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Abstract: Organic-inorganic hybrids (OIH) are considered to be a powerful platform for applications
in many research and industrial fields. This review highlights the application of OIH for chemical
analysis, biosensors, and environmental monitoring. A methodology toward metrological traceability
measurement and standardization of OIH and demonstration of the role of mathematical modeling
in biosensor design are also presented. The importance of the development of novel types of OIH for
biosensing applications is highlighted. Finally, current trends in nanometrology and nanobiosensors
are presented.
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1. Introduction

Development of novel materials for chemical analysis and biosensor application is one of the
most significant challenges in today’s science and technology. Novel developed platforms applied
for biosensors and chemical analyses are mostly produced from inorganic materials [1–3]. However,
in some cases, where it is significantly important to use specific mechanical (e.g., flexibility) or optical
(e.g., transmittance) properties, these developed materials should also include organic components,
and as a consequence, specific polymeric and/or (bio)receptors are used. The possibility of combining
properties of inorganic (e.g., high charge-carrier mobility, mechanical and thermal stability) and organic
(e.g., low cost, flexibility, facile tuning of optical and electrical properties) components in a novel
composite material with unique features has been a tremendous challenge for a long period.

Organic-inorganic hybrids (OIH) consist of two or more different components, typically inorganic
material (metal/semiconductor/dielectric particle or bulk component) and organic components which
could be organic functional groups or molecules, biomolecules, polymers, etc., [4–8]. These components
are attached together by specific interactions that result in the synergistic enhancement of their specific
properties. OIH have attracted a lot of attention in the fields of ceramics [9], polymer chemistry [10],
organic and inorganic chemistry [11], physics and material engineering [12,13].

Interestingly, paint pigments, i.e., Prussian Blue (iron(III) hexacyanoferrate) dispersed in organic
solvents can be readily considered to be the earliest representatives of organic-inorganic hybrids [14].
However, the “organic-inorganic hybrid” concept appeared only in the 1980s with the development of
soft inorganic chemistry [14]. Since that time, the preparation, characterization, and applications of
organic-inorganic hybrids have become a fast expanding area of research in materials and life science,
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nanotechnology, bio- and environmental monitoring. For instance, the above-mentioned Prussian
Blue has been successfully employed in biosensor development because of its selective ability toward
hydrogen peroxide (H2O2) reduction in the presence of O2 as a product of enzymatic activity [15].

In the past years OIH were developed on a large scale with a lot of applications in analytical
chemistry, and in bio- and environmental monitoring [16–18]. One may note the tremendous increase
in the number of publications and patents relating to the development of novel OIH. Such composites
may be casted into thin films [19,20], nanofibers [21], nanoparticles [22], porous materials [23],
and hierarchical nanostructures [24], which is extremely important, for instance, to design effective
biosensing platforms with quick read-out capabilities for biomedicine and environmental applications.
Recently, considerable efforts have been made toward the development of electrochemical transducers
for glucose detection which finds applications for diagnostic purposes, viz., point of care or in the food
and beverage industry. The possibility to use OIH based on gold (Au)-chitosan nanoparticles (NPs) [25],
and nanofilms [26] was demonstrated for efficient detection of glucose at different concentration
range. In these OIH, chitosan provides a biocompatible environment and temperature-related harsh
physiological conditions. On the other hand, Au-NPs enhance the overall system stability, catalytic
activity, and facilitate the electron transfer for hydrogen peroxide removal. The same effect was shown
for another OIH based on polyaniline-Au-NPs [27]. Recently, Pt-porphyrin-encapsulated polylactic
acid (PLA) NPs were synthesized and glucose biosensors with an improved detection range were
developed [28]. Apart from glucose biosensors, OIH materials are widely used for the detection of
cancer biomarkers [29], toxins [30], and ions of heavy metals [31]. Taking into account the importance
of the detection of small molecular weight biomolecules that have a physiological meaning in complex
real samples, the efficiency of OIH-based biosensors for lactate [32], glutamate [33], and dopamine
analysis was highlighted [34]. Multifarious electrode materials, bioreceptors, organic supplements and
immobilization techniques were employed for the detection of the mentioned bioanalytes in different
media with various rates of success [35–37].

Remarkably, the quality of the novel OIH in general, and biosensors as a case study, must be
determined by appropriate control measures. However, the general guidelines toward standardization
and validation of OIH are currently under development. Furthermore, the use of mathematical
approaches as a rule of thumb for an accurate and rapid process and/or design analysis and improvement
is still lacking when developing novel materials and biosensors. Nonetheless, in the last decades
various data analysis, process control, and optimization tools using computational intelligence have
proven their efficiency and were successfully integrated in different fields of biotechnology. Increased
use of modelling techniques, especially with first principles based models, for novel OIH and biosensors
already at the development stage would significantly advance the understanding of the underlying
mechanisms and the observed response. As a consequence, mathematical modelling could provide
the necessary guidance toward efficient and rapid design and performance improvement, which
could minimize the experimental efforts, reagent usage, and waste generation. Another aspect to be
considered is the creation of a web-based database tool containing continuously updated experimental
information on the novel OIH and biosensors designs, materials, reactions, physical and/or chemical
properties etc. Such online data-based platforms would not only provide an easy access to the current
state-of-the art but also facilitate the general progress in the biosensor and OIH research.

In addition to creation of databases for documentation of OIH and biosensors, systematic
classification of available knowledge on such systems in mathematical models is also an important tool
that can be highly beneficial for speeding up the future OIH and biosensor development. In essence,
a mathematical model can represent complex relationships between different system variables that
are of relevance, and can be used to simulate or predict the behavior of a system, depending on for
example specific changes in system operating conditions. Combined with a suitable optimization
algorithm, such a mathematical model can, for example, be used for in silico prediction of the best set
of operating or design conditions for a system, which for a biosensor could translate in prediction of
the biosensor architecture that has the highest reliability or stability.
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This review describes OIH materials development and their application for chemical analysis,
bio- and environmental monitoring. Mostly, we focus on OIH materials that found application
in biosensors and nanobiosensors. More importantly, herein, we propose a methodology
toward metrological traceability measurement and standardization of nano-based OIH (i) and
demonstrate the usefulness of the application of mathematical tools and modeling techniques in
biosensors/nanobiosensors development (ii).

2. Classification and Synthesis of Organic-Inorganic Hybrids (OIH)

2.1. Classification

Depending on the nature of the organic-inorganic interface, hybrid materials can be classified
into two main group: (i) hybrid systems where components have weak interaction (Van der Waals,
electrostatic or hydrogen bonds); and (ii) organic-inorganic components that are linked by covalent or
ionic-covalent chemical bonds [17].

The first type or class of OIH (Type/Class I) is characterized by the physical interaction (π–π
interaction, hydrogen bonds formation etc.,) between organic and inorganic components. Notably,
OIH materials of Class I occur only when organic and inorganic components both have some specific
functional groups on their surface. Otherwise, OIH materials are in an inhomogeneous phase that
results in phase separation between organic and inorganic components [38]. This class is mostly
presented by various types of core-shell structures (organic-inorganic or vice versa), inorganic particles,
or other nanostructures embedded into an organic (e.g., polymer) matrix which found application in
biosensors [39], photocatalysis [40], and optoelectronics [41].

Type/Class II. In this type of hybrid materials, chemical bonding occurs between two different
phases. The building blocks for class II OIH possess at least two distinct functional groups:
metal-to-carbon links which are stable in the hydrolysis reactions and alkoxy groups (R-OM bonds)
which may experience hydrolysis-condensation reactions in the presence of water [7]. This class
of OIH has found a wide application in batteries [42], filtration [43], hydrophilic/hydrophobic
materials [7]. For example, class II can be prepared by alkoxysilane (-Si(OR)3)-functionalized organic
compound and telechelic organic component with functional moieties by co-condensation reaction.
Other examples of OIH of class II are perovskites, metal-organic frameworks (MOF), and bimetallic
organophosphate oxides.

Remarkably, both types/classes of OIH are intensively used for the development of biosensing
tools (Figure 1). For biosensing, the design of OIH is determined by the requirements of the analytical
task and operational modes of the final device.
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2.2. Synthesis

2.2.1. Sol-Gel and Solvothermal Methods

There are numerous methods and approaches of hybrid materials synthesis. The first chemical
method to allow the mixing of inorganic and organic components at the nanometric scale was the
sol-gel process [44]. Sol-gel processes are a method of forming dispersed inorganic component in
organic solvents, through the growth of metal-oxo polymer. The sol-gel approach is a simple and
low-temperature method to produce OIH which allows to control the chemical composition of products.
Compounds produced by the sol-gel process have many applications in superhydrophobic surfaces [45],
electrolytes [46], biosensors [47], corrosion protection [48], etc.

Another method for preparing OIH, similar to the sol-gel process, is solvothermal synthesis [49].
The technique involves separation of organic and metal reagents using immiscible solvents in high
temperatures, which can exceed the boiling point of the solvents.

2.2.2. (Self) Assembly Method

Unfortunately, most of OIH prepared via the sol-gel processes are not materials controlled on a
meso-, or nano-scopic scale. Therefore, other synthesis strategies should be employed to control hybrid
materials on the nanoscale.

The second strategy of hybrid materials synthesis is based on the (self)assembly of monodispersed
nanoscale objects: nanoparticles (metal and semiconductor), core/shell nanocomposites, 1D and
2D nanomaterials [50,51]. These nanostructures can be modified by different type of organic
molecules, functional dendrimers, biomolecules, polymers [2,52]. This synthesis strategy is often
called “legochemistry,” because it allows one to build the hybrid assemblies by simply combining
organic/inorganic materials. This method provides a number of advantages, such as better control of
its structure on the nanoscale, and as a consequence it facilitates the tailoring of physical properties of
the final material.

2.2.3. Supramolecular Template Method

Third methodology is based on the self-assembly properties of polymers and amphiphilic
molecules which can create supramolecular OIH with tailored structure and morphology. This method
enables the synthesis of OIH nanocomposites from inorganic nanoscale components in an organic
matrix (polymer matrix). Combination of this method with the use of hexafunctional organosilanes,
has yielded a new type of hybrid mesoporous solids. It was shown that this hybrids in the presence of
surfactants poses high degree of porosity which allows to perform a secondary functionalization via
post grafting [53].

2.2.4. Combined Method

The last approach is an integrative approach that combines all the above-mentioned methods.
Among these methods, which can generate hybrid materials with hierarchical or other types of
structures in a single stage, one may include nano-molding, reactive extrusion, electrospinning [54].
Recently, hybrid synthesis approach based on the combination of atomic layer deposition (ALD) and
electrospinning (Figure 2) has been reported [55–57].
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Figure 2. Schematic representation of core-shell (PAN-ZnO) fibers synthesis and results of scanning
electron microscopy (SEM) analysis (original image). Note: the SEM images were obtained in the
laboratory of the presented authors (SEM JEOL JSM—7001F, operating voltage—15 kV).

Electrospinning is a low-cost powerful technique that can deposit 1D organic nanofibers, such as
collagen, polylactic acid (PLA), gelatine, and hyaluronic acid (HA) [54]. These materials are widely
used in tissue engineering and medicine as 3D scaffolds for cell growth [56]. At the same time, these
nanofibers can be a template for optical biosensor via ALD coating with photonic material [57,58].
ALD is a method that enables to deposit a broad class of materials with controlled properties.
ALD provides the capability of introducing self-limited chemical reactions which lead to the formation
of an ultrathin film even for complex morphologies, such as porous structures, nanoparticles, nanotubes
etc., [40].

As recently reported, 1D electrospun polyacrylonitrile (PAN) nanofibers coated with a 30 nm ZnO
ALD layer showed 1000-fold higher signal response versus planar ZnO nanolayers. The developed
1D ZnO hybrid nanostructures have been applied for optical gas sensing [57]. The obtained
structures demonstrated high photoluminescence and great sensitivity to low ethanol concentration.
ALD deposited ZnO/Al2O3 nanolaminates onto the organic polymer nanofibers are a new class of
photonic materials with advanced structural and optical properties [57]. ALD technology has been
improved to deposit ZnO/Al2O3 nanolaminate with a total thickness in the range of 20–40 nm by
varying the single layer thickness from 0.5 nm to 10 nm. This methodology allowed to fabricate robust
composites with high surface area and possess enhanced optical properties, which was applied for the
development of biosensing photoluminescence transducers [50,57,58].

The same strategy can be applied for other materials to develop OIH for the bone tissue engineering
(Figure 3). However, instead of using metal oxides, as an inorganic component, and PAN, as an organic
one, we have used ALD boron nitrides (BN) and a biodegradable biopolymer, i.e., gelatin [56]. It has
been demonstrated that BN effectively reinforces the gelatin matrix and increases the Young’s modulus.
It has been also shown that the obtained hybrid is a promising nontoxic, biocompatible material for
orthopedic applications [56].
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Regardless of the synthesis method, wide spectra of OIH have found a great application in
biosensors development with different rate of success. In this regard, it is worth to provide an overview
and to classify OIH for biosensing application.

3. Biosensors as a Targeted Class of OIH

Biosensors are portable devices, able to selectively detect target biomolecules in low concentration
range in the presence of a complex matrix (serum, blood, saliva, food samples, fermentation media,
etc.,). Biosensors enable the conversion of biological functions (e.g., antigen-antibody interactions) into
signal read-outs (e.g., change in optical, or electrical properties). This biosensor’s feature enables a wide
range of practical applications from environmental monitoring to nanomedicine. The development and
tailoring of new materials are important issues to develop novel biosensors with advanced properties.
Large surface area, porosity, topography, and enhanced surface functionality can significantly improve
the sensing properties of the hybrid material and strengthen the interaction between surface and
adsorbate (bioanalyte) [59–61]. The use of nanostructured hybrid materials and/or nanocomposites
for the development of biosensors, in this case nanobiosensors, gives the possibility to achieve higher
analyte sensitivity and device miniaturization.

In recent years, researchers have investigated nano-based OIH (OInH) because of their new
properties and applications they demonstrated. Generally speaking, all biosensors are a class of OIH
because of the organic or bio-recognition elements (aptamers, antibodies, DNA/RNA etc.,) presented
on the biosensor surface.

Biosensors can be prepared by means of different methods, i.e., drop casting and covalent
immobilization [62–65]. Also, a conventional layer-by-layer (LbL) deposition methodology is widely
utilized. The LbL fabrication approach offers a superior versatility toward production of the
OIH assemblies, including polymer, colloids, and biomolecule coatings [66]. However, in some
cases the manufacturing of LbL-enzymatic biosensors involves a number of complex, resource
and time-consuming preparation steps. In addition, LbL assays are often suffering from mechanical
instability that leads to insufficient signal reproducibility and irreversible changes in sensor architecture.

In order to solve the problems associated with the LbL preparation method, recently a novel
one-step technique was proposed for the production of tailored enzymatic nanobiosensors that are
instrumentally controlled and allow reproducible, spatial, and temporal resolution, simultaneous
multi-analyte detection with high specificity [67]. However, it should be noted that regardless of the
fabrication method, the general guidelines towards validation of the OIH in general, as well as towards
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standardization of biosensors and nanobiosensors as a case study are still under development (see
section below titled “The role of nanoanalytics and nanometrology in OIH development”).

As previously defined, a biosensor is an analytical device that includes a combination of biological
detecting elements and a transducer. Depending on the transducer’s signal (electrical, optical,
mechanical etc.,) and biological recognition element (DNA, enzyme, antibody, molecular imprinted
polymer etc.,), one may classify biosensors into different types. For instance, an electrochemical
immunosensor means that this biosensor is based on antibody as a recognition element, and in this
device linear (I-V), cyclic voltammetry (CV) signal, or electron impedance spectroscopy (EIS) are used.

OIH biosensors based on surface enhanced Raman spectroscopy (SERS) are broadly used in
biomedicine applications. SERS is a very sensitive method in which monochromatic laser light
excites vibrational modes in adsorbed molecules on a plasmon surface [59]. For instance, a poly(3,4-
ethylenedioxythiophene) (PEDOT)-based 3D-OECT device decorated with gold nanoparticles (Au-NPs),
as a SERS substrate, has been developed for the detection of dopamine (DA) [68]. This developed
OECT/SERS biosensor featured a highly conductive PEDOT: PSS film, which enhanced the sensitivity
for the electrochemical sensing of DA in the presence of multiple interferers, such as ascorbic (AA) and
uric acids (UA). This biosensor provided an amperometric response to DA with a detection limit of
37 nM in the linear range from 50 nM to 100 µM.

Mahadeva et al. have developed the tin oxide (SnO2)-cellulose hybrids by adopting liquid phase
deposition technique and applied it for the detection of urea at low concentration level. The growth
of SnO2 nanocoating on the polymer films was revealed [69]. Furthermore, the enzyme (urease) was
immobilized into this nanocomposite by physical absorption. The limit of detection for proposed urea
biosensors was below a 50 mM concentration.

An electrochemical sensor based on self-doped polyaniline (SPAN) modified metal-organic
framework (SPAN@UIO-66-NH2) with high electron mobility was developed. Electrochemical
impedance spectroscopy (EIS) and cyclic voltammetry (CV) indicated that doping of SPAN enhanced
the electron transfer rates of UIO-66-NH2 in SPAN@UIO-66-NH2. The optimized design of a Cd2+

sensor exhibited good linear response from 0.5 µg L−1 to 100 µg L−1, with a low detection limit of
0.17 µg L−1 (based on S/N = 3), excellent stability, and fast response. It showed decent reliability for
detection of trace Cd2+ concentrations in natural lake and urine samples [70].

Among different types of biosensors, optical biosensors become more attractive for end-users
because of their small dimensions, low weight, and portability. Furthermore focusing on optical
biosensors, these devices do not require electric contacts and demonstrate high precision in
measurements [71].

Among a number of different inorganic materials, ZnO is well-known and interesting because
of its structure (different architectures i.e., nanoparticles, nanowires, etc.,), electrochemical (high
isoelectric point (IEP) (pH~9.1)) and optical properties (high exciton binding energy and high PL at
room temperature) [71,72]. Nanoscale ZnO materials offer many advantages for the development
of novel biosensing platforms. 1D ZnO nanomaterials (ZnO nanorods and nanowires) have
been intensively employed for in vitro biomedical detection (Figure 4) [2,72]. The unique optical
properties of 1D ZnO nanostructures have led to extensive development and their integration
with optoelectronics and nanophotonics. However, the full potential of 1D ZnO nanomaterials in
biosensing have not been realized up to now because of some difficulties in linking ZnO with surface
biofunctionalization. Polymer surface functionalization is considered to be the most promising to
solve this drawback. Below, one may find several examples to illustrate the state-of-the-art based on
polymer surface functionalization.

Thus, polydopamine (PDA) is a mussel-inspired polymer which was initially introduced by
Lee et al. in 2007 [73]. Since that time, it has found a lot of applications in material chemistry,
nanoscience, and bioengineering [74]. Because of the presence of several reactive groups the PDA
structure enables further biomolecule immobilization for biosensors construction, as well as for
the development of different biosensing interfaces, viz., glucose oxidase, sulfate-reducing bacteria
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orinterleukin-6 and human immunoglobulins introduced into/onto the polymer matrix through cross
linking [74,75].Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 22 
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Figure 4. (a) General ZnO-based optical biosensor scheme. Reproduced with permission from [71].
Copyright Elsevier, 2016. (b) Photoluminescence. Reproduced with permission from [72]. Copyright
Elsevier, 2019. (c) Reflectance. Reproduced with permission from [76]. Copyright Elsevier, 2018,
for detection of leukemic cells detection and paraquat/atrazine, respectively.

Interestingly, besides the intact PDA, ZnO-modified PDA nanostructures (ZnO/PDA) were used
in biosensors [76,77]. Briefly, ZnO nanorods, deposited on conductive glass, were coated with PDA.
Furthermore, a targeted protein (rabbit IgG) was immobilized on the surface of ZnO to form bioselective
layer. Photoelectrochemical tests of the ZnO/PDA toward anti-rabbit IgG showed good sensitivity
in the range 100 pg/mL to 500 ng/mL. In summary, combination of ZnO with PDA layers helped
to improve optical, electronic, and sensitivity properties of ZnO/PDA toward targeted molecules.
Besides, the PDA coating would prevent the photocorrosion of ZnO during photoelectrochemical
procedures [77].

Because of the recent progress in nanoengineering, we may see that current research efforts pay
more attention to nano-based hybrids. Using nano-based OIH in biosensor development enables to
increase the biosensor stability and sensitivity, to enlarge the operating range by extension of lower
and upper detection limit, to improve their shelf and storage time. Besides, the development of
nanobiosensors provides an opportunity for the fabrication of small non-invasive sensing platforms
whose production was considered to be impossible with older technology. On the one side, there is no
doubt that nano-based OIH possess much better analytical microsystem characteristics compared to
the measurement systems based on pure bulk materials. On the other side, it requires the use of novel
methods of validation and “testing” of produced nanoanalytical measurement systems. Therefore,
special approaches or methodologies of nanoanalysis and nanometrology for nano-based OIH and
nanobiosensors should be systematized or developed.
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4. The Role of Nanoanalytics and Nanometrology in Biosensors/Nanobiosensors Development

The unique properties of OIH make this class of materials popular in various application
fields, including chemical analysis, SERS, biosensors, nanobiosensors, electrochemical sensors,
spectroscopic sensor development, ELISA, immunoassays, molecular imprinted polymers (MIPs), etc.
Meanwhile, there is still a great gap between nanohybrids development and their applications in the
laboratory and industry. The reason for this situation is the absence of standardization procedures,
poor validation, and metrology of the nano-based hybrid materials utilized for chemical analysis and
biosensors development.

“I often say that when you can measure what you are speaking about, and express it in numbers,
you know something about it; but when you cannot express it in numbers, your knowledge is of a
meagre and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science, whatever the matter may be” (Lord Kelvin, 1883) [78].
Today this concept can be summarized as follows: “To measure is equal to know.” In this regard,
metrology as a global science of measurements and nanometrology as a part of metrology related to
measurements at the nanoscale can directly affect our understanding of novel analytical systems.

Unfortunately, the analysis of the literature data for the last two decades indicates a clear lack
of metrology at the nano-scale as a scientific standardization approach, see Figure 5A,B. However,
the literature search related to the simple term “nanohybrids” revealed more than 16,600 scientific
papers (Figure 5C) published during the same time evidencing the importance and significant impact
of this research field in modern science.
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Preliminary figures for the present decades indicate the relevance of the research field. (Compiled from
the Web of Knowledge database search (www.webofknowledge.com), Nov. 2019).

Remarkably, the term nanometrology was already introduced in 2007 but the general guidelines
toward nanomaterials validation and standardization in general and organic-inorganic nanohybrids
(OInH) as a case study still do not exist. Moreover, the current challenges in nanometrology can
be summarized as follows: (i) absence of new measurement platforms, test analytical methods,
and methodologies working at the nanoscale; (ii) lack of analytical reference materials and
documentation standards; (iii) lack of metrological traceability of the measurement that reduces
confidence in the accuracy of our analyses and predictions; (iv) measurements in complex environments,
i.e., biological matrices, presence of buffers, detergents, or other compounds interfering with a measured
signal species (in case of biosensors-electrochemical species).

Obviously, the standardization of nanohybrids is necessary not only to improve our scientific
understanding of the underlying fundamental processes responsible for the generated analytical
signals, but is also closely linked to the quality control concepts of the systems to promote their
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industrial applications. Thus, the general role of nanometrology can be summarized by the following
formula [79–85]:

NM = SU + QC + Ap,

where NM—nanometrology; SU—improved scientific understanding on the object; QC—quality
control; Ap—application.

Nanometrology plays a crucial role in the production process of nanomaterials and devices with a
high degree of accuracy and reliability for different applications. Not accepting this fact can lead to
serious mistakes in evaluating results. A current challenge in nanometrology is to establish the criteria
for reliability and accuracy of nanomaterials in general and OInH as a case study followed by protocols
and approaches to measure them.

Unfortunately, nanometrology today is exclusively based on measurement of geometrical features,
viz., size, shape, and roughness of an inorganic component at the nanoscale [86–93], Figure 6. However,
to control the roughness (the disorder in the layers) or the shape at nano-scale only makes little sense
as compared to the significance of these parameters at the macro- or micro-scales.
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It should be noted that measuring at the nanoscale is a technological and scientific challenge
that makes metrology at the nanoscale special. Thus, there is a great difference in metrological
requirements toward macro-, micro-, and nano-scaled objects. Therefore, the measurement techniques
and metrological strategies developed for bulk materials cannot be simply applied for standardization
of nano-based structures. Instead, a strong adaption or optimization of the conventional methods and
development of the novel methodological approaches is highly desirable. Nanoanalytics, as a global
scientific approach, play a great role in this process [96,97].

The term nanoanalytics was initially introduced by Prof. Zolotov [98,99]. Later on, the main
concepts, elements, and peculiarities of the nanoanalytics were re-reviewed and summarized by
Prof. Shtykov et al. [100]. Recently, the role of nanoanalytics and nanoanalysis as a tool in the
development of the modern OInH was highlighted [97]. It is important to stress that two different
conceptual strategies are distinguished in nanoanalytics; the first one refers to the methods applied
for studying of elemental composition of nano-based hybrids. Another one and more seldomly used
strategy in nanoanalytics is to combine several functions in one methodology [98,99]. Thus, the tandem
of several techniques and appropriate optimized methodologies, i.e., scanning electron microscopy
(SEM) coupled with energy dispersive X-ray microanalysis (EDX), transmission electron microscopy
(TEM), atomic force microscopy (AFM), etc., can be readily applied at once for analysis of OInH to get
closer insights on the nature of the redistricted analytical signals from the targeted nano-objects [97].

Remarkably, the great challenge in nanoanalytics belongs to the nanoanalysis of the OInH with
polymeric or biological component. Thus, the techniques with nanoscale lateral resolution, such as
standard SEM or TEM techniques usually provide no chemical information [99]. At the same time,
there is no single analytical method or methodology which is able to do this. Therefore, the analyst
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working with OIH/OInH has to use and optimize a set/tandem of several techniques of molecular
analysis and then summarize their analytical merit. Thus, typically the tandem between Fourier
transform infrared spectroscopy (FTIR), RAMAN spectroscopy, surface plasmon resonance (SPR),
and mass spectrometry (MS)-based techniques can be applied [97]. However, these methods are unable
to visualize/image single biomolecules or a targeted polymer with appropriate accuracy at nano-scale
and do not allow a local activation or manipulation of such molecules directly in buffer solutions or in
real matrices.

In some cases, the above-mentioned problem can be party solved by means of an AFM-based
methodology (i.e., local activation or manipulation of biomolecules). This method can be seriously
considered as a crucial nanoanalytical tool for characterization of OInH in terms of surface homogeneity
(Figure 7) and three-dimensional visualization of polymers or biomolecules (Figure 8).
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modified with graphene oxide (GO) and the cofactors (NAD+) (b), an additional layer of the enzymes
L-lactate dehydrogenase (L-LDH, enzyme) and diaphorase (DIA) (c) and a membrane of cellulose
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from [102], Copyright American Chemical Society, 2019.

However, in some cases AFM does not allow to distinguish surface homogeneity between the
probe and the artifacts. Also, with regards to OInH analysis, AFM provides analytical information on
the organic- or bio- component intermixed with the inorganic component over the template surfaces.
For example, in biosensors fabrication it was proven that the original electrode exhibits numerous
cavities (see Figure 8) which can be readily transferred to the active end-layer of the final nanohybrid.

Another limitation of the AFM technique is that it is impossible to visualize the changes in
surface chemistry of the nano-object. Thus, the heterogeneous blend of polystyrene and low-density
polyethylene was characterized exclusively in terms of changes in their height profile, Figure 9. Instead,
the changes in chemical profile, the monitoring of the degree of surface impurities, the quantification
of the deposited rates, and the verification of possible degradation or re-arrangement of polymer over
the surface of the inorganic template would be a desirable alternative.
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properties, and synthesis reproducibility [105]. In addition, during monitoring of the deposition 
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Figure 9. AFM images of a heterogeneous blend of polystyrene and low-density polyethylene (LDPE)
in air using lateral resonance (LR) modes. Height images acquired with the LR mode (A); corresponding
phase images (B); corresponding vertical deflection (quasi-static) images (C). Height profiles along
the scan lines in image A (D). Reprinted and adapted with the permission from [103]. Copyright RSC
Pub, 2009.

Notably, quantification of deposition rates for a thin layer of modifier (polymer or biomolecule)
regardless of fabrication approaches is usually achieved by means of AT- and BT-cuts quartz crystal
microbalances (QCMs), Figure 10 [104,105]. Resonance frequency shifts represent the weight of
deposited nano-dimensional OIH structures with nanogram precision. The mass of the deposited
nano-based OIH can be estimated using the Sauerbrey equation [106]. Remarkably, the rate of deposition
is a very important criterion toward the control of the structure of the thin hybrids, their properties,
and synthesis reproducibility [105]. In addition, during monitoring of the deposition process, the true
values of the thin film thickness can be readily obtained. Moreover, QCM-based measurement systems
are well suitable for the construction of biosensors recognizing affinity interactions [107,108].
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Figure 10. The scheme of the quartz crystal microbalances (QCM) sensor (top) and resonator model
(bottom). NOTE: xq—is the quartz wafer thickness; xf—is the film thickness; pqvq and pfvf are the
acoustic impedance for the unit cross section area of the crystal and of the film, respectively. Adapted
with permission of ref. [109,110] Copyright Elsevier, 1987.
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Although QCMs were considered as very precise measurement nanoanalytical systems,
they greatly suffer from non-linearity and hysteresis. In addition, the dependence of the resonance
frequency on temperature makes QCM a technique that is strongly affected by irreproducible
environmental factors.

Summarizing, metrology at the nanoscale is addressed for (i) dimensional analysis of thin films,
and nanostructured objects, i.e., nanoparticulate surfaces [111,112] and (ii) characterization of the
homogeneity/inhomogeneity profile of bio-, organic, and inorganic components over the surface of OIH.
However, the standardization protocols and analytical strategies toward comprehensive molecular
analysis of the biological and organic component of nanohybrids are almost completely missing.
In this regards, special guidelines and evaluation standards for complete (i.e., organic/biomolecule
and inorganic component) standardization of OIH/OInH must be developed and introduced in the
near future.

To address this issue, recently, a novel nanoanalytical platform for characterization and validation
of OInH, including nanobiosensors based on the laser-desorption ionization mass spectrometry
(LDI-MS) method was proposed [97]. The workflow of the approach is summarized in Figure 11.
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It should be noted, that industrial nanometrology requires both qualitative and quantitative
measurements with a minimum number of controlled parameters. Therefore, we do believe that the
LDI-MS platform can become a crucial nanoanalytical tool in the nanometrology field. This platform
is expected to address several issues, i.e., chemical profiling, metrological traceability for chemical
composition between individual layers of the hybrid system, signal to noise ratio (S/N), chemical
inhomogeneity, and degree of surface impurities.

However, whereas the great potential of the LDI-MS platform applied for characterization and
standardization of the chemical profiles of OIH/OInH has been highlighted already, the general
guidelines associated with this approach toward biosensors/nanobiosensors validation are still under
development. Thus, the fabrication of the certified references and standards of OIH/OInH and
biosensors will be requested in the next step. Moreover, standard approaches for characterization
of chemical roughness, degree of chemical homogeneity of the OIH/OInH, as well as definition
of the screened position and calibration criteria must be addressed appropriately. Furthermore,
it will be important to address the following issues: measurement trueness, precision, accuracy,
measurement error, measurement uncertainty, traceability and find criteria for acceptable thresholds,
and imaging [112,113]. The general methodology for a metrological traceability measurement protocol
is summarized in Figure 12.
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Summarizing, it is absolutely clear that there is no single and unique analytical assay
that can be applied for complete standardization of the fabricated OIH/OInH in general and
for biosensors/nanobiosensors as a case study. Instead, the tandem of several characterization
methodologies, innovative analytical approaches, and well-established guidelines should assist the
OIH/OInH and biosensors development. Remarkably, a correctly implemented tandem of analytical
assays can be beneficial to improve our understanding on the observed physical effects, improve
synthesis reproducibility of OIH/OInH from batch-to-batch, intra- and inter-day behavior, intra- and
inter-day precision and repeatability of the obtained analytical response.

5. Using Computational Intelligence and Mathematical Simulation and Modeling in OIH

Driven by the desire of creating a robust and systematic approach and/or platform toward
control and optimization of operating conditions and chemical processes themselves, mathematical
models were successfully integrated into the chemical industry and became a crucial component
at the process development stage. The main purpose of using such models is by means of built-in
numerical relationships between system input and output parameters to provide the required and
relevant information on the dynamic evolution of the variables of interest as a function of time and
space. For bio-based processes such system state variables include the main components of biocatalytic
or fermentation reactions (e.g., analyte concentration, biomass growth, etc.) combined with specific
bioreactor performance metrics that require the introduction of physical (e.g., feed rate, temperature),
chemical (e.g., pH, dissolved oxygen), biochemical (e.g., cells composition), and micro-biological (e.g.,
contamination) parameters [114]. It is also important to mention that the current research objective is
based on promoting efficient measurement, monitoring, modeling, and control (M3C) strategies that
were set by the European Federation of Biotechnology (EFB) and the European Society of Biochemical
Engineering Science (ESBES). The progress and principles of automated measurement, monitoring,
control, and optimization, as well as modeling and quality by design (QbD) techniques, currently
applied in biotechnology were carefully reviewed in [114].

Development of models of bio-based systems or processes includes data-driven (black-box or
empirical models), mechanistic (white-box or first-principles models), and a combination (grey-box
models) of both approaches. Thus, when building up the correlations between system parameters
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(input-output relations) with minimized process knowledge, empirical models can be applied and be
rather helpful for example for screening the behavior of OIH-based biosensors with different analytes.
However, such models lack the versatility and possibility of achieving a fundamental understanding
that is hidden behind the parameter correlations because of the dependency of empirical models on
the specific dataset used at the model development stage. On the contrary, mechanistic models are
based on recreating (partly) the fundamental principles behind the behavior of the system, and can
be (re)structured according to the final purpose (e.g., process control, experimental data analysis,
etc.). Since enzymes are frequently immobilized in biosensor applications, mathematical modelling of
biocatalytic processes deserves most attention here. Therefore, depending on the aim and complexity
of the enzymatic biosensor model it can be defined as catalyst, reaction, reactor, and/or process model.
The catalyst model is a complex mathematical formulation (at molecular level) of the enzyme–substrate
interactions, as well as the enzyme sensitivity, stability, and overall performance variation at different
experimental conditions.

On the other hand, the complete system behavior including kinetics, heat, and mass transfer,
physical (i.e., enzyme adsorption) and chemical reaction mechanisms can be reproduced and analyzed
by means of the reaction, reactor, and process models [115]. Depending on the task and final purpose
of the model, the user can either decide on creating an in-house built model with the possibility
to adjust model complexity or can select models incorporated in commercially available software
(e.g., DigiSim). As a consequence, in the past years various types of mathematical approaches and
models were proposed, developed, and applied to study or reproduce the behavior of individual
biosensor designs [116], OIH material interfaces [117], biocatalytic [118,119], and electrochemical
processes [120]. Although, the in-house built models are more flexible toward introduction of various
system parameters, states, and conditions [121], as well as in terms of application scope, the main
drawback is that their development often requires the work of a multi-skilled team of experts which
is a rather resource- and time-consuming process when considering to use such models on a daily
basis [122,123]. To facilitate the set up and integration of modelling approaches and tools into OIH
and biosensors research, the creation of an online platform that contains sufficient amount of relevant
experimental data obtained for different OIH materials, biosensors designs, measurement techniques,
etc., is strongly required. Therefore, in order to guarantee that mathematical models could be robust
and accurate, standardization of novel OIH/biosensors fabrication, response characterization and
screening methods is crucial, see Figure 13. Apart from standardization of data, another element that
can significantly contribute to the more wide-spread use of mathematical models in this field is to
make mathematical models publicly available, such that knowledge incorporated in such a model can
be reused, either in an R&D or educational context.
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6. Conclusions, Outlook, and Perspectives

In this review, we have discussed the significance of OIH materials and nano-based hybrids within
the diverse fields of applications. To support the further developments in nanoscience in general
and OIH/OInH as a case study, it is highly necessary to seriously concern nanometrology issue as
the next step. Obviously, the progress in this field will push the industrial application of nano-based
hybrid materials and biosensors. Mathematical modelling can support design and development of
OIH/OInH, by offering the capability to predict and optimize the performance of a biosensor, followed
by experimental validation. In this way, scarce experimental resources can be used more efficiently by
targeting experimental work toward designs that were selected by the mathematical model as being of
particular interest.

Therefore, driven by an increasing demand in easy-to-fabricate, accurate, and rapid-to-respond
OIH-based materials and tools such as nanobiosensors, the use of mathematical modelling techniques
and tools must become a part of a basic routine from the development stage till their application
in various fields of biotechnology. Creating standardized workflows toward OIH characterization
together with relevant experimental data collection and storage in one universal platform, opens up
the possibilities toward cost- and time-effective design and system response screening. Therefore,
the application of computational intelligence would only improve and facilitate the research and
industrial integration of novel OIH materials.
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Abbreviations

AA ascorbic acid
AFM atomic force microscopy
ALD atomic layer deposition
Ap Application
BN boron nitrides
CV cyclic voltammetry
DA dopamine
EDX energy dispersive X-ray microanalysis
EIS electron impedance spectroscopy
ELISA enzyme-linked immunosorbent assay
EFB European Federation of Biotechnology
ESBES European Society of Biochemical Engineering Science
FTIR Fourier transform infrared spectroscopy
GO graphene oxide
IEP isoelectric point
LbL layer-by-layer
LDPE low-density polyethylene
LDI-MS laser-desorption ionization mass spectrometry
MIPs molecular imprinted polymers
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MS mass spectrometry
M3C measurement, monitoring, modeling and control
NRs nanorods
NPs nanoparticles
NM nanometrology
OIH organic-inorganic hybrids
OInH organic-inorganic nano-based hybrids
PLA polylactic acid
PAN polyacrylonitrile
PEDOT poly(3,4-ethylenedioxythiophene)
PAN polyacrylonitrile
PDA polydopamine
QCMs quartz crystal microbalances
QbD quality by design
QC quality control
RAMAN RAMAN spectroscopy
SPAN self-doped polyaniline
SPAN@UIO-66-NH2 metal-organic framework (SPAN@UIO-66-NH2)
SERS surface enhanced Raman spectroscopy
S/N signal to noise
SU improved scientific understanding on the object
SEM scanning electron microscopy3D-OECT—3d organic electrochemical transistor
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