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We investigate the interaction that occurs between
a light solid object and a horizontal soap film of a
‘bamboo’ foam contained in a cylindrical tube. We
vary the shape of the descending object from a sphere
to a cube by changing a single shape parameter.
We investigate in detail how the soap film deforms
and determine the forces that the film exerts on the
object, depending on the radius of the cylindrical
tube, and the shape, orientation and position of the
object. We show that a cubic particle in a particular
orientation experiences the largest drag force, and that
this orientation is also the most likely outcome of
dropping a cube from an arbitrary orientation through
a bamboo foam.

1. Introduction
Liquid foams are a class of materials that are widely
used both domestically and industrially [1,2]. They are
classified as complex fluids because their response to
applied stress is highly nonlinear: they behave as elastic
solids at low stresses, exhibit plasticity at higher stresses
and have an apparent yield stress above which they flow.
They are two-phase materials consisting mainly of gas,
with consequently a low density but also a large surface
area. As a result of these remarkable properties, aqueous
foams are desirable, for example, in personal hygiene
and food products and are also integral in industrial
processes such as enhanced oil-recovery [3,4] and froth
flotation for mineral separation, paper deinking, waste
water treatment and soil remediation [5–9]. The process
of froth flotation, in particular, is driven by how the
surfaces within a foam interact with solid particles
and objects, and gaining a better understanding of this
interaction is one of the main objectives of this work.
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Foams have also been studied at the microfluidic scale [10–12] where they have found new
applications in medical procedures such as foam sclerotherapy for spider and varicose veins
and for building new materials such as scaffolds for tissue engineering [13,14]. In this work, we
consider how the precise structure of an ordered foam could be used to control the position and
orientation of particles or small objects. This has many potential applications, for example in
pharmaceuticals and medicine, where controlled transportation of particles, objects or solvents
through confined geometries at the micro-scale is needed [10].

We focus our attention on the interaction that occurs between a horizontal soap film contained
in a vertical cylinder and a solid object that descends through it under gravity. The soap film
can be thought of as one film of a bamboo foam, a structure in which a cylindrical container is
filled with a single column of bubbles of equal volume. Previously, we predicted that the motion
of a spherical object could be controlled by an ordered foam [15]. Here, we develop the three-
dimensional Surface Evolver [16] simulations to investigate how this interaction affects the final
position and orientation of a non-spherical descending object. The object that we consider is
small (compared to the foam’s bubbles) and light, with its size and weight chosen so that the
Bond number is equal to one (see §2 for more details). This corresponds roughly to particles
that would be found in the process of froth flotation and those that could easily be constructed
for microfluidic experiments. For this value of the Bond number, surface tension effects are not
dominated by the effects of gravity, and therefore a foam should be able to strongly influence the
position and orientation of the object. This is in contrast to the work of Courbin and Stone [17]
and Le Goff et al. [18], for example, who showed that soap films and foams can absorb energy
from fast-moving objects with a much larger Bond number, where gravitational and inertial
effects dominate any surface tension effects. They also showed that when a spherical object falls
through a soap film, small bubbles can form due to air becoming trapped on impact or during
the pinch-off of the soap film during detachment. Our simulations do not allow for the formation
of new bubbles, and we propose that the effect that such small bubbles have on the motion of a
descending object is negligible. Owing to the lightness of the objects that we consider, we assume
that their motion as a result of the forces exerted on them by a soap film is slow compared to how
fast the soap film relaxes, so our work is confined to a quasi-static regime (see §2).

Probing a foam’s response to solid objects is a standard tool that has been used to develop a
better understanding of their complex behaviour. In three dimensions, Cantat & Pitois [19,20]
measured the forces exerted by a disordered foam on a spherical bead, and detected elastic
loading and topological changes, while de Bruyn [21,22] showed that the forces exerted by a
spherical bead induce a local fluidized region in the foam. In two dimensions, where the response
of a foam to solid objects can be easily visualized, Raufaste et al. [23] showed that the drag force
exerted on a circular object by a flowing foam increases with the size of the object and decreases
with the liquid fraction of the foam. Furthermore, it was shown by Dollet et al. [24], and in our
previous work [25], that liquid foams, due to their elasticity, can be used to reorient an elliptical
object so that it becomes aligned with the direction of flow. Simulations by Boulogne & Cox [26]
confirmed that the forces exerted by a flowing two-dimensional foam on solid objects are highly
dependent on the shape of the object. We extend this study into how the shape of the object affects
how it interacts with a foam in three dimensions.

We will use Surface Evolver [16] simulations to study how a soap film of a bamboo foam
interacts with super-quadric objects, ranging from a sphere to a rounded cube, descending under
gravity from different initial positions and orientations. We assume that the object is covered by a
wetting film so that the soap film always contacts the object normal to its surface. We investigate
how a bamboo foam repositions and reorients such objects, and probe in detail the forces exerted
on the descending object by the foam as well as the perturbation caused to the film. Our work
extends the contributions by Morris et al. [27–29], which probe how objects such as cubes or
ellipsoids and their orientations and surface properties affect the stability of a thin film by which
they are held. There are also many related contributions in biology, as reviewed by Dasgupta et al.
[30], that show how fluid interfaces and biological membranes interact with particles of different
shapes, and we see similar perturbations of the soap film in this work.
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Figure 1. (a) The initial set-up in which a cube is positioned above a horizontal film that separates two bubbles in a cylindrical
tubewith radius rc and height h. The orientation of the cube is prescribed and then traced by recording the angle that the normal
vectors that define it,N1,N2 (obscured by the cube in the image) andN3 make with the z-axis. (b) The object (of radius rs) is
allowed to fall through the soap film under gravity, and therefore deforms the soap film during contact. Its motion is governed
by the resultant of its weight, mg, and the pressure and network forces that the foam exerts on it. (c) For each edge i of the
triangulated surface of the soap film that contacts the object, an outward network force is exerted in the normal direction, ni

over its length li . Similarly, a pressure force is exerted by contacting bubbles, now in the inward normal direction to the surface,
−nk , over all facets k. In the sameway, bubble pressures and surface tension contribute towards a network and pressure torque
which rotate the object.

The remainder of the paper is organized as follows: The simulation model and methodology
are described in detail in §2. The results of our simulations are discussed in §3, where we vary
the radius of the cylindrical container (§3a), the shape of the descending object (§3b), its initial
orientation (§3c) and its initial position above the film (§3d). This is followed by our conclusions
and discussion of future work in §4.

2. Method
The Surface Evolver [16] allows us to resolve bubble pressures and the geometry of thin films
for foams at equilibrium under given constraints. Our simulations consist of a single soap film,
initially flat and horizontal, that separates two bubbles contained in a cylindrical tube. The tube
has radius rc, height h = 10 (which is fixed throughout) and a vertical centre-line that coincides
with the z-axis of the Cartesian coordinate system, so that the centre of the cylinder’s base defines
the origin.

The surface of the solid object that falls through the soap film is defined by the super-quadric
equation

(x − x0)λ + (y − y0)λ + (z − z0)λ = rλs , (2.1)

where (x0, y0, z0) denotes its centre coordinates, rs its radius and λ is a shape parameter that
satisfies λ= 2n where n ∈ N

+. When λ= 2 the object is a sphere, while increasing λ yields a cube
with rounded edges and corners (and letting λ→ ∞ would yield a cube) [31,32]. For a cube, rs

describes the minimum distance from its centre to its surface, and for convenience we shall refer
to this as the radius of the cube. The solid object is initially positioned above the soap film such
that they do not touch (figure 1a).

The surface tension of the soap film is 2γ and this is set to be equal to 1 throughout this work.
The actual volume of bubble k (where k = 1, 2) is denoted by Vk. The soap film is represented by a
triangulated mesh. It is equilibrated by minimizing its surface area A, using the energy functional:

E = 2γA +
∑

k

pk(Vk − Vt
k), (2.2)
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where pk is a Lagrange multiplier that denotes the pressure of bubble k. Both bubbles are assigned
the same target volume,

Vt
k = 1

2 (volume of cylinder − volume of solid object) = 1
2 (2πrch − Vs), (2.3)

where the volume of the super-quadric object is given by

Vs = 8r2
s

3λ2
Γ (1/λ)3

Γ (3/λ)
, (2.4)

(as derived in [31]) and its calculation requires numerical computation of gamma functions, such
as Γ (a/λ) = ∫∞

0 ta/λ−1 e−t dt.
We set the initial orientation of the object by rotating it by prescribed angles φj, θj andψj around

the x, y and z axes, respectively. This involves multiplying the surface constraint given in equation
(2.1) by the rotation matrices

Rx,j =

⎡
⎢⎣

1 0 0
0 cosφj − sinφj
0 sinφj cosφj

⎤
⎥⎦ , Ry,j =

⎡
⎢⎣

cos θj 0 sin θj
0 1 0

− sin θj 0 cos θj

⎤
⎥⎦ , Rz,j =

⎡
⎢⎣

cosψj − sinψj 0
sinψj cosψj 0

0 0 1

⎤
⎥⎦ ,

(2.5)

in this order, equivalent to applying the combined rotation matrix

Rj = Rz,jRy,jRx,j, (2.6)

where the index j represents the current time step.
The object is assigned a weight, mg, chosen so that the Bond number Bo = mgr2

s/2γVs is equal
to one. We fix the volume of the object at Vs = (4/3)π , that is the volume of a sphere with radius
rs = 1. Thus when the shape parameter λ is increased, the value of rs is decreased (to keep the
volume of the object fixed) and its weight is increased (to keep the Bond number fixed). The
object is allowed to descend through the soap film under gravity. We assume that the motion of
the object when in contact with the soap film is slow and overdamped so that inertial effects can
be neglected. Thus we use a quasi-static model as described in the previous work [15]. This model
is only appropriate when the object is in contact with the soap film, which is the focus of this work.
The object is lowered, and once its surface begins to overlap the soap film, the nearest facets of
the soap film and the object are merged and the soap film is equilibrated using a combination of
gradient descent and conjugate gradient energy minimization steps. The minimization procedure
continues until convergence of E to within a tolerance of 1 × 10−5 has been achieved.

The contacting soap film exerts a network force, Fn on the solid object due to the pull of surface
tension. This force is calculated geometrically as

Fn = 2γ
∑

i

lini, (2.7)

where li denotes the contact length of the triangular facet i of the soap film that is in contact with
the object and ni denotes the unit normal vector to the surface at (xi, yi, zi), the mid-point of edge i
(figure 1c). Since the surface of the film contacts the object at 90◦, it applies a network torque, τn,
on the object. Letting ri = (xi − x0, yi − y0, zi − z0) denote the vector that connects the centre of the
object with the mid-point of edge i, it is clear that ri and ni are in general not parallel when λ> 2.
The network torque is calculated as the sum of vector cross-products

τn = 2γ
∑

i

liri × ni. (2.8)

Similarly, bubbles in contact with the object apply a pressure force, Fp, over its surface and this is
calculated by the summation

Fp = −
∑

k

pkAknk, (2.9)
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where Ak denotes the area of the kth triangular facet of the object, pk refers to the pressure of the
bubble adjacent to the facet k and nk denotes the outward unit normal vector positioned at the
mid-point of this facet, say (xk, yk, zk). Note that the negative sign is due to the fact that the bubble
applies an inward push due to its pressure. As for the network force, there is a contribution from
this pressure force towards a torque, τp. Let rk = (xk − x0, yk − y0, zk − z0) denote the vector that
connects the centre coordinates of the object with the mid-point of the k-th triangular facet of the
object. The pressure torque is given by the summation

τp = −
∑

k

Akpkrk × nk. (2.10)

Therefore, the resultant force and torque exerted on the super-quadric object are

F = −mgz + Fn + Fp (2.11)

and
τ = τn + τp, (2.12)

respectively, where z denotes the unit vector in the positive z direction. We will from now on use
the component form of these forces, that is F = (Fx, Fy, Fz) and τ = (τx, τy, τz).

Each time step of a simulation involves equilibrating the soap film while the position and
orientation of the object are fixed, calculating the forces it exerts on the object, and then moving
the object in the direction of the resultant force by a small amount. We choose a small constant
ε that sets the effective time-scale of our simulations. At each time step, we move the object by
εF and rotate it by ετ , using the standard right-hand convention for rotation. We choose ε=
1/400Bo, which ensures convergence in the sense that the results do not change by making ε
smaller. Rotating the object requires applying the matrix given in equation (2.6) where the angles
of rotation around the x, y and z axes are φj = ετ x, θj = ετ y and ψj = ετ z, respectively, for the jth
time step, where j = 1, 2, 3, . . .. Thus after n time steps, the orientation of the object is given by the
3 × 3 matrix

R =
j=0∏
j=n

Rj =

⎛
⎜⎝

r1,1 r1,2 r1,3
r2,1 r2,2 r2,3
r3,1 r3,2 r3,3

⎞
⎟⎠ . (2.13)

The columns of this matrix can be thought of as the unit normal vectors that define the orientation
of the super-quadric object, which we denote by N1, N2 and N3, respectively (figure 1a). We
will record the orientation of the descending object by determining the angles that these three
vectors make with the vertical z-axis, which we denote by α1 = cos−1(r3,1), α2 = cos−1(r3,2) and
α3 = cos−1(r3,3), respectively.

At each time step, the soap film is at equilibrium. We accept that an equilibrium state has been
reached when the energy of the soap film has converged to within a tolerance of 1 × 10−5, using
a combination of gradient descent and conjugate gradient minimization iterations. It can take up
to 10 000 iterations of these numerical methods to reach the given tolerance. The iterations are
interspersed with upkeep of the tessellation and checks for soap film detachment. We also apply
small perturbations to the surface of the soap film during the equilibration process by jiggling
the vertices slightly. In this case, a random displacement is applied to each vertex independently
using a Gaussian distribution with a deviation of 0.02 times the mean edge length of the triangular
mesh [16]. This perturbation was found to be robust enough to optimize the process of reaching
a minimum energy for the soap film under the given constraints.

3. Results
Although the simulation that we model is relatively simple, it provides a rich system to study the
interaction between a descending object and a soap film as we can vary many parameters. In this
section, we summarize the results of varying the radius of the cylindrical container and the shape,
initial orientation and position of the object.
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Figure 2. Variation of the radius, rc, of the cylindrical container: (a) Snapshots of the simulationwhen a sphere reaches heights
of (i) z0 = 5.5 and (ii) z0 = 4.5 as it falls through a soap film contained in a cylinder with radius rc = 2, 3, 4 (from left to right,
respectively). The height of the centre of the sphere matches the height of the film on the boundary of the cylinder when
z = 5. The drag force exerted by the foam on the object is plotted versus the height of the sphere, and is split into a (b) network
contribution and a (c) pressure contribution.

(a) Variation of tube radius
Let us first consider the effect that varying the radius of the cylindrical container has on the
interaction between a soap film and a descending spherical object. We set the radius of the sphere
and the Bond number to one, and initially position it at the centre of the cylinder above the soap
film. We vary the radius of the cylindrical container between rc = 1.5 and rc = 4 in increments of
0.5, and probe how the soap film is perturbed by the sphere and the forces exerted on the object
in each case.

Figure 2a shows how a film is perturbed when it contacts a sphere that is at a height of
z0 = 5.5 (after attachment) and z0 = 4.5 (before detachment) for a cylindrical container with radius
rc = 2, 3, 4, increasing from left to right. Note that the film lies at a height of z = 5 when its
height matches that of the sphere. Two things stand out from these images: (i) The height of
the contact line of the film with the container increases in range when decreasing the radius
of the container. This is a direct consequence of the bubble volume constraints we set, and the
smaller the radius of the tube, the more the film has to move relative to the descending sphere to
satisfy these constraints. (ii) The mean curvature of the film decreases when increasing the radius
of the container. Since the soap film contacts both the sphere and the wall of the container at
90◦, its curvature must decrease when we increase the tube radius. It follows from the Laplace–
Young Law that the pressure differences across this film decreases when we increase the radius
of the container. Thus, the resultant pressure drag force exerted on the sphere from the contacting
bubbles decreases in magnitude for increasing tube radius (as shown in figure 2c).
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The network drag force applied by the soap film on the sphere is shown in figure 2b. Film
attachment to the sphere is shown by the sharp negative jump in the network drag as the film
pulls the sphere downwards at this stage. The network drag force then increases as the sphere
descends. It is equal to zero when z0 = 5, that is when the height of the sphere matches that of the
film, and the film is perfectly horizontal (not shown). The film then becomes perturbed again as
the sphere falls further, so that it applies a positive (upward) network drag on the sphere, resisting
its downward motion. The network force goes to zero again when the film detaches from the
sphere. The magnitude of the network drag force after attachment and before detachment of the
film from the sphere is unchanged for all values of the tube radius that we consider. The heights
of the sphere at which film attachment and detachment occur depend on the radius of the tube,
as has already been explained to be the consequence of the bubble volume constraints.

The pressure contribution to the drag force that the foam exerts on the sphere is in the same
direction as the network contribution (figure 2c). Unlike the network contribution, the magnitude
of the pressure drag force increases when decreasing the radius of the cylindrical container: The
pressure contribution to the drag force is around half the network contribution when rc = 1.5 but
decreases to around a tenth of the network contribution when rc = 4.

In the sections that follow, we keep the radius of the cylindrical container fixed at rc = 4 so that
we can assume that the pressure forces applied on a descending object are small compared to the
network forces.

(b) Variation of shape
We now vary λ, the shape parameter from equation (2.1). We consider values between λ= 2 (a
sphere) and λ= 20 (a cube with smooth rounded edges and corners). The initial orientation of the
object is constant throughout this section, with the angles used for setting up its orientation all
set to zero so that a cube presents a flat face to the soap film. The object is free to rotate as it falls
through the soap film. The initial position of the object is again set so that its centre coordinates
lie at x0 = y0 = 0 and z0 > 6, so that it is at the centre of the cylinder and above the soap film.

We focus on the deformation caused to the soap film by the descending object, and the forces
exerted by the soap film on the object as a result. Snapshots of the simulation just after the film
attaches itself to the descending object and just before it detaches are given in figure 3a. These
show how the deformation differs for three examples; a sphere (λ= 2), an object that is between
a sphere and a cube (λ= 4) and a cube with smooth rounded edges (λ= 20).

The shape of the descending object clearly affects how the soap film deforms directly after
attachment, as shown in images in figure 3a(i). Since the contact angle between the film and the
object is 90◦, the contact line between the soap film and the object after attachment is highest for
the sphere. In this case, the film has to bend upwards the most to reach its energy minimum under
the given boundary conditions and volume constraints. For the more cubic objects (where λ= 4
and λ= 20), the soap film is not perturbed as much after attachment, and does not have to bend as
much upwards to satisfy the boundary conditions. As λ is increased, the vertical faces of the object
become flatter, and therefore the soap film does not need to rise as far during the equilibration
process. As a result, the perturbation caused to the soap film directly after attachment decreases
with increasing values of λ.

Conversely, it is clear from the images in figure 3a(ii) that the soap film’s deformation prior
to detachment from the object increases with λ. The rounded shape of a sphere means that the
contact line of the soap film moves steadily up over its surface as the sphere descends, resulting in
the earliest detachment. For the more cubic objects, the film comes into contact with the rounded
edges that surround the upper face of the object prior to detachment. Here, the film does not have
to move very far to retain its 90◦ contact angle with the object while still satisfying the volume
constraints. This is particularly true when λ is high, where the curvature of the rounded edges is
large. As a result, the film stays in contact with the rounded edge of the cube for longer, becoming
more stretched as the cube descends. In fact the film bends downwards so much when λ= 20
that it is near vertical at its contact line with the object (see figure 3a(ii), right). The film detaches
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Figure 3. Variation of the shape parameterλ: (a) A side view of the simulation after attachment of the soap film to the object
(i) and before detachment of the soap film from the object (ii) forλ= 2, 4 and 20 (from left to right). These images have been
positioned so that the height of the filmmatches for each row, and so should not be used to compare the position of the object.
(b) The network drag force, Fnz , exerted on the objects as they fall through a soap film versus their height, z0. The inset snapshots
indicate the position of a cube with λ= 20 for different values of z0. (c) The maximum (absolute) value of the network drag
force exerted on the object by the soap film after attachment and before detachment. (d) The pressure drag force, Fpz , exerted
on the object and (e) the energy E (i.e. surface area) of the soap film versus the height of the object, z0.

from a cubic object once it has moved past the rounded edges and corners and onto the upper
(horizontal) face.

Figure 3b shows how the network drag, Fn
z , varies with the height of the super-quadric object

in the cylinder for different values of λ. The attachment of the soap film to the object is evident
in figure 3b by a sharp negative (downward) jump in the network drag, which is a result of the
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angle that the soap film makes with the vertical axis as it contacts the object. The magnitude of
the network drag just after the soap film attaches itself to the solid object decreases slightly for
increasing λ (figure 3c). This can be explained by the fact that the angle made between the vertical
direction and the soap film over its contact length with the object increases with λ, and therefore
the contribution of the network force towards the drag reduces.

Once the soap film is attached to the object, the network force increases to zero when the
height of the object’s centre is aligned with the height at which the soap film contacts the cylinder
wall (figure 3b). Once the object passes this point, the network force becomes positive, thus
contributing to resisting the downward motion of the object. The maximum value of the network
drag is achieved for the most cubic object (where λ= 20). Note also that the interval of height
where the object is in contact with the soap film increases with λ. This is a result of the soap film’s
contact line with the object becoming more stagnant on the rounded edges of the cube’s upper
face. As these rounded edges become more curved as λ increases, the minimal surface remains
in contact with the edges for longer, and the soap film becomes more stretched in the vertical
direction before detaching from the object. This result is confirmed in figure 3c, which shows that
the absolute value of the network drag instantaneously before the soap film detaches from the
object increases with λ. We propose that under the given conditions, the network drag tends to
2πrs as λ increases without bound (for a surface tension of 2γ = 1). This is the circumference of
the largest circle that can be inscribed within the upper square surface of the cube. Once the film is
no longer contacting the rounded edges of the cube, its surfaces slips along the upper flat surface
of the cube before detaching.

The pressure drag, Fp
z , versus the height, z0, of the object in the cylinder is shown in figure 3d

for the same set of values of λ. As we discussed in the previous section, the pressure contribution
to the drag force is an order of magnitude smaller than that of the network force when rc = 4, and
they both act in the same direction. This was also seen to be the case in the previous work by
Davies & Cox [15]. For a sphere, the pressure drag exhibits symmetry between attachment and
detachment. This is not the case for objects where λ> 2. Recall that the pressure force depends
on the pressure difference between the two bubbles, and therefore the curvature of the film that
separates them. After attachment, the curvature of the soap film is such that the pressure in the
lower bubble is less than the pressure of the upper bubble. In this case, the pressure drag force is
negative during the attachment (and therefore it contributes to drag the object downwards). As
for the network force, it increases to zero when the centre of the object is perfectly aligned with the
position of the soap film. This is to be expected as the shape of the soap film is such that its overall
curvature is zero here, and therefore the pressure difference between the two bubbles is zero.
As the object descends further, the curvature of the soap film switches sign so that the pressure
drag becomes positive, increasing until reaching a maximum value just before detachment. The
maximum pressure drag exerted increases with λ in a similar fashion to the network contribution
to the drag force.

Figure 3e shows how the surface area of the soap film varies with the height of the object in the
cylinder for different values of λ. Before the soap film attaches to the object, its area is simply 2πrc.
That area sharply decreases after the soap film attaches itself to the object, reaching a minimum
when the height of the centre of the object is perfectly aligned with that of the soap film. The cross-
sectional area of the object is at its largest here for all values of λ, and therefore it is to be expected
that the minimum energy is attained here. The soap film is then stretched by the object as it falls
beyond this point, with a maximum energy reached just before detachment. Again, is clear from
this figure that the amount of film stretching required before detachment increases with λ.

(c) Variation of initial orientation
In this section, we inspect how the orientation of the object affects how it perturbs a soap film
that it falls through. We investigate whether or not a bamboo foam can be used to reorient a cubic
object in a controlled and predictable way. To isolate the effect of the object’s orientation, we keep
the shape parameter of the object fixed at λ= 10. We vary the initial orientation of the cube by
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Figure 4. The drag force exerted on a cube descending through the centre of a soap film in three orientations: a flat orientation
where the angles between the normal vectors defining the cube, N1, N2 and N3 and the z-axis are α1 = α2 = π/2
and α3 = 0, respectively, a diagonal orientation where α1 = α2 = π/4 and α3 = π/2, and a rotated orientation where
α1 = α2 = α3 = π/2 − tan−1(1/

√
2). The drag force is separated into (a) a network component, Fnz , and (b) a pressure

component, Fpz , and plotted versus the height, z0, of the object in the cylindrical container. Note that the forces exerted on a
sphere are also included for comparison.

choosing different values for φ0 and θ0, the angles by which the object is rotated around the x and
y axes during the initial set-up, respectively. We keep ψ0, the angle of rotation around the z-axis,
equal to zero, and allow the cube to fall from the centre of the cylinder.

(i) Stable orientations

Let us first consider three initial orientations of the cube which do not change as the cube
falls through the centre of the soap film. In fact, we have already considered the first of these
orientations in the previous section. In that case, the angles between the normal vectors N1, N2
and N3 and the z-axis are α1 = α2 = π/2 and α3 = 0, respectively (as shown in figure 1a). We call
this the flat orientation.

The diagonal orientation has α1 = α2 = π/4 and α3 = π/2.
In the rotated orientation all three normal vectors have the same angle with the z-axis, that

is α1 = α2 = α3 = π/2 − tan−1(1/
√

2). These three orientations are shown in figure 5 just after
soap film attachment. Their stability when the cube falls through the centre of the foam can be
explained by symmetry: the deformation of the soap film will be symmetric around the z-axis,
meaning the torque will be negligible. In fact, we will show later that the flat orientation is the
only stable orientation for a cube descending down the centre of a bamboo foam, and that the
diagonal and rotated orientations are meta-stable.

Figure 4 shows the drag force the soap film exerts on the cube in these three orientations. The
network component of the drag force is shown in figure 4a, which demonstrates the importance
of the object’s orientation to the forces it experiences. The negative drag that the soap film exerts
instantaneously after attaching itself to the cube is smallest in magnitude for the cube in the
rotated orientation, where the soap film finds its minimal area without deforming as much, only
needing to engulf the leading apex of the cube. The initial network force exerted on the cube in
the diagonal orientation is larger in magnitude than for any other orientation, as in this case the
soap film contacts the object over a greater length than for the rotated cube and at a larger angle
to the horizontal than for the cube in the flat orientation (figure 5).

As the cube falls further, the downward network force increases to its largest magnitude for
the cube in the rotated orientation, for which the cross-sectional area to be navigated by the soap
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Figure5. Snapshots of the simulationwhena cube (withλ= 10) in the (a)flat, (b)diagonal and (c) rotated orientation reaches
a height of z0 ≈ 5.9 in the centre of the cylinder, thus contacting and deforming the soap film. The shape of the surface of the
film for these three cases is visualized by surface plots directly below the snapshots in (d–f ), respectively, with the height of
the film indicated by colour.
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Figure 6. (a) Snapshot of the simulation and a (b) surface plot of the soap film where the height of the centre of the cube in
the rotated orientation is aligned with the height of the soap film.

film is largest. The negative network drag is also greater in magnitude for the cube in the diagonal
orientation compared to the flat orientation, as the angle the soap film makes with the horizontal
here while contacting the cube is larger. The network drag then increases to zero as z0 approaches
the vertical position of the soap film. Here, the soap film becomes completely horizontal for a cube
in the diagonal and flat orientations. However, for the cube in the rotated orientation it takes a
hexapolar deformation that includes three rises and three depressions that are symmetric around
the z-axis (figure 6). This deformation was seen for a cube in thin films in the work of Morris et al.
[28] and for cubes lying at fluid–fluid interfaces in the work of Soligno et al. [33].

The forces exerted on the cube by the soap film just before detachment vary considerably with
the orientation of the object, as shown in figure 4a. In this case, the network drag exerted on
the cube in the rotated and diagonal orientations is smaller in magnitude than for the cube in
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Figure 7. Snapshots of the simulation where a cube in the (a) flat, (b) diagonal and (c) rotated orientation reaches a height
of 3.5 in the cylinder, thus approaching the point at which the soap film detaches. The shape of the soap film for these three
snapshots is visualized by the surface plots in (d–f ), respectively, with the height of the surface denoted by colour.

the flat orientation. Leading up to detachment, the soap film surrounds only one corner of the
cube in the rotated orientation, compared to two corners for a cube in the diagonal orientation
and four corners for a cube in the flat orientation. As a result, the soap film’s catenoid-like shape
has a thinner neck leading up to detachment from a cube in the rotated orientation. Therefore,
the instability that triggers the film to detach from a cube happens sooner when a cube is in the
rotated orientation compared to the diagonal and flat orientations, for which the neck of the soap
film catenoid is wider. This is shown to be the case in figure 7, which includes snapshots taken
from the three simulations just before the soap film detaches from the cube.

More insight can be gained by looking at how the pressure drag force varies with the height
of the cube in the cylinder (figure 4b). The most striking result here is how antisymmetric the
pressure drag force is between when the soap film attaches to and detaches from the cube for the
rotated and diagonal orientations. For these orientations, the deformation caused to the soap film
by the cube is close to being symmetric about the point at which the centre of the cube is perfectly
aligned with the height of the soap film. Note that the direction of the curvature of the film’s
surface just before detachment is the opposite of the direction of curvature after attachment, and
that the similarity between the geometry of the film does not extend to the instances directly after
attachment and before detachment (as shown in figures 5e,f and 7e,f ). We previously discussed
how the soap film deformation was not symmetric at all for the cube in the flat orientation, and
this is reflected in the forces exerted on it by the soap film.

(ii) Unstable orientations

Let us now consider initial orientations for the cube which cause the soap film to deform in a
non-symmetric way, and therefore where the torque exerted by the foam becomes non-negligible.
We first consider initial orientations which are set by rotating the cube around only one axis.
Here, we fix φ0 =ψ0 = 0 and vary θ0 between zero and π/2. In this case, the angle α1 is initially
equal to π/2 while α2 is varied and α3 = π/2 − α2. Figure 8a shows how the orientation of the
cube, given in terms of α2, varies as the cube descends through the soap film. Note that when α2
is initially zero or π/2, the cube is in the flat orientation, which we investigated in the previous
section. The stability of this orientation is confirmed here by the fact that α2 does not change with
the height of the cube in both cases. Similarly, when the initial value of α2 is π/4, we have the
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Figure 8. Variation of the orientation of a cube (with λ= 10): (a) The variation in the angle α2 (from various initial values)
versus the height of the cube in the cylindrical tube, whereα1 is initially set toπ/2 and thereforeα3 = π/2 − α2. (b) Here,
we consider many initial orientations of the cube by considering every possible pairwise combination of φ0 and θ0 from the
set of values {0, 0.1π , 0.2π , 0.3π , 0.4π , 0.5π}. The orientation of the cube is plotted in terms of the angleα2 versusα3. An
empty circle represents the starting orientation of the cube, a dashed line shows how the orientation varies throughout the
simulation and the filled circle shows the final orientation of the cube after it has detached from the soap film.

diagonal orientation, and again the angle recorded here does not change as the cube interacts with
the soap film.

The new and interesting result here is what happens in between these two orientations. As
expected from symmetry, the results for α2 = 0.1π and α2 = 0.4π are equivalent, as are the results
for α2 = 0.2π and α2 = 0.3π . In all of these cases, when the soap film attaches itself to the cube it
exerts a slight non-zero torque that acts to rotate the object towards the flat orientation. Here, the
soap film moves above the lowest side of the cube’s lower face, but remains below the opposite
edge of the same face (figure 9a). As a result, the shape of the soap film is not symmetric around
the z-axis, as shown in figure 9d. In figure 9a, the contribution to the torque exerted by the film on
the cube is largest on the right-hand side, where the film reaches its highest point. This contributes
to rotate the cube in figure 9a in the clockwise direction, and therefore towards the flat orientation.
This is cancelled out by an opposite torque that occurs after the cube falls further and its centre
coordinates become closer to the vertical position of the soap film. It is shown in figure 9b,e
that the film is slightly higher on the opposite side to what it was previously. However, as the
soap film slips further along the surface of the cube the torque that the foam exerts increases
dramatically. The soap film slips towards the rounded edge of the cube that surrounds its upper
face (figure 9c,f ). The film is in contact with this rounded edge for many time steps, exerting a
network torque that in effect rotates the cube strongly towards the flat orientation. For example,
in figure 9c, the contribution to the torque is much higher from the left-hand side as the film
contacts the cube nearly vertically here, thus applying a large upward pull on this side. It is clearly
shown in figure 8a that the flat orientation is the most likely outcome of dropping a cube that has
been rotated around only one axis through a soap film, and that it is the highly non-symmetric
deformation of the soap film that occurs before detachment that is the main driving force for this
result.

We now vary the values of both the angles φ0 and θ0 used to set the initial orientation of
the cube, doing so in increments of π/10 between zero and π/2, considering every possible
combination. Figure 8b shows how the orientation of the cube changes as it interacts with a soap
film. Here, the angles that two of the normal vectors that define the cube make with the z axes
are plotted against each other. The stable orientations are the ones where the cube does not rotate
as it falls through the soap film. This is the case when the angles (α2,α3) are equal to (0,π/2),
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Figure 9. Snapshots of the simulation when the centre of a cube that is initially oriented so thatα1 = 0.5π ,α2 = 0.3π and
α3 = 0.2π , reaches a height of (a) z0 ≈ 6, (b) z0 ≈ 5 and (c) z0 ≈ 3.5. The shape of the soap film for these three snapshots is
visualized by the surface plots in (d–f ), respectively, with the height of the surface denoted by colour.

(π/2, 0) and (π/2,π/2), which are all representations of the flat orientation. It is also the case
when (α2,α3) = (π/4,π/4) and (π/2,π/4), which are two representations of the cube in the diagonal
orientation. We also include the result for the rotated orientation that we previously discussed,
which is shown at (π/2 − tan−1(1/

√
2),π/2 − tan−1(1/

√
2)) here. All other initial orientations are

unstable. It is shown in figure 8b that the orientation of the cube in these unstable orientations
also changes in a zigzag manner: The cube is initially rotated towards the flat orientation after
film attachment, and then it is rotated in the opposite direction for a short period before being
rotated towards the flat orientation again leading up to film detachment. As previously discussed,
the forces exerted by the film on the object leading up to detachment are dominant in setting the
final orientation of the object. This is shown by the large collection of filled circles at the three
corners that represent this orientation in figure 8b. It is clear from this figure that unless the cube
is initially in the rotated or diagonal meta-stable orientations, then it is highly likely to be reoriented
to the flat orientation as it falls through the centre of a soap film.

(d) Variation of initial position
So far we have considered what happens when a super-quadric object falls through the centre
of a horizontal soap film contained in a cylindrical tube. We now vary the initial position of the
object in the cylinder and inspect how its radial position varies as it interacts with the soap film it

falls through. We vary the initial radial distance, rxy =
√

x2
0 + y2

0, between the centre of the object
and the centre-line of the cylinder (where x = 0 and y = 0) by varying x0, the x coordinate of the
object’s centre. A simulation is terminated once the descending object comes into contact with the
boundary of the cylinder container.

Figure 10 shows how the radial position of the object changes as the object interacts with a
soap film, starting from different initial positions. When a sphere is allowed to fall through a
horizontal soap film from an off-centre position in the cylinder, the effects of the asymmetry
of the deformation to the film are weak (figure 10a). There are small increases in rxy as the
sphere falls through the soap film, so that its path deviates slightly towards the wall of the
cylinder. This tendency becomes more apparent the further the sphere is away from the centre
of the cylinder initially. If the sphere fell through a long bamboo foam containing many bubbles,
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Figure 10. Variation in the radial position, rxy/rc = 0.25
√
x20 + y20, of objects versus their height in the foam, with points

included every 40 time steps. Four initial positions are considered: rxy/rc = 0.125, 0.25, 0.375, 0.5 for (a) a sphere, (b) a cube
in the flat orientation with λ= 6, (c) a cube in the flat orientation with λ= 10, (d) a cube in the diagonal orientation with
λ= 10 where the nearest face to the side of the cylinder is vertical, (e) a cube in the diagonal orientation withλ= 10 where
the nearest faces to the side of the cylinder are slanted and (f ) a cube in the rotated orientation withλ= 10.

it would eventually fall towards the wall of the cylinder, and the foam would not control
its motion.

Figure 10b,c shows how the radial position of cubes in the flat orientation, with λ= 6 and
λ= 10, respectively, varies with their height. It is clear here that the effects of positioning the cube
off-centre in the cylinder are stronger than for a sphere. The radial distance of the cube from the
centre of the cylinder deviates more here, especially just before it detaches from the soap film,
which causes the cube to fall towards the wall of the cylinder. We also note that this effect is
stronger for the largest value of λ, where the deformation caused to the soap film is greater.

An indication of why wall effects are more prevalent for a cube compared to a sphere is offered
in figure 11. The angles that the soap film makes with the horizontal as it contacts the cube from
the left and the right are clearly different, which is not the case for the sphere. On the side of the
cube that is nearest to the cylinder wall (figure 11b), the soap film makes a smaller angle with the
horizontal than on the other side of the cube. As a result, there is a resultant network force that
drags the cube further towards the nearest wall. We also note that the unbalanced deformation of
the soap film also tilts the cube slightly, which indicates that the flat orientation is no longer stable
when the cube is positioned off-centre in the cylinder. The deformation is more symmetric for the
sphere, explaining why it deviates less from a vertical path compared to the cube.

Figure 10d,e shows that a cube in two different diagonal orientations also move towards the
nearest wall when positioned off-centre in the cylinder. Two different representations of the
diagonal orientation are considered: one in which the cube has a vertical face nearest to the wall
and the other where the cube has two slanted faces nearest to the wall. It is clear from figure 10d
that the effect the asymmetric deformation has on the motion of the cube is weaker for the first



16

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180533

...................................................

(a) (b)

Figure 11. Snapshots of simulations where (a) a sphere and (b) a cube (initially) in the flat orientation fall through a soap film
from an off-centre position in the cylinder, causing non-symmetric deformation to the soap film.

case than for the second diagonal orientation shown in figure 10e. When the cube has two slanted
faces nearest to the wall, the film between the object and the wall comes into contact with a
(horizontal) rounded edge of the cube. The angle the soap film makes with the horizontal plane
at this stage is close to zero, therefore it pulls the object towards this nearest wall with a large
network force. This is similar to what happens in figure 11b for the cube in the flat orientation.
The effect is weaker for a cube in the diagonal orientation in which it has a vertical face close to
the wall, and the film moves steadily along this face as the cube falls. This is also the case for the
cube in the rotated orientation (figure 10f ), where the attraction towards the wall is of a similar
nature to that experienced by a cube in the diagonal orientation considered in figure 10d. This
again demonstrates that the soap film navigates the surface of the cube in the rotated orientation
without deforming as much, especially leading up to detachment, where the forces are at their
largest.

4. Conclusion
We have presented the results of three-dimensional quasi-static simulations in which a light solid
object defined by a super-quadric equation falls under gravity through a horizontal soap film of
a bamboo foam. We discussed in detail how the soap film deforms as it attaches to the object and
prior to when it detaches from the object. The influence the soap film has over the final position
and orientation of the solid object has also been discussed in detail. In particular, we investigated
how the forces a soap film exerts on the object vary when we change the radius of the cylinder
container, and the shape, orientation and initial position of the object.

Varying the radius of the cylinder does not change the magnitude of the network force exerted
by the soap film on a sphere. However, the pressure contribution to the drag force increases
considerably with decreasing tube radius. For example, the pressure contribution to the drag
force on a sphere with radius rs = 1 is around half the network contribution when the radius of
the cylinder is rc = 1.5. When the radius of the tube is rc = 4, the pressure force is an order of
magnitude smaller than the network force. Thus, the downward motion of an object is slower in
a foam contained in a thinner tube, meaning that the soap film can manipulate the position and
orientation of the object for longer before detachment occurs.

It is clear that the shape of the object is pivotal in how the soap film deforms and the resulting
forces that it exerts on the object. We found that both the network and pressure drag force exerted
on the object by the film increase with the shape parameter λ. This implies that a cube causes the
soap film to deform much more than a sphere. This is particularly true in the build-up to when the
soap film detaches from the object, where it becomes much more stretched for a cube than it does
around a sphere. In general, it takes the soap film more time to navigate surfaces with very high
curvature such as the rounded edges of our cubes, especially when those edges are adjacent to
flat surfaces that are perpendicular to the direction of the motion of the object. In these instances,
the shape of the descending object acts to keep the neck of the catenoidal shape of the soap film
wide enough to remain stable for longer.
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Another important factor that determines how a film interacts with a solid object is the
orientation of the object as it comes into contact with it. We considered many orientations of the
cube and investigated the deformation to the soap film and the forces it exerts on the object. For a
cube dropped centrally through the film, the flat orientation was the only stable orientation found,
while the diagonal and rotated orientations were meta-stable. In all three cases, the deformation
to the soap film remains symmetric around the centre-line of the cylindrical container, meaning
that the network and pressure torques exerted by the foam remain negligible throughout. The
deformation of the soap film is clearly different for these three orientations, in particular during
attachment and detachment and this has been explained using geometrical arguments. For other
initial orientations, the symmetry of the soap film deformation is broken, and therefore a non-
zero torque is exerted by the foam. This is such that a cube not initially in one of the three
aforementioned orientations is likely to be realigned by the horizontal soap film towards the
flat orientation. The major contribution to this realignment occurs when the forces are at their
greatest, that is as the soap film reaches the upper half of the object and before detachment.

Finally, we investigated the effect of positioning the descending object off-centre in the
cylindrical container. This also broke the symmetry of the soap film’s deformation, resulting in
the object being pulled towards the nearest wall of the cylinder by the soap film. This wall effect
was seen to be strongest for a cube in the flat orientation, for which the soap film is perturbed
the most, and weakest for a sphere or a cube in the rotated orientation for which a soap film is
perturbed the least.

We propose that our results can be generalized to predict what happens when a solid object
falls through a bamboo foam with many bubbles. Our results apply as long as the bubbles are
large enough so that the object is in contact with (at most) one film at any given time. Assuming
that an object free falls when it is not in contact with a soap film, we predict that a cube in the flat
orientation will descend through a bamboo foam slower than a sphere, or a cube in the diagonal
and rotated orientations. We also predict that if a cube falls down the centre of a bamboo foam,
then it will emerge at the bottom in the flat orientation, provided that it was not initially in the
diagonal or rotated orientations. This may not be the case if bubbles are small enough so that an
object can be in contact with more than one soap film at a time. We predict that a second film
contacting the object may resist its re-orientation as it falls down the centre of a bamboo foam, as
the two films would apply torques in opposite directions when contacting the object from above
and below, respectively.

We conclude that a bamboo foam may provide a good tool for precisely reorienting an object
that falls through it from a central position in the cylindrical container. However, a bamboo foam
does not provide good control over the motion of objects when they are positioned off-centre
in the cylinder as the objects fall towards the wall of the container. So to improve the control a
foam has over the motion of non-spherical objects, we would need to consider more complicated
ordered foams such as the staircase, twisted staircase or double staircase foams [15].

Future work may include an investigation of how the interaction between a soap film and
a solid object varies for other shapes such as ellipsoids, as well as the surface properties of the
object and the wetting film covering it. For the latter, the contact angle between the soap film and
the descending object would need to be varied, introducing the possibility of including frictional
forces into our model. It would also be interesting to investigate how the interaction between
foams and solid objects varies with the choice of ordered or disordered foams, of different foam
wetness and polydispersity.
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