
cells

Article

Systematic Assessment of Blood-Borne MicroRNAs
Highlights Molecular Profiles of Endurance Sport and
Carbohydrate Uptake

Fabian Kern 1 , Nicole Ludwig 2,3 , Christina Backes 1 , Esther Maldener 2,3 ,
Tobias Fehlmann 1 , Artur Suleymanov 1 , Eckart Meese 2,3 , Anne Hecksteden 4,
Andreas Keller 1,5,6,7,*,† and Tim Meyer 4,*,†

1 Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany;
fabian.kern@ccb.uni-saarland.de (F.K.); c.backes@mx.uni-saarland.de (C.B.);
tobias.fehlmann@ccb.uni-saarland.de (T.F.); artur.suleymanov@uni-saarland.de (A.S.)

2 Department of Human Genetics, Saarland University Hospital, 66421 Homburg, Germany;
n.ludwig@mx.uni-saarland.de (N.L.); Esther.Maldener@uks.eu (E.M.); Eckart.Meese@uks.eu (E.M.)

3 Center for Human and Molecular Biology, Saarland University Hospital, 66421 Homburg, Germany
4 Department of Sports Medicine, Saarland University, 66123 Saarbrücken, Germany;

a.hecksteden@mx.uni-saarland.de
5 Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
6 School of Medicine Office, Stanford University, Stanford, CA 94305, USA
7 Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
* Correspondence: andreas.keller@ccb.uni-saarland.de (A.K.); tim.meyer@mx.uni-saarland.de (T.M.);

Tel.: +49-(0)-681-302-68611 (A.K.)
† These authors contributed equally to this work.

Received: 1 August 2019; Accepted: 4 September 2019; Published: 6 September 2019
����������
�������

Abstract: Multiple studies endorsed the positive effect of regular exercise on mental and physical
health. However, the molecular mechanisms underlying training-induced fitness in combination
with personal life-style remain largely unexplored. Circulating biomarkers such as microRNAs
(miRNAs) offer themselves for studying systemic and cellular changes since they can be collected
from the bloodstream in a low-invasive manner. In Homo sapiens miRNAs are known to regulate a
substantial number of protein-coding genes in a post-transcriptional manner and hence are of great
interest to understand differential gene expression profiles, offering a cost-effective mechanism to
study molecular training adaption, and connecting the dots from genomics to observed phenotypes.
Here, we investigated molecular expression patterns of 2549 miRNAs in whole-blood samples from
23 healthy and untrained adult participants of a cross-over study, consisting of eight weeks of
endurance training, with several sessions per week, followed by 8 weeks of washout and another
8 weeks of running, using microarrays. Participants were randomly assigned to one of the two
study groups, one of which administered carbohydrates before each session in the first training
period, and switching the treatment group for the second training period. During running sessions
clinical parameters as heartbeat frequency were recorded. This information was extended with
four measurements of maximum oxygen uptake (VO2 max) for each participant. We observed that
multiple circulating miRNAs show expression changes after endurance training, leveraging the
capability to separate the blood samples by training status. To this end, we demonstrate that most
of the variance in miRNA expression can be explained by both common and known biological
and technical factors. Our findings highlight six distinct clusters of miRNAs, each exhibiting an
oscillating expression profile across the four study timepoints, that can effectively be utilized to
predict phenotypic VO2 max levels. In addition, we identified miR-532-5p as a candidate marker to
determine personal alterations in physical training performance on a case-by-case analysis taking
the influence of a carbohydrate-rich nutrition into account. In literature, miR-532-5p is known
as a common down-regulated miRNA in diabetes and obesity, possibly providing a molecular
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link between cellular homeostasis, personal fitness levels, and health in aging. We conclude that
circulating miRNA expression can be altered due to regular endurance training, independent of the
carbohydrate (CHO) availability in the training timeframe. Further validation studies are required
to confirm the role of exercise-affected miRNAs and the extraordinary function of miR-532-5p in
modulating the metabolic response to a high availability of glucose.

Keywords: microRNA; physical exercising; circulating biomarker; homeostasis; randomized
cross-over study; microarray; glucose nutrition; full-blood measurements; sncRNAs

1. Introduction

The positive effects of sports activity on physical and mental health as well as the cardiovascular
effects of training have been widely characterized [1–3]. In contrast, the current understanding of
how genetic information is related to sports activity and how molecular processes are affected by
exercise is still limited. Earlier studies showed that physical exercise has an impact on epigenetic
factors, which are closely related to aging, such as DNA methylation levels, or the composition
of histone modifications [4,5]. For example, Ludlow et al. demonstrated that exercising activates
certain genes responsible for repairing DNA damage, in addition to the MAPK signaling pathway
that ultimately contributes to telomere stability [6]. Also, expression levels of non-coding RNA
transcripts in particular microRNAs (miRNAs) were found to be associated with exercising [7,8].
MiRNAs, typically 22 nucleotides in length, are loaded into proteins of the AGO family and orchestrate
post-transcriptional gene regulation by targeting partially complementary sites in 3′ untranslated
regions (UTRs) of messenger-RNAs (mRNAs) [9]. Circulating miRNAs, i.e., molecules carried by
the bloodstream, constitute low-invasive biomarkers that can be extracted from whole-blood, serum,
or plasma samples [10]. Previous work successfully utilized blood-borne miRNA profiles to identify
adaptive molecular mechanisms as triggered by physical activities [11,12]. Adding yet another level
of complexity, nutrition composition and personal dietary habits are known to influence systemic
blood-glucose levels and training performance [13]. High blood-glucose availability specifically affects
the drop in cellular ATP availability under physical stress conditions, which in turn determines the
timing of AMP-activated protein kinase (AMPK) activation [14]. To this end, AMPK is of particular
interest because it is thought not only to protect the cell from ATP shortage but also to function
as the initial starting point in a signal cascade that governs the physiological adaption to regular
physical exercising [15,16]. This motivates the question whether miRNA signatures being indicative of
fitness levels after repeated endurance exercise, commonly measured via increasing values of maximal
oxygen consumption VO2 max, exist and whether this is related to a varying abundance of glucose in
blood [12].

Here, we analyzed 90 blood samples using microarrays to determine miRNA expression patterns
from a randomized cross-over study to investigate the molecular relation between endurance
sports and changes in VO2 max [17]. Since the repeated improvements of VO2 max across the
study participants in the initial study were reported to be significant, we sought after possible
relations between physiological training adjustment and circulating miRNA expression levels.
Moreover, the influence of variations in carbohydrate-based nutrition on VO2 max levels was examined
by searching for miRNAs that can differentiate between participants that show a positive training
effect in combination with glucose uptake before each session and those that should refrain from
any administration.
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2. Results

2.1. Outline

Our findings are based on a randomized cross-over study that consists of 23 participants, randomly
split into two groups [17]. All participants were both healthy and untrained as indicated by a medical
check including history taking, physical examination, resting, and exercise electrocardiography (ECG).
The cohorts are N1 = 13, N2 = 10 consisting of fN1 = 6, mN1 = 7, and fN2 = 4 females, mN2 = 6 males,
respectively. During study conduction participants were between 30 and 62 years old. Throughout the
course of the study each participant completed eight continuous weeks with 4× 45 min endurance
training sessions per week, followed by a wash-out phase, and finally another eight weeks of training
analogous to the first interval. Directly before and after each training interval, a blood-sample was
taken from each participant, resulting in four timepoint measurements E1, A1, E2, and A2. In addition,
during the first training interval participants that were assigned to the second group consumed 50 g
glucose monohydrate dissolved in water, 15 min before each training session. Likewise, participants
from the first group applied a carbohydrate solution before sessions of the second training phase
(Figure 1, Supplementary Table S1). Furthermore, several anthropometric and fitness parameters such
as the ventilatory threshold (VT1), maximum oxygen uptake (VO2 max), weight and body mass index
(BMI), body fat levels, and maximal heart rate frequency were recorded (Supplementary Table S2) as
well as a complete blood count (CBC) for each sample. While the significant improvements in VT and
VO2 max after each training interval and in both study groups were reported earlier, we investigated
changes among the other parameters as well [17]. Statistical tests revealed that the overall observed
decrease in BMI and weight was not significant in any of the test arrangements, i.e., difference by
study timepoint with and without treatment grouping. For body fat only the paired change in the
non-CHO group for the first training interval was slightly significant (p ≈ 0.044, paired Student’s
t-test). Also, maximal heart frequencies declined during both training intervals, which was significant
for the second period only (p ≈ 0.046, Welch two-sample t-test). Blood-glucose levels were higher than
baseline after each eight week training period and slightly raised for samples from the CHO treatment
group as compared to non-CHO group, which did not yield statistical significance. Although red
blood cell counts were observed to be reduced in both treatment groups following the exercising
intervals, it only remained significant for the CHO treatment group (CHO: p ≈ 0.017, Non-CHO:
p ≈ 0.151, Paired student’s t-test). All aggregated anthropometric and fitness parameters including
test results are available from Supplementary Table S3. After preparation full-blood samples were
hybridized using microarrays to measure the expression of 2549 human miRNAs from miRBase
release v21 [18]. Overall, 90 of 92 samples could be measured successfully. Further, 307 miRNAs
remained after removing those exhibiting either a low detection rate or a low-expression distribution
across the samples. More details are provided in the methods section. While the average sample
Spearman correlation for each sample is at or above 85%, an outlier sample could be identified that
was subsequently excluded, leaving 89 samples for in-depth analysis (Supplementary Figure S1, top
row and leftmost column). Also, no evident technical and biological batch effects could be found
that pre-dominantly influenced the miRNA-sample matrix clustering (Supplementary Figure S2).
However, there is a trend in both matrix clustering approaches for the samples to be grouped by the
timepoint of blood extraction, notably not by each single timepoint individually but in a pairwise
manner of pre-training (E1, E2) and post-training (A1, A2) timepoints, as indicated by the dichotomous
variable Training state.
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Figure 1. Overview on study design. Healthy and untrained participants were randomly assigned
to any of two training groups, each performing of eight weeks of 4× 45 min training, followed by a
wash-out phase, again followed by eight weeks of endurance training. In the first period participants of
one group orally administered glucose-solution 15 min before each running session, while participants
of the second group administered carbohydrates in their second training period (cross-over). At four
timepoints (E1, A1, E2, and A2) a blood-sample was taken and measured using complementary DNA
(cDNA) microarrays probed with 2549 human microRNAs.

2.2. Physical Exercising Affects MicroRNA Expression

To investigate whether endurance training is reflected by a molecular change of miRNA expression
we analyzed the samples using both methods for dimension reduction and classical differential
expression analysis. A two-dimensional embedding of the samples using principal component analysis
(PCA) and the results for a corresponding batch variate assessment with principal variance component
analysis (PVCA) are shown in Figure 2a,b [19,20]. In total, the first two principal components account
for approximately 43% variance in the miRNA-sample matrix. As visible in Figure 2a samples
measured before a training interval are enriched in the halfspace for which PC1 ≤ 0.02. Conversely,
post-training samples are enriched in the halfspace PC1 > 0.02. Inspection of the sub-spaces spanned
by the eigenvectors PC1 and PC2 did not yield an extreme distribution of prominent key-features
but revealed a set of 65 miRNAs with a loading coefficient larger than 0.1 (Supplementary Table S4).
Interestingly, the largest factor explaining the observed variance in miRNA expression is the interaction
between timepoint and person connoted with each sample, suggesting that miRNAs exhibit a partially
unique expression in whole-blood of healthy individuals, which is altered repeatedly by endurance
training. Further, this observation is supported by the second most informative variable corresponding
to whether a participant was untrained, i.e., the sample was taken before any training interval,
or trained, i.e., the sample was taken after the eight-week training intervals. Technical factors seem
to play a role as well, since the 3rd and 4th largest amount of variance can be explained using the
information on which of the 17 microarray chips the sample was analyzed. Apparently, the gender
seems to play a ubiquitous role as well, as it is estimated to explain approximately 13% of variance in
total. Since it is known that endurance training influences the abundance of red blood cells (RBCs),
which make up the largest proportion of cells within full-blood samples, we assessed whether a
potential increase in RBC counts confounds the power of the variable “training state” in separating the
samples. Given that we can estimate the variation of expression that is associated with technical and
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biological variables through PVCA, the total amount of variance which can be justified with a changing
number of RBCs is close to 10% as illustrated by the different interaction variables in Figure 2b,
suggesting it is not a driving factor. Remarkably, information whether the sample was taken after
a training interval in which a participant administered carbohydrates as indicated by the surrogate
variable “CHO uptake” substantiates only a minor fraction in our analysis. To overcome the inherent
linear dependencies as uncovered through PCA, the more complex dimension reduction methods
uniform manifold approximation and projection (UMAP) and t-distributed stochastic neighbor
embedding (t-SNE) both further improved the separation of pre- and post-training samples, suggesting
that non-linear effects play a role in our data set as well [21,22]. Because a similar number of the sample
annotations disagree with the observed over-representation of “training state” in the two clusters,
we investigated whether the samples belong to a specific set of participants that show a differential
expression pattern, which turned out not to be the case. Indeed, both clusters show a significant
enrichment according to a hypergeometric test with respect to the colored “training state” variable
(P ≈ 4.3× 10−6 for Cluster 1 located top-left, P ≈ 1.4× 10−6 for Cluster 2 in bottom-right corner of
Figure 2d).

Next, we assessed to which extent miRNAs are differentially expressed taking a pooled sample
approach, once neglecting the CHO treatment groups, and once taking the different courses of
training into account. Respective volcano plots for the different comparison setups are shown
in Figure 3. After pooling samples from both groups for the first training interval (E1, A2),
11 miRNAs are significantly down-regulated after 8 weeks of endurance training with a log2 fold
change ≤ −1 and 13 miRNAs significantly increased in expression (Figure 3a; Table 1, Setup 1).
Consulting the miRNA PCA-loadings for the two sets confirms their informative importance,
each showing a larger mean of loadings than compared to the overall set of features
(meandown ≈ 0.099, meanup ≈ 0.099, and meanall ≈ 0.076). MiRNA enrichment analysis on the
set of down-regulated genes was accomplished with an online tool that computes which biochemical
functional categories are significantly enriched in miRNA gene sets or lists (miEAA). The miEAA
analysis revealed among others the protein-coding target gene APLN (p ≈ 0.048, FDR < 0.05)
known to be associated with cardiovascular homeostasis and glucose metabolism [23,24]. For the
group specific comparison, we found that 22 miRNAs are up-regulated and 10 are down-regulated
in samples of participants that orally administered a glucose solution before each training session
(Figure 3c; Table 1, Setup 2). In contrast, considering expression levels from participants that did
not ingest a glucose solution 9 miRNAs are up-regulated while 10 show decreased expression
(Figure 3e; Table 1, Setup 3). Despite the fact that not a single miRNA exhibits a contrary expression
pattern between the two groups, which is either up-regulated in one group and down-regulated in
the other, or the other way around, the observed set difference in de-regulated miRNAs remains
significant (p ≈ 4.8× 10−24, fisher’s exact test). Surprisingly, miR-144-3p is the only feature that is
down-regulated using pooled samples of the second training interval (Figure 3b), denoting that no
significant alterations for the CHO-treatment and group specific comparisons can be reported.

Taking into account our findings about the differential expression of miRNAs we investigated
if certain groups of miRNAs exist that exhibit similar expression patterns and whose expression
is consistently changed after training. Using the full z-score scaled miRNA-sample expression
matrix six miRNA expression clusters (NC1 = 51, NC2 = 35, NC3 = 67, NC4 = 64, NC5 = 70,
NC6 = 20) were highlighted (Figure 4). The computed disjoint miRNA to cluster assignments are
listed in Supplementary Table S5. Broadly speaking, the clusters can be separated into two larger
expression classes, each showing a wave-like expression pattern with either a positive z-score peak first
(C1, C3, and C5) or a negative z-score peak first (C2, C4, and C6). Notably, the direction of expression
change is mostly maintained within in each cluster across the two training intervals, where the first
peak, which corresponds to the first round of exercising, in general appears to be more prominent
than the second, also reflected by the volcano plots in Figure 3. Nevertheless, differences between
the clusters can also be observed, since C1, C3, and C6 are much more attenuated than the remaining
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ones. These findings not only provide an explanation for the good separability of the samples with
respect to trained and untrained participants, but propose that physical exercising may have diverse
consequences on the molecular level and that a subset of the human miRNome is consistently affected
by physical exercising.
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Figure 2. Analysis of variance and factors explaining it using measured miRNA expression data.
(a) Sample distribution within the first two principal components obtained from principal component
analysis (PCA) along with the percentage of variance explained in each dimension; (b) Results from
principal variance component analysis (PVCA) showing estimates of variance in the expression data
that can be explained with both known and unknown (hidden) sample annotation factors. Each bar
corresponds to one factor, where mixed interactions between two variables are also possible and
marked respectively by a colon; (c) two-dimensional uniform manifold approximation and projection
(UMAP) embedding using the miRNA-sample matrix X ∈ R90×307; (d) two-dimensional t-distributed
stochastic neighbor embedding (t-SNE) embedding using the miRNA-sample matrix X. In each
dimension reduction panel a single point corresponds to one sample that is colored according to the
timepoint of blood extraction and relative to the training period, i.e., before (blue) or after (red) one of
the training intervals.
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Figure 3. Volcano plots for six comparison setups using 307 microRNAs. The x-axis indicates log2

fold change, while the y-axis refers to the negative decade logarithm of p-values from student’s
t-tests (unadjusted). Dashed horizontal lines indicate a p-value of 0.05, while dashed vertical lines
indicate a log2 fold change of 2. (a) Pooling the samples from the two participant groups and using
timepoints of the first training interval (E1 and A1); (b) pooled sample approach analogous to (a) but
with timepoints from the second training period (E2 and A2); (c) analysis for timepoints like in (a) only
using samples from the first treatment group; (d) analysis for timepoints like in (b) only using samples
from the first treatment group; (e) analysis for timepoints like in (a) only using samples from the second
treatment group; (f) Analysis for timepoints like in (b) only using samples from the second treatment
group. MiRNAs that exceed both axis thresholds (dashed lines) are colored according to their direction
of dys-regulation, i.e., red for up-regulation and green for down-regulation after training. For each row
of panels, significantly de-regulated miRNAs on the left side (panels (a,c,e) are labelled and displayed
on the corresponding right side (panels b,d,f).
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Figure 4. Distribution of Z-scores into six miRNA clusters C1–C6 corresponding to panel (a–f), along the
four study timepoints using all samples. Each single grey line corresponds to one miRNA expression
profile for one participant. Thick black lines display cluster-specific and smoothed curves of a cubic
b-spline basis (b = 3). The distinct clusters contain microRNAs that exhibit similar expression patterns
over time. Although every cluster exhibits a wave-like expression pattern, miRNAs in C1, C3, C5 show
a tendency to be up-regulated after training (up, down, up) while those in C2, C4, and C6 tend to be
down-regulated after a period of endurance exercise (down, up, down).

Table 1. Significantly de-regulated miRNAs that exhibit an absolute log2 fold change ≥ 1 and a p-value
less than 0.05. Results for the three setups correspond to the volcano plots shown in Figure 3a,c,e.

Direction Setup 1 Setup 2 Setup 3

Up-regulated
let-7a-5p let-7a-5p let-7f-5p
let-7f-5p let-7f-5p let-7g-5p
let-7g-5p let-7g-5p miR-17-3p

miR-17-3p miR-15a-5p miR-26b-5p
miR-20a-5p miR-16-5p miR-98-5p
miR-20b-5p miR-17-3p miR-144-3p
miR-26b-5p miR-17-5p miR-144-5p
miR-98-5p miR-18a-5p miR-199a-3p
miR-126-3p miR-18b-5p miR-1246
miR-144-3p miR-20a-5p
miR-144-5p miR-20b-5p
miR-195-5p miR-26b-5p

miR-199a-3p miR-93-5p
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Table 1. Cont.

miR-98-5p
miR-126-3p
miR-144-3p
miR-195-5p

miR-199a-3p
miR-374a-5p
miR-374b-5p
miR-454-3p

miR-7107-5p
Down-regulated

miR-30b-5p miR-16-2-3p miR-30b-5p
miR-30c-5p miR-30a-5p miR-30c-5p

miR-199a-5p miR-30b-5p miR-192-5p
miR-223-3p miR-30c-5p miR-199a-5p

miR-326 miR-30d-5p miR-223-3p
miR-331-3p miR-326 miR-340-3p
miR-340-3p miR-331-3p miR-378a-5p

miR-378a-5p miR-378a-5p miR-484
miR-484 miR-484 miR-550a-3p

miR-550a-3p miR-550a-3p miR-7977
miR-7977

2.3. MiRNA Expression Levels Correlate with Change in VO2 Max

Because our results indicate that miRNAs can be affected by endurance training, we put the
analysis a step further and hypothesized that expression levels correlate with phenotypic changes
in training performance observed through VO2 max. It is widely accepted that an improvement in
VO2 max levels after endurance training denotes an improvement in the personal functional capacity.
To this end, we computed the Spearman correlation between measurements VO2 max and miRNA
expression values for each participant (Supplementary Figure S3). In the resulting correlation matrix
three clusters of participants can be recognized, each showing an enrichment towards the group the
participant were assigned to, i.e., CHO first and non-CHO second versus non-CHO first and CHO
second training interval. Interestingly, several miRNAs show an opposing correlation towards VO2

max in-between the participant clusters, whereas some do not to show any robust correlation pattern.
To pinpoint potential candidate miRNAs that exhibit a good correlation with the observed

phenotype we performed linear regression using the miRNA expression values as features and the VO2

max values as dependent variable. Overall the model reached an estimated R2 ≈ 0.41, suggesting that
miRNAs partially explain the variance in VO2 max, yet questioning the existence of other factors
that remain to be explored. In Figure 5 the distribution of the top 20 positive and top 20 negative
feature coefficients from the best model selected with repeated cross-validation is shown. A link back
to the expression groups reveals a dissimilar distribution of cluster identities between miRNAs with
a different sign of coefficient. While positive coefficients are distributed among all clusters, cluster
1, 2, and 6 are mostly depleted in the top list of negative feature coefficients. This result affirms a
putative correlation between exercise-induced, oscillating miRNA expression profiles and altered
levels in VO2 max. In total 86 out of 307 miRNAs received a linear coefficient unequal from zero. Also,
we report the absolute feature importance of each variable with a non-zero coefficient using the trained
model (Supplementary Table S6). To check whether the miRNAs selected by our model are known to
be associated with important molecular functions, we used miEAA to perform over-representation
analysis. Among the pathways, organs, and biological functions enriched for the list of miRNAs
having a non-zero feature importance we identified besides others; Upregulated in male (P ≈ 3.7× 10−4,
FDR < 0.05), AMPK signaling (P ≈ 2.6× 10−3, FDR < 0.05, Wikipathways: WP1403), and Insulin
signaling pathway (P ≈ 1.4× 10−4, FDR < 0.05, KEGG: hsa04910).



Cells 2019, 8, 1045 10 of 18

−1.0

−0.5

0.0

0.5

1.0

m
iR

−4
46

5

m
iR

−3
13

5b

m
iR

−7
97

5

m
iR

−3
62

−5
p

let
−7

d−
5p

m
iR

−5
02

−5
p

m
iR

−5
58

1−
5p

m
iR

−1
83

−5
p

m
iR

−6
87

9−
5p

m
iR

−4
54

−5
p

m
iR

−2
8−

5p

m
iR

−4
45

9

m
iR

−6
86

9−
5p

m
iR

−5
02

−3
p

m
iR

−6
82

1−
5p

m
iR

−5
05

−3
p

m
iR

−1
20

7−
5p

m
iR

−2
7a

−3
p

let
−7

g−
5p

m
iR

−1
44

−5
p

m
iR

−6
16

5

m
iR

−1
81

a−
5p

m
iR

−6
81

9−
3p

m
iR

−2
21

−3
p

m
iR

−1
46

b−
5p

m
iR

−4
24

−5
p

m
iR

−1
26

−5
p

m
iR

−2
22

−3
p

m
iR

−3
38

−3
p

m
iR

−1
27

3g
−3

p

m
iR

−4
32

3

m
iR

−4
86

−5
p

let
−7

b−
5p

m
iR

−6
42

a−
3p

m
iR

−2
6a

−5
p

m
iR

−1
20

2

m
iR

−3
40

−5
p

m
iR

−3
65

a−
3p

m
iR

−5
00

6−
5p

m
iR

−4
09

−3
p

MicroRNA feature

C
oe

ffi
ci

en
t v

al
ue

Expression
cluster

1

2

3

4

5

6

Figure 5. Top 20 positive and negative miRNA regression coefficients. Feature coefficients stem from
the best linear model with respect to R2 predicting the measured VO2 max values. In total 86 out of
307 miRNAs were assigned a coefficient unequal from zero. Each miRNA bar is colored according
to its cluster identity (C1–C6) from Figure 4, highlighting a differential distribution of these clusters
among the most important regression coefficients.

2.4. Candidate Marker MiR-532-5p Indicates Change in VO2 Max after Carbohydrate Uptake

Previous studies about the adaptive effects of a carbohydrate-rich nutrition exerted before
training yielded conflicting conclusions, making it still unclear which impact a glucose-rich nutrition
has on cardio–respiratory fitness [25–27]. In particular an impairment of cellular homeostasis
conferred by AMPK under the variable influence of blood-glucose levels is known to control the
training adaption process. Because healthy blood-glucose levels, the initial insulin response, and the
upfollowing cellular insulin sensitivity can vary between individuals and with age, the conflicting
results suggest the impact of carbohydrates is difficult to generalize. Therefore, we state the alternative
hypothesis that this effect is highly individual, depending on many intra-personal factors such as
sleep habits, age, gender, and genetic factors [28]. Hence, we asked whether the observed correlations
between miRNA and VO2 max levels can be leveraged to separate the cohort in two recommendation
groups, one that either showed a greater change in VO2 max in positive direction, i.e., greater
improvement, or a smaller change in negative direction, i.e., less worsening under CHO treatment
and the second group defined as the complement of group 1, namely participants for which the
conditions apply under non-treatment periods. The grouping process is summarized and displayed
in Figure 6a. Using the above outlined decision process we could separate the participants into
two almost balanced groups (CHO recommended: N1 = 10, CHO not recommended: N1 = 9).
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Consequently, we assessed the miRNA expression levels for each timepoint, additionally taking
into account the two recommendation groups. Manual inspection of 307 distributions highlighted a
differential expression pattern of miR-532-5p, shown in Figure 6b and Table 2. In general, miR-532-5p
is clearly expressed above background and potentially is affected by endurance training since both
mean expression and standard deviation are higher for samples measured after any of the two training
periods, independent of the recommendation assignments (Table 2, µ and σ increase row-wise and
per-group from left to right). First, the difference in pre-training samples for which no carbohydrates
were administered was not significant between the two groups (P ≈ 0.15, Welch two sample t-test
for T1 dark red vs. T1 dark blue, Figure 6b, left, Table 2; first row and first column), while the
post-training difference turns out to be significant (P ≈ 0.024, Welch two sample t-test for T2 light
red vs. T2 light blue, Figure 6b, left; Table 2, first row and second column). Surprisingly, when
repeating the analysis for the same recommendation groups but taking only the CHO treatment
intervals into account, the differences vanish. Not only the pre-training difference remains to be
insignificant (P ≈ 0.51, Welch two sample t-test for T1 dark red vs. T1 dark blue, Figure 6b, right;
Table 2, second row and first column) but also the post-training difference gets insignificant (P ≈ 0.99,
Welch two sample t-test for T2 light red vs. T2 light blue, Figure 6b, right; Table 2, second row and
second column). Considering the four p-values, miR-532-5p has significantly higher expression levels
in individuals from recommendation group 1 than group 2, when measured without any treatment
and no significant difference with treatment. Following candidate selection, we investigated how
miR-532-5p is expressed in-between the recommendation groups closely in relation to observed
levels of VO2 max. To this end, we propose to assess the potential of miR-532-5p as a molecular
marker in order to judge a possible effect of CHO uptake and a subsequent response in training
performance by only considering the non-treatment period for each participant. We observed not
only that the Spearman correlation between log2 fold change of miR-532-5p and change in VO2 max
turns sign (ρ ≈ −0.4 pos. recommendation, ρ ≈ 0.26 neg. recommendation) but miR-532-5p being
even more up-regulated in the positive recommendation group (Figure 6b, left). Also, according to
our group assignment strategy the mean change in VO2 max is lower as compared to the negative
recommendation group. Conversely, for samples from the individual treatment periods, the Spearman
correlation for the first group switches accordingly, while for the second it approximately remains
the same. Hence, our results suggest that exercised-induced up-regulation of miR-532-5p is associated
with observed levels of VO2 max and that it has potential discriminatory power in separating
individuals who might administer carbohydrates before training from those that should refrain
from a carbohydrate-rich nutrition. As a result these findings denote that two blood-samples for one
training interval, precluding a treatment, and for any participant could in principle be used to judge
an expected change of VO2 max under glucose treatment by investigating the expression levels of
miR-532-5p in whole-blood.

Table 2. Mean and standard deviation of miR-532-5p expression in samples from the two glucose
recommendation groups split by the four study timepoints (E1, A1, E2, A2). Samples from a
non-treatment interval are marked with −Glucose. Conversely, + Glucose notes scores generated
from treatment samples. p-Values were obtained with Welch two sample t-tests using samples from
each recommendation group with the same pre- (Timepoint 1) or post-training (Timepoint 2) label in
either of the two treatment intervals (− Glucose, + Glucose).

Timepoint 1 (E1 ∨ E2) Timepoint 2 (A1 ∨ A2)

Group 1 (+) Group 2 (−) Group 1 (+) Group 2 (−)

− Glucose µ ≈ 6.409, σ ≈ 0.231 µ ≈ 6.221, σ ≈ 0.312 µ ≈ 6.727, σ ≈ 0.233 µ ≈ 6.356, σ ≈ 0.396
p = 0.1538 p = 0.02359 (∗)

+ Glucose µ ≈ 6.261, σ ≈ 0.392 µ ≈ 6.361, σ ≈ 0.225 µ ≈ 6.389, σ ≈ 0.531 µ ≈ 6.387, σ ≈ 0.315
p = 0.5135 p = 0.9941
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Figure 6. Assignment procedure conducted to find CHO recommendation groups and group-wise
expression of candidate marker miR-532-5p. (a) Schematic workflow of devised procedure to classify
each participant p into one of the two recommendation groups r(p) ∈ {0, 1}. The decision process
primarily depends on the personal change in VO2 max values during the first training period,
∆1 = VO2(A1) − VO2(E1) and ∆2 = VO2(A2) − VO2(E2) from the second training period. In a
second step, participants are assigned to exactly one of the two recommendation groups based on
which interval the better ∆VO2 occurred; (b) Paired barplots showing the expression of miR-532-5p
across training period timepoints, i.e., T1 ∈ {E1, E2} and T2 ∈ {E2, A2}, compared between the two
CHO treatment recommendation groups, once using training periods without and once with an oral
administration of glucose. Recommendation groups are highlighted by distinct colors where blue
corresponds to a positive and red to a negative recommendation on glucose uptake. Each black point
belongs to one sample in the distribution. Bar heights display the mean expression values and black
error bars mean ± standard deviation. Smoothed quadratic b-splines (b = 2) are drawn as black curves
with a contrast margin.

3. Discussion

The prospective role of miRNAs as circulating biomarkers in diagnostics, which can be
sampled in a low-invasive manner, has been already described by numerous publications [29–31].
However, technical factors such as sampling protocols, sample preparation, RNA detection technology,
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and statistical data analysis need to be fixed in order to account for potential bias and to make
studies comparable among each other [32,33]. Here, we analyzed four timepoint measurements
of 23 participants from a random cross-over study to investigate the effect of endurance-training
on blood miRNA expression in combination with a variation of the glucose availability during
training sessions. We found both technical factors, e.g., the microarray CHIP and biological factors,
e.g., gender to determine most of the observed variance in expression. Even though one cannot rule
out all possible influences of bias, especially in small-scale studies, the stringent study design and
rigorous data analysis suggests that multiple miRNAs are differentially expressed after 8 weeks of
regular endurance training. Albeit this effect was observed clearly for the first training interval, it
remains unclear for the second. Nevertheless, a trend that spans both periods is reflected within
our dimension reduction analysis where two clearly distinguishable clusters of samples from each
endurance training period with differing CHO supply prior to each session can be recognized. To
the best of our knowledge it cannot be explained completely with any observed variable but most
appropriately by the binary training state. Interestingly, the number of miRNAs with significantly
changed expression dropped substantially after the second training period, an observation for which
we propose carry-over effects to be the most probable reason, also due to the fact that participants
were completely untrained at the beginning of the study [17]. Nevertheless, the oscillating expression
patterns of the six miRNA clusters displayed in Figure 4 are still indicative of an effect that is likely
to be induced by the exhaustive training sessions. These observations highlight the importance of
properly designed cross-over studies to prevent misleading conclusions based on non-reproducible
one-time effects. To provide a remedy, substantially longer wash-out periods, for example being twice
as long as the treatment periods, can be recommended.

Further, we observed a correlation between molecular changes in miRNA expression and
phenotypic changes in VO2 max. Even though our miRNA enrichment analysis showed significantly
associated biological categories such as the Insulin signaling pathway, the set of important miRNAs
was rather large, possibly because some features are correlated among each other, motivating the need
for further validation studies to increase specificity of the candidate set. While this result might also
suggest an improved insulin sensitivity caused by a repetitive administration of glucose, our statistical
results did not confirm any significance for either the glycemic profile or the differences in weight
across the timepoints and order-of-treatment groups. Also, we put forward that expression differences
observed between samples of different participants constitute a large proportion of variance in the
data making it difficult to generalize the interrelations due to the fact that healthy samples from the
same donor are highly concordant. This contrasts classical case vs. control setups that focus on a
specific and most often invasive condition, for example a disease phenotype, such that drastic changes
in the entire blood-borne miRNome dominate the variance in expression. Regarding miR-532-5p as a
candidate marker for training performance outcome after carbohydrate uptake, an independent study
by Cui et al. found that miR-532-5p was de-regulated in participants conducting muscular strength
endurance training, and it showed a negative correlation with the insulin-like growth factor-1 [34].
Moreover, several earlier publications investigated the prominent role of miR-532-5p in the context
of adult obesity and diabetes type 2, in particular insulin resistance [35–38]. Interestingly, most of
these studies have in common that miR-532-5p is down-regulated in patients suffering from obesity
or diabetes. Setting these reports into context, our findings imply that miR-532-5p is up-regulated in
individuals that exhibit a gain in training performance while consuming glucose before each training.
This highlights a potential role of miR-532-5p in understanding homeostasis-related cell fitness as well
as metabolic and systemic diseases, e.g., diabetes. It is important to note that the miR-532 precursor is
located on the gonosomal X chromosome. Therefore, our results might be affected by a certain degree
of gender bias due to a genetic imbalance of genomic locis. However, the gender distributions of our
recommendation groups were not particularly skewed towards either female or male participants.
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Taken together, our results imply a connection between important regulators in the non-coding
transcriptome, i.e., circulating miRNAs, molecular factors, and phenotype in healthy human
individuals, which might be characterized in a precise manner with the aid of larger validation studies.

4. Materials and Methods

4.1. Study Design

Our findings are based on a randomized cross-over study in 23 healthy, previously untrained
adults [17]. In brief, two eight-week training periods were separated by a wash-out period of equally
eight weeks. Training consisted of 4 times 45 min running/walking at 70% of heart rate reserve
per week. Compliance was supervised and documented by supervised training sessions and read-out
of heart rate monitors. Each participant received 50 g of glucose dissolved in 200 mL of water
15 min before every training session of one of the two training periods (N1: glucose during second
training period; N2: glucose during first training period; N1 = 13, N2 = 10 consisting of fN1 = 6,
mN1 = 7, and of fN2 = 4 females, mN2 = 6 males, respectively). VO2 max was determined by an
exhaustive, ramp-shaped exercise test with gas exchange measurements before and after each period.
Blood was collected before the exercise tests. The original study design, methods and protocols are in
accordance with the Declaration of Helsinki and approved by the local ethics committee (Ärztekammer
des Saarlandes, Saarbrücken, Germany; approval number: 148/10). Written informed consent was
obtained from all participants before exercise testing. This trial was registered at clinicaltrials.gov
as NCT02297646.

4.2. Blood Sampling and Rna Extraction

Whole blood was collected in PAXGene Blood RNA Tubes (BD Biosciences, San Jose, CA, USA)
from the 3–4th quarters of 2012 through the 1st quarter of 2013 and frozen at−20 °C until RNA isolation.
Total RNA including small RNAs were isolated during October and November in 2017 using PAXGene
Blood miRNA kit (Qiagen, Hilden, Germany) according to manufacturers recommendations. RNA
quantity and quality was checked with Nanodrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA)
and Bioanalyzer RNA 6000 Nano Kit (Agilent, Santa Clara, CA, USA), respectively. Isolated RNA was
kept frozen at −80 °C and thawed before array preparation in December 2018 through January 2019.

4.3. Microarray Experiments

MiRNA profile was measured with Agilent Human miRNA microarray (miRBase v21,
Santa Clara, CA, USA) according to the manufacturers protocol. In short, 100 ng total RNA was
dephosphorylated and 3’ labelled with 3-pCp. Labelled RNA was hybridized to the array for 20 h at
55 °C an 20 rpm. Slides were washed and air-dried and subsequently scanned with Agilent Microarray
Scanner (G2505C, Santa Clara, CA, USA) with 3 µm resolution in double-path mode. Signals were
extracted using Agilent Feature extraction software (v10.10.1.1).

4.4. Statistical Analysis

Raw microarray data resulting from the Agilent array-scanner was parsed into a raw expression
table and microRNA expression levels for the samples under consideration were quantile normalized
and log2 transformed. We required a microRNA to be detected in at least 50% of the samples in
order to be considered for subsequent analysis. Then, we discarded all microRNAs for which
the 3rd quartile of log2 transformed expression values was below 3.5. Using sample Spearman
correlation analysis we identified one outlier (Sample no. 26, mean(rho) ≈ 0.76) with a mean pairwise
correlation less than the set threshold of 85%, which was removed from the dataset before performing
any tests. All data analysis was performed using the statistical programming language R v3.5.3.
Expression and correlation heatmaps were created using the package pheatmap v1.10.12. All other
main and supplementary figures were generated using the packages ggplot2 v2.2.1, ggfortify v0.4.6,
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ggsci v2.9, cowplot v0.9.4, grid v3.5.3, gridExtra v2.3, and Microsoft Powerpoint v16.28. Common
data manipulations such as merging, filtering, and sorting of tables were accomplished with data.table
v1.12.2, reshape2 v1.4.3, dplyr v0.8.1, stringr v1.4.0, tidyr v0.8.3, purrr v0.3.2, and tibble v2.1.1. Principal
component analysis was taken out using the prcomp function, in addition to the Principal Variants
Component Analysis that was taken from the package pvca v1.20.0, having fixed the percentage
of variance explained threshold at 90%. The t-SNE analysis was done with Rtsne v0.15 using the
following parameters: dims: 2, initial_dims: 50, perplexity: 20, theta: 0.0, check_duplicates: TRUE, pca:
FALSE, normalize: FALSE and keeping the rest at default, while the UMAP analysis was performed
with umap v0.2.2.0 and the parameters: method: ‘naive’, n_neighbors: 20, n_components: 2, metric:
‘euclidean’, n_epochs: 500, and min_dist: 0.1, also keeping all other parameters at default. p-Values
are adjusted with FDR < 0.05 unless stated otherwise in the main text. Output of R builtin base
functions such as t.test was transformed to data.frames using the broom package v0.5.2. Machine
learning procedures were performed with caret v6.0-84. For the microRNA-VO2 max regression model
we used repeated cross-validation with 10 repeats and 6 folds each. As data model glmnet with a
tunelength of 50 was applied to find the best hyperparameters. Variable feature importance is defined
as the absolute coefficient value resulting from the trained linear regression model. To compute the
correlation between miRNA expression and VO2 max absolute measurements are used, while the
CHO recommendation group assignment is based on ∆VO2 max values between adjacent timepoints.

4.5. Data Availability and Accession Codes

Microarray data is available through NCBI’s Gene Expression Omnibus (GEO) using the Accession
ID GSE133910.

5. Conclusions

Further and independent cross-over studies are required in order to prove the role of the miRNA
profiles and the candidate marker miR-532-5p as described in this study. A more encompassing
characterization of the human blood-borne miRNome through next-generation-sequencing might
reveal novel hypotheses and genetic variants that could be related to an endurance-training driven
change in VO2 max.
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VT1 Ventilatory threshold 1
VO2 max Maximal aerobic capacity
miRNA MicroRNA
miRNome Set of expressed miRNAs in a cell-type or tissue
mRNA Messenger-RNA
UTR Untranslated region
cDNA Complementary DNA
CHO Carbohydrates
AMPK AMP-activated protein kinase
ECG Electrocardiography
CBC Complete blood count
RBC Red blood cell
BMI Body mass index
PCA Principal component analysis
PVCA Principal variance component analysis
t-SNE t-distributed stochastic neighbor embedding
UMAP Uniform manifold approximation and projection
GEO Gene expression omnibus
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