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Abstract

This thesis analyzes the human tongue shape during speech production. First, a semi-
supervised approach is derived for estimating the tongue shape from volumetric magnetic
resonance imaging data of the human vocal tract. Results of this extraction are used
to derive parametric tongue models. Next, a framework is presented for registering
sparse motion capture data of the tongue by means of such a model. This method
allows to generate full three-dimensional animations of the tongue. Finally, a multimodal
and statistical text-to-speech system is developed that is able to synthesize audio and
synchronized tongue motion from text.
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Zusammenfassung

Diese Dissertation beschäftigt sich mit der Analyse der menschlichen Zungenform wäh-
rend der Sprachproduktion. Zunächst wird ein semi-überwachtes Verfahren vorgestellt,
mit dessen Hilfe sich Zungenformen von volumetrischen Magnetresonanztomographie-
Aufnahmen des menschlichen Vokaltrakts schätzen lassen. Die Ergebnisse dieses Extrak-
tionsverfahrens werden genutzt, um ein parametrisches Zungenmodell zu konstruieren.
Danach wird eine Methode hergeleitet, die ein solches Modell nutzt, um spärliche Bewe-
gungsaufnahmen der Zunge zu registrieren. Dieser Ansatz erlaubt es, dreidimensionale
Animationen der Zunge zu erstellen. Zuletzt wird ein multimodales und statistisches
Text-to-Speech-System entwickelt, das in der Lage ist, Audio und die dazu synchrone
Zungenbewegung zu synthetisieren.
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1. Introduction

1.1. Motivation

The human tongue plays an important role in everyday-life: people use it for eating,
tasting, swallowing, or sometimes also for non-verbal communication. Moreover, as part
of the human vocal tract, it interacts with other articulators, like, for example, the
palate and the teeth, to produce speech. In this process, the whole vocal tract is able to
assume a large quantity of shape con�gurations: the International Phonetic Alphabet1

(International Phonetic Association, 2018) provides an overview on the di�erent speech
related sounds, referred to as phones, that can be created by humans. Therefore, it is
of great interest in speech science to analyze the vocal tract during speech production
to understand how articulators like the tongue move or change their shape to produce
speci�c sounds.
Identifying the degrees of freedom (DoF) of shape changes the tongue can undergo

during speech production, can be seen as one goal of such an analysis. After such DoF
have been found, the obtained results can be used to build a tongue model. Basically, such
a model takes as input some parameters and outputs a tongue shape. More speci�cally,
it is desirable for such a model to have the following properties: �rst, it should be a
statistical model, i.e., it can be used to measure the plausibility of a tongue shape, which
helps to avoid generating unrealistic shapes. Second, its parameter set should distinguish
between DoF that are related to the anatomy of a speaker and the ones that correspond
to the speech related tongue pose. Separating the anatomy from the tongue pose is
important because the articulation strategy may depend on the anatomy of the speaker
(Johnson et al., 1993; Ladefoged and Broadbent, 1957; Honda et al., 1996; Brunner et al.,
2009; Fuchs et al., 2008; Rudy and Yunusova, 2013; Weirich and Fuchs, 2013; Weirich,
Lancia, et al., 2013; Yunusova, Rosenthal, et al., 2012). Third, the parameter set should
be relatively small in order to limit the complexity of the model. Fourth, the model
should be able to generate the whole three-dimensional (3D) surface of the tongue that
is relevant for speech production. Lastly, it should use a shape representation that can
easily be integrated into various applications.

1.2. Areas of application

A tongue model with the described properties can be used as prior knowledge for regis-
tering articulatory data. Here, it is particularly useful for reconstructing the full tongue
shape from data that is incomplete or very sparse, like motion capture recordings. In

1For reference, it is also available in the appendix of this work (Appendix A).
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1. Introduction

this regard, the model may be utilized to �nd a realistic tongue shape that is as close as
possible to the data. Such a model can also be used to equip virtual avatars for multi-
modal spoken interaction with a more natural animation of the tongue. In this context,
it is very important to synthesize the correct motion for the speech audio: McGurk and
MacDonald (1976) found that inconsistencies between visible mouth motions and audible
speech may cause the speech to be perceived incorrectly. Moreover, shape information
provided by the model can be applied in computer-aided pronunciation training (CAPT)
to provide the user with visual information on how to move the tongue to produce a
speci�c sound (Engwall, 2008). Such a tutoring application may also give real-time
feedback about the user's current tongue shape by reconstructing it from motion cap-
ture data (Katz et al., 2014). A tongue model can also be employed in an articulatory
speech synthesis framework to help approximate the vocal tract area function. It can
also help to perform speaker normalization, that is, investigate only shape variations of
an articulation that are independent of the speaker anatomy.
Such a model allows speaker adaptation, which is useful in the aforementioned areas

of applications. For example, in audiovisual speech synthesis, CAPT, and articulatory
speech synthesis, it is vital to replicate the speaker's speci�c tongue shape to match
the remaining anatomy; the tongue should not leave the mouth or penetrate the palate
during articulation. Additionally, for CAPT, the speaker's tongue anatomy in�uences
the articulatory strategy of the speaker. Providing the incorrect strategy could confuse
the subject, especially if real-time feedback was provided from motion capture data of
the tongue. In the case of estimating the tongue shape from motion capture data, using
the wrong anatomy of the tongue may keep the model from registering the data correctly.
For completeness, it should be noted that another class of tongue models exists, so-

called biomechanical models. Such models aim at simulating the entire tongue body,
including the internal muscle activities. This property is useful for, e.g., simulating laryn-
goscopy (Rodrigues et al., 2001), investigating the consequences of surgery (Buchaillard,
Brix, et al., 2007), or for studying muscle activation during speech (Buchaillard, Perrier,
et al., 2009; Wu et al., 2014). However, for the presented target application areas, such
a model may be regarded as too complex.

1.3. Magnetic resonance imaging

In order to derive DoF of the tongue that are speech related, data needs to be available
that shows the 3D structure of the vocal tract during speech production. However,
most of the articulators are contained inside the human mouth and therefore partially
or completely hidden from view. This means that traditional imaging modalities based
on light, e.g., photography, are of limited use for acquiring the desired shape information
for analysis.
Currently, magnetic resonance imaging (MRI) can be regarded as the state-of-the-art

technique for investigating the interior of the human vocal tract during speech. Roughly
speaking, this modality may be used to estimate the hydrogen density at speci�c spatial
locations of a region of interest by using strong magnetic �elds. Details about this

2



1.4. Related work

modality may be found, e.g., in Brown et al. (2014). This modality is considered to be
non-invasive and non-hazardous to the subject (Schenck, 2000), and it is able to provide
dense volumetric measurements.
Moreover, a lot of previous work has focused on adapting the MRI method to the

needs of speech research. The main issue in early studies (Baer et al., 1991) was the
long acquisition time, which forced subjects to maintain the vocal tract con�guration
for a long time with brief interruptions: one scan took around 3 minutes. Subsequent
advances in MRI scanners made it possible to acquire 3D time-evolving models of the
vocal tract (Foldvik et al., 1993; Shadle et al., 1999) and two-dimensional (2D) MRI
movies with up to 5 frames per second (fps) (Demolin et al., 2000). An approach to real-
time magnetic resonance imaging (rtMRI) recording of the vocal tract with synchronized
audio was presented by Narayanan, Nayak, et al. (2004), which o�ered a frame rate of
up to 24 fps and thus enabled the examination of the dynamics of �uent speech using
MRI. This method also applied noise cancellation to deal with the scanner noise. More
recent methods (Kim et al., 2009; Scott et al., 2012; Niebergall et al., 2013; Burdumy
et al., 2015; Fu et al., 2015; Elie et al., 2016; Lingala, Toutios, et al., 2016; Lingala, Zhu,
et al., 2017) further reduced the acquisition time and improved the quality of obtained
scans. For example, Lingala, Zhu, et al. (2017) reported rtMRI scanning at 83 fps for
a single slice, or 27 fps for three slices. Recently, progress has been made towards 3D
rtMRI (Y. Lim et al., 2019).

1.4. Related work

A sizable body of research has focused on analyzing the vocal tract shape during speech
production using di�erent modalities, including X-ray, X-ray microbeam (XRMB), elec-
tropalatography (EPG), cineradiography (CR), ultrasound (US), cone beam computed
tomography (CBCT), real-time magnetic resonance imaging (rtMRI), or computed to-
mography (CT). Table 1.1 provides an overview of previous studies.
Even some of the earliest studies aimed at analyzing the anatomical and speech related

shape di�erences by using multiple subjects; Harshman et al. (1977) investigated these
variations in 2D X-ray data. Nowadays, this imaging modality is no longer used for
this purpose, due to the dangers of the ionizing radiation involved. Narayanan, Alwan,
et al. (1995) and Narayanan, Alwan, et al. (1997) analyzed shape variabilities using 3D
MRI data. Analysis on 2D MRI was conducted by Hoole, Wismüller, et al. (2000),
Ananthakrishnan et al. (2010), Vargas, Badin, and Lamalle (2012), and Vargas, Badin,
Ananthakrishnan, et al. (2012). Zheng et al. (2003) performed this analysis on sparse
sets of 65 points that were manually extracted from 3D MRI scans. Kaburagi (2015)
used principal component analysis (PCA) to analyze the vocal tract area functions of ten
speakers obtained from MRI. The work by Woo, Xing, et al. (2015) used dynamic MRI to
build a spatio-temporal atlas of the vocal tract. Woo, J. Lee, et al. (2015) analyzed a high
resolution atlas of the vocal tract using PCA. In the study by Stone, Woo, et al. (2018),
the muscle architectures of di�erent subjects were investigated. Speaker normalization
was performed by Geng and Mooshammer (2009) and Serrurier et al. (2017).
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Work Modality Analyzed Data Subjects

Mermelstein (1973) X-ray 2D contours 1
Harshman et al. (1977) X-ray 2D contours 5
Perkell and Nelson (1985) XRMB points 3
Baer et al. (1991) MRI vocal tract area

functions and shapes
4

Stone and Lele (1992) US �tted polynomial
functions

1

Narayanan, Alwan, et al. (1995) MRI shapes 4
Stone and Lundberg (1996) 3D US + EPG interpolated meshes 1
Tiede, Yehia, et al. (1996) MRI cross-section shapes 1
Narayanan, Alwan, et al. (1997) MRI + EPG shapes 4
Badin, Bailly, Raybaudi, et al. (1998) MRI + CR meshes 1
Engwall and Badin (1999) MRI meshes + 2D contours 1
Engwall (2000a) MRI meshes 1
Hoole, Wismüller, et al. (2000) MRI 2D contours 9
Kröger et al. (2000) MRI vocal tract area

functions
1

Beautemps et al. (2001) CR + labio-�lm 2D contours 1
Badin, Bailly, Revéret, et al. (2002) MRI + video meshes 1
Zheng et al. (2003) MRI sparse 3D point

clouds
5

Badin and Serrurier (2006) MRI + CT meshes 1
Geng and Mooshammer (2009) EMA �esh points 7
Ananthakrishnan et al. (2010) MRI 2D contours 3
Vargas, Badin, and Lamalle (2012) MRI 2D contours 7
Toutios and Narayanan (2015) rtMRI 2D contours 1
Kaburagi (2015) MRI vocal tract area

functions
10

Woo, Xing, et al. (2015) dynamic MRI images 18
Woo, J. Lee, et al. (2015) MRI deformation �elds 20
Fang et al. (2016) MRI + CBCT meshes 1
Serrurier et al. (2017) MRI 2D contours 11
Stone, Woo, et al. (2018) MRI muscle architectures 14

Table 1.1.: Overview of several studies that have investigated shape variabilities of the vo-
cal tract. The table lists the modality (or modalities) used, the analyzed data
representation, and the number of subjects taking part in the corresponding
study.
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1.5. Contributions

Shape variations related to the anatomy of the subject are also of interest in the �eld of
biomechanical models: Bijar et al. (2016) presented an atlas-based automatic approach
to generate subject-speci�c �nite element tongue meshes. Harandi, Woo, et al. (2017)
used cine MRI to derive speaker-speci�c biomechanical models.
For the intended purposes, the anatomical and speech related variations of the 3D

tongue surface have to be analyzed. Initial work investigating these variations obtained
from MRI data of 9 speakers was presented by Hoole, Zierdt, and Geng (2003), but
neither evaluated nor published (Hoole, personal communication). Moreover, work that
focused on the speech related shape variations of a more dense 3D representation of the
tongue required manual annotation of the MRI data, which makes it less feasible for large
collections of data. Work exists that aims at facilitating tongue shape extraction from
MRI data. However, such approaches are often limited because they are restricted to
2D (Peng et al., 2010; Eryildirim and Berger, 2011; Raeesy et al., 2013; Labrunie et al.,
2018; Somandepalli et al., 2017; Valliappan et al., 2018), produce only a low-level volume
segmentation (J. Lee et al., 2013), or require an anatomical expert to provide the tongue
templates (Harandi, Abugharbieh, et al., 2015).

1.5. Contributions

The contribution of this thesis may be summarized as follows. It proposes a semi-
supervised framework for estimating the tongue shape from provided volumetric MRI
datasets that is speaker and tongue pose independent, which eliminates the need for
manually extracting the corresponding shapes. Furthermore, statistical tongue models
are built and evaluated that ful�ll the aforementioned properties:

� two sets of parameters: one for the anatomy, one for the tongue pose,

� relatively small number of parameters,

� ability to generate 3D shape of tongue, and

� usage of shape representation that can easily be integrated into applications.

Additionally, the tongue models are used to construct a semi-supervised and speaker-
adaptive registration approach for sparse motion capture data of the tongue. Finally,
the derived models are embedded into a multimodal and statistical text-to-speech (TTS)
system that synthesizes speech with synchronized tongue motions. The thesis itself is
based on the following publications:

Hewer, Alexander, Ingmar Steiner, Timo Bolkart, Stefanie Wuhrer, and Korin Richmond
(Aug. 2015). �A statistical shape space model of the palate surface trained on 3D MRI
scans of the vocal tract�. In: International Congress of Phonetic Sciences. Glasgow,
Scotland, pp. 0724.1�0724.5. url: https://www.internationalphoneticassociation.
org/icphs-proceedings/ICPhS2015/Papers/ICPHS0724.pdf.
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1. Introduction

Hewer, Alexander, Ingmar Steiner, and Korin Richmond (Mar. 2019). �Analysis of coar-
ticulation using EMA data with a statistical shape space model of the tongue�. In:
Conference on Electronic Speech Signal Processing. Dresden, Germany, pp. 296�303.
url: http://www.essv.de/pdf/2019_296_303.pdf.

Hewer, Alexander, Ingmar Steiner, and Stefanie Wuhrer (Sept. 2014). �A hybrid approach
to 3D tongue modeling from vocal tract MRI using unsupervised image segmentation
and mesh deformation�. In: Interspeech. Singapore, pp. 418�421. url: http://www.
isca-speech.org/archive/interspeech_2014/i14_0418.html.

Hewer, Alexander, Stefanie Wuhrer, Ingmar Steiner, and Korin Richmond (2016). �Tongue
mesh extraction from 3D MRI data of the human vocal tract�. In: Perspectives in Shape
Analysis. Springer, pp. 345�365. doi: 10.1007/978-3-319-24726-7_16.

� (Sept. 2018). �A multilinear tongue model derived from speech related MRI data of the
human vocal tract�. In: Computer Speech & Language 51, pp. 68�92. doi: 10.1016/j.
csl.2018.02.001.

James, Kristy, Alexander Hewer, Ingmar Steiner, and Stefanie Wuhrer (Sept. 2016). �A
real-time framework for visual feedback of articulatory data using statistical shape
models�. In: Interspeech. San Francisco, CA, USA, pp. 1569�1570. url: http://www.
isca-speech.org/archive/Interspeech_2016/abstracts/2019.html.

Le Maguer, Sébastien, Ingmar Steiner, and Alexander Hewer (Aug. 2017). �An HMM/DNN
comparison for synchronized text-to-speech and tongue motion synthesis�. In: Inter-
speech. Stockholm, Sweden, pp. 239�243. doi: 10.21437/Interspeech.2017-936.

Steiner, Ingmar, Sébastien Le Maguer, and Alexander Hewer (Dec. 2017). �Synthesis of
tongue motion and acoustics from text using a multimodal articulatory database�. In:
IEEE/ACM Transactions on Audio, Speech, and Language Processing 25.12, pp. 2351�
2361. doi: 10.1109/TASLP.2017.2756818.

1.6. Thesis overview

The next chapter presents a basic semi-supervised method for estimating the tongue
shape from MRI data. Additionally, this chapter introduces the MRI datasets that are
used throughout this work. Chapter 3 provides some background on statistical shape
analysis methodologies that are relevant for the rest of the thesis. Afterwards, the basic
shape extraction framework is extended in Chapter 4 to increase the amount of vocal tract
con�gurations the approach can handle. In particular, issues of the basic approach that
were discovered in Chapter 2 and Chapter 3 are resolved. Chapter 4 also derives tongue
models from the used datasets and evaluates them accordingly to �nd the best model.
The following Chapter 5 uses the constructed model to register sparse motion capture
data in order to generate realistic tongue motions. Chapter 6 describes the construction
of a multimodal TTS system that synthesizes speech with synchronized tongue motion.
Finally, the last chapter summarizes the thesis and provides an outlook for potential
future work.
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2. Extracting articulator shape

information from MRI data

2.1. Introduction

2.1.1. Motivation

Deriving a three-dimensional (3D) tongue model that provides access to the degrees of
freedom (DoF) during speech production is the main goal of this work. In this regard, it
is important to choose the right modality for analyzing the surface shape of the tongue
during articulation. Previously, some modalities were mentioned that are or were used
actively for investigating the behavior of the vocal tract. Currently, magnetic resonance
imaging (MRI) can be regarded as the state-of-the-art technique for investigating the
interior of the human vocal tract during speech. It is non-invasive and non-hazardous
to the subject, and in contrast to ultrasound (US) or electromagnetic articulography
(EMA), it is able to provide dense volumetric measurements.
In order to analyze the tongue's shape, it is necessary to select a suitable shape rep-

resentation. A polygon mesh is a good choice in this case because it can easily be used
in various �elds of applications: in computer graphics, such meshes are used to gener-
ate animations of complex objects (Botsch et al., 2010) or to model objects of highly
complex geometry and topology. Additionally, polygon models have been used in speech
processing to generate acoustical simulations (Blandin et al., 2015). Furthermore, poly-
gon meshes already have been successfully used for statistical shape analysis of, e.g.,
human bodies (Allen et al., 2003), faces (Blanz and Vetter, 1999), or tongues (Badin and
Serrurier, 2006).

2.1.2. Related work

Now the question arises how such meshes that are needed for a statistical analysis can
be extracted from MRI scans. Previous studies (Badin, Bailly, Revéret, et al., 2002;
Badin and Serrurier, 2006; Badin, Elisei, et al., 2008; Engwall, 2003; Hoole, Zierdt, and
Geng, 2003; Fang et al., 2016) obtained such meshes by manually annotating the MRI
data. However, such a manual approach is tedious, very time-consuming, and requires
annotators with an expertise in human anatomy. Additionally, the results of such a
strategy might be hard to reproduce because di�erent annotators might disagree on the
shape of the tongue in the same MRI scan due to a personal bias or experience. Clearly,
methods are needed that facilitate this process. They should at least make it semi-
supervised and reproducible. This is also motivated by the fact that nowadays a lot of
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2. Extracting articulator shape information from MRI data

MRI recordings of speech production can be obtained in a short period of time, which
would make manual annotation highly infeasible.
Extracting and estimating the tongue shape from such data is an active �eld of re-

search: Peng et al. (2010) employed an approach based on active contours (C. Li et al.,
2007) to �nd the contour of the tongue in a two-dimensional (2D) mid-sagittal scan,
using a previously trained shape model to control the evolution of the contour. Ery-
ildirim and Berger (2011) extended this approach to align the contour's end points to
the corresponding extremities of the tongue. Raeesy et al. (2013) demonstrated that
oriented active shape models (Jiamin Liu and Udupa, 2009) can be trained to reliably
identify the boundary of the tongue in 2D MRI scans. The method by Labrunie et al.
(2018) uses modi�ed active shape models for segmenting mid-sagittal images obtained
from real-time magnetic resonance imaging (rtMRI). In this context, approaches based
on neural networks are also used for this purpose, like, e.g., the methods by Somandepalli
et al. (2017) and Valliappan et al. (2018). These methods rely on manually preparing a
training set and are limited to the 2D case. Another technique for 2D is the one by Su
et al. (2018) that uses a snake model (Kass et al., 1988) that is geometrically constrained.
Studies focusing on the 3D shape also exist: J. Lee et al. (2013) presented a framework

for minimally supervised tongue segmentation from 3D dynamic MRI. They used the ran-
dom walker approach (Grady, 2006) as the base segmentation technique, which requires
seeds manually provided by the user. This approach only provides access to a low-level
volume segmentation which has to be further processed. Harandi, Abugharbieh, et al.
(2015) employed a template-matching technique to generate a mesh representation of the
tongue from 3D MRI scans. They used a mesh created by an expert from a source scan
as their template, which is then deformed using color information to match a target scan.
Speci�cally, the mesh points are moved in such a way that the color at the original point
in the source scan is similar to the deformed point in the target scan. This approach is
limited by requiring an expert to provide the templates.

2.1.3. Contribution

The contribution of this chapter may be summarized as follows: it describes a basic
semi-supervised way for estimating the 3D tongue shape from volumetric MRI data. In
particular, this approach uses image processing methods and template matching to ex-
tract polygon meshes from provided data. The method is semi-supervised in the sense
that users only have to provide a small set of annotations on the scan and set a few param-
eters. In contrast to previous work, it is independent of the presence of an anatomical
expert. Furthermore, training data is not required in the presented framework. This
chapter is based on, and extends, the following papers:

Hewer, Alexander, Ingmar Steiner, and Stefanie Wuhrer (Sept. 2014). �A hybrid approach
to 3D tongue modeling from vocal tract MRI using unsupervised image segmentation
and mesh deformation�. In: Interspeech. Singapore, pp. 418�421. url: http://www.
isca-speech.org/archive/interspeech_2014/i14_0418.html.
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2.2. Data representation

x

y

z

Figure 2.1.: Simpli�ed illustration showing orientation of the coordinate system used for
the MRI scans. Figure adapted from Richmond, Hoole, et al. (2011). It
is important to note that the origin of the shown coordinate system was
chosen arbitrarily and in general does not correspond to the true origin of
the considered MRI scans.

Hewer, Alexander, Stefanie Wuhrer, Ingmar Steiner, and Korin Richmond (2016). �Tongue
mesh extraction from 3D MRI data of the human vocal tract�. In: Perspectives in Shape
Analysis. Springer, pp. 345�365. doi: 10.1007/978-3-319-24726-7_16.

2.1.4. Overview

The chapter is organized as follows. First, it is discussed how an MRI scan may be
represented as a 3D image. Afterwards, the three datasets of MRI scans used in this work
are presented. Then, the approach is incrementally derived where each step is motivated
by the current immediate results of the process. These steps may be summarized as
follows: the quality of the scan is �rst enhanced by applying a �lter. Then, the scan
is segmented to gain access to the spatial support of the tongue. This segmentation is
used to derive a surface point representation of the data. Finally, this representation
is utilized to estimate a polygon mesh of the tongue shape. After the approach has
been fully described, experiments are conducted to assess its performance. Finally, the
conclusion section provides a summary and outlines needed extensions of the approach.

2.2. Data representation

For visualization purposes and for simplicity, an MRI scan is interpreted as a 3D image in
this work, which also o�ers the advantage that image processing methods can be applied
to the resulting image. Such an image is de�ned as follows:

f : Ω→ I. (2.1)
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2. Extracting articulator shape information from MRI data

Here, the measured nuclear magnetic resonance (NMR)1 at location x ∈ Ω is quantized
and represented as the gray value f(x) ∈ I where a standard visualization uses bright
colors to indicate a high NMR, and dark colors for a low resonance measurement. The
image domain Ω ⊂ R3 represents the area of interest that was measured in the scan
acquisition. An illustration showing the orientation of the coordinate system with respect
to the head can be inspected in Figure 2.1. The set I ⊂ R is a range of all possible
gray values that may occur during the quantization process where a common choice is
the interval I = [0, 255]. As a convention, the following abbreviations are used in the
remainder of this chapter if the meaning is clear from the context:

Original Abbreviation Meaning

f(x) f gray value of image f at position x
∂f(x)
∂a ∂af or fa partial derivative along axis a of f at x
∇f(x) ∇f gradient of f at x

div(f(x)) div(f) divergence of f at position x

For simplicity, the region Ω is assumed to be continuous, bounded, rectangular, and con-
nected throughout this work. Furthermore, the image obeys the following von Neumann
boundary conditions on the boundary ∂Ω of the image domain:

∂f

∂x
= 0, (2.2)

∂f

∂y
= 0, (2.3)

∂f

∂z
= 0 on ∂Ω. (2.4)

These boundary conditions serve the purpose of making the image di�erentiable on the
boundary ∂Ω.
Because such images are 3D, it is di�cult to visualize them directly on 2D media like

a computer screen. Therefore, it is common to only visualize 2D parts of it, so-called
slices. Figure 2.2 shows di�erent types of such slices. Basically, such slices show the gray
values that belong to speci�c axis-aligned image planes:

Slice type Image plane

sagittal xy-plane
coronal yz-plane

transverse xz-plane

By inspecting the examples in Figure 2.2, it becomes apparent that actual MRI scans
are of discrete nature, i.e., there exist x ∈ Ω and y ∈ Ω such that information about
the NMR is missing between those locations. In simpli�ed terms, this means that the
MRI acquisition process samples the continuous image domain Ω at speci�c locations

1correlated with hydrogen molecule density, i.e., high for soft tissue, low for bone and air
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2.3. Datasets

Figure 2.2.: Di�erent slice views of the same MRI scan: sagittal (left), coronal (center),
and transverse slice (right). Colored lines indicate where the individual slices
are located within the di�erent visualizations.

and produces a discrete 3D image. The sample positions are in general located on a
regular grid with the axis-aligned grid spacings hx, hy, and hz. Thus, it is possible to
access the individual samples or voxels of the discrete image by using a unique index
i := (i, j, k)> ∈ O ⊂ N3, such that the gray values of the discrete image are given by:

[f ]i := [f ]i,j,k ≈ f(ω(i, j, k)), (2.5)

where the mapping function ω : O→ Ω is de�ned as

ω(i, j, k) := (ihx, jhy, khz)
>. (2.6)

Here, O may be seen as the discrete counterpart to Ω. Having a relationship between
the continuous image and its discrete version o�ers the advantage that image processing
methods may be modeled in the continuous setting and then transferred to the discrete
version.
In some situations, it might be necessary to gain access to gray values at an unsampled

position x ∈ Ω. These values may be obtained by performing interpolation:

f(x) ≈ [f ] (x, y, z) := interpolate([f ]x,y,z). (2.7)

In this work, a simple linear interpolation is used.

2.3. Datasets

This section serves the purpose of describing the di�erent datasets that are used through-
out this work. In summary, information is provided about

� the amount of recorded speakers,
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2. Extracting articulator shape information from MRI data

� the used phonetic inventory,

� the used MRI scanner,

� and properties of the resulting MRI scans.

2.3.1. Ultrax dataset

The dataset of the Ultrax project (Richmond and Renals, 2012) consists of static MRI
scans of 11 adult speakers of British English where 7 are female and 4 are male. All
speakers are phonetically trained and were recorded while sustaining the vocal tract
con�guration for di�erent phones for around 20 s. For each speaker, 13 speech related
scans are available that correspond to the phone set [i, e, E, a, A, 2, O, o, u, 0, @, s, S]2.
Thus, this dataset focuses on vowels and the two sibilants [s] and [S].
The acquisition took place at the Clinical Research Imaging Centre in Edinburgh using

a Siemens Verio 3T scanner; the scans were recorded with an echo time of 0.93ms and
a repetition time of 2.36ms. The individual scans consist of 44 sagittal slices with a
thickness of 1.2mm and a slice size of 320× 320 pixels. The grid spacings are hx = hy =
1.1875 mm and hz = 1.2 mm.
The labels for the individual subjects consist of two digits and the character sequence

MRIX where X is either F (female subject) or M (male subject).
Currently, this dataset is only available for internal use.

2.3.2. Baker dataset

The Baker dataset (A. Baker, 2011) is a collection of speech related volumetric MRI
recordings of a single speaker. This data was recorded as part of the Ultrax project, but
released separately. It consists of 25 scans of one male speaker that are speech related
and represent di�erent articulatory con�gurations. Its phone set is given by [A, i, u, I, æ,
E, 2, U, e, o, ô, l, w, m, n, N, p, t, k, q, v, ð, z, Z, G]. Thus, it contains more vocal tract
con�gurations than the Ultrax data, especially with respect to consonants. However, it
lacks scans for the phones [a, O, 0, @, s, S].
According to the author, the speaker used creaky voice during the recordings to make

his breath last longer and thus allow for the required acquisition time of about 20 s. The
scans have the same properties as the other scans of the Ultrax project.
In contrast to the Ultrax dataset, this part is freely available. As a convention, the

data of the Baker dataset is combined with the Ultrax dataset in the following, which
increases the speaker amount of the dataset to 12. There, the speaker of the Baker
dataset is referred to as 01MRIM.

2.3.3. USC dataset

The USC dataset (Sorensen et al., 2017) consists of volumetric MRI scans of sustained
sound and rtMRI recordings with synchronized audio. The volumetric part of it contains

2Appendix A provides background information on these symbols.
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vocal tract scans of 17 speakers. The original paper states that all recorded subjects
were native speakers of American English and that English was the only language they
could speak �uently. An acquisition of one scan took around 7 s. In terms of phonetic
inventory, the dataset provides a balance between vowels (13) and consonants (14): [@,
eI, æ, i:, E, Ç, I, oU, u:, O:, 2, A:, U, f, Z, h, l, m, n, N, ô, s, S, T, ð, v, z]
In this case, the labels for the subjects consist of one character and one digit. The

character is either F (female) or M (male).
This work also uses the pilot speaker of this dataset that was kindly provided by the

authors, which results in a total amount of 18 subjects. This speaker is missing a scan
for the phone [@]. Moreover, the release of the database used in this work is lacking a
recording of [A:] for speaker F5.
The recordings were made by using a GE Healthcare 3.0 T Signa Excite HD MRI

scanner. The resulting scans consist of 80 sagittal slices with a thickness of 1.5625mm
where each slice has a size of 160× 160 pixels. The grid spacings are hx = hy = hz =
1.5625 mm.3

This dataset excluding the pilot speaker is freely available for research purposes.

2.3.4. Discussion

Two aspects merit mentioning for these MRI datasets. First of all, it is necessary to
be aware of the following fact: literature (Engwall and Badin, 1999; Badin, Borel, et
al., 2000; Kitamura et al., 2005; Engwall, 2006) has found indicators that static MRI
recordings of sustained vocal tract con�gurations may show unnatural articulation. This
might be caused by the supine position of the subject during recording (Tiede, Masaki,
Wakumoto, et al., 1997; Tiede, Masaki, and Vatikiotis-Bateson, 2000; Kitamura et al.,
2005; Stone, Stock, et al., 2007; Steiner and Ouni, 2011; Steiner, Knopp, et al., 2014) and
the long acquisition time (Engwall and Badin, 1999). In this regard, Engwall (2000b) also
found that static articulations used for volumetric MRI recordings were hyperarticulated.
However, it is important to say that such recordings still provide access to human tongue
shapes. Thus, it is worthwhile to analyze such data to estimate the DoF of the tongue,
even if the articulation is unnatural.
Second, it is important to note that the used corpora of MRI data can be regarded

as small, which means that only a few subjects and vocal tract con�gurations were
recorded. For example, the largest dataset contains scans for 18 speakers. In comparison,
databases of 3D face scans (Yin, Wei, et al., 2006; Yin, Chen, et al., 2008; Savran
et al., 2008), for example, often o�er on average recordings of 100 subjects. Thus, it
might be argued that this data is insu�cient for reliably deriving the DoF of the human
tongue shape. However, assembling and using MRI recordings is a demanding task: �rst,
it requires access to an MRI scanner, along with specialized equipment and technical
sta� experienced in performing such recordings. Second, appropriate speakers have to
be found who are phonetically trained and whose articulation is not impacted by the
MRI scanner. Moreover, the use and distribution of acquired medical imaging data is

3The spacings in the original paper are incorrect (A. Toutios, personal communication).
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governed by strict and extensive data privacy protection: for example, the raw data
cannot normally be published, and using it for research purposes requires the explicit
consent of the corresponding speaker. Under these considerations, it may be stated that
even limited datasets are a valuable resource and can lead to useful results.
Finally, these datasets only provide access to static information of the vocal tract

con�guration. Thus, insight is missing about the natural transitions between phones. In
this regard, 3D rtMRI might be helpful to address this issue in the future.

2.4. Observations

Figure 2.3 shows example scans from the three datasets. Here, it can be seen that the
scans contain much more information than the vocal tract itself. Cropping the individual
images to a region of interest showing the vocal tract leads to an observation: the data is
su�ering from degradations like noise and vignetting artifacts caused by the placement
of the coils needed for the MRI acquisition. Thus, the MRI scanning and reconstruction
process might fail to estimate the correct values, therefore the discrete image should be
assumed to contain only approximations of the original values.
However, these images also lead to another interesting observation: the spatial support

of the tongue region can be visually identi�ed and thus the shape may be estimated from
such MRI scans. This means that it is possible to annotate the scan manually and then
extract the tongue shape from it, which has been successfully done by, e.g., Badin, Bailly,
Revéret, et al. (2002) and Engwall (2003). Like previously stated, manual annotation is
tedious, time-consuming, and moreover the results are hard to reproduce because experts
performing the annotation might introduce a personal bias. Thus, it is worthwhile to
automate the process as much as possible. The di�erent quality of the datasets also
makes it necessary to make the approach �exible, such that it can easily be adapted. In
simple terms, the process presented here is split into three main steps:

1. Preprocess scans

a) crop to region of interest containing the tongue

b) enhance quality of scan

2. Identify spatial support of tongue and related tissue

3. Use found spatial support to estimate tongue shape

In this context, the preprocessing serves two purposes: on the one hand, it prepares the
data for the following steps. On the other hand, it aims at improving the quality of
the scans to make visual inspection easier. For the sake of brevity, the description of
the cropping step is omitted here. Example results for the individual steps are shown in
Figure 2.3.
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Figure 2.3.: Sagittal views of scans from the three datasets. Rows show example results
of the shape extraction process.
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2. Extracting articulator shape information from MRI data

2.5. Dealing with noise

As previously stated, available MRI data often su�ers from degradation: for example,
high frequency measurement noise, small gaps in the contours, or vignetting-like e�ects
make it di�cult to identify the shape of the tongue. As a remedy, image processing
methods can be used to improve the quality of the images before further processing can
take place. In this �eld, a lot of di�erent �lters have been proposed to deal with this
kind of degradation. This section is dedicated to presenting and discussing some means of
denoising MRI data. The reader is encouraged to have a look at Aubert and Kornprobst
(2006), Gonzalez and Woods (2017), and Szeliski (2010) for a bigger selection of available
�lters and more theoretical background.

2.5.1. Gaussian smoothing

A popular choice for removing high-frequency noise in images is a Gaussian �lter. In
this approach, the image is improved by convolving it with a 3D Gaussian kernel. The
continuous version of this operation is given below:

fσ := (Kσ ∗ f)(x) :=

∫
R3

Kσ

(
x− t

)
f(t) dt. (2.8)

Kσ : R3 → R is the Gaussian kernel of the operation with standard deviation σ and
mean 0:

Kσ(x) =
1√

(2πσ2)3
exp(− 1

2σ2
‖x‖2). (2.9)

In Figure 2.4, it can be seen that this kind of �lter attenuates measurement noise. How-
ever, at the same time other vital information may be destroyed during the process: the
�lter may blur away important boundary information that is needed for identifying the
tongue shape. This is due to the fact that this �lter tries to smooth in any direction
without taking any structural information into account.

2.5.2. Median �ltering

Another tool for dealing with this kind of noise is a median �lter. This is a �lter that is
most suited for dealing with salt-and-pepper noise. Such a �lter operates on the image
by using a so-called structuring element. An example for such a structuring element is a
box that is de�ned by a center point x ∈ O and a radius r > 0:

Br(x) := {y | ‖x− y‖∞ ≤ r}. (2.10)

In this case, ‖ · ‖∞ represents the in�nity norm. The median �lter centers such a struc-
turing element at each voxel of the image and replaces the gray value at this voxel with
the median gray value of voxels located in this box, which leads to the �ltered image g:

[g]x = median
(
{[f ]y | y ∈ Br(x) }

)
. (2.11)
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Figure 2.4.: Original version of scan and results for di�erent smoothing �lters. Sagittal
and coronal views are shown. The individual �lters used the following set-
tings. Median �ltering: r = 2. Gaussian convolution: σ = 2. Di�usion:
σ = 1, ρ = 1, λ = 0.1, evolution time t = 2.4.
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2. Extracting articulator shape information from MRI data

In Figure 2.4, the result of such a �ltering can be seen. Compared to the Gaussian
approach, boundaries are better preserved. However, the �lter seems to erode the image
at several locations. This can be seen, for example, in the hard palate area for the scan
of the USC dataset. Here, the edge seems to disappear. Again, the �lter operates on the
image data without taking structural information into account. It is important to note
here that this �lter produces acceptable results for the Ultrax example scan: the noise is
removed and boundaries are preserved.

2.5.3. Surface-enhancing di�usion �ltering

The previous �lters had one drawback: they ignored structural information during the
smoothing process. Thus, a �lter would be preferable that takes such information into
account. In particular, it should remove noise, but preserve or even enhance important
structures such as boundaries.
In the case of two dimensions, the edge-enhancing di�usion approach by Weickert

(1998) provides these wanted features. This approach smooths along edge-like structures
and inside regions where clear coherent structural features are present. In addition to
that, it enhances the contrast across edges. Thus, it might be applied to the individual
sagittal slices of a scan to obtain a denoised version of it. However, in this case, only the
edges in the slices itself would be enhanced. The scan itself is a 3D structure where in-
stead of edges surface-like structures occur that should be enhanced. These observations
motivate to extend the approach to the 3D case. In the following, only the modeling
ideas and the modeling itself are discussed. For the theoretical background, the reader
is encouraged to consult the original work.

Di�usion process

The approach itself is modeled as a partial di�erential equation:

∂tu(x, t) = divs (D(u(x, t))∇su(x, t)) . (2.12)

The function u : Ω× T → I describes how a scan is evolving over time with T := [0,∞)
being the time interval of the process. The state of the function at time 0 corresponds
to the original image f that should be smoothed:

u(x, 0) = f(x). (2.13)

The �ltered version of the image can then be obtained by selecting the state of u at a
speci�c time t. In the equation, the operators divs and∇s only use the spatial coordinates
x of the function:

divs(u) := ux + uy + uz, (2.14)

∇s(u) := (ux, uy, uz)
>. (2.15)
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2.5. Dealing with noise

Di�usion tensor

The matrix D(u(x, t)) is called the di�usion tensor of the process. This tensor governs
the smoothing directions with associated smoothing strength at the given position. It has
to be constructed in such a way that the process has the wanted properties. Therefore,
it should smooth along surface-like structures and inside coherent regions. Additionally,
in the �rst case, it should enhance the contrast along the normal of the surface, which
implies that the smoothing strength in this direction depends on the contrast.
In a �rst step, the required directions are estimated by means of the structure tensor

(Förstner and Gülch, 1987):

Jσ,ρ(u,x, t) := Kρ ∗
(
∇s
(
Kσ ∗s u(x, t)

)
∇s
(
Kσ ∗s u(x, t)

)>)
. (2.16)

Again, the notation ∗s indicates that the convolution only a�ects the spatial components.
In the computation, the image u at time t is �rst presmoothed by applying a Gaussian
convolution with standard deviation σ, which makes the structure tensor robust against
noise. Furthermore, the information in the matrices ∇s(·)∇s(·)> in the local neighbor-
hood is combined by convolving them entry-wise with a Gaussian kernel with standard
deviation ρ. The result of this operation is a matrix that describes the structure in the
spatial neighborhood around the given point: according to the terminology of Weickert
(1998), the largest eigenvalue λ1 belongs to the direction of the highest gray value �uc-
tuations, while the remaining values λ2 and λ3 can be thought of as the preferred local
orientations, the coherence directions. As a consequence of generalizing the approach to
three dimensions, two coherence directions are present instead of one.
By setting λ2 = 1 and λ3 = 1, the di�usion process will always smooth along the

coherence directions with a strength of 1. Now the question arises how to modify the
largest eigenvalue λ1: in coherent regions, it should be near to 1 in order to allow the
process to smooth in all directions. However, in regions with a surface-like structure,
the smoothing should be attenuated along the normal of this structure. To this end, the
Perona-Malik di�usivity (Perona and Malik, 1990) ψλ : R → (0, 1] can be used that is
de�ned as follows:

ψλ(x) :=
1

1 + x2/λ2
. (2.17)

The value λ > 0 is called the contrast parameter of the di�usivity. Roughly speaking,
it determines which surface-like structures should be preserved. For example, a high
value requires a high contrast along the corresponding direction for the structure to be
preserved.
Thus, the �nal di�usion tensor is given by:

D(u(x, t)) := ψλ(Jσ,ρ(u,x, t)). (2.18)

In this context, ψλ(·) is de�ned to be only applied to the largest eigenvalue of the corre-
sponding matrix.
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2. Extracting articulator shape information from MRI data

Results

Results of this �lter can be inspected in Figure 2.4. This time, the �ltered images are
denoised and important structural information is still present. Additionally, small gaps
in the surface structures were �lled by the approach. However, the better performance
of the method comes with a drawback: instead of a single parameter like in the other
two �lters, this time, the 4 parameters σ, ρ, λ, and t have to be selected.

2.5.4. Discussion

In this section, a few �lters were presented and applied to scans of the used datasets.
Example results revealed important observations: whereas the Gaussian �ltering was a
suboptimal choice in all cases, the median �ltering was an appropriate choice for the scans
of the Ultrax dataset. However, the median �lter had issues with the scan of the USC
data. This implies that a speci�c �lter might provide good results for one dataset and
fail for another one. Thus, it is important to visually inspect material of the dataset and
investigate how well �lters are performing. In this work, the surface-enhancing di�usion
�lter was performing favorably for all datasets. In particular, it preserved important
boundary information and was able to close small gaps in the boundary. Therefore, this
�lter is used for the remainder of this work for preprocessing MRI data.

2.6. Detecting the spatial support

The initial step of the proposed process provides access to denoised scans that are cropped
to a region of interest showing the vocal tract. Inspecting such scans in Figure 2.5 reveals
an interesting observation: the spatial support of tissue can easily be distinguished from
the support of other non-tissue objects by using color information. As the tongue consists
of tissue, its spatial support can also be detected in this way. Tissue appears brighter
than other material, which is due to the fact that tissue contains more hydrogen compared
to, e.g., bones or air, which results in a higher NMR value. Thus, the goal of the current
step is concerned with �nding a partition Ω = ΩO ∪ ΩB, such that

� ΩO describes the region of the tissue in the scan and

� ΩB = Ω \ΩO consists of everything else in the scan, like, for example, bones or air.

In the �eld of image processing, such a process is called segmentation. In literature, sev-
eral methods have been proposed to solve this problem. Again, Aubert and Kornprobst
(2006), Gonzalez and Woods (2017), and Szeliski (2010) may be inspected for getting
a small overview of available methods. In this section, several segmentation techniques
are investigated in order to �nd out if they can be used to segment scans of the di�erent
MRI datasets. For visualization purposes, the region ΩO will be colored in red and ΩB

in blue.
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Figure 2.5.: Segmentation results for supervised and unsupervised approaches based on
thresholding. Used parameters for manual thresholding: 15 (Ultrax) and 38
(USC).
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2. Extracting articulator shape information from MRI data

2.6.1. Thresholding

One of the most basic segmentation methods is thresholding. Given a threshold param-
eter t ∈ R and the image f , the regions ΩO and ΩB are derived as follows:

ΩO(t) :={ x | f(x) ≥ t }, (2.19)

ΩB(t) :={ x | f(x) < t }. (2.20)

This is the explicit version of thresholding where the threshold parameter t has to be
provided. Figure 2.5 shows example results of this method. In general, this approach
performs well for all datasets although there are some small gaps in the object region.
However, the threshold parameter has to be manually tuned to the corresponding scan.

2.6.2. Otsu's method

The method by Otsu (1979) tries to automatically derive the thresholding parameter
from the data itself, which makes the resulting segmentation strategy fully automatic.
Basically, it optimizes the thresholding parameter t, such that the following energy is
minimized:

EOtsu(t) = Pr
(
ΩO(t)

) ∫
x∈ΩO(t)

(
f(x)− µO(t)

)2
dx +

Pr
(
ΩB(t)

) ∫
x∈ΩB(t)

(
f(x)− µB(t)

)2
dx. (2.21)

The quantities µO(t) and µB(t) represent the mean gray values in the regions ΩO(t)
and ΩB(t), respectively. The values Pr(ΩO(t)) and Pr(ΩB(t)) denote the probability of
a voxel belonging to ΩO(t) or ΩB(t), respectively. Thus, it �nds the threshold t that
minimizes the gray value variance in each of the resulting regions.
In the original version, both variances are weighted according to the class probability,

which in turn assigns much importance to the larger region. This autoscaling can be
deactivated by reformulating the energy as follows:

Eunweighted Otsu(t) =

∫
x∈ΩO(t)

(
f(x)− µO(t)

)2
dx +

∫
x∈ΩB(t)

(
f(x)− µB(t)

)2
dx. (2.22)

In this version, the variance in each region is penalized in the same way.
Results from both variants can be seen in Figure 2.5. It becomes clear that the original

method by Otsu fails for both datasets because gaps are visible in the object region.
Reasons for this behavior can be found in literature, e.g., Kittler and Illingworth (1985)
or S. U. Lee et al. (1990): the bad performance may be attributed to the histogram of
both scans that are degraded due to vignetting e�ects. Due to the vignetting e�ect, the
gray value variance in the optimal region ΩO becomes too large and the method fails to
�nd a suitable segmentation. However, the unweighted variant of the approach appears
to provide acceptable results where the amount of gaps is reduced.
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2.6. Detecting the spatial support

2.6.3. Chan-Vese segmentation

So far, methods relied on using a threshold parameter to separate the regions from each
other. Another class of techniques uses a level set to derive the segmentation. Roughly
speaking, a level set is a function l : Ω → R, such that ΩO and ΩB can be derived as
follows:

ΩO(l) := { x | l(x) ≥ 0 }, (2.23)

ΩB(l) := { x | l(x) < 0 }. (2.24)

The zero set of l can then be seen as a surface C(l) that separates ΩO(l) from ΩB(l).
Such a level set is, for example, given by the following function:

Lc,r(x) = 1− ‖x− c‖2
r

. (2.25)

According to this level set, all points inside and on the surface of the sphere with radius
r and center c are part of ΩO. All other points are part of the background region.
One method working with level sets is the approach by Chan and Vese (2001). The

original method is intended for 2D images, but can easily be extended to the 3D case.
The wanted segmentation can be obtained by minimizing the following energy:

EChan-Vese(l) = µ area(C(l)) + η volume(ΩO(l))+

λO

∫
x∈ΩO(l)

(f(x)− µO(l))2 + λB

∫
x∈ΩB(l)

(f(x)− µB(l))2 , (2.26)

where area(C(l)) refers to the surface area of C(l) and volume(ΩO(l)) to the volume of
ΩO. It is important to note that this approach requires an initialization where a simple
one su�ces, like the one in Equation (2.25). Like Otsu's method, this approach tries
to �nd a segmentation by minimizing the variance inside each of the regions. However,
by using a level set instead of a threshold parameter, it o�ers the following advantage:
the smoothness of the boundary between ΩO(l) and ΩB(l) can be adjusted by choosing
an appropriate value for µ, where high values increase the smoothness of the resulting
segmentation boundary.
Example results can be seen in Figure 2.6. For both datasets, the approach produces

acceptable results. Unfortunately, this method requires the user to specify four param-
eters, which limits its usefulness as an unsupervised method. Moreover, it needs a level
set to be provided as an initialization.

2.6.4. Graph cut

A third class of methods tries to solve the segmentation problem by using a graph rep-
resentation of the discrete image. Such a method is the graph cut approach by Boykov
and Funka-Lea (2006). A basic form of this technique tries to maximize the energy

Egraph cut(OO,OB) :=
∑
i∈OO

∑
j∈N (i,OO)

g
(

[f ]i , [f ]j
)

+
∑
i∈OB

∑
j∈N (i,OB)

g
(

[f ]i , [f ]j
)
. (2.27)
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Figure 2.6.: Results of the Chan-Vese approach for example scans. White circles in the
sagittal slices illustrate the zero set of the initial level set. Used parameters:
λO = 1, λB = 3, µ = 500, η = 0.

Here, the partition O = OO ∪ OB is the discrete counterpart of Ω = ΩO ∪ ΩB. The set
N (i,K) represents the direct neighbors of i contained in K:

N (x,K) := {j | ‖i− j‖1 = 1 ∧ j ∈ K}. (2.28)

with ‖ · ‖1 denoting the Manhattan metric. Finally, g : R2 → R is a similarity measure
between two gray values, like for example:

g(a, b) := e−|a−b|. (2.29)

Thus, high values for g represent a high similarity while low values indicate a low simi-
larity. This means that the graph cut approach wants to maximize the sum of neighbor
similarities in each region.
The energy in Equation (2.27) may be rewritten:

Egraph cut(OO,OB) =
∑
i∈OO

∑
j∈N (i,OO)

g
(

[f ]i , [f ]j
)

+
∑
i∈OB

∑
j∈N (i,OB)

g
(

[f ]i , [f ]j
)

(2.30)

=
∑
i∈O

∑
j∈N (i,O)

g
(

[f ]i , [f ]j
)

(2.31)

−
( ∑

i∈OO

∑
j∈N (i,OB)

g
(

[f ]i , [f ]j
)

+
∑
i∈OB

∑
j∈N (i,OO)

g
(

[f ]i , [f ]j
))
.

(2.32)
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Figure 2.7.: Example run of the graph cut approach for a 2× 2 image.

Therefore, the original energy can be maximized by minimizing the sum of neighbor
similarities across the boundary between both regions:

E∗graph cut(OO,OB) :=
∑
i∈OO

∑
j∈N (i,OB)

g
(

[f ]i , [f ]j
)

+
∑
i∈OB

∑
j∈N (i,OO)

g
(

[f ]i , [f ]j
)
. (2.33)

This energy can be minimized by constructing a graph representation of the image
and computing the minimum cut of the resulting graph. To this end, it requires also
annotations by the user that serve the purpose of providing example locations in OO and
OB. An example run of the algorithm is illustrated in Figure 2.7.
Roughly speaking, the graph is constructed as follows: �rst, a node for each point

i ∈ O is created. Additionally, two terminal nodes are present: one representing the
object region and the one referring to the background region. Non-terminal nodes are
connected to other nodes via an edge that correspond to the direct neighbors of the
original points. These edges are assigned a weight that represents the gray similarity
between the corresponding image points. Finally, nodes that have been annotated by the
user are connected to one of the two terminal nodes.
In order to obtain the wanted segmentation, the minimum cut of the graph is computed.

A cut of a graph is a partition into two sets: one set is connected only to the object
terminal via some path, and the other set to the background terminal. A cut is performed
by removing a suitable set of edges from the graph. The minimum cut of a graph is the
cut where the sum of participating edge weights is minimal among all possible cuts.
According to Equation (2.33), the minimal cut is the wanted minimizer.
Thus, all nodes are now either connected to the object terminal node or the background

one, which can be used to derive the segmentation.
Example results for 2D images of MRI slices can be inspected in Figure 2.8. In both

cases, the strategy provides acceptable results. In contrast to other methods, the graph
cut approach o�ers the option to select local object regions: the identi�ed object region
in the example results consists largely of the tongue region. Although only 2D results
are shown, it is also possible to apply the strategy to 3D data. In this case, annotating
the image might become more demanding. Moreover, this requirement for annotations
makes the approach suboptimal for an unsupervised process. In this regard, it is also
important to store the annotations in a suitable format in order to make the process
reproducible.
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Figure 2.8.: Example annotations and corresponding graph cut results for 2D images of
MRI slices.
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2.6.5. Discussion

In this section, several segmentation techniques were investigated. Like in the case of
removing noise from the scan data, it is apparent that the choice for the best segmentation
technique depends on the used dataset: if the dataset is small, methods like the graph
cut approach may be used to annotate each scan individually. In cases where vignetting
e�ects in the scans are negligible, Otsu's method or its unweighted variant may be used
to automatically segment the dataset. The Chan-Vese approach is a good choice if the
same parameters work well for each scan of the underlying dataset. The same observation
holds true for basic thresholding: if the same threshold can be used for each scan, then
this strategy is well-suited for segmenting the data in a minimally supervised way. Thus,
it is important to inspect the data and select an appropriate segmentation strategy.
In the remainder of this work, the unweighted variant of Otsu's method is used for the

Ultrax and Baker datasets because it led to satisfying results. For the USC data, basic
thresholding posed a reliable choice.

2.7. Estimating the shape

The previous step provides access to the spatial support of the tissue region in the MRI
scan. Now the question arises how this information can be used to estimate the shape of
the tongue, for example.

2.7.1. Surface point extraction

The obtained partition Ω = ΩO ∪ ΩB can be used to extract surface information of the
tissue region. Here, the set of surface locations may be de�ned by means of the discrete
image as follows:

P := { ω(i) | i ∈ OO ∧N (i,OB) 6= ∅ }. (2.34)

This means that a location ω(i) is classi�ed as a surface location of the tissue region if
it belongs to the region ΩO and at least one of its direct neighbors is located in ΩB.
The obtained partition can also be used to derive surface normals at these points. To

this end, a new binary image g : Ω→ [0, 255] is constructed with

g(x) =

{
255 x ∈ ΩO,

0 x ∈ ΩB.
(2.35)

Now, the structure tensors are computed at the surface points p ∈ P :

Jσ,ρ(p) = Kρ ∗
[
∇gσ(p)∇gσ(p)>

]
. (2.36)

Finally, the eigenvector corresponding to the largest eigenvalue of this structure tensor
is used as the surface normal. By default, these normals are modi�ed in such a way that
they point to the outside of the tissue region.
The result of this whole process is a point cloud where examples can be seen in Fig-

ure 2.9. This basically means that the image representation of the scan was turned into
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Figure 2.9.: Example point clouds obtained from segmentations. The clouds were clipped
and decimated in order to improve visibility.

a fully geometric one such that a second-order surface approximation is now available
for the tissue region. A purely geometric representation o�ers the advantage that is
easy to add information: for example, missing information in one point cloud may be
reconstructed by adding the corresponding points from a di�erent scan where the needed
information is present.

2.7.2. Observations

The previous steps turned a 3D image representation of an MRI scan into a geometric
representation consisting of the surface points of the tissue region. However, this ex-
tracted surface information is currently ill-suited for either representing the shape of an
articulator or performing a shape analysis. This is due to the fact that P is only a loose
collection of points. On the one hand, such point clouds lack any coherent surface infor-
mation because there are gaps between the individual points due to the discrete nature
of the original scans. Additionally, huge holes might also be present because one tissue
region might touch another, which causes the surface points to be missing in the resulting
point cloud. On the other hand, the cloud contains much more information than just the
desired object that should be analyzed. Hence, the following tasks should be addressed:
�rst, the unknown subset of points in P implicitly representing the shape of the wanted
articulator has to be identi�ed. Second, this subset has to be used to derive a shape
representation of the corresponding articulator.
Like stated earlier, a polygon mesh M := (V, F ) is a useful shape representation. The
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Figure 2.10.: Standard visualization of meshes and projection onto corresponding scans.

set V := {vi} with vi ∈ R3 is called the vertex set of the mesh. The other set, F , is
the face set of the mesh. A face f ⊂ F is an ordered list of vertices. Connecting the
vertices in this list with lines in the order in that they occur and adding a line between
the �rst and the last element creates a polygon. Thus, a face can be seen as a surface
patch, such that the whole surface representation is obtained by stitching those surface
patches together.
The above representation is called a face-vertex mesh. This data structure can be used

to derive the edges that connect the individual vertices to each other. Thus, the edge set
E(M) of a mesh M = (V, F ) may be de�ned as follows:

E(M) = {(vi,vj) | vi and vj are directly connected as part of a face f ∈ F}. (2.37)

2.7.3. Visualizing meshes

The meshes occurring in this work describe 3D objects. This means, a suitable visual-
ization is required for this data structure in order to inspect them on a 2D medium. A
standard visualization of meshes can be seen in Figure 2.10 where methods of computer
graphics are used to render the 3D objects. Here, the question arises if such a visual-
ization is suitable for evaluating how well an extracted mesh approximates the surface
of the corresponding articulator. Such a manual evaluation is needed because in general
MRI datasets are lacking a ground truth for the contained articulator shapes. Of course,
it is possible to visualize the mesh and the corresponding point cloud in the same image.
In this case, the resulting image would be di�cult to interpret because surface points of
the wanted articulator could be located below the mesh surface and thus be hidden from
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Figure 2.11.: Results of the Poisson reconstruction for given point clouds. Meshes and
their projection onto the corresponding scans are shown. Again, the point
clouds are modi�ed to improve visibility. The reconstruction itself used the
unmodi�ed point clouds.

view.
To this end, another means of visualization is needed that brings the extracted mesh

into a clear context with the MRI scan it was extracted from. In this work, the projection
of a mesh M onto an MRI scan is also used as visualization. This means that all voxels
of the scan image containing a part of the mesh surface are colored in white. The
coordinates of the corresponding voxels are obtained by sampling points on the edges of
the mesh. Examples using this type of visualization can be inspected in Figure 2.10.

2.7.4. Poisson reconstruction

The Poisson reconstruction (Kazhdan et al., 2006) is a method for estimating a surface
mesh purely from data of a given point cloud. Example results of this method are shown
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Figure 2.12.: Used templates with landmarks of the tongue (left) and hard palate (right).

in Figure 2.11. The reconstruction was obtained by using the MeshLab tool (Cignoni
et al., 2008) and applying the default parameters. By inspecting the results, it becomes
clear that this method reconstructs a mesh approximating all the surface points contained
in the cloud, which poses an issue because only the shape of the wanted articulator should
be estimated. Of course, this problem could be solved by manually removing unneeded
regions. Another issue is given by the fact that the meshes obtained from this method
are missing semantic information. This means that for one reconstruction the vertex vi
might belong to the tongue tip while in the reconstruction of another scan this speci�c
vertex might belong to a di�erent region. For analyzing the shape variations, however,
this semantic information is needed. It allows for example to analyze how the tongue tip
is changing depending on the produced sound.

2.7.5. Template matching

Motivation

A class of methods that extract a mesh from a collection of points and provide semantic
information afterwards are template matching methods. These methods use a single
template that is deformed to match the corresponding points. Such an approach can
be described as follows: given a template mesh M = (V, F ) that resembles the desired
object and a point cloud P , it �nds a set A := {Ai} where Ai : R3 → R3 is a rigid
body motion for the vertex vi ∈ V , such that the deformed mesh M∗ = (V ∗, F ) with
V ∗ := {Ai(vi)} is near the point cloud data P . Thus, a template matching approach
provided with a template shaped like a tongue, for example, tries to identify the subset
of points resembling a tongue-like shape and deforms the provided template accordingly
to match these points. Template matching strategies can also make use of so-called
landmark information: in this case, a user provides desired correspondences between a
few mesh vertices vi and locations pi ∈ Ω, which help to guide the template matching
approach.

Template meshes

In this work, two articulators are of interest: the tongue and the hard palate. Templates
and used landmarks for these two parts of the vocal tract are shown in Figure 2.12. Both
templates were extracted from MRI data by means of medical imaging software (Rosset
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2. Extracting articulator shape information from MRI data

et al., 2004). Afterwards, the templates were made symmetric to remove this particular
bias towards the original speaker by mirroring the respective mesh at a selected center
plane.
The palate template consists of 994 vertices and 1828 faces with an average edge length

of 1.4mm. The tongue template contains 3100 vertices and 6102 faces with an average
edge length of 1.8mm. Here, the tongue template is lacking the sublingual part. This
means that the part below the line from the jaw to the epiglottis is missing, as well as
the part below the tongue tip that is negligible for speech production.

Used approach

This work uses the template matching approach by Wuhrer et al. (2015). In this strategy,
the following type of rigid body motion is used:

Ai := Mtranslate(vi)Mrotate(ai, ξi)Mtranslate(ti)Mtranslate(−vi). (2.38)

Thus, �rst the vertex is mapped to a local coordinate system centered at vi byMtranslate(vi).
Afterwards, it is translated by the vector ti. The next transformation is given by
Mrotate(ai, ξi) that rotates the result around the axis ai by the angle ξi. Finally, it
is translated back into the global coordinate system. Using an axis-angle representa-
tion of the rotation serves the purpose of making the rotation angle comparable among
neighboring vertices.
Therefore, for each vertex vi, the translation vector ti, the rotation axis ai, and the

associated rotation angle ξi have to be estimated by the template matching approach.
Here, this is accomplished by minimizing the following energy:

Edef(A) = α Edata(A) + β Esmooth(A) + γ Elandmark(A). (2.39)

The data term

Edata(A) :=
1

|V L|
∑

vi∈V L

∥∥∥Ai(vi)− arg min
pj∈P

‖Ai(vi)− pj‖
∥∥∥2

(2.40)

measures the distance between the deformed vertices Ai(vi) and their nearest neighbors
pj in the point cloud P . Thus, it is minimized if applying A to the mesh moves it towards
some points in the point cloud. In this term, V L refers to the set of vertices that are
not landmarks. Excluding landmark vertices from the data term serves the purpose of
preserving the user-wanted correspondences. This term is weighted by α > 0.
The smoothness term with a weight β > 0

Esmooth(A) :=
1

|V |
∑
vi∈V

(
1

|N2(vi)|
∑

vj∈N2(vi)

∥∥Ai −Aj∥∥2

)
(2.41)

evaluates the di�erences between the rigid body motion Ai at vertex vi and the motions
Aj in its geodesic neighborhood N2(vi). This neighborhood is de�ned as:

N2(v) := { w | shortestPath(v,w) ≤ 2 res(M) }. (2.42)
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2.7. Estimating the shape

Roughly speaking, it consists of vertices w whose distance to v along the edges of the
mesh is smaller or equal to 2 res(M). Here, res(M) is the resolution of the meshM , which
corresponds to the average edge length. On the whole, this means that the smoothness
term penalizes deformations that alter the original shape of the template. It is important
to note that the smoothness term only measures the di�erences among the translation
vectors ti and rotation angles ξi.
Finally, the landmark term

Elandmark(A) :=
1

|L|
∑

(vi,pi)∈L

∥∥Ai(vi)− pi
∥∥2

(2.43)

produces energy in proportion of how many correspondences between deformed landmark
vertices Ai(vi) and user-provided target points pi of the landmark set L := {(vi,pi)}
are violated by the deformation. These landmarks are selected manually and therefore
might be missing from the actual generated point cloud. This term is weighted by γ ≥ 0.
All terms are normalized with respect to the amount of vertices that are participating

in the respective term. This serves the purpose of making the terms comparable to each
other. As a convention, the weight α is always set to 1 in order to interpret the other
parts of the energy in terms of the data nearness assumption: for example, using a value
of β = 10 means that the smoothness term is ten times more important than the data
term. In the beginning of the optimization, the individual rotation axes are initialized
to the normals at the corresponding vertices. The remaining components are chosen in
such a way that they describe the identity transformation.
As the energy in (2.39) is not di�erentiable due to the data term, it is usually optimized

by minimizing a series of energies Etdef(A
t) where t ∈ [1, tmax]. Each energy uses adapted

weights βt and γt:

βt =β − (t− 1)
β − βmin

tmax − 1
, (2.44)

γt =γ − (t− 1)
γ − γmin

tmax − 1
, (2.45)

where βmin and γmin are set by the user. First, large weights for the smoothness term
and the landmark term cause the template to move to the desired location. In each
iteration, they may become smaller, which allows the approach to adapt the template
more and more to local structures in the point cloud. For �nding the nearest neighbors
in the current energy, the transformations found as minimizer of the previous energy are
used. As transformations for the �rst energy, the identity transformation is applied. In
the following, the amount of energies used is referred to as the amount of optimization
steps. For optimizing such energies, a quasi-Newton approach is used (D. C. Liu and
Nocedal, 1989). The nearest neighbors are estimated with the ANN library (Mount and
Arya, 2010).

Modi�ed nearest neighbor heuristic

Originally, a standard heuristic (Allen et al., 2003; H. Li et al., 2009) was used by the
approach to distinguish valid data observations from invalid ones in the optimization of
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2. Extracting articulator shape information from MRI data
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Figure 2.13.: Impact of using result of rigid alignment as initialization for template
matching.

Edata. In particular, p is assumed to be a valid data point candidate for a deformed
vertex Ai(vi) if the Euclidean distance between both is below a given threshold and if
the orientation of their normals is similar. For evaluating the similarity of the normals,
the angle between them is computed. If the angle is above a prescribed threshold θ, the
corresponding nearest neighbor candidate is ignored.
Due to the volumetric nature of the processed data, it might happen that the template

matching gets stuck at unrelated points during the optimization. In order to mitigate this
issue, the nearest neighbor heuristic may be modi�ed somewhat: now all valid data point
candidates are collected within a �xed radius and then the best candidate is selected that
lies below the current mesh surface. If such a candidate is missing below the surface, the
best one above it will be selected.

Rigid alignment

Applying the template matching directly to the data and the template mesh may lead
to suboptimal results, as it can be seen in Figure 2.13. While the approach manages to
move the template towards the tongue surface, the mesh looks very deformed at the side.
This may be related to the fact that the template might initially be located outside the
corresponding point cloud, which implies that the process starts with a bad initialization.
Thus, it is worthwhile to �rst modify the template in order to have a good initialization.
A good initialization means in this case that the position, orientation, and scale are
already very close to the present shape of the corresponding object in the point cloud.
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2.7. Estimating the shape

For this purpose, a rigid alignment of the template can be performed by minimizing the
following energy:

Erigid(A) = Edata(A) + Elandmark(A) (2.46)

where the data and landmark term have a similar structure to the template matching
case. The transformation is given by:

A = Mtranslate(o)Mscale(x, sx)Mscale(y, sy)Mscale(z, sz)

Mrotate(x, α)Mrotate(y, β)Mrotate(z, γ)Mtranslate(t)Mtranslate(−o). (2.47)

In contrast to the template matching, only one global transformation has to be estimated
this time. This transformation is then applied to each vertex of the mesh. Moreover,
this transformation is slightly di�erent from the rigid body motion that is used for the
template matching itself. First of all, the local coordinate system is centered at o,
the current center of the mesh. Next, instead of using a custom rotation axis a, it
rotates around the principal axes x,y, and z. In terms of optimization, this reduces the
components to be found from 4 (rotation axis and rotation angle) to 3 (three rotation
angles) and removes the requirement of providing an initialization for the rotation axis.
Moreover, this transformation consists of a scaling. In particular, a non-uniform scaling
is used in order to account for the fact that an articulator might di�er in scale across
the di�erent axes. However, using this type of scaling has a disadvantage: if the current
nearest neighbors in the energy optimization fail to describe a volume, the approach
will be missing enough information to properly optimize sx, sy, and sz. In particular,
multiple minima may exist in such cases. An example of this problem can be seen in
Figure 2.14. As the template may be far away from the point cloud, only the landmarks
are used to estimate the transformation parameters at the beginning of the optimization.
However, these landmarks may only describe a plane in the case of the tongue, which
causes the template to nearly collapse to a 2D object. In fact, a full collapse is avoided
by a constraint that enforces sx, sy, and sz to remain positive during the optimization.
As the sides of the template surface are now too far away from points in the cloud, the
nearest neighbor heuristic fails to �nd any suitable target points for the corresponding
vertices on the mesh.

In order to avoid such situations, the optimization may be performed in two steps:
�rst, only the orientation and the position are optimized by using the landmark informa-
tion, which causes the template to be near data points including the sides of the mesh
surface. The second step uses both, the landmark information and the point cloud in
the optimization. This time, the scaling components are also estimated. The result in
Figure 2.14 shows that this two step strategy helps to stabilize the rigid alignment: the
collapsing is avoided and the template is properly aligned.

Finally, Figure 2.13 shows that using a rigid alignment before starting the template
matching leads to the desired result: the template is close to the data without showing
the artifacts that were observed before.
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2. Extracting articulator shape information from MRI data
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Figure 2.14.: Comparison between the direct optimization of the rigid alignment energy
and the two-step approach. Meshes and their projection onto the corre-
sponding scans are shown.

(a) βmin = 0.1 (b) βmin = 5 (c) βmin = 100

Figure 2.15.: E�ect of βmin on the resulting mesh. A low value (a) leads to an over�tting
of the data and a very noisy mesh, whereas a high value causes under�tting
and produces a very smooth result (c). Choosing an appropriate value
provides a good compromise between data nearness and mesh quality (b).
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2.7. Estimating the shape

(a) γmin = 0 (b) γmin = 10 (c) γmin = 10 and post
smoothing

Figure 2.16.: E�ect of γmin on the resulting mesh. Setting it to 0 prevents the template
matching from reaching the provided landmarks shown as red dots (a).
Using the value 10 aligns the template to the wanted positions, but leads
to spike-like artifacts (b). Applying a smoothing afterwards removes these
spikes while keeping the template close to the landmarks (c).

E�ect of weights

The weights of the template matching approach have to be carefully selected as they
in�uence the last energy that is optimized. A value of βmin that is too high forces the
approach to preserve the shape of the original template, which leads to an under�tting.
Setting the value too small, on the other hand, causes an over�tting that produces many
local shape artifacts on the resulting mesh. Figure 2.15 shows results for di�erent values
of βmin. Here, it becomes apparent why it makes sense to also inspect the rendering of
the mesh: while the projection of the result shows the data nearness, it fails to reveal
the over�tting artifacts on the mesh surface.
A similar statement holds true for γmin: using too small a value could move the tem-

plate away from the desired landmark locations during the optimization. A value that is
too high might over�t the landmark positions, which could cause problems if landmarks
are wrongly placed, and lead to spike-like artifacts. In Figure 2.16, the e�ect of γmin on
the mesh can be inspected.

Postprocessing the obtained meshes

In order to mitigate such e�ects of wrongly placed landmarks, a smoothing operation is
applied after the template matching: the measured rigid body motion Ai is replaced at
the corresponding vertex with the average of the rigid body motions in the neighborhood
around this vertex. Figure 2.16 shows how this �ltering can help to remove spike-like
artifacts. It is important to avoid noise or artifacts on the mesh because otherwise this
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Figure 2.17.: Smoothing a mesh in order to remove high frequency noise.

might be incorporated into a statistical shape model.
So far, only a local smoothing was applied at the landmarks positions. In Figure 2.17,

it can be seen that results of the template meshing may be degraded due to global high
frequency noise. Thus, it is worthwhile to apply a second post processing step to the
matched template:

vn+1 =



1

|N1(vn)|+ 1

( ∑
wn∈N1(vn)

(
wn
)

+ vn

)
for inner vertex

1

|N1(vn) ∩ ∂V |+ 1

( ∑
wn∈N1(vn)∩∂V

(
wn
)

+ vn

)
for boundary vertex.

(2.48)

This post processing step is a variant of Laplacian smoothing (Herrmann, 1976; Sorkine
et al., 2004; Hansen et al., 2005) and iteratively modi�es the vertex positions by averaging
the positional data in the 1-ring neighborhood. The 1-ring neighbors of a vertex v of a
mesh are de�ned as follows:

N1(v) := { w | (v,w) ∈ E }. (2.49)

Basically, these are the vertices that are directly connected to the corresponding vertex
v via an edge. The initial values v0 of this step correspond to the vertices of the mesh
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2.8. Experiments

Surface-enhancing di�usion

σ standard deviation for presmoothing the image 1
ρ standard deviation for combining structural information 1
λ contrast parameter of Perona-Malik di�usivity 0.1
t evolution time 2.4

Point cloud extraction

σ standard deviation for presmoothing the image 1
ρ standard deviation for combining structural information 1

Template matching

βmax initial weight for smoothness term 10
βmin weight for smoothness term on last iteration 6
γmax initial weight for landmark term 0.1
γmin weight for landmark term on last iteration 0
nmatch amount of optimization steps 100
rsearch search radius for nearest neighbor heuristic 5 mm
θsearch angle threshold for nearest neighbor heuristic 60 ◦

npostsmooth post smoothing iterations 1

Table 2.1.: Used settings for the experiments. Parameter name, description, and value
are provided.

after the landmark smoothing has been applied. Here, a special treatment is given to
the vertices v that are part of the mesh boundary ∂V . The boundary of a mesh may be
de�ned as the set of vertices that are part of an edge that is generated by exactly one face.
In this case, only neighbors are used in the averaging that are also part of the boundary,
which avoids a shrinking of the boundary. Results can be inspected in Figure 2.17. On
the whole, this smoothing removes high frequency noise from the resulting mesh.

2.8. Experiments

In the previous sections, a framework was derived for extracting articulator shape in-
formation from given MRI scans. It is now of interest to evaluate this framework and
investigate to which degree it is able to estimate the wanted shapes. To this end, it was
applied to the Baker, Ultrax, and USC datasets in order to extract the tongue shape
from the individual scans.

2.8.1. Settings

In order to assess if the approach is independent of speaker and produced phone, all scans
were processed by using the same settings, which are summarized in Table 2.1. These
settings were manually selected in order to obtain acceptable results, which implies that
it is possible that parameter combinations exist that improve the results. Furthermore,
the required landmarks for the tongue were distributed on the corresponding scans by a
user who is not an anatomical expert.

39



2. Extracting articulator shape information from MRI data

In order to segment the USC data, thresholding was used. The corresponding param-
eter was manually selected by visually inspecting the scan data. For the Ultrax and
the Baker datasets, the unweighted variant of Otsu's method was used as segmentation
technique.

2.8.2. Evaluation

Like previously stated, the used MRI datasets are missing a ground truth solution of the
correct shape of the articulators. This is due to the fact that these datasets consist of
real-world data. The lack of a ground truth makes a quantitative analysis of the results
very hard. There exists the possibility of manually annotating the MRI scans to create a
reference solution. Again, it should be stressed that this procedure is very time consuming
and expensive if the number of scans in the dataset is very large. Moreover, such hand-
labeling is error prone and the anatomical expert(s) involved may introduce a subjective
bias. Instead, a qualitative analysis was undertaken: the results were inspected manually
as a post-hoc analysis in order to assess their quality. In particular, the projections of
the registered tongue meshes were used to check if the mesh surface was close to the true
tongue contour and if they show any anomaly.

2.8.3. Results

At �rst sight, the approach seems to be promising: several results that can be inspected
in Figures 2.18 to 2.20 appear to be very close to the shape of the tongue. However, the
approach fails in several cases. Some of those are shown in Figure 2.21.
The results where the approach succeeded provide an interesting observation: despite

producing the same phone, the speakers might apply a di�erent articulatory strategy for
this purpose, which might be related to the speci�c anatomy of the speaker or to personal
preference. An example is the phone [A] in the results for the Ultrax data in Figure 2.20.
All three speakers use a di�erent vocal tract con�guration for the same phone. This
observation justi�es the original plan to derive a tongue model where anatomy and tongue
pose parameters are separated from each other.
The following reasons for the bad performance of the strategy may be identi�ed: �rst,

the method leads to suboptimal results if parts of the tongue surface are missing. This
can be seen in Figure 2.21a. In particular, the tongue touches the hard palate in this MRI
scan, which causes the boundary of the tongue surface to disappear in the corresponding
contact area. A more detailed visualization of this situation is shown in Figure 2.22.
Thus, it might be necessary to �nd a means of restoring this missing surface information
in order to solve this issue.
Another observation implies that the template matching can also get stuck at loca-

tions that are unrelated to the tongue, which is, for example, the case in Figures 2.21b
and 2.21d. This issue may be explained by acknowledging the fact that speci�c structures
in the mouth or combinations thereof can actually resemble the used template, which
causes the template matching approach to register these structures. Another explanation
could be that the search radius selected for the modi�ed nearest neighbor heuristic was
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Figure 2.18.: Example results for the Baker dataset where the approach provided accept-
able registrations.
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Figure 2.19.: Example results for the phones [@] (top row), [O:] (center row), and [A:]
(bottom row) in the USC dataset. Registrations are shown for the speakers
F1, F7, and M5 to illustrate di�erent articulation strategies for the same
phone.
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Figure 2.20.: Example results for the phones [A] (top row), [2] (center row), and [O] (bot-
tom row) in the Ultrax dataset. Registrations are shown for the speakers
04MRIF, 08MRIM, and 14MRIF.
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2. Extracting articulator shape information from MRI data

(a) Ultrax, 02MRIM, [i]. (b) Ultrax, 05MRIM, [0].

(c) USC, F9, [ô]. (d) USC, F9, [S].

(e) USC, M4, [l].

Figure 2.21.: Examples scans where the proposed approach fails to register the tongue
surface properly. Captions provide information about dataset, speaker
name, and produced phone.
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Without contact With contact

Figure 2.22.: A palatal contact causes the tongue surface to become indistinguishable
from surrounding tissue in the corresponding area, which causes the ap-
proach to fail. Without contact, the approach produces an acceptable reg-
istration. Both scans belong to the same speaker. Figures show scan with
and without projection of result mesh.

too low. Several ideas on how to address this issue come to mind: increasing the search
radius of the heuristic could help, but would also increase the running time of the ap-
proach. Another solution consists of using more landmarks in order to force the template
matching to move the mesh to the correct position. However, this would increase the
annotation time and also put more burden on the user. As an alternative, the issue could
be solved by automatically detecting and removing these structures from the point cloud.

In other cases that are shown in Figures 2.21c and 2.21e, the approach only registered
a part of the tongue surface. At �rst sight, this behavior appears to be abnormal because
the needed surface information is present. At second sight, however, the performance
may be explained as follows: the template matching only uses one speci�c instance of all
possible tongue shapes to register the point cloud. This means that if the shape to be
registered di�ers too much from the used template, the smoothness assumption of the
template matching keeps the approach from estimating the shape correctly. Reducing
the importance of the smoothness assumption could solve this issue, but could lead to
over�tting e�ects. A more promising remedy would be using a template that is more
similar to the data to be registered.

Additionally, it is currently unclear if the applied subjective evaluation of the results
may be considered as valid. In this context, it is important to consult experts in the
�eld.

Due to the above issues of the approach, it is omitted here to evaluate if the proposed
framework is speaker and tongue pose independent. This evaluation is postponed until
Chapter 4 where the issues of the approach are addressed.
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2. Extracting articulator shape information from MRI data

2.9. Conclusion

In this chapter, a basic framework was built for extracting articulator meshes from pro-
vided MRI scans in a semi-supervised way. In particular, image processing techniques
involving denoising and segmentation methods were combined with a template matching
approach to achieve this goal. Here, the image processing methods can be chosen by the
user to adapt the approach to the dataset that should be processed. For evaluating its
performance, the derived framework was used to estimate the tongue shape from scans
of di�erent datasets. During this evaluation, the following observations were made: the
proposed strategy can already estimate tongue shapes from data, but it fails to �nd a
proper registration in certain cases. Thus, it might be worthwhile to improve the strategy
in order to gain access to these missing shapes because they might provide information
about important DoFs of the tongue.
In summary, the following modi�cations are needed:

� Reconstruct missing surface information in a palatal contact area

� Remove unrelated structures from the point cloud

� Automatically provide adapted templates for the template matching approach

Furthermore, the subjective evaluation of the obtained meshes has to be validated.
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3. Background on statistical shape

analysis

3.1. Introduction

The previous chapter presented an initial approach for estimating the tongue shape from
speech related magnetic resonance imaging (MRI) data, which provided access to tongue
meshes. It is now of interest to analyze the obtained meshes in order to derive generative
shape models. Such a model uses parameters that describe the shape that should be
generated. The main goal of this work is to acquire information about the degrees of
freedom (DoF) of the tongue shape during the production of speech. Thus, the analysis
should discover the DoF present in the data and allow these detected DoF to be mapped
to the parameters of the model. Ideally, the parameter set should be small and therefore
only the most important DoF should be represented by the model. Furthermore, the
model should also allow to estimate the plausibility of a created shape. Basically, these
properties imply that a simpli�cation of the acquired data is desired that also preserves
the structure of the data.
To this end, two methods are presented: the linear approach based on principal com-

ponent analysis (PCA) and the multilinear one based on tensor decomposition. This
chapter is largely based on Bolkart (2016, Sections 3.2, 3.4, and 4.2) and accordingly
adapts the corresponding notation.

3.2. Vector representation of meshes

Before turning to the actual modeling ideas, it is important to explain how meshes
M = (V, F ) can be represented as a vector. As only the vertex positions are changed
by the template matching step of the basic approach, the face con�guration F of the
mesh remains the same. This means that only the vertex information V is of interest.
The vertex set V := {vi} of a mesh that consists of n vertices may be represented as
x := (vx1 , v

y
1 , v

z
1 , v

x
2 , v

y
2 , v

z
2 , . . . , v

x
n, v

y
n, vzn)>, where

vi :=

vxivyi
vzi

 . (3.1)

This means that the positional data of a mesh is serialized and stored in a single vector.
Basically, this procedure can also be inverted to reconstruct a mesh from such a vector.
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3.3. Linear modeling

In cases, where the shape di�erences of acquired data can be attributed to a single source,
linear modeling approaches are a suitable choice. Essentially, such models provide only
one set of parameters for generating shapes. For example, tongue meshes obtained from a
single speaker database can be analyzed by such a method, like data of the Baker dataset.
Here, only tongue pose related di�erences can be expected. Another example would be
shape information about the hard palate where only anatomical factors in�uence its
shape.
A standard method for performing this kind of analysis is given by PCA (Dryden

and Mardia, 1998, Chapter 5). Given a collection of vector representations of k tongue
meshes {xi} that have dimension n, it basically �ts an m-dimensional hyperellipsoid to
the data, such that its orthogonal axes {aj} correspond to the most dominant directions
of variance. Here, the collection of mesh representations has been processed accordingly,
such that only shape di�erences are present that are of interest. The ellipsoid is centered
at x = 1

k

∑k
i=1 xi. In mathematical terms, the axes are then computed by maximizing∑m

j=1

∑k
i=1

(
(xi − x)>aj

)2
. These axes are referred to as the principal components or

directions of the data. Basically, these principal components can be used to project the
original data into a subspace. As the projection is orthogonal, the structure of the data
is preserved. Essentially, each point in this subspace can be thought of as a projection
of a shape. In fact, the projection can be inverted and a mesh reconstructed from the
result. Thus, this type of subspace can be called a shape space. It is important to keep
in mind that these directions are purely derived from the data and therefore may make
an intuitive interpretation of their meaning di�cult. Therefore, an analysis of these
components is omitted in this work.
The desired principal components may be obtained as follows. First, a k×n matrix X

is constructed such that its rows correspond to the centered vectors xi−x. In this matrix
representation, the rows correspond to the di�erent shapes while the columns refer to the
individual coordinates of the mesh vertices. Then, X is used to compute the covariance
matrix of the data:

D =
1

k
X>X. (3.2)

Afterwards, the principal components are obtained by computing the eigenvectors asso-
ciated to the �rst m eigenvalues λj in descending order of the covariance matrix. An
important observation is now that PCA performs a dimensionality reduction, i.e., a sim-
pli�cation of the data, if m < n. As a convention, this reduction is often called shape
space truncation in this work. Of course, such a truncation of the space can lead to infor-
mation loss. Assuming that the original data is distributed according to a multivariate
Gaussian distribution, this information loss can explicitly be computed. In this speci�c
case, the eigenvalues λj represent the dispersion or variability of the data along axis aj .
Thus, the acquired PCA shape space represents

100

∑m
j=1 λj∑n
i=1 λi

% (3.3)
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3.4. Multilinear modeling

of the data. This measure is called the compactness of the shape space.
Again, under the assumption that the data has a multivariate Gaussian distribution,

the PCA analysis result can be used to build a generative statistical model. Basically,
the parameters p ∈ Rm representing a shape in the subspace are turned into a vector
representation y ∈ Rn of a mesh as follows:

y = x + Up. (3.4)

The columns of the matrix U ∈ Rn×m consist of the computed principal components.
Accordingly, the created vector y can be used to construct a mesh. Formally, this

can be expressed as a function f : Rm →M whereM is the set of meshes that can be
generated by the model. Essentially, all meshes M ∈ M share the same face set and
di�er only in the positions of their vertices. In the case of the tongue, the parameters p
can be seen as the DoF of the tongue shape that can be identi�ed in the data and M
corresponds to the set of tongue meshes..
PCA or variants of it were already used for analyzing the shape of the tongue: Maeda

(1990) applied it to investigate two-dimensional (2D) contours of the tongue. Guided
PCA (Badin, Elisei, et al., 2008; Fang et al., 2016) was used for analyzing these variations
in three-dimensional (3D) meshes. Another linear and related method is given by linear
component analysis (LCA) that was used by Engwall (2003). In contrast to PCA, the
guided variant of PCA and the LCA impose a meaning on the parameters. This is done,
e.g., to make the extracted parameters more interpretable in terms of control (Badin,
Elisei, et al., 2008). However, PCA better explains the variance in the data. As this
work is concerned with registration of data, PCA was chosen over guided PCA or LCA
for analyzing shape di�erences and creating the associated generative models.
For completeness, it should be noted that the linear modeling approach may also be

applied to mesh collections where shape di�erences are originating from multiple causes.
However, the resulting model will only provide one set of parameters in this case.

3.4. Multilinear modeling

So far, a linear modeling approach was described for creating a generative model. Ba-
sically, the shapes that should be analyzed were arranged in a matrix where rows and
columns had a semantic meaning: a row represented a speci�c shape while a column
described a speci�c vertex coordinate component of the associated mesh. However, this
modeling only allowed to extract one set of parameters describing the shape. This may be
seen as a consequence for using a data representation that failed to preserve the cause for
the shape di�erences. The reason for a shape di�erence of the tongue may be attributed
to two di�erent causes: in one case, the anatomical features of the tongue changed while
in another case, the tongue assumed a di�erent speech related shape. This work aims
at deriving tongue shape models that separate the associated parameters into these two
sets: the �rst set, the speaker parameters, should represent the anatomical features of
the tongue. The second set, the tongue pose parameters, should describe the speech
related tongue pose.
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3. Background on statistical shape analysis

Thus, another representation of the data is needed that allows to preserve this kind
of information. To this end, this section �rst introduces the concept of a tensor and
accordingly provides the required background of tensor algebra. This background is
developed so far that is possible to present tensor decomposition methods that might be
useful for deriving generative models. Finally, the multilinear tongue model approach is
presented. For more information, the reader can turn to De Lathauwer (1997) or Kolda
and Bader (2009).

3.4.1. Tensor algebra

Vectors and matrices are means of representing data: vectors are one-dimensional arrays
containing data while matrices are 2D arrays. Tensors extend this paradigm to even
higher dimensions. Thus, a tensor is an n-dimensional array where n ≥ 3. In this
context, n is called the order of the tensor. For the sake of simplicity, the following
concepts are explained at the example of a tensor of third order, which is the only type
of tensor needed in this work.
Formally, such a tensor is represented by X ∈ Rd1×d2×d3 . Its entries can be accessed

by using three indices: xi1,i2,i3 where ij ∈ {1, . . . , dj}. Similar to the matrix case, indices
are assigned a role: i1 is the mode-1 index, i2 the mode-2 index, and i3 the mode-3 one.
It is possible to extract the data along one mode from a tensor. Such data is called a

mode �ber. Essentially, this extends the concept of rows and columns of the matrix case
to the tensor case. A mode-n �ber is obtained by �xing the indices for the other modes
and only altering the index of the n-th mode, which results in a dn-dimensional vector.
Accordingly, there are d2d3 mode-1 �bers, d1d3 mode-2 �bers, and d1d2 mode-3 �bers.
The notation of �bers can be utilized to turn the tensor into a matrix, which is known

as unfolding. The mode-n unfolding leads to a matrix X(n) ∈ Rdn×
∏

k 6=n dk where the
columns correspond to the mode-n �bers of the original tensor. As the tensor is of third
order, three unfolding variants are available. These operations can be reversed in order
to turn a matrix with suitable dimensions into a tensor.
The last concept needed is the n-mode multiplication ×n of the tensor X with a

matrix A ∈ Rm×dn . This type of multiplication is de�ned as follows. First, the tensor
X is unfolded along mode n resulting in X(n). The matrix X(n) is then multiplied with
A, which gives Y(n) = AX(n). Finally, the matrix Y(n) is folded back into a tensor
Y = X ×n A. For completeness, is should be noted that A might also be vector.

3.4.2. Tensor decompositions

The previous section introduced the concept of a tensor that can be used to represent
data. It is now of interest to analyze such data in order to gain access to its underlying
structure and eliminate unimportant information. In particular, results of such an anal-
ysis should also be usable to build a generative model. To this end, tensor decomposition
approaches are helpful. In literature, several approaches are available to perform this
task.
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One example is the canonical polyadic (CP) decomposition (Hitchcock, 1927). It is of-
ten called the method of parallel factors (PARAFAC) (Harshman, 1970) or the canonical
decomposition (CANDECOMP) (Carroll and Chang, 1970). In the case of the tongue, it
was used by several studies (Harshman et al., 1977; Hoole, Wismüller, et al., 2000; Hoole,
Zierdt, and Geng, 2003; Ananthakrishnan et al., 2010; Vargas, Badin, and Lamalle,
2012; Vargas, Badin, Ananthakrishnan, et al., 2012; Zheng et al., 2003). Essentially, this
method decomposes a tensor into a sum of r rank-1 tensors where r is provided by the
user. Therefore, this technique can be regarded as an extension of the singular value
decomposition to tensors. However, there are reports in the literature of certain issues
with this method: Hoole, Wismüller, et al. (2000) found that it might be di�cult to �nd
reliable solutions; Vargas, Badin, Ananthakrishnan, et al. (2012) pointed out that the
PARAFAC decomposition requires numerous components to describe the observed data
in a satisfactory way, which limits its usefulness as a dimensionality reduction method;
moreover, De Silva and L.-H. Lim (2008) discovered that the associated standard approx-
imation problem is mathematically ill-posed, which can lead to the problem of diverging
components in a numerical setting.
A second example is the Tucker decomposition (Tucker, 1966) that decomposes X into

a tensor C and a product of three matrices U1, U2, and U3:

X = C ×1 U1 ×2 U2 ×3 U3. (3.5)

Here, C is called the core tensor of the decomposition. The matrices U1, U2, and U3

are the factor matrices. The columns of these matrices represent basic vectors for the
respective modes while the core tensor links them together. Thus, the matrices actually
represent subspaces. It may be regarded as a more �exible variant of the PARAFAC
method (Kiers and Krijnen, 1991) and has previously been used to analyze 2D tongue
shape data (Vargas, Badin, and Lamalle, 2012). To avoid the issues with PARAFAC,
the Tucker decomposition is chosen to analyze the data in this work.
There exist several ways for computing the Tucker decomposition. In this work, the

Tucker2 decomposition is used that essentially sets U3 to the identity matrix with suitable
dimensions. Furthermore, the factor matrices are enforced to be orthogonal. These ma-
trices are computed by applying the higher-order singular value decomposition (HOSVD)
method (De Lathauwer, 1997). For the sake of completeness, it should be noted that
other approaches exist for computing these matrices, like the higher-order orthogonal
iteration (De Lathauwer, 1997) or the Newton-Grassmann optimization approach (Eldén
and Savas, 2009).
The HOSVD may also be seen as an extension of the singular value decomposition

to tensors. In order to compute Un, the following steps are performed: �rst, X is
unfolded along mode n, which provides access to the matrix X(n). Afterwards, X(n) is
decomposed by applying the singular value decomposition in order to obtain the desired
Un: X(n) = UnΣV>. Like in the PCA case, the matrix Un can be truncated for
dimensionality reduction purposes by only considering the singular vectors associated to
the �rst mn singular values in descending order, which is called the truncated HOSVD.
It is also possible to calculate the compactness of a mode by computing the eigenvalues
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λi of 1
dn

X>(n)X(n) and evaluating:

100

∑mn
j=1 λj∑dn
i=1 λi

%. (3.6)

This quantity can then be used to estimate the information loss caused by an applied
truncation of the mode.

3.4.3. Multilinear tongue model

Basically, the above concepts are now used to derive a multilinear tongue model that can
be controlled by two sets of parameters: one that modi�es the anatomy of the tongue
and another one that modi�es its pose. Essentially, the same modeling approach is used
that was already successfully applied to human faces (Vlasic et al., 2005; Bolkart, 2016).
In a �rst step, the tensor X is constructed. To this end, a collection of tongue meshes

is required. Formally, this mesh collection consists of tongue shapes of d1 di�erent speak-
ers. For each speaker, the shape information of d2 tongue poses is available where an
individual pose is associated to a speci�c phone that was produced during acquisition. It
is important to stress that the recorded phone set has to be the same for each speaker.
Furthermore, it is assumed that the mesh collection was aligned accordingly, such that
only anatomical and pose related shape di�erences remain. Like in the PCA case, the
meshes are turned into vectors xi and afterwards centered by subtracting the mean x
of the vector collection. Thus, the vector representations have dimension n like before.
Then, they are arranged in a tensor as follows. The data that can be accessed with a
�xed mode-1 index i1 belongs to one speci�c speaker, the data for a �xed mode-2 index
i2 to one speci�c tongue pose, and the data for a �xed mode-3 index i3 to one speci�c
coordinate component of the associated vertex. Accordingly, the �rst mode may be called
the speaker mode of the tensor, the second mode the pose mode, and the third mode may
be referred to as the vertex mode. Here, it can be seen that a tensor is a suitable way for
representing shape data while still preserving the cause of potential shape di�erences.
The constructed tensor X can then be decomposed by means of the described Tucker2

decomposition with orthogonality constraints:

X ≈ T ×1 S×2 P. (3.7)

In this equation, T ∈ Rms×mp×n is the computed multilinear model. The matrix S con-
sists of ms columns. This matrix represents the speaker subspace of the model and each
row denotes the parameters of a speci�c speaker in this subspace. A similar observation
holds true for the matrix P that consists of mp columns. Here, each row corresponds to
the parameters of a tongue pose in the associated subspace. Accordingly, the matrix P
represents the pose subspace of the model.
Under certain conditions, T can be used to build a statistical generative model. In

particular, the data in the speaker and pose subspace have to obey a multivariate Gaus-
sian distribution. In this case, a tongue shape y can be represented by the model as
follows:

y = x + T ×1 s×2 p. (3.8)
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The vectors s ∈ S and p ∈ P are assumed to describe the properties of the generated
shape. The speaker parameters s represent the anatomical features of the shape while
the pose parameters p correspond to the tongue pose. Accordingly, the spaces S := Rms

and P := Rmp represent the speaker parameter space and tongue pose parameter space
of the model, respectively. As a convention, the pair (s,p) is called the shape space
coordinate in the following. Again, the vector y can be turned into a mesh. Like in the
PCA case, a function f : Rms×Rmp →M may be formulated that maps the parameters
s and p to a mesh M ∈M.

3.5. Model �tting

The previous sections presented generative models that are able to create meshes from
one set (PCA model) or two sets of parameters (multilinear model). Such models can
be used to register data. Given correspondences between mesh vertices and target data
points, the parameters of the models can be optimized such that the vertices of the
generated mesh are close to the corresponding target points. This procedure may be
compared to template matching where a template mesh is deformed to match the data.
Using a generative model to register data o�ers the following advantage over template
matching: on the one hand, instead of using one single instance of the shape of interest,
such a model uses a whole space of shapes to �t the data. On the other hand, the
parameters used by the model correspond to the DoF of the analyzed shape.

During the optimization of the model parameters, it is important to pay attention to
how plausible the generated shapes are. To this end, it is worthwhile to attach some
sort of probability measure to the parameters. This work follows the modeling described
in Bolkart (2016, Section 4.2.1) that can be summarized as follows. Basically, the data
is normalized in order to use a Gaussian distribution N (µ, I) as statistical prior for
the individual subspaces. The mean µ of the distribution depends on the associated
subspace. In the case of the speaker subspace, µ = µ(s) is set to the mean of the original
speaker parameters, i.e., the rows of S in Equation (3.7). For the tongue pose subspace,
µ = µ(p) corresponds to the mean of the original pose parameters, i.e., the rows of P in
Equation (3.7). This approach is also applied to the shape space represented by a PCA
model: here, µ is set to the mean of the parameters representing the original shapes.

Using a Gaussian distribution N (µ, I) as statistical prior allows each parameter to be
restricted during optimization to an interval of size 2h that is centered at the mean. For
example, this means that the tongue pose parameter component pi of p is then only
allowed to lie in the interval [µ(pi) − hσ(pi), µ(pi) + hσ(pi)] where µ(pi) is the mean
and σ(pi) the standard deviation of the parameter pi in the original training data. As a
convention, the value h is called the prior box width in the following.

By limiting the admissible values for the parameters, unrealistic shapes may be avoided
during registration.
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3.6. Conclusion

This chapter has provided some basic background on statistical shape analysis. In par-
ticular, it has described how the meshes obtained from the basic approach of the previous
chapter can be analyzed to build generative shape models. Here, two models were pre-
sented: a linear one suitable for representing shape di�erences occurring due to one
cause. The multilinear approach allows to separate di�erent causes of shape variability
into di�erent sets of parameters. Both variants permit to truncate the obtained model,
such that only the most important DoF of shape are kept. Furthermore, it was shown
how the obtained models can be used to register new data. In this context, a Gaussian
distribution is used as statistical prior to avoid unrealistic shapes.
The chapter also described the requirements for the mesh collection to be analyzed,

which essentially uncovers another �aw of the basic mesh extraction approach presented
previously: currently, it omits any sort of proper alignment of the obtained meshes
for statistical analysis. Additionally, the multispeaker datasets su�er from the issue of
missing data: for some speakers, speci�c phones are missing. The multilinear approach,
however, requires shapes for all considered phones to be present for all speakers.
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from MRI datasets

4.1. Introduction

4.1.1. Motivation

The previous chapter presented two core ideas of deriving a tongue model: the linear vari-
ant that is suited for modeling one speci�c type of variation, e.g., either an anatomical or
a pose related one. The other approach, the multilinear variant, attempts at representing
both types of shape variation in one single model, a multilinear model. However, the
initial approach for extracting tongue meshes from magnetic resonance imaging (MRI)
scans su�ered from several drawbacks that drastically limited the amount of meshes that
could be obtained. Moreover, a proper alignment of the obtained mesh collection was
missing, which prevented a statistical analysis. Additionally, it is still unclear if the
applied subjective evaluation of the obtained tongue meshes may be considered valid.

4.1.2. Contribution

The contribution of this chapter is two-fold: on the one hand, it improves the basic
semi-supervised approach for estimating tongue meshes from MRI data presented in
Chapter 2 to such a degree that it is able to reliably register more data than the basic
approach. Furthermore, results of experiments conducted on the three presented MRI
datasets suggest that the improved approach may be considered speaker and tongue
pose independent. Again, the approach only requires a user to provide some annotations
and optionally tune a few settings. Once more, anatomical expertise may be considered
optional. On the other hand, the extended approach can be used to derive a tongue model
from a provided dataset in a semi-supervised way. The properties of the tongue model
depend on the type of the used database: if the database consists only of one speaker, a
linear model will be produced. In the case of a multispeaker dataset, the resulting model
will be multilinear providing access to two sets of parameters: one manipulating the
anatomy of the tongue and another one that changes the tongue pose. These properties
represent an improvement over previous methods in literature (Badin, Bailly, Revéret,
et al., 2002; Badin and Serrurier, 2006; Badin, Elisei, et al., 2008; Engwall, 2003; Hoole,
Zierdt, and Geng, 2003; Fang et al., 2016) that relied on manually extracting tongue
meshes from MRI data in order to derive tongue models.
The chapter is based on, and extends, the following papers:
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Hewer, Alexander, Ingmar Steiner, Timo Bolkart, Stefanie Wuhrer, and Korin Richmond
(Aug. 2015). �A statistical shape space model of the palate surface trained on 3D MRI
scans of the vocal tract�. In: International Congress of Phonetic Sciences. Glasgow,
Scotland, pp. 0724.1�0724.5. url: https://www.internationalphoneticassociation.
org/icphs-proceedings/ICPhS2015/Papers/ICPHS0724.pdf.

Hewer, Alexander, Stefanie Wuhrer, Ingmar Steiner, and Korin Richmond (Sept. 2018).
�A multilinear tongue model derived from speech related MRI data of the human vocal
tract�. In: Computer Speech & Language 51, pp. 68�92. doi: 10.1016/j.csl.2018.
02.001.

4.1.3. Overview

The chapter is roughly separated into two parts. The �rst part addresses the issues of
the basic approach that were identi�ed in chapters 2 and 3. Additionally, experimental
results are presented that validate the applied subjective evaluation of the result meshes.
Afterwards, the extended framework is again applied to the Baker, Ultrax, and USC
datasets in order to assess its performance. The second part derives tongue models of the
registered data. Here, three tongue models are constructed, one from each dataset. Each
one is carefully evaluated. Furthermore, the tongue models derived from the Ultrax and
USC datasets are directly compared in order to �nd the best model. The Baker tongue
model is neglected because it only provides a parameter set for manipulating the tongue
pose. Finally, the �ndings are summarized in the conclusion of the chapter.

4.2. Palate reconstruction

In Figure 2.22, it was observed that missing surface information due to palatal contacts
prevented the original approach from properly registering the tongue shape in the cor-
responding contact area. This section serves the purpose of addressing this issue by
reconstructing this missing information.
To this end, the following observation is helpful: the hard palate represents a natural

boundary for possible tongue motions. This is due to the fact that this part of the palate
is attached to the top of the mouth and can only undergo a rigid body motion involving
translations and rotations, which implies that it is possible to press the tongue against it
without deforming the hard palate. This motivates the idea of reconstructing the surface
of the hard palate in cases where a palatal contact is occurring and using this restored
surface as a replacement for the missing tongue information. For the sake of simplicity,
the approach is described for data of a single speaker in the following.
In a �rst step, a scan of the corresponding speaker is selected where the palate is

clearly visible and its shape is estimated by using, e.g., the basic approach for estimating
articulator shapes from MRI data. However, adding this surface information directly into
the point cloud of another scan of the same speaker might cause the palate information
to be located at the wrong location, which can be seen in Figure 4.1. This issue occurs
because the corresponding speaker might have moved between the individual recordings.
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4.2. Palate reconstruction

Source scan Direct injection After alignment

Figure 4.1.: Results for injecting the palate shape estimated from a source scan into a
target scan. In the shown case, direct injection causes the information to be
located at the wrong position. Aligning the palate by using the estimated
head motion between both scans leads to a better result.

Thus, this head motion has to be estimated in order to align the palate information
properly. For this task, an optic �ow method may be used. Roughly speaking, such
methods compute the movement of objects that occured between two images f and g.
An overview of such methods may be inspected in Szeliski (2010), Aubert and Kornprobst
(2006), or Weickert et al. (2006). One example of such a technique is the approach by
Lucas and Kanade (Lucas and Kanade, 1981; S. Baker and Matthews, 2004). Basically,
this approach obtains the desired motion A by minimizing an energy:

Ebasic LK(A) :=
∑
x∈ΩT

(
[g] (A(x))− [f ] (x)

)2

. (4.1)

Here, f denotes the source image and g the target image where the information should
be reconstructed. The domain ΩT ⊂ Ω is a selected region of interest in f . Roughly
speaking, the approach warps the target image to the source image and uses the sum
of squared di�erences between the corresponding gray values as heuristic to determine
the optimal A. As the hard palate can only undergo a rigid body motion, a simple rigid
transformation is used:

A = Mtranslate(t)Mtranslate(o)Mrotate(x, α)Mrotate(y, β)Mrotate(z, γ)Mtranslate(−o).
(4.2)

Here, o is the center of ΩT . Thus, the transformation only consists of translations and
rotations.
In order to use this approach, a suitable image region ΩT has to be chosen. In this

case, it is necessary to select a region where it is known that the objects inside can
only undergo a rigid motion. Moreover, the region should not su�er from the aperture
problem, i.e., clear structures in the region are required. The region containing parts
below and above the palate might be a suboptimal choice: as the tongue is sometimes
touching the palate, objects in this region undergo more than a rigid body motion. A
region ful�lling the desired properties is shown in Figure 4.2. This region only has to be

57



4. Deriving statistical tongue models from MRI datasets

Figure 4.2.: Sagittal (left) and coronal slice (right) illustrating an example region for
estimating the head motion by means of the approach of Lucas and Kanade.

de�ned in the source scan from which the palate shape is extracted. In order to facilitate
the process of selecting the region, a user may distribute some landmarks on the scan
such that the bounding box of these landmarks roughly corresponds to the desired region.
The default approach in Equation (4.1) uses the sum of squared di�erences to evaluate

the similarity between the warped image and the source image. As it is possible that
source and target di�er with respect to brightness, it is worthwhile to think about using
another similarity measure that makes the approach robust against such di�erences. Such
a measure is given, for example, by the zero normalized cross correlation (ZNCC). The
updated energy is thus given by:

ELK(A) :=
1

n

∑
x∈ΩT

1

σfσg

(
[g] (A(x))− g̃A(ΩT )

)(
[f ] (x)− f̃ΩT

)
, (4.3)

where A(ΩT ) := { A(x) | x ∈ ΩT }. In this formula, n refers to the number of voxels
in the region ΩT . The value σf refers to the standard deviation of gray values of f in
ΩT . For the image g, σg denotes the standard deviation in ΩA(ΩT ). The values f̃ΩT

and
g̃A(ΩT ) denote the mean gray values of f and g in the corresponding regions. As now the
ZNCC is used as heuristic, the energy has to be maximized in order to achieve a high
correlation and obtain the desired transformation.
Maximizing this energy provides access to the desired transformation that is required

for mapping the hard palate shape to a target scan. Figure 4.1 shows how the acquired
motion moves the hard palate to the correct location in the target scan. Inspecting an-
other result of this strategy in Figure 4.3 more closely reveals an interesting observation:
this kind of palate reconstruction can be used to circumvent pitfalls in manual annotation
because the boundaries of the tongue can be hard to distinguish from the palate in some
cases.
The vertex positions of the aligned palate mesh can afterwards be injected into the

corresponding point cloud of the target scan. In addition to the vertex positions, the
corresponding normal information is also added to the point cloud. This information
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Surface visible Missing surface Reconstructed palate

Figure 4.3.: Proposed palate reconstruction strategy may help to avoid annotation pit-
falls. While the palate surface is clearly visible on the left scan, it is hard
to detect on the center scan. The palate reconstruction helps to �ll in the
missing information.

Initial result With palate reconstruction

Figure 4.4.: Restoring the missing palate boundary information improves the tongue
matching result to some degree.

may be derived from the mesh topology by using the approach by Max (1999). Using
this modi�ed point cloud in the template matching approach for the tongue improves
the results to some degree as Figure 4.4 shows.
The soft palate, however, remains an open issue for the time being: this part of the

palate can undergo highly non-rigid motions and therefore requires a more sophisticated
reconstruction process.

4.3. Removing unrelated point cloud data

Results of the experiments in Figure 2.21 showed that the basic approach might get
stuck at unrelated tissue in the volumetric point cloud. One possible explanation was
that di�erent parts of the vocal tract volume might resemble a tongue-like structure if
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Figure 4.5.: Removing points above the hard palate improves the registration result.

merged together. Thus, a way is needed to remove such structures in order to prevent
such situations. In this case, information is needed about which points can be considered
as unimportant.
To this end, the previously aligned palate mesh can be used. In principle, all points

lying above the hard palate are unneeded for estimating the shape of the tongue and
therefore can be removed without loss of important information. Please note that the
injected palate information is una�ected by this operation. Figure 4.5 shows a result of
this removal strategy. It can be seen that removing unneeded data above the palate area
improves the registration result.

4.4. Pose normalization

Determining the variations related to speech production is the main goal of this work.
However, the basic approach produced shape approximations that also included the rigid
body motion of the speaker's head. In this section, a normalization is performed in order
to get rid of information that is unrelated to articulation.
The Procrustes alignment technique (Dryden and Mardia, 1998) is a suitable method

for removing any translational and rotational di�erences among meshes in a given col-
lection. However, in the case of a tongue shape collection, removing all translational and
rotational shape di�erences between the individual meshes actually destroys important
information that is related to speech production: the tongue is connected to the lower jaw
and thus can undergo a translational and rotational motion during articulation, which is
unrelated to head motions. Thus, a way is needed to preserve this type of transformation
while getting rid of the di�erences stemming from the head position.
In the case of a single speaker, the following approach could help: a single head pose
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Figure 4.6.: Coordinate system used for the pose normalization. The image shows the
mid-sagittal plane. The origin of the system is located near the front teeth,
highlighted by a red dot; the horizontal and vertical axes represent the y and
z dimensions, respectively, while the x axis is perpendicular to the image
plane. Observe that compared to Figure 2.1, the roles of the axes changed.

of the speaker has to be found to which all tongue meshes can be mapped. In the section
dealing with the palate reconstruction, rigid body transformations were estimated that
mapped the palate shape from a source scan to all other scans of the MRI dataset.
These rigid body transformations can be used to perform the pose normalization: they
are inverted and applied to the corresponding tongue meshes, which brings them all into
the head pose of the scan where the palate was estimated. And thus, all head motion is
removed between the meshes. Additionally, the following step can be taken: the palate
mesh of the corresponding scan is used to shift the origin of the coordinate system. Here,
the center point in the front of the palate mesh is used as the new origin of the coordinate
system. This point is roughly located at the area where the hard palate ends and the
tooth region starts. This step serves the purpose of assigning a semantic value to the
origin, which can be used to align data to the model. In particular, the coordinate system
depicted in Figure 4.6 is used. The orientation of the axes was selected to correspond
to the default orientation of the Blender tool (Blender Online Community, 2018) that is
used throughout this work for creating renderings of meshes.

For meshes obtained from di�erent speakers, however, the previous approach for nor-
malizing the pose is insu�cient: the original approach is only working for a single speaker
where one scan is used as the reference pose. In the case of multiple speakers, however,
one reference pose would then exist for each individual speaker and these poses would
di�er from each other with respect to position and orientation. Basically, this means that
the original approach can remove head pose di�erences within a speaker's data, but fails
to eliminate them across speakers. As a remedy, the palate shapes of all speakers could be
aligned to one single pose. This task can actually be ful�lled by applying the Procrustes
alignment strategy to the palate mesh collection. This operation maps all palates into a
single pose where all global translational and rotational di�erences between the shapes
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Initial result Bootstrapping result

Figure 4.7.: E�ect of bootstrapping.

have been minimized. Again, all palates are shifted such that the origin of the coordinate
system is always located at the given point of the palate mesh. Now, all tongue shapes
can be mapped into this shared pose as follows: �rst, estimate the motion between the
palate mesh that was aligned to a scan and its Procrustes variant by using rigid align-
ment. Afterwards, apply this estimated motion to the corresponding tongue mesh of the
scan to move the tongue to the Procrustes variant of the palate mesh. This process leads
to a mesh collection of tongue shapes where transformation di�erences originating from
the head motion within speakers and the head pose across speakers were eliminated.
Additionally, translational and rotational shape di�erences related to speech production
are preserved.

4.5. Bootstrapping strategy

As discovered during the experiments of the initial approach in Figure 2.21, a single
template might be insu�cient for registering a whole dataset of MRI recordings of the
tongue. The underlying issue may be summarized as follows: the template mesh rep-
resents only one speci�c instance of all possible tongue shapes. In this regard, tongue
forms might occur during a registration process that di�er too much from this instance.
Thus, the template matching could fail to estimate the correct surface.
A remedy would be to use for each scan a new template that resembles the shape

that is present in the scan. This sparks the idea of �rst building a statistical generative
model of the desired articulator and then using this model to perform a pre-registration
of the corresponding point clouds. The pre-registration may be performed by using the
following model �tting energy:

E�t(s,p) = Edata(s,p) + Elandmark(s,p). (4.4)

The modeling ideas correspond to the ones of the template matching in Chapter 2. This
time, the mesh in the individual energy terms is obtained by reconstructing it from the
current model parameters s, p, and the used tongue model. As again the data term is
not di�erentiable due to the nearest neighbor evaluation, a series of energies is optimized.
It is important that the point cloud data �rst has to be aligned to the coordinate system
of the used model because the model is unable to produce translational and rotational
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motions that are related to head movements. The results of these pre-registrations are
then used as the templates for the corresponding scans. However, this idea leads to
a �chicken and egg� situation: on the one hand, the registrations of the corresponding
articulator have to be known for building a model. On the other hand, a model is needed
for obtaining the templates for performing the registrations themselves.

This observation leads to a modi�cation of the original idea: in a �rst step, register
all data with the initial template and perform the pose normalization. Then, build a
model from the obtained registrations that are possibly partially wrong. Afterwards, use
this model for performing the pre-registrations but limit the set of admissible shapes to
ones that are near the mean. Restricting the shapes to this area serves the purpose of
suppressing registration errors that were incorporated into the model. After that, use
the pre-registration result as new template for the corresponding scan. Finally, learn a
model from the newly obtained registrations. This process is known as bootstrapping
and can easily be repeated iteratively until the MRI scans are registered in a satisfying
way. Satisfying is in this case again a subjective measure: the user of the framework
inspects the results manually and decides if the shapes are close enough to the tongue
contours in the scan. An algorithmic description of this strategy is shown in Algorithm 1.

As a convention, the type of the used model in the bootstrapping strategy is assumed
to be the same as the desired result model. It is, however, also possible to just use a
principal component analysis (PCA) model for this purpose.

The results in Figure 4.7 show that this modi�cation indeed solves the issue of wrongly
registered shapes. The approach was only described for the tongue here, but may also
be applied for registering other articulators, like the hard palate.

4.6. Reconstruction of missing shapes

In the case of a multispeaker dataset, the multilinear modeling approach requires the
tensor X to contain for each speaker the same phones. However, this requirement is
violated by both the USC and the Ultrax datasets. In the Ultrax case, the phones [a, O,
0, @, s, S] are missing for the data of 01MRIM, the speaker of the Baker dataset. For the
USC data, the phone [@] is missing for the pilot speaker. Furthermore, [A:] is missing for
F5.

In these cases, the missing pose shape of a speaker is reconstructed by averaging
available data: �rst, compute the average shape of all meshes that are present for the
speaker. Afterwards, compute the mean shape of all meshes that are available for this
speci�c pose from the other speakers in the same dataset. Finally, average both meshes.
In the literature, there are more sophisticated methods to restore missing information,
such as HALRTC (Ji Liu et al., 2013) or the approach by Bolkart and Wuhrer (2016).
In this case, however, this averaging approach was su�cient.
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Algorithm 1: Bootstrapping strategy for registering articulator shapes

Input: template mesh template, collection of point clouds pointClouds, iteration
amount bootstrapIterations

Result: collection of registered meshes registeredMeshes

// initialize collection of meshes

registeredMeshes ← {};
// obtain meshes from all point clouds

foreach point cloud P ∈ pointClouds do
// register point cloud with original template

mesh ← match_template(template, P );
registeredMeshes ← registeredMeshes ∪ {mesh};

end

// start the main bootstrap loop

for i← 1 to bootstrapIterations do
// derive shape model

model ← build_model(registeredMeshes);
// clear results

registeredMeshes ← {};
foreach point cloud P ∈ pointClouds do

// derive template specific for the current point cloud

adaptedTemplate ← fit_model(model , P );
// register point cloud with adapted template

mesh ← match_template(adaptedTemplate, P );
registeredMeshes ← registeredMeshes ∪ {mesh};

end

end

return registeredMeshes;

64



4.7. Validation of the subjective evaluation

4.7. Validation of the subjective evaluation

As mentioned earlier, a ground truth is missing for the used MRI datasets. Thus, only a
subjective evaluation of the results is possible. In particular, this evaluation serves the
purpose of being an heuristic to determine if one set of settings leads to better results
than another set. However, it is important to investigate if the used subjective heuristic
is also shared by experts in the �eld. In a study (Hewer, Wuhrer, et al., 2018), such
an investigation was carried out. To this end, a web-based preference test was designed
in order to elicit the opinion of speech experts. The goal of this experiment was to
investigate whether the experts agreed with the applied subjective evaluation. In this
context, it is important to note that this study used an earlier version of the proposed
framework and only investigated the Ultrax dataset.
The following data was prepared for the experiment: for each of the 137 scans that

were used of the Ultrax dataset, three versions of the same sagittal slice were prepared.
One version showed the unannotated slice. The second version showed the slice with
the projected tongue mesh contour after the initial template matching. The last version
visualized the tongue mesh contour after the �nal bootstrapping. Afterwards, the scan
set was randomly partitioned into 4 subsets of roughly equal size. These partitions were
then randomly assigned to the participants such that overall, each scan was seen by 3 to
4 participants.
15 speech experts took part in the experiment. On average, they had 11 years of

research experience with speech production data. Each participant was asked to view
all scans of the assigned partition and to select the preferred annotated version of the
shown sagittal slices. During the experiment, the individual methods that produced the
results were hidden from the participants. Moreover, in order to prevent the participants
from detecting any pattern in the presentation, the two annotated versions were always
displayed in random order.
A plot summarizing the �ndings of the experiment can be seen in Figure 4.8. The

evaluation revealed that in 83.85% of the cases, the bootstrap result was preferred by
the participants. Afterwards, it was investigated how these preferences were distributed
among the di�erent scans that were shown. For 19 scans, in 50% or more cases, the
initial template matching was preferred over the bootstrapping result. By inspecting the
displayed slices of the individual scans, it can be seen that the initial and bootstrapping
versions are very similar. Moreover, the bootstrapping results seemed to slightly under-
estimate the tongue shape in the MRI scan in these cases, which might have caused the
participants to choose the initial result. Examples of such cases are shown in Figure 4.9.
From the relatively high acceptance rate of the obtained bootstrap results among the

consulted experts two conclusions may be drawn: �rst, the performance of a previous
version of the approach was already acceptable with regard to the quality of obtained
meshes. Second, the used subjective assessment of the obtained meshes was largely
shared by the experts. These conclusions can be seen as a justi�cation for deriving a
tongue model from the obtained meshes.
However, the experiment also showed that there was still some room for improvement

of the given approach, which is conditioned on speaker-speci�c anatomy.
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Figure 4.8.: Results of the preference test for each considered scan. Note that not all
phonemes are available in the data for speaker 01MRIM. The scans were
grouped by speaker to improve the visualization.

(a) [A] scan of 11MRIM (b) [2] scan of 01MRIM (c) [@] scan of 14MRIF

Figure 4.9.: Examples for scans where the participants preferred the initial template
matching result (top row) over the bootstrapping one (bottom row).
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4.8. Registration experiments

The previous sections addressed several issues of the initial mesh extraction approach and
extended it accordingly. Moreover, the applied subjective evaluation of the meshes was
validated by consulting experienced speech experts. In this section, the �nal approach is
evaluated in order to see if the modi�cations lead to the desired improvements. Again,
it is applied to all datasets. Due to the fact that the approach is still unable to handle
contacts between the tongue and the soft palate, the following data is excluded from
the experiments: all phones where a large contact area between tongue and soft palate
occurs, like [N, k, q]. The entire data of speaker 12MRIF in the Ultrax dataset is also
ignored during the experiments because this speaker showed a high activity of the soft
palate during articulation.

4.8.1. Settings

This section provides information about the used settings for the experiments that can
be inspected in Table 4.1. Compared to the initial approach, additional settings are
present. These additional settings consist of the bootstrapping settings and the settings
for the palate shape estimation. The palate shape estimation is required for performing
the palate reconstruction. In order to improve the acquired palate meshes, a bootstrap
operation is also applied in this case. Again, the settings were manually selected. In
the case of the Baker and Ultrax datasets, the segmentation is again performed by using
the unweighted variant of Otsu's method. For the USC data, again basic thresholding is
applied. In the case of the bootstrapping, only very small prior boxes are used: for the
tongue bootstrapping, the prior box width h = 0.75 is used. The palate bootstrapping
applies the width h = 1. This selection serves the purpose of avoiding over�tting during
this step. The weight for the landmark term in the case of the template matching for
the palate is chosen to be large and forced to remain large in order to ensure that the
extremities of the resulting mesh are correctly aligned. This is important in order to
recover as much of the surface of the hard palate as possible.

4.8.2. Observed improvements

First of all, it is of interest if the issues that were discovered in Chapter 2 were resolved by
the modi�cations. To this end, Figure 4.10 shows a comparison between the results of the
initial approach and the extended one. It becomes clear that the applied modi�cations
solved the identi�ed issues of the initial approach.

4.8.3. Results

Inspecting further results for the three datasets in Figures 4.11 to 4.13 reveals that
the approach can now handle many more vocal tract con�gurations than before. In
particular, phones where contacts between tongue and palate occur can now reliably be
extracted from the datasets. Like in Chapter 2, it can be seen that speakers might have
di�erent articulation strategies for the same phone. This is, for example, the case for the
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Surface-enhancing di�usion

σ standard deviation for presmoothing the image 1
ρ standard deviation for combining structural information 1
λ contrast parameter of Perona-Malik di�usivity 0.10
t evolution time 2.40

Point cloud extraction

σ standard deviation for presmoothing the image 1
ρ standard deviation for combining structural information 1

Template matching

βmax initial weight for smoothness term 10
βmin weight for smoothness term on last iteration 6
γmax initial weight for landmark term 0.10
γmin weight for landmark term on last iteration 0
nmatch amount of optimization steps 100
rsearch search radius for nearest neighbor heuristic 5 mm
θsearch angle threshold for nearest neighbor heuristic 60 ◦

npostsmooth post smoothing iterations 1

Bootstrapping

nbootstrap bootstrap iteration amount 2
n�t amount of optimization steps 10
σi width of prior box for each component 0.75
rsearch search radius for nearest neighbor heuristic 5 mm
θsearch angle threshold for nearest neighbor heuristic 60 ◦

npostsmooth post smoothing iterations 1

Template matching settings that di�er for the palate

γmax initial weight for landmark term 10
γmin weight for landmark term on last iteration 10
nmatch amount of optimization steps 40
rsearch search radius for nearest neighbor heuristic 4 mm

Bootstrapping settings that di�er for the palate

nbootstrap bootstrap iteration amount 1
σi width of prior box for each component 1
rsearch search radius for nearest neighbor heuristic 4 mm

Table 4.1.: Used settings for the experiments. Parameter name, description, and value
are provided.
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Original approach Extended approach

Ultrax, 02MRIM, [i].

Ultrax, 05MRIM, [0].

USC, F9, [ô].

USC, F9, [S].

USC, M4, [l].

Figure 4.10.: Comparison between original approach and extended version. The regis-
tration quality signi�cantly improves in the case of the extended approach.
Dataset, speaker name, and produced phone are provided for reference.
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Figure 4.11.: Example results of the extended approach for selected phones in the Baker
dataset.
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Figure 4.12.: Example results for the phones [i] (top row), [s] (center row), and [S] (bot-
tom row) in the Ultrax dataset. Registrations are shown for the speakers
03MRIF, 09MRIM, and 11MRIM.
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Figure 4.13.: Example results for the phones [ô] (top row), [Ç] (center row), and [T] (bot-
tom row) in the USC dataset. Registrations are shown for the speakers F5,
M1, and M2.
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Scan Projection

Figure 4.14.: Missing information in the scan of speaker 11MRIM for phone [i]. The
estimated tongue shape (shown as projection) may be seen as reconstruction
of information in this case. For visualization purposes, a coronal (left) and
a transverse slice (right) are provided.

Dataset Considered scans Notes

Ultrax 137 Speaker 12MRIM ignored, phones [a, O, 0, @, s, S] missing for 01MRIM
Baker 22 Phones [N, k, q] ignored
USC 466 Phone [N] ignored, phone [@] missing for pilot speaker, phone [A:]

missing for F5

Table 4.2.: Summary of considered scans. Notes provide information about missing or
ignored data in the datasets.

phone [ô] in Figure 4.13: the tongue tips of speakers M1 and M2 are very close to the
palate during the production of this phone. The tip of F5 has some distance to the hard
palate. In the same context, the speakers M1 and F5 �ex the tongue back di�erently
compared to M2.

Di�erences in articulation strategy can also be observed for the phone [s] in the Ultrax
dataset: Figure 4.12 shows how speaker 11MRIM curls the tongue blade a bit. The other
speakers, 03MRIF and 09MRIM, omit such a curling.

In the shown results, the result for phone [i] for speaker 11MRIM merits further dis-
cussion. By inspecting the coronal view of the registration, it becomes clear that the
projected mesh surface has some distance from the visible tongue contour on the right
side. First of all, this registration can still be regarded as acceptable. Furthermore,
inspecting a transverse visualization in Figure 4.14 of this scan reveals that in this area
data is actually missing. A possible explanation could be that a tooth �lling was inter-
fering with the MRI scanning procedure. In this case, the registered tongue surface in
this area can be seen as a reconstruction of missing information.

In total, the extended approach successfully registered all the considered scans with
Table 4.2 summarizing the results. This means that the proposed approach succeeded in
625 cases where always the same settings were used. Only the landmarks were distributed
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manually for each scan. Furthermore, a segmentation technique was selected for each of
the datasets. Under these circumstances, it can be claimed that the approach is speaker
and tongue pose independent.

4.9. Model creation and evaluation

The new approach provides access to a su�cient amount of tongue meshes and an appro-
priate alignment of the data, such that a statistical analysis can take place. In the case
of the Baker dataset, a simple PCA model is built as the data only contains informa-
tion about a single speaker. Thus, only the degrees of freedom (DoF) related to actual
tongue motion can be estimated from this data. For the Ultrax and the USC datasets, a
multilinear model can be constructed.
During the bootstrapping strategies, unaltered versions of these models are used. The

�nal model may be evaluated in order to decide if the parameter spaces can be truncated
in order to remove unimportant information. In the multilinear case, these are two
spaces: the speaker or anatomy space S and the pose space P. The PCA model only
has one parameter space. The desired truncation is important as some parameters of the
original model may represent noise in the training data. It is common to evaluate such
statistical models by analyzing their compactness, generalization, and speci�city (Styner
et al., 2003) in order to make this decision. The parameter spaces of a good model are
assumed to be compact, general, and speci�c. For performing these evaluations, variants
of the approach by Bolkart (2016, Section 4.2.2) are used.
Moreover, it is important to compare the models with each other. This comparison

serves the purpose of deciding which model is better suited for applications.

4.9.1. Compactness

Compactness investigates how much the individual components of one parameter space
contribute to the description of the used training data. In Figure 4.15, results for this
evaluation can be inspected for all three derived tongue models.
In the Baker case, it can be seen that 4 components of the parameter space describe

93% of the data. The original parameter space dimension is given by 22. The observation
that only 4 parameters are needed to explain the majority of the data can lead to two
conclusions: either the training data contains redundant information or the tongue only
has a few DoF with respect to articulation.
For the Ultrax dataset, information about the compactness of the speaker and the pose

parameter space is available. In the speaker case, 6 components describe 92% of the data.
In the pose case, 4 components are required to represent 90% of variability. Again, the
observation can be made that relatively few parameters in the pose space are needed to
describe the majority of the data. Once more, this could be an indicator for redundancies
in the training data. Interestingly, the speaker space requires more components than the
pose space in order to represent the data.
Finally, the USC model also provides access to the compactness of the speaker and

pose parameter space. This time, 6 parameters are needed for the pose parameter space
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Figure 4.15.: Compactness (left), generalization (center), and speci�city (right) of the
evaluated models. For the generalization and speci�city, the mean (line) and
the standard deviation (ribbon) are shown. The plots provide the results for
the Baker (top row), Utrax (center row), and USC dataset (bottom row).
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to represent 91% of the training data. In the speaker case, 8 components are required to
cover 91% of the data. Once again, more parameters are needed for the speaker space
than for the pose space to approximately represent the same amount of data.
On the whole, the conclusion may be drawn that the pose space always requires a

small amount of parameters to describe the majority of present data, which indicates
that only a few DoF of the tongue are needed for speech production. Furthermore, the
speaker space needs more parameters to describe the same amount of data. This could
be an indicator that more DoF exist for the anatomy of the tongue than for the actual
speech production.

4.9.2. Generalization

Generalization measures how well the model can register data that was not part of the
training. For the PCA case, the generalization is computed in a leave-one-out fashion: the
mesh for each phone is once excluded from the mesh collection and a model is derived
from the remaining meshes. The mesh that was excluded is then registered with the
obtained model. Afterwards, the error is recorded by computing the average Euclidean
vertex distance between registered mesh and target mesh. This experiment is repeated
multiple times where each time a di�erent size of the parameter space is used.
In order to evaluate the generalization for the multilinear models, both parameter

spaces are examined separately: to evaluate the speaker generalization, the following
steps are performed: for each speaker, a tongue model is derived from the meshes of all
other speakers. Then, the tongue meshes of the excluded speaker are registered with this
model. Afterwards, the average Euclidean distance between the registered meshes and
the original ones are measured. Again, the experiments are repeated multiple times where
each time a di�erent size of the speaker parameter space is used. The size of the pose
subspace is �xed to approximately represent 90% of the data during these experiments
to prevent over�tting caused by this subspace.
In the analysis of the pose generalization, the same approach is used: for each phone,

a tongue model is derived from the meshes of all other phones. Then, the meshes of the
excluded phone are registered with the obtained model. The size of the speaker space is
�xed to represent 90% of the data.
The results of these experiments for all tongue models are depicted Figure 4.15. Dur-

ing this evaluation, the width h = 2 was used for the prior box in the model �tting
optimization. It can be seen that increasing the size of the parameter spaces leads to
better �tting results. The generalization experiments show that only a few components of
the parameter spaces are needed to reliably register unseen data, which implies that the
model can adapt to new tongue anatomies or poses. In particular, small parameter space
sizes are enough to reach an average error that is slightly above the average measurement
resolution of the original MRI scan data. For the Baker and Ultrax datasets, this mea-
surement resolution is given by 1.2mm. In the USC case, the resolution is 1.5625mm.
A high number of parameters leads to errors below the average resolution, which can be
considered as over�tting. On the whole, the pose subspace shows better generalization
properties than the speaker subspace: fewer pose parameters than speaker parameters

76



4.9. Model creation and evaluation

x
z

y

x

z

y

Figure 4.16.: Speech related regions of the tongue surface: Tongue tip (red), tongue blade
(brown), tongue back (violet), tongue dorsum (blue), and the lateral regions
(green).

are required to reach the same level of precision. A similar observation could already be
made in the case of the compactness evaluation. Again, an explanation could be that the
training data contains redundant information. In the Ultrax case, for example, the phone
pairs [2, 0], [e, i], and [e, E] are similar to each other with respect to shape (Ladefoged,
1982). This means that excluding one still provides the model with enough information
to capture the related variation.

4.9.3. Speci�city

Speci�city tries to assess how much randomly generated tongue shapes of the model di�er
from valid tongue shapes. This is essentially a measure for determining how speci�c the
model is towards the tongue. In this work, it is especially of interest to investigate how
large these di�erences are for the regions of the tongue mesh that are speech related.
Figure 4.16 shows an overview of those regions.
In the PCA case for the Baker dataset, the experiment was conducted as follows. First,

all tongue meshes of the training data are assumed to be valid shapes. These meshes are
used to derive tongue models where the size of the parameter space is again varied, as in
the evaluation of the generalization. For each size, random tongue shapes are generated
from the resulting models by assuming a multivariate Gaussian distribution. These
tongue meshes are compared with the ones in the mesh collection. Here, the average
Euclidean distance between the generated mesh and the closest one in the collection
is recorded. During this comparison and distance evaluation, a region consisting of all
speech related parts is considered.
For evaluating multilinear models, the approach is changed somewhat. The speci�city

of the speaker and pose parameter space are evaluated separately. For measuring the
speci�city of the speaker subspace, the pose space is again �xed to the same size as in
the generalization case. Thus, only the size of the speaker space is varied during the
experiment. In the case of the pose evaluation, the speaker space is �xed and only the
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pose parameter space size is changed. The size for the speaker space is chosen to be the
same as in the evaluation of the generalization.
The results are shown in Figure 4.15. In total, 1 000 000 samples were always generated.

On the whole, it can be seen that increasing the subspace dimensionality leads to higher
average Euclidean distances, which means that the model is becoming less speci�c. This
could also be seen as an indicator that the higher dimensions are modeling the noise in
the training meshes. By comparing the di�erent models, it becomes clear that the Ultrax
model shows the worst speci�city: in general, its mean error is higher than the ones of
the Baker and the USC model.

4.9.4. Fixed phone speci�city

Finally, it is of interest in this work to �nd out how much the tongue shapes belonging to
speci�c phones di�er from the corresponding ones generated by the model. In particular,
such an evaluation provides insight in how speci�c the model is towards the given phones.
This evaluation can only be performed for multilinear models as in the corresponding
training data multiple instances of the same phone are available.
The following experiment was performed for each phone: the parameters in the pose

space were frozen to the ones belonging to the given phone. Then, for each size of the
speaker subspace, samples are generated and the average Euclidean distance to the closest
mesh is computed. Here, only meshes belonging to that phone are used to compare the
generated meshes. This time, in the distance evaluation and comparison, parts of the
tongue that are considered critical for this speci�c phone (Jackson and Singampalli, 2009)
are used. In general, this region consists of the tongue blade, tongue back, and the tongue
dorsum. However, for the phones [s, S, T, ð, z, Z, l, n] a di�erent region is chosen that
consists of the tongue tip and the tongue blade. The phones [h, m, v, f] without speci�c
critical parts on the tongue are excluded from this evaluation.
The results of these experiments are shown in Figure 4.17. Again, 1 000 000 samples

were generated. In these experiments, the phone [0] shows a signi�cantly bad result
in the �xed phone speci�city evaluation, which might be related to its unusual role in
the phonology of British English. One explanation could be that some speakers might
have pronounced it inconsistently and applied di�erent strategies, which led to a high
variation in the data, which is then integrated into the model. Overall, the �xed phone
speci�city results are better for the USC model than for the Ultrax model: the observed
errors are smaller and more consistent among the examined phones. The errors in the
Ultrax case tend to be larger and show di�erent standard deviations depending on the
phone.

4.9.5. Comparison between Ultrax and USC model

Currently, two models are of interest for applications, namely the multilinear versions.
This is due to the fact that these models allow speaker adaptation because the anatomy of
the tongue can be adjusted by tuning the speaker parameters. In the case of the Baker
model, the anatomy is �xed. Thus, it is worthwhile to investigate which multilinear
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Figure 4.17.: Speci�city results for the �xed phone experiments of the Ultrax (top) and
USC dataset (bottom). Plots show mean (line) and standard deviation
(ribbon).
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Figure 4.18.: Comparison between Ultrax (top) and USC model (bottom). For the gen-
eralization and speci�city, the mean (line) and the standard deviation (rib-
bon) of the experiments are shown.
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model is better.
So far, the models were only evaluated by using the meshes in the corresponding

training data collection. In the current evaluation, the experiments are altered as follows:
for computing the generalization, always the whole training mesh collection is used for
deriving the models without excluding any data. The derived models are then used to
register all meshes from a di�erent dataset. This means that the Ultrax model is used to
register data of the USC mesh collection and vice versa. The speci�city evaluation is also
modi�ed. Instead of using only the meshes of the training data, also the meshes from a
di�erent dataset are used as examples of valid tongue shapes. For both experiments, the
same settings as in the original experiments are used.
Results of these new evaluations are shown in Figure 4.18. It can be seen that the errors

that were measured during the speci�city evaluation are lower for the USC model than
those for the Ultrax model. This observation implies that the USC model is more speci�c
towards the tongue than the Ultrax variant. Moreover, the USC model is better than
the Ultrax one at registering a di�erent dataset, which can be seen in the generalization
evaluation: fewer parameters are required for the USC model to achieve the same level
of accuracy as the Ultrax model. In summary, it can be said that the USC model is
superior to the Ultrax model. An explanation for this behavior could be that more data
was available in the USC case for building the model. Additionally, the phone selection
was di�erent for the USC data: a balanced collection of consonants and vowels was
recorded. This property might have caused the tongue model to learn about more DoF
of the tongue during speech production.

4.9.6. Final model

The above experiment revealed that the USC tongue model is the most versatile tongue
model of the investigated ones: it allows the anatomy and tongue pose to be changed,
and additionally can register unknown data. Based on the results of the compactness,
speci�city, and generalization evaluation, the sizes of the parameter spaces are chosen as
follows: the size ms = 8 is used for the speaker parameter space S and mp = 6 for the
pose parameter space P. These settings serve the purpose of having a good compromise
between compactness, speci�city, and generalization.

4.10. Conclusion

This chapter extended the initial approach for deriving tongue meshes from speech-
related MRI recordings of the vocal tract. The modi�cations enabled the new approach
to register many more di�erent tongue shapes. In this context, indicators were found that
the presented framework is speaker and tongue pose independent. Furthermore, the used
subjective evaluation heuristic for determining the quality of an obtained registration
was validated by consulting experts of the �eld. This was an important step because it
justi�ed using the obtained meshes for deriving tongue models.
The resulting mesh collections were used to derive three tongue models, each one rep-

resenting the nature of the used dataset: a linear model derived from a single speaker
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dataset and two multilinear models obtained from multispeaker datasets. The acquired
models were evaluated in order to examine their compactness, generalization, and speci-
�city properties. During these evaluations, it was observed that only a few tongue pose
parameters were needed to explain the majority of the corresponding data. Here, also
a �xed phone speci�city analysis was conducted to evaluate how speci�c the models are
towards certain phones. Additionally, the Ultrax model was compared to the USC one,
which revealed that the USC model was the superior tongue model.
However, some open issues remain: an objective evaluation of the estimated tongue

shapes is still missing. Furthermore, the current version of the approach is unable to
adequately handle tongue con�gurations that have a large contact area with the soft
palate. Moreover, it is unclear how good the current tongue model actually separates
the anatomical shape variations from the tongue pose related ones.
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data

5.1. Introduction

5.1.1. Motivation

The previous chapters investigated the tongue shape using static information. In the
area of speech science, it is also of interest to understand the dynamics of speech pro-
duction. To this end, it is common to acquire motion capture data of the human tongue
for analyzing articulation. In this context, electromagnetic articulography (EMA) can
nowadays be seen as the state-of-the-art modality for obtaining this kind of data. EMA
is a modality that is able to track the positions of selected �esh points (Schönle et al.,
1987; Perkell, Cohen, et al., 1992; Hoole and Zierdt, 2010). Roughly speaking, the track-
ing is performed as follows: the used EMA device or articulograph uses transmitter coils
to generate an electromagnetic �eld. Then, sensor or receiving coils of the correspond-
ing articulograph are attached to �esh points of interest. As soon as these coils enter
the electromagnetic �eld generated by the transmitter coils, a current is induced in the
respective sensor. By analyzing this current, the position of the sensor coil can be esti-
mated. This modality allows to track such coils with a high temporal resolution by using
electromagnetic �elds, which makes it well-suited for recording motion capture data of
the tongue. In contrast to the X-ray microbeam (XRMB) modality that involves ionizing
radiation, EMA can be considered as harmless to the human body (Hoole and Nguyen,
1997). Currently, two major systems are available for recording such kind of data: The
Wave system by Northern Digital Inc.1 and the AG501 system by Carstens Medizinelek-
tronik GmbH2. Predecessors of the AG501 are the AG100, AG200, and AG500 systems.
The accuracy of such systems has been widely researched. In particular, Savariaux et al.
(2017) found that the AG501 and the Wave systems provide a suitable accuracy for in-
vestigating the tongue motion during speech production. Table 5.1 provides information
on the systems relevant for this work. Here, it becomes apparent that depending on the
use case, one system is better than another. If a study requires a device that is small,
highly portable, and high accuracy is unneeded, the NDI Wave will be a good choice.
However, if the study depends on high accuracy and the portability and size of the device
are unimportant, the AG501 will be better suited for such a purpose.
During recordings with current articulographs, the recorded subject is mostly visible

and the EMA acquisition is noiseless. This means that the EMA modality o�ers the

1https://www.ndigital.com/msci/products/wave-speech-research
2http://www.articulograph.de/?page_id=711
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Wave AG500 AG501

Number of trackable points 16 12 24
Sampling rate 100Hz to 400Hz 200Hz 250Hz to 1250Hz
Positional accuracy (RMS) 1.5mm not available 0.3mm
Coil type single use multi-use, requires calibration similar to AG500
Format portable, 7 kg stationary, 130 kg stationary, 64 kg

Table 5.1.: Comparison between di�erent articulographs. The RMS values are provided
by the manufacturers where no information is available on the AG500.

Study Research topic

Ackermann et al. (1993) speech freezing in Parkinson's disease
Hoole and Nguyen (1997) coarticulation e�ects
Jackson and Singampalli (2009) speech production
Akdemir and Çilo§lu (2008) speech segmentation
Geng and Mooshammer (2009) speaker normalization
Steiner and Ouni (2011) di�erences between upright and supine posture
Yunusova, Baljko, et al. (2012) palate shape estimation
Tomaschek et al. (2013) vowel length and vowel quality
Steiner, Knopp, et al. (2014) e�ect of posture and noise on speech production
Wieling et al. (2016) dialectical di�erences
Hermes et al. (2018) age-related e�ects on speech motor control

Table 5.2.: Selection of literature that applies EMA for analysis.

advantage that it can be combined with other modalities that are recorded at the same
time, like, e.g., video, audio, or ultrasound. This is, for example, di�erent from magnetic
resonance imaging (MRI) recordings where special microphones and noise cancellation
techniques are required to simultaneously record the audio. In Figure 5.1, pictures of
such combined setups can be inspected.
In literature, EMA recordings have been carried out for researching a variety of di�erent

topics as it can be seen in Table 5.2. In addition to performed studies, researchers also
worked on creating and distributing databases of such articulatory data. Some of these
databases are depicted in Table 5.3. The availability of such public databases eliminates
the need for researchers to record their own data and provides the advantage of making
their obtained results comparable to other studies.
Despite the well established use of EMA, however, this modality has one distinctive

disadvantage if compared, for example, to MRI: whereas EMA provides a high temporal
resolution, its spatial coverage is quite low: sometimes, only 5 or 3 points on the tongue
are tracked. This has several reasons: on the one hand, a speci�c distance between the
individual coils is required because otherwise the electromagnetic �elds generated by the
coils themselves might interfere with each other (Steiner, Richmond, and Ouni, 2013).
On the other hand, having too many coils glued to the tongue might make it too di�cult
to articulate properly for the recorded subject.
This sparseness of the data makes it hard to interpret in a visually meaningful way
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(a) Acquisition of face capture and EMA data. Setup uses the NDI Wave device located above
the head of the subject. Front and back view of subject are provided.

(b) Recording of ultrasound and EMA data. The subject holds the ultrasound probe while sitting
in the Carstens AG501 articulograph.

Figure 5.1.: Examples for multimodal recording setups involving EMA. In both cases,
the device including the transmitter coils is above the head of the subject.

Database Subjects Articulo-
graph

Sampling
rate

MOCHA TIMIT (Wrench, 2000) 1 male, 1
female

AG100 500Hz

USC-TIMIT (Narayanan, Toutios, et al.,
2014)

2 female, 2
male

Wave 100Hz

TORGO (Rudzicz et al., 2012) 3 female, 4
male

AG500 200Hz

mngu0 (Richmond, Hoole, et al., 2011) 1 male AG500 200Hz

Table 5.3.: Selection of databases that provide EMA recordings. The individual entries
provide information about recorded subjects, the used articulograph, and the
used sample rate for the EMA data. Notes on the MOCHA TIMIT dataset:
this dataset actually contains more speakers. However, in literature, only two
are used. The quality of the other recordings of this dataset is unknown.
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because the data only consists of a few points moving in space without any visible con-
text. Such context could be added as follows: the recorded trajectories of the �esh
points could be used to animate a simpli�ed representation of the tongue or even a full
three-dimensional (3D) model. These representations may be helpful to researchers for
studying the dynamics of the vocal tract. Moreover, such animations would be helpful
in the area of computer-aided pronunciation training (CAPT). This is backed by obser-
vations in literature that visual information can help during language acquisition (Mills,
1987) and is also important for speech perception (Sumby and Pollack, 1954; Benoît
and Le Go�, 1998). Additionally, it has been shown that humans possess a general
articulatory awareness, i.e., they know about the current shape and position of their
tongue (Montgomery, 1981). In this regard, Engwall and Bälter (2007) found that ani-
mations of the vocal tract are desirable by students learning a language. Here, Engwall
(2008) showed that such animations can indeed help language learners to correct their
pronunciation.

5.1.2. Related work

Thus, it is understandable that creating such visualizations is an active �eld of research:
the VisArtico tool (Ouni et al., 2012) is intended for providing easy visual access to
recorded EMA data. It uses simpli�ed representations of the lips, tongue, and jaw, and
can optionally reconstruct the palate shape from given EMA data.
Badin, Elisei, et al. (2008) used a talking head to visualize EMA data. They used

computed tomography (CT), MRI, and multiview video recordings to derive statistical
surface models for the individual parts of the talking head. This representation provides
the advantages of being fully 3D and also giving information about other parts of the
vocal tract. Furthermore, the usage of statistical models may lead to realistic motions.
However, this system is speaker speci�c and the EMA data of the same speaker was used
for creating the animation.
In the work by Engwall (2001) and Engwall (2003), a linear component analysis (LCA)

tongue model derived from MRI data of a single speaker was animated using EMA data of
the same speaker. This model was used in a talking head application intended for CAPT
(Bälter et al., 2005). Again, such an approach provides the advantage of producing 3D
visualizations of the tongue that may be realistic because a statistical model is used. A
limitation is the fact that the tongue model is speaker-speci�c and may fail to register
the data of another speaker in a proper way.
Steiner and Ouni (2012) and Steiner, Richmond, and Ouni (2013) proposed a skeleton

based approach (Magnenat-Thalmann et al., 1988) to animate a 3D tongue mesh by using
EMA data. Their approach o�ers the advantage of being modular, i.e., the tongue mesh
can easily be integrated into various applications because of the usage of open source
software. Furthermore, the tongue mesh can be customized by the user, which makes the
approach adaptable to new speakers. However, the authors state that their approach is
not intended to provide an accurate model for tongue shapes and motions.
Katz et al. (2014) followed a similar approach: they o�er a real-time capable system

that uses EMA data to animate a generic head and tongue model by applying standard
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computer graphics methods. A generic model, however, may be incapable to represent
the speci�c articulation strategy of a speaker.

5.1.3. Contribution

The work in this chapter also addresses the issue of creating a meaningful visualization
of the tongue's dynamics during speech production by using EMA data. In particular, it
uses the multilinear model derived from the USC dataset for this purpose. The chapter
is based on the following papers:

Hewer, Alexander, Ingmar Steiner, and Korin Richmond (Mar. 2019). �Analysis of coar-
ticulation using EMA data with a statistical shape space model of the tongue�. In:
Conference on Electronic Speech Signal Processing. Dresden, Germany, pp. 296�303.
url: http://www.essv.de/pdf/2019_296_303.pdf.

Hewer, Alexander, Stefanie Wuhrer, Ingmar Steiner, and Korin Richmond (Sept. 2018).
�A multilinear tongue model derived from speech related MRI data of the human vocal
tract�. In: Computer Speech & Language 51, pp. 68�92. doi: 10.1016/j.csl.2018.
02.001.

James, Kristy, Alexander Hewer, Ingmar Steiner, and Stefanie Wuhrer (Sept. 2016). �A
real-time framework for visual feedback of articulatory data using statistical shape
models�. In: Interspeech. San Francisco, CA, USA, pp. 1569�1570. url: http://www.
isca-speech.org/archive/Interspeech_2016/abstracts/2019.html.

Steiner, Ingmar, Sébastien Le Maguer, and Alexander Hewer (Dec. 2017). �Synthesis of
tongue motion and acoustics from text using a multimodal articulatory database�. In:
IEEE/ACM Transactions on Audio, Speech, and Language Processing 25.12, pp. 2351�
2361. doi: 10.1109/TASLP.2017.2756818.

The main contribution of this work is a 3D visualization approach for the tongue.
However, in contrast to earlier work, it allows for speaker adaptation by estimating the
anatomy and the articulation strategy of the observed speaker. Due to the usage of a
statistical model, it also aims at producing natural and realistic shapes and motions of
the tongue. Earlier work (James et al., 2016) has shown that this visualization technique
is real-time capable and that it can easily be integrated into a talking head framework for
providing feedback to a language learner. Furthermore, registering the EMA data with a
tongue model can be seen as a dimensionality reduction strategy: the coordinates of all
tongue coils in a single time frame are essentially assigned a single shape space coordinate
represented by the parameters of the tongue model. This kind of simpli�cation of the
data could be helpful for data-driven analysis studies.

5.1.4. Overview

This chapter �rst describes how the EMA data is represented in this work. Afterwards,
preprocessing steps are discussed that are needed for preparing EMA data for registration.
Then, the registration process is described. Experiments are conducted to analyze the
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Figure 5.2.: EMA sensor coils are glued to points of interest on the tongue.

performance of the approach by using data from 4 di�erent speakers that was acquired
from three di�erent EMA systems. Finally, a conclusion summarizes the chapter.

5.2. Data Representation

During an EMA recording, multiple points of interest are tracked by gluing coils at these
points as it can be seen in Figure 5.2. This means that in a continuous setting, an EMA
recording can be seen as a �nite set of continuous functions E := {e | e ∈ C(I) } de�ned
on the interval I ⊂ R where I represents the time span for which the articulatory data
was collected. One function e : R → R3 of this set denotes the trajectory of a single
EMA coil over time.3 Thus, e(t) is the position of the respective coil at time t ∈ I. In
practice, however, EMA devices sample these trajectories at speci�c time steps and thus
only give access to discretized versions of these functions. Such a discretized trajectory
can be modeled as

[e]t ≈ e(tht), (5.1)

where ht represents the distance between two samples. As a convention, the set [E]t is
de�ned to contain the positions of all EMA coils attached to the tongue at time t.

5.3. Preprocessing

This section summarizes the preprocessing steps that are performed in this work to
prepare EMA data for registration.

5.3.1. Denoising

The positional data of the coils acquired from the EMA measurements is often degraded
due to high frequency measurement noise. Therefore, it is important to remove this
noise from the data as otherwise the registrations by the model might also su�er from

3It is important to note that this is a simpli�cation of an EMA recording. Such recordings may also
provide additional information like for example the orientation of the coils.
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this degradation. In literature, a low-pass �lter is often used to improve the quality of
the data (Kroos, 2012; Yunusova, Baljko, et al., 2012; Tomaschek et al., 2013). However,
care has to be taken in this regard because this procedure could also remove information
related to the articulation. Therefore, it is important to inspect results manually after
the denoising step in order to make sure that important motions are still preserved.
Examples of low-pass �lters that may be applied to the trajectories of the EMA coils are
a Butterworth �lter or a Gaussian �lter. This work uses a Gaussian �lter.

5.3.2. Reconstruction of missing data

In some cases, positional data might also be missing at speci�c time steps because the
measured root mean square error (RMSE) during acquisition was too high. This work
applies linear interpolation to reconstruct this missing information.

5.3.3. Removing head motion

It is important to note that during the recording, it is possible that the recorded subject
is moving his head continuously. This motion is then also incorporated into the obtained
position measurements of the tongue, which causes a problem: in general, only the
motion of the articulator is of interest in research. Moreover, the derived tongue models
are unable to reproduce this kind of motions as these rigid body transformations were
explicitly removed from the mesh collection. Of course, this motion can be prevented by
taking the necessary precautions, for example, by �xating the head of the participant,
but this would make the recording very uncomfortable. As a remedy, reference coils are
used that are located at speci�c locations on the subject such that only the rigid head
motion is recorded. Example locations are, e.g., behind the ears, at the forehead, or
at the upper jaw. For the following pose normalization approach, these coils must be
positioned in such a way that they describe a plane, i.e., at least three coils are required.
In order to remove the head motion, these reference coils are �rst used to build a local
coordinate system at each time frame. Afterwards, the positions of all coils from the
same time step are projected into this local coordinate system. This mapping removes
most translational and rotational di�erences between time frames that originated from
head motions. However, due to potential errors that a�ect the construction of the local
coordinate system, some minor motion artifacts might remain. These errors might be
the result of coils moving on the skin or measurement noise that was still present after
applying the denoising �lter. In this work, these errors are assumed to be negligible.

5.3.4. Mapping the data into a canonical coordinate system

The previous correction step removes the rigid body motion originating from head motion,
which means that the orientation of the projected data depends now on the constructed
local coordinate system and thus on the chosen reference coils. This leads to issues
because, on the one hand, the positions of these coils di�er from speaker to speaker,
which makes the resulting data di�cult to compare across di�erent speakers. On the
other hand, the orientation of the resulting coordinate system might be di�erent from
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Figure 5.3.: Example setup for recording the bite plane. EMA coils are placed on a
triangle ruler (top). Subject puts ruler into mouth and bites on it (bottom).
Images taken from Musche (2014).

the one of the tongue model space, which prevents this kind of data from being registered
properly. In literature, a so-called bite plane mapping is performed in order to bring data
recorded from di�erent speakers into a common coordinate system (Tomaschek et al.,
2013). To this end, �rst a bite plane EMA recording is performed: here, three or more
coils are attached to a plane-like surface, like, e.g., a common triangle ruler or an object
created speci�cally for this purpose. The corresponding speaker of the recording session
is then asked to put this object into his mouth and bite on it. A picture showing such
a recording setup can be seen in Figure 5.3. The recorded positions of the coils of this
recording are then denoised, head corrected, and then used to build a new local coordinate
system: the bite plane coordinate system. It is important to note here that this bite plane
coordinate system is only computed at one speci�c time step. This is di�erent from the
head correction step where such a coordinate system had to be constructed at each time
step of the recording. This is due to the fact that the bite plane is assumed to be
constant over time whereas the head motion is continuously changing. In a �nal step, all
head corrected EMA data is then mapped into this coordinate system, which makes it
comparable across di�erent speakers.
In terms of the tongue model, this mapping has the following e�ect: as the xy-plane

of this new coordinate system corresponds to the bite plane of the speaker, it is now
also similar to the orientation of the tongue model space where the xy-plane plays a
similar role. Basically, this means that the orientation of the z-axis is now similar to the
coordinate system of the tongue model space.
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5.3.5. Rotating the data

Whereas the EMA data is now aligned to the z-axis of the tongue model coordinate
system, the remaining axes still need to be adapted. The y-axis describes the direction
from the front of the tongue to the tongue back in the model space, as Figure 4.6 shows.
Thus, the EMA data might have to be rotated in order to ful�ll this property. In literature
(Tomaschek et al., 2013), such an alignment is often applied to make data recorded from
di�erent speakers comparable to each other by eliminating pose related inter-speaker
di�erences. Now the question arises how this speci�c direction can be estimated from
the available EMA data, such that the data can be rotated. Basically, the positions of
the coils attached to the mid-sagittal region of the tongue could be helpful in this case.
Roughly speaking, the following steps are then performed to rotate the data accordingly.
The positions for all time steps of these coils are projected into the xy-plane of the bite
plane coordinate system by setting the z-coordinate to 0. Intuitively, the most dominant
direction described by the resulting point cloud should correspond to the desired direction
because during articulation, this is the expected behavior of the mid-sagittal region of
the tongue. In order to estimate the most dominant direction, a principal component
analysis (PCA) is applied to the result. The obtained direction is now used to rotate the
EMA data such that this direction corresponds to the y-axis.

5.3.6. Mapping to origin of model

Now the orientation of the EMA data corresponds to the one of the coordinate system
of the tongue model. However, the origin still has to be adjusted. As stated earlier, the
origin of the tongue model is roughly located at the mid-sagittal point where the hard
palate ends and the upper teeth start. This origin is illustrated in Figure 4.6. In order
to obtain this point from the recorded EMA data, multiple approaches may be used.
In the easiest case, this speci�c point was recorded as part of the EMA acquisition

process. However, if this recording is missing the respective point has to be estimated.
Often, datasets also provide a so-called palate trace for each recorded speaker. Such a
palate trace is obtained by creating a recording where a single EMA coil is moving along
the surface of the palate. The accumulated positions of this coil then roughly describe
the surface of the palate. This point cloud can then be used to manually select the point
where the origin of the tongue model is located.
If a recording of a palate trace is missing, it may be estimated from the EMA data of

all recordings. This is due to the fact that the hard palate represents a natural boundary
for all possible articulations, an observation that was already helpful in Chapter 4 to
reconstruct the palate shape in MRI scans with a palatal contact. Here, it motivates
the following approach to obtain a palate trace for the corresponding speaker, which can
be seen as an extension of the strategy in Ouni et al. (2012) to 3D. First, a point cloud
containing all observed positions of the tongue coils is created. Now, this point cloud has
to be processed in such a way that only the wanted surface information remains. This is
achieved by estimating points on the upper part of the cloud's convex hull. This speci�c
approach for computing the palate surface information can fail: the recorded tongue
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Figure 5.4.: Sagittal view of an example visualization of an estimated palate trace (left).
For reference, a sagittal slice of an MRI scan of the Baker dataset (right) is
shown to illustrate the shape of a palate.

�esh points might have stopped below the hard palate, e.g., because the performed
articulations made it unnecessary to touch the hard palate. Thus, it is crucial to choose
the appropriate data.
However, both, the palate trace and the estimated version of it are still point clouds.

This makes it di�cult to select the origin point. As a remedy, an image representation of
such point clouds can be derived. Basically, an empty image is created with dimensions
that match the bounding box of the point cloud. Before, an appropriate spacing between
the voxels is chosen. Now, the point cloud is projected into this empty image. This means
that voxels that contain at least one point are colored white and all other points are shown
in black. A result can be seen in Figure 5.4. This image representation facilitates the
process of selecting the point. The entire process of obtaining this point can be assumed
to be error-prone because the used point cloud lacks semantic information. For example,
this means that it is unclear which points belong to the palate and which points belong
to the teeth.
Finally, the obtained reference point is used to shift the data such that the selected

point corresponds to the origin of the coordinate system.

5.3.7. Simpli�cation of the data

This work currently only uses EMA coils that are roughly located in the mid-sagittal
area of the tongue. In order to enforce this property and simplify the data, the processed
EMA data is projected into the mid-sagittal plane. Basically, this means that the x-
coordinate is set to 0. This coordinate plane corresponds now to the plane where the
origin of the tongue model is located. Of course, this mapping may lead to information
loss by potentially removing lateral movements. However, such motions are infrequent
during speech and thus the information loss may be regarded as negligible.

5.3.8. Comparison to related work

Other approaches also preprocessed the articulatory data before creating an animation
from it. Steiner, Richmond, and Ouni (2013) used a manual cross-modal registration
approach that involved data from EMA, MRI, and dental casts of the corresponding
speaker for performing the alignment. However, the authors state that this approach
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might be error-prone. Furthermore, the requirement for additional data, like the MRI
data and the dental casts of the speaker, limits its applicability to EMA databases where
this information is missing. In Badin, Elisei, et al. (2008), the authors mention that an
appropriate scaling and alignment of the data was performed to match the coordinate
system of the used models, but omit details. Engwall (2003) represented the EMA
positions as deviations from a given reference con�guration and required a means of
computing the height of the lower jaw in order to properly adapt the used tongue model
to the recorded data. Katz et al. (2014) mention only that the EMA data is head-
corrected, but details are missing on how the data was mapped to a speaker.

5.4. Registering EMA data

After the preprocessing steps, an approach is needed for registering the transformed
EMA data with the provided USC tongue model f(s,p). The strategy for �tting a
tongue model to a point cloud was presented in Equation (4.4) and is given by:

E�t(s,p) = Edata(s,p) + Elandmark(s,p). (5.2)

Thus, [E]t that corresponds to the tongue coil positions at time frame t can be used as a
point cloud that should be �tted by the model. Having a look at the roles of the di�erent
energy terms, however, reveals some properties that make this approach suboptimal for
registering the EMA data: �rst of all, this speci�c technique would require the model to
be �tted to every point cloud [E]t individually without using information from previous
time frames. As this property only guarantees a data nearness in the individual frame, it
may produce shapes that di�er from the previous time step too much such that temporal
inconsistencies may be observed. Moreover, this method tries to estimate a nearest
neighbor for each of the vertices of the generated tongue model mesh in order to setup
the correspondences that are used for optimizing s and p. However, each EMA data frame
only contains a small number of points, which makes it di�cult to estimate appropriate
nearest neighbors for every vertex. Furthermore, the approach might use di�erent nearest
neighbors for a vertex at each time frame as it processes them individually, which again
would increase the likelihood of temporal inconsistencies. Finally, a small number of
points might be insu�cient for describing the whole tongue surface. This data sparseness
could lead to situations where the tongue model produces tongue shapes that are close
to the data, but are highly unrealistic.
In order to address these issues, the energy has to be changed. The new version

should take the temporal nature of the EMA data into account and also use a �xed
correspondence between EMA coils and vertices of the tongue model mesh. An energy
ful�lling these wanted properties is given by:

Etrack([s]t , [p]t) = α Etrack data([s]t , [p]t) + β Ebias([s]t , [p]t) + γ Ecoherence([s]t , [p]t),
(5.3)

where the quantities [s]t and [p]t depict the tongue model parameters at the given time
step t.
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The adapted data term Etrack data(·) uses a �xed correspondence between tongue model
mesh vertices and EMA coils for computing the data nearness. Essentially, this modeling
implies that at each time frame, the parameters of the tongue model are optimized such
that the vertices of the generated mesh are near the positions of the associated EMA coils
at the corresponding time. Therefore, this term may be seen as a modi�cation of the
landmark term that uses dynamic trajectories instead of static points. Using always the
same correspondences contributes to ensuring a temporal consistency. In the following,
the weight α of the data term is again assumed to be set to 1. The new term Ebias(·)
penalizes deviations of the tongue model parameters from their respective means:

Ebias([s]t , [p]t) := ‖[s]t − µ(s)‖2 + ‖[p]t − µ(p)‖2 . (5.4)

In terms of registration, this model idea tries to address the data sparseness of the EMA
modality and provides the approach with additional information about the shape of the
tongue, namely that its parameters should be close to the mean, which implies that the
associated shape is more realistic than shapes generated from parameter values that are
further away. However, care should be taken: setting the weight β ≥ 0 of this term to
a value that is too high keeps the strategy from properly registering the present data.
Finally, the added term Ecoherence(·) weighted by γ ≥ 0, the temporal smoothness or
coherence term, produces energy if the current values for [s]t and [p]t di�er from the
ones of the previous time step:

Ecoherence([s]t , [p]t) :=
∥∥[s]t − [s]t−1

∥∥2
+
∥∥[p]t − [p]t−1

∥∥2
. (5.5)

This term serves the purpose of enforcing a temporal consistency of the shape over
time. In the current modeling, von Neumann boundary conditions are used, i.e., this
smoothness term produces zero energy for the �rst time frame.

5.5. Finding correspondences between EMA coils and model

vertices

The energy in Equation (5.3) requires correspondences between the used EMA coils and
the tongue model vertices to be known before a registration can be performed. These
correspondences can be set manually. However, such a selection could be tedious and
additionally lead to suboptimal results. As a remedy, a semi-supervised approach may
be used to �nd a good correspondence.
In order to �nd a good correspondence, it is important to �rst formulate a heuristic how

to compare two correspondences. Given mappings between coils and vertices, register
one time frame of the EMA data with the tongue model and compute distances between
the position of the EMA coil and the corresponding vertex of the registered tongue shape.
A mapping is called better than another one if the mean of computed distances is smaller
than the one of the other mapping. However, such a purely objective evaluation would
permit correspondences where a EMA coil is associated to a vertex that is highly unlikely
to be the position of an EMA coil. This motivates the idea of complementing the heuristic
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by a subjective inspection. For example, the found correspondences can be compared to
the information provided in the associated documentation of the data. Such information
might be descriptions, simpli�ed �gures, or photographs of the coil layout.
In the following, two variants of semi-supervised methods are discussed.

5.5.1. Randomized approach

In earlier studies (Hewer, Wuhrer, et al., 2018; Steiner, Sébastien Le Maguer, et al.,
2017; Sébastien Le Maguer et al., 2017), the estimation between coils and vertices was
performed by using a semi-supervised randomized approach. In this strategy, a sin-
gle time frame of the EMA recordings is selected manually and the following steps are
performed.
First, a random tongue shape is sampled from the tongue model and an initial near-

est neighbor on the mid-sagittal area of the tongue mesh is determined for each coil.
Then, these correspondences are iteratively re�ned by �tting the model and updating
the nearest neighbors, which can be seen as an iterative closest point �tting strategy.
These two steps are repeated multiple times and the best correspondences are kept ac-
cording to the heuristic that was described earlier. However, care should be taken during
this optimization in order to avoid over�tting. This was avoided in earlier studies by
selecting a relatively small prior box width for the tongue model parameters during the
correspondence estimation.
Clearly, some drawbacks of this method can be identi�ed: the iterative closest point

�tting strategy depends on the initialization. If the initialization is suboptimal, the
approach may fail to �nd a proper mapping. This drawback can be circumvented, e.g., by
repeating the approach multiple times, which then increases the running time. Another
disadvantage of the strategy is the fact that it allows each coil to be associated to each
tongue model vertex in the mid-sagittal area, which may lead to associations that have
a small mean distance, but wrong vertex-coil mappings. While the visual inspection
protects somewhat against such correspondences, this drawback might also increase the
number of times the approach has to be performed before an acceptable mapping is
found. Moreover, the results of this approach might be di�cult to reproduce because it
uses randomization as part of the strategy.

5.5.2. Combinatorial approach

Another way to �nd mappings may be a brute-force approach that probes all possible
combinations of correspondences. Here, the model is �tted to the coils by using every
possible correspondence between EMA coil and tongue model vertex. However, this
means in the case of the used tongue models that for three coils, e.g., 31003 combinations
have to be probed. On the one hand, this is infeasible because the resulting space of all
combinations is simply too large to be adequately processed. On the other hand, this
space also contains implausible combinations: for example, a combination that maps all
coils to a single vertex or a combination that uses vertices where EMA coils are never
attached. This is a similar issue as in the randomized approach described previously.
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The question arises how such problematic combinations may be avoided. In this regard,
the following observation is helpful: literature that recorded EMA data and published
the acquired dataset provides information about where the coils were attached. This in-
formation can be used to drastically reduce the search space for the brute-force approach:
each coil is now assigned to a speci�c subset of mesh vertices where the respective coil
could have been located. Then only combinations have to be probed where the mappings
take this assignment into account. Assuming that these subsets consist on average of 30
vertices, this restriction reduces the space to approximately 303 combinations. As each
one of the combinations can be evaluated independently, parallelization may be used to
speed up the computation. This approach represents a clear advantage over the random-
ized variant: it avoids producing mappings that involve vertices that are unrelated to the
region used for the coil placement. Furthermore, it is deterministic, which means that
results of this strategy are reproducible. However, disadvantages may also be identi�ed:
this technique requires additional input, namely the regions where the coils were located.
It may also be slower because all possible combinations are probed.
Again, care should be taken during this optimization in order to avoid over�tting.

Here, the same countermeasures are taken as in the randomized approach: the prior box
width for the tongue model parameters is chosen to be relatively small.
Due to the identi�ed advantages of this approach, it is used instead of the randomized

variant in this work.

5.6. Estimating the speaker anatomy

After the correspondences have been estimated, it is possible to register the EMA data
with a tongue model. This registration process, however, optimizes both the speaker
space parameters and the pose space parameters, which may lead to animations that
might appear unrealistic. In particular, the energy in Equation (5.3) currently allows
the anatomy to change over time. While this strategy uses these additional degrees of
freedom to better register the data, it can lead to tongue animations where the tongue is
for example continuously changing its anatomical properties, like, for example, its size,
which appears unnatural. This can, e.g., be inspected in the supplementary material
of Hewer, Wuhrer, et al. (2018) where an animation of the tongue is shown that was
obtained from optimizing both sets of parameters.
Such a behavior may be avoided by simply freezing the speaker parameters to certain

values during the registration and only optimizing the pose parameters. Basically, this
means that the tongue model is adapted to the speaker anatomy and essentially represents
a speaker-speci�c PCA model. Of course, a reasonable choice of parameters is needed
that models the anatomy of the speaker that should be registered. If only EMA data is
available of the corresponding speaker, the anatomy may be estimated from this data:
�rst, all recordings of this speaker are registered by minimizing the original energy in
Equation (5.3). Afterwards, the obtained speaker parameters are averaged. These mean
speaker parameters are assumed to represent the anatomical features of the speaker.
Here, it is important to note that the very sparse motion capture data of the tongue
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Gaussian �lter

σ standard deviation of Gaussian kernel 10

Tracking

β weight for mean bias term 5
γ weight for temporal coherence term 5
h width of prior box 5

Table 5.4.: Used settings for the EMA registration experiments. Parameter name, de-
scription, and value are provided.

might be insu�cient for estimating the true anatomy of the respective speaker.

5.7. Experiments

In this section, the tongue model derived from the USC dataset is used to register the
EMA data of three di�erent sources. Performing the registration with the other tongue
models is omitted here because during the evaluation of the models in Chapter 4, the
USC model proved to be the most versatile one. These experiments serve the purpose of
investigating if the tongue model is able to reliably register dynamic and sparse speech
production data. Furthermore, it is of interest to explore if the trajectories of the obtained
shape space coordinates may be used for data-driven analysis of EMA data.
Basically, the following registration steps are always performed for each dataset: all

EMA recordings are registered with the USC tongue model twice. First, all tongue model
parameters are optimized to �t the data. Afterwards, the speaker anatomy is estimated,
and all data is �tted again where the anatomy is frozen and only the pose parameters are
optimized. The preprocessing steps depend on the considered dataset and are discussed
in the corresponding section.
However, care should be taken when working with EMA data: there are indicators

in literature (Weismer and Bunton, 1999; Meenakshi et al., 2014; Hoole and Nguyen,
1997) that having coils or other markers glued to the tongue may a�ect the articulation
strategy of the speaker, which means that the recorded motion capture data is di�erent
from the natural articulation of the speaker. As a consequence, the registered tongue
shapes might also represent this unnatural articulation strategy.

5.7.1. Settings

Table 5.4 shows the settings that were used for the experiments. Like the settings in
chapters 2 and 4, these were manually selected to reach acceptable results. Here, it can
be seen that a rather high value is used for the width of the prior box, which basically
gives the tongue model a lot of freedom during the registration. Such a freedom might be
needed because the model might encounter unknown tongue shape con�gurations in the
data. The vertex subsets that are used for the correspondence optimization are visualized
in Figure 5.5.

97



5. Registering sparse motion capture data

y
x

z

yx

z

y
x

z

yx

z

Figure 5.5.: Visualization of vertex subsets that are used in the combinatorial correspon-
dence optimization approach: tongue tip (red), tongue blade (brown), tongue
body (green), tongue back (violet), and tongue sagittal dorsum (blue). Due
to overlapping vertex sets, multiple renderings of the tongue mesh are shown.

5.7.2. The EMA subset of mngu0

The mngu0 dataset (Richmond, Hoole, et al., 2011; Steiner, Richmond, Marshall, et al.,
2012) is a multimodal corpus of articulatory data: it contains audio, video, EMA record-
ings, and time-aligned phonetic transcriptions of a single British speaker. Furthermore,
volumetric MRI recordings of the speaker's phonetic inventory are available, as well as 3D
scans of dental plaster casts taken from his lower and upper jaw. In this experiment, the
EMA subset of the corpus is of interest that contains recordings of over 2000 utterances.
The utterances were selected from English newspaper text with the goal of maximizing
the coverage of context sensitive diphones. A diphone is one possible representation of
a discrete unit of speech. It consists of two contiguous half-phones ranging from the
center of one phone to the center of the next. All data was acquired with the AG500 at a
sampling rate of 200Hz. The recordings were conducted over two days where a di�erent
layout for the EMA coils was used on each day. In this experiment, the recordings of the
�rst day are used that consist of 1354 utterances, which results in 67 minutes of speech
production material. On this day, three coils were attached to the mid-sagittal region of
the tongue as depicted in Figure 5.7.
This dataset is publicly available for research purposes. For the experiment, the follow-

ing distribution packages were downloaded from the mngu0 website, http://mngu0.org:
1. Day1 basic EMA data, head corrected and unnormalized (v1.1.0)
2. Day1 transcriptions, Festival utterances and ESPS label �les (v1.1.1)

This experiment uses the unnormalized data as it still contains the silent intervals before
and after an utterance in order to also investigate how the tongue model behaves during
non-speech activities. By using the label �les, it is possible to investigate which phones
are present and how often they occur in the dataset. A histogram providing this informa-
tion is shown in Figure 5.6. It becomes apparent that this dataset contains phones that
are unknown to the USC tongue model because instances of them were missing in the
training data. Examples of these phones are given by [N, g, k]. The label �les also ful�ll
another purpose: as they describe when a speci�c phone was produced in an utterance,
they add phonetic context to registrations later on for visualization purposes; during the
registration itself, there are ignored.
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Figure 5.6.: Histogram of phone occurrence in the mngu0 dataset. The phone [Õ] is
omitted because it only occurs once.
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T1
T2 T3

Figure 5.7.: Illustration of tongue coil layout for the mngu0 dataset (left, adapted from
Richmond, Hoole, et al., 2011) and rendering of combinatorial correspon-
dence optimization result (right). Spheres on tongue mesh highlight the
vertices that were found.

It is important to note that this dataset provides a speci�c feature: the EMA coils
stayed in the same location during one recording day, which distinguishes it from datasets
like MOCHA TIMIT (Wrench, 2000) where coils became detached and reattached during
the recordings. In the case of reattaching a coil, the preprocessing step of estimating the
correspondence between coil and tongue model vertex has to be repeated because it is
very unlikely that the coil was attached to the exact same location as before.

Preprocessing

As the downloaded data itself is already processed to some degree, i.e., head correction
is assumed to be already performed, all preprocessing steps up to and including the
bite plane mapping were omitted. As this dataset is missing a recording for the needed
reference point, it was estimated by reconstructing the palate trace using the EMA
recordings. For estimating the correspondence between tongue coils and tongue model
vertices, the vertex subsets tongue tip, tongue body, and tongue sagittal dorsum were used.
During the estimation, the width h = 0.5 was used for the prior box. The combinatorial
approach produced the result depicted in Figure 5.7.

Results

On a global scale, the following information of the results were computed: Figure 5.8
shows the cumulative error of the two registration runs where the error was measured by
computing the average Euclidean distance between coils and corresponding vertices at
each time step. The distribution of the tongue model parameters is shown in Figure 5.9.
Note that the normalized versions of the model parameters are shown, i.e., v represents
the value µ(x) + v σ(x) where µ(x) and σ(x) are the mean value and standard deviation
of the corresponding parameter entry x in the training data of the tongue model, respec-
tively. This scaling helps to identify issues of the registration approach: very high or low
values indicate that the produced shape is implausible to the tongue model, which might
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Figure 5.8.: Cumulative error for the two registrations of the mngu0 data.
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Figure 5.9.: Tongue model parameter distribution for the two registrations of the mngu0
data. The violin plots show the density, with the mean and interquartile
range marked by horizontal lines.
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Experiment 1 Experiment 2

Mean Std. dev. Min Max Mean Std. dev. Min Max

s1 =0.50 0.17 =1.49 0.41 =0.50 0 =0.50 =0.50
s2 =0.37 0.25 =1.69 0.63 =0.37 0 =0.37 =0.37
s3 =0.63 0.33 =2.47 1.10 =0.63 0 =0.63 =0.63
s4 =0.00 0.33 =1.51 1.42 =0.00 0 =0.00 =0.00
s5 0.03 0.14 =0.93 0.50 0.03 0 0.03 0.03
s6 0.29 0.16 =0.32 0.89 0.29 0 0.29 0.29
s7 0.14 0.07 =0.37 0.37 0.14 0 0.14 0.14
s8 =0.02 0.16 =1.10 0.79 =0.02 0 =0.02 =0.02

p1 =0.54 0.30 =2.63 2.95 =0.47 0.60 =5 2.90
p2 0.36 0.46 =1.31 1.78 0.43 0.49 =1.64 2.21
p3 0.78 0.30 =0.65 1.78 0.79 0.36 =0.66 2.20
p4 0.54 0.32 =0.87 1.56 0.59 0.37 =0.68 2.00
p5 =0.25 0.35 =1.83 1.31 =0.26 0.54 =2.37 2.47
p6 0.30 0.33 =1.13 1.75 0.33 0.35 =1.47 1.74

Error (mm) 0.59 0.15 0.23 1.41 0.75 0.27 0.24 4.05

Table 5.5.: Statistics of tongue parameters and error for the two registrations of the
mngu0 data.

indicate that it encountered an unknown shape. Finally, Table 5.5 provides statistics
about the measured error and the tongue model parameters.

General observations

By inspecting the cumulative error, it can be seen that the registration approach produced
acceptable results: if all tongue model parameters are optimized, then nearly all errors
are below 1mm. In the �xed speaker anatomy scenario, the errors increase, but are
mostly below 1.5mm. This loss of accuracy can be linked to the smaller number of
degrees of freedom (DoF) of the speaker-speci�c PCA model, which only o�ers 6 DoF
instead of 14 like the original model. It is interesting to observe that the variance of
the pose parameters increased in the �xed speaker case. This was to be expected: the
�tting approach now has fewer DoF to work with. Thus, the other parameters have to be
used more to perform the �tting. From the data perspective, the full model registration
is superior to the �xed speaker one. However, from a perception perspective, the �xed
speaker type of registration may be preferable over the full optimization variant because
it o�ers anatomy consistency over time, which may be seen in Figure 5.10.

Silence analysis

In the parameter distribution and the statistics, one phenomenon requires an inves-
tigation: the distribution of the p1 tongue pose parameter assumes the lowest value
that was allowed by the optimization in the �xed speaker registration: it is located at
µ(p1) − 5σ(p1), which clearly indicates that the model might have encountered a shape
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Figure 5.10.: Visual comparison between results obtained by full (top) and �xed speaker
optimization (bottom). Spheres indicate EMA coil positions. The full op-
timization is continuously adapting the anatomy over time: the tongue
shrinks or grows. The anatomical features remain consistent in the �xed
speaker case. Registrations were obtained from utterance s1_0002.

that is unknown to it. Moreover, the maximum for the measured errors increases from
1.41mm in the full model registration to 4.05mm, which could be related to the behav-
ior of the p1 parameter. As the label information for the utterances is available, it is
possible to determine the context for the region where the extreme value for p1 occurs.
It is located in the utterance s1_0711 :
�There is no clear idea on where all this fresh water is going to come from.�
Figure 5.11 shows the trajectories of the EMA coils and the corresponding trajectories

of the tongue model vertices for the �xed speaker registration. Furthermore, the associ-
ated Euclidean distance between vertex and coil position is shown over time. In addition
to that, Figure 5.13 shows the evolution of the associated tongue pose parameters for
this speci�c utterance.
The �gures show that the model in general fails to stay perfectly in the mid-sagittal

plane, which may be explained as follows: the corresponding tongue meshes might lack
vertices that lie exactly in this speci�c plane. It becomes clear that the tongue model
seems to struggle with the silence interval after the speech segment. This claim is also
supported by the reconstructed tongue mesh and the coil positions at time stamp 4.26 s
that can be seen in Figure 5.15. In particular, the tongue model fails to properly register
the tongue blade (T2) and back (T3) coils. One explanation might be that the speaker
used this silence interval to relax, which led to a non-speech motion of the tongue. As
a consequence, this observation could be an indicator that non-speech tongue shapes
exist that describe other DoF that are unused during speech production. Of course, the
question arises how the full registration approach handled this situation. Figures 5.12
and 5.14 show the corresponding results. First of all, it can be seen that this strategy
performs better than the �xed speaker one because, on the one hand, the occurring errors
are smaller and, on the other hand, the parameters stay within a reasonable interval.
However, the parameter evolution show that this approach is continuously adapting the
anatomy of the tongue shape, which may lead to temporal inconsistencies. Moreover,
the resulting tongue mesh at the corresponding time stamp shown in Figure 5.15 reveals
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Figure 5.11.: Trajectories of EMA coils and corresponding vertices of registered tongue
model for utterance s1_0711. The top row shows the Euclidean distance
between coil and corresponding vertex over time. The registration was
obtained by optimizing only the tongue pose parameters and �xing the
anatomy.
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Figure 5.12.: Trajectories of EMA coils and corresponding vertices of registered tongue
model for utterance s1_0711. The top row shows the Euclidean distance
between coil and corresponding vertex over time. The registration was
obtained by optimizing all parameters.
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Figure 5.13.: Trajectories of tongue pose parameters over time for utterance s1_0711 in
the �xed speaker case.
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Figure 5.14.: Trajectories of all tongue model parameters over time for utterance s1_0711
in the full optimization case.
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Figure 5.15.: Reconstructed tongue meshes from the obtained model parameters at time
stamp 4.26 s for utterance s1_0711. Results for the full (left) and �xed
speaker (right) registration are shown. Spheres representing the EMA coil
positions are added for reference.
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Figure 5.16.: Cumulative error for the two registrations for the mngu0 data without si-
lence intervals.

a rather unnatural appearance: it is very long, rather slim, and its back is raised very
high. Here, it is important to note that this judgment is based on conjecture: the true
shape of the tongue at this time frame is unknown because only three positions measured
by EMA are available.

Now it is of interest to see if the error and the parameter behavior improve for the �xed
speaker registration by removing such silence intervals from the evaluation. To this end,
the silence intervals before and after an utterance are removed, silences occurring during
an utterance are still preserved. The results of this operation are shown in Figure 5.16,
Figure 5.17, and Table 5.6. The errors improved and the cumulative error plot reveals
that the ones stemming from these silence intervals had only a minimal e�ect on the
original evaluation.
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Figure 5.17.: Tongue model parameter distribution for the two registrations for the
mngu0 data without silence intervals. The violin plots show the density,
with the mean and interquartile range marked by horizontal lines.

Experiment 1 Experiment 2

Mean Std. dev. Min Max Mean Std. dev. Min Max

s1 =0.53 0.16 =1.26 0.40 =0.50 0 =0.50 =0.50
s2 =0.35 0.25 =1.69 0.44 =0.37 0 =0.37 =0.37
s3 =0.69 0.31 =2.04 0.74 =0.63 0 =0.63 =0.63
s4 0.04 0.33 =1.34 1.42 =0.00 0 =0.00 =0.00
s5 0.04 0.14 =0.93 0.50 0.03 0 0.03 0.03
s6 0.27 0.15 =0.32 0.89 0.29 0 0.29 0.29
s7 0.15 0.06 =0.28 0.37 0.14 0 0.14 0.14
s8 =0.04 0.16 =1.10 0.79 =0.02 0 =0.02 =0.02

p1 =0.58 0.31 =2.31 0.13 =0.58 0.56 =4.17 2.43
p2 0.34 0.47 =1.31 1.76 0.44 0.50 =1.64 1.94
p3 0.80 0.31 =0.55 1.78 0.81 0.37 =0.66 2.20
p4 0.54 0.33 =0.87 1.52 0.62 0.38 =0.68 1.95
p5 =0.22 0.36 =1.40 1.31 =0.27 0.57 =2.03 2.47
p6 0.27 0.33 =1.13 1.63 0.30 0.36 =1.47 1.66

Error (mm) 0.58 0.14 0.23 1.35 0.75 0.26 0.24 2.82

Table 5.6.: Statistics of tongue parameters and error for the two registrations of the
mngu0 data without silence intervals.
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Figure 5.18.: Trajectories of EMA coils and corresponding vertices of registered tongue
model for diphone segment [l_k] in utterance s1_1233. The top row shows
the Euclidean distance between coil and corresponding vertex over time.
The registration was obtained by optimizing only the tongue pose parame-
ters and �xing the anatomy.

Diphone analysis

While the maximum for the error reduced to 2.82mm and the range of tongue pose pa-
rameters became smaller, the minimum=4.17 of p1 is still very low, which requires further
investigation. It turns out that this speci�c value occurs in the utterance s1_1233 :

�The spokesman explained that most of the easy oil had already been extracted and
that now oil companies were having to look at ways of removing the more inaccessible
mineral deposits.�

Figures 5.18 and 5.19 reveal that this behavior of the tongue model happens during
a speech interval, namely the diphone [l_k] in �oil companies�. The pose component p1

assumes a very low value and also the error becomes large. Like before, the blade and
back coil are problematic. This can also be seen in Figure 5.20 where the generated mesh
and the corresponding coils at this time frame are shown: the blade coil is below the
mesh surface. This could be related to the speaker's using a vocal tract con�guration
for the phone [ë] to produce [l] in this context. In the case of [ë], the con�guration of
[l] is altered by raising the tongue body. For the diphone [l_k], this serves the purpose
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Figure 5.19.: Trajectories of tongue model parameters over time for diphone segment
[l_k] in utterance s1_1233. The registration was obtained by optimizing
only the tongue pose parameters and �xing the anatomy.

Figure 5.20.: Reconstructed tongue meshes from the obtained model parameters at time
stamp 5.745 s for utterance s1_1233. Results for the full (left) and �xed
speaker (right) registration are shown. Spheres representing the EMA coil
positions are added for reference.
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Figure 5.21.: Analysis of the tongue pose trajectories for the diphone [l_k]. Plots show
the mean trajectory (line) and the standard deviation (ribbon).

of bringing the tongue body into position for producing the dorsal consonant [k] that
requires a contact between tongue back and palate. On the whole, this creates a tongue
shape in this time frame, which might be unknown to the tongue model. The generated
mesh in Figure 5.20 for the full registration appears again unnatural.
An analysis of the label data shows that 43 instances of the diphone [l_k] are present

in the considered dataset. In order to investigate how the pose parameters behave in
general for this diphone, the results for the �xed speaker registration are processed as
follows. First, the individual instances are time normalized, such that the diphone starts
at time 0, the second phone of the diphone starts at 0.5, and the diphone ends at time
1. Then, the instances are interpolated with natural splines and the results are sampled
at equidistant points in order to compare the individual instances of the diphone. As
only the shape of the trajectories is of interest during this evaluation, any translational
di�erences have to be removed. To this end, the mean trajectory of each parameter is
computed. Afterwards, the individual parameter trajectories are shifted along the y-
axis in order to minimize the distance to the corresponding mean trajectory. Results
of this analysis are shown in Figure 5.21. These results provide valuable information:
the behavior of the tongue pose parameters seems to be consistent near time 0.5 for
di�erent instances of the diphone, which is re�ected by small standard deviations. At
the boundaries of the diphone, the standard deviations increase. In this context, the
standard deviation for p1 is large compared to the other parameters. The small sample
size might be the reason for this result.
This observation sparks the idea of performing this kind of analysis also on other

diphones. To this end, the three most frequent diphones in the dataset are investigated:

1. [ð_@] (693 instances)

2. [t_@] (582 instances)

112



5.7. Experiments

3. [@_n] (523 instances)

Here, only instances are counted where at least one sample per participating phone is
available in the diphone. Samples might be missing due to the acquisition rate of the
EMA device.
Results are shown in Figure 5.22 where the same observation can be made like in the

[l_k] case: the shape of the trajectories is consistent near the center of the diphone, i.e.,
the standard deviation of the shape is small. Near the boundaries of the diphone, the
standard deviation becomes larger. This could be related to the context of the diphone:
at the boundary of the diphone area, the tongue shape is in�uenced by the adjacent
phone next to the current diphone. This e�ect is also known as coarticulation.
On the whole, the obtained shape space coordinates may be useful for analyzing the

typical trajectories of diphones during speech production. This means, the diphone data
could be analyzed to train a model for synthesizing diphone trajectories in the pose pa-
rameter space. Afterwards, these trajectories could be transferred to an arbitrary speaker
to create animations of the entire tongue surface by adapting the speaker parameters ac-
cordingly. Furthermore, the trajectories in the pose parameter space seem to display
patterns that could be used to detect diphones or articulatory gestures.

5.7.3. Tübingen dataset

The Tübingen dataset was recorded as part of a pilot study at the Max Planck Institute
for Intelligent Systems in Tübingen. This dataset consists of synchronized audio, EMA,
and face capture recordings. The EMA data was acquired at a sampling rate of 400Hz
by using an NDI Wave articulograph. Face capturing was performed by an active stereo
system (3dMD LLC, Atlanta, GA). The system uses six color cameras, six gray-scale
stereo camera pairs, �ve speckle pattern projectors, and six white LED panels to capture
geometry and texture at 60 fps. In order to avoid facial occlusions, the articulograph
was positioned above the head of the recorded subject, which is shown in Figure 5.1a.
Additionally, registrations for the face capture data are available that were obtained by
using a sequential registration approach (T. Li et al., 2017).
In total, 3 male speakers were recorded: sp01, sp02, and sp03. The data of sp01 is

missing a lot of EMA recording material due to di�culties in gluing the sensor coils
to the tongue. Thus, this speaker is ignored in this experiment. The speech material
consists of 80 English sentences of the TIMIT corpus (Garofolo et al., 1993). Figure 5.23
shows the EMA coil layout of this study. Here, it becomes clear that this dataset focuses
on the front part of the tongue including tip and blade. This experiment only takes the
mid-sagittal coils into account.
Currently, the dataset is only available for internal use.

Preprocessing

For this dataset, all preprocessing steps are performed. The dataset provides a recording
for the reference point that is required for mapping the data to the origin of the tongue
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Figure 5.22.: Analysis of the tongue pose trajectories for the diphones [ð_@] (top), [t_@]
(center), and [@_n] (bottom). Plots show the mean trajectory (line) and
the standard deviation (ribbon).
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Figure 5.23.: Photograph of tongue coil layout for subject sp02 of the Tübingen dataset
is shown on the left. Combinatorial correspondence optimization result for
mid-sagittal coils is provided for subjects sp02 (center) and sp03 (right).
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Figure 5.24.: Cumulative error for the two registrations of sp02 in the Tübingen dataset.

model. For estimating the correspondence between tongue coils and tongue model ver-
tices, the vertex subsets tongue tip and tongue blade were used. The subset tongue blade
was used for the two coils located there. For speaker sp02, the prior box width h = 1
was used. In the case of sp03, a width of h = 0.5 was applied. Correspondence results
of the combinatorial approach are shown in Figure 5.23. It can be seen that the found
vertex-coil correspondences for the two speakers are nearly identical, they only di�er with
respect to the correspondence for the back coil.

Results

The results for sp02 can be seen in Figure 5.24, Figure 5.25, and Table 5.7. The ones for
sp03 are depicted in Figure 5.26, Figure 5.27, and Table 5.8.
On the whole, the same observations can be made as in the mngu0 case: the errors

and variance of the tongue pose parameters increase for the �xed speaker registration
approach. For sp02, nearly all errors are below 1.5mm in the full optimization case.
For sp03, the results are better: here the errors are mostly below 1mm. In the �xed
speaker case, the errors for sp02 are mostly below 2mm. Nearly all errors for speaker
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Figure 5.25.: Tongue model parameter distribution for the two registrations of sp02 in
the Tübingen dataset. The violin plots show the density, with the mean
and interquartile range marked by horizontal lines.

Experiment 1 Experiment 2

Mean Std. dev. Min Max Mean Std. dev. Min Max

s1 0.69 0.36 =1.43 1.53 0.69 0 0.69 0.69
s2 =1.08 0.27 =2.15 =0.05 =1.08 0 =1.08 =1.08
s3 =0.60 0.26 =2.08 0.69 =0.60 0 =0.60 =0.60
s4 0.17 0.31 =0.54 1.73 0.17 0 0.17 0.17
s5 =0.47 0.13 =0.89 0.36 =0.47 0 =0.47 =0.47
s6 =0.50 0.14 =1.07 0.01 =0.50 0 =0.50 =0.50
s7 =0.05 0.11 =0.40 0.38 =0.05 0 =0.05 =0.05
s8 =0.07 0.20 =1.03 0.40 =0.07 0 =0.07 =0.07

p1 =1.44 0.27 =2.72 =0.49 =1.44 0.48 =2.71 0.47
p2 0.25 0.76 =1.71 1.89 0.27 0.83 =1.96 2.73
p3 0.30 0.34 =1.11 1.79 0.35 0.37 =1.95 1.96
p4 =0.21 0.43 =1.01 1.39 =0.15 0.54 =1.55 2.70
p5 0.45 0.24 =0.43 1.40 0.47 0.28 =1.13 1.34
p6 0.07 0.13 =0.51 0.67 0.06 0.31 =1.55 1.11

Error (mm) 0.87 0.17 0.34 1.79 1.08 0.32 0.37 4.05

Table 5.7.: Statistics of tongue parameters and error for the two registrations of sp02 in
the Tübingen dataset.
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Figure 5.26.: Cumulative error for the two registrations of sp03 in the Tübingen dataset.
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Figure 5.27.: Tongue model parameter distribution for the two registrations of sp03 in
the Tübingen dataset. The violin plots show the density, with the mean
and interquartile range marked by horizontal lines.
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Experiment 1 Experiment 2

Mean Std. dev. Min Max Mean Std. dev. Min Max

s1 =0.48 0.28 =1.85 0.57 =0.48 0 =0.48 =0.48
s2 =0.27 0.16 =1.28 0.43 =0.27 0 =0.27 =0.27
s3 =0.73 0.22 =1.76 1.03 =0.73 0 =0.73 =0.73
s4 1.06 0.17 0.42 1.65 1.06 0 1.06 1.06
s5 0.15 0.11 =0.29 0.69 0.15 0 0.15 0.15
s6 =0.49 0.05 =0.70 =0.17 =0.49 0 =0.49 =0.49
s7 0.22 0.04 0.04 0.41 0.22 0 0.22 0.22
s8 0.06 0.12 =0.45 1.00 0.06 0 0.06 0.06

p1 =1.26 0.23 =2.32 =0.38 =1.25 0.32 =2.35 =0.04
p2 0.14 0.48 =1.35 1.58 0.16 0.68 =2.28 2.19
p3 0.93 0.31 =0.92 1.67 0.94 0.38 =1.06 2.03
p4 0.26 0.31 =0.65 1.67 0.28 0.41 =1.83 2.19
p5 =0.21 0.15 =1.76 0.40 =0.22 0.22 =1.70 0.57
p6 =0.10 0.11 =0.49 0.39 =0.12 0.14 =0.87 0.52

Error (mm) 0.56 0.16 0.16 1.97 0.65 0.26 0.13 3.22

Table 5.8.: Statistics of tongue parameters and error for the two registrations of sp03 in
the Tübingen dataset.

sp03 are below 1.5mm for this registration. In contrast to the mngu0 registration results,
anomalies in the model parameter distribution are absent, i.e., the parameters stay within
reasonable intervals.

Fusing tongue and face animation

The face registrations of the dataset also provide access to the vertex locations where the
EMA reference coils were located. This information can be used to map the obtained
tongue meshes to the corresponding face mesh. Of course, the tongue registrations have
to be downsampled �rst to match the sampling rate of the face scanner.
Basically, the mapping between tongue and face mesh may then be performed as

follows: all transformations that were applied to the EMA data at a speci�c time step
up to and excluding the mapping to the local coordinate system are inverted and applied
to the corresponding reconstructed tongue mesh. Then a local coordinate system is built
by using the positions of the vertices on the face mesh that correspond to the locations
of the reference coils. A mapping to this coordinate system is inverted and applied
to the transformed tongue mesh. In theory, this operation would move the tongue to
the correct position in the face mesh. In practice, however, this approach produced
suboptimal results. One reason might be that the correspondences between face vertex
and reference coil are incorrect or the positions are degraded due to measurement noise.
Instead, the following simpli�ed approach is used: �rst, the result of the original

approach is computed. Second, the untransformed tongue mesh is rotated around the
x-axis by =90◦ to match the orientation of the face mesh. Then, the center of the rotated
mesh is shifted to the one of the result of the original approach. Finally, the shifted mesh
is translated along the x-axis to lie in the center of the mouth. This shift is set manually
and is constant for all samples of a speaker.
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Figure 5.28.: Example frames of an animation showing subject sp02 created by fus-
ing multimodal registration results of face and tongue. Frames belong to
prompt 27 of the Tübingen dataset: �Did dad do academic bidding?�

These operations make is possible to fuse tongue and face meshes into a single anima-
tion. Results of such a fusing are shown in Figure 5.28. Despite the lack of the teeth in
the visualization, the appearance of the presented frames looks acceptable. Of course, a
subjective study is needed to verify this claim.

5.7.4. Trier dataset

The Trier dataset is a multimodal database of articulatory data for analyzing the e�ect of
posture and acoustical noise on articulation (Steiner, Knopp, et al., 2014). It consists of
audio, video, ultrasound tongue imaging (UTI), and EMA recordings. Furthermore, for
some speakers, 3D intraoral scans are available that were obtained by means of a 3shape
TRIOS scanner4. In total, data of 7 speakers (3 female and 4 male) was acquired. In
terms of speech material, it focuses on the German language where the inventory can be
summarized as follows:

� sustained vowels and diphthongs

� consonant phonemes of German in a [aCa] context where C is a German consonant

� consonant-vowel repetitions

� German translation of the �Northwind and the Sun� passage, a standard specimen
in phonetic research (International Phonetic Association, 1999)

4https://www.3shape.com
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Figure 5.29.: Photograph of tongue coil layout for subject VP08 of the Trier dataset (left)
and rendering of combinatorial correspondence optimization result of mid-
sagittal coils for subject VP05 (right). Spheres on tongue mesh highlight
the vertices that were found.

� 10 utterances designed to study German vowels

Furthermore, palate traces were acquired for the participants. The EMA was obtained
by using an AG501 with a sample rate of 250Hz. The recording uses a �ve-coil layout for
the tongue: along the mid-sagittal plane, coils were placed at the tongue tip, the blade,
and at the dorsum. In contrast to the mngu0 dataset, it also uses two lateral coils on
either side of the tongue blade. These lateral coils are ignored here. This layout can be
inspected in Figure 5.29. Currently, this data is unavailable for public use.

The most interesting property of this dataset is given by the fact that it provides
access to articulatory data of the German language. This implies that a tongue model
derived from speakers of American English is used to register dynamic speech production
data of another language. However, the phonetic inventories of the English and German
languages are very similar. Thus, the pose parameter space of the tongue model should
be compatible with motion capture data originating from producing German speech.

In this experiment, all data of the female speaker VP05 is used that was acquired in
upright position without acoustical noise.

Preprocessing

For this data, all preprocessing steps are performed. Like in the mngu0 case, the dataset
is missing a recording for the reference point required for mapping the data to the origin
of the tongue model. The recorded palate traces showed some inconsistencies and were
therefore ignored. Instead, the palate surface was estimated like in the mngu0 case.
For estimating the correspondence between tongue coils and tongue model vertices, the
vertex subsets tongue tip, tongue body, and tongue back were used. This time, the width
h = 1 was used for the prior box. The combinatorial approach produced the result
depicted in Figure 5.29.
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Figure 5.30.: Cumulative error for the two registrations of VP05 in the Trier dataset.

Experiment 1 Experiment 2

Mean Std. dev. Min Max Mean Std. dev. Min Max

s1 =0.77 0.47 =2.13 0.35 =0.77 0 =0.77 =0.77
s2 =0.70 0.23 =1.21 0.05 =0.70 0 =0.70 =0.70
s3 =0.81 0.22 =1.69 =0.29 =0.81 0 =0.81 =0.81
s4 =0.45 0.36 =1.59 0.61 =0.45 0 =0.45 =0.45
s5 =0.08 0.21 =0.71 0.71 =0.08 0 =0.08 =0.08
s6 0.79 0.20 =0.21 1.20 0.79 0 0.79 0.79
s7 =0.05 0.21 =0.93 0.70 =0.05 0 =0.05 =0.05
s8 =0.86 0.26 =1.66 =0.06 =0.86 0 =0.86 =0.86

p1 =1.47 0.11 =2.16 =1.10 =1.45 0.12 =1.80 =0.89
p2 0.85 0.40 =0.98 1.49 0.89 0.64 =1.48 1.73
p3 0.90 0.28 =0.44 1.69 0.95 0.25 =0.14 1.68
p4 0.69 0.31 =1.01 1.40 0.78 0.29 =0.22 1.86
p5 =0.23 0.53 =1.97 1.14 =0.21 0.96 =2.79 2.74
p6 0.88 0.46 =0.23 2.65 0.80 0.41 =0.73 1.73

Error (mm) 1.15 0.36 0.28 2.16 1.34 0.37 0.31 2.88

Table 5.9.: Statistics of tongue parameters and error for the two registrations of speaker
VP05 in the Trier dataset.

Results

The evaluation results are provided in Figure 5.30, Figure 5.31, and Table 5.9.

The results for the full optimization show acceptable errors where 62% of the errors
are below 1.25mm. Again, the errors increase if the anatomy is �xed: now, 62% of the
errors are below 1.5mm. Once more, the variance of the pose parameters increases in
the �xed speaker experiment. Like for the data of the Tübingen dataset, anomalies are
absent in the parameter distribution.
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Figure 5.31.: Tongue model parameter distribution for the two registrations of VP05 in
the Trier dataset. The violin plots show the density, with the mean and
interquartile range marked by horizontal lines.

5.8. Conclusion

This chapter described an approach for visualizing sparse articulatory data by using a
multilinear tongue model. In particular, preprocessing steps were described that have to
be applied to EMA data before a registration can take place. Afterwards, the registration
approach was described that roughly consists of two steps: one step registers the data
while using all parameters of the tongue model. The second step registers the data again
while freezing the speaker parameters to the estimated anatomy of the corresponding
speaker.
The performance of the approach was assessed in several experiments. In total, EMA

data of 4 di�erent speakers was registered during the experiments. The performed exper-
iments provided valuable insights: �rst of all, the proposed approach seems to be able to
register unknown speakers and even data from a language unknown to the tongue model.
To a large extent, the experiments used the same settings to register the data. Thus, the
presented registration framework seems to be independent of the speaker and the used
articulograph.
Another observation was that �xing the speaker parameters during registration pro-

vided access to a shape sequence that is temporally consistent.
Moreover, the registration provided access to a representation of the EMA in the

form of trajectories in the parameter space of the model. These trajectories seem to be
consistent for diphones, which might make this representation useful for further studies.
Finally, the tongue meshes obtained from the registration could be readily combined

with face meshes originating from face capture data registration, which led to animations
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of the tongue and face. Here, the perceptive quality of these animations still has to be
evaluated.
However, it is important to note that it is di�cult to evaluate from these tracking

experiments how close the estimated tongue shape is to the true tongue of the speakers,
because the true shape is unknown. For such an evaluation, a dedicated study is needed,
which assesses the tracking and reconstruction capabilities of the model. Such an eval-
uation might make use of an additional modality, such as UTI or real-time magnetic
resonance imaging (rtMRI), to determine parts of the true tongue contour.
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6.1. Introduction

6.1.1. Motivation

The previous chapter presented a viable way for estimating the full three-dimensional
(3D) tongue shape from articulatory motion capture data. This data has a very high
temporal resolution, but o�ers only very sparse sample points in the spatial domain.
Being able to reconstruct the tongue shape from such data o�ers the ability to visualize
such a modality in a way that is easier to interpret and understand than the original rep-
resentation. Such animations can be used, e.g., in computer-aided pronunciation training
(CAPT) software to show to a language learner how to move the tongue to produce a
speci�c sound or word. So far, the shape of the tongue was estimated from recorded elec-
tromagnetic articulography (EMA) data, which represents a limitation for such systems:
only words or phones that were recorded can be shown to the user. Additionally, the
anatomy of the tongue and the articulation strategy were derived from the used EMA
data, which might be di�erent from the current user of the software. Thus, an approach
is needed that, on the one hand, is able to synthesize tongue motions from given text in
order to produce animations for words that are missing in the underlying EMA database.
On the other hand, it should be possible to adapt the anatomy to the target speaker's
anatomy. Furthermore, it would be desirable to provide synchronized audio for such a
synthesized animation to provide the user with a correspondence between tongue motion
and produced speech. Such a system would also be helpful for other scenarios where
audiovisual speech synthesis is required, like for example virtual avatars which can be
equipped with realistic tongue motions.
In the area of speech technology, text-to-speech (TTS) is an active �eld of research.

Here, approaches are investigated how to best synthesize speech from text that sounds
natural. In particular, statistical parametric synthesis strategies have been proven to
be suitable for addressing this task. A standard technique of this class is given by the
HMM/DNN-based speech synthesis system (HTS) framework that was �rst presented
by Zen and Toda (2005). Originally, it was based on a Gaussian mixed model/decision
tree modeling paradigm. In the meantime, deep neural networks have proven to be
advancing statistical TTS by replacing this paradigm with a feed forward deep neural
network framework.
A key observation is now that these systems parameterize the recorded speech and

derive the model from the resulting parameters. This operation is similar to the regis-
tration of the EMA data with the tongue model: the articulatory data is parameterized
in the form of the tongue model parameters s and p during such a registration. This
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observation sparks the idea of combining the obtained speech parameters with the ones
from the articulatory data in an HTS framework.

6.1.2. Related work

In the area of speech science, there is a growing body of work on application-oriented re-
search to combine articulatory data, and features derived from it, with speech technology
applications, such as to recover articulatory movements from the acoustic signal (artic-
ulatory inversion mapping, cf. King et al. (2007) and Mitra et al. (2011) for examples),
provide articulatory control for reactive TTS synthesis (e.g., Astrinaki et al. (2013) and
Ling, Richmond, and Yamagishi (2013)), or predict sparse articulatory movements from
a symbolic representation (e.g., Ling, Richmond, and Yamagishi (2010a) and Cai et al.
(2015)).
Previous studies (e.g., Engwall, 2002; Fagel and Clemens, 2004), combined intraoral

motion capture data obtained from EMA (Schönle et al., 1987) with concatenative speech
synthesis to animate a geometric tongue model simultaneously with synthesized audio.
Other approaches (e.g., Ben Youssef (2011)) for hidden Markov model (HMM) based TTS
with intraoral animation also rely on acoustic-articulatory inversion mapping. Among
more recent implementations, the statistical parametric speech synthesis paradigm in-
troduces greater �exibility in the modeling and therefore in the combination of multiple
modalities. Consequently, several studies (Ling, Richmond, Yamagishi, and Wang, 2009;
Ling, Richmond, and Yamagishi, 2010a; Ling, Richmond, and Yamagishi, 2010b) have
successfully used HMM based multimodal speech synthesis with EMA data. However, a
study is missing that has presented an end-to-end system to directly synthesize acoustics
and the motion of a full 3D model of the tongue surface from text using statistical para-
metric speech synthesis, particularly with a tongue model that can be easily adapted to
the anatomy of di�erent speakers.

6.1.3. Contribution

The main contribution presented in this chapter is an end-to-end TTS system that syn-
thesizes full 3D tongue animations synchronized with synthesized audio. In particular,
it summarizes the �ndings of the publications:

Le Maguer, Sébastien, Ingmar Steiner, and Alexander Hewer (Aug. 2017). �An HMM/DNN
comparison for synchronized text-to-speech and tongue motion synthesis�. In: Inter-
speech. Stockholm, Sweden, pp. 239�243. doi: 10.21437/Interspeech.2017-936.

Steiner, Ingmar, Sébastien Le Maguer, and Alexander Hewer (Dec. 2017). �Synthesis of
tongue motion and acoustics from text using a multimodal articulatory database�. In:
IEEE/ACM Transactions on Audio, Speech, and Language Processing 25.12, pp. 2351�
2361. doi: 10.1109/TASLP.2017.2756818.

In this context, it is important to note that the above papers used a prototype version
of a tongue model derived from the Ultrax dataset and an earlier version of the previously
discussed EMA registration approach. The chapter therefore extends the previous work

126

https://doi.org/10.21437/Interspeech.2017-936
https://doi.org/10.1109/TASLP.2017.2756818


6.2. Adapting the HTS framework

by reproducing the most relevant experiment with the �nal USC tongue model and the
current registration approach.

6.1.4. Overview

The chapter is organized as follows: �rst, the HTS framework is presented, a standard ap-
proach for synthesizing speech from text. This framework is then extended to synthesize
articulatory data from text. Before turning to the experiments, the tongue model and the
EMA registration strategy used in the given studies are presented and discussed. This
is necessary because they are di�erent to the ones presented earlier in this work. After-
wards, experiments are conducted and di�erent variants of the aforementioned extension
of the HTS framework are evaluated. In this section, the most relevant experiment is
reproduced by using the presented EMA registration strategy of the previous chapter
and the �nal USC model. Finally, the conclusion outlines the �ndings of the experiments
and provides ideas for possible future work.

6.2. Adapting the HTS framework

6.2.1. Standard approach

The HTS framework proposed by Zen and Toda (2005) is a standard statistical parametric
speech synthesis system. Its default architecture consists of the four parts:

1. parameterization of the audio signal
2. training of the models
3. parameter generation from the models
4. rendering of the signal from generated parameters

The parameterization of the signal can be performed using any suitable signal processing
tool, as long as it is kept consistent with the signal rendering in the �nal step. In the
standard procedure, this is generally accomplished by coupling STRAIGHT (Kawahara
et al., 1999) with a mel log spectrum approximation (MLSA) �lter (Fukada et al., 1992).
First, STRAIGHT is used to extract the spectral envelope, the fundamental frequency
(F0), and the aperiodicity. Generally, the F0 values are transformed into the logarithmic
domain, to be more consistent with human hearing. In a �nal step, the MLSA �lter is
used to parameterize the coe�cients used for the spectral envelope and the aperiodicity.
The result of this operation are the mel-generalized cepstral coe�cients (MGC) and
the aperiodicity per band (BAP), respectively. This step is needed because the original
number of coe�cients is too high to be processed adequately.
The training step is either based on the standard HTS training paradigm proposed by

Zen and Toda (2005), or on the default deep neural network (DNN) training described
in Zen, Senior, et al. (2013). If the DNN training variant is used, the F0 trajectory
is interpolated and the voiced/unvoiced property is extracted in order to respect the
standard DNN training proposed by Zen, Senior, et al. (2013). The generation level
consists of applying the algorithm presented by Tokuda et al. (2000).
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6.2.2. Multimodal extension

The original version of the HTS approach is intended for performing the synthesis of a
speech audio signal. However, it can easily be modi�ed to synthesize other modalities.
This is due to the fact that it uses the parameterization of the audio instead of the
signal itself, which implies that also parameters stemming from other modalities might
be used. For example, several studies (Ling, Richmond, Yamagishi, and Wang, 2009;
Ling, Richmond, and Yamagishi, 2010b; Ling, Richmond, and Yamagishi, 2010a) used
EMA data as an articulatory representation in a synthesis approach. That means that
some steps of the original architecture may be modi�ed:

1. parameterization of the audio signal and corresponding articulatory data,
2. training of the models,
3. parameter generation from the models, and
4. rendering of the signal and articulatory data from the generated parameters.

Here, only the �rst and last step are adapted in order to take articulatory data into
account. The new architecture would therefore be able to synthesize synchronized speech
audio and articulatory data. In Figure 6.1a, the modi�ed HTS system can be inspected.
By considering that EMA data was already successfully used as a parameterization in

an HMM scenario, it appears worthwhile to investigate if tongue model pose parameters p
are also a viable parameterization of articulatory data for this purpose. These parameters
can be obtained from EMA data by performing a registration like the one presented in
the previous chapter. In such a case, the system would be able to provide access to
synthesized pose parameters from a given text, which afterwards can be turned into a
full 3D animation of the tongue. Here, also the anatomy of the tongue can be adapted
during the mesh generation process, which provides the advantage of producing a user-
speci�c tongue shape.

6.2.3. Separating the articulatory model from the acoustical model

The original multimodal modeling in Figure 6.1a represents a signi�cant drawback: it
requires the system to be trained on a multimodal dataset, i.e., a dataset that contains
speech audio data with synchronized articulatory data. However, the number of such
articulatory databases is extremely small, which partly can be attributed to the required
e�ort for creating such databases. On the other hand, conventional acoustic databases are
widely available. In order to increase �exibility, the proposed system can thus be modi�ed
as shown in Figure 6.1b. This new variant decouples the training of the acoustical model
from that of the articulatory model, which o�ers the following advantages: �rst of all, the
acoustical model may now be derived from conventional acoustic databases and easily be
combined with the articulatory model. This way, di�erent acoustical models representing
di�erent voices can be incorporated into the framework without the requirement of having
the articulatory data available for the respective speakers. Such a feature might be
useful in a CAPT application where the user can then easily choose between di�erent
voices. Moreover, in this new variant, it is also possible to update the articulatory model
separately from the acoustical one. This might occur if new articulatory data is available
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(a) Architecture for multimodal based synthesis adapted from Zen and
Toda, 2005; the multimodal extensions are highlighted.
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(b) Adapted architecture for multimodal based synthesis where acousti-
cal and articulatory components have been separated.

Figure 6.1.: Diagrams of the di�erent architectures used in the experiments.
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6. Multimodal speech synthesis

or if a new tongue model is used to register the data. In this context, it is important
to ensure the synchronization between the acoustical and the articulatory trajectories.
To do so, the durations produced by the acoustic generation stage are imposed onto
the articulatory generation stage at the phone level. This behavior is represented in
Figure 6.1b by an arrow connecting the acoustical generation step with the one of the
articulatory data.

6.3. Experiments

6.3.1. Overview

The previous sections described two ideas for a multimodal extension of the HTS frame-
work. This section is dedicated to performing experiments that serve the following pur-
poses: a basic experiment investigates if the used database is actually suited for building
a conventional TTS system. Furthermore, the viability of the proposed multimodal mod-
eling ideas is validated. In this context, it is of interest to explore if the tongue pose
parameters are a suitable parameterization for the articulatory data. Moreover, the
HMM and DNN approaches are compared.

6.3.2. Setup

The conducted experiments used the default con�guration for both HTS variants. In par-
ticular, the HTS 2.3 setup (HTS Working Group, 2015) was used for the HMM variant
and the default HTS 2.3.1 setup1 for the DNN version. This means that the DNN con-
�guration applied 3 hidden layers containing 1024 nodes each. For both con�gurations,
the limits of the fundamental frequency were adapted to the interval 60Hz to 300Hz.

6.3.3. Database

The data for the experiments is again taken from the mngu0 corpus that was already
explored in the previous chapter. This time, the following distribution packages were of
interest:

1. Day1 basic audio data downsampled to 16 kHz (v1.1.0)
2. Day1 basic EMA data, head corrected and unnormalized (v1.1.0)
3. Day1 transcriptions, Festival utterances and ESPS label �les (v1.1.1)

In contrast to the previous chapter, all EMA coils play a role in these experiments. The
full EMA coil layout is shown in Figure 6.2; the coils are explained in Table 6.1.
From the provided acoustic data, signal parameters were extracted using STRAIGHT

with a frame rate of 200Hz, matching that of the EMA data. In order to follow the
standard HTS methodology, the same parameters were also kept. Therefore, the signal
parameters were 50MGC, 25BAP, and one coe�cient for the F0.
From the 1354 utterances in the data, 152 (11.2%, around 10min) were randomly

selected and held back as a test set; the remaining 1202 utterances (around 105min)

1http://hts.sp.nitech.ac.jp/?Download#f2602aa9
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y

z

x

upperlip

lowerlip

ref

jaw
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T2 T3

Figure 6.2.: Full EMA coil layout of the used data of the mngu0 corpus. All coils are
close to the mid-sagittal plane. The ref coil on the upper incisors forms the
origin of the coordinate space.

were used as the training set to build HTS synthesis voices. A comparison of phone
distributions in the training and test sets shows a satisfactory match (cf. Figure 6.3).

6.3.4. Used tongue model

The studies performed in Steiner, Sébastien Le Maguer, et al. (2017) and Sébastien Le
Maguer et al. (2017) used a prototype version of the tongue model. In particular, it was
derived from the Ultrax data using an earlier version of the proposed strategy in chapters
2 and 4. Di�erences to the current version include, for example:

� di�erent approach for performing the palate reconstruction,

� omitted truncation of the model that �nds a good compromise between generaliza-
tion, speci�city, and compactness,

� missing Laplacian smoothing of training meshes

As a truncation was omitted, the resulting multilinear model o�ers 12 and 13 degrees of
freedom (DoF) for the anatomy and tongue pose, respectively.
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Figure 6.3.: Distribution of phones across the training and test sets. The frequency of
the silence intervals, denoted by pau, is also shown.
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Label Location

T1 Tongue tip
T2 Tongue body
T3 Tongue dorsum
upperlip Upper lip
lowerlip Lower lip
ref Upper incisor
jaw Lower incisor

Table 6.1.: EMA coil labels and locations in the used data of the mngu0 corpus.

6.3.5. EMA registration approach

In addition to using a prototype version of the tongue model, these studies also used
a di�erent strategy for performing the EMA registration. First of all, the following
corrections of the EMA data are missing:

� mid-sagittal projection

� rotational correction

Furthermore, the ref coil was used as the reference point that was used to map the
EMA data to the origin of the tongue model. This position is slightly di�erent from the
reference point that was used in the previous chapter: the ref coil is located on the front
incisors instead of the location where the hard palate ends and the tooth area starts.
Additionally, the correspondence optimization between the tongue coils and the tongue
mesh still used the randomized approach that was described in Chapter 5. Finally, the
mean bias term was missing in the used energy for performing the registration.
Like in the current approach, two iterations of the registration are performed: in

the �rst iteration, all components are optimized. Afterwards, the speaker anatomy is
estimated from the results. Finally, the second iteration of the registrations �xes the
speaker parameters to the estimated anatomy. The tongue pose parameters p obtained
from the second iteration are used as the parameterization in the training stage of the
systems.

6.3.6. Acoustic Synthesis

In the �rst experiment, a conventional TTS system is built that uses acoustic data
only. This system represents a baseline, which served mainly the purpose of validating
the voicebuilding process and of ensuring that the transcriptions provided, and labels
generated from them, along with the acoustic signal parameters, were able to generate
audio of su�cient quality. Accordingly, a formal subjective listening test was omitted,
and instead the baseline experiment was evaluated by using objective measures only.
To perform this task, 152 utterances were synthesized in the test set using two con-

ditions. The �rst condition is the standard synthesis process. This condition allows to
evaluate the duration accuracy. For the second condition, the acoustic phone durations
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were imposed from the provided transcriptions of the dataset to allow direct comparison
with the natural recordings. For the following experiments, both conditions were synthe-
sized as well. The objective evaluation was conducted based on the following metrics.
For the duration evaluation, the duration root mean square error (RMSE) was calcu-

lated at the phone level (in ms) between the reference duration and the one synthesized
using the �rst condition.
Considering the other coe�cients, the synthesis result (s), achieved using the second

condition, was compared to the reference (r) present in the test corpus. As the duration
was imposed, the same number T of frames for the produced utterance and the refer-
ence one are available. To evaluate the fundamental frequency F0, three measures were
used: the voiced-unvoiced error rate percentage V UV (r, s) (Equation (6.2)) to check the
prediction of the F0, the RMSE in Hz (Equation (6.3)), and the RMSE in cent (Equa-
tion (6.4)). The latter measure focuses on the frames which are voiced in both conditions
(original and predicted F0). Furthermore, it is a log scale measure adapted to the human
perception.

v(x, y) =

{
0 x, y are both voiced/unvoiced
1 otherwise

(6.1)

V UV (r, s) = 100

T∑
t=1

v(rt, st)/T (6.2)

RMSEHz(r, s) =

√√√√ T∑
t=1

(rt − st)2/T (6.3)

RMSEcent(r, s) =

√√√√1200

T∑
t=1

(
log(rt)− log(st)

)2
/T (6.4)

Finally, to evaluate the spectral envelope production, the mel cepstral distortion between
the MGC vectors of dimension M in dB is computed:

d(x, y) =

M∑
m=2

(
x(m)− y(m)

)2
(6.5)

MCD(r, s) =
10
√

2

ln 10

√√√√ T∑
t=1

d(rt, st)/T (6.6)

Except for the duration, all parameters were evaluated at the frame level. Based on these
measures, the results can be compared to previous studies, such as the one presented by
Yokomizo et al. (2010).
The results of this evaluation are given in Table 6.2 and comprise the mean, standard

deviation, and con�dence interval with a p value at 5%. Compared to Yokomizo et
al., 2010, the achieved results are slightly better, notwithstanding the di�erent dataset.
Therefore, it is safe to conclude that that the acoustic prediction of the baseline system
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HMM DNN

mean std. dev. conf. int. mean std. dev. conf. int.

RMSE F0 (cent) 188.52 76.92 12.33 153.62 67.86 10.91
RMSE F0 (Hz) 10.77 5.47 0.88 8.57 5.06 0.81
VUV (%) 12.03 3.94 0.63 11.38 3.70 0.60
MCD (dB) 2.45 0.22 0.04 2.13 0.20 0.03

RMSE dur. (ms) 42.00 18.29 2.93 43.04 18.65 3.00

Table 6.2.: Global evaluation measures for the acoustic synthesis baseline conditions.
Results for the HMM and DNN setup are provided.

is consistent with the state of the art in HTS. Moreover, the results show that the DNN
setup is outperforming the HMM one in this scenario, even with a relatively small amount
of data. An explanation might be that the decision tree modeling in the HMM case is
unable to capture some important correlation in the data.

6.3.7. Combined Acoustic and EMA Synthesis

In the second experiment, the paradigm of early multimodal fusion is adopted where the
acoustic signal parameters are combined with the 3D positions of the seven EMA coils
that are shown in Table 6.1, which increases the vector size by 21, to 97 parameters per
frame. Here, the modi�ed HTS framework presented in Figure 6.1a was used to build
another TTS system from the present multimodal data.
By synthesizing the test set in this way, synthetic trajectories of predicted EMA coil

positions were obtained in addition to the audio. To evaluate the combined acoustic and
EMA synthesis, the same objective measures as in Section 6.3.6 were computed. Addi-
tionally, the Euclidean distance in space between the observed and predicted positions
for the EMA coils were calculated. The results of this evaluation are shown in Table 6.3.
The di�erences in the acoustic measures compared to the acoustic-only synthesis (cf.
Table 6.2) are negligible. Again, it can be seen that the DNN setup outperforms the
HMM one.
Like in the previous chapter, it is important to also inspect the results on a local scale:

the comparison between the observed and predicted trajectories for one test utterance
is illustrated in Figure 6.4. The observed and predicted (synthesized) positions of the
three tongue coils are shown in each of the three dimensions in the data, along with
the Euclidean distance. Silent intervals and consonants classi�ed as coronal [t, d, n,
l, s, z, S, Z, T, D] and dorsal [g, k, N], based on the provided phonetic transcription,
have been highlighted. This helps visualize the correspondence between gestures of the
tongue tip (coil T1) and tongue back (coils T2 and T3) for coronal and dorsal consonants,
respectively, and the phonetic units they produce.
Several points merit discussion. First of all, there are large mismatches between the

observed and predicted tongue EMA coil positions during the silent (pause) intervals
at the beginning and end of the utterance. This can be attributed to the fact that
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HMM DNN

mean std. dev. conf. int. mean std. dev. conf. int.

RMSE F0 (cent) 188.43 63.70 10.21 158.87 65.25 10.46
RMSE F0 (Hz) 10.66 4.91 0.79 8.83 4.96 0.80
VUV (%) 12.14 3.84 0.62 11.16 3.95 0.63
MCD (dB) 2.45 0.23 0.04 2.11 0.19 0.03

RMSE dur. (ms) 41.93 19.04 3.05 41.58 16.84 2.70

Eucl. dist. T3 (mm) 2.14 1.47 8.57× 10=3 1.78 1.26 7.34× 10=3

Eucl. dist. T2 (mm) 2.10 1.54 9.00× 10=3 1.76 1.31 7.66× 10=3

Eucl. dist. T1 (mm) 2.17 1.62 9.44× 10=3 1.79 1.33 7.76× 10=3

Eucl. dist. ref (mm) 0.22 0.12 6.97× 10=4 0.19 0.11 6.25× 10=4

Eucl. dist. jaw (mm) 1.26 0.65 3.80× 10=3 1.07 0.56 3.28× 10=3

Eucl. dist. ulip (mm) 0.72 0.38 2.21× 10=3 0.59 0.32 1.86× 10=3

Eucl. dist. llip (mm) 1.45 0.93 5.45× 10=3 1.23 0.78 4.54× 10=3

Table 6.3.: Global evaluation measures for the combined acoustic and EMA synthesis.
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Figure 6.4.: Observed and predicted position trajectories (along the x, y, and z axis),
and Euclidean distance (top), for the tongue EMA coils (T1, T2, T3) for
one test utterance, using combined acoustic and EMA synthesis with the
HMM setup. The utterance s1_0016 is shown: �Because these deer are
gregarious, they go about in groups�. Based on the provided transcriptions,
intervals containing silent (pause) and coronal and dorsal consonants have
been highlighted.
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the wide range of the speaker's tongue movements during non-speech intervals are not
distinguished in the provided annotations, but invariably labeled with the same pause
symbol. However, there are at least two very distinct shapes for the tongue during such
silent intervals, including a rest and a ready position (just before speech is produced),
in addition to other complex movements such as swallowing. In the absence of distinct
labels corresponding to these positions and movements, none of this silent variation can
be captured by the HMM trained on this data; instead, the tongue coils are predicted to
hover around global means.
Secondly, there is noticeable oversmoothing and target extrema are not always quite

reached. This can typically be attributed to the HMM based synthesis technique, despite
the integration of global variance. The dynamics, however, are well represented, and the
predicted positional trajectories match the observed reference quite closely.
The x axis appears to su�er from a greater amount of prediction error than the y or

z axes. However, it should be noted that the positional variation along the x axis is an
order of magnitude smaller than that along the y axis. It must also be borne in mind that
nearly all of the speech-related movements occur in the mid-sagittal plane, represented
by the y (anterior/posterior) and z (inferior/superior) axes; variation along the x axis
corresponds to lateral movements, which are infrequent during speech.2

The Euclidean distances during speech are in the millimeter range, indicating that
the predictions of EMA coil positions are accurate to within the precision of the EMA
measurements themselves. However, there appears to be a certain amount of �uctuation
with a more or less regular range and shape. The peaks of this �uctuation appear to
correlate with spikes in the RMS channels of the provided EMA data, which supports the
hypotheses that it is either an artifact of the algorithm which calculates the coil positions
and orientations from the raw amplitudes (Stella et al., 2012), or measurement noise in
the articulograph itself (Kroos, 2012), or, conceivably, a combination of both factors.

6.3.8. EMA Synthesis

The results of the previous two experiments provided an interesting observation: the
evaluation of the acoustic measures described in subsection 6.3.6 are practically equiv-
alent. This observation actually motivates the idea of decoupling the EMA synthesis
completely from the acoustic one as shown in Figure 6.1b. Accordingly, the default HTS
framework was used to build another TTS system trained only on the EMA data, with-
out the acoustic parameters in order to �nd out if the same observation holds true for
the articulatory data.
Under this condition, the evaluation of the duration RMSE and Euclidean distances

between the predicted and observed EMA coils, computed using the formula given by
Equation (6.3), is given in Table 6.4. As it can be seen, the results are nearly identical
to those in Table 6.3, which con�rms the validity of the assumption that the articula-
tory synthesis can be decoupled from the acoustic one. As expected, the DNN setup is

2The EMA simpli�cation step in the previous chapter follows this rationale and �attens the data
accordingly. A similar processing was applied to the normalized release variant of the mngu0 EMA
dataset.
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HMM DNN

mean std. dev. conf. int. mean std. dev. conf. int.

RMSE dur. (ms) 53.73 20.74 3.32 53.79 20.28 3.25

Eucl. dist. T3 (mm) 2.18 1.42 8.32× 10=3 1.84 1.28 7.50× 10=3

Eucl. dist. T2 (mm) 2.17 1.54 9.01× 10=3 1.84 1.37 7.98× 10=3

Eucl. dist. T1 (mm) 2.26 1.61 9.44× 10=3 1.89 1.41 8.24× 10=3

Eucl. dist. ref (mm) 0.22 0.12 6.80× 10=4 0.19 0.11 6.19× 10=4

Eucl. dist. jaw (mm) 1.27 0.66 3.87× 10=3 1.08 0.56 3.27× 10=3

Eucl. dist. ulip (mm) 0.71 0.37 2.19× 10=3 0.60 0.32 1.89× 10=3

Eucl. dist. llip (mm) 1.47 0.92 5.36× 10=3 1.26 0.82 4.78× 10=3

Table 6.4.: Global evaluation for the EMA-only synthesis.
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Figure 6.5.: One test utterance produced using EMA-only synthesis; all other details are
the same as in Figure 6.4.

again performing better than its HMM counterpart. Figure 6.5 visualizes the comparison
between the observed and predicted trajectories for one test utterance. The results of
this experiment indicate that a decoupling of the EMA synthesis completely from the
acoustic synthesis is a viable option.

6.3.9. Tongue-only EMA Synthesis

In order to focus on the tongue in the following section, it is necessary to �rst investigate
how far the tongue coil EMA positions can be predicted in isolation from the remaining
EMA coils. To this end, a modi�ed version of the TTS system from the previous section
was generated, by including only the tongue coils (T1, T2, and T3), and excluding the
rest of the EMA data from the training set.
Table 6.5 provides the evaluation results of the EMA synthesis restricted to the three

tongue coils. By comparing these results with those in Table 6.4 it can again be observed
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Figure 6.6.: One test utterance produced using EMA-only synthesis restricted to the
tongue coils; all other details are the same as in Figure 6.4.

HMM DNN

mean std. dev. conf. int. mean std. dev. conf. int.

RMSE dur. (ms) 61.20 21.64 3.47 59.21 18.37 2.95

Eucl. dist. T3 (mm) 2.21 1.45 8.46× 10=3 3.84 2.08 0.01
Eucl. dist. T2 (mm) 2.18 1.50 8.76× 10=3 3.97 2.07 0.01
Eucl. dist. T1 (mm) 2.25 1.56 9.12× 10=3 3.75 2.41 0.01

Table 6.5.: Global evaluation for the EMA-only synthesis restricted to the tongue coils.
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Figure 6.7.: One test utterance produced using the tongue model parameters synthesis;
all other details are the same as in Figure 6.4.

HMM DNN

mean std. dev. conf. int. mean std. dev. conf. int.

RMSE dur. (ms) 77.66 26.51 4.25 75.08 23.86 3.82

Eucl. dist. T3 (mm) 2.61 1.61 9.43× 10=3 2.07 1.35 7.92× 10=3

Eucl. dist. T2 (mm) 2.80 1.74 0.01 2.33 1.48 8.66× 10=3

Eucl. dist. T1 (mm) 2.91 1.85 0.01 2.22 1.49 8.74× 10=3

Table 6.6.: Global evaluation for the tongue model parameters synthesis.

that the values are virtually identical. However, this time, the DNN approach is providing
signi�cantly worse results than the HMM variant. A reason for this behavior could be that
the available data is insu�cient for the DNN to capture the bio-mechanical constraints
of the tongue.
As before, the comparison between the observed and predicted trajectories for one test

utterance is shown in Figure 6.6 for the HMM setup. It should be noted that despite
the removal of the EMA coil on the lower incisor, some residual jaw motion is implicitly
retained in the movements of the tongue coils. As stated before in this work, this is
due to the fact that the tongue is attached to the lower jaw and therefore includes its
motions.

6.3.10. Tongue model based tongue motion synthesis

The previous experiment revealed that the HTS framework can be used to synthesize au-
dio and predict the movements of three tongue EMA coils using separate models trained
on the mngu0 database. However, the DNN variant of the tongue coil prediction frame-
work indicated that the raw EMA data might be an insu�cient representation of the
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Figure 6.8.: Distributions of Euclidean distances between observed and predicted tongue
EMA coil positions for each experimental TTS setup, split by phone class
and tongue EMA coil. Results for the HMM (top) and DNN setup (bottom)
are shown.
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articulatory data for this purpose. The following experiment explored another kind of
TTS system: instead of using the EMA data of the tongue directly, the tongue pose
parameters obtained from the registration of this data with a tongue model are used in
the training stage. Such a TTS system is then able to predict the tongue pose parameters
and thus the whole 3D surface and motion of the tongue. To evaluate the performance
of this system against the reference EMA data, the spatial coordinates of the vertices of
the tongue mesh assigned during the correspondence optimization are used to produce
synthetic trajectories that served as a virtual surrogate for predicted EMA data.
Like before, this synthetic EMA data is evaluated against the reference; Table 6.6

provides the Euclidean distances between the predicted and observed EMA coils, and one
test utterance is visualized in Figure 6.7. Surprisingly, the DNN variant is outperforming
the HMM counterpart again. Moreover, its performance is also better than the HMM
one for the tongue coil only setup. This behavior may be seen as an indicator that the
tongue pose parameters help the DNN to learn more about the structure of the underlying
tongue motions than the raw positional data of the EMA coils.
As explained in the previous chapter, the obtained tongue pose parameters used for the

training phase were subjected to a temporal smoothing during registration. While this
step serves the purpose of ensuring a coherence of the shape over time and making the
registration robust against noise, this extra smoothing seems to contribute to widespread
target undershoot in the comparison.

6.3.11. Comparison of the di�erent systems

Finally, in order to compare the three experimental TTS systems (trained without acous-
tic data), the distribution of Euclidean distances between each system and the observed
reference data over the entire test set was analyzed; the results are shown in Figure 6.8.
The distances are slightly greater when the non-tongue EMA coils are excluded, and
greater still when the EMA prediction is replaced by the direct synthesis of tongue model
parameters in the HMM case. However, overall, the distances remain in the same range,
which indicates that the latter approach performs no worse than synthesis of EMA data
� while adding the full 3D tongue surface into the synthesis process. For the DNN setup,
it can be seen that in the case where only the tongue coils are used for the training, the
tongue tip coil (T1) is the hardest to predict correctly.
Overall, it may be concluded that the DNN con�guration is superior to the HMM one

if the tongue pose parameters are used for parameterization. A similar observation holds
true for the acoustic synthesis and the one where all EMA coils are involved.

6.3.12. Experiment using new model and registration

The evaluation so far showed that the DNN setup was the most reliable one for predicting
the whole tongue surface by using the tongue pose parameters as parameterization of the
articulatory data. However, the registration of the EMA data was performed by using a
prototype tongue model and an earlier version of the EMA registration process. In a new
experiment, the �nal version of the USC tongue model and the tongue pose parameters
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DNN (old) DNN (new)

mean std. dev. conf. int. mean std. dev. conf. int.

RMSE dur. (ms) 75.08 23.86 3.82 60.01 20.68 3.31

Eucl. dist. T3 (mm) 2.07 1.35 7.92× 10=3 1.99 1.33 7.78× 10=3

Eucl. dist. T2 (mm) 2.33 1.48 8.66× 10=3 1.94 1.37 8.03× 10=3

Eucl. dist. T1 (mm) 2.22 1.49 8.74× 10=3 1.91 1.44 8.44× 10=3

Table 6.7.: Comparison of results for old and new setup.

obtained from the new registration strategy presented in the previous chapter were used
for the DNN system.
Table 6.7 summarizes the results and compares them to the previous DNN setup. It

is important to note that the reference EMA trajectories correspond to the results of
the preprocessing steps of the new EMA registration strategy. As it can be seen, the
performance of the approach improved. Possible explanations for this phenomenon could
be: the truncated USC model o�ers only 6 DoF for the tongue pose, compared to the
13 parameters of the prototype model, which may help the DNN to learn more about
patterns in the pose parameter space. Additionally, Chapter 4 revealed that the USC
model proved to be superior to the Ultrax one. Furthermore, the preprocessed EMA
data could be a cause for the better results.
All in all, the experiment also showed that it is possible to update the articulatory

model independently from the acoustical part.

6.4. Conclusion

This chapter described a process of synthesizing acoustic speech and synchronized ani-
mation of a full 3D surface model of the tongue. In particular, the HTS framework was
used in combination with a single-speaker, multimodal articulatory database containing
EMA motion capture data. First, a conventional and a fused multimodal approach were
shown. Afterwards, the two modalities were separated while ensuring that the objec-
tive evaluation measures remained comparable. Finally, a tongue model was integrated
into the TTS approach by using the tongue pose parameters as parameterization of the
articulatory data. The accuracy of this system was evaluated by comparing the spatial
coordinates of vertices on the tongue model surface to the reference EMA data from
the original speaker's tongue movements. Additionally, an objective evaluation between
HMM and DNN modelings for the di�erent TTS systems was undertaken. Here, it be-
came apparent that the DNN approach is in general superior to the HMM one. As the
original studies used a prototype tongue model and another EMA registration process,
the tongue model based DNN TTS was retrained with updated data. This experiment
revealed that the performance improved.
As noted before, the acoustic synthesis and predicted phone durations need not come

from the same corpus as the one used for training the tongue model parameter synthesis
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system. Under certain conditions, it would be straightforward to use a di�erent, con-
ventional TTS system with speech recordings from a di�erent speaker in combination
with this tongue model parameter synthesis, perhaps adapting it in the speaker subspace
automatically or by hand, to generate a multimodal TTS application with plausible,
speech-synchronized tongue motion, without the requirement of having articulatory data
available for the target speaker. In this way, it is possible to �rst synthesize the acoustic
speech signal, and to provide the predicted acoustic durations to guide the synthesis of
corresponding tongue model parameters, which are then used to render the animation
of the 3D tongue model in real time. However, an evaluation of this claim still needs
to be performed. Clearly, more work has to be done: for example, the system should
be evaluated by using human subjects who will rate it perceptually. Such a study can
include intelligibility, such as the contribution of visible tongue movements during de-
graded, noisy, or absent audible speech. In this regard, it is also important to assess the
impact on perceived naturalness by integrating the tongue model into a realistic talking
avatar (e.g., Taylor et al. (2012) and Schabus et al. (2014)), and investigating the im-
portance of naturalistic tongue movements for the overall impression of such avatars in
multimodal spoken interaction scenarios with arti�cial characters. This may also lead to
ideas on how to model distinct non-speech poses for the tongue, such as separate rest
and ready positions.
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7.1. Summary

This dissertation was roughly divided into two parts. In the �rst part (chapters 2 to
4), a framework was developed for estimating tongue meshes from magnetic resonance
imaging (MRI) data and deriving tongue models from the results. Initially, a basic
approach was constructed in Chapter 2 that combined image processing techniques with
a template matching approach. This approach was semi-supervised, but su�ered from
several drawbacks that made it unsuitable for providing tongue meshes for a thorough
statistical analysis. After the issues were addressed in Chapter 4, the framework was
able to reliably register a signi�cant amount of tongue shape con�gurations. Again, the
framework was semi-supervised, which means that the user only had to provide a few
annotations and tune some settings. The results of the extended approach were used to
derive three tongue models. After an in-depth analysis, the tongue model derived from
the USC dataset was determined to be the best one.
The next part of this work was concerned about possible applications of such a tongue

model. The �rst application in Chapter 5 was concerned with registering sparse motion
capture data by using the tongue model. Here, it was shown that the model could be
adapted to di�erent speakers. Furthermore, projecting the motion capture data into the
pose parameter space of the tongue model revealed that patterns could be identi�ed in
the case of diphones. Additionally, the obtained meshes could be combined with face
meshes originating from simultaneously recorded face capture data.
In Chapter 6, a multimodal text-to-speech (TTS) was designed that was able to synthe-

size audio and synchronized tongue motion. Here, it was discovered that the training of
the acoustical model could completely be separated from the articulatory one. Moreover,
the tongue model parameters proved to be a suitable parameterization of the articu-
latory data. Finally, it was discovered that a deep neural network (DNN) modeling
outperformed a hidden Markov model (HMM) one.

7.2. Future work

Whereas the current results of the presented frameworks look promising, several issues
can be identi�ed that could be addressed in the future. Examples are given below:
Open issue 1: An objective evaluation of the estimated tongue shapes from the MRI

scans is missing, only a subjective one was conducted. Although it was validated in
an experiment by consulting speech experts, such an evaluation always su�ers from a
subjective bias. One way to perform an evaluation would be an analysis-by-synthesis
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approach: here, MRI would be synthesized and the tongue shapes would be estimated
from these generated scans. As the MRI data was generated, information about the true
shape of the tongue would be available.
Open issue 2: Currently, it is still unclear how good the derived model separates

speaker anatomy from tongue pose. The results of the �xed speaker registration ap-
proach of electromagnetic articulography (EMA) data showed an anatomic coherence
over time, which might indicate that the separation is appropriate. However, a sophisti-
cated analysis is needed to address this issue.
Open issue 3: So far, only a TTS system was presented that is able to synthesize

audio and tongue motion. The experiments in Chapter 5 revealed that is also possible
to combine tongue and facial animation into a single one. The question arises if the
presented TTS could be extended to also synthesize the corresponding face shape. To
this end, a suitable dataset is needed that is large enough to perform this analysis.
Accordingly, also the teeth could be added to the synthesized animations.
Open issue 4: The current framework is unable to handle tongue con�gurations

with a large contact area between the soft palate and the tongue. Thus, an extension
is needed to solve this issue. Here, it would be worthwhile to explore if volume-based
template matching methods that use color information could be used to track the soft
palate. The result could be used to reconstruct the corresponding surface area. Moreover,
if this type of template matching works for MRI data, it may also be directly applied to
the tongue.
Open issue 5: Although the objective evaluation of the EMA registration approach

produced acceptable results, a subjective evaluation is missing that determines how re-
alistic the produced tongue animations are. To this end, a perceptive study needs to be
conducted that asks participants to rate the naturalness of the produced animations.
Open issue 6: While the tongue model is able to estimate the full three-dimensional

surface from sparse EMA data, it is unclear if the estimated shape really corresponds to
the real tongue surface. Like stated earlier, additional data of the speaker from other
modalities, like, e.g., real-time magnetic resonance imaging (rtMRI) or ultrasound (US)
could be helpful to validate the acquired shape. Here, it is also of interest to determine
how many points on the tongue are actually needed to uniquely de�ne a shape in the
tongue model.

7.3. Source code

The source code of the presented framework is available for public use under an open-
source software license. The interested reader can visit

https://github.com/m2ci-msp/mri-shape-framework

as a starting point.
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Appendix A.
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 Bilabial Labiodental Dental Alveolar Postalveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive           
Nasal           
Trill           
Tap or Flap           
Fricative           
Lateral 
fricative           
Approximant           
Lateral 
approximant           

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible. 

Clicks Voiced implosives Ejectives

 Bilabial  Bilabial  Examples: 

 Dental  Dental/alveolar  Bilabial 

 (Post)alveolar  Palatal  Dental/alveolar 

 Palatoalveolar  Velar  Velar 

 Alveolar lateral  Uvular  Alveolar fricative 
 

Front Central  Back
Close      

     
Close-mid     

     
Open-mid    

     
Open     

Where symbols appear in pairs, the one 
to the right represents a rounded vowel. 

 Voiceless labial-velar fricative   Alveolo-palatal fricatives

 Voiced labial-velar approximant   Voiced alveolar lateral flap

 Voiced labial-palatal approximant   Simultaneous and

 Voiceless epiglottal fricative 
Affricates and double articulations 
can be represented by two symbols 
joined by a tie bar if necessary. 

 Voiced epiglottal fricative 
 Epiglottal plosive 

 

 Primary stress 

 Secondary stress 

 Long  

 Half-long  

 Extra-short  

 Minor (foot) group 

 Major (intonation) group 

 Syllable break  

 Linking (absence of a break) 

LEVEL   CONTOUR

or Extra  or Risinghigh 

 High Falling

  Mid High
rising

  Low Low
rising

  
Extra Rising-
low falling

Downstep  Global rise 

Upstep  Global fall 

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2018) 
CONSONANTS (PULMONIC) © 2018 IPA

CONSONANTS (NON-PULMONIC)

OTHER SYMBOLS

DIACRITICS Some diacritics may be placed above a symbol with a descender, e.g.

VOWELS

SUPRASEGMENTALS

TONES AND WORD ACCENTS

 Voiceless    Breathy voiced    Dental   

 Voiced    Creaky voiced    Apical   

 Aspirated    Linguolabial    Laminal   

 More rounded    Labialized    Nasalized   

 Less rounded    Palatalized    Nasal release   

 Advanced    Velarized    Lateral release   

 Retracted    Pharyngealized    No audible release  

 Centralized    Velarized or pharyngealized     

 Mid-centralized    Raised  ( = voiced alveolar fricative) 

 Syllabic    Lowered  ( = voiced bilabial approximant) 

 Non-syllabic    Advanced Tongue Root      

 Rhoticity    Retracted Tongue Root      
 

Chart of the International Phonetic Alphabet (International Phonetic Association, 2018).
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