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Subspace constraints for joint measurability

Jukka Kiukas

Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3BZ, United
Kingdom

E-mail: jek20@aber.ac.uk

Abstract. The structure of quantum effects, positive operators of norm at most one, played a
central role in the work of Paul Busch on uncertainty, complementarity, and joint measurability
in quantum measurement theory. Here we focus on one aspect of this structure, called “strength
of an effect along a ray” [Lett. Math. Phys. 47 329 (1999)], presenting a few observations not
explicit in the existing literature. In fact, the strength function turns out to be useful for
characterising positivity and complementarity of quantum effects of a suitable block matrix
form, and for studying extensions of joint measurements defined on a subspace of codimension
one.

1. Introduction
Uncertainty, complementarity, and joint measurability have been central to quantum mechanics
since the beginning [1–3], and have acquired renewed interest in recent years in the context of
quantum information and correlations. In particular, the existence of incompatible observables,
i.e., those which cannot be measured using a single device, is a fundamental non-classical
feature not only interesting in its own right [4,5], but also essential for protocols such quantum
steering [6–10] and state discrimination [11,12].

While joint measurability was originally formulated as commutativity of Hermitian operators,
the concept only acquired its current richness when applied to generalised observables,
POVMs [13–15], which are necessary for practically relevant situations involving noise and open
systems. Joint measurability of a set of observables does not require their commutativity;
the general definition (e.g. [16]) is stated in terms of classical post-processing from a common
observable, which immediately relates the concept to hidden state models for bipartite quantum
states [17]. While the general definition is valid for any set of observables, it simplifies if the
number of observables is finite - in particular, two observables are jointly measurable if they are
marginals of a single common observable, see e.g. [15].

Restriction to two observables is motivated by the study of pairs of maximally incompatible,
complementary, observables, especially position and momentum, which can be approximated by
jointly measurable pairs obtained by introducing noise. In fact, this form of joint measurability
appeared most often in the work of Paul Busch; for review see [18]. Similar ideas have appeared
in the context of Mutually Unbiased Bases (MUB) which represent complementary observables
in finite-dimensional systems, see e.g. [19]. Complementarity in the sense of a pair of MUBs
formalises the idea that a state with a definite outcome for one of the observables has a completely
uniform outcome distribution for the other one. While this works well in the finite-dimensional
case, complementarity of continuous variables is more subtle. A considerable part of the work
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of Paul Busch was aimed at forming and studying an exact definition of complementarity based
on these intuitive ideas [18].

Central to Paul’s definition of complementarity was the order structure of quantum effects; as
described in [18], one aspect of this structure is the notion of “strength of an effect along a ray” in
Hilbert space [20]. The purpose of the present paper is to focus on this concept, which turns out
to have various uses in the context of complementarity and joint measurability. We first briefly
review the definition, making a connection to Schur complements of block matrices, and then
provide a characterisation of complementary effects which goes somewhat beyond the existing
literature (including the review [18]). Finally, we show how this concept naturally features in
the study of joint measurability of pairs of observables having a suitable block structure relative
to a subspace of co-dimension one.

2. Strength of an effect along a ray
Let H be a separable (possibly infinite-dimensional) Hilbert space, and B(H) the set of bounded
operators on H. For each vector ∈ H we let |ψ〉〈ψ| ∈ B(H) denote the rank-1 operator
ϕ 7→ 〈ψ|ϕ〉ψ.

An operator E ∈ B(H) is called an effect if 0 ≤ E ≤ I where I is the identity operator. We
recall that effects can be operationally associated to detection events, say, of a measurement
yielding to a specific outcome. Given a quantum state ρ (a positive operator of unit trace), the
probability of the event is given by tr[ρE]. Each projection P is an effect; in the terminology of
Paul Busch, an effect is called unsharp [21] if it is not a projection.

Each vector ψ ∈ H with ‖ψ‖ ≤ 1 determines the rank one effect |ψ〉〈ψ|. These are the
elementary units from which more complex effects are composed of, hence they are sometimes
called weak atoms [20]. Accordingly, given an effect E and a fixed vector ψ ∈ H, one may ask
whether E can be decomposed as E = λ|ψ〉〈ψ| + E′ where λ ≥ 0 and E′ ≥ 0. Operationally,
this corresponds to a fine-graining : we consider the event associated to E as being split into
two mutually exclusive events, assigned to the weak atom λ|ψ〉〈ψ|, and the remainder E′,
respectively—indeed, tr[ρ(λ|ψ〉〈ψ|)] + tr[ρE′] = tr[ρE] for any state ρ. The maximum λ for
which such a decomposition holds is called the strength of E along ψ; explicitly,

λ(E,ψ) := sup{λ ≥ 0 | λ|ψ〉〈ψ| ≤ E}. (1)

Note that λ(E,ψ) ∈ [0, ‖ψ‖−2], and λ(E,ψ) = ∞ iff ψ = 0. The optimisation problem (1) can
be solved explicitly by using the connection between effect order and range inclusion [22]. In

fact, there is a λ > 0 with λ|ψ〉〈ψ| ≤ E, if and only if ψ ∈ ranE
1
2 . Noting that the restriction of

E
1
2 to (kerE)⊥ is injective, we may define E−

1
2 as the unbounded operator on H with domain

ranE
1
2 and range (kerE)⊥. Denoting ‖E−

1
2ϕ‖ = ∞ whenever ϕ is not in the domain, the

following result was obtained in [20]:

λ(E,ψ)−1 = ‖E−
1
2ψ‖2 (2)

for any effect E and vector ∈ H. We then note that ranE
1
2 = {ψ ∈ (kerE)⊥ |∫

[0,1] x
−1〈ψ|E(dx)ψ〉 <∞}, where E is the spectral measure of E, and, furthermore,

λ(E,ψ)−1 =

∫
[0,1]

x−1〈ψ|E(dx)ψ〉, (3)

which holds for all ψ ∈ H (the left hand side being finite exactly when the right hand side is).
In particular, we obtain the following equality from functional calculus.

Lemma 1.
λ(E,ψ)−1 + λ(I− E,ψ)−1 = λ(E(I− E), ψ)−1, (4)

for each ψ ∈ H, and each effect E ∈ B(H).
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3. Positive extensions of positive subspace operators
We now consider the above Hilbert space H as a subspace of codimension one in the “minimally”
enlarged Hilbert space H̃ = C ⊕ H. As an example, one could think of H̃ as the Fock space
truncated to the first two sectors, the vacuum state |vac〉 and the single system space. We write
the associated vectors in H̃, linear functionals H̃ → C, and operators in B(H̃) in the convenient
(slightly nonstandard) matrix notation

c|vac〉 ⊕ ϕ =

(
c
|ϕ〉

)
∈ H̃, c〈vac| ⊕ 〈ϕ| =

(
c 〈ϕ|

)
: H̃ → C, Ẽ =

(
p 〈ψ′|
|ψ〉 E

)
∈ B(H̃),

where p, c ∈ C, ψ,ψ′, ϕ ∈ H, and E ∈ B(H), and the action of the operator and the functional
on a vector is computed by usual matrix multiplication rule and “bra-ket” notation. In the Fock
space picture, vectors of the above form represent coherent superpositions of a single system
and vacuum. In what follows we sometimes use P0 to denote the projection on H̃ with range H.

We then define the Schur complements associated to Ẽ by

Ẽ/p := E − p−1|ψ〉〈ψ′|, Ẽ/E := p− 〈E−
1
2ψ′|E−

1
2ψ〉,

where the first one is defined when p 6= 0, and the second one when E ≥ 0 and ψ,ψ′ ∈ ranE
1
2 .

In the case where dimH < ∞ these coincide with the usual Schur complements for block
matrices [23]. In the general case, they are closely related to the strength function λ(E,ψ),
which characterises the positivity of Ẽ as the following proposition shows.

Proposition 1. Let

Ẽ =

(
p 〈ψ|
|ψ〉 E

)
where E ≥ 0, p > 0, and ψ ∈ H. Then the following are equivalent:

(i) Ẽ ≥ 0;

(ii) Ẽ/p ≥ 0;

(iii) p λ(E,ψ) ≥ 1;

(iv) Ẽ/E is defined and Ẽ/E ≥ 0.

Proof. From equations (1) and (2), it is clear that Ẽ/p ≥ 0 iff p−1 ≤ λ(E,ψ) iff p−‖E−
1
2ψ‖2 ≥ 0

iff Ẽ/E ≥ 0. The equivalence between (i) and (ii) can be found in [24, p.27].

We note that this result is well-known in the finite-dimensional case [23]. In general, the
following corollary is immediate.

Corollary 1. In the notation of the preceding proposition, if Ẽ ≥ 0, then ‖ψ‖2 ≤ p‖E‖.

Proof.

‖ψ‖2 = ‖E
1
2E−

1
2ψ‖2 ≤ ‖E

1
2 ‖2λ(E,ψ)−1 ≤ ‖E

1
2 ‖2p = ‖E‖p .



Mathematical Foundations of Quantum Mechanics - in memoriam Paul Busch

Journal of Physics: Conference Series 1638 (2020) 012003

IOP Publishing

doi:10.1088/1742-6596/1638/1/012003

4

4. Coherent extensions of effects and connection to complementarity
Any effect E ∈ B(H) trivially defines an effect on H̃ as H is a subspace. However, if we require
that the resulting effect be used to detect (vacuum) coherence in states, that is, distinguish
coherent superposition states between the vacuum and H from classical mixtures, the extension
is not entirely straightforward. We first define, for each p > 0, ψ ∈ H, a map Ip,ψ : B(H)→ B(H̃)
via

Ip,ψ(E) =

(
p 〈ψ|
|ψ〉 E

)
.

This extension map is called coherent if ψ 6= 0, and we call ψ the associated coherence. Clearly,
a coherent extension is needed for detecting coherence in states, as tr[ρIp,0(E)] = tr[ρ′Ip,0(E)]
for the density operators of the form

ρ =

(
q 〈ξ|
|ξ〉 ρ0

)
, ρ′ =

(
q 0
0 ρ0

)
.

By Proposition 1, Ip,ψ(E) ≥ 0 if and only if pλ(E,ψ) ≥ 1. We now easily obtain the following.

Proposition 2. Let E ∈ B(H) be an effect, and ψ ∈ H \ {0}. The following are equivalent:

(i) Ip,ψ(E) is an effect for some p ∈ [0, 1];

(ii) λ(E(I− E), ψ) ≥ 1.

In this case, Ip,ψ(E) is an effect if and only if λ(E,ψ)−1 ≤ p ≤ 1− λ(I− E,ψ)−1.

Proof. Denote a := λ(E,ψ)−1 and b := 1−λ(I−E,ψ)−1, and note that a > 0 and b < 1 because
6= 0. Now, for any p ∈ [0, 1] we have I− Ip,ψ(E) = I1−p,−ψ(I− E). Hence Ip,ψ(E) is an effect

iff p ∈ (0, 1) and p−1 ≤ λ(E,ψ) and (1 − p)−1 ≤ λ(I − E,ψ). But this happens exactly when
a ≤ p ≤ b. Hence, (i) is equivalent to a ≤ b, which by Lemma 1, is equivalent to (ii). In this
case Ip,ψ(E) is an effect exactly when p ∈ [a, b].

Corollary 2. If P is a projection, it has no coherent effect extension Ip,ψ(P ). In other words,
only unsharp effects can be coherently extended into effects.

Proof. Now P (I − P ) = 0 so λ(E(I − E), ψ) ≥ 1 only when ψ = 0, and hence the claim
follows from Proposition 2. Alternatively (and more explicitly), we note that Ip,ψ(P ) ≥ 0 and
I− Ip,ψ(P ) = I1−p,−ψ(I− P ) ≥ 0 implies ψ ∈ ranP ∩ ran (I− P ) = {0}.

Complementarity of quantum effects was one of the key notions in the work of Paul
Busch. Here we only quote the basics from the review [18], before proceeding to show how
complementarity is related to the extension of subspace effects.

Two effects E,F ∈ B(H) are called complementary, if there is no nonzero effect A ∈ B(H)
such that A ≤ E and A ≤ F . The following characterisation can be found in [18] (see references
therein for the original papers).

Proposition 3. For two effects E,F ∈ B(H), the following are equivalent:

(i) E and F are complementary.

(ii) ranE
1
2 ∩ ranF

1
2 = {0};

(iii) There is no ψ ∈ H \ {0} such that |ψ〉〈ψ| ≤ E and |ψ〉〈ψ| ≤ F ;

We can now state the following result, which reveals another aspect of complementarity.

Proposition 4. For two effects E,F ∈ B(H), the following are equivalent:

(i) E and F are complementary;
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(ii) λ(E,ψ) = 0 or λ(F,ψ) = 0 for each ψ ∈ H \ {0};
(iii) The coherent extensions Ip,ψ(E) and Ip,ψ(F ) are not both positive for any choice of

∈ H \ {0}, p ∈ [0, 1].

Proof. Proposition 3 shows that (i) is equivalent to (ii), and the equivalence of (ii) and (iii) is
clear from Proposition 1.

Proposition 5. For two effects E,F ∈ B(H), the following are equivalent:

(i) The effects E(I− E) and F (I− F ) are complementary;

(ii) The coherent extensions Ip,ψ(E) and Ip′,ψ(F ) are not both effects for any choice of ∈
H \ {0}, p, p′ ∈ [0, 1].

Proof. Follows immediately from Proposition 2.

5. Coherent extensions of operations, observables, and instruments
In this section we consider constraints for extending the standard quantum objects related to
measurement processes. We also give an operational interpretation to such extensions within the
above mentioned Fock space context, which allows us to describe the idea that a measurement
may leave the system in a coherent superposition with the vacuum after the measurement.

5.1. Operations
The basic definitions can be found in [15]. An operation is a conditional transformation
between the state spaces of two quantum systems. Denoting by H and H′ the corresponding
Hilbert spaces, an operation is any completely positive normal linear map Φ : B(H) 7→ B(H′)
with Φ(I) ≤ I. Here the effect Φ(I) (called the effect of Φ) has the following operational
meaning: for any state ρ on H′, the number tr[ρΦ(I)] is the probability of the event which
triggers the transformation (typically an occurrence of a specific outcome in a measurement).
Every operation can be decomposed in terms of its Kraus operators Kk : H → H′ as
Φ(A) =

∑
kK

∗
kAKk, where the sum may be (countably) infinite, converging in the weak operator

topology. An operation Φ is called channel if Φ(I) = I. Clearly, if E is the effect of an operation
Φ, it is also the effect of Φ ◦ Λ where Λ is any channel.

An operation is called pure if it can be decomposed using only one Kraus operator K. In
this case the transformation preserves pure states, acting as ψ 7→ Kψ in the Hilbert space
level. We note that any effect E ∈ B(H) can be decomposed in various ways as E = K∗K
with K : H → H′ where H′ can be any Hilbert space of dimension at least the rank of E.
Operationally, these correspond to different pure operations whose triggering event is described
by E. The case where E = |ψ〉〈ψ| for some ψ ∈ H is special in that the final normalised state
after the operation is just the weak atom ‖ψ‖−2|ψ〉〈ψ|, i.e., all information on the initial state
has been lost in the transformation.

Consider now a fine-graining of E discussed in section 2, that is, E = |η〉〈η| + E′, where E′

is an effect. Hence we must have λ(E, η) ≥ 1, and in particular, η ∈ ranE
1
2 . Take any Kraus

operator K : H → H′ such that E = K∗K. It follows (see [18, Lemma 1]) that there is a unit
vector ϕ ∈ H′ such that

K∗ϕ =
√
λ(E, η)η.

Denoting µ = λ(E, η)−1 we define K1 :=
√
µ|ϕ〉〈ϕ| and K0 :=

√
1− µ|ϕ〉〈ϕ| + I − |ϕ〉〈ϕ|; then

K∗1K1 = µ|ϕ〉〈ϕ|, K∗0K0 = I − µ|ϕ〉〈ϕ|, so we may define a channel Λ(A) = K∗0AK0 + K∗1AK1

with two Kraus operators, corresponding to the above decomposition: E′ = K∗K∗0K0K and
|η〉〈η| = K∗K∗1K1K. Hence the effect E can be associated to a sequential detection where
exactly one of the two pure operations corresponding to K0 and K1 are performed after K,
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with respective probabilities µ and 1 − µ. In particular, the choice between the two is entirely
classical, i.e., incoherent, as described by the operation Φ(A) = K∗Λ(A)K.

The detection can be modified into a coherent one using the Fock space extension considered
above: we first look at the pure operation acting on a vector φ ∈ H in two stages as follows:

φ 7→ Kφ = 〈ϕ|Kφ〉ϕ+ (I− |ϕ〉〈ϕ|)Kφ
7→ √µ〈ϕ|Kφ〉|vac〉 ⊕ (

√
1− µ〈ϕ|Kφ〉ϕ+ (I− |ϕ〉〈ϕ|)Kφ) = 〈η|φ〉|vac〉 ⊕K0Kφ.

Here, following the application of K, the component of Kφ along ϕ transforms into a
superposition of the vacuum and ϕ (with amplitudes squaring to the probabilities µ and 1− µ
appearing above), while the rest remains unaffected. The case µ = 1, (i.e., λ(E, η) = 1)
corresponds to the situation where the entire component along ϕ gets absorbed. Assuming also
|vac〉 7→ 0, this operator reads

K̃ =

(
0 〈η|
0 K0K

)
,

and one can readily check that K̃∗K̃ = 0 ⊕ E = E, that is, K̃ defines a pure operation acting
on the extended Hilbert space but whose effect is again E. Hence, instead of the incoherent
operation Φ with two Kraus operators acting on the single system subspace, this operation
combines the two processes coherently.

The detection corresponding to the new operation can create coherence, but cannot detect
existing coherence, as its effect E is still incoherent. This is because the operation discards any
existing vacuum contribution as K̃|vac〉 = 0. In order to have a coherent effect, we only need to
replace this by K̃|vac〉 = u|vac〉 where u ∈ C is nonzero. This gives

K̃ =

(
u 〈η|
0 K0K

)
, (5)

leading to

K̃∗K̃ =

(
u 0
|η〉 K∗K∗0

)(
u 〈η|
0 K0K

)
=

(
|u|2 u〈η|
u|η〉 |η〉〈η|+ E′

)
=

(
|u|2 u〈η|
u|η〉 E

)
= I|u|2,uη(E),

and hence showing that we have indeed obtained a coherent positive extension of E. (While
positivity is clear by construction, we also see it from the constraint on the strength function,
as λ(E, η) = |u|2 λ(E, uη) ≥ 1.) However, an extra constraint now emerges, as the coherent
extension I|u|2,uη(E) is not necessarily an effect (see Proposition 2); we also need (1−|u|2)λ(I−
E, uη) ≥ 1, that is

|u|2

1− |u|2
≤ λ(I− E, η).

When this condition holds, the operator (5) describes a pure operation whose effect is I|u|2,uη(E),
a coherent effect extension of E, and the complementary effect I1−|u|2,−uη(I−E) can be associated
with a pure operation of the same kind.

In conclusion, we have shown that any coherent effect extension can be associated to a
detection event where the system, when detected, proceeds into a coherent superposition of
vacuum state and “no-absorption” relative to a single vector state. We also remark that all
coherent effect extensions Ip,ψ(E) of E can be associated in this way to coherent pure operations
of the form (5), with ψ = uη and p = |u|2.
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5.2. Observables
In the preceding section we considered coherent extensions of single effects and operations. In
general, quantum measurements are described by collections of these, so we may use the above
procedure to extend them as well. Beginning at the general level, we fix Ω be the set of outcomes
for the measurements, with A a σ-algebra of subsets of Ω.

An observable on the Hilbert space H is a normalised positive operator valued measure
(POVM), that is, a weakly (or, equivalently, strongly) σ-additive map E : A → B(H), such
that E(X) ≥ 0 for each X ∈ A, and E(Ω) = I. The set Ω represents possible outcomes of the
observable, in the sense that the event of detecting an outcome in a set X ∈ A is associated to
the effect E(X).

Similarly, we can of course define observables on the extended Hilbert space H̃. Given such
an observable Ẽ, we can clearly compress it to an observable E on the subspace H by setting
E(X) = P0Ẽ(X)P0. We call this the subspace observable of Ẽ.

Conversely, given an observable in H, it is natural to ask whether it can be extended to
an observable on the Hilbert space H̃ by applying the procedure discussed for effects above.
Clearly, we need a probability measure p : A → [0, 1], and a (norm) σ-additive vector measure
Ψ : A → H such that Ψ(Ω) = 0 and p(X)λ(E(X),Ψ(X)) ≥ 1 (see Proposition 1) for each
X ∈ A, as then

Ẽ(X) :=

(
p(X) 〈Ψ(X)|
|Ψ(X)〉 E(X)

)
defines an observable Ẽ : A → B(H̃). Note that now a single positivity constraint for each Ẽ(X)
is sufficient, as the overall normalisation condition Ψ(Ω) = 0 (together with E(Ω) = I) then
forces it to be an effect. From Corollary 1 we get a necessary condition

‖Ψ(X)‖2 ≤ ‖E(X)‖p(X) ≤ p(X),

which shows that the vector measure Ψ is p-continuous and of bounded variation. Since Hilbert
spaces have the Radon-Nikodym property, it follows [25] that Ψ has a density with respect to
p. However, E does not need to have an operator valued density relative to p, and the extension
problem appears somewhat intractable in full generality. The problem simplifies if both E and
p have a densities relative to fixed (not necessarily finite) positive scalar measure µ; suppose
therefore that p(X) =

∫
X pxdµ(x), E(X) =

∫
X Exdµ(x) (weakly), where x 7→ px is a positive

measurable function, and x 7→ Ex is a (weakly) measurable B(H)-valued function such that
Ex ≥ 0 for each x. Since Ψ has a density relative to p, it follows that Ψ(X) =

∫
X ψxdµ(x) for

some measurable H-valued function x 7→ ψx. The above extension then takes the form

Ẽ(X) :=

∫
X

(
px 〈ψx|
|ψx〉 Ex

)
dµ(x),

where the integrand is a weakly measurable B(H̃)-valued function, the integral is understood in
the weak sense, and the constraints for normalisation and positivity take the form∫

Ω
ψxdµ(x) = 0, px λ(Ex, ψx) ≥ 1 for all x ∈ Ω. (6)

One could proceed further with these constraints alone. However, we continue with quantum
instruments, which provide a more concrete view to the extension problem.

5.3. Instruments
An instrument describes the measurement process, including the state change conditional to
the outcome being observed. Mathematically, an instrument I associates to each set X ∈ A an



Mathematical Foundations of Quantum Mechanics - in memoriam Paul Busch

Journal of Physics: Conference Series 1638 (2020) 012003

IOP Publishing

doi:10.1088/1742-6596/1638/1/012003

8

operation I(X) on B(H), such that X 7→ I(X) is weakly σ-additive, and I(Ω) is a channel. This
channel is interpreted as the transformation made on the system as a result of the measurement,
without conditioning on a particular outcome. For an instrument I, the map X 7→ I(X)(I) is
an observable, interpreted as the observable measured by the instrument.

An observable of the form E(X) =
∫
X Exdµ(x) considered above naturally arises from the

Lüders instrument

I(X)(A) =

∫
X
K∗xAKx dµ(x), (7)

where x 7→ Kx is measurable, and satisfies Ex = K∗xKx for each x ∈ Ω 1. We can now apply the
construction of the preceding section pointwise for each x, so as to extend this into a Lüders
instrument on B(H̃):

Ĩ(X)(Ã) :=

∫
X

(
ux 0
|ηx〉 K∗xK

∗
0,x

)
Ã

(
ux 〈ηx|
0 K0,xKx

)
dµ(x). (8)

Here we require that x 7→ ux is measurable, with
∫
|ux|2dµ(x) = 1,

∫
uxηxdµ(x) = 0, and

λ(ηx, Ex) ≥ 1 for each x. The map K0,x is defined as in the preceding section, pointwise using Kx

and ηx, and we assume this is done in a measurable way. The interpretation is that conditional
on the outcome of the measurement being x, the system has the possibility of subsequently
absorbed against the vector state ϕx defined by K∗xϕx =

√
λ(Ex, ψx)ηx as described above.

6. Joint measurability and subspace compatibility
A pair of observables E and F on H with outcome sets Ω1 and Ω2, respectively, are said to be
jointly measurable or compatible, if there exists an observable G with outcome set Ω1×Ω2, such
that G(X × Ω2) = E(X) for all X, and G(Ω1 × Y ) = F(Y ) for all Y . The definition can be
modified to include arbitrary collections of observables, but pairs are sufficient for our purpose.
A concrete way of constructing joint measurements is through sequential combination: if I is
an instrument with observable E, and F is an observable, then (under fairly general conditions,
see [15]) the sequential measurement defines a joint observable G(X × Y ) := I(X)(F(Y )) with
G(X ×Ω2) = E(X). There other marginal G(Ω1×Y ) is by construction jointly measurable with
E. Of course, the latter does not usually equal F, due to the disturbance caused by the first
measurement.

Obviously, the same considerations apply to observables on the extended Hilbert space H̃.
Now, we introduce the following concept: two observables on the extended Hilbert space H̃
are called subspace compatible if their subspace observables (see the preceding subsection) are
compatible. The following observation is immediate:

Proposition 6. If Ẽ and F̃ are compatible observables on H̃, then they are also subspace
compatible.

Proof. If G̃ is a joint observable for Ẽ and F̃, then the compression G(·) = P0G̃(·)P0 is a joint
observable for the subspace observables X 7→ P0Ẽ(X)P0 and Y 7→ P0F̃(Y )P0.

The converse problem—whether given subspace compatible observables are also compatible—
is interesting, and clearly nontrivial in general. Here we only show how observables jointly
measurable with a given coherently extended subspace observable may arise, and then proceed
with an example in the next section.

Fix an observable E in H, and let Ẽ be one of its coherent extensions as described in the
preceding section. A very general way of constructing observables jointly measurable with Ẽ is

1 We do not consider here the conditions which ensure measurability in case Ex is given and Kx is obtained by
pointwise decomposition; in most relevant cases, Kx is given explicitly.
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by dilation (see [26]). In our case, this can be achieved by using the decomposition appearing
in (8). We define

G̃(X × Y ) =

∫
X

(
ux 0
|ηx〉 K∗xK

∗
0,x

)
H̃x(Y )

(
ux 〈ηx|
0 K0,xKx

)
dµ(x),

where H̃x(Y ) is an observable with a fixed outcome set Ω′, for each x ∈ Ω (and we again assume
that the dependence on x is sufficiently measurable). Then G̃(X × Ω′) = Ẽ(X) for each X by
construction, and hence by computing the other marginal we find an observable F̃(Y ) := G̃(Ω×Y )
jointly measurable with Ẽ. In fact, under certain conditions all observables jointly measurable
with Ẽ can be constructed in this way [26].

A particular but practically relevant special case is obtained by choosing H̃x(Y ) independent
of x, in which case G̃(X × Y ) = Ĩ(X)(F̃(Y )), that is, the joint observable can be implemented
as a sequential measurement consisting of the above absorption implementation of Ẽ, followed
by a measurement of F̃. Explicitly, let

H̃(Y ) =

(
q(Y ) 〈Φ(Y )|
|Φ(Y )〉 H(Y )

)
;

then the joint measurement is

G̃(X × Y ) =

∫
X

(
ux 0
|ηx〉 K∗xK

∗
0,x

)(
q(Y ) 〈Φ(Y )|
|Φ(Y )〉 H(Y )

)(
ux 〈ηx|
0 K0,xKx

)
dµ(x)

=

∫
X

(
ux 0
|ηx〉 K∗xK

∗
0,x

)(
ux q(Y ) q(Y )〈ηx|+ 〈Φ(Y )|K0,xKx

|uxΦ(Y )〉 |Φ(Y )〉〈ηx|+ H(Y )K0,xKx

)
dµ(x)

=

∫
X

(
|ux|2 q(Y ) 〈q(Y )ψx + uxK

∗
xK
∗
0,xΦ(Y )|

|q(Y )ψx + uxK
∗
xK
∗
0,xΦ(Y )〉 Mx(Y )

)
dµ(x)

=

(
p(X)q(Y ) 〈q(Y )Ψ(X) +K(X)Φ(Y )|

|q(Y )Ψ(X) +K(X)Φ(Y )〉 G(X × Y )

)
,

where K(X) :=
∫
X uxK

∗
xK
∗
0,xdµ(x), and the subspace observable is given by

G(X × Y ) :=

∫
X
Mx(Y )dµ(x)

with

Mx(Y ) = q(Y )|ηx〉〈ηx|+ Ix(Y ) +K∗xK
∗
0,xH(Y )K0,xKx

= q(Y )µxK
∗
x|ϕx〉〈ϕx|Kx +K∗xK

∗
0,xH(Y )K0,xKx + Ix(Y )

= K∗x
(
q(Y )µx|ϕx〉〈ϕx|+K∗0,xH(Y )K0,x + Ix(Y )

)
Kx

and Ix(Y ) = 2Re(|K∗0,xΦ(Y )〉〈√µϕx|). From this we can understand the structure of the joint
observable, the central feature of which is that the particle is only subjected to the subspace part
of the second measurement if it does not get absorbed into the vacuum by the first measurement.

First of all, the coherence q(Y )Ψ(X)+K(X)Φ(Y ) is a superposition of the coherence of Ψ(X)
the first measurement, and the coherence Φ(Y ) of the second measurement transformed by K(X)
conditional to the first measurement taking place without absorption. Note that K(X) is indeed
the coherent combination of all the conditional transformations associated to the no-absorption.

Secondly, the subspace observable G(X × Y ) has the following structure: the term
q(Y )µx|ϕx〉〈ϕx| corresponds to the event of the system being absorbed into the vacuum in
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the first measurement, with the subsequent measurement q(Y ) of the vacuum component in the
second measurement. The second term K∗0,xH(Y )K0,x corresponds to the event of no-absorption,
consisting of the associated conditional transformation K0,x followed by the subspace component
H(Y ) of the second measurement. Finally, Ix(Y ) is the interference term for the coherences
arising from the two choices, the coherence of the second measurement modified by the no-
absorption transform of the first measurement, and absorption in the first measurement. In
particular, the interference term only appears if the second measurement is coherent.

As a by-product, we now obtain a new family of observables in H jointly measurable with
the original observable E we started with. Indeed, by Proposition 6, the subspace observable
of F̃ must be jointly measurable with E since the latter is the subspace observable of the first
marginal Ẽ. Explicitly, the observable

F′(Y ) :=

∫
Ω
K∗x
(
q(Y )µx|ϕx〉〈ϕx|+K∗0,xH(Y )K0,x + Ix(Y )

)
Kxdµ(x)

is jointly measurable with E, and the joint measurement is the G constructed above. This
describes the adjustment in the usual sequential Lüders measurement due to the absorption
process as just described.

7. Example: unsharp position and momentum
In this final section we illustrate the use of the above absorption-supplemented measurement
model, in the case of a standard model position measurement followed by the sharp momentum
measurement.

7.1. Supplementing the standard model of position measurement with rank one absorption
Let H = L2(R), and Q the usual position operator, with spectral measure EQ. Since Q is
projection valued, it cannot be extended coherently into H̃ (see Corollary 2), that is, the only
way possible extensions are of the form

ẼQ(X) =

(
p(X) 0

0 EQ(X)

)
,

where p is some probability measure. However, realistic position measurements are unsharp,
i.e., not projection valued, which makes it possible to extend them using the above procedure.

Fix a function f ∈ L2(R), and assume that f is (essentially) bounded. We consider a
position measurement of the form (7) where µ is the Lebesgue measure on the real line Ω = R,
and Kx = f(Q − x) is the operator of multiplication by the bounded function y 7→ f(y − x),
that is,

I(X)(A) =

∫
X
f(Q− x)∗Af(Q− x)dx. (9)

Such an instrument is obtained, for instance, from the standard model of position measurement
(again we refer to [15] and the references therein). This measurement approximately localizes
the particle in the sense that the post-measurement state conditional on the outcome x has
the wave function proportional to y 7→ f(y − x)ψ(y) (which is in L2(R) for almost all x). In
particular, if f peaks at zero, the conditional state after the measurement yielding value x is
concentrated around x in the position space, indicating that the outcome is likely to occur there.
The measured observable

E(X) =

∫
X
f(Q− x)∗f(Q− x)dx (10)

is called an unsharp position observable.
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We can now supplement this measurement with rank one absorption. We only consider the
simple case in which the normalisation is ensured by taking the coherence of the approximating
position observable to be proportional to a single state χ. This requires the condition
χ ∈ ran

√
K∗xKx for all x ∈ R, which reads as

λ(Ex, χ)−1 = ‖E−
1
2

x χ‖2 =

∫ ∞
−∞

|χ(y)|2

|f(y − x)|2
dy <∞.

In order to illustrate this, we consider the Gaussian case, with χ(x) =
(
a
π

) 1
4 e−ax

2/2, and

f(x) =
(
λ
π

) 1
4 e−λx

2/2, where a > 0 and λ > 0 can be adjusted to change the spreads of χ
and the localization operators. We recall that in the standard model of position measurement,
λ can be associated to the scaling of the pointer function of the measurement device [15]. In our
case the supports are full, and the possibility of absorption is determined by the relative spread

λ(Ex, χ)−1 =

√
a

λ

∫ ∞
−∞

e−ay
2+λ(y−x)2dy = eλx

2

√
a

λ

∫ ∞
−∞

e−(a−λ)y2−2λxydy =

√
πr

λ
erx

2
,

where r := λa(a − λ)−1. Clearly, λ(Ex, χ)−1 < ∞ exactly when a > λ. Hence, the spread of
χ must be strictly smaller than the spread of the localisation function f of the measurement,
to ensure that χ is in the range of each f(Q − x). Next, we need to modulate χ with an x-
dependent factor to fulfil the condition for positivity: we define ηx = g(x)χ, and choose the
coherence function g(x) so that λ(Ex, ηx) ≥ 1, that is, |g(x)|2 ≤ λ(Ex, χ), which reads

|g(x)|2 ≤ λ√
πr
e−rx

2
, for all x ∈ R.

In order to achieve maximal coherence (and also to simplify the result), we choose g(x) =

λ
1
2 (πr)−

1
4 e−

1
2
rx2 , so that λ(Ex, ηx) ≥ 1 for each x. Finally, we need to ensure normalisation,

choosing ux so that
∫
ψxdx = 0; this condition now reads

∫
uxg(x)dx = 0. Since g is even,

any odd function x 7→ ux with
∫
|ux|2dx = 1 works here. Perhaps the simplest choice which

combines easily with g is ux = (π/r)−
1
4 e−rx

2/2sign(x), leading to

ψx = uxηx =
√
λ/πe−rx

2
sign(x)χ.

Note that due to maximal coherence, K0,x = I− |ϕx〉〈ϕx| is a projection. We can now find the
absorption “sink” unit vector ϕx given by the condition K∗xϕx = ηx; explicitly,

ϕx(y) = (aλ/(rπ))
1
4 e−

1
2
λa
r (y+ r

a
x)

2

= ϕ0

(
y +

r

a
x
)
,

that is, ϕx = Uxϕ0 where Ux is the scaled translation semigroup. Hence, the sink associated to
outcome x is obtained from the sink at x = 0 by translation. Next, we define Bx := U∗xf(Q−x),
which is a combination of localisation around x and translation by x. This allows us to write

g(x)χ = ηx = B∗xϕ0, for all x. (11)

Note also that B∗xBx = f(Q − x)2. Next, letting R := I − |ϕ0〉〈ϕ0| we have K0,xKx = UxRBx,
and we can write the instrument as

Ĩ(X)(Ã) =

∫
X

(
ux 0

|g(x)χ〉 B∗xRU
∗
x

)
Ã

(
ux 〈g(x)χ|
0 UxRBx

)
dx, (12)
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and the associated coherent extension of the position observable (10) is given explicitly by

Ẽ(X) =

∫
X

(
|ux|2 uxg(x)〈χ|

uxg(x)|χ〉 f(Q− x)2

)
dx =

(
λ

π

) 1
2
∫
X

(
(r/λ)

1
2 sign(x)〈χ|

sign(x)|χ〉 e−λ(Q−x)2erx
2

)
e−rx

2
dx.

(13)
One can easily check directly that this is indeed an observable whose compression to H (i.e., the
lower right block of the matrix) is (10).

7.2. Approximate joint measurements of extended position and momentum
A straightforward way of implementing approximate joint measurements of position and
momentum is their sequential combination. In particular, measuring first an unsharp position
using the instrument (9), and then subsequently a sharp momentum observable EP (Y ), yields
the joint observable

G(X × Y ) =

∫
X
f(Q− x)EP (Y )f(Q− x)dx

whose marginal observables (10) and

F(Y ) :=

∫
f(Q− x)EP (Y )f(Q− x)dx (14)

are unsharp versions of position and momentum [15]. From the point of view of the extended
Hilbert space, any extensions of these observables are therefore (by definition) subspace
compatible. We now proceed to find a “distorted” momentum observable, whose incoherent
extension is not only subspace compatible with (10), but also compatible with the above
constructed coherent extension (13).

A natural way to do this is to apply the above instrument to an extension of the sharp
momentum observable EP . Due to being sharp, the latter can only be extended incoherently,
and if we wish to keep the extension sharp, there is only one option:

ẼP (Y ) =

(
1 0
0 EP (Y )

)
.

Now, measuring first Ẽ using the above constructed instrument (12), and then measuring the
sharp observable ẼP gives the joint observable G̃(X × Y ) = Ĩ(X)(ẼP (Y )), whose first marginal
is Ẽ. It is interesting to find the second marginal F̃, which is then by construction jointly
measurable with Ẽ. First, we compute the joint observable

G̃(X × Y ) :=

∫
X

(
ux 0

|g(x)χ〉 B∗xRU
∗
x

)(
1 0
0 EP (Y )

)(
ux 〈g(x)χ|
0 UxRBx

)
dx

=

∫
X

(
ux 0

|g(x)χ〉 B∗xRU
∗
x

)(
ux 〈g(x)χ|
0 EP (Y )UxRBx

)
dx

=

∫
X

(
u2
x 〈uxg(x)χ|

|uxg(x)χ〉 g(x)2|χ〉〈χ|+B∗xRU
∗
xE

P (Y )UxRBx

)
dx

=

(
λ

π

) 1
2
∫
X

(
(r/λ)

1
2 sign(x)〈χ|

sign(x)|χ〉 Mx(Y )

)
e−rx

2
dx,

where

Mx(Y ) =

√
λ

r
|χ〉〈χ|+ erx

2

√
π

λ
B∗xRE

P (Y )RBx,
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and we have used the fact that Ux commutes with EP (Y ). In particular, the joint observable is
coherent, with the same coherences as Ẽ, and its subspace observable is

G(X × Y ) :=

(
λ

π

) 1
2
∫
X
Mx(Y )e−rx

2
dx =

∫
X
B∗x(|ϕ0〉〈ϕ0|+REP (Y )R)Bxdx.

Now G(X × R) = E(X), the standard position observable, but the other marginal is different
from (14), and given instead by

F′(Y ) =

∫
R
B∗x
(
|ϕ0〉〈ϕ0|+REP (Y )R

)
Bxdx.

We now observe how the structure of the joint observable reflects the detection scheme—the
momentum measurement is in fact performed only conditional on the no-absorption event
(represented by the projection R), in accordance with the obvious intuition: if the particle
gets absorbed during the position measurement, it cannot experience the following momentum
measurement. Finally, we note that the marginal of the extended joint observable is

F̃(Y ) := G̃(R× Y ) =

(
1 0
0 F′(Y )

)
,

that is, the momentum observable is distorted, but remains incoherent.
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[26] Haapasalo E and Pellonpää J-P 2017 J. Math. Phys. 58 122104




