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I Summary 
 
A layer of mucus covers the surface of the pulmonary airways. Mucus is a hydrogel mainly 
composed of water, mucins (glycoproteins), DNA, proteins, lipids, and cell debris, which conditions 
the inhaled air and protects us from airborne threats. The natural protective role of mucus is 
nowadays acknowledged as a major barrier to be overcome in non-invasive drug delivery. The 
heterogeneity of mucus components offers a wide range of potential chemical interaction sites for 
macromolecules, while the mesh-like architecture given to mucus by the intermolecular cross-
linking of mucin molecules results in a dense network that physically, and in a size-dependent 
manner, hinders the diffusion of macromolecules and nanoparticles through mucus. 
In this thesis, native airway mucus samples of porcine and human origin have been exhaustively 
characterized utilizing techniques that allow its investigation while preserving its original 
viscoelastic properties. The rheological properties and the penetration of differently sized 
nanoparticles either mechanically mixed with mucus or deposited as an aerosol onto mucus layers 
have been investigated. Additionally, a significant research effort has been spent in the 
development of in vitro models aimed at mimicking the bronchial region under diverse 
physiological conditions, including bacterial infection. These models have been proved suitable 
for investigating the translocation of nanoparticle-based drug delivery systems through the airways 
as well as for testing the efficacy of antibiotics in the context of cystic fibrosis.          
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II  Zusammenfassung 
 
Eine dünne Schleimschicht (Mukus) schützt und bedeckt die Epithelien der wichtigsten nicht-
invasiven Applikationsrouten für Arzneistoffe, zu denen der Magen-Darm-Trakt, die Atemwege, 
die Augen und der weibliche Vaginaltrakt zählen. An diesen Orten stellt Mukus eine schwer zu 
überwindende Barriere für den Transport von nanopartikulären Arzneistoffformulierungen dar. 
Mukus ist ein komplexes Netzwerk miteinander verflochtener makromolekularer Strukturen, die 
ein Filternetz mit einer messbaren Porengröße bilden. Der somit entstehende physikalische 
Größenfilter ist wichtig für die Abwehr inhalierter Partikel. Zusätzlich wird dieser Effekt durch die 
hohe Anzahl funktioneller Gruppen, die mit dem Fremdmaterial chemische Interaktionen eingehen 
können, verstärkt. In den Atemwegen beispielsweise, wird von den Epithelzellen ein 
kontinuierlicher Mukusfilm sekretiert, der einer koordinierten Zilienbewegung in Richtung der 
oberen Atemwege folgt und auf diese Weise einen erfolgreichen Abwehrmechanismus gegenüber 
inhalierten Partikeln darstellt. 
 
In dieser Arbeit wird die Interaktion von Nanopartikeln mit nativem Lungen und Schweine Mukus 
im Detail betrachtet. Die verwendeten Techniken erlauben eine umfassende Analyse, ohne dabei 
die ursprünglichen viskoelastischen Eigenschaften der Probe zu beeinflussen. Im Vordergrund 
stehen hierbei die rheologischen Eigenschaften von Mukus nach mechanischer- oder 
Aerosolapplikation von Nanopartikeln verschiedener Größe. Zusätzlich wurden zwei in-vitro 
Modelle der bronchialen Atemwege entwickelt, um damit die Lunge im pathologischen Zustand 
zu simulieren. Diese haben sich als geeignet erwiesen, sowohl die Penetration von 
nanopartikulären Formulierungen als auch die Wirksamkeit von Antibiotika - besonders im Kontext 
der Mukoviszidose (zystische Fibrose) - zu testen.  
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API  Active Pharmaceutical Ingredient 
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1. Introduction 
 

Parts of this section have been addressed in depth in the following peer-reviewed 

publications: 
 

Review articles: 

Murgia X, de Souza Carvalho C, Lehr C-M. Overcoming the pulmonary barrier: new insights to 

improve the efficiency of inhaled therapeutics. Eur J Nanomedicine 2014;6:157–69 

Murgia X, Loretz B, Hartwig O, Hittinger M, Lehr C-M. The role of mucus on drug transport and 

its potential to affect therapeutic outcomes. Adv Drug Deliv Rev  2018;124:82-97 

 

Book Chapters: 

Murgia X, Barthold S, Kunschke N, Loretz B, Carvalho C, Lehr C-M. Chapter 8: Overview of 

Inhaled Nanopharmaceuticals. In book: ISAM Textbook of Aerosol Medicine. Publisher: 

International Society for Aerosols in Medicine; Editors: Barbara Rothen- Rutishauser and Rajiv 

Dhand (2014)  

Schneider-Daum N, Hittinger M, Murgia X, Lehr C-M. Chapter 3: Cellular and non- cellular barriers 
to particle transport across the air-liquid interface of the lungs. In book: Bio-Nano-Responses. 

Publisher: Springer; Editors: Peter Gehr and Reinhard Zellner (under review)  
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1.1 Lung physiology 
The main function of the lungs is to accomplish gas exchange. During tidal breathing, a stream of 

inhaled air is conducted through the airways to the deep lung, where oxygen diffuses from the 

alveolar space to the pulmonary capillaries1. Oxygen-rich capillary blood is then collected by the 

pulmonary vein, delivered to the left ventricle of the heart, and distributed throughout the whole 

body by the systemic circulation. This mechanism ensures oxygen supply to all tissues, enabling 

cellular respiration. Conversely, carbon dioxide, a metabolic product of aerobic respiration, is 

excreted from the cells to the venous circulation and transported to the lung vasculature, where it 

diffuses from the blood vessels to the alveolar space following a concentration gradient. 

Intrapulmonary carbon dioxide is then eliminated by exhalation, completing the respiratory cycle.  

To fulfil the general aim of gas exchange, the lungs have well-differentiated areas with specialized 

functions. The trachea, bronchi, and bronchioles conform the conducting airways2. The main 

function of the airways is to condition the inhaled air. After the primary bifurcation of the trachea, 

at the carina, the airways systematically branch over approximately 20 generations, progressively 

reducing the caliber of the airways, yet increasing the total airway cross-section1.  

The airway epithelium is usually defined as a pseudostratified columnar epithelium, which is 

primarily composed of ciliated, goblet, and basal cells (Figure 1)3. The latter type is located at the 

basal membrane and technically does not contribute to the luminal side of the epithelium, but plays 

a role as progenitor of ciliated cells4. The apical cell membranes of epithelial cells are exposed to 

the airway lumen and are firmly joined by inter-cellular tight junctions, dividing cell membranes 

into functionally differentiated apical and basolateral domains2. Goblet cells are secretory cells 

which together with submucosal glands secrete a mucus layer that covers and protects the airway 

epithelium5,6. Club cells, formerly known as Clara cells, gradually replace goblet cells in performing 

the secretory role at the bronchiolar level. Club cells secrete a mixture of compounds similar to 

the pulmonary surfactant, maintaining the patency of the bronchioles7. Ciliated cells, which in 

average display 250 cilia in their apical domain8, are in charge of continuously propelling the 

mucus layer out of the lungs9. All these cellular and non-cellular elements work in a coordinated 

manner creating a sophisticated defense mechanism termed mucociliary clearance.  
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Figure 1. Schematic depiction of the respiratory system, from reference 10. Starting from the trachea, the conducting 
airways branch over more than 20 generations until the respiratory or alveolar region is reached. The main function of 
the conducting airways is to filter and moisturize the inhaled air. In the alveolar region, where the gas exchange occurs, 
the epithelium is organized as tiny air sacs, or alveoli, to increase the surface area for gas exchange. In advancing from 
the airways towards the alveolar region, the height of the epithelium decreases significantly. The cellular components 
of the mucociliary clearance mechanism (Goblet cells, Ciliated cells and submucosal glands) and the cartilage support 
predominate in the first airway generations. Clara cells gradually take over the secretory role of goblet cells at the 
bronchiolar level.       

 

In advancing from the airways towards the deep lung, the composition of both the epithelium and 

the pulmonary lining fluid changes significantly. The main function at the deep lung, also known 

as the alveolar region, is gas exchange1. The alveolar epithelium is organized as millions of 

extremely thin polyhedral air sacs, the alveoli, which serve to increase the surface area available 

for gas exchange11. In their luminal side, the alveoli are lined by a non-ciliated, squamous 

epithelium composed of alveolar type (AT) I and AT II cells12. Both AT I and AT II form tight 

junctions, creating a compact epithelial barrier at the air-liquid interface13,14. AT I cells cover 

approximately 90% of the alveolar surface and are extremely thin (0.2 µm in the cell periphery and 

2–3 µm in the perinuclear region) to facilitate the diffusion of oxygen and carbon dioxide (Figure 
2)8,15. In the opposite side of the basal membrane, a layer of endothelial cells mirrors the alveolar 

epithelium, completing the full picture of the so-called air-blood barrier. AT II cells, on the contrary, 

are cuboidal in shape and their main function is to synthesize and secrete the pulmonary 

surfactant, a substance composed of lipids and proteins that modulates the surface tension within 

the alveoli throughout the respiratory cycle16,17. The surface tension reducing function of surfactant 

is especially relevant at end-expiration, when the radii of the alveoli are very small, and the surface 
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tension reaches its maximum level. In this context, the presence of pulmonary surfactant 

counteracts the otherwise high surface tension at the alveolar air-liquid interface, avoiding alveolar 

collapse and facilitating alveolar re-expansion16.  

 

 

Figure 2. Transmission electron microscopy (TEM) images of the airway epithelium (A) and the alveolar epithelium (B), 
from references 18 and 19, respectively. The airway epithelium is a pseudostratified columnar epithelium. Ciliated cells 
(C), Mucus-secreting goblet cells (G) basal cells (B), mast cells (M) and a bronchial vessel (V) are in the TEM image. The 
scale bar in A represents 10 µm. Conversely, the alveolar epithelium is extremely thin (scale bar in B represents 1 µm). 
The sum of the alveolar epithelium (Epi), interstitium and endothelium (Endo), which sets the boundary between the 
alveoli (Alv) and the capillaries (Cap), the so-called air-blood barrier, accounts for less than 500 nm. A micelle of 
exogenous pulmonary surfactant (Surf), which had been previously delivered to the study subjects, is visible on the left-
hand side of B.      

 

The clearance of the deep lung is entrusted to alveolar macrophages, a monocyte-derived 

phagocytic cell type that engulfs foreign as well as exhaust endogenous material20. Alveolar 

macrophages preferentially phagocyte particles in the 1-5 µm size-range, but can also engulf and 

uptake particles in the submicron size-range21–23. Specific macrophages are located in the 

interstitial space, while other macrophages patrol the alveolar space1.  Alveolar macrophages also 

play a relevant role in the immune and inflammatory response of the lungs by secreting 

inflammatory mediators and through their interaction with antigen presenting cells24,25. 
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1.2 Drug delivery to the lungs 
An average human inhale over 10,000 Liters of air every day, which ilustrates the high level of 

exposure of the respiratory epithelium with the surrounding medium. Therefore, the lungs 

represent an appealing entry route for non-invasive drug delivery, which expands over an 

approximate surface of around 100 m2 26,27. Such a high surface area is intended to maximize gas 

exchange and is achieved by the optimized structure of more than 300 million alveoli11. In addition, 

the concentration of drug metabolizing enzymes is lower in the lungs compared, for instance, to 

oral and intravenous delivery26. The pulmonary route is ideal to treat lung diseases like chronic 

obstructive pulmonary disease (COPD), asthma, or respiratory infections, among others, because 

the dose of the active pharmaceutical ingredient (API) can be modulated and topically delivered 

to the site of action (air-to-lung delivery), reducing the overall systemic exposure as well as the 

potential side effects28. Nevertheless, the use of the pulmonary route is not limited to the treatment 

of lung diseases and may also be used for systemic delivery of APIs, taking advantage of the high 

surface area, the thin alveolar epithelium, and the high vascularization of the lungs26. Two 

examples of lung-to-blood delivery are inhaled insulin and inhaled dihydroergotamine, intended 

for the management of diabetes and migraine, respectively29,30. 

The use of nanoparticle (NP)-based drug delivery systems, or nanopharmaceuticals, may not 

only improve current drug formulations, but may as well enable innovative therapies in the context 

of pulmonary drug delivery31. Figure 3 gives an overview of the different possible structures of 

nanopharmaceuticals. The primary aim of formulating drugs as nanopharmaceuticals is to 

increase the therapeutic efficacy of active pharmaceutical ingredients (API), which may initially be 

attenuated by intrinsic physicochemical properties of the API, such as poor water solubility, 

reduced in vivo pharmacokinetics, and high toxicity32,33. Further appealing features of 

nanopharmaceuticals are the opportunity to deliver drugs to defined targets (e.g. tumors)34, and 

the possibility to tune their size35, shape36, and release kinetics37, which enables an overall 

improvement of drug bioavailability. Additionally, NPs can be coated with versatile polymers38,39 

or decorated with targeting molecules such as antibodies or cell penetrating peptides40,41, which 

might enhance tissue penetration or even facilitate subcellular trafficking. Nanocarriers further 

protect their cargo from degradation, a feature that is particularly interesting in the case of nucleic 

acid delivery. 
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Figure 3: Overview of nanopharmaceuticals, from reference 42. API: Active Pharmaceutical Ingredient, DDS: Drug 
Delivery System. 
 

Modern aerosol medicine dates back to the 1950s and was associated to the development of the 

first nebulizers43. Aerosol generating devices have significantly evolved since then and are capital 

to produce respirable aerosols with an appropriate particle size28. Pressurized metered dose 

inhalers (pMDI) are the most common type of device.  pMDIs deliver metered dose of API upon 

actuation, which is propelled by a pressurized gas contained within the device. Dry powder 

inhalers (DPIs) are designed to release a dose of dried API when the patient’s inspiratory effort 

reaches a threshold flow (usually around 30 L/min)44. DPIs and pMDIs provide a single dose of 

API in just one actuation and require a good inhalation technique from the patient’s side. 

Nebulizers can deliver larger volumes of API converting a solution or a suspension into micron-

sized droplets28. The choice of the device will mainly depend on the formulation, the required dose, 

and patient’s characteristics and disease state. 

The efficacy of an inhaled drug therapy is proportional to lung deposition45, which is in turn 

significantly influenced by the aerosol characteristics and in particular by the particle size 

distribution of aerosol droplets. The ideal particle size for optimal lung deposition remains a 

disputed topic among aerosol researchers. Nevertheless, it is widely accepted that particles with 

an aerodynamic size above 6 µm impact on mouth and throat, particles between 2-6 µm deposit 

in the airways, and particles with an aerodynamic diameter below 2 µm deposit mainly in the deep 
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lung (Figure 4A)46. The characteristics of a therapeutic aerosol are usually defined by i) the Mass 

Median Aerodynamic Diameter (MMAD), which defines the particle diameter at which 50% of the 

aerosol mass is above and 50% is below (Figure 4B) ii) the Geometric Standard Deviation (GSD), 

which indicates the spread of particle size of an aerosol (GSD < 1.2 homodisperse aerosol; GSD 

> 1.2 heterodisperse aerosol) and iii) the Fine Particle Fraction (FPF), which describes the 

percentage of particles in mass with an diameter below 4.7 µm47.  

 

 

Figure 4. (A) Relationship between aerodynamic diameter and lung deposition, from reference 48. (B) Log 
normal particle size distribution of an aerosol produced by a nebulizer, from reference 49. 

 

Significant advances in device development and aerosol medicine over the last decades have 

increased the relatively low lung deposition fractions of 10-15% of the nominal dose reported in 

the past to remarkable 50% deposition fractions obtained with currently available modern 

devices28. The optimization of aerosol lung deposition has shifted the focus of aerosol medicine 

towards addressing the fate of inhaled particles once they have landed in the lungs. It is particularly 

interesting to characterize how the physical-chemical characteristics of drugs and/or formulations 

influence the interaction with the biological barriers of the lungs, including non-cellular (mucus and 

surfactant) and cellular barriers (airway and alveolar epithelia as well as macrophages). The 

present thesis, analyzes in detail the role of airway mucus as a barrier to NPs.    
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1.3 Pulmonary mucus in health and disease 
A protective layer of mucus covers the pulmonary airways. The main function of mucus is to entrap 

potential harmful particles contained in the inhaled air, including pathogens, pollutants, allergens, 

and other particulates50. Pulmonary mucus is in turn constantly cleared out of the lung by the 

coordinated beating of the cilia located in the apical side of epithelial cells51. 

Mucus is a hydrogel composed mainly of water (95%), mucin glycoproteins, lipids, DNA, non-

mucin proteins, and cell debris52,53. The main organic component of mucus are mucins (MUC), a 

class of glycoproteins composed of a polypeptide backbone, encompassing a high number of 

tandem repeats of the amino acids proline-threonine-serine (PTS Sequences)52,54, to which 

oligosaccharides are covalently bound through O-glycosylation55. The sugar portion of mucins 

may account up to 80% the total weight of mucin macromolecules56. Sialic acid (pKa 2.0-2.5) as 

well as sulfated monosaccharides (pKa of sulfate 2.0-2.6) predominate as terminal residues of the 

oligosaccharide side chains57. Therefore, at neutral pH these groups are deprotonated, conferring 

mucus a net negative charge (Figure 5). 

 

 

Figure 5. ζ-potential as a function of pH of commercially available mucin glycoproteins. Acetate buffer was used to 
achieve mucin solutions with pH values of 3, 5, and 6, and PBS and phosphate buffer to achieve pH of 7 and 8, 
respectively. The size and ζ-potential of all mucin suspensions were measured by means of dynamic light scattering.  

 

MUC5A and MUC5B are the most relevant gel-forming mucins of the airways58, which display a 

polypeptide backbone of over 5,000 amino acids and expand over 350 and 550 nm in length, 

respectively59. The edges of the polypeptide backbone of mucins have cysteine-rich domains60, 

enabling the formation of intermolecular disulfide bonds61. Structured inter-mucin interactions 

create a covalently-linked, three-dimensional biopolymer network, which is primarily responsible 

for the viscoelastic properties of mucus (Figure 6). 
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Figure 6. (A) The primary structure of mucins consists of a protein backbone (from N-terminal to C-terminal) with a high 
number of tandem repeats of the amino acids (pink boxes). Side-oligosaccharide chains are attached to PTS domains 
through O-glycosylation (yellow squares): sialic acid and sulfated N-acetylgalactosamine and galactose are the 
predominant outermost sugar residues. Cysteine-rich regions in the flanks of the mucin monomers serve to establish 
disulfide bonds with other mucin molecules. (B) Mucins can form dimers and trimers that further polymerize by 
establishing intermolecular disulfide bonds with neighboring mucins forming a dense network. Due to the prevalence of 
sialic acid and sulfated sugars, mucins are negatively charged. In addition, the naked protein regions (blue shadowed 
area) provide a site for hydrophobic interactions. (C) Disulfide bonds between mucin glycoproteins form a covalently-
linked, three-dimensional biopolymer network. Adapted from reference 50.  

 

There are two main mechanisms by which mucus can filter inhaled particles (Figure 7). On the 

one hand, mucus gels are riddled with submicron pores (20–500 nm)62–64 and therefore, particles 

of a bigger size than the pores are physically hindered65. On the other hand, mucus hydrogels 

display a wide array of free functional groups that can eventually adsorb macromolecules and 

NPs66,67, even when their size is lower than the mesh spacing of the mucin network68. As 

mentioned before, mucus has a net negative charge at physiological pH and can therefore adsorb 

cationic particles by electrostatic interactions33,67–69. Moreover, the non-glycosylated globular 

regions of mucins provide sites for hydrophobic interactions50.    
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Figure 7. Schematic representation of the filtering properties of the mucus barrier. The size filtering mechanism of 
mucus is depicted on the left side: purple particles have a bigger size than the mesh spacing between mucus fibers and 
are therefore trapped within the network. On the other hand, green particles, with a smaller size than the mesh spacing 
could theoretically diffuse through the pores. However, the interaction filtering mechanism of mucus, depicted on the 
right side, allows adsorbing particles with a smaller size than the mesh spacing through different interactions. A 
cryogenic scanning electron microscope micrograph of human native tracheal mucus is shown in the middle. Adapted 
from reference 50. 

 

Airway mucus is constantly shed from the airways featuring an efficient clearance mechanism 

termed mucociliary clearance (Figure 8)51. The coordinated ciliary beating of epithelial cells 

enables the unidirectional mucus transport out of the lungs. In healthy, non-smoking human 

volunteers the mucociliary clearance rate showed a high inter-subject variability ranging from 3.6 

to 11.4 mm/min70,71, which correlates good with experimental studies reporting mean clearance 

rates of 2 mm/min and 16 mm/min in chicken and in pig trachea, respectively72,73. According to 

these clearance rates, the residence time of inhaled particles trapped by mucus would be limited 

to a few hours, setting a limited time-window for drug delivery. Nevertheless, this estimation might 

not be entirely accurate since inhaled aerosol particles remain in the lungs up to several weeks. 

Möller et al. studied the dynamics of mucocilairy clearance in healthy, non-smoker humans74. The 

volunteers inhaled an aerosol dose of iron oxide particles (aerodynamic diameter of 4.2 µm) with 

the shallow bolus technique, which guarantees a high airway deposition. The authors found out 

that 25% of the particles were cleared form the airways after approximately 3 h, 50% after 24 h, 

while the remaining fraction was slowly cleared over a period expanding up to several weeks74.                   
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Figure 8. In the airways, mucus clearance sets a limited time-window for drug delivery. Mucus is continuously propelled 
out of the lungs by the coordinated movement of the cilia on top of the epithelial cells. When inhaled drug particles land 
onto mucus, their fate will depend on their physical-chemical properties: large (>500 nm) and/or mucoadhesive particles 
will most probably show reduced diffusion and will be rapidly removed from the lungs by mucociliary clearance (1). 
Particles with a size compatible with the mesh spacing of the mucus network (below 200 nm) and with an appropriate 
surface chemistry (non-interacting) may diffuse through mucus and eventually reach the cell surface (2). Small, 
uncharged drug molecules can rapidly penetrate mucus and be absorbed by the epithelium (3). From reference 50. 

 

In disease states such as COPD, asthma, or cystic fibrosis (CF), the mucociliary clearance 

mechanism may be severely compromised, primarily due to changes on mucus composition, 

which significantly affect mucus viscoelasticity75–77. CF is a paradigmatic example of an impaired 

mucociliary clearance mechanism. It is a congenital autosomal recessive disease caused by a 

mutation of the cystic fibrosis transmembrane conductance regulator (CFTR)78. The main function 

of CFTR is the transport of ions, contributing to epithelial as well as to airway fluid homeostasis. 

Therefore, non-functional CFTR causes an imbalance of mucus hydration, which leads to highly 

viscous mucus79 as well as to a reduction and eventually a full depletion of the periciliary fluid80. 

Such a tenacious mucus cannot be cleared out by the mucociliary escalator, providing opportunity 

for bacterial colonization and proliferation. Mucus thickening in the course of CF is further 

increased by additional pathophysiological events such as mucin hypersecretion77, DNA and actin 

accumulation from apoptotic neutrophils81, the establishment of additional intra-mucin disulfide 

bonds promoted by oxidant stress82, and the development of bacterial biofilms (Figure 9)83.               
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Figure 9. Airway colonization of Pseudomonas aeruginosa and development of drug-resistant biofilms. Mucus 
penetrating nanoparticles, may provide a controlled and sustained antibiotic release in the vicinity of bacterial biofilms. 

  

CF airways are prone to infection with pathogens such as Staphylococcus aureus, Haemophilus 

influenza, Pseudomonas aeruginosa, Burkholderia cepacia complex, and Stenotrophomonas 

maltophilia84. Among these, the Gram-negative, rod-shaped Pseudomonas aeruginosa is the 

major biofilm-building pathogen in CF lungs85, which in turn also worsens the prognosis for 

morbidity and mortality in the context of CF78. Upon airway colonization, Pseudomonas aeruginosa 

has a great capacity to adapt to the airway environment. For instance, it can counteract the loss 

of motility with the development of biofilms, defined by HØiby et al. as a structured consortium of 

bacteria, embedded in a self-produced polymer matrix consisting of polysaccharide (e.g. alginate), 

protein and DNA86.  

CF patients receive antibiotic therapy from the early childhood87. Antibiotic therapy works best at 

early stages of Pseudomonas aeruginosa infection. Nevertheless, after Pseudomonas aeruginosa 

chronic colonization, a full eradication is difficult to achieve due to the assorted armamentarium 

displayed by the bacteria to evade antibiotic treatment (Figure 10)88.   
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Figure 10.  Pathoadaptive mutations in Pseudomonas aeruginosa. Adapted from reference 88.  

 

Although intravenous antibiotic therapy is feasible and sometimes necessary, topical, non-

invasive delivery of antibiotics by aerosolization reduces the systemic toxicity and thereby provides 

higher tolerance. Five antibiotics are currently prescribed or undergoing clinical trials for the 

management of lung infections in the context of CF: colistin, tobramycin, aztreonam, levofloxacin, 

and ciprofloxacin89,90. Interestingly, colistin and tobramycin are polycationic antibiotics, which may 

reduce their diffusion through airway mucus66,91. 
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1.4 Strategies to deliver nanomedicines to and through mucus 

A layer of mucus covers and protects the epithelia of the most relevant non-invasive drug delivery 

routes, including the whole gastro-intestinal drug, the airways, the eyes and the vaginal tract50. 

This protective mechanism is nowadays acknowledged as a significant barrier to drug delivery, in 

particular to NP-based drug delivery systems92,93. 

Early studies on the mucus barrier focused mainly on the permeation of relatively small drug 

molecules through intestinal mucus. These studies consisted mainly on testing the permeation 

through mucous gels of different arrays of molecules of well-known molecular weight, solubility, 

and charge94–98. These studies suggested that mucus can reduce the diffusion of most 

(macro)molecules due to unspecific interactions, but particularly hinders the diffusion of lipophilic 

as well as positively charged molecules.     

For NP-based drug delivery systems, not just the chemical filtering but also the size-filtering 

mechanism applies63,99. The pore-size of respiratory mucus has been estimated from electron 

microscopy as well as from particle tracking studies. These studies revealed that mucus has a 

highly inhomogeneous structure with a broad pore-size distribution spanning from few nanometers 

to micrometer size-range pores62,99,100. Nevertheless, the number of pores in the micrometer size-

range must be relatively low, since 500 nm stealth particles (i.e. coated with polyethylene glycol) 

are almost exclusively immobilized by native airway mucus63. Irrespective of their size, NPs 

displaying cationic surface charge or an exposed hydrophobic core are avidly adsorbed by mucus 

components33,67,68,99.  

The physico-chemical characterization of mucus has enabled the development of different 

mucosal drug delivery strategies, including muco-adhesion and muco-penetration (Figure 11). 

Muco-adhesion intentionally seeks the interaction between mucus and drug delivery systems. 

This strategy aims at increasing the residence time of the API in the epithelial surface, providing 

a sustained release101. Muco-adhesion can be achieved, among others, by coating drug delivery 

systems with cationic polymers (e.g. chitosan)102,103, by employing thiolated polymers, which form 

disulfide bonds with cysteine residues of mucins104,105, or by formulating drug delivery systems 

with polymers such as poly(acrylic) acid (PAA), which will further promote physical entanglement 

between the polymer chains and mucins106. Muco-adhesive systems may be beneficial for oral, 

occular, or vaginal delivery. In the context of pulmonary drug delivery, however, the efficiency of 

muco-adhesive drug delivery systems may be limited due to the relatively fast clearance rates. 

Moreover, such muco-adhesive NPs may simultaneously interact with several mucin fibers, which 
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has been associate to an increased mucus elasticity and altered microstructure68,107,108l. These 

changes may significantly impact the clearance rate and the protective barrier properties of mucus. 

 

 

Figure 11. Several strategies have been used to modify the surface of nanocarriers for an improved drug delivery to 
mucosal tissues. Mucoadhesive drug delivery systems provide an increased interaction with the mucus layer (A). 
Positively charged particles (e.g. chitosan) bind to negatively charged mucins based on electrostatic interactions (left 
side). Particles that incorporate reactive thiol groups (-SH) on their surface attach to mucus by forming disulfide bonds 
(right side). Carrier systems decorated with polymers like PAA lead to physical chain entanglements with mucus fibers 
and increase steric hindrance (bottom).  Mucus-penetrating systems tend to reduce mucus interaction (B). Highly 
negatively charged particles avoid mucus interaction due to electrostatic repulsion (left side). Zwitterionic particles are 
modified with interspersed positive and negative surface charges, producing a net neutral charge that facilitates the 
diffusion through mucus (right side). PEGylated particles possess densely packed polymer chains that form a hydrophilic 
layer for effective mucus penetration (bottom). The application of mucolytic agents enables the diffusion of drug delivery 
systems through mucus by altering its structure and decreasing the overall viscosity (C). Encapsulated therapeutic 
compounds are delivered in combination with mucolytic agents such as NAC (yellow) that reduces disulfide bonds (S-
S) between cross-linked mucins or DNase (blue) that degrade DNA present in mucus (left side). Particles that are 
functionalized with enzymes like papain (orange) and bromelain (red) disrupt the mucus gel structure in order to enhance 
muco-penetration of delivery systems (right side). Adapted from reference 50.  

 

For airway targeting with NPs (e.g. transfection in CF or antibiotic therapy in lung infections), 

where a deeper level of mucus penetration is often required, muco-penetration represents a 

more appropriate strategy93,109. Muco-penetrating NPs must be compatible with the mucus’ pore-

size (<300 nm) and must display a muco-inhert surface chemistry. In this regard, coating NPs with 

polyethylene glycol (PEG) is a widespread strategy that renders NPs hydrophilic, shielding them 

from mucus adsorption38,110. Liposomes, polymeric NPs, and dendrimers coated with a dense 

layer of PEG generally show a higher diffusion through native mucus compared to their uncoated 

versions63,111–115. In the same spirit as PEGylation, zwiterionic NPs display interspersed positive 

and negative charges on their surface, yielding a net neutral charge, which in turn reduces the 

adsorption of endogenous molecules, thus improving their diffusion through mucus116. A potential 

advantage of zwiterionic NPs over PEGylated ones relates to their cellular uptake. Zwiterionic NPs 
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have shown good NP-cell interaction, and may be advantageous for intracellular targeting117. 

Conversely, in the case of PEGylation, the same mechanism that improves muco-penetration 

impedes, to a certain extent, the establishment of NP-cell contacts as well as their cellular 

uptake110.    

The use of mucolytic agents has also been proposed as an alternative strategy to increase the 

diffusion of NPs through mucus layers118,119. Mucolytics are routinely prescribed in the context of 

CF to manage the tenacious airway secretions of CF patients. They cleave specific chemical 

bonds occurring in mucus gels, thereby reducing their overall viscoelasticity 120. N-acetyl cysteine 

(NAC) cleaves the disulfide bonds established between mucin macromolecules121, whereas 

recombinant DNase is used to degrade the extracellular DNA accumulated in the airways of CF 

patients82. For instance, the application of an intranasal dose of NAC before the administration of 

highly compacted DNA NPs was associated with a marked increase of gene expression in mice 

compared to the application of NPs alone122. Thus, the co-delivery of mucolytics and NPs may 

provide deeper mucus penetration in pathophysiological scenarios in which the overall mucus’ 

viscoelasticity is increased. An alternative strategy of mucolysis, consist of decorating the surface 

of NPs with mucolytic molecules, such as DNase, or the proteolytic enzymes bromelain and 

papain123–125.  
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1.5 Models and tools to investigate nanoparticle-mucus interactions   
One of the major drawbacks regarding the study of drug-mucus interactions is the limited 

accessibility to good quality human mucus samples. In addition, one must bear in mind that 

common scientific technical procedures such as fixation, washing, drying, and other routine 

sample manipulations significantly alter the original structure of mucus hydrogels, which may 

introduce a bias in the experimental read-outs.  

Expectorated sputum of CF patients can be collected in tubes for further experimentation91,126,127. 

Such samples, however, are usually contaminated with saliva and show a marked inter-subject 

variability as a function of the patient’s disease state62. Small volumes of native tracheal mucus 

can be collected from the endotracheal tube of patients undergoing elective surgery128. 

Alternatively, native mucus samples from animal origin can be obtained from abattoirs by directly 

scratching the mucus from the surface of excised mucosal tissues99,129. To counteract the limited 

availability of native mucus samples, some researchers have developed synthetic mucus 

surrogates129–131. Although some of these synthetic mixtures could somehow mimic the 

mechanical properties of native mucus129,131, other surrogates lack inter-mucin cross-linking and 

do not elicit a three-dimensional network, which may overestimate the diffusion of NPs132–134. 

Drug-mucus interactions have been traditionally addressed by investigating the transport rate over 

time of drugs in diffusion cells135,136. Such systems comprise a donor compartment, where a certain 

concentration of the drug molecule of interest can be added, a central compartment with a 

semipermeable membrane, where mucus is placed and held by the membrane, and an acceptor 

compartment, which allows repeated sampling and detection of the drug molecule of interest. 

Using the donor-to-acceptor strategy several methods have been developed by different research 

groups including side-by-side systems94, Franz diffusion cells137, Ussing chambers138, and 

Transwell®-based permeation assays139, among others. These systems have been used for many 

decades and are still used in drug permeation studies. When using this approach, a diligent 

experimental design should include a set of control experiments aimed at determining the capacity 

of the semipermeable membrane to retain drug molecules, in particular, if NP-based drug delivery 

systems are tested. The diffusion of nanocarriers through such systems might require longer 

experimental times, which might lead to a partial dissolution of the mucus layer into both the donor 

and acceptor compartments62. 

Fluorescence Recovery after Photobleaching (FRAP) has been used to estimate the diffusion 

through mucus of macromolecules, including proteins and DNA, viruses, and NPs99,119,140,141. In 

this technique, fluorescent molecules are dispersed within mucus and transferred to a laser-
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equipped fluorescence microscope. Thereafter, the region of interest is localized, and a short 

series of pre-bleaching images are recorded at relatively low laser power to define the baseline 

(100%) intensity. The next step consists of bleaching a defined area by increasing the laser power 

until the fluorescence of the fluorophores is ablated or at least significantly attenuated (at least a 

50% reduction of the baseline fluorescence intensity). The post-bleaching point is set as 0% 

fluorescence intensity. In the last part of the experiments, the laser power is reduced to pre-

bleaching values, and a time-series of photomicrographs is captured to investigate the percentage 

intensity recovery of fluorescence over time (from 0% to 100%). If the molecules can diffuse 

through mucus, then, new, fresh-fluorescent molecules will replace the bleached ones, and the 

fluorescent intensity will increase over time until the recovery curve saturates at a certain level 

(Figure 12).  

 

 

Figure 12. Representative Fluorescence Recovery after Photobleaching (FRAP) experiment of 100 nm carboxyl-
coated polystyrene nanoparticles (NPs) dispersed in human tracheal mucus. In FRAP experiments, a short series of 
pre-bleaching images are recorded at relatively low laser power to define initial fluorescence intensity (100%). The next 
step consists of bleaching a defined area by increasing the laser power until the fluorescence is significantly reduced. 
The post-bleaching point is set as 0% fluorescence (t=0). The laser power re-set to pre-bleaching values, and a time-
series of photomicrographs is captured to investigate the percentage intensity recovery of fluorescence over time. The 
percentage of recovered fluorescence resembles the mobile NP fraction, whereas the non-recovered intensity 
represents the immobile fraction. Mathematical modelling of the recovery curve allows (red fitting line) the calculation of 
t1/2, which may be further used to calculate the diffusion coefficient of the mobile particle ensemble. 

 

Conversely, if particles cannot diffuse through mucus at all, the fluorescence intensity will remain 

steady after photobleaching (close to 0%). The fluorescence intensity percentage value at which 
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the recovery curve saturates is often referred to as the mobile particle fraction, whereas the 

remaining percentage represents the immobile fraction. Applying mathematical fits to the recovery 

curves the diffusion coefficient can be estimated142,143. By using FRAP, however, the obtained 

diffusion coefficient corresponds to that of the particle ensemble, because FRAP does not 

consider the particles individually.  

Multiple particle tracking (MPT) is a powerful technique that allows the simultaneous analysis of 

the diffusion of about 100-300 NPs in a single experiment144. Interestingly, MPT considers each 

particle trajectory individually, providing a high statistical power to each experiment (Figure 13). 

In this technique, NPs are mechanically dispersed in mucus, and their trajectories are followed by 

means of video-microscopy over a short period (usually 1-10 seconds). MPT experiments are 

commonly performed with high magnification, high numerical aperture objectives and the image 

series are captured at a relatively high frame rate (minimally, 20 frames per second). By computing 

the X and Y position of each particle at each frame of the sequence, the trajectories of the particles 

can be reconstructed, and the mean squared displacement (MSD) can be calculated.  

 

Figure 13. Schematic process of Multiple Particle Tracking (MPT) analysis. Tracer nanoparticles are mechanically 
dispersed in mucus and video-microscopy is performed over a short period (usually 1-10 seconds) at a frame rate not 
lower than 30 fps (A). By computing the X and Y position of each particle at each frame of the video-sequence, the 
trajectory of each particle in the microscopic field can be reconstructed (B), and the Mean Squared Displacement (MSD 
or Dr(t)2) as a function of the time scale (t) can be calculated (C). The MSD can be used to determine particle diffusion 
as well as the viscosity (h) of the surrounding medium. Diffusion, D; Boltzmann constant, KB; Temperature, T; particle 
Diameter, d. 
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The MSD can be further used to obtain the diffusion coefficient of the NPs. The MSD values can 

also be used to determine further rheological parameters of the surrounding medium such as 

viscosity and elasticity145. 

Mucus-secreting, cell-based in vitro models provide an excellent tool to investigate NP 

translocation through the bronchial epithelium56,146. Such models, would theoretically allow as well 

to address the uptake of NPs in the presence as well as in the absence of mucus, a condition that 

is difficult to resemble in animal models. Human-derived primary cells from patients and healthy 

volunteers can be regarded as preferential sources to study drug permeation through the lung 

epithelium14,147. Cultured primary bronchial cells form a close-fitting barrier expressing tight 

junctions148. Moreover, primary cells can secrete mucus and even display ciliary motion in vitro149. 

However, the availability of human primary cells is limited and their culture is associated to a 

relatively high cost.   

As an alternative to primary cells, immortalized cell-lines represent a readily accessible, cost-

effective solution. In this regard, several cell lines have been used in the literature to mimic the 

bronchial epithelium including A549, NCI-H441, BEAS-2B, 16HBE140-, CFBE410- and Calu-

33,8,69,146,150,151. Although all these cell lines show some interesting features in the context of 

pharmaceutical research, they also a have a number of limitations. A549 and BEAS-2B 

monolayers fail to establish tight junctions with neighboring cells56, which limits their use as models 

for the permeation of small drugs. Conversely, H441, 16HBE140-, CFBE410- and Calu-3 express 

tight junction if they are cultured under submerged culture conditions in so called Transwell® 

supports67,150,152,153. However, their barrier properties, as determined by trans-epithelial electrical 

resistance measurements (TEER), drop dramatically if they are cultured at the air-liquid 

interface154,155, i.e. cells receive nutrients from the basolateral compartment, while their apical 

compartment is directly exposed to air. Excluding Calu-3, a major limitation of all these bronchial-

like cell-lines is that they lack the capacity to synthesize and secrete mucins69. Calu-3 cells grown 

at the air-liquid interface differentiate into a pseudostratified columnar monolayer, display 

functional tight junction proteins, and secrete mucins, which further accumulate over time on top 

of the cell monolayer153,154. Thus, Calu-3 cell line meets most of the requirements for drug 

permeation studies and is widely used in this regard. A drawback of Calu-3 cells cultured at the 

air-liquid interface is the relatively large culture time required to secrete a confluent mucus layer, 

which can take up to 3 weeks69,153,154.         
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2.  Aims of this thesis 
 

1. To characterize the barrier properties of native airway mucus and its implications for the 

therapeutic delivery of NPs, with special emphasis on: 

a. Addressing the size-dependent diffusion of NPs after being mechanically dispersed 

within mucus. 

b. Correlating the corresponding diffusivity data for differently-sized NPs with the 

penetration of such NPs delivered as aerosols onto mucus. 

c. Analyzing mucus’ structure by means of label-free methods, which avoid chemical 

fixation  

  

 

2. To develop a cell-based model of the airways, minimally comprising epithelial cells and 

mucus. Such model should allow:  

a. Depositing aerosolized NPs at an air-liquid interface. 

b. Studying the role of mucus as non-cellular element of the bronchial barrier. 

c. Investigating the transport, diffusion, and efficacy of small drugs, macromolecules 

and NPs through the airway model.  
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3.  Major outcomes of the thesis 
 

3.1      Characterization of Native Airway Mucus: implications for NP-based drug         
delivery to the airways 
 

This chapter refers to the following publications: 

Murgia X*, Pawelzyk P*, Schaefer UF, Wagner C, Willenbacher N, Lehr C-M. Size-limited 

penetration of nanoparticles into porcine respiratory mucus after aerosol deposition. 

Biomacromolecules 2016;17:1536–42. 

Vukosavljevic B*, Murgia X*, Schwarzkopf K, Schaefer UF, Lehr C-M, Windbergs M. Tracing 

molecular and structural changes upon mucolysis with N-acetyl cysteine in human airway mucus. 

Int J Pharm 2017;553:373–6. 

*Equal contribution 

 

Nanomedicine holds a great potential as an alternative method for the development of new 

therapeutic delivery approaches in the context of aerosol medicine, including gene-therapy, anti-

cancer treatments, and antibiotic delivery123,156,157. d'Angelo et al. systematically summarized a 

broad range of NP-based drug delivery systems intended for pulmonary drug delivery31. Those 

therapeutic NPs targeting the airway epithelium may require different mucus penetration levels. 

For instance, intracellular nucleic acid delivery requires full penetration of the mucus layer, 

whereas the delivery of encapsulated antibiotics may just need certain mucus penetration to reach 

the bacterial biofilms developed within the airways of CF patients. Therefore, it is essential to 

characterize and understand the interaction between native airway mucus and therapeutic NPs.    

In this thesis, state-of-art techniques such as FRAP and MPT analysis were applied to address 

the size-dependent mobility of NPs through native airway mucus63,119. In the first place, 100 nm, 

200 nm, and 500 nm carboxyl-terminated, polystyrene NPs were mechanically dispersed in 

porcine mucus and observed under the microscope. With regard to MPT data, it was found that 

43%, 51% and 6% of 100 nm, 200 nm and 500 nm particles, respectively, were diffusive in native 

porcine tracheal mucus (Figure 14 A). FRAP data correlated well with MPT observations, showing 

a mobile NP fraction of 24%, 54% and 14% for 100 nm, 200 nm, and 500 nm particles respectively 

(Figure 15 B).  
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Figure 14. (A) Mean squared displacement (Dr2) of carboxylated nanoparticles in pulmonary pig mucus as a function of 
time scale (t). The red lines represent the MSDs with a slope a >0.5, classified as diffusive, and the black lines the 
MSDs with a <0.5, classified as immobile. The gradient triangle in each Figure illustrates a slope of 1. (B) Fluorescence 
intensity recovery over time t determined from Fluorescence Recovery After Photobleaching experiments using 100 nm 
(squares), 200 nm (circles) and 500 nm (diamonds) particles and the corresponding exponential fits. (C) Confocal laser 
scanning microscopy study on the penetration of aerosolized 100 nm, 200 nm and 500 nm red-fluorescent carboxylated 
nanoparticles through native porcine pulmonary mucus (stained green with wheat germ agglutinin). Representative 
cross-sections of 25-40 µm of the Z-stacks captured at t=0min, directly after aerosol delivery of nanoparticles, and at 
t=60 min, one hour after aerosol delivery. Adapted from reference 99. 

 

These data, and that of others63, clearly show that particles with a size of 500 nm and above are 

not optimal for drugs requiring a full translocation of the mucus layer. The limited diffusion through 

airway mucus of particles above this cutoff size is directly related to the pore-size of mucus, since 

stealth, PEGylated particles are also immobilized by the mucin network63.   

In FRAP and MPT techniques, particles are mechanically dispersed in mucus with a pipette, 

forcing their penetration into mucus’ pores. The way in which particles and mucus interact with 

this mixing method, however, differs significantly compared to depositing particles in the form of 
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an aerosol onto a mucus layer, which represents a more realistic scenario in the context of aerosol 

medicine and pulmonary drug delivery. Therefore, an alternative experiment was designed in 

which NPs were deposited as aerosols onto fluorescently-labelled mucus layers. A clinically-

approved vibrating-mesh nebulizer was used to generate the aerosols158. Immediately after 

aerosol deposition, cross-sections (X-Z) of the mucus layer were captured (t=0 min) by confocal 

laser scanning microscopy. The procedure was repeated again one hour later, at t=60 min. As 

expected, most NPs were concentrated at the air-mucus interface at t=0, irrespective of their size. 

Surprisingly, only 100 nm penetrated the mucus layer after one hour (Figure 14 C). Five-hundred 

and 200 nm NPs could not penetrate the mucus layer within the set experimental time, most 

probably, by the lack of sufficiently large pores.  

A limitation of this study was the use of porcine tracheal mucus as a surrogate of the human 

material. Porcine tracheal mucus was directly scratched from the windpipes of slaughtered pigs, 

which often introduces blood as well as airway epithelial cell contamination. Additionally, airway 

mucus samples derived from slaughtered pigs may contain traces of edema fluid, derived from an 

increase of the alveolar permeability during sacrifice (source: personal interview with the 

veterinary Dr. Bianca Schwarz). Therefore, to confirm the previously describe observations, MPT, 

FRAP, and aerosol deposition experiments where replicated in native human tracheal mucus.  

A technique to obtain human airway mucus was adopted from Rubin et al.128. According to this 

method, the distal parts of the endotracheal tubes of patients undergoing elective surgery with 

general anesthesia were collected immediately after surgery and placed into centrifuge tubes. 

Mucus was then extracted by centrifuging the endotracheal tube at 190 g for 30 s (Figure 15). 

Mucus samples were obtained after obtaining informed consent from all patients and in 

compliance with a protocol approved by the Ärztekammer des Saarlandes (file number 19/15). 

 

 

Figure 15. Undiluted human tracheal mucus samples were obtained from patients undergoing elective surgery, non-
related to pulmonary diseases (left). The distal portion of the tracheal tubes was collected in centrifuge tubes (center). 
Airway mucus was extracted by brief centrifugation of the samples (right).  
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The rheological profiling of human mucus showed a markedly more tenacious material compared 

to porcine mucus. The yield point (cross-link between the elastic modulus, G’, and the viscous 

modulus, G’’) of the human material could not be detected within the 1-10% strain range, whereas 

it was as low as 0.8% for porcine mucus (Figure 16 A). In addition, the elastic modulus of human 

tracheal mucus was noticeably higher compared to porcine mucus, indicative of a more cross-

linked hydrogel (Figure 16 B).  

 

 

Figure 16. Interaction of nanoparticles with undiluted human tracheal mucus. (A) Strain (γ)-dependent viscous (G’’) and 
elastic (G’) moduli from 0.1 to 10% strain at a frequency of 6.28 rad/s (1 Hz). (B) Frequency-dependent viscous (G’’) 
and elastic (G’) moduli from 0.1 to 50 rad/s at 1% strain. The mean ± standard error for n=5 are shown. (C) Fluorescence 
intensity recovery over time determined from Fluorescence Recovery After Photobleaching experiments 200 nm 
carboxylated particle. The mean ± standard error for n=12, from 3 independent mucus samples are shown. (D) The 
histogram depicts the slope of the mean squared displacement at a time scale of 2 sec averaged from the relative 
frequencies of n = 9, from 3 independent mucus samples. (E) Confocal laser scanning microscopy study on the 
penetration of aerosolized 100 nm red-fluorescent carboxyl-coated nanoparticles through native porcine pulmonary 
mucus (stained green with wheat germ agglutinin). Two representative cross-sections of the Z-stacks captured at t=60 
min, one hour after aerosol delivery. The insets in A, B, C and D correspond to the same measurements performed with 
porcine tracheal mucus. 
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The mobile fraction of 200 nm NPs, which was estimated to be 54% ± 5 in FRAP experiments with 

porcine mucus, was dramatically reduced in human mucus to just 7.64% ± 12 (Figure 16 C). 

Similarly, the distribution of the slopes of MSD, as determined by MPT, showed just 8.9% of 

diffusive 200 nm NPs in human mucus, compared to 51% in porcine mucus (Figure 16 D). Lastly, 

opposite to what it was observed with the porcine mucus, 100 nm particles could not penetrate 

human mucus and were almost exclusively concentrated at the air mucus interface 60 min after 

their delivery (Figure 16 E).         

The ultrastructure of human tracheal mucus was further investigated by cryogenic scanning 

electron microscopy (CryoSEM). At the first sight, CryoSEM images revealed areas of high cross-

linking density (Figure 17 A and B), as well as areas with bigger voids (Figure 17 C). The pore-

size at prominently cross-linked areas appears to be of just few nm, which would perfectly explain 

the low fraction of mobile NPs detected by FRAP and MPT experiments. A closer look to the larger 

voids evidenced the existence of highly cross-linked structures as well (Figure 17 D and E), 

ratifying the strict steric barrier of human tracheal mucus. 

  

 

Figure 17. Ultra-structure of human tracheal mucus investigated by means of cryogenic scanning electron microscopy. 
At the first sight, undiluted airway mucus showed a great inhomogeneity with areas of a high cross-linking density and 
areas with bigger voids (A-C). A closer look to the larger voids, revealed fine structures of a high cross-linking density 
(D-E).   
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As a complementary investigation to the CryoSEM study, a confocal Raman microscopy (CRM) 

analysis of airway mucus was performed with the aim of obtaining a chemically selective spatial 

distribution of mucus components. The investigation of native airway mucus samples by CRM 

allowed the differentiation of two distinctive spectra. One spectrum showed marked similarities 

with the spectrum of dipalmitoyl phosphatidylcholine (DPPC), a phospholipid exclusively found in 

pulmonary surfactant16, and was therefore defined as the “surfactant-like” spectrum. Both 

surfactant-like and DPPC spectra show a peak for choline head group at 717 cm-1, three distinct 

peaks at 1066 cm-1, 1102 cm-1 and 1128 cm-1 representing the carbon backbone vibrations, and 

a peak for aliphatic ester at 1740 cm-1 (Figure 18 A). The second type of spectra consist of 

glycoproteins and lipids and was assigned to the mucus matrix.   

 

 

Figure 18. Confocal Raman microscopy analysis of undiluted human tracheal mucus. (A) Representative Raman 
spectra assigned to the mucus matrix, to pulmonary surfactant and to dipalmitoyl phosphatidylcholine (DPPC). (B) False 
color Raman image of a XY-scan representing the spatial distribution of the spectra (mucus matrix in green, and the 
pulmonary surfactant in pink). From reference 121. 

 

Unfortunately, the network structure of mucus samples could not be resolved applying CRM to 

undiluted native mucus samples (Figure 18 B). Therefore, a further CRM analysis was performed 

on freeze-dried human mucus samples159. Conventional scanning electron microscopy revealed 

a preserved network structure for mucus after freeze-drying, although the magnitude of the pores 

was significantly increased by the water sublimation process (pore size range 1-10 µm, Figure 19 
A). For this particular sample preparation, a spectrum containing characteristic peaks 
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corresponding to disulfide bonds (S-S, peak at 492 cm-1) and to choline head groups (peak at 717 

cm-1) were successfully identified (Figure 19 B).  

 

Figure 19. Confocal Raman microscopy analysis of freeze-dried human tracheal mucus. (A) Scanning electron 
microscopy image. (B) Representative Raman spectra corresponding to the mucus matrix (red) and disulfide bonds 
(blue). The spectral region of interest, corresponding to disulfide bonds (492 cm-1) and choline head groups (717 cm-1), 
is highlighted by a grey shadow. (C) false color Raman image of the spatial distribution of the different Raman spectra 
(the same color code has been applied in B and C). From reference 121. 

 

The incubation of mucus with NAC (10% w/w) before freeze-drying partially collapsed the network 

structure (Figure 20 A). After mucolysis, a single type of Raman spectra could be detected, which 

revealed the presence of free thiol (-SH) groups at 2560-2590 cm-1, but without evident peaks for 

disulfide bonds or choline head groups.  

 

 
 

Figure 20. Confocal Raman microscopy analysis of freeze-dried human tracheal mucus, which had been incubated 
with 10% w/w of N-acetyl cysteine (NAC, 100 mg/ml) before freeze-drying. (A) Scanning electron microscopy image. 
(B) Representative Raman spectrum. The peak corresponding to free thiol groups (2560-2590 cm-1) is highlighted by a 
grey shadow. From reference 121.  
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In summary, the characterization of native mucus performed here leads to the following conclusions:  

• Rheological profiling of porcine tracheal mucus as well as FRAP and MPT experiments performed 

with polystyrene tracer NPs of 100 nm, 200 nm, and 500 nm particles determine a heterogeneous 

structure of mucus with pores at a length scale between 100 nm and 1000 nm. The elastic regions 

of this gel exhibit different crosslink densities with the mesh size potentially below 100 nm in some 

areas, but also containing larger interconnected pores with diameters above 200 nm but below 

500 nm.  

• Particle deposition in the form of aerosols onto porcine mucus layers showed that just 100 nm, 

but not 200 nm or larger particles, could penetrate mucus. The lack of penetration of 200 nm 

particles, which showed a relatively high mobile fraction when mechanically dispersed within 

mucus, may be best explained by the absence of sufficiently large pores at the air-mucus interface.  

• The comparison between human and porcine tracheal mucus gels showed marked differences 

between both materials. Rheological investigations characterized human mucus as a stronger and 

more cross-linked gel compared to porcine mucus. The differences between both materials can 

be best explained by differences in the collection method. Indeed, collection of human mucus 

requires minimal sample manipulation. FRAP, MPT, and CryoSEM investigations revealed a higher 

crosslink density for human mucus, which significantly reduced particle mobility within the 

hydrogel.  

• This study clearly illustrates the relevance of experimenting with high quality mucus samples, 

which may further produce meaningful and translatable results. 

• CRM allowed us to successfully resolve the pulmonary surfactant from the mucus matrix in the 

native mucus hydrogel. The analysis of freeze-dried mucus revealed the presence of disulfide 

bonds, which are responsible for the structural stabilization of the mucus mesh. On the contrary, 

disulfide bonds were not detectable after mucolysis with NAC. 
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• The present CRM study describes, for the first time to our knowledge, the label-free investigation 

of human airway mucus. This investigation brings Raman microscopy in focus as an upcoming tool 

for elucidation of the effects induced by drugs and other substances on mucous hydrogels. 
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3.2      Modelling the Pulmonary Airways in Health and Disease 

 

This chapter refers to the following publications: 

Murgia X, Yasar H, Carvalho-Wodarz C, et al. Modelling the bronchial barrier in pulmonary drug 

delivery: A human bronchial epithelial cell line supplemented with human tracheal mucus. Eur J 

Pharm Biopharm 2017;118:79–88. 

Müller L, Murgia X*, Siebenbürger L, et al. Human airway mucus alters susceptibility of 

Pseudomonas aeruginosa biofilms to tobramycin, but not colistin. J Antimicrob Chemother 

[Internet] 2018;73:2762–9. 

*Equal contribution 

 

Cell-based in vitro models play a relevant role at the early stages of drug development. They allow, 

among others, performing time-resolved permeation studies of small drug molecules160,161, testing 

the cellular toxicity of novel therapeutic compounds33,162, and investigating drug uptake 

mechanisms and molecular pathways of APIs151,152.   

The natural protective role of mucus is nowadays acknowledged as a major barrier to be overcome 

in non-invasive drug delivery50. Therefore, cell-based in vitro models mimicking the pulmonary 

airways must include the mucus feature, in particular if the transport and uptake of NP-based drug 

delivery systems is to be investigated with such models.  

The starting point for this investigation was the optimal characteristics in the context of 

pharmaceutical research described by Ehrhardt et al. for the CFBE41o- cell line155. CFBE41o- 

cells express tight-junction proteins and display high trans-epithelial electrical resistance 

(TEER)163,164. Nevertheless, unlike the Calu-3 cell line153, CFBE41o- cell monolayers lack the 

ability to synthesize and secrete mucus. To address this limitation, the possibility of incorporating 

a mucus layer of exogenous origin onto confluent CFBE41o- monolayers was explored in the 

present thesis.  

Mucus samples were obtained from patients undergoing elective surgery. Unfortunately, such 

samples are unsterile and highly elastic. The high elasticity of such mucus samples represents a 

significant difficulty in terms of sample manipulation, precluding the possibility of pipetting precise 
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mucus volumes as well as the efficient distribution of mucus over cell monolayers without inducing 

undesired cell damage. To overcome this limitation, thin mucus layers with approximately the 

same shape and dimension as Transwell® (1.12 cm2) membranes were freeze-dried over Teflon 

surfaces. The produced freeze-dried mucus disks were further incorporated onto CFBE41o- cell 

monolayers grown on Transwell® membranes and re-hydrated with cell culture medium.  

The mechanical properties of native undiluted mucus were compared to those of mucus samples 

that had been freeze-dried and re-hydrated. Bulk rheology studies showed an equivalent 

rheological profile for native tracheal mucus compared to the freeze-dried and re-suspended 

material. The elastic modulus (G’) exceeded the viscous modulus (G’’) in the case of undiluted 

mucus as well as in the case of freeze-dried and re-suspended mucus samples. This held true for 

both the strain and the frequency sweeps (Figure 18). This rheological signature, typical for cross-

linked gels, confirmed a preserved network structure following freeze-drying and re-hydration of 

human tracheal mucus.  

 

 

Figure 21. Bulk rheology of native human tracheal mucus (solid symbols) compared to native airway mucus which was 
freeze-dried and re-suspended (open symbols). (A) Strain (γ)-dependent viscous (G’’, triangles) and elastic (G’, 
squares) moduli from 0.1 to 10% strain at a frequency of 6.28 rad/s (1 Hz). (B) Frequency-dependent viscous (G’’, 
triangles) and elastic (G’, squares) moduli from 0.1 to 50 rad/s at 1% strain. The mean ± standard error for n=5 are 
shown. From reference 67. 

 
It was hypothesized that human-derived mucus would be compatible with CFBE41o- cells, which 

are also from human origin. To address this hypothesis, the viability of CFBE41o- cells after a 24h 

incubation with freeze-dried and re-suspended mucus was investigated with two independent 

assays, namely live/dead staining and MTT assay. Both techniques confirmed a full compatibility 
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between the exogenous mucus and CFBE41o- monolayers, exhibiting a 100 % cell viability 24h 

after mucus addition.  

 
Figure 22. The viability of CFBE41o- cells upon contact with exogenous human mucus was assessed with the MTT 
assay and by live/dead staining with fluorescein diacetate (FDA) and propidium iodide (PI). (A) CFBE41o- cells exposed 
to mucus for 24 hours had a viability over 100 % (grey bar), slightly greater than that of control cells incubated with the 
appropriate medium (black bar); CFBE41o- cells incubated with the detergent Triton-X served as a negative control with 
0% viability. (B) Representative fluorescence microphotographs of the negative (left) and positive (right) controls for the 
live/dead staining; cells with their nuclei stained in red represent non-viable cells, whereas cells with a green cytoplasm 
represent viable cells. (C) and (D) Representative fluorescence microphotographs of independent experiments at 
different magnifications, showing different Transwells® (wells 1-6) supporting CFBE41o- monolayers that had been 
incubated for 24 hours with human mucus in the apical compartment. (E) X-Z cross-sectional view of viable CFBE41o- 
monolayers that had been incubated for 24 hours with human mucus. From reference 67. 

 

The presence of tight junctions between neighboring CFBE41o- cells following the 24h incubation 

with exogenous mucus was confirmed by the high TEER values recorded (Figure 23).  
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Figure 23. The barrier properties of the CFBE41o- monolayers grown for at least 10 days under submerged conditions 
were monitored for 24 h. The TEER values were measured before (initial) and 24 h after addition of mucus (CFBE41o- 
+ Mucus, right). CFBE41o- cells not exposed to mucus but incubated under submerged conditions with regular medium 
served as controls (CFBE41o-, left). The horizontal line at 300 Ω*cm2 indicates the threshold values deemed to indicate 
the presence of a tight barrier. The mean ± standard error of n=12 (CFBE41o-) and n=16 (CFBE41o- + mucus) from 
three independent experiments are shown. No significant (n.s.) differences were found. From reference 67. 

 

As a proof of concept for the developed in vitro model, chitosan-coated PLGA NPs were incubated 

for 24 hours in “naked” CFBE41o- cell monolayers and in CFBE41o- cell monolayers 

supplemented with an additional mucus layer. The NPs had a mean size of 168 nm and a charge 

of +13 mV. By using cationic NPs, the interaction between mucus and NPs was intentionally 

pursued. If NPs were incubated with “naked” CFBE41o- cell monolayers, a significant uptake could 

be observed in the confocal images (Figure 24 A). Conversely, after 24h, NP uptake in CFBE41o- 

monolayers supplemented with a layer of mucus was significantly reduced, indicating that most of 

the NPs had been entrapped by the mucus layer (figure 24 B).  
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Figure 24. Confocal laser scanning microscopy images of the cellular uptake study performed with DiD-labeled 
chitosan-PLGA nanoparticles (NP) on CFBE41o- cells with and without mucus. (A) CFBE41o- monolayers were 
incubated with 400 µl of the NP suspension (40 µg/ml) for 24 h; after incubation, although the apical surface was 
thoroughly washed with PBS, a widespread presence of NPs either in close contact with or internalized by cells was 
noted, as evidenced by the 3D rendering (top) and the X-Z cross-sections (wells 1-3). (B) CFBE41o- monolayers 
supplemented with human tracheal mucus were incubated with 400 µl of the NP suspension (40 µg/ml) for 24 h. After 
incubation, the apical surface was thoroughly washed with PBS, resulting in the removal of both mucus and entrapped 
NPs. The absence of NPs in contact with cells in this case indicates that a vast majority of the NPs were trapped within 
the mucus and washed away. Nuclei were stained with DAPI (blue), the cell membrane was stained with wheat germ 
agglutinin (green), and the DiD-labelled chitosan-PLGA NPs were labelled with DiD (red). From reference 67. 

 

Modelling lung infection in cell-based in vitro models is certainly challenging. Several research 

efforts have attempted to model the CF airway by co-culturing epithelial cells and Pseudomonas 

aeruginosa biofilms165. Unfortunately, due to bacterial overgrowth, such models show a limited 

time span, which in the best case does not surpass a few hours from the establishment of the co-

culture165,166.  

As an alternative to epithelial cell-based models, a model consisting of growing the Pseudomonas 

aeruginosa strain PAO1 using human tracheal mucus was developed. This model simulates the 

initial stages of biofilm formation in CF and was aimed to be used for the efficacy testing of anti-

infective drugs.  
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The efficacy of tobramycin and colistin, which are routinely prescribed for the management of CF 

infections89, were tested in the developed biofilm model. Although they differ in their mechanism 

of action, both antibiotics are poly-cationic and therefore prone to interact with the negatively 

charge mucus. The minimum inhibitory concentrations (MIC) for tobramycin and colistin with 

planktonic PAO1 were 0.5 and 1 mg/L, respectively. For the treatment of 24h-old PAO1 biofilms, 

doses that were 100, 300, and 900 times higher than the MIC were selected. Full eradication of 

biofilms grown in PBS required a concentration 900 times higher than the MIC, irrespective of the 

antibiotic used. In biofilms grown in a mucus environment, a concentration-dependent decrease 

in viable bacterial load could still be seen for both antibiotics (Figure 25); however, tobramycin 

efficacy was significantly impaired in the presence of mucus, leading to a shift of the IC50 value 

from 100 mg/L without mucus to > 900 mg/L with mucus. Thus, killing of biofilm-grown bacteria 

was not achieved with tobramycin under normal culture conditions in the presence of mucus.  

       

 
 
 

 
 

 

 

Figure 25. Biofilm susceptibility to antibiotic treatment. PAO1 biofilms grown in mucus or PBS for 24 h were treated 
with tobramycin (a) or colistin (b). After 24 h of incubation, efficacy was assessed by determination of cfu. The cfu counts 
are depicted logarithmically as regression curves showing the mean + standard deviation for n = 3 experiments, each 
with technical duplicates. A double asterisk indicates statistical significance at P < 0.01, according to the Mann–Whitney 
U-test, for comparison of mucus versus PBS at the individual concentrations. From reference 87. 

 

The lack of efficacy of tobramycin in the presence of mucus is difficult to explain, and is best 

explained by a sum of events. The interaction between poly-cationic antibiotics and mucus 

components may have reduced the diffusion as well as the net bioavailability of the 

antibiotics66,91,167. However, adaptive resistance mechanisms such as an increase of efflux pump 

activity, alterations of permeation due to changes of lipopolysaccharides or porins, or the 

expression of biofilm-specific genes upon contact with mucus may also be in part responsible for 

the loss of efficacy of tobramycin89,168. A higher bacterial load was also noticed if PAO1 were 

cultured in mucus (Figure 26). In this regard, mucus’ pores may act as PAO1-immobilizing 

scaffolds, while bacteria can degrade mucus components to promote a sustained growth.   
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Figure 26. Bacterial load in 48h-old PAO1 biofilms grown either in human mucus or in PBS. Mean ± standard deviation 
for n = 3 samples, each with technical duplicates. *P < 0.05. **P < 0.01. From reference 87. 

 

In summary, this thesis proposes two different in vitro models for diverse pharmaceutical 
applications. The first model comprises an epithelial cell monolayer (CFBE41o- cells) and a layer 
of native pulmonary mucus. The main features of this model are: 

 

• The epithelial CFBE41o- cell monolayer is complemented with freeze-died re-hydrated 
human tracheal mucus, which is fully biocompatible and displays native viscoelastic 
properties.  

• The re-hydrated mucus behaves as a semi-permeable layer, allowing the permeation of 
small molecules but severely hindering the passage of positively-charged 168 nm diameter 
polymeric NPs. 

• The present model combines the excellent epithelial barrier properties of CFBE41o- cells 
with the option to implement an additional mucus barrier. Therefore, this model allows 
studying the net influence of the mucus barrier on drug transport.  

• The relatively short culture time needed to achieve a tight epithelial monolayer allows 
having a cell line-based mucus-containing in vitro model of the airways ready for use within 
a timeframe of less than a week, in contrast to the relatively long culture times (3-4 weeks) 
required for the growth of Calu-3 cells displaying a confluent mucus layer. 

 

The second model, consist of growing PAO1 embedded in freeze-dried and re-suspended native 
tracheal mucus. The main features of this model are: 

 

• Growing PAO1 in combination with mucus provides a more realistic scenario of the CF 
airway. Biofilm formation in human mucus results in a more heterogeneous structure and 
a higher bacterial load. 
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• A significantly decreased efficacy of tobramycin against biofilms was observed in the 
presence of human mucus, suggesting that the mucus environment should be considered 
as a key factor in in vivo biofilm formation  

• This model provides a complementary tool to the already available assays in the context 
of anti-infective drug development and may represents an excellent platform for testing 
novel compounds, including encapsulated antibiotics and quorum sensing inhibitors.
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Supplementary data 

Bacterial strains and antibiotics 

The P. aeruginosa wild-type strain PAO1 was obtained from DSMZ-German Collection of 

Microorganisms and Cell Cultures (DSMZ #19880, Braunschweig, Germany, ATCC 15692). 

Fluorescent GFP-tagged PAO1 carrying a GFP-tagged pMRP9 plasmid was kindly provided by 

Thomas Bjarnsholt (Department of Immunology and Microbiology, Copenhagen, Denmark). Two 

different antibiotics were used for susceptibility testing: tobramycin sulfate salt and colistin sulfate 

salt (both from Sigma Aldrich, Munich, Germany).  

MIC assay 

For determination of the MIC, 50 µl of PAO1 in cation-adjusted Mueller-Hinton broth (CAMHB, 

Becton Dickinson, Heidelberg, Germany) at a concentration of 2 x 106 cells/mL were transferred 

into the wells of a round-bottom 96-well plate (Nunc, Roskilde, Denmark). Two-fold dilutions of the 

respective antibiotics in CAMHB were added to bacterial suspensions, resulting in a final 

concentration range of 0.125-512 mg/L. A growth control was treated with CAMHB only. The 

plates were sealed with self-adhesive strips and incubated at 35 °C ± 2 °C for 24 h. Bacterial 

growth was visually assessed and the MIC was defined as lowest antibiotic concentration showing 

no visible growth of bacteria.169 

Extraction and preparation of human mucus 

Undiluted human tracheal mucus samples were collected with the endotracheal tube 

method.63,121,128 The protocol was approved by the Ethics Commission of The Chamber of 

Medicine Doctors of the Saarland (file number 19/15). The tracheal tubes of patients undergoing 

elective surgery with general anesthesia, non-related to pulmonary conditions, were collected after 

surgery and placed in 50-mL centrifuge tubes. The mucus from each tracheal tube was collected 

by centrifuging the samples at 190 g for 30 s. Mucus samples were stored at -20 °C until further 

use.  

Six to ten independent mucus samples were pooled to reach an approximate weight of 1 g. Mucus 

samples were then placed over a Teflon surface, inserted into an autoclavable sealing bag 

(Medipack, Christophorus CBC GmbH, Eppelheim, Germany), and stored at -80 °C for 4 h. The 

samples were then freeze-dried overnight (Alpha 2-4 LSC, Christ, Germany), sealed, and stored 

until use. The samples were weighed before and after the process to determine the amount of 

sublimated water.  
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Before its use for P. aeruginosa biofilm formation assays, the freeze-dried mucus was exposed to 

UV radiation for 1 h and re-hydrated with PBS using the same volume that had previously been 

sublimated. Mucus samples were allowed to re-hydrate on a shaker at 100 rpm at room 

temperature. As a control for every produced mucus batch, prior to any experiment, an aliquot of 

re-suspended mucus was incubated in agar plates for 24-h and inspected for bacterial growth. 

Biofilm cultivation and susceptibility testing 

PAO1 were cultivated in LB medium (Carl Roth, Karlsruhe, Germany) at 150 rpm and 37 °C for 

17-20 h. The bacterial suspension was harvested and diluted in LB medium to an OD600 of 0.02, 

corresponding to a concentration of 2 x 107 bacteria/mL. Volumes of 100 µL of resuspended 

mucus or PBS (Lonza, Basel, Switzerland) was transferred to the wells of a 96-well plate (TPP, 

Trasadingen, Switzerland) and inoculated with 100 µL bacterial suspension. Bacteria-free LB 

medium was used as a sham infection control. The actual inoculum was confirmed by dilution 

plating and counting of colony-forming units (cfu). Pure mucus and PBS were tested for any 

bacterial contamination by dilution plating and cfu determination. For biofilm formation plates were 

incubated under static conditions with 100% humidity, 37 °C and 0% CO2 for 24 h. Thereafter, 

samples were treated with 10 µL tobramycin or colistin with a final concentration of 0.1, 0.3 or 0.9 

mg/mL each, representing 100x, 300x, and 900x MIC, respectively. LB medium was used as 

control. Efficacy was assessed according to viable bacterial load determined using 1:10 dilutions 

in PBS/0.05% Tween20 (Sigma Aldrich, Munich, Germany) and plating on Trypticase Soy Agar 

(TSA, Becton Dickinson, Heidelberg, Germany) to count cfu after overnight incubation at 37 °C. 

Biofilms including mucus or PBS were removed from well plates by using pipettes with extra wide 

pipette tips which allowed aspirating the viscoelastic biomass. Biofilms were aspirated several 

times to make sure that as much volume as possible was removed. Samples were transferred to 

glass vessels for dilutions and intensively vortexed for homogenous distribution. Samples were 

diluted in PBS containing 0.05% of tween to disrupt bacterial aggregates for a better counting on 

agar plates. 

Tobramycin activity after pre-incubation in mucus 

A volume of 100 µL of bacteria-free, resuspended mucus was mixed with 10 µL of tobramycin 

suspension, resulting in a final concentration of 0.3 mg/mL in the well. After 24 h of incubation, 

tobramycin-containing mucus was inoculated with 100 µL of PAO1 (2 x 107/mL), leading to a final 

tobramycin concentration of 0.15 mg/mL. As positive treatment control 0.15 mg/mL tobramycin 

with vehicle and a negative control without tobramycin were used. After further incubation for 24 
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h at 37 °C, treatment efficacy was analyzed visually for turbidity and by dilution plating and 

determination of cfu. 

Laser scanning confocal microscopy  

For confocal microscopy experiments P. aeruginosa biofilms were cultivated in 96-well plates 

suitable for fluorescence microscopy (µ-plate 96 well, ibidi, Martinsried, Germany) using a GFP-

tagged strain as described above. Biofilms of GFP-PAO1 were grown in mucus or in PBS for 2 

days. Uninfected mucus was used as control. Imaging was performed using an LSM 510 Meta 

inverse confocal microscope (Zeiss, Jena, Germany). The 488-nm argon laser line was used for 

excitation and the BP 505–530 filter for emission. Z-stacks were performed with intervals of 0.5 

µm and a range of 30 µm using the plan-neofluar 40x/1.3 oil DIC objective. For biomass 

quantification images were processed with the imaging software IMARIS version 7.6.5, including 

its associated surpass module (Bitplane scientific software, Zurich, Switzerland). The surface of 

all fluorescent signals above a determined threshold was computed as bacterial biomass. The 

obtained values were displayed as surface area (in µm2) covered with a GFP-positive signal.  

Tobramycin and colistin diffusion studies 

Experiments were performed using transwell® membranes (Corning, Durham, USA) with a surface 

of 0.33 cm2 and a pore size of 4 µm. Biofilms in the presence or absence of mucus or sham-

infected mucus samples with a total volume of 100 µL were cultivated on the membrane of the 

transwell® inserts overnight. During bacteria inoculation the transwell® inserts were placed on a 

sterile plastic surface to prevent loss of bacteria through the pores and allow proper biofilm 

formation. After 24 h, the inserts were placed into the companion plates and 100 µL of 0.6 mg/mL 

tobramycin or colistin solution in PBS were then added to the apical compartment. The basolateral 

compartment was filled with 600 µL of PBS. Volumes of 50 µL each were sampled from the 

basolateral compartment after 15, 30, 60, 90, 120 and 3600 min. After sample withdrawal the 

basolateral compartment was supplemented with 50 µL of fresh, pre-warmed PBS. The collected 

samples were diluted in PBS and sterile filtered with 0.2 µm pore-size polyethersulfone (PES) 

filters (VWR, Radnor, USA) prior to analysis. Previous experiments had confirmed that this 

filtration step had no impact on antibiotic concentrations (data not shown). Tobramycin and colistin 

concentrations at each time point were determined by HPLC measurements.  

HPLC measurement 

HPLC and MS/MS methods similar to those described in literature for tobramycin170 and colistin171 

were applied with minor modifications. A Dionex Ultimate 3000 HPLC system with a Machery-
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Nagel Nucleodur C18 Gravity-SB ec 100 x 2 (3 µm) with guard column coupled to a TSQ Quantum 

Access Max tandem mass spectrometer was used for the measurements. Samples were analyzed 

by single measurements. Concentrations were determined using the obtained areas of the 

analytes. 

Statistical analysis 

Three independent runs were performed for each experiment with technical duplicates or technical 

triplicates (diffusion studies). All values are given as mean ± standard deviation (SD) or mean ± 

standard error of the mean (SE) (diffusion studies). Statistical analysis was performed with the 

GraphPad Prism software (GraphPad 7 Software, Inc, USA) using the Mann-Whitney test. 

Differences were considered statistically significant at the level of p < 0.05. 

Figure S1. Bacterial count in mucus, LB medium and PBS. Biofilms were grown in mucus, LB 

medium or PBS for 48 h. Bacterial load was assessed by determination of cfu. Bar graphs show 

the mean + SD for n = 3 samples with technical duplicates each. * indicates statistical significance 

with P < 0.05, according to the Mann-Whitney test. 
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