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Abstract

Apart from the need for superior accuracy, healthcare applications of intelligent

systems also demand the deployment of interpretable machine learning models

which allow clinicians to interrogate and validate extracted medical knowledge.

Fuzzy rule-based models are generally considered interpretable that are able to

reflect the associations between medical conditions and associated symptoms,

through the use of linguistic if-then statements. Systems built on top of fuzzy

sets are of particular appealing to medical applications since they enable the

tolerance of vague and imprecise concepts that are often embedded in medical

entities such as symptom description and test results. They facilitate an ap-

proximate reasoning framework which mimics human reasoning and supports

the linguistic delivery of medical expertise often expressed in statements such

as ‘weight low’ or ‘glucose level high’ while describing symptoms. This paper

proposes an approach by performing data-driven learning of accurate and in-

terpretable fuzzy rule bases for clinical decision support. The approach starts

with the generation of a crisp rule base through a decision tree learning mech-

anism, capable of capturing simple rule structures. The crisp rule base is then
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transformed into a fuzzy rule base, which forms the input to the framework of

adaptive network-based fuzzy inference system (ANFIS), thereby further opti-

mising the parameters of both rule antecedents and consequents. Experimental

studies on popular medical data benchmarks demonstrate that the proposed

work is able to learn compact rule bases involving simple rule antecedents, with

statistically better or comparable performance to those achieved by state-of-

the-art fuzzy classifiers.

Keywords: Clinical decision support, medical diagnostic systems, fuzzy

rule-based systems.

1. Introduction

With rapid advancement in technology, the healthcare industry has been pro-

ducing and collecting data at a staggering speed. However, raw data is barely

of direct interest to healthcare stakeholders unless potentially useful knowledge

is extracted. The advancement of machine learning facilitates the generation5

of data-driven models to: improve the understanding of disease mechanisms,

increase the efficiency in healthcare delivery, reduce overall cost to the health-

care systems and facilitate clinical decision support [1]. Whilst rapidly gaining

recognition in the value of data analytics for healthcare, impediments to further

adoption also remain, which relate to the black box nature of many machine10

learning algorithms. As healthcare applications especially in critical use cases

usually come with high stakes, interpretable models are necessary to allow the

end users to: interrogate, understand, debug and perhaps, improve the under-

lying machine learning systems employed [2, 3].

Clinical decision making, such as predicting a patient’s likelihood of read-15

mission to the hospital, can have an immediate effect on the well-being of the

public. Healthcare presents unique challenges for the deployment of machine

learning models where the demands for interpretability and performance in gen-

eral are much higher as compared to most other domains [2]. Given that the

cost of misclassification is potentially high, models that are able to express the20
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inner philological associations in a human-readable way are widely sought in an

effort to facilitate the interrogation and validation of learned knowledge. This

would significantly help clinicians making informed decisions in combination

with medical domain knowledge. Despite new models that exhibit high per-

formance as well as interpretability have been proposed recently, the utility of25

these models in healthcare has not been convincingly demonstrated [2].

To avoid putting patients at risk, it is crucial that models trained on health-

care data be validated prior to deployment, as the pattern reflected from the

training data may not necessarily be representative of the true inner workings

of a certain medical condition. Rule-based systems are generally considered30

interpretable in the sense that the associated if-then statements are able to ex-

plicitly set out the conclusion under the given condition. In particular, fuzzy

rule-based systems are of a natural appeal to the medical sectors. This is be-

cause they support the performance of approximate reasoning, through fuzzy

logic, to track how a conclusion is reached, gaining insights into a potentially35

complex problem and therefore, facilitating the explanation of their solutions

[4, 5, 6]. Built on top of fuzzy sets that permit gradual assessment of the mem-

bership of set elements, fuzzy systems also enable the tolerance of vagueness

or imprecision that may result from linguistic descriptions such as ‘sever pain’

or ‘feel uncomfortable’ while enquiring medical symptoms or noise that may40

result from inaccurate testing results. Having recognised the potential of fuzzy

techniques to cope with the challenges raising from healthcare, a number of

accurate and interpretable fuzzy systems have been proposed in the literature,

for various medical applications (e.g., [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]).

Following such promising research, and working towards providing assistance45

for clinical decision support, this paper proposes a neuro-fuzzy approach for the

acquisition of accurate and interpretable fuzzy rule bases. It works by first

discretising each of the continuous medical attributes into a certain number of

categorical ones. In so doing, the original continuous data are mapped onto a

new data set with only nominal values, enabling rapid generation of a set of crisp50

rules through the exploitation of advanced decision tree learning. The result-
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ing crisp rules are able to reveal the basic relationship between attribute-value

pairs, whereas the attribute-value pairs which do not appear in the rules can

be removed. The generated crisp rules are then transformed to corresponding

fuzzy rules with categorical values replaced by Gaussian membership functions.55

Finally, the set of fuzzy rules are adapted in the framework of adaptive network-

based fuzzy inference system (ANFIS) [18] by the use of gradient descent and

least square estimation. This leads to the acquisition of an optimal set of ac-

curate fuzzy rules. An illustrative example is provided to explain the working

mechanism of the proposed approach, whilst further systematical experiments60

demonstrate its superior performance over alternative fuzzy classifiers statisti-

cally.

The remainder of this paper is organised as follows. Section 2 introduces

the related work on the classification of popular medical problems using fuzzy

systems. Section 3 describes the proposed methodology. Section 4 presents and65

discusses the experimental study. Section 5 concludes the paper and outlines

ideas for further development.

2. Related Work

One of the most well-known examples in the healthcare sector that favour

approaches with interpretability over pure performance is the adoption of rule-70

based methods over neural networks, for the task of predicting pneumonia pa-

tients as high or low risk for in-hospital mortality [3, 19]. Although a neural net-

work model may show better performance over a rule-based model, investigation

into the generated rule set shows one pattern that patients with pneumonia as

well as a history of asthma have lower risk of dying from pneumonia than those75

without asthma. What is learned by the neural net may reflect the true pat-

tern of the training examples, but the extracted knowledge is counter-intuitive.

This is due to the fact that patients with asthma history who are suffering from

pneumonia are usually directly admitted to ICU, thereby reducing their risk of

dying from pneumonia compared to those without asthma. However, models80

4



trained on the prognosis data simply overlook the intermediate processes and

incorrectly generalized the data into invalid knowledge, which is difficult for

black box models like neural nets to recognize and rectify, thus putting patients

at greater risk if practically used.

Computationally speaking, knowledge discovery and learning is supposed to85

be done with data available at hand. This may not be sufficient sometimes to

reveal the true patterns of the underlying medical situations. It is necessary to

validate the resulting learned model using medical expertise prior to being put

into use for clinical decision making. This in turn demonstrates the necessity

of adopting interpretable systems in healthcare decision support, which makes90

it much easier for clinicians to judge and rectify suspicious knowledge based on

domain expertise or even commonsense. Fuzzy rule-based systems allow end-

users to interrogate how a conclusion is reached via if-then fuzzy statements.

The use of fuzzy sets supported with fuzzy logic makes fuzzy systems more

robust in dealing with vague concepts that are commonly used in the linguis-95

tic description of symptoms as well as noise that may result from inaccurate

testing. It is therefore, not surprising that there exist many fuzzy systems for

healthcare in general and for learning fuzzy medical knowledge in particular, in

the literature. The remaining of this section briefly reviews related work on the

use of fuzzy systems for popular medical applications that are also utilised to100

perform comparative experimental analysis later.

Diabetes is a serious disease where the blood glucose level is too high and

has drawn increasing attention for its worldwide prevalence. The Pima Indian

diabetes [20] is a popular open access data set facilitating model building for

predicting whether or not a patient has type-2 diabetes based on eight diagnos-105

tic measurements. A number of fuzzy rule-based systems have been developed

using this dataset, for diabetes decision support [7, 8, 9, 10]. For example, an

approach using modified Gini index based fuzzy supervised learning in Quest

(SLIQ) decision tree algorithm, in conjunction with principal component anal-

ysis, is presented in [11], which outperforms a number of earlier models. A110

fuzzy ontology-based semantic case-based reasoning system [12] is proposed
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and implemented for decision support on diabetes diagnosis, constructed on

the basis of a standard medical terminology subset for diabetes diagnosis from

systematized nomenclature of medicine-clinical terms. A combination of fuzzy

k-nearest neighbour method and artificial immune recognition system is pro-115

posed in [21], achieving improved performance while gaining a good tradeoff

between classification accuracy and system complexity.

The popular Parkinson’s disease (PD) data set [22] is composed of various

biomedical voice measurements extracted from voice recordings, with a view to

discriminating healthy people from those with PD. In the literature, an effec-120

tive and efficient system using fuzzy k-nearest neighbour [23] has been proposed

for diagnosing Parkinson’s disease, which achieves excellent performance, out-

performing support vector machine (SVM) based approaches and many others.

Another study has looked into the application of fuzzy c-means clustering-based

feature weighting for the detection of Parkinson’s disease [17], demonstrating125

that the combination of the proposed weighting method and k-nearest neigh-

bour classifier can lead to very promising results on the classification of PD.

Also, a hybrid intelligent system is proposed [16], where principal component

analysis and expectation maximization are respectively used to address the

multi-collinearity problems and data clustering, followed by the prediction of130

PD progression using a neuro-fuzzy system or an SVM.

The mammographic mass data set [22] is formed to identify the severity of

a mammographic mass lesion based on the patient age and standard attributes

from BI-RADS [24]. In general, it is highly recommended in decision-making

to adopt a natural language structure in knowledge representation in order to135

aid in diagnosis for radiologists and physicians. For instance, a new knowledge-

based system [13] is developed which integrates clustering, noise removal, and

fuzzy rule-based techniques, achieving high prediction accuracy. A method for

fuzzy characterization of the main linguistic terminological descriptors in the

evaluation of breast nodules and calcifications has been reported [14]. Also,140

an expert system for the diagnosis of breast cancer [25] has been developed

using a neuro-fuzzy mechanism, which prevents unnecessary biopsy and may
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be adapted to train relevant medical students given its explanatory power. A

fuzzy Gaussian mixture model [15] has been put forward that combines Gaus-

sian mixture model and fuzzy rule-based systems to classify detected regions in145

mammogram images (into malignant or benign categories). This helps improve

the diagnostic accuracy and reliability of radiologists while performing image

interpretation for breast cancer diagnosis.

Regarding breast cancer diagnosis, there are indeed many approaches pro-

posed in the literature. Here, two more relevant data sets are used: i) the Breast150

Cancer Wisconsin (Original) data set which is useful to systems aimed at exam-

ining patients who have undergone surgery for breast cancer, and ii) the Breast

Cancer Wisconsin (Diagnostic) data set which extracts features from a digitized

image regarding the fine needle aspirate of a certain breast mass. Based on the

application of Naive Bayes approximation, a fuzzy system has been established155

[26] for classification of breast cancer patients with optimal interpretability with-

out significantly losing the performance as compared to that of the state-of-the-

art methods. A fuzzy quantification subsethood-based algorithm [27] has been

extended to develop a novel class assignment procedure for breast cancer di-

agnosis, showing how fuzzy quantifiers may be utilized in a subsethood based160

algorithm to strengthen both classification accuracy and interpretability [28].

Furthermore, a technique for fuzzy rule-based non-linear transformation has

been introduced to reinforce classification related information from given breast

cancer data, thereby improving on the classification performance [29].

Last but not least, clinical data acquired in the areas of appendicitis, blood165

transfusion, thyroid gland and vertebral column are also popular in medical

applications of intelligent systems. These are also to be addressed in this re-

search as with the other problems outlined above. In addition to dedicated

approaches for addressing specific medical situations, a number of fuzzy sys-

tems [30, 31, 32, 33, 5, 34] have been proposed for a range of different medical170

problems. For instance, a novel interpretable fuzzy rule-based classifier termed

C45-IFRC is presented in [30] in order to seek out a trade-off between accu-

racy and complexity of the eventually induced fuzzy rule base. It works by
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mapping each coarsely learned C4.5 decision tree rule in the knowledge base

onto a set of potentially useful fuzzy rules, which is subsequently optimised by175

genetic algorithm. The generated fuzzy system is interpretable and accurate,

which has been tested against various medical cases. A steady-state algorithm

for extracting fuzzy classification rules from data (SGERD) is described in [33]

that is able to extract a compact set of fuzzy rules by exploiting specific rule

and data dependent parameters, resulting in short, accurate and interpretable180

fuzzy rules that fit clinical decision support. Fuzzy pattern trees (FPT) have

also been introduced as a novel type of fuzzy system which has shown superior

performances on a wide range of applications including various medical prob-

lems. Details of this approach is beyond the scope of this paper, but can be

found in [31, 35].185

3. Proposed Methodology

The key to accomplish the task of learning a fuzzy rule-based system for clin-

ical decision support is to find a finite set of fuzzy production or if-then rules

capable of classifying a given input. Without losing generality, the classifica-

tion system to be modelled is herein assumed to be multiple-input-single-output,190

receiving n-dimensional input patterns and producing one output which is deter-

mined to be one of the pre-specified M classes. The fuzzy rule set to be induced

is required to perform the mapping ϕ : Xn → Y , where Xn = X1×X2×· · ·×Xn

with X1, X2, ..., Xn being the domains of discourse of the input variables, and

Y represents the set of possible output classes of a cardinality of M . Following195

the general supervised learning approach, the behaviour of the classification sys-

tem is trained through the use of a set of input-output example pairs E, where

for each instantiation of the input variables x̄p = (xp1, x
p
2, ..., x

p
n)T , xpi ∈ Xi, i =

1, 2, ..., n, an associated class yp ∈ Y is indicated.

Owing to its capability to approximate nonlinear functions to any degree of

accuracy in any convex compact problem domain, while being of a fair computa-

tional efficiency [36], knowledge or rule base consisting of Takagi-Sugeno-Kang
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(TSK) fuzzy if-then rules is adopted in this paper. In general, a TSK fuzzy

if-then rule Fj can be represented as follows:

If x1 is Aj1 and ... and xn is Ajn,Then z = f(x1, . . . , xn) (1)

where j = 1, 2, .., N , with N denoting the number of all such fuzzy rules within200

the system; xi, i = 1, . . . , n are the underlying domain variables, jointly defining

the n-dimensional pattern space and respectively taking values from Xi; Aji ∈

Xi denotes a fuzzy set that the variable xi may take; and zj is the consequent

of the fuzzy rule describing the output of the model, which is a polynomial

function of the input variables under TSK rule structure. For classification, an205

output computed from such a polynomial function is mapped onto one of the

class indices specified in the class set Y as previously defined.

The proposed approach works by first discretising each of the continuous

domain attributes into a certain number of categorical ones, such that the origi-

nal continuously valued data is mapped onto a new one involving only symbolic210

value (with their underlying real meaning unaltered of course). The generated

crisp rules are able to reveal the basic relationship between attribute-value pairs

and are then transformed to corresponding fuzzy rules with categorical values

replaced by Gaussian membership functions. Finally, the set of fuzzy rules is

adapted by the use of an ANFIS neuro-fuzzy system satisfying gradient descent215

and least square estimation. This is in order to acquire an optimal set of accu-

rate fuzzy rules. The following subsections describe the details of the proposed

approach.

3.1. Data Discretisation

The first step of the proposed approach is initialised by discretising each220

of the available continuous variables into a corresponding categorical one. This

may be implemented by resorting to physicians domain expertise or using a com-

putational algorithm such as [37]. For easy implementation, this paper adopts

the simple technique that partitions the universe of discourse of an individual at-

tribute into a certain number of equal intervals (assuming that the attributes are225
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uniformly distributed). Each interval length is set to: intl = max(Xi)−min(Xi)
L

where Xi is the domain of attribute xi with max(Xi) and min(Xi) being its

maximum and minimal value, respectively; and L is the user-defined number

of partitions. Any original variable (in terms of its value) xi is mapped onto

the integer k, if intlki 6 xi < intlk+1
i , k ∈ [1, . . . , L+ 1], where intlki is the k-th230

interval point for attribute xi. In so doing, the original continuous attributes

are transformed into ordinal integers. For discrete and nominal variables (e.g.,

gender that only takes male or female as its value), they remain unchanged.

Such a heuristic partitioning is unlikely to be optimal, but the discretisa-

tion will be optimised later with an adaptive method. However, this simple235

implementation comes with two advantages: First, each interval can be readily

assigned with a linguistic label that is of interpretable meaning, instead of taking

a pure numerical number that hardly makes any sense especially to non-experts

in the domain. In particular, the readable annotations make more direct link

with practical situations where for example, patients describe their symptoms240

or clinicians verbally explain the severity of a medical condition. Second, from

computational perspective, the small number of categorical values help expedite

the construction of a decision tree for the acquisition of an initial crisp rule base

as to be introduced next.

Note that when applying the proposed approach in a real clinical setting, the245

fuzzy quantities and their linguistic fuzzy labels will be defined, and interpreted,

in consultation with the medical professionals. In so doing, the specification

of variable discretisation will reflect the domain expertise, thereby describing

variables in the problem domain directly using terms which have predefined

semantic meanings.250

3.2. Crisp Rule Generation with Decision Tree Learning

Once the discretisation of the original data set has been carried out, a set

of crisp rules can be generated using a decision tree learning mechanism such

as the Classification and Regression Tree (CART) algorithm [38]. The basic

working of this learning method starts with the full data set at the root node
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and iteratively applies the following Gini index to split the node:

Gini(S) =

M∑
i=1

pi
∑
k 6=i

pk =

M∑
i=1

pi(1− pi) =

M∑
i=1

pi −
M∑
i=1

p2i = 1−
M∑
i=1

p2i

(2)

where S denotes the current data set for which this index is calculated; M is the

number of class labels; pi, i ∈ {1, . . . ,M} is the probability of an object with the

label i being randomly chosen; and
∑

k 6=i pk = 1− pi represents the probability

of a mistake in categorising an object. It can be seen that the Gini index reaches255

its minimum when all cases fall into a single category, and maximum when all

items are equally distributed among all classes. As such, this index can be

used to capture the amount of uncertainty in a dataset, measuring how often

a randomly chosen object from the dataset may be incorrectly labelled, if it is

randomly labelled according to the distribution of all the labels in the data.260

Note that the inputs used to construct the decision tree are transformed

categorical values during the training stage. Once the training is completed

and a new instance is present in a query for a decision, its original crisp input

value will first be converted to the category that represents the corresponding

interval, which can then be used to match against existing rules. As such, this265

supports the learning of rules that involve intervals as variable values, instead

of crisp cut points. In running the model, when an input is present, the values

of individual variables are each a crisp value. These crisp values are checked

against the interval values of their corresponding variables within every rule in

the rule base to decide whether that rule is to be fired or not. Obviously, if each270

crisp value falls within the corresponding interval, the rule is activated, else it

is not.

At each split, a decision tree node is generated with the attribute for which

the resulting Gini index is minimum. The same procedure is then iterated on

each of its subsets using the remaining attributes. When there are no more

attributes to be selected for further split or every element in the subset belongs

to the same class, a complete decision tree is generated, which can be easily
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transformed into a set of crisp rules by retrieving paths from each leaf node

backwards through its parent recursively to the root node. Without losing

generality, denote a generated crisp rule Cj , j = 1, 2, ..., N (with N representing

the number of all crisp rules available) as follows:

If x1 is Ij1 and ... and xn is Ijn, Then class is yCj (3)

where x1, x2, ..., xn represent the underlying domain attributes; Iji, i ∈ {1, 2, ..., n},

is the crisp interval of the antecedent attribute xi that may be associated or as-

signed with a meaningful label for linguistic interpretation; and yCj is a class275

label, expressing the rule consequent.

3.3. Conversion of Crisp Rules into Fuzzy Rules

The above data-driven set of crisp rules can then be converted into a set of

corresponding fuzzy rules prior to further optimisation. From the viewpoint of

rule structures, a rule is made up of an antecedent and a consequent part, be280

it fuzzy or crisp. Both the fuzzy and crisp rule antecedents are of a conditional

statement form, describing the values that the antecedent attributes should take

in order to derive the corresponding consequent, which are connected by logical

operators. The only difference is that crisp intervals (that are each interpreted

with a symbolic or integer term) are utilised as the conditions for the correspond-285

ing attributes, whereas attributes in a fuzzy rule are depicted by fuzzy sets (that

are normally interpreted with a linguistic label). Therefore, a straightforward

approach is to replace each crisp interval with a fuzzy membership function.

In general, the specific membership function used to describe a fuzzy set

should be more carefully considered in relation to underlying knowledge for

expression. In this paper, in the absence of such prior knowledge, a crisp interval

Ii, i ∈ {1, 2, ..., n} as shown in Eqn. 3 is replaced with a Gaussian membership

function µAi(xi) = e
−( x−ciσi

)2
due to its popularity, where ci and σi are the mean

value and standard deviation of the Gaussian membership function. Here, the

mean value is set to the average of those values belonging to the corresponding

12



crisp interval Ii, such that

ci =

∑
xi∈Ii xi

|{xi ∈ Ii}
| (4)

Similarly, the standard deviation is computed by

σi =

√∑
xi∈Ii(xi − ci)

2

|{xi ∈ Ii}|
(5)

Once the process of replacing crisp intervals with the above Gaussian mem-

bership functions is complete, the transformation of the entire crisp rule an-

tecedent finishes with the logical conjunctive connector ‘AND’ in the original

crisp rules replaced with a T-norm operator that performs fuzzy conjunction,

implemented by the product operation in ANFIS (or typically by minimum in

Mamdani models). The consequent of a crisp rule with a decision class is then

directly mapped onto that of the corresponding fuzzy rule. Although a TSK

fuzzy rule could take higher orders, a zero order polynomial TSK rule is adopted

in this paper, given the application problem is to perform classification. That

is, the integer that represents the decision class in the crisp rule is taken as the

bias term in the fuzzy rule. The resulting mapped fuzzy rule from an original

crisp rule can thus, be generally represented as

If x1 is e−(
x−c1
σ1

)2 and ... and xn is e−(
x−cn
σn

)2 ,Then z = r (6)

where e
−( x−ciσi

)2
is the fuzzy membership function for attribute xi, i = 1, . . . , n

with ci and σi calculated as above, and r is the integer that represents the290

decision class of the corresponding crisp rule.

Note that running the conventional method of grid partitioning [39] of each

and every input space may suffer from the curse of dimensionality as the number

of inputs increases. Therefore, instead of considering all of the possible com-

binations of the input and class attributes, it is herein proposed to utilise the295

existing crisp rules, which have been generated by decision tree learning and

which are able to efficiently and sufficiently generalise the given data to guide

the transformation, without resorting to pure and brute force search. Being

fundamentally data-driven, such a rule generation method will omit the empty

13



parts of the input space, substantially expediting the subsequent optimisation300

process.

Note also that, whilst in well-experienced domains certain numerical inter-

vals or even single numeric numbers have been widely adopted, there are many

scenarios where domains are less understood or where variables are difficult to

interpret. For instance, the mood of an individual may be asked when diag-305

nosing an individual’s mental well-being that may include options such as very

unhappy, unhappy, ok, happy, very happy. In case where the examinee feels

difficult to give a precise answer, especially when they feel in-between neigh-

bouring options such as happy and very happy, the use of fuzzy sets supports

capturing both concepts, though to different degrees, while reflecting such un-310

certainty. This helps enhance the tolerance level of capturing and representing

linguistic imprecision that often arises from clinical data.

Of course, the interpretability does not just lie in how to label the fuzzy

intervals, which conventional discretisation may also achieve, but also in en-

abling any subsequent pattern matching to be performed partially. This helps315

to allow for the aggregation of possible conclusions from firing multiple rules

as opposed to just one single specific rule as in conventional rule-firing situa-

tions, thereby reducing the adverse effect of any bias towards a certain value

definition/discretisation.

3.4. Optimisation of Transformed Fuzzy Rules with ANFIS320

ANFIS [18] is a popular TSK fuzzy inference system built under the generic

framework of artificial neural networks, capturing the benefits of both neural

networks and fuzzy logic. Once the acquisition of a set of fuzzy rules has been

achieved (through converting a set of crisp rules) they can be utilised to ini-

tialise the ANFIS structure to enable further modification or optimisation, by325

exploiting the inherent adaptive mechanism of the network given any further

training data.

To simplify the illustration of the optimisation process, suppose that there

are only two crisp rules learnt by CART for a two-input and one-output problem.
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The two converted zero-order TSK fuzzy rules are presented as follows:

Rule 1: If x is A1 and y is B1,Then z1 = r1

Rule 2: If x is A2 and y is B2,Then z2 = r2

(7)

The structure of the neuro-fuzzy ANFIS that is equivalent to this flat fuzzy TSK

rule base is shown in Fig. 1, where square nodes stand for the network nodes

which contain parameters that can be adapted, and circle nodes represent fixed330

ones without modifiable parameters. For completeness, details of individual

layers within the ANFIS are briefly summarised below.

Figure 1: Illustrative ANFIS structure

Layer 1: Every node i in this layer is a square node with the following

function:

O1
i = µAi(x) (8)

where x denotes an input variable to this node, and Ai denotes a fuzzy set

that may be taken by the variable, which is defined by a Gaussian membership

function as previously stated:

µAi(x) = e
−( x−ciσi

)2
(9)

In particular, ci and σi are the parameters associated with the corresponding

variable, representing the mean value and standard deviation of the Gaussian

membership function, which are initialised as Eqn. (4) and Eqn. (5) respec-335

tively. These parameters are named premise parameters and are to be tuned in
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subsequent layers. Note that other continuous and piecewise differentiable func-

tions, such as trapezoid or triangular functions may also be utilised if desired.

Layer 2: Every node in this layer is a circle node which accumulates the

incoming values through multiplication and outputs the product. The output wi

in this layer acts as the firing strength of a certain rule, namely, Rule i, i = 1, 2

for the present example. That is,

wi = µAi(x)× µBi(y) (10)

Layer 3: Each node in this layer is a circle node, computing the ratio of

the ith rule’s firing strength to the sum of all rules’ firing strengths:

wi =
wi∑N
j=1 wi

(11)

where again, i = 1, 2 and the number of rules N = 2, for this particular example.

The outputs of this layer are normalised firing strengths from the preceding340

layer.

Layer 4: Each node i in this layer is a square node with the following

function:

O4
i = wizi = wi(ri) (12)

where wi is the output of layer 3, and ri is the parameter to be adjusted which

appears in the rule consequent and is therefore, referred to as the consequent pa-

rameter. Note that if higher order TSK rules are used, more degree of freedoms

are imposed on the underlying system, resulting in more consequent parameters345

to be tuned. For example, the consequent zi = pix+ qiy + ri if first order rule

applied, then pi, qi are also adjustable parameters. For classification problems,

zero-order is sufficient while being computationally simplest.

Layer 5: The single node in this layer, the output layer, is a circle node

that computes the overall output in response to all current inputs, defined as

the summation of all incoming values, i.e.,

O5
1 =

∑
i

wizi = z (13)
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Within an ANFIS, the parameters, including both premise and consequent

ones, are trained using a hybrid learning method combining gradient descent350

and least square estimation. Particularly, each epoch of the hybrid learning

procedure is composed of a forward pass and a backward pass. In running the

forward pass, the antecedent parameters are fixed and a vector of input values is

presented, and then the error between the actual output and the target output

is calculated. In the backward pass, the error computed at the last forward355

pass is propagated backwards, from the output end towards the input end while

fixing the consequent parameters, by the gradient method. The details of such

an iteration of forward and backward computation is beyond the scope of this

paper, but can be found in [18].

3.5. Novel Points of Proposed Approach360

A variation of the CART + ANFIS combination exists in the literature

[41]. However, the present work differs from that approach significantly, from a

number of viewpoints, as detailed below.

First, a sigmoid function was used in [41] that directly fuzzifies the cut-point

generated by CART to a fuzzy number. This may complicate the understanding365

of the overall process of fuzzy value specification, as such a number can only be

explained locally because the same variable may end up with having different

fuzzy quantity spaces when it appears in the antecedents of different rules.

Discretising a variable domain into a fixed set of categories, which are then

converted into fuzzy sets, simplifies the process of associating individual labels370

to the discretised values from a holistic viewpoint.

Second, the integer in a zero-order TSK fuzzy rule consequent may be in-

terpreted as a certain decision (e.g., a class for a classification task) and the

corresponding decimal figures as the rule confidence (e.g., a certainty factor for

the class in performing classification). This facilitates the explanation of each375

resulting individual fuzzy rule. However, a first-order TSK rule as adopted in

[41] does not offer such interpretability regarding the rule consequent, thus po-

tentially damaging the readability of the overall fuzzy system. Also, as to be

17



justified in Section 4.4, which was not considered at all in [41], the use of addi-

tional parameters in a first-order TSK rule significantly expands the hypothesis380

space, adding further run-time costs, and may cause serious overfitting of the

learnt model.

Last but not least, the method of [41] is devised specifically for fault diag-

nosis of induction motors, aiming at providing accurate decisions without due

consideration of interpretability. Yet, the proposed approach aims to learn an385

interpretable fuzzy system with application to a range of popular medical diag-

nostic problems. The underlying motivation for the present work rests in the

development of an interpretable fuzzy system for clinic decision support. In-

deed, the employment of the specific discretization mechanism and zero order

TSK structure reflects such design intentions.390

4. Experimentation

This section presents an experimental analysis of the proposed approach,

supported with comparative studies with respect to popular techniques selected

from the existing literature.

4.1. Experimental Setup395

To demonstrate the efficacy of the present work for clinical decision support,

experiments are performed on nine medical benchmark data sets taken from UCI

machine learning repository [22]. A summary of the characteristics of these data

sets is given in Table 1. As the range of different attributes vary significantly,

a preprocessing step is to normalise each attribute so that their normalised400

values fall within the range of [0, 1]. This facilitates better comparisons. Data

normalisation is a common approach in machine learning, though this may

affect the model’s interpretability. Fortunately, this issue can be addressed in a

straightforward manner, by mapping any derived (normalised) fuzzy sets back

onto their original domains once the training is completed.405
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In the absence of testing data for the performance evaluation of the proposed

approach, stratified tenfold cross-validation (10-CV) is employed for result val-

idation. In 10-CV, a given data set is partitioned into ten subsets. Of the ten,

nine subsets are used to perform training, where the proposed approach is used

to generate a fuzzy rule base, and the remaining single subset is retained as410

the testing data for assessing the learned classifier’s performance. This cross-

validation process is then randomly repeated ten times in order to lessen the

impact of any random factors; results of these 10 × 10 cross-validations are then

averaged to produce each final experimental outcome reported below (except for

the illustrative showcase as given in Section 4.2).415

Table 1: Summary of Data Sets Used
Data Set Abbreviation #Attribute #Instance #Class

Appendicitis APN 7 106 2

Blood Transfusion BLD 4 748 2

Mammographic Mass MM 5 961 2

Parkinson’s Diseases PD 22 195 2

Pima Indians Diabetes PID 8 768 2

Thyroid Gland TG 5 215 3

Vertebral Column VC 6 310 2

Wisconsin (Diagnostic) Breast Cancer WDBC 30 569 2

Wisconsin (Original) Breast Cancer WOBC 9 699 2

In an effort to examine the effect of domain discretisation, or the number of

discretised intervals upon the resulting fuzzy rules, seven different bin numbers

are tested, where each of the pattern spaces is divided into K (K = 3, 4, 5, 6, 7, 8)

equal intervals following the ideas as discussed in Section 3.1. This allows the

performance of the proposed method to be investigated for fine partitions (such420

as when K = 8) as well as for coarse partitions (when K = 3). Note that given

a K, in theory, the total number of rule antecedent combination would be Kn,

where n stands for the number of input attributes. However, a fuzzy rule is

produced only when there is a corresponding crisp rule generated by a certain

data-driven crisp rule-based learning mechanism, with each crisp rule created425

to cover at least one given training data.
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4.2. Illustrative Example

To demonstrate the proposed approach at work for effectively aiding in clin-

ical diagnosis, an illustrative example is performed on the popular Pima Indian

diabetes data set first.430

The decision tree algorithm utilised in this paper is the popular Classifica-

tion and Regression Trees (CART), which is characterised by its construction of

a binary tree with each internal node having exactly two outgoing branches. In

particular, each original continuous attribute is herein discretised into a categor-

ical one with 3 equally spaced bins. As an example, the resulting decision tree435

structure, which is taken from a single fold out of the complete 10-CV, is shown

in Fig. 2, where ’0’ and ’1’ in the leaf nodes stand for negative and positive test

respectively; and ‘low’, ‘medium’ and ‘high’ are the labels used to denote the

corresponding discretised crisp intervals. Note that certain attributes may take

more than one interval as its value (e.g., Glucose can take either low or medium440

in its left branch), which is attributed to the mechanism that CART grows the

trees. However, this can still be transformed directly into a rule base with each

attribute only taking a single value as follows:

• Rule 1: If Glucose is low, Then test negative;

• Rule 2: If Glucose is medium, Then test negative;445

• Rule 3: If Glucose is high and BMI is low, Then test negative;

• Rule 4: If Glucose is high and BMI is medium, Then test positive;

• Rule 5: If Glucose is high and BMI is high, Then test positive.

In this example, as a side effect, the CART algorithm may also be interpreted

as a feature selection technique, resulting in the use of two attributes only out of450

the original eight. With only five crisp rules generated, this significantly reduces

the problem space, which could have been as many as 38× 2 if the conventional

grid partitioning were used for rule generation [39]. The above crisp rule base

is then transformed into a fuzzy one with crisp intervals replaced by Gaussian
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Figure 2: Generated decision tree

membership functions as specified in Section 3.3. The fuzzy rule base and the455

fuzzy inference process are illustrated in Fig. 3, and the learned decision tree

shown in Fig. 2. Each row in Fig. 3 represents a fuzzy rule converted from the

corresponding crisp rule generated by CART. The rectangles in each column

sets out the learnt fuzzy membership functions that specify the values taken

by each linguistic variable concerned. Considering only two features utilised in460

this example, only two columns of rectangles are used in the figure to form rule

antecedents. Note that for the attribute BMI, no value is present in column

two on the first two rows, indicating that no involvement of the second variable

in the corresponding rule antecedents. The transformed rule base serves as the

input to the neuro-fuzzy ANFIS structure for optimisation, as shown in Fig. 4.465

ANFIS then fine-tunes both the antecedent and consequent parameters based

on the existing rule base.

To demonstrate how such fuzzy rule base may be utilised to aid clinical de-

cision making, consider an incoming patient with the following testing values:

(#Pregnance = 2, Glucose = 120, BloodPressure = 61, SkinThickness =470

50.1, Insulin = 423, BMI = 36.2, DiabetesPedigree = 1.25, Age = 51). The

trained fuzzy system performs approximate reasoning while helping clinicians

derive a diagnosis. The first step is to take the crisp input and determine the

degree to which they belong to each of the appropriate fuzzy sets by matching

it against the membership functions of the respective variables. As shown in475
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Figure 3: Fuzzy rule base and inference process

Fig. 3, consider the variable Glucose = 120, it intersects with two fuzzy sets

(Medium and High, but not Low) and the yellow-coloured patches under these

Gaussian membership function curves reflect the two respective matching de-

grees. Similarly, for BMI = 36.2, it intersects with all three fuzzy sets. Note

again that all membership functions can be annotated with linguistic labels such480

as Medium and High as per this example, aiding clinicians (who are not nec-

essarily experts in fuzzy systems) in the interpretation of extracted knowledge

and the patients in the understanding of their medical situations concerned.

Having obtained the matching degree to which each antecedent variable is

satisfied with regard to any given rule, the fuzzy operator such as the product485

operation (as it is used in this paper) is applied to compute the overall firing

degree of all antecedent variables within the rule. This overall matching degree

is commonly referred to as the rule’s activation strength in response to the

given testing input, which is subsequently normalised to compute the ratio (or

relative contribution) of this rule’s firing strength over the sum of all rules’ firing490

strengths. The output of the entire fuzzy inference process is the average of the
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Figure 4: ANFIS structure

outcomes produced by the individual matched rules respectively weighted by

their corresponding normalised firing degrees. As the consequent of each rule is

calculated to be the zero-order polynomial of the input values, the final output

for the present example is 0.128. This may be rounded to integer 0 to signify a495

negative diagnostic outcome, with a confidence level of (1 - 0.128/1 = 0.872).

Note that given the normalised firing strength of each rule, the overall diag-

nostic outcome may be interpreted as the total accumulated contribution made

by individual rules that match at least partially with the patient’s symptoms.

As such, such results can help clinicians decompose their overall decision into500

component sub-decisions for further analysis. Another strength of such fuzzy

decision support systems is their ability to perform approximate reasoning, si-

multaneously firing multiple rules that imprecisely match given symptoms. This

may help mitigate the sensitivity of a crisp rule-based system to noisy outliers

that often arise from medical data.505

4.3. Performance vs. Number of Discretised Intervals

Table 2 presents the performance variations of the proposed approach in

relation to the number of partitioned intervals of the feature space. As can be

seen (and can be expected), for each individual data set, the performance may

be affected significantly by the bin number used. For example, in the case of510
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Table 2: Performance based on 10*10-CV in response to variation of K

Data Set K = 3 K = 4 K = 5 K = 6 K = 7 K = 8

APN 82.78 ± 1.70 85.67 ± 2.06 79.19 ± 2.86 81.48 ± 2.22 75.55 ± 1.81 73.26 ± 3.45

BLD 76.82 ± 0.60 79.09 ± 0.46 76.83 ± 0.27 76.79 ± 0.63 76.38 ± 0.45 77.07 ± 0.96

MM 79.88 ± 0.48 80.16 ± 0.38 79.30 ± 0.67 78.91 ± 0.69 73.03 ± 2.44 78.62 ± 1.36

PD 88.64 ± 1.67 86.76 ± 1.27 87.29 ± 1.57 83.27 ± 2.43 82.55 ± 1.18 78.25 ± 1.97

PID 74.80 ± 0.95 75.36 ± 0.89 73.18 ± 0.71 72.44 ± 0.76 73.61 ± 1.04 72.34 ± 0.64

TG 91.49 ± 1.00 89.82 ± 1.03 91.68 ± 0.75 90.99 ± 0.80 91.09 ± 0.86 86.50 ± 1.43

VC 77.32 ± 1.43 79.45 ± 1.34 75.87 ± 1.70 74.81 ± 2.16 78.16 ± 1.65 77.16 ± 1.69

WDBC 93.70 ± 0.69 93.74 ± 0.31 93.67 ± 0.62 92.78 ± 0.87 90.93 ± 0.73 91.05 ± 0.99

WOBC 95.79 ± 0.36 95.91 ± 0.36 93.99 ± 0.46 93.65 ± 0.90 92.80 ± 0.49 92.58 ± 0.92

Average 84.580 ± 0.989 85.107 ± 0.900 83.444 ± 1.066 82.791 ± 1.273 81.567 ± 1.182 80.759 ± 1.490

APN, its performance falls in the range between %73.26 and %85.67. Generally

speaking, the coarse partitions such as K = 3 or 4, outperform those with

finer partitions such as K = 7 or 8. With the bin number accelerates from

K = 4, the averaged performance gradually drops. This is likely attributed to

overfitting that results from the use of a rule base that is of a much greater size.515

Fig. 5 shows that the averaged rule base size (in terms of the number of rules

contained) increases along with the bin number K, across all data sets.

Figure 5: Rule number vs. bin number

The problem of overfitting can be reflected by plotting the average training

and testing performances in variation to the bin number K. As shown in Fig. 6,
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with the increment of the number of discretised intervals from K = 4 upwards,520

the training accuracy builds up, whereas the corresponding testing accuracy

drops. Overall, when K = 4, the proposed method performs the best for 7 out

of 9 data sets according to Table 2. It also achieves the best average performance

as well as the smallest average standard deviation when K = 4. Although a finer

partition may be necessary for more complicated medical problems, this result525

indicates that a relatively coarse partition with K = 4 works better for the

underlying medical data sets. From interpretability viewpoint, use of a smaller

bin number offers an easier interpretation while making the terms employed

more distinguishable. Besides, an overly large bin number is not encouraging in

practical clinical settings owing to psychological theory, nor in the efficiency of530

computational implementation.

Figure 6: Rule numbers in variation to bin number

4.4. Linear vs. Zero-order Rule Consequent

In general, TSK fuzzy rules used in many ANFIS usually adopt the first

order polynomial rule consequent [18]. Whilst it has a natural appeal to use

zero-order for the classification tasks that are of direct interest regarding the

present application problem, it is interesting to examine the effect of the rules
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that do employ polynomial consequents. Without losing generality, a TSK fuzzy

rule with first order polynomial consequent can be represented by

If x1 is e−(
x−c1
σ1

)2 and ... and xn is e−(
x−cn
σn

)2 ,

Then z = p1x1 + · · ·+ pnxn + r
(14)

where the rule antecedent takes exactly the same structure as that in Eqn.

6, but the rule consequent is represented as a linear combination of the input

values. This significantly expands the hypothesis space whereby each input is535

associated with an additional parameter to tune in the search space. Owing to

limited space, the settings in which the number of feature partitions is 4 (which

has been empirically shown earlier to have led to the best result) are used to

run this particular study.

Table 3: Zzero order vs. first order fuzzy rules (K = 4)

Zero Order Rule Consequent Linear Rule Consequent

Data Sets Trn Acc Tst Acc Time Trn Acc Tst Acc Time

APN 91.00 85.67 9.43 97.11 71.69 16.54

BLD 80.57 79.09 22.20 82.00 77.55 79.80

MM 81.98 80.16 58.07 85.39 78.63 438.83

PD 93.19 86.76 32.80 99.98 76.29 2138.95

PID 77.70 75.36 38.14 83.84 71.04 249.93

TG 93.05 89.82 9.91 97.59 87.40 25.19

VC 82.52 79.45 13.49 90.66 76.58 55.97

WDBC 96.49 93.74 113.32 99.98 76.50 18082.37

WOBC 97.50 95.91 38.27 99.27 90.03 435.73

Average 88.222 85.107 37.291 92.869 78.412 2391.479

Table 3 shows the results where the zero order and linear rule consequent are540

used respectively. Note the results displayed come from the same random runs

of 10-CV, which implies both methods are initialised using the exact fuzzy rule

bases converted from CART. It is not surprising that training accuracies of those

with linear rule consequent are better across all clinical data sets than those with

zero order rule consequent, owing to a larger hypothesis space being covered by545

exploiting more parameters. This of course comes with greater computational

burden, resulting in over 60 times more efforts of that required by running the

zero order counterpart. Such significant differences in time consumption may be

26



exaggerated even more for higher dimensional data sets such as WDBC (which

has 30 attributes), consuming over 100 times more resources if linear consequent550

is applied.

Unfortunately, the more expressive representation of the hypothesis space

and significantly more consumption of computation and run time efforts do not

offer better performance for unseen testing data. The testing accuracies with

linear consequent actually drop across all data sets, resulting in much worse555

overall performance (%78.412) in comparison to that (%85.107) achievable when

the zero-order consequent representation is used. With the exact same initial

fuzzy rule bases to tune, the plunging performance with linear consequent is

likely attributed to overfitting that results from excessive degrees of freedom.

Apart from the viewpoint of classifier generalisation capability, using ANFIS560

involving just zero order rule consequent allows class labels to be represented

as integers, simplifying the coding while attaining model interpretability.

4.5. Comparison against Alternative Fuzzy Classifiers

Table 4: Comparison on classification accuracy (%)

Data Set CART-NFC C45-IFRC FPT SGERD

APN 85.67 ± 2.06 84.34 ± 2.63 86.66 ± 0.89 85.04 ± 1.01

BLD 79.09 ± 0.46 77.53 ± 0.48 77.42 ± 0.13 76.22 ± 0.18

MM 80.16 ± 0.38 79.13 ± 0.79 76.23 ± 0.44 77.39 ± 0.20

PD 86.76 ± 1.27 84.33 ± 1.11 85.03 ± 0.71 82.28 ± 1.53

PID 75.36 ± 0.89 75.05 ± 0.89 74.13 ± 0.36 70.17 ± 0.69

TG 89.82 ± 1.03 91.88 ± 1.20 88.75 ± 0.53 87.23 ± 0.58

VC 79.45 ± 1.34 80.16 ± 2.16 74.65 ± 1.48 70.00 ± 1.22

WDBC 93.74 ± 0.31 94.30 ± 0.53 93.25 ± 0.54 91.86 ± 0.67

WOBC 95.91 ± 0.36 95.15 ± 0.68 95.35 ± 0.23 93.49 ± 0.36

Averaged 85.107 ± 0.900 84.652 ± 1.163 83.497 ± 0.591 81.520 ± 0.716

To compare how the proposed CART initialised neuro-fuzzy classifier (CART-

NFC) performs against state-of-the-art methods, the following three popular565

fuzzy classifiers that have been recently proposed and reviewed in Section 2 are

also run: fuzzy pattern tree (FPT) [31, 35], C45-IFRC [30], and SGERD [33].

Table 4 presents the accuracies of these algorithms for the medical data sets. It
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can be seen that CART-NFC achieves five out of nine best accuracies as well as

the highest average accuracy.570

In order to verify whether there is indeed any statistically significant differ-

ence among the algorithms (namely, CART-NFC, FPT, C45-IFRC and SGERD),

non-parametric statistical tests are carried out using the Friedman Aligned

Ranks test [40]. Fig. 7 shows the rankings produced by this test, where the bars

are proportional to the average ranking obtained for each named algorithm. The575

lowest bar (implying the best algorithm statistically) achieved by the proposed

algorithm agrees with the smallest error that is incurred by running it (see Table

4). To examine whether significant differences exist among the average errors,

parameters associated with the outcomes of the Friedman Aligned Ranks test

are given in Table 5, where the p value indicates the probability to reject the580

null hypothesis that there is no significant difference among the three average

performances. At the significance level of α = 0.05, the null hypothesis is re-

jected, indicating that there exists significant statistical differences amongst the

results attainable by the members of this group of four fuzzy classifiers.

Figure 7: Rankings of CART-NFC, FPT, C45-IFRC and SGERD

Table 5: Friedman Aligned Ranks test

Comparison Hypothesis (α = 0.05) p value statistic

CART-NFC, C45-IFRC, FPT, SGERD Reject 0.00078 16.785

The Friedman Aligned Ranks test is capable of detecting any significant585
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differences within a certain group. However, it is unable to establish explicit

comparisons when using a certain control method over a set of possible alterna-

tives. As CART-NFC achieves the smallest error and is of the lowest ranking

bar among the four compared algorithms, it is of a natural appeal to utilise

it as the control method in comparison to FPT, C45-IFRC and SGERD. The590

standard Holm’s procedure [40] is applied to run this test, computing the ad-

justed p values. The results of this investigation are presented in Table 6. Since

the p values are smaller than the level of significance specified by α = 0.05, the

null hypothesis that there exists no significant performance difference between

CART-NFC and FPT or between CART-NFC and SGERD is rejected. Thus, it595

can be concluded statistically that CART-NFC works significantly better than

both FPT and SGERD. Despite CART-NFC achieves better average perfor-

mance than C45-IFRC, no statistical difference between them can be detected

under this setting. In a nutshell, these results demonstrate that the present

work is at least competitive to the state-of-the-art fuzzy classifiers for clinical600

decision support.

Table 6: Result of running Holm’s procedure

Comparison Hypothesis (α = 0.05) Adjusted p value Statistic

CART-NFC v.s. SGERD Reject 0.00004 4.36251

CART-NFC v.s. FPT Reject 0.04770 2.25956

CART-NFC v.s. C45-DFRC Accepted 0.34741 0.93962

4.6. Model Complexity

Fuzzy systems adopted in conventional applications (e.g., [41]) typically aim

to maximise certain performance metrics, but they may take it for granted that

models are transparent given the semantics of the underlying fuzzy sets utilised,605

thereby overlooking the overall model interpretability. Apart from performance,

interpretability of application systems and their reasoning processes should also

be taken into consideration while designing a fuzzy model for clinical decision

support. This is important to facilitate the interpretation of any resultant fuzzy

rules to medical professionals and that of diagnostic outcomes to the patients.610
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Unlike performance criteria such as accuracy that can be used to objectively

measure how good a fuzzy model is, the assessment of system interpretability is a

subjective property, largely depending on the person who makes the assessment.

Unfortunately, the interpretability may be affected by a range of practical issues

[42]. Nonetheless, whilst there generally lacks a commonly accepted mechanism615

to make an informed objective judgement, the complexities of a resultant fuzzy

system are of great significance to be worth careful consideration. The aim is to

obtain a fuzzy model equipped with a small number of rules and a small number

of antecedents per rule.

Table 7: Comparison on model complexity

CART-NFC C45-IFRC FPT SGERD

Data Sets Rul Cond Rul Cond Rul Cond Rul Cond

APN 7.07 1.63 2.76 1.97 2.00 1.50 2.48 2.00

BLD 13.04 2.37 7.51 2.67 2.00 1.50 2.69 2.00

MM 24.82 2.44 10.90 3.15 2.00 1.50 2.02 2.00

PD 21.85 2.36 12.48 4.93 2.00 1.50 2.47 2.00

PID 14.02 2.04 14.66 3.19 2.00 1.50 3.71 2.00

TG 10.47 1.83 8.77 2.60 3.00 3.00 3.26 2.00

VC 12.30 2.27 8.12 3.36 2.00 1.50 2.98 2.00

WDBC 16.81 2.43 18.42 3.63 2.00 1.50 2.18 1.53

WOBC 28.67 2.72 13.40 4.98 2.00 1.50 3.57 2.00

average 16.561 2.231 10.780 3.387 2.111 1.667 2.818 1.948

Table 7 presents an empirical analysis of the complexity of learned fuzzy620

rule bases, in terms of the average number of antecedent conditions (Cond)

per fuzzy rule, and average number of rules (Rul) per rule base. For Cond,

C45-IFRC comes last with rule length systematically longer than the proposed

approach across all nine data sets. FPT and SGERD return the most compact

rules, with both having learned fuzzy rules involving fewer than 2 antecedent625

conditions. Following these two, the rule base returned by the proposed work

also enjoys high structural interpretability, being able to learn rules with just

slightly over 2 antecedents on average in length.

For Rul, FPT returns rule bases with the smallest size, due to their imposed

heuristic nature of setting the number of rules to the number of the classes.630
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SGERD also generates highly compact rule bases with not only very small rule

sizes but also short rules. Yet, both classification performances of FPT and

SGERD are statistically worse compared with that of the proposed approach

as shown previously. Compared with C45-IFRC, CART-NFC has a few more

rules on average, but it uses fewer rule antecedents than those of C45-IFRC.635

If the total number of antecedents per rule base is summarised by calculating

(#Rule ∗#Cond), both CART-NFC (36.95 antecedents) and C45-IFRC (36.51

antecedents) are very close without significant differences. Overall, it can be

concluded that CART-NFC is able to learn rule bases of a small cardinality

(each time returning fewer than 17 rules with just about 2 rule antecedents on640

average across all medical benchmarks).

Although C45-IFRC [30] and the proposed CART-NFC both adopt the gen-

eral idea of initialising a preliminary fuzzy system through a crisp rule base, the

underlying methodologies of how crisp rules are utilized to initialise the fuzzy

system and of how the subsequent optimisation is performed are completely dif-645

ferent. For C45-IFRC, each of the generated crisp rules is firstly converted into

a set of fuzzy rules involving predefined fuzzy sets through a heuristic mapping

procedure; whereas crisp rules in this paper are directly converted into fuzzy

rules by replacing crisp intervals with fuzzy sets and logical operators with their

respective fuzzy counterparts. A local rule selection procedure is then performed650

in C45-IFRC to obtain a compact subset of initially mapped fuzzy rules that

jointly generalise the capability of the underlying crisp rule. This involves a

computational cost of O(N × 2N
intl × T ) at this stage, where N denotes the

number of given crisp rules, N intl is the maximum number of the existing crisp

intervals for any crisp rule, T is the maximum number of similar fuzzy sets that655

are allowed per crisp interval. In [30], the population-based genetic algorithm

(GA) is used to perform such optimization. For the proposed work, there is no

such an intermediate step.

For C45-IFRC, the above procedure is followed by an additional module,

where a fine grain tuning of all selected subsets of fuzzy rules is finally carried660

out with another GA, at a computational cost of O(dn ∗ Nr), where d is the
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maximum number of predefined fuzzy sets per attribute, n is the number of an-

tecedent attributes in the problem domain and Nr is the number of fuzzy rules

previously selected through the above step. For CART-NFC, the corresponding

computational cost is O(Nr ∗ 2n) < O(dn ∗Nr) +O(N × 2N
intl × T ). However,665

as the proposed work is for ANFIS models, with parameter optimization imple-

mented by least squares and gradient descent, it is expected to converge faster

than using population-based GA. In a nutshell, although C45-IFRC and CART-

NFC exhibit performances regarding accuracy without statistical difference and

the complexities of resultant fuzzy systems are of the same scale, the proposed670

method comes with lower computational cost and expected faster convergence

rate.

Obtaining both a high degree of accuracy and a high degree of interpretabil-

ity is a challenging contradictory aim and, in practice, one of these two conflict-

ing demands usually prevails over the other [50]. As such, a balanced trade-off675

between interpretability and accuracy must be considered when designing a

fuzzy model for a specific application. Instead of simply resorting to weighting

the importance of accuracy/interpretability quantitatively, which may be sub-

ject to various experimental settings and hence, can be very difficult to estimate

precisely, qualitative decisions for choosing a model most appropriate among680

those non-dominating solutions (with respect to domain specific requirements)

is the way forward [49]. Here, a dominating solution is one that would achieve

both higher accuracy and lower complexity than its alternatives given idealized

conditions (which may not be easy to confirm or obtain in practice, without

comprehensive experimental investigations). To reflect this general observation,685

further comparative studies are made against the other two alternative methods,

namely, FPT and SGERD.

For FPT, the proposed method achieves a statistically significant accuracy

gain of 1.61% on average. This improvement is of a remarkable impact in prac-

tice when such a system is adopted to serve a wide range of patients on a larger690

scale, implying many more correct diagnostic outcomes as compared to the use

of FPT. From the perspective of model complexity, FPT produces models of
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an average complexity of 3.52 antecedents as summarized by (#Rule∗#Cond),

which is substantially simpler than what is attained by the proposed method

(36.95 antecedents). However, the underlying approach taken here to compare695

the model complexity is an overly simplified one that counts the generated rule

numbers and antecedents only, at a superficial level.

Nonetheless, it should be noted that FPT learns logical connectors that con-

nect adjacent antecedent conditions, which may be rather difficult for domain

users to comprehend. For example, a typical fuzzy rule produced by FPT may700

appear like:

If x1 is A1 Einstein-AND x2 is B1 Algebraic-OR x3 is C1, Then y.

where x1, x2, x3 are the domain variables; A1, B1, C1 are the corresponding

fuzzy sets taken by these variables; y is the rule consequent; the connector

Einstein-And is supposed to be a logical operator that takes two inputs (a, b)705

and generates ab
(2−(a+b−ab)) as a compounded rule antecedent; and similarly,

Algebraic-OR(a, b) = a + b − ab. There are even more complicated non-linear

logical operators than these that may be used to join antecedents in FPT. Such

complicated mathematical interpretation may make the resulting learned rules

impractical to interpret without sufficient theoretical backgrounds. Fortunately,710

the proposed method only uses a basic logical AND operator, significantly fa-

cilitating the interpretation of its learned rules. As such, it is fair to conclude

that from the interpretability viewpoint of learned rules, the proposed method

beats FPT.

Comparing the proposed work with SGERD shows an even more statistically715

significant result with an average accuracy gain of ∼3.6%. Again, such a sig-

nificant improvement demonstrates practical significance, especially when the

system is used to serve large numbers of patients. From the rule base complex-

ity perspective, whilst both approaches learn short rules, SGERD that employs

only basic AND logical operator as well, enjoys a low structural complexity by720

learning rules of 3.52 antecedents on average. Therefore, these two methods

have different strengths and may be applied in different scenarios depending on

the real needs. When accurate diagnoses become the chief requirement for the
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diagnostic system, which is the generally expected in medical applications, the

proposed work clearly serves better.725

In short, the proposed method outweighs FPT with statistically significant

performance on accuracy while generally having higher interpretability at rule

level, though its overall model complexity is higher than that of FPT. It also

outperforms SGERD, with an even larger margin in terms of model accuracy,

but it has a higher model complexity. When compared to C45-IFRC, both730

approaches learn a rule base of fairly similar model complexity and accuracy, but

the proposed method has lower computational overheads. Overall, the proposed

method is able to learn an accurate and interpretable fuzzy system model of

reasonable complexity (16.56 rules per system with 2.23 antecedents per rule on

average), with low computational overheads, while at least having a performance735

on a par with the state-of-the-art fuzzy model alternatives.

4.7. Effect of Discretisation with k-means

On the assumption that all variables are assumed uniformly distributed,

without any optimization (which is purposefully designed so as to enable sys-

tematic investigations over a wide range of experimental settings without bias),740

the previous experimental analysis has already shown that the proposed ap-

proach achieves competent results in comparison with alternative popular fuzzy

approaches. It is interesting to empirically investigate what if an (at least par-

tially) optimised quantity space is utilized. Without overly complicating the

experimental investigation, the illustrative example on the diabetes diagnosis in745

Section 4.2 is reused here to explore the potential effect of optimised quantity

space.

Instead of discretising the domain of each continuous attribute into 3 equally

spaced bins as the previous example did, the k-means clustering algorithm [43]

is first performed with respect to each attribute, resulting in 3 exclusive clus-750

ters. The minimal and maximum values from a certain cluster will then be

used to generate the crisp interval, serving as the original input to the decision

tree. Fig. 8 summaries the membership functions for the variable Glucose un-
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der different settings. In particular, Fig. 8(a) depicts the original membership

functions where the uniform distribution is adopted, which is then tuned by755

ANFIS, resulting in Fig. 8(b) with the membership function highly squashed.

Fig. 8(c) gives the optimised quantity space and Fig. 8(d) is a minor variation

of Fig. 8(c) optimised by ANFIS.

Figure 8: Membership functions of variable Glucose plotted in sub-figures

Unlike the previous set of five crisp rules involving the variables Glucose

and BMI, the resultant crisp rule base with a quantity space specified through760

k-means optimisation leads to a rules base that is even more compact, with only

3 rules involving just Glucose as follows:

• Rule 1: If Glucose is low, Then test negative;

• Rule 2: If Glucose is medium, Then test negative;
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• Rule 3: If Glucose is high, Then test positive.765

Interestingly, the variable BMI, which has been utilised in the construction

of the decision three when uniform distribution is adopted, is now completely

discarded. This is not surprised, as how the input variables are partitioned

will directly affect the selection of attribute-value pair whilst the tree expands,

thereby possibly leading to an early stop when using an optimised quantity770

space.

When an optimised quantity space (as per Fig. 8(c)) is employed, the fuzzy

system implemented using these three rules performs exactly well as its coun-

terpart with five crisp rules. Recall that the proposed method achieved better

or competent results in comparison with alternative fuzzy methods when con-775

sidering the initial and the worst case scenario in which uniform distribution of

the domain values was assumed. Together, these results demonstrate that the

proposed approach can offer an even more compact outcome when the quan-

tity space of the antecedent variables is optimised with a certain optimisation

algorithm, without adversely affecting the performance level in terms of model780

accuracy. This is of great practical significance since more compact rules are

easier to understand and the inference processes involving the use of such rules

are in turn, easier to explain.

5. Conclusion

This paper has proposed an effective approach for learning a fuzzy rule base,785

with target applications to clinical decision support. The proposed approach

starts with the generation of a crisp rule base from given data using a decision

tree learning mechanism, producing basic rule structures that reflect the char-

acteristics between domain inputs and output while having low computational

overheads. The crisp rule base is then transformed into a fuzzy rule base with790

crisp intervals replaced by Gaussian membership functions. This forms the in-

put for subsequent neuro-fuzzy adaption implemented by an ANFIS, optimising

the fuzzy rules. The proposed work is able to track back how a diagnosis may be
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reached by decomposing the matching degrees of an input observation against

each of the available rules in the system. This explicitly shows the contribu-795

tions made by individual rules towards the overall decision, thereby explaining

how the conclusion is reached from the given input. In addition to such trans-

parent inference process, interpretability is also supported by the generation of

a rule-based system of reasonable size with short rules. Furthermore, statisti-

cal comparative results have shown that the proposed work achieves better or800

at least, comparable performance to those derived from state-of-the-art fuzzy

classifiers.

Whilst promising, interesting work remains for further development. This

includes examining the effect of any subsequent fine-tuning of the ANFIS em-

ployed, and investigating the use of more powerful data discretisation techniques805

in conjunction with the exploitation of the bin number for each variable domain.

The latter may be implemented by adapting soft clustering techniques (e.g., [44],

[45]) that enable the generation of overlapping intervals, which supports the po-

tential integration with the proposed fuzzy classifier given the relevance of the

mathematical theories underpinning these methods. Interesting further work810

also includes working with missing values that often arise in clinical practice by

exploiting advanced knowledge interpolation techniques (e.g., [46], [47]).

It is acknowledged that the present interpretability may not be achieved

with respect to the clinical practice standard, unless the system is constructed

in close consultation with medical professionals. For real applications, domain815

experts would be required to advise on any specifications and/or constraints that

correctly reflect domain expertise while devising the underlying system. Thus,

future work also intends to redesign the ANFIS structure by adding an extra

linguistic hedge layer before the membership function layer, to describe the level

of fulfilment associated with the corresponding fuzzy sets. The implementation820

of this latter aspect will help enrich the hypothesis space for parameter ad-

justment, facilitating ANFIS model optimisation effectively without adversely

affecting the interpretability of the membership functions used to describe the

values of domain variables [48]. Lastly, the proposed approach is herein devised
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to develop an interpretable fuzzy system for clinic decision support, the under-825

lying principles appear to be generic. It is therefore very interesting to apply

it for addressing different problems such as plant monitoring [6] and network

security [51].
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