internal conduits), as well as actions by unprivileged

operators.

THOTH’s technical contributions include a declarative policy language that specifies both

access (read/write) policies and how those access policies may change. The latter can be used

to represent declassification policies. Additionally, the language supports content-dependent

policies. THOTH uses policy sets as taint, which eliminates the need to trust application pro-

cesses with access checks at the system boundary and with declassification.

Our Linux-based prototype shows that THOTH can be deployed with low overhead, and

is suitable for data retrieval systems that need to sustain throughput up to a few hundred

search requests/second/machine. This demonstrates the usefulness and viability of coarse-

grained taint tracking as a basis for policy enforcement.

Nonetheless, we see THOTH as the first milestone in the design space of comprehensive

and practical policy compliance systems. There is still work to be done. In particular, THOTH

is not suitable for data retrieval systems that need to sustain more than a few hundreds of

search requests/second/machine. This limitation is fundamental to THOTH’s design: THOTH

relies on runtime monitoring (I/O interception and taint tracking), and the monitoring over-

head increases as applications perform more I/O. In the next chapter, we investigate a policy

compliance design that is able to achieve a runtime overhead close to zero when serving users’

requests under workloads with thousands or even tens of thousands of search requests/sec-

ond/machine.

50

4 SHAI: Policy Compliance via

Offline Analysis and Light-Weight

Runtime Monitoring

In the previous chapter, we discussed THOTH, which enforces policies via runtime monitor-

ing at the expense of incurring runtime overhead. In this chapter, we present another policy

compliance system, SHAI, whose goal is to reduce the policy enforcement runtime overhead

on the critical path (e.g., when serving users’ requests) to near-zero. THOTH’s runtime over-

head is due to multiple factors: I/O interception, IPC to the reference monitor, policy lookup

and evaluation, and session isolation. In order to effectively reduce the runtime overhead, the

compliance system must mitigate all these factors. We start with a discussion of techniques

to mitigate the aforementioned overhead factors. Afterwards, we present how SHAI adopts

such techniques.

One of the main overhead factors in THOTH is I/O interception. THOTH intercepts tasks’

reads and writes for taint tracking and flow control. Such I/O interception is necessary since

a task in THOTH may attempt to read from or to write to any conduit. In other words, THOTH

relies on I/O interception since it does not make any assumptions about tasks’ reads or writes.

Assume, for the time being, that tasks’ set of accesses can be perfectly predicted. In such

case, tasks’ taints can be computed ahead of time based on the conduits which the tasks are

predicted to read. Moreover, a task’s predicted writes could be checked against its taint ahead

of time as well. Here, policy compliance can be determined completely offline.

In this proposed model where policy compliance is determined offline based on the pred-

icated set of accesses, policies can be enforced at runtime by limiting tasks’ reads and writes

to the set of predicted, compliant accesses. This can be done, for instance, by running tasks in

sandboxes.

51

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

This proposed model of policy enforcement has a runtime overhead profile different from

that of THOTH’s. Recall that the main factors of THOTH’s overhead are I/O interception, IPC

to the reference monitor, policy lookup and evaluation, and session isolation. While THOTH

relies on I/O interception for taint tracking and flow control, this proposed model avoids I/O

interception and, in turn, does away with the IPC to the reference monitor. It also performs

policy lookup and evaluation offline, off the hot path. This is a good start. We are now left with

one remaining runtime overhead factor, namely session isolation. THOTH uses OS processes

to isolate user sessions. While session isolation for tasks that can potentially serve multiple

users is fundamental to coarse-grained information flow control, this overhead can be reduced

by relying on efficient in-process isolation primitives such as lwCs [52].

The proposed model offers high-level insights that can mitigate THOTH’s runtime over-

head. In reality, however, the premise that the tasks’ set of accesses and their taints can be

perfectly predicted ahead of time does not always hold. For instance, the taint of a front-end

process in the search pipeline presented in Subsection 3.4 cannot be perfectly predicted ahead

of time. This taint depends on the identity of the connected user and the user’s geographic

location, and both are available only at runtime. Moreover, changes in policies or in content

state (e.g., friends lists) may cause mispredictions. Therefore, relying on these insights comes

with the challenge of operating under incomplete information and mispredictions. Next, we

present SHAI which relies on these insights while addressing the accompanying challenges in

order to reduce the policy enforcement runtime overhead to near-zero.

SHAI is a novel system for policy compliance that can enforce fine-grained, data- and

user-specific declarative flow policies with near-zero runtime overhead in the common case.

SHAI combines offline analysis and light-weight runtime monitoring using an operating system’s

capability sandbox. The idea behind SHAI is straightforward: It pushes as much work as

possible to the offline analysis to minimize and streamline the remaining, required runtime

monitoring. The design of SHAI is based on the following ideas:

Use of offline analysis. Many aspects of a data retrieval system’s runtime behavior can be

predicted offline based on testing, monitoring the production pipeline or manual analysis.

These aspects include the normal flow of information among the system’s components (tasks),

the set of policies currently in effect, the set of users, and the geographic region(s) from which

a user typically connects. Based on this information, an offline analysis (OA) predicts the taint

each of the system’s tasks will acquire at runtime, subject to assumptions about the values of

runtime variables. Finally, the OA compiles, for each task and each predicted runtime value,

the predicted taint into a set of capabilities for all compliant I/O accesses.

52

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

Session-level binding of runtime information. Many runtime variables that are unknown

during an offline analysis become known at the start of a user session. These variables in-

clude the identity of the user, the geographic region from which the user connects, and the

wall-clock time. Based on the actual values of these variables, SHAI assigns the appropriate

capability set provided by the OA for each task involved. If the value of a runtime variable

is not among those predicted during the OA, SHAI registers the value as one that should be

considered during the next OA.

OS sandbox to allow compliant I/O without runtime intervention. In SHAI, each of the sys-

tem’s tasks is encapsulated in an OS sandbox subject to capability-based I/O access control.

When a user session starts, SHAI grants each task the capability set predicted by the OA and

selected based on available runtime information. As a result, the system can perform com-

pliant accesses without runtime intervention. Because the capability checks are light-weight

and performed by the OS kernel, their overhead is very low. In the common case where the

runtime values are among those predicted by the OA, the cost of enforcing compliance is

near-zero.

Runtime reference monitor only as a fall-back. If a task performs an I/O access for which it

does not have a valid capability, control is transferred to the SHAI reference monitor (RM),

which performs a runtime policy check. The cause of this event may be a non-compliant

access, an imprecise OA, or a change in the system state since the OA was performed (e.g., a

change in policy, or an access to content that was created after the OA). If the access is non-

compliant, the RM denies the offending access. If the access turns out to be compliant, the

RM allows the access and patches the task’s capability set to reflect the latest set of compliant

accesses.

Use of efficient OS isolation primitives. As mentioned earlier, SHAI uses light-weight con-

texts (lwCs) [52], an efficient OS isolation primitive, to isolate multiple user sessions within

the same process, and to isolate SHAI’s reference monitor.

The rest of this chapter is organized as follows. We provide an overview of SHAI and

its components in Section 4.1 and a detailed description of SHAI’s design in Section 4.2. The

SHAI prototype implementation on FreeBSD and the application to a data retrieval system

based on Apache Lucene are described in Section 4.3 and Section 4.4, respectively. We present

the results of an experimental evaluation in Section 4.5. Finally, we conclude in Section 4.6.

53

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

FIGURE 4.1: SHAI data flow model.

4.1 SHAI Overview

SHAI and THOTH share the same goal (help data retrieval system providers enforce confiden-

tiality and integrity policies on the data they collect and serve) and many design principles

(declarative policies directly attached to data, policy enforcement separate from application

code). However, SHAI uses different architecture and policy enforcement mechanisms with

the goal of achieving near-zero runtime overhead for policy enforcement in the common case.

We next describe SHAI’s design, overall architecture, and threat model.

4.1.1 Data flow model and policy language

SHAI and THOTH share the same data flow model and policy language. Both have been

covered in detail in Subsection 3.1.1 and Subsection 3.1.2, respectively. We summarize them

briefly next, but the readers may skip over this part if such details are fresh in their mind.

Figure 4.1 shows SHAI’s data flow model. SHAI enforces data policies in systems that

are structured as pipelines of tasks. Each task in the pipeline consumes some data, processes

it, and produces more data, which is then consumed by the next task in the pipeline. Data

enters the pipeline, travels from one task to the next, and eventually leaves the pipeline in

conduits, which is a generic abstraction for any container of data (e.g., files, named pipes).

Every conduit has a unique identifier (e.g., full path name for a file). We distinguish three

kinds of conduits: ingress conduits that feed outside data to the initial tasks of the pipeline,

internal conduits that are used to pass data between tasks of the pipeline, and egress conduits

that are used to transmit final outputs of the pipeline to external applications or externally

connected users.

54

4.1. SHAI Overview

An administrator may associate a policy with any conduit. This policy is a one-point de-

scription of all the confidentiality and integrity requirements of the data in the conduit. Policies

are specified in the same declarative policy language used in THOTH. In this language, a con-

duit’s policy has three rules: 1) A read rule specifies who can read the conduit’s data directly;

2) A declassify rule specifies what read rules should apply to conduits downstream in the

pipeline, thus controlling who can read derived data. The declassify rule specifies a set of

tests (called declassification conditions) on the global state and data in any conduit downstream,

and how the read rule can be relaxed when each of those tests is satisfied; 3) An update rule

specifies what type of content can be written to the conduit and by whom.

Policies on inbound and outbound conduits that cross the system boundary represent the

ingress and egress policies, respectively. These ingress and egress policies collectively control

how data can be used within the system, and how the data can be disseminated (and fed) from

(and into) the system.

4.1.2 Runtime overhead sources in THOTH

The starting point for our design is THOTH, which can already enforce data-specific policies

efficiently in low throughput systems. However, THOTH’s overheads can be substantial in

high throughput systems. In the following, we review briefly how THOTH works, what the

dominant sources of overhead in THOTH are, and what SHAI does differently to mitigate these

overheads.

THOTH performs coarse-grained runtime flow tracking to enforce policies. THOTH maps

tasks to OS processes and implements a reference monitor (RM) that intercepts every conduit

I/O in the kernel. The RM maintains a taint for every task (process) in the pipeline. This taint

is actually a policy that is always at least as restrictive as the policies of all conduits that the

task has read in the past.

When a task opens a conduit for reading, the RM intercepts to check whether the taint on

the task is already more restrictive than the policy of the conduit. If so, it does nothing further.

If not, it intersects the current taint of the task with the policy of the conduit. When a task

opens a conduit for writing, the RM intercepts to first check the update rule of the conduit.

Next, it checks the declassification conditions in the taint of the task, which may relax the taint,

and then checks whether the (possibly relaxed) taint is at least as permissive as the policy of the

conduit being written. These checks on conduit opens ensure that, modulo declassification,

the policies of conduits downstream of a conduit f are always more restrictive than f’s policy.

As a result, the restrictions of f’s policy cannot be “lost” on data derived downstream.

55

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

The RM enforces policies on egress conduits connected to end-users by direct checks. For

example, if an egress conduit’s read policy says that only Alice can read, then the RM en-

sures that the egress conduit is actually connected to Alice by verifying the public key that

authenticates the connection.

Despite its efficiency compared to older solutions, THOTH still has overhead with respect

to the system’s throughput, especially on moderate or high throughput systems. As a case in

point, THOTH has a relative overhead of 3.63% on the throughput of a simple data indexing

and search pipeline, even at a modest throughput of only ~300 queries/second/machine. As

the throughput increases, this relative overhead increases significantly, reaching over 23% at

~3,000 queries/second/machine on a port of THOTH to the experimental setup used for SHAI

(see Section 4.5). In Subsection 3.5.1, we have provided a detailed breakdown of THOTH’s

runtime overhead. Briefly, this runtime overhead is due to the following sources.

1. I/O interception by the RM to check taints and declassification conditions is expensive.

In THOTH, every interception involves a context switch to a dedicated process that hosts

the RM.

2. Looking up conduits’ policies, maintaining tasks’ taint, and performing policy evalua-

tion, all at runtime.

3. Once a user-facing task has served private data to a user, that task cannot serve a different

user without shedding its previous taint. To shed that taint cleanly, the task must be reset

to a clean state. The usual way of doing this, also used in THOTH, is to re-exec the process

hosting the task. Re-execing is expensive. Since taint must be shed only once per user

session, the amortized cost of re-exec’ing reduces with increase in session length, but it

is still significant even for moderate session lengths (5-20 queries per session) in THOTH.

4.1.3 Key ideas

SHAI is a re-design of THOTH with two key ideas to mitigate most of THOTH’s overhead. First,

SHAI adds to THOTH a new offline phase that does most of the work of the RM ahead-of-

time, thus significantly reducing the need to intercept I/O and pushes most policy lookups

and evaluation to the background. Second, SHAI uses a different implementation of tasks that

allows for much faster state reset. End-to-end, the offline phase reduces the overhead on each

user request to near-zero in the common case, while the change to the implementation of tasks

significantly reduces the overhead on user session establishment.

56

4.1. SHAI Overview

Eliminating I/O interceptions and policy operations

SHAI eliminates the need for runtime interception and policy lookup and evaluation of most

conduit accesses using a periodic, ahead-of-time, offline analysis (OA). During the OA, SHAI

makes (and caches) policy checks on the reads and writes that the system is likely to make in

later executions of the pipeline. For this, the OA takes as input a list of tasks in the pipeline,

what conduits each task is likely to read and write during the pipeline’s execution, an estimate

of the task’s anticipated taint at runtime and the policies of all conduits. With the exception

of the policies (which are set by the provider and we expect to correctly capture the integrity

and confidentiality requirement of data), these inputs are not trusted for policy enforcement;

getting some of them wrong only results in a proportionally higher overhead at runtime. All

inputs can be easily determined by running the pipeline in a test environment, by monitoring

the production system, or by a simple manual analysis.

The OA simulates the checks that THOTH’s RM would make for each conduit access spec-

ified in the inputs, but without actually running the pipeline. Later, at runtime, each task

runs in an OS sandbox, which allows the certified accesses that were already checked by the OA

without faulting into the RM. These accesses run at native speed since the checks of the OS

sandbox are streamlined in the underlying kernel. In the (rare) case that an access not foreseen

by the OA occurs, the OS sandbox faults into the RM, which makes the same policy checks

that THOTH would make.

Our current prototype uses FreeBSD’s capability system (Capsicum) [89] (with small mod-

ifications) for the OS sandbox. Capability checks in Capsicum are highly optimized and incur

nearly zero overhead. This, coupled with the OA, pushes most of policy operations (lookup

and evaluation) to the background and reduces the overhead of I/O interception to nearly

zero in the common case.

While this idea is conceptually simple, it has several nuanced details that we explain in

Section 4.2. First, a task’s ability to make certain accesses may depend on parameters whose

exact values will be known only at runtime, e.g., which user has authenticated remotely, which

geographic region the user has connected from (to enforce legal, region-based content black-

listing), etc. To permit the OA to take these parameters into account, the anticipated values

of these parameters can be coded within the task description (specifically, within the task’s

taint). These anticipated values are then verified at runtime, but only once when the task starts

running. In practice, this amounts to checking these parameters once per user session, not on

every conduit access, which amortizes the cost of the checks.

57

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

!"#$%&'%(
)*(+,-#
./*&%

012%,/%3#/4.$.5#
/4+'/.5#4,,%..%.

!66(+'%#4'4(-.+.
78#9

!"#.4'3:*1

!"#$%&
!"#$%&#'(

)$%&#'(

78#9

!"#.4'3:*1

!"#$%' ()*+,-,).%

"(()##)#

(/012,"'+%"(()##)#

*

FIGURE 4.2: SHAI architecture.

Second, a task’s ability to make accesses may depend on meta-data such as friends lists

being in a certain state (e.g., Alice can access Bob’s friends-only content only while she is Bob’s

friend). This state may change after the OA has finished, thus (partially) invalidating the OA’s

analysis. Consequently, the OA must inform the RM of such meta-data dependencies and the

RM must track runtime updates to meta-data occurring in the dependencies to avoid policy

violations.

Reducing the cost of task reset

The need to reset a user-facing task between sessions of two different users is fundamental to

coarse-grained taint tracking and cannot be eliminated entirely. To reduce the cost of this reset

significantly, SHAI relies on a recent OS primitive called light-weight contexts (lwCs) [52] to

rollback the state of a user-facing task to a clean state efficiently. lwCs support multiple tasks

with separate address spaces and file descriptor tables within the same process. Resetting an

lwC’s state resets only the “essential” elements (the memory mappings and open file descrip-

tors) and is faster than re-exec’ing an entire process. This cuts down overheads significantly

compared to THOTH.

As an added benefit, the use of lwCs also allows implementing the RM itself in a lwC,

in place of a separate process (as in THOTH). This reduces the cost of interception for the few

reads/writes that fault into the RM in SHAI from a standard OS context switch to a lwC switch,

which is cheaper since it does not involve scheduling delays. We describe lwCs and their use

in SHAI in Section 4.3.

58

4.2. SHAI Design

4.1.4 Architecture

Figure 4.2 shows SHAI’s architecture. SHAI comprises of the offline analysis (OA), and an OS

sandbox and the RM. The OA takes as input a list of tasks, what conduits each task is likely

to read and write, an estimate of the task’s anticipated taint, and the conduits’ policies. The

OA determines a set of certified accesses for each task. Each task runs in the OS sandbox.

The sandbox allows the task’s certified accesses (the common case), and faults into the RM for

other accesses.

4.1.5 Threat model

Like THOTH, the goal of SHAI is to ensure that policies on ingress conduits are enforced de-

spite bugs in the system’s implementation. The concern is inadvertent data leaks, not ex-

traction or stealing of information by malicious adversaries. As such, low-level vulnerabili-

ties (buffer overflows, control flow hijacks, etc.) are not a concern. Implicit flows and side-

channels like timing channels would, in principle, be a concern in this setting, but SHAI fo-

cuses only on the larger, more prominent risks from explicit leaks of data.

Since SHAI protects only against bugs in application code, the kernel (including its sand-

boxing mechanism) is trusted. SHAI’s integral components—the RM and the OA—are both

trusted. Policies on ingress nodes are assumed to represent privacy requirements correctly

and all meta-data (e.g., friends lists) on which their interpretation depends is assumed to be

accurate.

Policies of internal conduits can be chosen arbitrarily. Getting these wrong can block le-

gitimate data flows in the pipeline, but cannot violate policies of ingress conduits. Any input

provided to the OA, with the exception of the policies of conduits, is not trusted. Getting

these inputs wrong can only impact performance and/or functionality, not policy enforce-

ment. However, policies of conduits provided to the OA must be the same as those used by

the RM.

4.2 SHAI Design

SHAI’s design consists primarily of two components—the offline analysis (OA) and a runtime

sandbox and reference monitor (RM). We use THOTH’s policy language (with very minor

extensions) for representing policies. In the following, we first present a running example that

we use to illustrate various concepts and that also forms the basis of our evaluation. We then

describe the OA and the runtime system.

59

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

4.2.1 Example: Search pipeline

Our running example, Sys-E, models the search component of a typical user-facing data-

driven system such as a modern social platform. This pipeline is very similar to the pipeline

presented earlier in Section 3.4, except for how the search engine transmits the results. We ex-

plain (and justify) the difference between Sys-E and the pipeline in Section 3.4 after we review

the salient points of the pipeline.

Pipeline tasks. Sys-E indexes a corpus of heterogeneous data consisting of public documents

(modeling public content on the WWW), documents private to individual users (modeling

content such as emails and individual calendars), and semi-private documents shared among

stipulated subsets of users (modeling content such as social media posts that are accessible

only to friends or friends of friends). Each piece of content is stored in a separate file. These

files are the ingress conduits of Sys-E. The system supports friends lists of users, which are

used by the policy enforcement mechanism. The system also has blacklists of documents

which should not be visible to users connecting from specific geographic regions to support

legal blocking of content.

Indexer. The first task in Sys-E’s pipeline is a data indexer that builds an index mapping key-

words to documents containing those keywords. This task consumes all the content files above

and produces the index, which is also stored in files. Note that the data indexer is mostly of-

fline; it only runs periodically.

Search engine. The next task in the pipeline is a search engine, which accepts a user query

(a set of keywords) over a pipe from a user-facing front-end task (described next), looks up

the index, and responds back to the front-end with a list of documents that contain those key-

words. Technically, the search engine passes open file descriptors for the matching documents

over a socket.

Front-end workers. The last part of our pipeline is the front-end, which hosts a web server

through which remote users interact with Sys-E. For every incoming user connection, Sys-

E spawns a new user-specific worker task, which authenticates the user (with the user’s public

key), and then accepts search queries from the user. It forwards each search query to the search

engine, then reads each of the matching documents returned by the search engine to extract a

snippet, composes all the snippets into a set of “results”, personalizes the results using stored

preferences of the connected user, and inserts advertisements to generate revenue. It then

60

4.2. SHAI Design

returns the resulting page to the user. Note that this last part of the pipeline is a not a single

task, but consists of a separate task for every connected user.

Relevant policies. The read rules of the ingress conduits specify expected confidentiality re-

quirements: Public documents have an all permissive read rule (anyone can read them), Al-

ice’s private files have a read rule that allows access to Alice only, and Alice’s semi-private

files have a read rule that allows access only to Alice and her friends (or friends of friends).

Just as we have explained earlier in Subsection 3.2.2, all the data sources that are used to

create the index must allow some declassification (in order for the search engine to produce

readable output). In Sys-E, the output of the search engine is a list of file descriptors of documents

that match a user query. Therefore, we relax the policies of all indexed files to allow such

declassification. Specifically, the declassify rules of all indexed files allow a complete declas-

sification into any conduit that can only transfer open file descriptors but no other content.

The socket from the search engine to a worker task is such a conduit. This allows the search

engine to return open file descriptors of matching documents to worker tasks, and allows the

pipeline to work as expected. (Technically, the search engine does not have write permission

on the socket, and thus, cannot send arbitrary data and can only send file descriptors. An

additional check in the kernel, described in Section 4.3, ensures that the worker task can only

receive descriptors that it could have opened itself; this prevents a buggy search engine from

sending a descriptor for Alice’s private file to Bob’s worker task.)

The declassification policies of indexed content also have additional clauses for enforcing

region-specific censorship. A user’s profile (including preferences) has a policy that allows

access only to the user. See Subsection 3.4.2 for details.

Data flow from the search engine to the front-ends. The pipeline’s tasks, data flows, and as-

sociated policies are almost identical to those of the pipeline presented earlier in Section 3.4.

The only difference is how the search results are communicated from the search engine to the

front-ends. In the pipeline of Section 3.4, the search engine can send only a list of conduit

ids to the front-end, and this is enforced by limiting declassification on all searchable content

to ONLY_CND_IDS (or ONLY_CND_IDS+ if conduit ids themselves are confidential). While

SHAI can enforce such typed declassification, this declassification entails intercepting the out-

put of the search engine to ensure that it is indeed a valid list of conduit ids, which would

increase SHAI’s runtime overhead. To overcome this problem, we extend the policy language

to express a different typed declassification policy which allows the search engine to return

file descriptors of the documents matching a given search query to the front-end. This typed

61

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

declassification policy can be enforced directly by the underlying OS sandbox, eliminating the

need to intercept the search engine output to check for proper declassification.

4.2.2 The offline analysis (OA)

As its name suggests, the offline analysis (OA) is an offline process that runs periodically on

the side, not on the critical path of serving requests. The goal of the OA is to check, ahead

of time, which conduits each task in the pipeline can read and write. Accesses that check

successfully in the OA do not have to be intercepted in the pipeline at runtime, which reduces

runtime overhead. To improve efficiency, the OA should be configured to check as many

accesses as possible ahead of time. Of course, not all accesses can be checked ahead of time;

these accesses are subject to policy checks by the RM as described in Subsection 4.2.3. Accesses

to conduits that do not exist when the OA runs, including pipes or sockets, fall in this category.

In a properly configured system, those should be the only accesses that are checked at runtime.

The offline analysis inputs

The OA takes the following parameters as inputs:

1. A list of tasks on which to run the OA. If a task’s accesses depend on runtime parameters

such as the identity of the user the task will serve, a separate instance of the task should

be listed for every combination of these parameters.1

2. For each task, lists of conduits whose reads and writes by this task have to be checked.

3. The steady-state taint of each task. This is explained below.

4. The policies of all conduits in the system.

5. Any policy-relevant meta-data such as Sys-E’s friends lists and region-specific content

blacklists.

The taint of a task is a policy that the RM associates to the task at runtime. This policy is

always at least as restrictive as the policies of all conduits that the task has read. SHAI enforces

this policy on all data that is output by the task and all data that is derived downstream from

this output data. The relevance of the taint is that it allows a local check to determine if it is safe

to allow a task to read a conduit: The read is safe if the task’s taint is at least as restrictive as
1The identity of the user is not the only possible policy-relevant runtime parameter although, for simplicity, we discuss

only this parameter here. Another parameter that our implementation of Sys-E uses is the geographic region from which
the user connects; we use this parameter to enforce region-specific legal blacklisting of content.

62

4.2. SHAI Design

the conduit’s policy since, then, the conduit’s policy is guaranteed to be enforced downstream.

Input (3) to the OA asks for the runtime steady-state taint of each task.

All inputs (1)–(5) can be determined fairly easily. (1) follows from the schema of the

pipeline and, for parameterized tasks, from the possible values of the parameters (e.g., the

list of registered users).

The lists in (2) should include as many runtime accesses of the task as possible. These

accesses can be determined either by testing, monitoring the production pipeline or manual

analysis. For simple pipelines, manual analysis may be straightforward. This works, for in-

stance, for Sys-E: The indexer reads all searchable content and writes the index; the search

engine reads the index and indexed content but writes to a socket that is created only at run-

time, so the write is irrelevant for the OA; a user’s worker task should read only content that is

accessible to the user (the user’s own private content, content shared by her friends with their

friends, public content, etc.) and it writes to a network connection that is also created only at

runtime, so this write is also irrelevant for the OA.

(3) can be determined by simple manual analysis, testing or monitoring of the production

pipeline. For example, in the Sys-E pipeline, ignoring region-specific censorship for simplicity,

the taints are fairly straightforward. (a) Indexer and search engine: Disallow any reads, but

eventually allow declassification into a conduit that can only transfer file descriptors, (b) User

X’s worker task: declassify data only to X.

(4) and (5) should be readily available in the system’s meta-data.

SHAI includes a dedicated language to represent (1)–(5); we elide the details of the syntax

here, and we refer the interested reader to Appendix B.

The offline analysis operations

The OA checks relevant policies for every conduit read and write mentioned in input (2) and

determines which reads and writes are policy compliant and which are not. For simplicity, we

first describe the checks assuming that there are no declassification conditions in policies. We

then describe the changes needed to handle declassification conditions.

In the absence of declassification conditions, the checks that the OA makes are conceptu-

ally straightforward. A task T can read a conduit f if f’s declassify rule (the rule that governs

the use of f’s data downstream) is at least as permissive as T’s taint. This ensures that f’s data

remains protected downstream in accordance with f’s policy. Dually, a task T can write a con-

duit f if f’s declassify rule is at least as restrictive as T’s taint. This ensures that T’s taint is

63

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

respected on all of T’s outputs downstream. For a write, the OA additionally checks that f’s

update rule is satisfied.

When policies have declassification conditions, the check for reads remains unchanged.

However, the policy comparison check for writes is more elaborate. The OA first checks if any

declassification conditions in T’s taint are satisfied. If so, it creates a list of T’s updated taints,

with one taint for every satisfied declassification condition. If not, it creates a list with only T’s

current taint. The write is deemed okay if f’s declassify rule is more restrictive than any of the

taints in the list just created.

As an example, suppose that the OA wants to validate a write to conduit f by task T when

T’s taint is “only Alice can read until the clock time exceeds midnight on December 31, 2019”

and f’s declassify rule is all permissive. (T’s taint allows a declassification of Alice’s private

content at the end of 2019.) In this case, the declassification condition in T’s taint is “until the

clock time exceeds midnight on December 31, 2019”. So, the OA checks whether the clock

time is past midnight on December 31, 2019. If this is the case, then T’s resulting taint imposes

no restrictions, so the write is okay. If this is not the case, then the write is not okay.

These conceptually straightforward checks are more nuanced when they involve meta-

data that can change over time. Consider the case of Alice’s worker task in Sys-E reading a

document with the policy “accessible to Bob’s friends only”. In this case, the policy check

above will succeed only if Alice is in Bob’s friends list. Suppose that Alice is in Bob’s friends

list when the OA runs. Now note that, in the future, the validity of this check is conditional on

Alice remaining in Bob’s friends list. If Bob unfriends Alice, this validity is lost.

Consequently, with each access that it successfully validates, the OA also returns a list of

conditions on the system state under which the access was validated. We call these conditions

the state conditions of the access. One general state condition is that the policy of the conduit

must be what it was when the OA ran. At runtime, the RM checks these conditions before

using the OA’s validations. This is explained in more detail in Subsection 4.2.3.

Finally, the validity of the accesses of a task may depend on parameters that can be deter-

mined at runtime only. For example, in Sys-E, a worker task serving user X should be able to

read only conduits that X is allowed to read, but the identity X will be known only at runtime.

In the OA, this is handled by executing the analysis for all possible instances of the parameter

(X in this case). Technically, the OA is given a separate instance of the task for every possible

value of the parameter. Thus, in Sys-E, there is one instance of the worker task for every reg-

istered user—there is a task called “Alice’s worker”, another called “Bob’s worker”, etc. The

64

4.2. SHAI Design

Algorithm 2 The offline analysis’s algorithm
Inputs: (1)–(5) as described in text. In particular, (2) is a list of expected reads of the form
(read, T, f) and a list of expected writes of the form (write, T, f).

Output: A list of tuples of the form ([read | write], T, f, conds), meaning that T can read or
write f if conditions conds hold on the system state.

1: output← ∅
2: for all (read, T, f) in input (2) do

3: pol← f’s policy in input (4)
4: taint← T’s taint in input (3)
5: (okay, conds)← isAsRestr(taint, pol.declassify)
6: if okay then

7: add (read, T, f, conds) to output

8: end if

9: end for

10: for all (write, T, f) in input (2) do

11: pol← f’s policy in input (4)
12: taint← T’s taint in input (3)
13: (okay1, conds1)← isAsRestrWithDeclass(pol.declassify, taint)
14: (okay2, conds2)← policyEval(pol.update)
15: if (okay1 && okay2) then

16: add (write, T, f, conds1 ∪ conds2) to output

17: end if

18: end for

19: return output

specific value of the parameters for a task instance are coded in the taint of the instance. In

Sys-E, the taint of Alice’s worker is “Only Alice can read downstream”, while that of Bob’s

worker is “Only Bob can read downstream”. With these precise taints, the OA validates all

accesses for the specific instances of the task. At runtime, the task must register with the RM as

the correct instance, else it won’t be allowed to communicate with the connected user. Thus,

safety is always maintained.

The offline analysis algorithm. Algorithm 2 summarizes the work of the OA. The algorithm

does exactly what is described above. The function isAsRestr(r1, r2) checks that policy rule r1

is at least as restrictive as r2 and returns a boolean indicating whether this is the case (okay)

and, if so, what parts of the system state were relevant to this determination (the state condi-

tions, conds). The function isAsRestrWithDeclass is similar but it also applies declassification

within r2. The function policyEval evaluates a policy rule.

65

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

All these functions are based on similar functions in THOTH. THOTH uses these functions

at runtime, not ahead-of-time. We modified the functions to track which parts of the system

state are relevant to the result.

The output of the OA is a list of tuples of the forms (read, T, f, conds) and (write, T, f,

conds) indicating that task T can respectively read or write conduit f if the state conditions

conds hold on the system state.

Offline analysis, practical aspects

Predicting runtime context information. As we mentioned earlier, the OA returns a list of

state conditions for each certified access. These state conditions are essentially predictions on

the (future) state of the system at runtime, whose validity is anyway checked at runtime. These

predictions are purely performance optimizations: a mis-prediction results in an overhead in-

crease (due to the fall-back to runtime policy evaluation), but it does not affect the correctness

of policy enforcement. Hence, it is safe to rely on heuristics for predicting the runtime context

information of the system. Next, we discuss a few heuristics that SHAI uses.

A key heuristic is that the current state of the system is a good estimate for the future state

of the system. This heuristic is particularly useful for the parts of the system state that are

changed infrequently. For instance, SHAI predicts that the conduits’ policies at runtime will

be unchanged from those used during OA. Similarly, SHAI relies on the existing conduits’

content, such as current blacklists and friends lists, as a good estimate for their actual content

at runtime. Another heuristic is that previous runtime information contexts are a good esti-

mate of the future contexts of the system. SHAI relies on this heuristic, for example, to predict

users’ geographic locations, where a user who often connects from Germany is predicted to

connect form Germany in the future as well.

Besides heuristics, SHAI can explore all (or a subset of all) the possible values for a given

variable on the system state. In Sys-E for instance, the OA may consider a front-end taint for

every user in the system.

OA limitations. There are parts of the system state where there are no heuristics that can

provide good predictions and where the space of all possible values is intractable. One ex-

ample is new content, where the conduit’s policy may want to enforce structural integrity on

the conduit’s content. In these cases, SHAI must defer policy checks to the runtime. (No such

policies occur in Sys-E.)

66

4.2. SHAI Design

Optimizations. It may seem that the total work of the OA is enormous: For every task and

every conduit that the task may potentially access, the access should be validated ahead-of-

time by the OA for runtime efficiency. In the context of Sys-E, for example, assuming 10

million users and, on average, 1,000 pieces of content accessible to each user, this amounts to

10 billion checks just for the user-specific worker tasks every time the OA runs. This sounds

intractable.

In reality, not all these checks are necessary. We describe two obvious optimizations. First,

the OA’s checks only examine the policies of conduits, not the conduits themselves. Conse-

quently, if a set of conduits share the same policy, then it is safe to run the OA on only one of

those conduits and transfer the OA’s result to all other conduits in the set. This optimization

is quite useful. For example, all of Alice’s private content (like her emails) will have the same

policy. Similarly, all the uncensored public content on the WWW has the same policy (it is

accessible to everyone).

Second, there is no need to include inactive users in the OA often. The OA results remain

valid until policies or policy-relevant meta-data change. Since the policies installed on inac-

tive users’ content and the policy-relevant meta-data remain unchanged during the inactivity

period, it may suffice to include inactive users in the OA sparingly. The OA can also be run on

a specific user’s content on-demand, e.g., when the system detects that the user has become

sufficiently active. Generally, the legitimate accesses that are not part of the OA will not be

denied, but those are subject to runtime checks. Therefore, excluding an (inactive) user from

the OA will not deny the user’s legitimate accesses, but may increase the runtime overhead.

We quantify the cost of the OA on a realistic but simulated workload in Section 4.5.

4.2.3 Runtime monitor and OS sandbox

SHAI’s runtime infrastructure consists of two components. First, we rely on an existing OS

light-weight capability sandbox2 to encapsulate every runtime task in the data retrieval sys-

tem’s processing pipeline. The sandbox is configured to allow all accesses that have been val-

idated by the OA without any further interception. Second, a SHAI reference monitor (RM)

runs in userspace, isolated within a lwC. The RM serves two purposes: It configures the sand-

box when a task starts and it validates any accesses that were not validated by the OA ahead

of time by making the required policy checks. In the following, we describe these two compo-

nents somewhat abstractly. Section 4.3 describes a concrete prototype implementation of the

RM and the sandbox on FreeBSD.
2FreeBSD Capsicum with minimal extensions in our prototype

67

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

Task registration

When a new task starts, its access to all conduits is blocked by the OS sandbox; the only thing

the task can do is talk to the RM. To get access to conduits, the task must register with the RM

by specifying which previously offline analyzed task it represents. For example, in Sys-E, the task

may register as the indexer, the search engine or user X’s worker for any known user X. The

RM records the choice and the taint provided during the OA for the specified task.

Next, the RM looks up the last output of the OA for the specified task to determine which

accesses for the task have already been validated. For each tuple (read, T, f, conds) or (write,

T, f, conds) in the output, the RM checks the state conditions conds, and creates a list of all

conduits and permissions for which the conditions hold. It gives this list to the OS sandbox,

which subsequently allows the task these accesses directly.

For reasons of efficiency, our prototype implements the checking of state conditions dif-

ferently. With the exception of state conditions that refer to time and session information, the

RM always maintains up-to-date lists of each task’s valid accesses by tracking changes to meta-

data on which state conditions depend (e.g., friends lists of region-specific blacklists in Sys-E),

and eagerly re-evaluating state conditions when the meta-data changes. (The validity of state

conditions that refer to time and session information is checked at registration, but this is a

very simple check and is done once per registration.) As a result, task registration is very fast.

The rationale for this implementation choice is straightforward: In online systems like social

networks, changes to meta-data like friends lists are far less frequent than task registrations

(which happen once per user session), so tying the expensive step of checking state conditions

to meta-data changes rather than task registrations results in less overhead.

Registering incorrectly, e.g., registering as the indexer in place of Alice’s worker or as

Alice’s worker in place of Bob’s worker, either maliciously or accidentally, cannot cause a

policy violation in SHAI. However, doing so may cause expected accesses to be denied or

more accesses to fault into the RM thus slowing down the task.

Conduit access

After a task has registered with the RM, it can open conduits for reading and writing. Every

conduit open call passes through the kernel as usual. If the conduit and the mode (read/write)

in which it is being opened were provided to the OS sandbox as a valid access during the task’s

registration, the kernel just allows the call. This is the fast path and it should apply to most

conduit accesses in a properly configured system.

68

4.2. SHAI Design

If, on the other hand, the OS sandbox does not know that the specific access is valid, then

it transfers control to the RM. The RM then makes the same policy checks that the OA would

have made for the corresponding operation (read/write). The only difference is that the RM

does not generate any state conditions conds; it just checks them immediately. If the checks

succeed, the open call is allowed, else it is denied.

Meta-data changes after registration

As explained above, the OS sandbox is informed of a task’s pre-validated accesses when the

task registers. A relevant question is what to do when a subsequent meta-data change invali-

dates some of these accesses. There are two choices here: Either the invalidated accesses can

be revoked in the OS sandbox or they can be left as is. SHAI chooses the latter option since

revoking a permission from the sandbox is costly.

This option is also secure since any access that the task does after the invalidation could

also have been done before the invalidation to the same effect. An exception to this argument

occurs when the read access of a task t to a conduit c is to be invalidated (due to some meta-

data change) before the conduit c is updated. In this case, continuing the read access to the

conduit c will allow the the task t to obtain the updated content of the conduit c. This is

problematic since the task t could not have obtained the updated content had the read access

been revoked immediately. To avoid such cases (when they are really a concern), the system

should be configured to store updated content in new conduits (e.g., by versioning files). Then,

the task t will still have access to the conduit c but not conduit c’ that holds the updated

content. This choice is compatible with systems like online social networks where existing

content is updated relatively infrequently (although fresh content is added quite regularly).

Increasing task taints

In most cases, a task’s runtime taint is fixed when the task registers and remains the same

throughout its execution. In some cases, however, the task may wish to increase its taint (i.e.,

make it more restrictive) during its execution. For example, this is necessary if the task wishes

to read sensitive content after writing to a public conduit. In this case, the task must start with

a public taint and acquire the taint of the sensitive content afterward.

SHAI allows a task to increase its taint at runtime as follows. At any point, a running task

may re-register as a another task (previously analyzed by OA) whose taint is higher than the

task’s current taint. SHAI checks that the new taint is at least as restrictive as the current taint,

and also checks that the policies of any conduits to which the task has open write handles are

69

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

more restrictive than the task’s new taint. These checks are necessary to prevent leaks of data

that the task reads under the new taint. If this check fails, the re-registration is disallowed.

On the other hand, reducing a task’s taint at runtime is not safe as this allows the task

to leak previously read information (which are subject to a more restrictive taint). Therefore,

SHAI, like all other coarse-grained taint tracking systems, disallows reducing a task’s taint.

Runtime interception cost, an example

The overall cost of runtime interception in SHAI is generally very low. For interactive pipelines

such as Sys-E’s RM interception happens only a few times per user session (not per user

query). For instance, in Sys-E, only four RM interceptions are needed per session:

1. When the worker accepts the user’s connection.

2. When the session is authenticated. Users authenticate directly with the RM.

3. To register the worker as a task for the connected user. This interception also validates

the policies on all conduits the task has write handles for, including the outgoing user

connection and the pipe that connects the worker to the search engine.

4. At the end of the session, to reset the worker task to a clean state for the next user.

As we mentioned earlier, the RM intercepts accesses that were not certified by the OA.

Such interceptions should be few in a properly configured pipeline.

4.3 SHAI Prototype

Our SHAI prototype runs on FreeBSD and relies on FreeBSD’s kernel capability support (Cap-

sicum) [89] and light-weight contexts (lwCs) [52] for sandboxing and isolation, respectively.

We discussed both in Chapter 2.

Figure 4.3 depicts the runtime architecture of our SHAI prototype. SHAI maps tasks one-

one to Capsicum-sandboxed lwCs. The RM also runs inside a privileged (unsandboxed) lwC.

The kernel is configured to redirect any syscall outside a task’s capability set to the RM lwC.

As compared to a design that uses processes (rather than lwCs) for the same purposes, this

design allows for faster switching between tasks and the RM, and for faster resetting of tainted

worker tasks at the end of user sessions by avoiding scheduler delays.

70

4.3. SHAI Prototype

!"##$%&

'()!"#

*+,-)!"#

$%%&''&'(')'%$!!'
*+,'-.&/%$0$1-!-,-&'

02*%&''

."+/*

%&2,-3-&.
$%%&''&'

%$0$1-!-,-&'

%$0'-%+4/

'$5.1*6&'

"#01"#2*

345126)27#2-,
+'&2'0$%&

7&25&!

FIGURE 4.3: SHAI prototype.

The RM in our SHAI’s prototype is around 21,000 lines of C code. Additionally, we have

implemented a dynamically-linked library of 1080 lines of C code, which userspace applica-

tions can use to call SHAI’s API. SHAI’s API extends THOTH’s API by including only one more

API call (REGISTER(T_ID)) to register the calling task as a previously offline analyzed task.

Application life cycle. An application is loaded with a script that first initializes the RM lwC

in each process. Next, it initializes application tasks in separate lwCs, confining them with

Capsicum’s capability mode. Then, the RM is invoked to register each application task, giving

it the capabilities to access anything that was already certified by the OA and whose state

conditions hold. Depending on the type of a conduit, the capability to access it takes different

forms:

- Files: The task is given Capsicum capabilities to a set of directories that contain hard links

to all files that should be accessible to the task. These directories and the hard links are

created offline at the end of the OA and kept up-to-date by the RM as state conditions

change.

- Key-value (KV) tuples: For these, the RM relies on KV filters. The RM opens a socket

to the KV store and installs a KV filter that limits access to only those tuples that are

accessible to the task. It then gives this open socket to the task.

During its execution, an application task makes most conduit accesses directly using the capa-

bilities described above. For accesses that are beyond these capabilities, the application faults

71

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

into the RM, which makes policy checks. For instance, the RM intercepts all socket establish-

ments (which are typically a few per task in Sys-E) and performs policy checks (i.e., can the

application declassify into a socket given its taint?). If the checks succeed, the RM permits

establishing the socket. Afterwards, reads and writes to the socket are not intercepted by the

RM.

Capsicum modifications. To support Sys-E and other similar search-based pipelines, we made

two modifications to Capsicum.

• We modified Capsicum to allow a socket without read and write permissions to be used

to transfer open file descriptors but not data. In Sys-E, such a socket is used by the

search engine to return file descriptors for documents matching the user query to the

front-end’s worker task. Since data transfers on such socket are forbidden, even a buggy

search engine cannot accidentally send private data to the worker.

• We modified Capsicum to allow a task in capability mode to transfer file descriptors to

another task in capability mode only if the receiving task already has access capabili-

ties on all conduits referenced by the file descriptors. With this feature in place, Cap-

sicum prevents a buggy search engine from transferring a descriptor for Bob’s private

file to a front-end worker task connected to Alice. To implement this feature, we mod-

ified Capsicum to maintain every task’s capabilities in a binary lookup tree. When a

source capability mode task transfers a file descriptor to a destination capability mode

task, Capsicum looks up the binary tree of the destination for a capability to the conduit

referenced by the descriptor. This lookup’s complexity is logarithmic in the number of

distinct capabilities the task has. In Sys-E, only the front-end tasks receive file descriptors

and these tasks have very few capabilities, so the lookup is very fast.

4.4 Policy-compliant data retrieval with SHAI

We have implemented the data retrieval system Sys-E described in 4.2.1. We instantiated this

system with Apache Lucene as the search engine [3]. Our prototype supports replication,

index sharding, and features such as personalization and advertisements in the same way

that was described in Section 3.4. In this section, we describe our experience using SHAI to

enforce policies in Sys-E.

72

4.4. Policy-compliant data retrieval with SHAI

In our SHAI prototype, applications run in Capsicum’s capability mode. Since system

calls that access the global file system namespace, such as the OPEN system call, are de-

nied categorically in Capsicum’s capability mode, we changed Sys-E’s applications to use the

capability-aware variants of these system calls. For instance, applications may use OPENAT

instead of OPEN. In capability mode, OPENAT system calls are allowed subject to valid capa-

bilities. We found that OPENAT is faster than OPEN.3 Hence, we carried this modification to

the baseline configuration of Sys-E, regardless of whether tasks run in Capsicum or not. These

modifications were small:

• For Java applications (the Lucene indexer and Lucene searcher), we modified less than

50 lines of code of Lucene’s codebase to call into a 550 lines of C code in a JNI library that

performs capability-based I/O.

• For C applications (the front-end), we replaced all fopen/open calls with the fopenat/ope-

nat variants. This amounted to less than 20 lines of code.

Next, we provide commentary on the code changes required to adapt the three core com-

ponents of Sys-E (indexer, search, and front-ends) to SHAI. None of these code changes affect

the correctness of policy enforcement but rather make Sys-E’s data flows comply with the

policies in place.

Indexer Task. We have introduced two changes to the Apache Lucene indexer.

• Register as the indexer task. The indexer must register with SHAI’s RM in order to

acquire access capabilities on the searchable content.

• Set policies appropriately on the index files. Similar to THOTH, the indexer in SHAI

attaches the index policy to newly created index files. (Otherwise, file creation will not

be allowed if the associated policy is not at least as restrictive as the indexer’s taint).

Search Task. We have introduced two changes to the Apache Lucene searcher in order for

the search task to function in SHAI, in capability mode.

• Register as the search task. The search task registers with SHAI’s RM to acquire read

access capabilities on (i) the index files, (ii) the query pipes (to read users’ search queries),

and (iii) the searchable content (to open file descriptors for the conduits that match a

given query).

3OPEN needs to resolve the full path name of a conduit, where OPENAT uses the directory cache to resolve the conduit’s
name which is faster.

73

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

• Produce results as a list of FDs. In order to send the query results, the search task es-

tablishes socket connections to the front-end tasks (one connection per front-end task) at

runtime. For a given query, the search process creates file descriptors for the conduits

that match the query and passes those file descriptors to the front-end task over the

socket using the SEND_MSG system call. Capsicum allows the transfer of an open file

descriptor between two capability-mode tasks (e.g., the search and the front-end tasks)

as long as the destination already has a capability on the conduit referenced by the file

descriptor. However, if the front-end task does not have capabilities on the conduits refer-

enced by the file descriptors4, Capsicum does not allow the SEND_MSG system call and

directs it to SHAI’s reference monitor for policy evaluation at runtime. In order to help

with policy evaluation, the search process may provide evaluation hints (e.g., caching

entries in a friends list). Providing evaluation hints is analogous to what the front-end in

the THOTH-compliant search pipeline does (see Subsection 3.4.2).

Front-end Tasks. As mentioned earlier, the front-end tasks are not part of Apache Lucene’s

codebase. Our implementation mimics a simple web server that accepts users’ connections,

submits users’ queries to the search tasks over pipes, consumes the results as a list of open file

descriptors, and prepares and sends search snippets to users. We highlight two core function-

alities that are required for the front-end tasks to function with SHAI.

• Register as a user task. The front-end task has worker lwCs. Each worker lwC accepts

an incoming user connection. The user can authenticate directly with SHAI’s RM, and

the task may attempt to register with the RM as the connected user’s task to acquire the

already certified accesses.

• Task reset. When a connected user terminates her session, the front-end destroys the

session’s lwC and creates a pristine lwC that can accept a new incoming connection.

4.5 SHAI Evaluation

In this section, we present results of an experimental evaluation of our SHAI prototype. In

particular, we measure the overhead of policy enforcement in our prototype data retrieval

system Sys-E.

4This may happen, for instance, due to mispredictions during offline analysis.

74

4.5. SHAI Evaluation

All experiments were performed on Dell R410 servers, each with 2 Intel Xeon X5650 2.66

GHz 6 core CPUs, 48GB main memory, running FreeBSD 11.0 (x86-64) with support for light-

weight contexts (lwC) [52] and Lucene version 4.7. The prototype uses OpenSSL v1.0.2h.

The servers are connected to Cisco Nexus 7018 switches with 1Gbit Ethernet links, which

offer enough network bandwidth for all our experiments. Each server has a 1TB Seagate

ST31000424SS disk formatted under UFS, which contains the OS installation and a 258GB

static snapshot of English language Wikipedia articles from 2008 [91].

Experimental setup. In the following experiments, we compare the performance of SHAI

to two systems; (i) a system that does not enforce policies (BASELINE), and (ii) a system that

enforces policies via pure dynamic analysis (DYNAMIC). DYNAMIC is very similar to THOTH.

In the following, we describe DYNAMIC in detail and outline how it differs from THOTH.

In DYNAMIC, each task has a current taint, which represents the combined policies of all

the conduits the task has read. A task’s taint can become more restrictive as the task reads

more conduits. To enforce policy, a task’s writes must (i) satisfy the update rule of the destina-

tion conduit’s policy, and (ii) satisfy the declassification conditions of the task’s current taint.

DYNAMIC is very similar to THOTH; for fair comparison, our DYNAMIC implementation, like

SHAI, takes advantage of lwCs and Capsicum for efficient in-process isolation and sandbox-

ing. This yields better performance than the original THOTH prototype, which isolates each

user session and the reference monitor in a separate process.

A process in DYNAMIC, like SHAI, can have multiple Capsicum-sandboxed user lwCs

(each terminates a user connection), and a privileged monitor lwC. Conceptually, the RM in-

tercepts all conduit open calls and writes to perform taint tracking and dynamic policy checks.

As in THOTH, we optimize taint tracking by not invoking the RM during open calls and in-

stead logging such calls in the kernel. During a write, the RM is invoked, it checks the open

call trace to update the task taints and then performs the policy check for the write. To sum-

marize, DYNAMIC and SHAI are identical architecturally: A process has multiple Capsicum-

sandboxed user lwCs and a privileged monitor lwC. Both systems also enforce the same poli-

cies. However, unlike SHAI, which pushes most policy evaluation overhead to the offline

analysis, DYNAMIC performs pure dynamic information flow control: the underlying kernel

intercepts I/O and directs it to the reference monitor, which in turn tracks taint and performs

policy evaluation at runtime.

75

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

4.5.1 Search throughput

First, we measure SHAI’s overhead on search throughput. We drive the experiment with the

following workload. We simulate a population of 40,000 users. Each user is assigned a friend

list consisting of 100 randomly chosen other users, subject to the constraint that the friendship

relationship is symmetric. Each document in the Wikipedia corpus is assigned either a public,

private, or friends-only policy in the proportion 50/30/20%, respectively. Private and friends-

only documents are assigned to a user picked uniformly at random from the population. A

total of 1.1% of the corpus is censored in some region. A censored document’s policy allows

declassification to an external user only if the destination’s blacklist file does not blacklist the

document.

In this experiment, 24 concurrent users issue queries in parallel. We use query strings

based on the popularity of Wikipedia page accesses during one hour on April 1, 2012 [90].

Specifically, we search for the titles of the top 20K visited articles and assign each of the queries

randomly to one of the users. User sessions run for lengths 1, 2, 4, 8, 16, or 32 queries. Addi-

tionally, we report the throughput when users maintain their sessions for the duration of the

experiment (20k queries).

In our setup, two server machines execute a Lucene instance with different index shards.

The front-end submits a search request to one Lucene instance, which in turn forwards the

request to the other instance and merges the results from both shards. To maximize the per-

formance of the baseline and fully expose the policy enforcement overheads, the index shards

and parts of the corpus relevant to our query stream are pre-loaded into the servers’ main

memory caches, resulting in a CPU-bound workload. To ensure load balance, we partitioned

the index into two shards of 22GB and 33GB, chosen to achieve approximately equal query

throughput.

Table 4.1 shows the average throughput over 40 runs of 20K queries each, for BASELINE,

DYNAMIC, and SHAI. The standard deviation over the 40 runs was below 0.87% across all

configurations.

The key result is that SHAI’s offline analysis reduces the runtime enforcement overhead

to near zero for sufficiently long session lengths (0.1% and 0.02% at 16 and 20k queries per

session, respectively). The DYNAMIC system, which relies on pure runtime enforcement

but is otherwise equivalent, has a runtime overhead of approximately 2.5% for large session

lengths.5 Even for short session lengths, SHAI’s runtime overhead is substantially lower than

5A 2.5% overhead may seem small; but increasing the peak capacity of a large datacenter by 2.5% to account for it has a
substantial cost!

76

4.5. SHAI Evaluation

BASELINE DYNAMIC SHAI

Q/S Avg. Avg. overhead Avg. overhead

1 309.36 287.04 7.21% 294.70 4.74%

2 313.90 298.29 4.97% 305.60 2.64%

4 316.49 304.58 3.76% 312.54 1.25%

8 317.60 308.07 3.00% 316.17 0.45%

16 318.66 309.27 2.95% 318.34 0.10%

32 318.95 310.11 2.77% 318.64 0.10%

20k 319.13 311.10 2.52% 319.08 0.02%

TABLE 4.1: Average search throughput in queries per second. Standard deviation
was less than 0.87% from the average in all cases. First column indicates the session

length (queries per session – Q/S).

DYNAMIC’s.

In DYNAMIC and SHAI, the front-end creates a new lwC for every incoming user ses-

sion. In SHAI, the monitor lwC additionally performs the required runtime checks associated

with the connected user’s taint before granting access capabilities. The overheads of setting

up new sessions (creating lwCs and performing runtime checks) dominate the policy enforce-

ment overhead for short sessions. At one query per session, DYNAMIC incurs a 7.21% over-

head, whereas SHAI incurs 4.74%. Here, SHAI outperforms DYNAMIC since (i) SHAI performs

fewer (runtime) checks compared to DYNAMIC’s full policy evaluation for all documents ac-

cessed per query, and (ii) DYNAMIC tracks the search engine’s taint and intercepts its writes

to evaluate them against the search engine’s current taint, whereas the search engine’s ac-

cesses within its capability set are not intercepted in SHAI. Furthermore, as the session length

increases, the cost of SHAI’s per-session setup costs and runtime checks amortize over the

session’s queries, whereas DYNAMIC performs full policy evaluation for each query.

At session length 20k, SHAI incurs 0.02% overhead, significantly better than DYNAMIC’s

2.52% overhead. SHAI’s remaining runtime overhead is due to the kernel’s capability checks;

in particular, when the search engine attempts to send file descriptors corresponding to the

search results, the kernel checks that the front-end has existing access capabilities for these

descriptors. This check is efficient; its runtime complexity is logarithmic in the number of

distinct (directory) capabilities the receiving front-end has. In our prototype, a front-end that

satisfies runtime checks acquires few directory capabilities6, making the check light-weight.

6One on the connected user’s hard links directory, another on named pipes to submit queries to the search engine, and
three on directories with public documents.

77

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

2.9

3.0

3.1

3.2

3.3

100% 75% 50% 25% 0%

T
hr

ou
gh

pu
t (

x1
00

 Q
/s

)

Percentage of users who satisfy runtime checks

Baseline
Dynamic

Shai

FIGURE 4.4: Average search throughput in queries per second of 24 concurrent
users, with sessions of length 8 queries. We included BASELINE and DYNAMIC

performance (upper and lower lines, respectively) for reference. Error bars show
standard deviation.

In the previous experiment, all users connected from the regions that were anticipated

during the offline analysis. When a user connects from a different (not anticipated) region,

the user’s accesses will be subject to runtime checks (as the user’s task will not be able to ac-

quire access capabilities). To quantify the overhead of runtime checks required when runtime

conditions deviate from those anticipated, we next perform an experiment in which we vary

the proportion of users who connect from regions different from those assumed during offline

analysis. Figure 4.4 shows the average throughput over 40 runs of 20K queries each. The

error bars indicate the standard deviation over the 40 runs, which was less than 0.72% in all

cases. We report the average throughput for sessions of length 8 queries, but the following

conclusions regarding the relative overheads of SHAI and DYNAMIC hold across all session

lengths.

With 100% of users connecting from the expected region (i.e., all user sessions satisfy

the runtime checks associated with their taint), SHAI performs 316.17 Q/s (0.45% overhead

over BASELINE), as in Table 4.1. As the proportion of users who connect from their expected

regions decreases, SHAI’s performance declines approximately linearly and approaches that

of DYNAMIC. We note that as SHAI’s performance decreases due to mispredictions, SHAI’s

overhead is strictly lower than DYNAMIC’s. Even when all users connect from unexpected

regions, DYNAMIC incurs more overhead than SHAI because it intercepts the search engine’s

78

4.5. SHAI Evaluation

writes to evaluate them against the search engine’s current taint. More generally, SHAI’s bene-

fits decline gracefully with the accuracy and the freshness of the offline analysis. For instance,

SHAI’s throughput declines approximately linearly as the proportion of accesses to new con-

tent (since the last offline analysis) increases.

4.5.2 Scaling search throughput

The throughput of a single Lucene search engine is relatively modest, which raises the ques-

tion of how much overhead SHAI might impose on a much faster system. In the next set

of experiments, we study SHAI’s overhead in a replicated search engine configuration, and

in a configuration with a hypothetical search engine that has much higher throughput than

Lucene.

Replication

We performed the throughput experiment on a replicated setup. In this experiment, four

server machines execute Lucene instances, where each index shard is replicated on two servers.

A front-end submits a search request to a lightly loaded Lucene instance, which in turn for-

wards the request to another lightly loaded instance processing the other shard and merges

the results from both shards. Here, 48 users issue queries in parallel, users maintain their ses-

sions for the duration of the experiment, and we measured the average throughput over 40

runs, each 20K queries. BASELINE, DYNAMIC, and SHAI all achieved an average throughput

of almost exactly twice (within 0.152%) the respective throughput reported in Table 4.1 at ses-

sion length 20k. This shows that SHAI (like DYNAMIC) scales linearly as the search engine is

replicated.

Hypothetical fast search

To study SHAI’s overhead in data retrieval systems that serve tens of thousands of search re-

quests per second, we replaced the Lucene search engine with (a hypothetical, extremely fast)

one that picks results randomly from the set of documents accessible by the user who issues

the query. We measure SHAI’s overhead over (a) a dummy search engine that performs over

3K Q/s (SETUP3K), and (b) a dummy search engine that performs over 30K Q/s (SETUP30K).

The dummy search engine busy waits to consume a fixed number of CPU cycles in SETUP3K

before returning the search results, whereas it returns the results immediately without busy

waiting in SETUP30K . Note that SETUP30K represents an extreme situation, shown here only

79

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 4 16 64 256 1024 20k

T
hr

ou
gh

pu
t (

x1
00

0
Q

/s
)

Session length

Baseline Dynamic Shai

(A) SETUP3K

 0

 5

 10

 15

 20

 25

 30

 35

1 4 16 64 256 1024 20k

T
hr

ou
gh

pu
t (

x1
00

0
Q

/s
)

Session length
(B) SETUP30K

FIGURE 4.5: Search throughput in (Q/s) of 56 concurrent users, at different session
lengths. Error bars show standard deviation.

to fully expose SHAI’s overheads; we do not expect any realistic search engine to attain such

high per-node throughput.

In this experiment, a total of 56 concurrent users issue queries in parallel to two server ma-

chines running the dummy search engine. User sessions run for lengths 1, 4, 16, 64, 256, 1024,

and 20k queries. Figure 4.5 shows the average throughput at the different session lengths for

SETUP3K and SETUP30K (Figures 4.5a and 4.5b, respectively). We report the average through-

put over 10 runs, each of length 30 seconds. Error bars show the standard deviation across the

10 runs, which was below 0.9% in all cases.

At small session lengths, both SHAI and DYNAMIC have high overheads due to the cost

80

4.5. SHAI Evaluation

of creating lwCs to isolate user sessions. As the session length increases, the cost of session

creation amortizes across queries in SHAI; the overheads are only 0.37% and 1.2% at session

length 20k, in 4.5a and 4.5b respectively. These overheads are due to checking, at a high rate,

that the front-ends have existing capabilities over the transferred file descriptors. On the other

hand, DYNAMIC does not scale beyond 2.39K and 7.76K Q/s in 4.5a and 4.5b, because inter-

cepting I/O to perform policy evaluation at runtime limits performance. This result shows

that SHAI can maintain low overhead even in very high-performance data retrieval systems

while DYNAMIC cannot.

4.5.3 Search latency

We next measure SHAI’s overhead on query latency. For this experiment, a user issues one

query at a time and waits until it receives a result before issuing another query. User sessions

run for lengths 1, 2, 4, 8, 16, 32 or 4k queries.

Q/S BASELINE DYNAMIC SHAImispredict SHAI

1 36.013 38.071 37.314 36.345
2 36.007 37.843 37.122 36.108
4 36.005 37.742 37.084 36.037
8 35.981 37.719 37.021 36.008

16 35.939 37.657 36.916 35.955
32 35.928 37.599 36.904 35.941
4k 35.905 37.597 36.913 35.960

TABLE 4.2: Average query latency (ms). Standard deviation was less than 0.8% in
all cases. The first column indicates the session length (queries per session – Q/S).

Table 4.2 shows the average query latency across 5 runs of 4K queries. Since SHAI’s over-

head relies on satisfying the runtime checks necessary to acquire capabilities, we report SHAI’s

performance when (i) the user logs in from a geographic location different than the region used

during offline analysis (Table 4.2 column 4: SHAImispredict), and when (ii) the user logs in from

the geographic location that is used in the offline analysis (Table 4.2 column 5).

SHAI’s overhead on query latency is very low (at most 0.34ms). Also, SHAImispredict (when

the user fails to satisfy the runtime checks to acquire capabilities) achieves better performance

than DYNAMIC. The performance difference is due to tracking the taint and intercepting the

search engine writes in DYNAMIC, whereas the search engine’s accesses within its capability

set are not intercepted in SHAImispredict .

81

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

4.5.4 Offline analysis

Next, we measure the cost of running the offline analysis over the expected data flows within

the data retrieval system. The runtime of the analysis depends on the number of tasks, the

number of expected accesses and relevant policies of each task, and the number of accesses

certified (each certified access may require creating a hard link in the task’s capability direc-

tory). We limit the analysis to a single CPU. The analysis can be sped up by using more CPUs

since its computation is embarrassingly parallel (except when creating hard links within the

same directory).

Indexer and search engine flows

The analysis takes under 2 seconds to process the flows of the search engine and the indexer

tasks on the entire Wikipedia corpus (∼14.5 million documents subject to∼80K different poli-

cies). Here, the searchable documents’ policies permit read to the indexer and the search en-

gine, and the analysis grants both a single capability for the top level directory of searchable

documents.

Users flows

Next, we measure the analysis time and storage requirements for the users of the data retrieval

system. For this experiment, we assume a fixed default geographic location for every user.

For each user, the offline analysis checks the front-end’s accesses of all public documents, the

user’s private documents, and the friends-only documents of the user’s friends.

We ran the OA on accesses of 100 users picked at random from the population. Processing

the accesses took 90.5 seconds per user on average. This can be optimized using a faster stor-

age medium since most of this time (96.1%) was spent waiting for the magnetic disk to record

hard links for access capabilities. To quantify potential speed-up when using a ramdisk, we

ran the offline analysis for the same 100 users on a Dell R640 server machine with 385GB main

memory, and limited the analysis to use only one core of its Xeon Gold 6142 2.60GHz CPUs.

This server machine has enough memory to store the entire Wikipedia corpus in ramdisk,

allowing us to create hard links in ramdisk too. Using the ramdisk to store hard links, pro-

cessing each user took under 1.2 seconds on average (20% of which was spent creating hard

links).

82

4.5. SHAI Evaluation

Each user’s access capabilities consumed 12.9MB of disk space to store 145.8K hard links

on average. Tasks’ taints and state conditions consumed less than 11MB of disk space for all

100 users combined.

4.5.5 Indexing

Finally, we measure the overhead of policy enforcement on the index computation. We run

the Lucene indexer over the entire 258GB snapshot of the English Wikipedia. The resulting

index is 54GB in size. Table 4.3 shows the average indexing time in minutes across 3 runs. The

standard deviation was less than 2% in all cases.

Average Overhead
BASELINE 652.27
DYNAMIC 672.02 3.02%
SHAI 656.16 0.59%

TABLE 4.3: Indexing time in minutes.

Enforcing policies with SHAI during indexing incurs a runtime overhead of 0.59%, which

is significantly lower than DYNAMIC’s 3.02%. SHAI’s overhead is due to the fact that the

indexer creates many new files, and all these file creations must be intercepted to ensure that

output has appropriate policy given the indexer task’s taint. Policy enforcement in DYNAMIC

additionally intercepts the indexer’s writes to the index files and tracks the indexer’s taint.

Since indexing is a relatively infrequent operation in a search pipeline, we believe that

a runtime overhead of 0.59% is acceptable. However, in other systems where frequent file

creation occurs on the critical path, runtime interception of file creation could be avoided as

follows. Using an appropriate Capsicum capability, we can restrict file creation to a specific

directory with an appropriate policy. All files created in this directory implicitly inherit this

policy. The offline analysis can check upfront that the task creating the files can write to any

file with this policy.

4.5.6 Fault-injection tests

To double-check SHAI’s ability to stop data leaks, we ran the fault injection tests that we used

in THOTH’s evaluation in 3.5.3. In all tests, SHAI stopped all injected data leaks.

Moreover, we injected faults in the search engine to (i) produce data (rather than open file

descriptors) on a socket connected to a front-end, and to (ii) send an open file descriptor for

Alice’s private file to Bob’s front-end task. SHAI stopped the leaks in both cases.

83

Chapter 4. SHAI: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring

4.6 SHAI Conclusion

SHAI shows that it is possible to enforce data-specific flow policies in data retrieval systems

with near-zero runtime overhead in the common case. SHAI relies on a combination of an of-

fline flow analysis, session-level binding of runtime variables, and light-weight runtime mon-

itoring using an OS capability sandbox to achieve this goal. The key insight behind SHAI is to

push as much work as possible to the offline analysis, often relying on anticipated values of

runtime parameters, and to use efficient OS techniques (light-weight contexts and Capsicum

capabilities) to minimize runtime overhead. This combination keeps SHAI’s overheads low,

even when the system throughput is high.

84

5 Related Work

This chapter relates the work presented in this thesis to prior work.

5.1 Data Retrieval Policy Compliance

Grok. Grok [75] is a privacy compliance tool that is deployed in the back-end data analysis

pipelines of the Bing search engine. The primary goal for Grok is to allow automated privacy

compliance checking in a large-scale system. Towards this end, Grok uses static analysis (with

heuristics) over programs and job logs to construct a data flow graph between processes, data

stores, and entities (users or functional teams). Grok uses automatic inference and selective

manual verification by developers to assign attributes to the graph nodes. Grok attributes are

domain-specific labels and represent the intended policy restrictions. Grok policies, written in

a language called Legalease, specify allowed data flows on attributes. To detect privacy viola-

tions, the Grok policies are checked against the labeled data flow graph. Since the labels may

be incorrect as they are derived using unsafe heuristics, the detected violations may have false

positives and false negatives, which must be resolved manually. Nonetheless, Grok demon-

strates that automated policy compliance checking can scale to actual production pipelines.

Grok and the systems presented in this thesis differ in target policies and enforcement

techniques. Grok focuses on the privacy policies which are relevant to the search engine’s

back-end and which apply generically to all data of a specific type (e.g., full IP address cannot

be used for advertising). Therefore, Legalease policies and attributes apply at the granular-

ity of data types (e.g., table columns for IP addresses, clicks, and user accounts). However,

this granularity cannot express individual (data- and user-specific) policies which are partic-

ularly relevant for the user-facing tasks. Therefore, unlike the policy language we presented

in this thesis, Legalease cannot express policies such as private and friends-only data poli-

cies (“Carol’s e-mail is private to Carol only” and “Alice’s blog post is available to Alice and

her friends”). Legalease also does not support content-dependent policies and cannot ex-

press mandatory access logging (e.g., when a log entry must exist before accessing sensitive

85

Chapter 5. Related Work

content), censorship (e.g., when a data item is censored in a specific jurisdiction), and typed

declassification (which allows the declassification of data in specific forms/types) policies.

Due to the different target policies, the systems developed in this thesis use different

enforcement techniques than Grok’s. Grok establishes policy compliance with a fast static

analysis which is a good match for policies specified at the granularity of data types. Pure

static analysis-based policy enforcement, however, cannot enforce individual policies. (This

is primarily due to (a) precision loss when a given program variable is tainted with differ-

ent individual policies over time, and (b) lack of policy-relevant runtime information such as

connected users’ identity and their geographic location.) Instead of static analysis, THOTH

and SHAI rely on runtime monitoring and on offline (flow) analysis and light-weight runtime

checks, respectively.

Since Grok relies on static program analysis, it is language-dependent. It works on lan-

guages such as Hive, Dremel, and Scope where jobs are a sequence of SQL-like expressions.

Moreover, Grok may have false negatives and false positives (since the static analysis uses un-

safe heuristics). THOTH and SHAI do not depend on the language or the runtime (since they

rely on OS primitives, below applications), and offer safe enforcement (no false negatives). On

the other hand, Grok has zero runtime overhead, while THOTH and SHAI incur small runtime

overhead.

Invariant Detector (IVD). IVD [56] is a system to automatically infer authorization rules in

Facebook’s online social network. At a high level, IVD learns likely authorization rules from

normal data manipulation patterns. These authorization rules are checked at runtime against

user requests, preventing bugs due to missing authorization checks by blocking requests that

would otherwise break such invariants.

The systems developed in this thesis prevent application bugs from violating data use

policies, whereas the IVD system prevents vulnerabilities due to missing or incorrect autho-

rization checks. These are different goals. On one hand, the goal of preventing policy vio-

lations is to protect the integrity and confidentiality of data. Ensuring that the applications

themselves do not deviate from their expected behaviour is out of scope. For instance, the

systems developed in this thesis do not protect applications against a (malicious) user invok-

ing debugging or under-development features that are not meant for external users —as long

as the invocation does not violate data policies. On the other hand, IVD’s goal of preventing

vulnerabilities due to incorrect authorization checks is to ensure that systems and applications

do not deviate from their intended behaviour. For instance, IVD blocks a user request if the

86

5.2. Cloud Policy Compliance

corresponding application actions deviate from normal, expected behaviour —regardless of

being compliant with data policies. In this regard, the systems developed in this thesis and

IVD are orthogonal.

Despite having different goals, IVD’s authorization rules can implicitly express data-

specific write access control policies, such as “only Alice’s friends can post to Alice’s profile”.

IVD, however, does not enforce access control on reads and, thus, cannot enforce data confi-

dentiality, while THOTH and SHAI can enforce rich integrity, confidentiality, and declassifica-

tion policies.

5.2 Cloud Policy Compliance

Maniatis et al. [54] outline a vision, architecture and challenges for data protection in the cloud

using secure data capsules. The compliance systems presented in this thesis can be viewed as

a realization of that vision in the context of a data retrieval system, and contribute the design

of a policy language, different enforcement techniques, and experimental evaluation.

Secure Data Preservers (SDaPs) [44] are software components that mediate access to data

according to a user-provided policy. SDaPs are suitable only for web services that interact

with user data through simple, narrow interfaces, and do not require direct access to users’

raw data. This is in contrast to THOTH and SHAI which enforce policies over standard OS

interfaces to users’ raw data.

LoNet [43] enforces data-use policies at the VM-level. Declassification requires trusted

application code, and interception is limited to file I/O using FUSE, which results in high run-

time overhead. This is in contrast to THOTH and SHAI, which enforce policies at the process

boundary, require no trusted applications for declassification (since declassification conditions

are encoded in the policies), and incur low runtime overhead (optimized kernel-level intercep-

tion in THOTH, and light-weight runtime monitoring via OS-sandboxes in SHAI).

5.3 Information Flow Control (IFC)

Numerous systems restrict a program’s data flow to enforce security policies, either in the

programming language (JFlow/Jif [62, 63] for Java, Flow Caml [69] for OCaml, LIO [80]

for Haskell, and UrFlow [21] for Ur/Web [22]), in the language runtime (RESIN [98] for

PHP and Python, Nemesis [24] for PHP, and Aeolus [20] for Java runtime), in web plat-

forms (Hails [40] and W5 [48]), using software fault isolation (duPro [65]), in smartphones

87

Chapter 5. Related Work

(Weir [64] and Maxoid [96] for Android phones), in the OS kernel (Asbestos [31], HiStar [101],

Flume [49], DStar [100], Silverline [61], TightLip [99], LOMAC [36], and IX [57]), across multi-

ple layers (Laminar [74, 68] within the programming language and the OS), or in a hypervisor

(Neon [102] and Xen with Demand Emulation [41]). The compliance systems presented in this

thesis differ from these systems in a number of ways.

Generally, information flow control that is either language-based or enforced at language

runtimes can offer end-to-end guarantees only when the entire pipeline of applications within

the system is written in the respective language. Therefore, such enforcement mechanisms

are not suitable for complex data retrieval systems whose software stacks involve many pro-

gramming languages, libraries, and runtimes. Unlike such systems, THOTH and SHAI enforce

policies on applications written in any programming language, since they enforce data use

policies at the OS level.

OS-level information flow control has been studied extensively in the systems community,

with seminal works such as Asbestos, HiStar, and Flume. Asbestos and HiStar are specialized

operating systems, whereas THOTH and SHAI run on standard operating systems (Linux and

FreeBSD, respectively). Non-standard operating systems solutions pose a significant practi-

cality hurdle for adoption in data retrieval systems; porting complex processing pipelines and

applications to new operating systems is challenging and operationally costly.

Flume extends standard operating systems with IFC. Architecturally, Flume is close to

THOTH but different from SHAI. Flume and THOTH both isolate processes using a Linux

security module and a userspace reference monitor process. SHAI, on the other hand, relies

on offline flow analysis and OS capability sandboxes. Moreover, SHAI’s reference monitor

runs within the same process in a (privileged) monitor lwC. However, like all other OS-level

solutions for IFC (Asbestos, HiStar, Silverline, DStar, TightLip, LOMAC, and IX, Laminar),

Flume uses abstract labels as taints. In contrast, the compliance systems in this thesis use

a declarative policy language to express the data use policies, and the policies themselves

constitute the processes’ taints.

Using policies as taints, as opposed to using labels as taints, results in two fundamental

differences between the compliance systems presented in this thesis and all other OS-level

IFC solutions. First, abstract labels require trusted application components. These trusted

application components are responsible for (a) mapping flow policies to abstract labels, and

(b) performing data declassification. This is in contrast to THOTH and SHAI where policies

encode the required confidentiality and integrity requirements, including the declassification

conditions. Here, a small reference monitor enforces all access and declassification conditions,

88

5.4. Declarative Policies

and application components are trusted only to install correct policies on ingress and egress

nodes. Second, the policies in THOTH and SHAI describe the policy configuration completely.

With abstract labels, the policy configuration is implicit in the code of the trusted application

components that perform data declassification and the policy-to-labels mapping (although

mapping can be automated to some extent [30]).

Resin [98] enforces programmer-provided policies on PHP and Python web applications.

Unlike our declarative policies, Resin’s policies are specified as PHP/Python functions. Resin

tracks flows at object granularity. THOTH and SHAI enforce flow policies at process granu-

larity, which matches the pipelined structure of data retrieval systems and reduces overhead

significantly.

Hails [40] is a Haskell-based web development framework with statically-enforced IFC.

THOTH and SHAI offer IFC at the process boundary, and are independent of any language,

runtime, or framework used for developing applications. COWL [81] confines JavaScript

browser contexts using labels and IFC. The compliance systems developed in this thesis ad-

dress the complementary problem of controlling data flows on the server side. Both Hails and

COWL use DC-labels [79] as policies. DC-labels cannot express content-dependent policies

like our censorship, mandatory access logging and typed declassification policies.

5.4 Declarative Policies

Our policy language is based on Datalog and linear temporal logic (LTL). Datalog and LTL

are well-studied foundations for policy languages (see [51, 16, 28, 67] and [13, 14, 38, 12],

respectively), known for their clarity, conciseness, and high-level of abstraction. The primary

innovation in the policy language is its two-layered structure, where the first layer specifies

access policies and the second layer specifies declassification policies.

Some operating systems (Nexus [76] and Taos [94]), file systems (PFS [88] and PCFS [39]),

and at least one cyber-physical system (Grey [15]) and storage systems (Guardat [87] and Pe-

sos [47]) enforce access policies expressed in Datalog-like languages. THOTH and SHAI can

enforce similar policies but, additionally, they can enforce flow policies and declassification

policies that these systems cannot enforce. Like Guardat, but unlike the other systems listed

above, our policy language supports content-dependent policies. The design of THOTH’s ref-

erence monitor is inspired by that of Guardat’s. Both are separate user-space processes that

intercept I/O to evaluate policies. However, THOTH’s reference monitor tracks data flows,

89

Chapter 5. Related Work

supports declassification policies, and intercepts memcached I/O and network communica-

tion, all of which Guardat’s monitor does not do.

5.5 Hybrid Analysis

SHAI combines offline analysis (which can be viewed as a static analysis) and light-weight

runtime monitoring. There are a number of systems that follow a similar approach for infor-

mation flow control [60, 73], enforcing safety properties [37, 34], and gradual (IFC) typing [18,

35, 77]. Fredrikson et al. in [37] use abstraction refinement and model checking to instrument

code with sufficient checks to enforce policies, and Rocha et al. in [73] use code analysis to

inject policy checks in program code to enforce IFC and declassification policies. Moore and

Chong use static analysis to reduce monitoring overhead by selectively marking variables

which cannot impose security violations to not be tracked at runtime [60]. Similar to SHAI,

these approaches try to perform as much of the enforcement as possible statically, and use

runtime checks where static checks are not possible (i.e, when safety relies on information not

available statically).

However, all these systems require the source code of the application, are language-

dependent, perform the analysis at fine granularity (i.e., program variables), and require re-

running the analysis when code changes. In contrast, SHAI’s offline analysis uses only a

description of the system pipeline, not the source or the compiled code of the application.

Therefore, SHAI’s offline analysis is language-independent. However, since SHAI combines

static and dynamic analysis at coarse-granularity, SHAI’s analysis is less permissive than the

static (program) analysis used by these systems (since SHAI cannot map program inputs to

outputs precisely). Nonetheless, SHAI’s analysis is suitable for data retrieval systems where

application codebases are large and frequently updated, and often written in different pro-

gramming languages. In SHAI, application updates that do not change tasks’ I/O accesses do

not require re-running the offline analysis. Even with I/O changes, not re-running the offline

analysis will only increase runtime overhead since accesses will have to be checked at run-

time. As far as we know, SHAI is the first system to combine static and dynamic analysis at

coarse-granularity, and the first to track meta-data changes that affect the prior decisions of

the static analysis and to adjust them accordingly as discussed in Subsection 4.2.3.

RIF [45] is a policy model similar in concept to the policy model of the compliance systems

presented in this thesis. RIF policies are automata where states represent restrictions and tran-

sitions define allowed changes to restrictions. RIF has been implemented in an extension of

90

5.6. Policy Debugging

the Java programming language called JRIF [46]. Like the aforementioned work, JRIF enforces

policies at fine-granularity by hybrid analysis consisting of mostly static inference and some

runtime checks. All the differences from SHAI mentioned above apply to JRIF as well. Addi-

tionally, JRIF’s declassification conditions are linked to specific program points, not predicates

on the system/conduit state as in SHAI. It is unclear whether a search engine pipeline can be

implemented in JRIF and, if so, what the cost of the runtime checks would be.

5.6 Policy Debugging

EON [19] is a programming logic framework to model and to automatically verify dynamic

access control policies. This is useful in finding policy configuration errors. Towards the same

goal, PolSim [1] uses flow simulation and coverage testing. Other techniques use model check-

ing [104]. These policy debugging frameworks are orthogonal to (and can complement) the

compliance systems presented in this thesis. THOTH and SHAI assume correct policies on data

sources and sinks, and flows cannot violate these policies regardless of policy configurations

on intermediate conduits, whereas IFC policy debugging systems reason about which flows

are permitted (or denied) under a given policy configuration.

Nonetheless, SHAI’s offline analysis and PolSim [1] share common techniques. Both sim-

ulate data flows, and evaluate associated declarative data use policies. In fact, PolSim runs

over policies written in the policy language presented in this thesis. However, both differ

in a few design decisions which fit their respective goals. PolSim requires hints to evaluate

policies that refer to runtime information, processes’ taints represent protection requirements

of consumed data, and PolSim can provide suggestions to relax policies responsible for de-

nied flows. On the other hand, SHAI’s offline analysis defers policies that cannot be resolved

statically to the runtime, taints restrict all possible flows a process might attempt, and denied

flows due to policy violations are assumed to be correct policy intent.

91

6 Concluding Remarks

Data retrieval systems collect, index, and serve heterogeneous data items. Each item may

be subject to a potentially distinct data use policy. Today, policy violations can arise due to

missing policy checks, bugs, and misconfigurations in any of the application components,

which are often fast-evolving, complex, and with huge codebases. Ensuring policy compliance

for data retrieval systems is a challenging problem. This thesis addresses this problem and

presents efficient mechanisms to enforce data use policies.

Towards this end, we first designed a declarative policy language to express data owners’

privacy preferences, the provider’s own data-use policy, and legal requirements. Our policies

are directly attached to data conduits, and specify access control (read/write) and flow control

(declassification) policies.

Taking into consideration practical aspects (low runtime overhead, compatibility with

existing systems, and enforcement separate from application code), we presented THOTH,

a kernel-level policy compliance system. THOTH enforces policies by tracking and control-

ling data flows across tasks through kernel I/O interception. THOTH shows that OS-level

flow control is possible without relying on trusted application components, and it can enforce

rich declassification policies. Using an optimized prototype, we showed that THOTH can be

deployed with low overhead for systems that need to sustain a few hundred search request-

s/second/machine. This demonstrates the viability of coarse-grained taint tracking as a basis

for policy enforcement in data retrieval systems.

The design of THOTH, nonetheless, has a fundamental limitation. Since all of THOTH’s

policy enforcement work happens on the critical I/O path, its runtime overhead increases

with the rate of application I/O. Therefore, THOTH incurs significant runtime overhead on

high throughput data retrieval systems. This, however, offered the key insight in the design

of the second compliance system presented in this thesis.

SHAI is a policy compliance system that enforces data use policies with near-zero runtime

overhead in the critical request path of serving requests. The key insight behind SHAI is to

93

Chapter 6. Concluding Remarks

push as much work as possible to the background in order to achieve a streamlined I/O path.

Towards this end, SHAI relies on a combination of an offline flow analysis and a light-weight

runtime monitoring using an OS capability sandbox. At a high level, the offline analysis deter-

mines the compliant data flows based on runtime profiles and current policies. These compli-

ant flows are then translated into sets of capabilities for each of a service’s tasks. At runtime,

SHAI allows only compliant flows by running tasks in sandboxes and granting each task the

respective capability set. Our prototype shows that SHAI incurs near-zero overhead in the

critical path, even with high rates of I/O.

6.1 The Evolution from THOTH to SHAI

SHAI is a re-design of THOTH with the goal of mitigating most of THOTH’s runtime overhead.

As we abstract away from the implementation details of both systems, the main difference

between THOTH and SHAI is the addition of an offline phase that performs most of the com-

pliance checking ahead-of-time. At a high level, depending on the accuracy and the complete-

ness of the offline analysis input, the policy enforcement overhead would fall between being

proportional to the rate of I/O (i.e., THOTH-like) to being near-zero (i.e., SHAI’s goal). If fact,

we envision that systems using SHAI would evolve to avoid most of the policy enforcement

runtime overhead, as operational data can be used to improve the accuracy and the complete-

ness of the offline analysis input over time.

First, it is safe to argue that SHAI modulo the offline analysis would reduce to THOTH,

since the other key difference between the two systems is the different implementation for

tasks. Instead of processes, SHAI uses lwCs to achieve faster state reset. Using lwCs instead of

processes, however, is an implementation detail that can easily amend THOTH’s implemen-

tation. (In fact, our evaluation presented in Section 4.5 uses DYNAMIC which does exactly

that.)

Now, with the main difference between SHAI and THOTH reduced to the offline analysis,

the completeness and accuracy of the offline analysis input determine whether the enforce-

ment overhead is on par with THOTH-like enforcement or rather near-zero. These two per-

formance points are straightforward to reason about. On one hand, when the offline analysis

input is completely wrong, all I/O is intercepted and is subject to runtime policy evaluation.

On the other hand, when the offline analysis input perfectly predicts the accesses that happen

at runtime, policy enforcement comes at no runtime cost as no I/O is intercepted. In practice,

94

6.1. The Evolution from THOTH to SHAI

we believe that the policy enforcement overhead using SHAI would gradually decrease as the

accuracy and completeness of the offline analysis input improve.

Initially, an administrator can manually reason about the expected tasks’ taints and the

legitimate flows in the system and use such manual analysis to seed the offline analysis input.

Such manual analysis can potentially be inaccurate and incomplete. With an offline analysis

input that is mostly inaccurate, SHAI’s policy enforcement would be close to that of THOTH

as the majority of I/O will be intercepted and will be subject to runtime policy evaluation,

resulting in runtime overhead proportional to the rate of I/O (i.e., THOTH-like). In practice,

the starting overhead point for policy enforcement with SHAI does not necessarily need to be

THOTH-like. In fact, manual analysis can closely approximate the runtime behaviour for sim-

ple pipelines (such as Sys-E described in 4.2.1). As the pipeline grows in complexity, manual

analysis is likely to introduce mispredictions, resulting in runtime overhead.

Operational data, over time, can improve the quality of the offline analysis input (accuracy

and completeness). In principle, there can be automated tools to help system administrators

refine the offline analysis input. These tools can use monitoring the system in production,

testing and simulation, and analyzing traces and logs in order to improve the predictions

of the system’s (future) runtime behaviour, moving the performance point of enforcement

overhead to near-zero.

95

7 Future Directions

7.1 Further Engineering in SHAI

In this section, we describe a few optimizations that can reduce the runtime overhead of SHAI

even further.

Pool of lwCs for user sessions. Our SHAI prototype relies on light-weight contexts (lwCs) to

isolate user sessions. Each incoming user connection requires creating a new front-end task

lwC. This is necessary for the security guarantees of SHAI since reusing lwCs across sessions

would allow a buggy application to leak the private data of one user to another. However,

creating lwCs incurs runtime overhead, which becomes significant when the rate of incoming

connections is high.

Data retrieval systems whose workloads are characterized by idle periods followed by

short bursts of incoming connections may reduce the runtime overhead at peak by main-

taining a pool of pre-created lwCs. During idle (or under-utilized) periods, the system adds

pristine lwCs to the pool, which can be used later. Adding support for such features is straight-

forward and can effectively reduce SHAI’s runtime overhead at workload peaks.

Piggybacking on the application’s own capability checks. SHAI relies on OS capability sand-

boxes for its runtime enforcement. Capability checks are generally efficient since they are

streamlined in the underlying kernel. However, under extremely high throughput, capabil-

ity checks can incur non-negligible runtime overhead. For instance, we showed in Subsec-

tion 4.5.2 that SHAI’s runtime overhead is 1.2% at around 30,000 search request/second/ma-

chine (under long sessions). This overhead is due to checking, at a very high rate, that the

front-ends in Sys-E have existing capabilities over the transferred file descriptors (preventing

a buggy search engine from sending Alice’s private file to Bob). We discuss next how this

overhead can be reduced when applications anyway perform the necessary access checks.

97

Chapter 7. Future Directions

In principle, in a system like Sys-E, the search engine should check if the user who would

receive the file descriptors has access to the documents referenced by them. This check is nec-

essary to avoid data leaks due to a corrupt index. (Filtering search results typically relies on

attributes encoded in the index. A corrupt index may associate Alice’s private data with Bob.)

While our Sys-E implementation does not perform such checks (since (a) we wanted to evalu-

ate against a very competitive baseline with as high throughput as possible and (b) our threat

model allows for missing and incorrect application checks), this check should exist in produc-

tion systems that follow good engineering practices. With SHAI in place, one way to perform

such a check is to query the underlying capability system (Capsicum in our prototype) if the

capability set of the connected front-end includes the file descriptors to be transferred. If the

file descriptors are indeed included, the capability system can mark them at that point as safe

to be transferred to the front-end. Then, the capability system does not need to perform the

inclusion check when transferring the file descriptors and immediately allow the transfer if

they are already marked as safe.

Admittedly, piggybacking on the application’s own checks does not improve the through-

put of the system: regardless whether SHAI is in place or not, the performance of the applica-

tion will be slower when the application performs access checks. Nonetheless, it is important

to note that SHAI’s relative overhead is minimal when the baseline applications perform the

expected access checks, since these checks can offset the cost of SHAI’s policy enforcement.

7.2 Automatic Bootstrapping of Policy Configuration

The policy compliance systems presented in this thesis assume that ingress and egress policies

are correct and are attached to all relevant data sources and sinks. While assigning policies

to data in a new data retrieval system as it evolves is not particularly challenging, it might

be a colossal undertaking for existing large-scale data retrieval providers: Existing large-scale

providers may already have millions of users, billions of data items (replicated and shared

across different services) with a complex dependency graph of derived information, and many

policies and checks scattered across many large application codebases.

We do not address that problem in this thesis. We acknowledge that, in order for the policy

compliance systems developed in this thesis to be adopted by existing large-scale providers,

the compliance systems must be accompanied with tools to automate policy configuration.

Following Grok’s insights, these tools can rely on logs, heuristics, program analysis, and se-

lective manual verification to bootstrap policy configuration in an existing system [75].

98

7.3. Database-Backed Data Retrieval Systems

7.3 Database-Backed Data Retrieval Systems

We have focused on enforcing data use policies in data retrieval systems that operate on un-

structured data. Next, we discuss how the compliance systems presented in this thesis can, in

principle, be applied to database-backed systems.

One approach is to intercept all application queries in the database adapter, look up ap-

plicable policies, and rewrite queries to ensure compliance. This is the approach adopted by

Qapla [58]. Qapla1 can enforce rich and fine-grained (column-, row-, and cell-level) access

control policies specified in SQL. Our experience with Qapla shows that the overhead of pro-

cessing the (policy-compliant) rewritten queries depends on the complexity of the policies in

place.

While Qapla’s enforcement is sufficient to enforce access control at the system’s edge (i.e.,

users’ reads and writes), data retrieval systems consist of processing pipelines where end-

to-end guarantees require flow control. Therefore, (a) extending Qapla’s policies to express

flow control and (b) studying how to efficiently enforce such column-, row- and cell-level

flow policies are two directions that can broaden the applicability of the compliance systems

developed in this thesis. Both directions are challenging. Nonetheless, an approach similar

to that of SHAI might be useful for efficient (low-overhead) enforcement: A task’s queries are

analyzed offline to determine the overall taint applicable to the query results (such taint would

be checked against the task’s taint for restrictiveness), and the database adapter would allow

only queries that were already certified by the offline analysis.

7.4 Beyond Data Retrieval Systems

General data processing systems. In principle, the policy compliance systems presented in

this thesis could be applied to more general data processing systems. In contrast to data re-

trieval systems (whose outputs are a mash-up of the input data and whose computations are

used only to select input data for inclusion in the output), general processing systems per-

form statistical operations (average, summation, etc.) and other rich transformations on input

data. The compliance systems presented in this thesis can be extended to enforce policies in

such general processing systems by including a richer set of declassification operators (e.g.,

statistical operators) that can be enforced directly by the reference monitor.

1I was involved in the development of Qapla, which was led by my colleague Aastha Mehta.

99

Chapter 7. Future Directions

Processing systems with strict isolation between teams. In addition to the statistical trans-

formation mentioned above, some processing systems are often interested in strict isolation

between teams with conflicting interests. Such strict isolation, called the Chinese Wall [17], is

often necessary in information systems for finance, audit, insurance, and law firms. SHAI can

enforce Chinese Wall policies efficiently: the offline analysis grants distinct sets of capabilities

to conflicting teams. Moreover, the policy language, as is, can express various declassification

conditions to relax the Chinese Wall restriction as needed (e.g., after a certain date or when a

report is finalized).

100

Bibliography

[1] Mohamed Alzayat. “PolSim: Automatic Policy Validation via Meta-Data Flow Simulation”.

MA thesis. Saarbruecken: Saarland University, 2016.

[2] Gregory R. Andrews and Richard P. Reitman. “An Axiomatic Approach to Information

Flow in Programs”. In: ACM Transactions on Programming Languages and Systems (TOPLAS)

2.1 (Jan. 1980).

[3] Apache Software Foundation. Apache Lucene. http://lucene.apache.org. Last accessed

June 2019.

[4] Apache Software Foundation. CharFilter offsets correction is wonky. https://issues.apa

che.org/jira/browse/LUCENE-6595. Apache Lucene bug report. Last accessed June

2019.

[5] Apache Software Foundation. Field names can be wrong for stored fields / term vectors after merg-

ing. https://issues.apache.org/jira/browse/LUCENE-3575.Apache Lucene bug

report. Last accessed June 2019.

[6] Apache Software Foundation. MultiSearcher.rewrite() incorrectly rewrites queries. https://

issues.apache.org/jira/browse/LUCENE-2756. Apache Lucene bug report. Last

accessed June 2019.

[7] Apache Software Foundation. Negative wildcard searches on MultiSearcher not eliminating cor-

rectly. https://issues.apache.org/jira/browse/LUCENE-1300. Apache Lucene

bug report. Last accessed June 2019.

[8] Apache Software Foundation. QueryWrapperFilter discards the IndexReaderContext when dele-

gating to the wrapped query. https://issues.apache.org/jira/browse/LUCENE-6503.

Apache Lucene bug report. Last accessed June 2019.

[9] Apache Software Foundation. Special Characters inside a query resolve in wrong hits Export. ht

tps://issues.apache.org/jira/browse/LUCENE-49. Apache Lucene bug report.

Last accessed June 2019.

101

http://lucene.apache.org
https://issues.apache.org/jira/browse/LUCENE-6595
https://issues.apache.org/jira/browse/LUCENE-3575
https://issues.apache.org/jira/browse/LUCENE-2756
https://issues.apache.org/jira/browse/LUCENE-2756
https://issues.apache.org/jira/browse/LUCENE-1300
https://issues.apache.org/jira/browse/LUCENE-6503
https://issues.apache.org/jira/browse/LUCENE-49

Bibliography

[10] Apache Software Foundation. SynonymFilter behaves not as expected with ignoreCase=true. htt

ps://issues.apache.org/jira/browse/LUCENE-6832. Apache Lucene bug report.

Last accessed June 2019.

[11] Apache Software Foundation. TermsFilter might return wrong results if a field is not indexed or

not present in the index. https://issues.apache.org/jira/browse/LUCENE-4511.

Apache Lucene bug report. Last accessed June 2019.

[12] Adam Barth, Anupam Datta, John C. Mitchell, and Helen Nissenbaum. “Privacy and Con-

textual Integrity: Framework and Applications”. In: Proceedings of the 27th IEEE Symposium

on Security and Privacy (S&P). 2006.

[13] Adam Barth, John C. Mitchell, Anupam Datta, and Sharada Sundaram. “Privacy and Utility

in Business Processes”. In: Proceedings of the 20th IEEE Computer Security Foundations Sympo-

sium (CSF). 2007.

[14] David A. Basin, Felix Klaedtke, and Samuel Müller. “Policy Monitoring in First-Order Tem-

poral Logic”. In: Proceedings of the 22nd International Conference on Computer-Aided Verification

(CAV). 2010.

[15] Lujo Bauer, Scott Garriss, and Michael K. Reiter. “Distributed Proving in Access-Control

Systems”. In: Proceedings of the 26th IEEE Symposium on Security and Privacy (S&P). 2005.

[16] Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon. “Design and Semantics of a

Decentralized Authorization Language”. In: Proceedings of the 20th IEEE Computer Security

Foundations Symposium (CSF). 2007.

[17] David F. C. Brewer and Michael J. Nash. “The Chinese Wall Security Policy”. In: Proceedings

of the 10th IEEE Symposium on Security and Privacy (S&P). 1989.

[18] Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. “HLIO: Mixing Static and Dynamic

Typing for Information-flow Control in Haskell”. In: Proceedings of the 20th ACM SIGPLAN

International Conference on Functional Programming (ICFP). 2015.

[19] Avik Chaudhuri, Prasad Naldurg, Sriram K. Rajamani, G. Ramalingam, and Lakshmisub-

rahmanyam Velaga. “EON: Modeling and Analyzing Dynamic Access Control Systems

with Logic Programs”. In: Proceedings of the 15th ACM Conference on Computer and Communi-

cations Security (CCS). 2008.

[20] Winnie Cheng, Dan R. K. Ports, David Schultz, Victoria Popic, Aaron Blankstein, James

Cowling, Dorothy Curtis, Liuba Shrira, and Barbara Liskov. “Abstractions for Usable Infor-

mation Flow Control in Aeolus”. In: Proceedings of the 2012 USENIX Conference on Annual

Technical Conference (USENIX ATC). 2012.

102

https://issues.apache.org/jira/browse/LUCENE-6832
https://issues.apache.org/jira/browse/LUCENE-4511

Bibliography

[21] Adam Chlipala. “Static Checking of Dynamically-varying Security Policies in Database-

backed Applications”. In: Proceedings of the 9th USENIX Conference on Operating Systems De-

sign and Implementation (OSDI). 2010.

[22] Adam Chlipala. “Ur: Statically-typed Metaprogramming with Type-level Record Computa-

tion”. In: Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI). 2010.

[23] Crispin Cowan, Steve Beattie, Greg Kroah-Hartman, Calton Pu, Perry Wagle, and Virgil

Gligor. “SubDomain: Parsimonious Server Security”. In: Proceedings of the 14th USENIX

Conference on System Administration (LISA). 2000.

[24] Michael Dalton, Christos Kozyrakis, and Nickolai Zeldovich. “Nemesis: Preventing Au-

thentication & Access Control Vulnerabilities in Web Applications”. In: Proceedings of the

18th USENIX Security Symposium (USENIX Security). 2009.

[25] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on Large

Clusters”. In: Proceedings of the 6th Symposium on Operating System Design and Implementation

(OSDI). 2004.

[26] Dorothy E. Denning. “A Lattice Model of Secure Information Flow”. In: Communications of

the ACM 19.5 (May 1976).

[27] Dorothy E. Denning and Peter J. Denning. “Certification of Programs for Secure Information

Flow”. In: Communications of the ACM 20.7 (July 1977).

[28] John DeTreville. “Binder, a Logic-Based Security Language”. In: Proceedings of the 23rd IEEE

Symposium on Security and Privacy (S&P). 2002.

[29] Dynamic Host Configuration Protocol (DHCP) client. https://man.freebsd.org/dhcli

ent. Last accessed June 2019.

[30] Petros Efstathopoulos and Eddie Kohler. “Manageable Fine-grained Information Flow”. In:

Proceedings of the 3rd ACM SIGOPS European Conference on Computer Systems (EuroSys). 2008.

[31] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler, Eddie

Kohler, David Mazières, Frans Kaashoek, and Robert Morris. “Labels and Event Processes

in the Asbestos Operating System”. In: Proceedings of the 20th ACM Symposium on Operating

Systems Principles (SOSP). 2005.

[32] Eslam Elnikety, Deepak Garg, and Peter Druschel. “SHAI: Enforcing Data-Specific Policies

with Near-Zero Runtime Overhead”. In: CoRR abs/1801.04565 (2018). URL: http://arxi

v.org/abs/1801.04565.

103

https://man.freebsd.org/dhclient
http://arxiv.org/abs/1801.04565

Bibliography

[33] Eslam Elnikety, Aastha Mehta, Anjo Vahldiek-Oberwagner, Deepak Garg, and Peter Dr-

uschel. “Thoth: Comprehensive Policy Compliance in Data Retrieval Systems”. In: Proceed-

ings of the 25th USENIX Security Symposium (USENIX Security). 2016.

[34] Úlfar Erlingsson and Fred B. Schneider. “SASI Enforcement of Security Policies: A Retro-

spective”. In: Proceedings of the 1999 Workshop on New Security Paradigms (NSPW). 2000.

[35] Luminous Fennell and Peter Thiemann. “Gradual Security Typing with References”. In:

Proceedings of the 26th IEEE Computer Security Foundations Symposium (CSF). 2013.

[36] Timothy Fraser. “LOMAC: Low Water-Mark integrity protection for COTS environments”.

In: Proceeding of the 21st IEEE Symposium on Security and Privacy (S&P). 2000.

[37] Matthew Fredrikson, Richard Joiner, Somesh Jha, Thomas Reps, Phillip Porras, Hassen

Saïdi, and Vinod Yegneswaran. “Efficient Runtime Policy Enforcement Using Counterexample-

guided Abstraction Refinement”. In: Proceedings of the 24th International Conference on Com-

puter Aided Verification (CAV). 2012.

[38] Deepak Garg, Limin Jia, and Anupam Datta. “Policy auditing over incomplete logs: theory,

implementation and applications”. In: Proceedings of the 18th ACM Conference on Computer

and Communications Security (CCS). 2011.

[39] Deepak Garg and Frank Pfenning. “A Proof-Carrying File System”. In: Proceedings of the 31st

IEEE Symposium on Security and Privacy (S&P). 2010.

[40] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières, John Mitchell,

and Alejandro Russo. “Hails: Protecting Data Privacy in Untrusted Web Applications”. In:

Proceedings of the 10th USENIX Symposium on Operating Systems Design and Implementation

(OSDI). 2012.

[41] Alex Ho, Michael Fetterman, Christopher Clark, Andrew Warfield, and Steven Hand. “Prac-

tical Taint-based Protection Using Demand Emulation”. In: Proceedings of the 1st ACM SIGOPS

European Conference on Computer Systems (EuroSys). 2006.

[42] Myeongjae Jeon, Yuxiong He, Sameh Elnikety, Alan L. Cox, and Scott Rixner. “Adaptive

Parallelism for Web Search”. In: Proceedings of the 8th ACM European Conference on Computer

Systems (EuroSys). 2013.

[43] Havard D. Johansen, Eleanor Birrell, Robbert van Renesse, Fred B. Schneider, Magnus Sten-

haug, and Dag Johansen. “Enforcing Privacy Policies with Meta-Code”. In: Proceedings of the

6th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys). 2015.

104

Bibliography

[44] Jayanthkumar Kannan, Petros Maniatis, and Byung-Gon Chun. “Secure Data Preservers for

Web Services”. In: Proceedings of the 2nd USENIX Conference on Web Application Development

(WebApps). 2011.

[45] Elisavet Kozyri and Fred B. Schneider. RIF: Reactive Information Flow Labels. Tech. rep. Cor-

nell University, 2019. URL: https://ecommons.cornell.edu/handle/1813/65012.

[46] Elisavet Kozyri, Owen Arden, Andrew C. Myers, and Fred B. Schneider. JRIF: Reactive Infor-

mation Flow Control for Java. Tech. rep. Cornell University, 2016. URL: https://ecommons.

cornell.edu/handle/1813/41194.

[47] Robert Krahn, Bohdan Trach, Anjo Vahldiek-Oberwagner, Thomas Knauth, Pramod Bhato-

tia, and Christof Fetzer. “Pesos: Policy Enhanced Secure Object Store”. In: Proceedings of the

13th ACM SIGOPS European Conference on Computer Systems (EuroSys). 2018.

[48] Maxwell Krohn, Alex Yip, Micah Brodsky, Robert Morris, and Michael Walfish. “A World

Wide Web Without Walls”. In: 6th ACM Workshop on Hot Topics in Networking (Hotnets). 2007.

[49] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek, Eddie

Kohler, and Robert Morris. “Information Flow Control for Standard OS Abstractions”. In:

Proceedings of 21st ACM SIGOPS Symposium on Operating Systems Principles (SOSP). 2007.

[50] Leslie Lamport. “The Part-time Parliament”. In: ACM Transactions on Computer Systems (1998).

[51] Ninghui Li and John C. Mitchell. “Datalog with Constraints: A Foundation for Trust Man-

agement Languages”. In: Proceedings of the 5th Symposium on Practical Aspects of Declarative

Languages (PADL). 2003.

[52] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby Bhattachar-

jee, and Peter Druschel. “Light-Weight Contexts: An OS Abstraction for Safety and Per-

formance”. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 16). 2016.

[53] Peter Loscocco and Stephen Smalley. “Integrating Flexible Support for Security Policies into

the Linux Operating System”. In: Proceedings of the FREENIX Track: 2001 USENIX Annual

Technical Conference (ATC). 2001.

[54] Petros Maniatis, Devdatta Akhawe, Kevin Fall, Elaine Shi, Stephen McCamant, and Dawn

Song. “Do You Know Where Your Data Are? Secure Data Capsules for Deployable Data

Protection”. In: Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems

(HotOS). 2011.

105

https://ecommons.cornell.edu/handle/1813/65012
https://ecommons.cornell.edu/handle/1813/41194
https://ecommons.cornell.edu/handle/1813/41194

Bibliography

[55] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-

Verlag, 1995.

[56] Paul Marinescu, Chad Parry, Marjori Pomarole, Yuan Tian, Patrick Tague, and Ioannis Pa-

pagiannis. “IVD: Automatic Learning and Enforcement of Authorization Rules in Online

Social Networks”. In: Proceedings of 38th IEEE Symposium on Security and Privacy (S&P). 2017.

[57] M. D. Mcilroy and J. A. Reeds. “Multilevel Security in the UNIX Tradition”. In: Software—Practice

and Experience 22 (1992).

[58] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg, and Peter Druschel. “Qapla:

Policy compliance for database-backed systems”. In: 26th USENIX Security Symposium (USENIX

Security). 2017.

[59] Memcached. http://memcached.org/. Last accessed June 2019.

[60] Scott Moore and Stephen Chong. “Static Analysis for Efficient Hybrid Information-Flow

Control”. In: 2011 IEEE 24th Computer Security Foundations Symposium (CSF). 2011.

[61] Yogesh Mundada, Anirudh Ramachandran, and Nick Feamster. “SilverLine: Preventing

Data Leaks from Compromised Web Applications”. In: Proceedings of the 29th Annual Com-

puter Security Applications Conference (ACSAC). 2013.

[62] Andrew C. Myers. “JFlow: Practical Mostly-Static Information Flow Control”. In: The 26th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 1999.

[63] Andrew C. Myers and Barbara Liskov. “Protecting Privacy Using the Decentralized Label

Model”. In: ACM Transactions on Software Engineering and Methodology (TOSEM) 9.4 (Oct.

2000).

[64] Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. “Practical DIFC En-

forcement on Android”. In: Proceedings of the 25th USENIX Security Symposium (USENIX

Security). 2016.

[65] Ben Niu and Gang Tan. “Efficient User-space Information Flow Control”. In: Proceedings of

the 8th ACM SIGSAC Symposium on Information, Computer and Communications Security (ASIA

CCS). 2013.

[66] OpenSSH. https://www.freebsd.org/doc/handbook/openssh.html.Last accessed

June 2019.

[67] Andrew Pimlott and Oleg Kiselyov. “Soutei, a Logic-Based Trust-Management System”. In:

Proceedings of the 8th International Symposium on Functional and Logic Programming (FLOPS).

2006.

106

http://memcached.org/
https://www.freebsd.org/doc/handbook/openssh.html

Bibliography

[68] Donald E. Porter, Michael D. Bond, Indrajit Roy, Kathryn S. Mckinley, and Emmett Witchel.

“Practical Fine-Grained Information Flow Control Using Laminar”. In: ACM Transactions on

Programming Languages and Systems (TOPLAS) 37.1 (Nov. 2014).

[69] François Pottier and Vincent Simonet. “Information Flow Inference for ML”. In: The 29th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 2003.

[70] Privacy Rights Clearinghouse. http://privacyrights.org. Last accessed June 2019.

[71] Reuters. Adobe data breach more extensive than previoulsy disclosed. http://www.reuters.

com/article/2013/10/29/us-adobe-cyberattack-idUSBRE99S1DJ20131029.

Last accessed June 2019.

[72] Reuters. Target breach worse than thought, states launch joint probe. http://www.reuters.

com/article/2014/01/10/us-target-breach- idUSBREA090L120140110. Last

accessed June 2019.

[73] Bruno P. S. Rocha, Mauro Conti, Sandro Etalle, and Bruno Crispo. “Hybrid Static-Runtime

Information Flow and Declassification Enforcement”. In: IEEE Trans. Information Forensics

and Security 8.8 (2013).

[74] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett Witchel.

“Laminar: Practical Fine-grained Decentralized Information Flow Control”. In: Proceedings

of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI). 2009.

[75] Shayak Sen, Saikat Guha, Anupam Datta, Sriram K. Rajamani, Janice Tsai, and Jeannette M.

Wing. “Bootstrapping Privacy Compliance in Big Data Systems”. In: Proceedings of the 35th

IEEE Symposium on Security and Privacy (S&P). 2014.

[76] Alan Shieh, Dan Williams, Emin Gün Sirer, and Fred B Schneider. “Nexus: a new operating

system for trustworthy computing”. In: Proceedings of the 20th ACM Symposium on Operating

Systems Principles (SOSP). 2005.

[77] Jeremy G. Siek and Walid Taha. “Gradual Typing for Functional Languages”. In: In Scheme

and Functional Programming Workshop. 2006.

[78] Daniel J. Solove and Woodrow Hartzog. “The FTC and the New Common Law of Privacy”.

In: Columbia Law Review 114 (2014).

[79] Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. “Disjunction cate-

gory labels”. In: Proceedings of the 16th Nordic Conference on Information Security Technology

for Applications (NordSec). 2011.

107

http://privacyrights.org
http://www.reuters.com/article/2013/10/29/us-adobe-cyberattack-idUSBRE99S1DJ20131029
http://www.reuters.com/article/2013/10/29/us-adobe-cyberattack-idUSBRE99S1DJ20131029
http://www.reuters.com/article/2014/01/10/us-target-breach-idUSBREA090L120140110
http://www.reuters.com/article/2014/01/10/us-target-breach-idUSBREA090L120140110

Bibliography

[80] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. “Flexible Dynamic

Information Flow Control in Haskell”. In: Proceedings of the 4th ACM Symposium on Haskell.

2011.

[81] Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, Dave Herman, Brad Karp,

and David Mazières. “Protecting Users by Confining JavaScript with COWL”. In: Proceed-

ings of the 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI).

2014.

[82] The EU General Data Protection Regulation. https://www.eugdpr.org/the-regulatio

n. Last accessed June 2019.

[83] The Guardian. Facebook says nearly 50m users compromised in huge security breach. https://

www.theguardian.com/technology/2018/sep/28/facebook-50-million-use

r-accounts-security-berach. Last accessed June 2019.

[84] The New York Times. Facebook Security Breach Exposes Accounts of 50 Million Users. https

://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach

.html. Last accessed June 2019.

[85] The Smack Project. http://schaufler-ca.com. Last accessed June 2019.

[86] TOMOYO Linux. http://tomoyo.osdn.jp/index.html.en. Last accessed June 2019.

[87] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Aastha Mehta, Deepak Garg, Peter Druschel,

Rodrigo Rodrigues, Johannes Gehrke, and Ansley Post. “Guardat: Enforcing data policies

at the storage layer”. In: Proceedings of the 3rd ACM SIGOPS European Conference on Computer

Systems (EuroSys). 2015.

[88] Kevin Walsh and Fred B. Schneider. Costs of Security in the PFS File System. Tech. rep. Com-

puting and Information Science, Cornell University, 2012.

[89] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. “A Taste of

Capsicum: Practical Capabilities for UNIX”. In: Commununications of the ACM 55.3 (Mar.

2012).

[90] Wikimedia Foundation. Image Dump. http://archive.org/details/wikimedia-i

mage-dump-2005-11. Last accessed June 2019.

[91] Wikimedia Foundation. Static HTML dump. http://dumps.wikimedia.org/. Last ac-

cessed June 2019.

[92] Wikipedia. Data breach: Major incidents. http://en.wikipedia.org/wiki/Data_brea

ch#Major_incidents. Last accessed June 2019.

108

https://www.eugdpr.org/the-regulation
https://www.theguardian.com/technology/2018/sep/28/facebook-50-million-user-accounts-security-berach
https://www.theguardian.com/technology/2018/sep/28/facebook-50-million-user-accounts-security-berach
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
http://schaufler-ca.com
http://tomoyo.osdn.jp/index.html.en
http://archive.org/details/wikimedia-image-dump-2005-11
http://dumps.wikimedia.org/
http://en.wikipedia.org/wiki/Data_breach#Major_incidents

Bibliography

[93] Wired. Reporters sued as hackers for finding a security hole with Google. https://www.wired.

co.uk/article/reporter-google-breach-hacker. Last accessed June 2019.

[94] Edward Wobber, Martín Abadi, Michael Burrows, and Butler Lampson. “Authentication in

the Taos Operating System”. In: ACM Transactions on Computer Systems (TOCS) 12.1 (1994).

[95] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-Hartman.

“Linux Security Modules: General Security Support for the Linux Kernel”. In: Proceedings of

the 11th USENIX Security Symposium (USENIX Security). 2002.

[96] Yuanzhong Xu and Emmett Witchel. “Maxoid: Transparently Confining Mobile Applica-

tions with Custom Views of State”. In: Proceedings of the 10th ACM SIGOPS European Confer-

ence on Computer Systems (EuroSys). 2015.

[97] Dawei Yin, Yuening Hu, Jiliang Tang, Tim Daly, Mianwei Zhou, Hua Ouyang, Jianhui Chen,

Changsung Kang, Hongbo Deng, Chikashi Nobata, Jean-Marc Langlois, and Yi Chang.

“Ranking Relevance in Yahoo Search”. In: Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD). 2016.

[98] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M Frans Kaashoek. “Improving applica-

tion security with data flow assertions”. In: Proceedings of the ACM SIGOPS 22nd Symposium

on Operating Systems Principles (SOSP). 2009.

[99] Aydan R. Yumerefendi, Benjamin Mickle, and Landon P. Cox. “TightLip: Keeping Applica-

tions from Spilling the Beans”. In: 4th USENIX Symposium on Networked Systems Design &

Implementation (NSDI). 2007.

[100] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. “Securing Distributed Sys-

tems with Information Flow Control”. In: Proceedings of the 5th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI). 2008.

[101] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. “Making In-

formation Flow Explicit in HiStar”. In: Proceedings of the 7th USENIX Symposium on Operating

Systems Design and Implementation (OSDI). 2006.

[102] Qing Zhang, John McCullough, Justin Ma, Nabil Schear, Michael Vrable, Amin Vahdat, Alex

C. Snoeren, Geoffrey M. Voelker, and Stefan Savage. “Neon: System Support for Derived

Data Management”. In: Proceedings of the 6th ACM SIGPLAN/SIGOPS International Confer-

ence on Virtual Execution Environments (VEE). 2010.

[103] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. “Using CQUAL for Static Analysis of

Authorization Hook Placement”. In: Proceedings of the 11th USENIX Security Symposium

(USENIX Security). 2002.

109

https://www.wired.co.uk/article/reporter-google-breach-hacker
https://www.wired.co.uk/article/reporter-google-breach-hacker

Bibliography

[104] Mingyi Zhao and Peng Liu. “Modeling and Checking the Security of DIFC System Con-

figurations”. In: Automated Security Management. Ed. by Ehab Al-Shaer, Xinming Ou, and

Geoffrey Xie.

110

List of Figures

1.1 An example search engine with processing pipelines for searching, personaliza-

tion, and advertisements. 2

3.1 THOTH data flow. 19

3.2 THOTH architecture. 21

3.3 Average search throughput in queries per second of 48 and 96 concurrent users

(2SERVERS and 4SERVERS, respectively). Users maintain their sessions for

the duration of the experiment. Error bars show standard deviation. 44

3.4 Average search throughput of 48 concurrent users under 2SERVERS, normal-

ized to the baseline Linux . Users maintain their sessions for lengths 1, 2, 5, and

20 queries. Error bars show standard deviation. 45

3.5 Read latency, normalized to Linux’s. 48

4.1 SHAI data flow model. 54

4.2 SHAI architecture. 58

4.3 SHAI prototype. 71

4.4 Average search throughput in queries per second of 24 concurrent users, with

sessions of length 8 queries. We included BASELINE and DYNAMIC perfor-

mance (upper and lower lines, respectively) for reference. Error bars show stan-

dard deviation. 78

4.5 Search throughput in (Q/s) of 56 concurrent users, at different session lengths.

Error bars show standard deviation. 80

111

List of Tables

3.1 THOTH API calls. 28

3.2 THOTH policy language predicates and connectives. 30

3.3 Indexing runtime overhead with THOTH. 43

3.4 Average query search latency in milliseconds for a single user under 2SERVERS.

The user re-establishes a new session with each search query. 46

4.1 Average search throughput in queries per second. Standard deviation was less

than 0.87% from the average in all cases. First column indicates the session

length (queries per session – Q/S). 77

4.2 Average query latency (ms). Standard deviation was less than 0.8% in all cases.

The first column indicates the session length (queries per session – Q/S). 81

4.3 Indexing time in minutes. 83

113

List of Algorithms

1 THOTH policy enforcement algorithm. 26

2 The offline analysis’s algorithm . 65

115

A Policies for Data Flows in a Search

Engine

In this appendix, we provide details of the policies used in our policy-compliant search en-

gine. All policies are represented in the read, update and declassify rules on source conduits

(documents that the search engine indexes, the user profile, etc.). We describe these rules

incrementally: We start from a set of base rules, which we refine to include more policies.

Base rules Our base rules allow anyone to read, update or destroy the source conduit they

are attached to.

read :- TRUE

update :- TRUE

destroy :- TRUE

declassify :- isAsRestrictive(read, this.read)

until FALSE

The read, update and destroy rules have condition TRUE, which always holds, so these

rules do not restrict access at all. The declassify rule insists that the read rule on any con-

duit containing data derived from the source conduit be at least as restrictive as the read rule

above, which will always be the case (because the read rule above is the most permissive read

rule possible). This base policy is pointless in itself, but it serves as the starting point for the

remaining policies.

A.1 Client Policies

First, we describe policies to represent client privacy preferences.

117

Appendix A. Policies for Data Flows in a Search Engine

A.1.1 Private policy

A user Alice may wish that her private files (e.g., her e-mails) be accessible only to her. This can

be enforced by requiring that accesses to Alice’s private files happen in the context of a session

authenticated with Alice’s key. Technically, this is accomplished by replacing the conditions

in the base read, update and destroy rules as shown below and attaching the resulting rules

to Alice’s private files. The predicate sKeyIs(k) means that the current session is authenticated

using the public key k.

read :- sKeyIs(kAlice)

update :- sKeyIs(kAlice)

destroy :- sKeyIs(kAlice)

The declassify rule remains unchanged. It ensures that any conduit containing data de-

rived from Alice’s private files is subject to a read rule that is at least as restrictive as the

revised read rule above. Hence, no such conduit can be read by anyone other than Alice.

A.1.2 Friends-only policy

Alice might want that her blog and online social network profile be readable by her friends.

To do this, she could add a disjunctive (“or”-separated) clause in the read rule requiring that

read accesses happen in the context of a session authenticated with a key kX of one of Alice’s

friends. Alice’s friends are assumed to be listed in the file Alice.acl, which contains an entry

of the form isFriend(kX ,XACL) for each public key kX that belongs to a friend of Alice. The

isFriend entry also states the file XACL which lists the friends of the key kX ’s owner. Note that

the isFriend entry format presented in Section 3.2 was slightly simplified for readability.

read :- sKeyIs(kAlice) ∨

[sKeyIs(kX) ∧ (“Alice.acl”, off) says isFriend(kX ,XACL)]

The predicate ((‘Alice.acl”, off) says isFriend(kX ,XACL)) checks that kX exists in the list

of Alice’s friends (file “Alice.acl”) at some offset off.

A.1.3 Friends-of-friends policy

To additionally allow read access to friends of friends, the policy would require read accesses

to happen in the context of an authenticated session whose key is present in the friend list of

any of Alice’s friends.

118

A.2. Provider Policies

read :- sKeyIs(kAlice) ∨

[sKeyIs(kX) ∧ (“Alice.acl”, off) says isFriend(kX ,XACL)]

∨

[sKeyIs(kY) ∧ (“Alice.acl”, off1) says isFriend(kX ,XACL)

∧ (XACL, off2) says isFriend(kY , YACL)]

The predicate ((‘Alice.acl”, off1) says isFriend(kX ,XACL)) checks that kX exists in the list

of Alice’s friends (file “Alice.acl”) at some offset off1. It also binds the variable XACL to the

friend list of the key kX ’s owner. Next, the predicate ((XACL, off2) says isFriend(kY , YACL))

checks that the public key that authenticated the session kY exists in the list of friends for the

kX ’s owner at some offset off2.

A.2 Provider Policies

Next, we describe two policies that a provider may wish to impose, possibly to comply with

legal requirements.

A.2.1 Mandatory access logging (MAL)

The MAL policy allows an authorized employee of the provider read access to a source con-

duit F if the access is logged. The log entry must have been previously written to the file k.log,

where k is the public key of the employee. The log entry must mention the employee’s key,

the ID of the accessed conduit and the time at which the conduit is accessed with a tolerance

of 60 seconds. To enforce these requirements, a new disjunctive condition is added to the last

read rule above. The . . . in the rule below abbreviate the conditions of the last read rule above.

read :- . . . ∨

sKeyIs(k) ∧ cIdIs(F) ∧

(“auth_employees”, off) says isEmployee(k) ∧

(LOGk = concat(k, “.log”)) ∧

(LOGk, off1) says readLog(k, F, T) ∧ timeIs(curT) ∧

gt(curT, T) ∧ sub(diff, curT, T) ∧ lt(diff, 60)

The predicate sKeyIs(k) binds the public key that authenticated the session (i.e., the public

key of the employee) to the variable k, and cIdIs(F) binds the name of source conduit to F .

Next, the predicate ((“auth_employees”, off) says isEmployee(k)) checks that k exists in the list

119

Appendix A. Policies for Data Flows in a Search Engine

of authorized employees (file “auth_employees”) at some offset off, to verify that the source

conduit’s reader is really an employee. Next, LOGk is bound to the name of the employee’s log

file, k.log. The predicate ((LOGk, off1) says readLog(k, F, T)) checks that the log file contains

an appropriate entry with some time stamp T and the remaining predicates check that the

current time, curT , satisfies T ≤ curT ≤ T + 60s.

Every log file has a read rule that allows only authorized auditors to read the file (the

public keys of all authorized auditors are assumed to be listed in the file “auditors”). It also

has an update rule that allows appends only, thus ensuring that a log entry cannot be removed

or overwritten.

read :- sKeyIs(k) ∧ (“auditors”, off) says isAuditor(k)

update :- sKeyIs(k) ∧

(“auth_employees”, off) says isEmployee(k) ∧

cCurrLenIs(cLen) ∧ cNewLenIs(nLen) ∧

gt(nLen, cLen) ∧ (this, 0, cLen) hasHash (h) ∧

(this, 0, cLen) willHaveHash (h)

In the append-only policy (rule update above), the predicate cCurrLenIs(cLen) binds the

current length of the log file to cLen and the predicate cNewLenIs(nLen) binds the new length

of the log file to nLen. Next, the predicate gt(nLen, cLen) ensures that the update only in-

creases the log file’s length. (c, off, len) hasHash (or willHaveHash) is a special mode of using

says (or willsay) which allows the policy interpreter to refer to the hash of the conduit c’s con-

tent (or updated content in a write transaction) from offset off with length len. In the update

rule, hasHash and willHaveHash are used to verify that the existing file content is not modified

during an update by checking that the hashes of the file from offset 0 to cLen, originally and

after the prospective update, are equal.

A more efficient implementation of the append-only policy could rely on a specialized

predicate unmodified(off, len), which checks that the conduit contents from offset off with

length len were not modified. The update rule could then be simplified to:

update :- sKeyIs(k) ∧

(“auth_employees”, off) says isEmployee(k) ∧

cCurrLenIs(cLen) ∧ cNewLenIs(nLen) ∧

gt(nLen, cLen) ∧ unmodified(0, cLen)

120

A.3. Search Engine Flows

A.2.2 Region-based censorship

Legal requirements may force the provider to blacklist certain source files in certain regions.

Accordingly, the goal of the censorship policy is to ensure that content from a document F can

only reach users in regions whose blacklists do not contain F . The policy relies on a mapping

from IP addresses to regions and a per-region blacklist file. The blacklist file is maintained in

a sorted order to efficiently lookup whether it contains a given document or not.

The censorship policy is expressed by modifying the declassify rule of every source con-

duit cndID as follows:

declassify :- isAsRestrictive(read, this.read) until

(CENSOR(cndID) ∧ isAsRestrictive(read, this.read))

The rule says that the read rule on any conduit to which cndID flows must be as restrictive

as cndID’s read rule until a conduit at which the condition CENSOR(cndID) holds is reached.

CENSOR(cndID) is a macro defined below. The predicate sIpIs(IP) checks that the IP address

of the connecting (remote) party is IP and the predicate IpPrefix(IP,R) means that IP be-

longs to region R. The blacklist file for region R is R.BlackList. In words, CENSOR(cndID)

means that the remote party’s IP belongs to a region R and cndID lies strictly between two

two consecutive entries in R’s blacklist file (and, hence, cndID does not exist in R’s blacklist

file).

sIpIs(IP) ∧ IpPrefix(IP,R) ∧

(FBL = concat(R, “.BlackList”)) ∧

(FBL, off1) says isCensored(cnd1) ∧

add(off2, off1,CENSOR_ENTRY_LEN) ∧

(FBL, off2) says isCensored(cnd2) ∧

lt(cnd1, cndID) ∧ lt(cndID, cnd2)

A.3 Search Engine Flows

A.3.1 Indexing flow

The indexer reads documents with possibly contradictory policies and, in the absence of a ded-

icated provision for declassification, the index (and any documents derived from it) cannot be

served to any client. To prevent this problem, searchable documents allow typed declassifi-

cation. The declassify rule for each searchable document is modified with a new clause that

121

Appendix A. Policies for Data Flows in a Search Engine

allows complete declassification into an (internal) conduit whose update rule allows the con-

duit to contain only a list of object ids. The modified declassify rule of each source document

has the form:

declassify :- . . . until (. . . ∨ (cIsIntrinsic ∧

isAsRestrictive(update,ONLY_CND_IDS)))

The macro ONLY_CND_IDS stipulates that only a list of valid conduit ids can be written

and it expands to:

cCurrLenIs(cLen) ∧ cNewLenIs(nLen) ∧

each in(this, cLen, nLen) says(cndId)

{cIdExists(cndId)}

In the macro above, the predicate cNewLenIs(nLen) binds the new length of the output file

to nLen. The predicate willsay checks that the content update from offset 0 and length nLen is

a list of conduit IDs, and the predicate cIdExists(cndId) checks that cndId corresponds to an

existing conduit.

So far we have assumed that the conduit ids are not themselves confidential. If the pres-

ence or absence of a particular conduit id in the search results may leak sensitive information,

then the source declassification policy can be augmented to require that the list of conduit ids

is accessible only to a principal who satisfies the confidentiality policies of all listed conduits.

Then, the macro ONLY_CND_IDS can be re-written to:

cCurrLenIs(cLen) ∧ cNewLenIs(nLen) ∧

each in(this, cLen, nLen) willsay(cndId)

{cIdExists(cndId) ∧ hasPol(cndId, P) ∧

isAsRestrictive(read, P.read) ∧

isAsRestrictive(declassify, P.declassify)}

Additionally in the macro above, the predicate hasPol(cndId, P) binds P to the policy of

the conduit cndId, and the predicate isAsRestrictive(read, P.read) requires that the confiden-

tiality of the list of conduit ids is as restrictive as the confidentiality requirements of the source

conduit ids themselves.

122

A.3. Search Engine Flows

A.3.2 Profile aggregation flow

Since raw user activity logs are typically private, a declassification is required that enables

a profile generator to produce a user preferences vector (a vector of fixed length) from the

activity logs. However, this preferences vector must further be restricted so that it can be used

to produce only a list of conduit ids (the search results). Further, the user might also want

to ensure that only activity logs generated in the past 48 hours be used for personalization.

This can be achieved by allowing the declassification into the fixed-size vector to happen only

within 172800 seconds of the log’s creation. Suppose an activity log is created at time t and

that the preferences vector has length n. Then, the relevant policy rules on the activity log are

the following (note that t and n are constants, not variables).

read :- sKeyIs(kAlice)

declassify :- [isAsRestrictive(read, this.read) until

isAsRestrictive(update,ONLY_FLOATS(n)) ∧

cIsIntrinsic ∧ timeIs(curT) ∧ gt(curT, t) ∧

sub(diff, curT, t) ∧ lt(diff, 172800)] ∧

[isAsRestrictive(read, this.read) until cIsIntrinsic ∧

isAsRestrictive(update,ONLY_CND_IDS)]

This policy ensures that the raw user logs can only be transformed into the user prefer-

ences vector, which in turn can only be declassified into the search results of the search engine.

The macro ONLY_FLOATS(n) stipulates that only a vector of n floats can be written. It

expands to:

cNewLenIs(nLen) ∧

each in(this, 0, nLen) willsay(value)

{vType(value, FLOAT) ∧ (Cnt++)} ∧

eq(Cnt, n)

In the macro above, the predicate cNewLenIs(nLen) binds the new length of the output

file to nLen. The predicate willsay checks that the content update from offset 0 and length

nLen is a list of values, and the predicate vType(value, FLOAT) checks that each value in the

list is of type FLOAT. The predicate eq(cnt, n) checks that the update contains n floats.

123

B Flow Description Language

In this appendix, we describe SHAI’s flow description language to specify the inputs of the

offline analysis (OA). Recall that the OA takes the following inputs:

1. A list of tasks on which to run the OA. If a task’s accesses depend on runtime parameters,

a separate instance of the task should be listed for every combination of these parameters.

2. For each task, lists of conduits whose reads and writes by this task have to be checked.

3. The steady-state taint of each task.

4. The policies of all conduits in the system.

5. Any policy-relevant meta-data such as friends lists and region-specific content blacklists.

The OA has access to inputs (4) and (5) from the system’s meta-data (i.e., policy store

and underlying storage systems). Therefore, the flow description language is concerned with

inputs (1)–(3). The language has two rules: a task rule to specify the system’s tasks and their

taints, and a data flow graph rule to describe expected data flows between tasks and conduits.

Tasks and their taint. The task rule has the form t :- (id, taint), where id is a unique identifier

for a task and taint is the task’s taint. Taint is specified in our policy language syntax.

The encoding of this rule supports a simple form of templates. Here, the task rule is

extended to t :- (id_[K], taint_[var...]), where each key K provides substitutions for a variable

list in taint. This encoding allows for a concise specification of tasks’ taints that encode a

combination of parameters (e.g., users identity and regions).

Flows between tasks and conduits. A data flow graph rule has the form dfg :- (src, dest), where

src and dest represent the flow’s source and destination, respectively. Exactly one (either src or

dest) is a conduit id, and the other is a task’s id.

The encoding of this rule supports two simple types of pattern matching:

125

Appendix B. Flow Description Language

• The conduit id can be a directory pathname or a key range, which indicates that the rule

applies to all individual conduits contained in the (sub)directories or in the key range.

This encoding is useful when, for instance, a task is expected to access many conduits

within a specific directory.

• The task id can be a task’s id prefix, which indicates that the rule applies to all tasks

whose id match the prefix. This encoding is useful when multiple tasks are expected to

perform similar flows (e.g., users’ tasks may consume all public content).

B.1 Example Data Flow Specification

In this section, we describe the data flow specification in the data retrieval system Sys-E we

described in 4.2.1.

LISTING B.1: Task rules in Sys-E

1 #The indexer task has the t a i n t INDEX_TAINT

2 Indexer , INDEX_TAINT

3

4 #The search engine task has the t a i n t INDEX_TAINT

5 SearchEngine , INDEX_TAINT

6

7 # Front−end worker ta s ks has the t a i n t FE_TAINT

8 FrontEnd_ [UserInfo : ID] , FE_TAINT[UserInfo : PK, UserInfo : Region]

Tasks and taints in Sys-E. Listing B.1 shows the task rules in effect in Sys-E. The indexer and

the search engine tasks (lines 2 and 5) have the taint INDEX_TAINT, which is the index files

policy:

declassify :- FALSE until (cIsIntrinsic ∧ isAsRestrictive(update,ONLY_FD+))

With such policy as taint, a task will be able to consume all searchable content and index

files that permit the ONLY_FD+ declassification. The ONLY_FD+ shares the same spirit as the

ONLY_CND_ID+ presented earlier in Section A.3. ONLY_CND_ID+ ensures that the output

is a list of conduit ids and that the destination conduit’s policy is at least as restrictive as all the

policies of the produced conduit ids. On the other hand, ONLY_FD+ refers to the underlying

126

B.1. Example Data Flow Specification

capability system: It ensures that the output is a list of file descriptors and the destination task

already has access capabilities on all conduits referenced by the transferred file descriptors.

Next, the task rule for the front-end workers (line 8) is a template rule. We will consider

how this rule is instantiated shortly, but beforehand, let’s first consider the (uninstantiated)

FE_TAINT, which has the form:

declassify :- FALSE until

((cIsExtrinsic ∧ sRegionIs(Region)) ∧ isAsRestrictive(read, sKeyIs(PK)) ∨

(cIsIntrinsic ∧ isAsRestrictive(update,ONLY_FD+)))

This taint allows external access to a session connected from geographic region Region

and authenticated with public key PK . (It also allows declassification into a list of file de-

scriptors subject to ONLY_FD+.) Both PK and Region are variables which are bound to lit-

erals when instantiating the front-end task rules. The instantiation depends on USERINFO, a

simple substitution map: ID→ (PK,REGION). For instance, the rule can be instantiated to Al-

ice’s front-end worker taint (i.e., FrontEnd_Alice) using public key Alicepk and region R when

USERINFO maps Alice→ (Alicepk, R). USERINFO should include a distinct mapping entry for

every pair of PK and Region that the OA should consider for the front-end tasks.

Data flows in Sys-E. Listing B.2 shows the data flow graph rules in effect in Sys-E. The

indexer task consumes all searchable content and updates the index files (lines 3 and 4, re-

spectively). In our setup, all searchable contents are included in the directory /etc/media/

content, and all index files are in the directory /etc/media/index.

Next, the search engine consumes the index files (line 8), consumes search queries sent

by front-end workers over query pipes under /etc/media/querypipes (line 9), and may

open all searchable content to later transfer file descriptors to front-end workers (line 10).

Finally, the front-end workers submit queries to the search engine (line 15) and may open

all searchable content (line 16). Note that the later is an over-approximation: The OA checks

the policies on the searchable content conduits against the front-end workers’ taint and certi-

fies only those accesses that are policy compliant. The task id in the data flow graph rules on

lines 15 and 16 is a prefix. This prefix is matched against all tasks’ ids, and the rule is instan-

tiated for all matches. (For instance, FrontEnd_* matches FrontEnd_Alice included in the task

rules.)

127

Appendix B. Flow Description Language

LISTING B.2: Flow rules in Sys-E

1 #The indexer (i) consumes a l l s e a rc h a b le content and

2 # (i i) updates the the index f i l e s

3 / e t c /media/content , Indexer

4 Indexer , / e t c /media/index

5

6 #The search engine (i) consumes the index f i l e s , (i i) consumes

7 # the search queries , and (i i i) may open a l l s e a rc h a b le content

8 / e t c /media/index , SearchEngine

9 / e t c /media/querypipes , SearchEngine

10 / e t c /media/content , SearchEngine

11

12 #The front−end worker of a user (i) submits search q u e r ie s to

13 # the search engine and (i i) po s s ib ly consumes a l l s e a rc h a b le

14 # content (over−approximation)

15 FrontEnd_ * , / e t c /media/querypipes

16 / e t c /media/content , FrontEnd_ *

The flows in Listing B.2 do not capture the file descriptors transfer from the search engine

to the front-end workers since such transfer happens over a socket created at runtime. How-

ever, before the socket is established at runtime, SHAI evaluates the search engine’s taint to

check if it is safe to permit such socket. When the search engine has the taint INDEX_TAINT

described earlier, only a socket that has no read and no write permissions is allowed (i.e., a

socket that cannot carry data and can only be used to transfer file descriptors).

128

	Introduction
	Data Retrieval Systems and Data Use Policies
	Policy Compliance Systems: An Overview
	Comprehensive and Practical Policy Compliance Systems
	Thoth
	Shai
	How do Thoth and Shai compare?

	Thesis Contributions
	Organization

	Background
	Linux Security Module
	Capsicum
	Light-Weight Contexts

	Thoth: Policy Compliance via Runtime Monitoring
	Thoth Design and Architecture
	Data flow model
	Policy language design
	Architecture
	Threat model
	Data flow tracking and enforcement
	Thoth API
	Summary

	Example Policies
	Client policies
	Index policy
	Other data retrieval policies

	Thoth Prototype
	LSM module
	Thoth reference monitor
	Prototype limitations

	Policy-Compliant Data Retrieval with Thoth
	Baseline configuration
	Controlling data flow with Thoth

	Thoth Evaluation
	Thoth-based data retrieval system
	Microbenchmarks
	Fault-injection tests

	Thoth Conclusion

	Shai: Policy Compliance via Offline Analysis and Light-Weight Runtime Monitoring
	Shai Overview
	Data flow model and policy language
	Runtime overhead sources in Thoth
	Key ideas
	Architecture
	Threat model

	Shai Design
	Example: Search pipeline
	The offline analysis (OA)
	Runtime monitor and OS sandbox

	Shai Prototype
	Policy-compliant data retrieval with Shai
	Shai Evaluation
	Search throughput
	Scaling search throughput
	Search latency
	Offline analysis
	Indexing
	Fault-injection tests

	Shai Conclusion

	Related Work
	Data Retrieval Policy Compliance
	Cloud Policy Compliance
	Information Flow Control (IFC)
	Declarative Policies
	Hybrid Analysis
	Policy Debugging

	Concluding Remarks
	The Evolution from Thoth to Shai

	Future Directions
	Further Engineering in Shai
	Automatic Bootstrapping of Policy Configuration
	Database-Backed Data Retrieval Systems
	Beyond Data Retrieval Systems

	Bibliography
	List of Figures
	List of Tables
	Policies for Data Flows in a Search Engine
	Client Policies
	Private policy
	Friends-only policy
	Friends-of-friends policy

	Provider Policies
	Mandatory access logging (MAL)
	Region-based censorship

	Search Engine Flows
	Indexing flow
	Profile aggregation flow

	Flow Description Language
	Example Data Flow Specification

