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Abstract

The fundamental physical description of the Universe is based on two theories:

Quantum Mechanics and General Relativity. Unified theory of Quantum Gravity

(QG) is an open problem. Quantum Gravity Phenomenology (QGP) studies QG

effects in low-energy systems. The basis of one such phenomenological model is the

Generalized Uncertainty Principle (GUP), which is a modified Heisenberg uncertainty

relation and predicts a deformed position-momentum commutator.

Relativistic Generalized Uncertainty Principle (RGUP) is proposed in this thesis,

which gives a Loerentz invariant minimum length and resolves the composition law

problem. RGUP modified Klein–Gordon, Schrödinger and Dirac equations with QG

corrections to several systems are presented. The Lagrangians of Quantum Electro-

dynamics for the gauge, scalar, and spinor fields are obtained. The RGUP corrections

to scattering amplitudes are then calculated. The results are applied to high energy

scattering experiments providing much needed window for testing minimum length

and QG theories in the laboratory.
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Chapter 1

Introduction

“If I have seen further it is by standing on the shoulders of Giants.”

“Letter from Sir Isaac Newton to Robert Hooke” – Isaac Newton 1675

1.1 Need for Quantum Gravity

Almost every physical phenomenon in the Universe can be described by two fun-

damental theoretical frameworks: Quantum Mechanics and General Relativity. These

theoretical frameworks contain the theories and models that describe matter and its

fundamental interactions, and predict many experimentally observed results. In or-

der to put the results presented in this thesis in the proper context, this section will

provide a basic introduction to the nature of the basic principles of those frameworks.

1.1.1 Quantum Mechanics

Quantum Mechanics (QM) describes the interactions between atoms, molecules,

elementary particles such as electrons, muons, photons, quarks and their anti-particles

at very small scales, of the order of 10−10 − 10−19 m.

The birth of QM is credited to Max Planck in 1901 with his hypothesis of quanta

in the spectrum of black body radiation [1]. Similarly to Rayleigh in 1900 [2], Planck

assumed that the black body is composed of many oscillating atoms and postulated

that energy is absorbed and emitted through electromagnetic radiation. Planck pos-

tulated that the emission and absorption of energy happens in fundamental portions

1



1.1. NEED FOR QUANTUM GRAVITY

of energy E, called quanta

E = hν , (1.1)

where ν is the frequency of the photon associated with each quantum, and h =

6.626 × 10−19J· is the Planck constant. Additionally, he postulated that the energy

of the oscillators comprising the black body can only take discrete values En

En = nhf , (1.2)

where n is an integer quantum number, f is the frequency of the oscillator, and h is

Planck’s constant.

The spectral energy distribution derived by Planck fit the experimental results

exceptionally better than its predecessors. While previous models fit well to a partic-

ular frequency range of the spectrum and did not match anywhere else, Planck’s law

fit the experimental data throughout the entire observed frequency range. Further

confirmation of Planck hypothesis was provided by A. Einstein in 1905 with the ex-

planation of the photoelectric effect [3]. The following years provided further strides

in the development of Quantum Mechanics: by N.Bohr in 1913 with the presentation

of Bohr’s model of the atom [4, 5, 6]; by L. de Broglie in 1925 with the proposition

of the wave-matter duality [7]; by Dirac in 1928-1930, with the discovery of antimat-

ter particles [8, 9]. Although the set of influential papers presented above lays the

foundations of QM, there are many other works with comparable impact on the QM

description of the world.

For example, the main tool of QM was provided by E. Schrödinger in 1926 by an

equation that bears his name

i~
∂ψ(x, t)

∂t
=

[
− ~2

2m
∇2 + V (x)

]
ψ(x, t) , (1.3)

2



1.1. NEED FOR QUANTUM GRAVITY

where ~ = h
2π

is the reduced Planck constant, V (x) is the potential function and ψ(x, t)

is an object called a wave-function, which is related to the probability of finding the

particle at a particular location at a given time [10].

One of the main differences between quantum and classical mechanics is the fact

that observables in QM, such as position x̂, and momentum p̂, are described by

operators acting on the Hilbert space of states. A direct consequence of this fact is

the Heisenberg Uncertainty Principle (HUP). The Uncertainty Principle was proposed

by W. Heisenberg in 1927 [11] as a physical argument based microscope thought

experiment. Later Schrödinger was the first, showed that the Heisenberg relations

can be derived quite generally from non-commutativity, and can be expressed as an

inequality between the uncertainties of measurements of the position and momentum

operators

∆x∆p ≥ 1

2
|〈[x, p]〉| or ∆x∆p ≥ ~

2
. (1.4)

One can easily see from the above that a physical experiment that simultaneously

measures the eigenvalues of position and momentum operators with infinite precision

cannot exist. However, on further examination, one can see that both uncertainties

can be made arbitrary small by making the other arbitrary large. Therefore, if one

assumes that the uncertainty in position and momentum has its origin in their non-

commutativity as operators, then one can conclude from Eqs.(1.4) above that [x, p] =

i~. Similar conclusions can be drawn for any two self-adjoined operators A and B and

their commutator [A,B]. The discovery of QM and HUP changed the way physicists

view the world, mainly by showing that physical systems are not deterministic but

probabilistic.

The principles of QM can be found among the foundations of Solid State Physics

[12], Thermodynamics [13], Optics [14], Quantum Chemistry [15] and many other

fields of study. Perhaps the most important application of QM is when it is applied

to Classical Field Theory to formulate the theoretical framework of Quantum Field

3



1.1. NEED FOR QUANTUM GRAVITY

Theory (QFT). The most prominent example of a model formulated with the use of

QFT is the Standard Model (SM) of particle physics. SM successfully describes the

behaviour of elementary particles under three of the four fundamental interactions of

nature, namely electromagnetism, weak and strong nuclear forces. Additionally, SM

successfully predicts the way leptons and weak bosons acquire mass. SM is responsible

for the prediction and discovery the existence of a plethora of particles, the most recent

of which is the Higgs boson, theorized in 1964 simultaneously by three independent

groups: R. Brout and F. Englert; P. Higgs; G. Guralnik, C. R. Hagen, and T. Kibble

[16, 17, 18] and observed by the CMS experiment in LHC [19].

Despite its many successes, QM and its extensions such as the SM, cannot be

considered as the ultimate theory that describes the Universe. This is due to a few

shortcomings, namely the fact that they fail to describe the behaviour of elementary

particles under the influence of the last of the four fundamental interactions: grav-

itational interactions. This is a result of the treatment of spacetime as a fixed flat

background, which General Relativity teaches us is not the case, as shown in the

following section.

1.1.2 General Relativity

The behaviour of matter under the influence of the fourth fundamental force of

nature, namely the gravitational force, is described by the theory of General Relativity

(GR), proposed by A. Einstein in 1915 [20, 21]. GR was build on two postulates:

• Principle of Relativity: All frames of reference (including those that are accel-

erating) are equivalent with respect to the fundamental laws of nature. This

results in the speed of light c in a vacuum being the same for all observers,

regardless of the motion of the light source or observer.

• Equivalence principle: The weak principle states that the local effects of motion

in a curved space (gravitation) are indistinguishable from those of an accel-

4



1.1. NEED FOR QUANTUM GRAVITY

erated observer in flat space, without exception. Or in other words that the

gravitational and inertial masses are equal Minertial =Mgravitational.

The strong principle states that the outcome of any local experiment (gravita-

tional or otherwise) in a freely falling laboratory is independent of the velocity

of the laboratory and its location in spacetime.

The these two postulates form the base on which based on which in 1905 Einstein

formulated the precursor to GR, the theory of Special Relativity (SR) [22]. In SR,

Minkowski showed that space and time can be treated on an equal footing as coordi-

nates of a four dimensional spacetime. Additionally there exists a frame independent

maximum speed, namely the speed of light c. Taking this into consideration Einstein

formulated the transformation laws for vectors in spacetime known as already known

at the time as Lorentz–FitzGerald deformation hypothesis.

In contrast with QM, GR treats spacetime as a dynamical entity, interacting with

matter and energy. According to the Einstein equations, matter or energy curves

spacetime

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (1.5)

where the Greek letter indices are the spacetime indices that run from zero to three

ν, µ ∈ {0, 1, 2, 3}, Rµν is the curvature (Ricci) tensor, gµν is the spacetime metric, Tµν

is the energy-momentum tensor, Λ is a constant known as the cosmological constant,

and R = gµνR
µν is the curvature (Ricci) scalar. In turn, the curvature of spacetime

determines the dynamics of point-particles through the geodesic equation

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0 , (1.6)

where Γµαβ are the Christoffel symbols (first derivatives of the metric).

GR has been tested to a high degree of accuracy in astronomical and cosmological

observations, e.g. in the perihelion precession of the orbit of Mercury, gravitational

5



1.2. QUANTUM GRAVITY

lensing, gravitational red shift of light and the accelerated expansion of our Universe.

In fact, gravity is the only relevant interaction at large distances, and with the addition

of dark matter and dark energy it provides a satisfactory description of the contents

and evolution of the Universe from the beginning to its final fate.

1.2 Quantum Gravity

As discussed in previous sections, QM considers spacetime as a flat stationary

background, while GR considers it to be a dynamical object that interacts with matter

and energy. On the other hand GR fails to take into account the probabilistic nature of

observables described by QM. Therefore, one needs to come up with a new theory that

will give rise to QM and GR in their respective domains. Based on prior experience,

one hopes that a physical theory that encompasses both QM and GR, and describes

all fundamental interactions of matter will be a QFT.

GR describes the gravitational interaction as a classical field theory with the fol-

lowing action

S =

∫ [
c4

16πG
(R− 2Λ) + Lmatter

]√
−g d4x , (1.7)

where g = det(gµν), R is the Ricci scalar and Λ is the cosmological constant. The

equations of motion derived from this action are the Einstein equations Eq.(1.5).

One can notice, however, that unlike other QFTs the coupling constant of GR is

dimensionful, i.e. Newton’s constants G. The dimensionful coupling constant gives

rise of a length scale, and means that when one tries to quantize GR using the standard

methods prescribed in the framework of QFT, one runs into difficulties. In particular,

experimentally measurable quantities such as scattering cross-sections of processes

involving gravity, not unexpectedly turn out to be infinite. The infinite nature of

such results is common and is usually tamed by renormalization. The application of

renormalization techniques to perturbatively quantized gravity, on the other hand,

fail to obtain a finite measurable answer. Therefore, one can conclude that a new

6



1.2. QUANTUM GRAVITY

different approach to QG is needed.

Since its conception various the approaches and theories tacking the problem of

quantizing gravity have come to be known as theories of Quantum Gravity (QG).

Some examples of such theories include String Theory (ST), Loop Quantum Gravity

(LQG), and Doubly Special Relativity (DSR). These are just few of attempts to solve

this problem, all of which have met with various degrees of success. In the following

section the basic principles behind the best candidates for theories of QG are reviewed

.

1.2.1 String Theory

ST was originally developed in late 1960s as an attempt to describe the behaviour

of strongly interacting particles: hadrons such as protons and neutrons. In 1961, G.

Chew and S. Frautschi [23] discovered that the mesons make families called Regge

trajectories [24]. They noticed that there was a relationship between the hadrons

masses and spins. This relationship was later understood by Y. Nambu, H. B. Nielsen

and L. Susskind to be the relationship expected from rotating strings [25, 26, 27] that

there exists a correlation between the masses and spins of mesons, which is identical

to the relationship expected from rotating strings.

While working with experimental data, R. Dolen, D. Horn and C. Schmid devel-

oped some sum rules for hadron exchange. They found that in the data, there were

two peaks “stealing” from the background. The authors interpreted this as saying that

the t-channel contribution was dual to the s-channel one, meaning both described the

whole amplitude and included the other [28]. This result prompted G. Veneziano

to construct a scattering amplitude that had the property of Dolen–Horn–Schmid

duality, later renamed world-sheet duality [29]. Later C. Lovelace calculated a loop

amplitude, and noted that there is an inconsistency unless the dimension of the theory

is 26 [30].

7



1.2. QUANTUM GRAVITY

In 1969–70 Y. Nambu [31], H. B. Nielsen [32] and L. Susskind [33] they recognized

that the theory could be given a description in space and time in terms of strings. Up

to this point the theory contained only bosonic states. Then in 1971, P. Ramond added

fermions to the model, which led him to formulate a two-dimensional supersymmetry

[34]. Inspired by Ramonds work J. Schwarz and A. Neveu added another sector to

the fermi theory a short time later reducing the critical dimension to 10 [35].

Since then ST theory has seen a couple of revolutions, introducing concepts like

the AdS/CFT correspondence [36] and M-theory. These developments have elevated

ST from a model of strong interacting particles to one of the strongest candidates for

not only full theory of QG, but a Grand Unified Theory as well.

ST proposes that instead of point particles the world is comprised of one-dimensional

objects of finite length, the strings. These strings propagate in a D-dimensional

pseudo-Riemannian spacetime background called target space and described by the

Xµ coordinates. A point particle traveling trough time and space has a trajectory

or a world line. Similarly strings traveling through the target space “sweep” a two

dimensional surface called a world sheet. This world sheet geometry is described by a

world sheet metric hab, which is treated as a dynamical object in the theory, and acts

as a ground state around which all modes of vibration of the string oscillate. These

excitations of modes of oscillation of the string are the elementary particles.

The main purpose of ST is to consistently describe all interaction of matter with

in one unified theory. This goal cannot be achieved without the description of gravity

in a quantum framework.

To demonstrate that ST is a viable theory of quantum gravity one can consider a

calculation made by T. Yoneya, and J. Schwarz and J. Scherk [37, 38], and reviewed

in [39]. Considering the action for a closed string

S =
1

2α′

∫
d2σ

∑
i j µ

ηij
dX i

dσµ

dXj

dσµ
, (1.8)

8



1.2. QUANTUM GRAVITY

where α′ is the Regge slope, or inverse of the string tension, X i are the coordinates

of the worldsheet in the background spacetime, and σµ are the coordinates on the

worldsheet. This expression can be generalized from a flat background metric to an

arbitrary one. This generalization is done by substituting the flat spacetime metric

ηij with an arbitrary one defined by the coordinates of the background spacetime

ηij → gij(X) , (1.9)

where the indices i, j ∈ {0, 1, 2, . . . , D−1}, and D is the dimensions of the background

spacetime. Then one gets the following expression for the action

S =
1

2α′

∫
d2σ

√
−hhabgij(X)

dX i

dσa

dXj

dσb
. (1.10)

This is called Polyakov action and it was proposed by A. Polyakov in 1981 [40].

This action describes a two dimensional field theory as the two dimensional path

of the string through spacetime (worldsheet). By introducing a slowly varying field

background dilaton filed Φ(X), and imposing conformal (scaling) symmetry on the

worldsheet , one arrives at the following

S =
1

2α′

∫
d2σ

√
−h
(
habgij(X)

dX i

dσa

dXj

dσb
+ α′RΦ(X)

)
, (1.11)

where R is the Ricci scalar given by the metric gij(X), one can calculate the local

functionals for the coupling functions gµν and Φ. These functionals βgµν take the

following form

βgµν + 8π2gµν
βΦ

α′ = −Tmatter
ij + α′

(
Rij −

1

2
gijR

)
+O(α′ 2) . (1.12)

By imposing conformal symmetry on the worldsheet one can reduce the local func-

tionals to zero βgµν → 0, which effectively gives Einstein equations in 26 dimensions.

9



1.2. QUANTUM GRAVITY

This theory can then be compactified to the observed four dimensions.

So far it has been proven that the theory of gravity arises naturally in string

theory. To prove that it is a quantum theory let, one consider Eq.(1.10). With the

coordinate change u = τ + σ and v = τ − σ, where τ = σ0 and σ = σ1, the equations

of motion for the closed string are of the form

X i
L =

1

2
xi0L +

√
α′

2
αi0u+ i

√
α′

2

∑
n 6=0

αin
n
e−inu , (1.13)

X i
R =

1

2
xi0R +

√
α′

2
αi0v + i

√
α′

2

∑
n6=0

αin
n
e−inv , (1.14)

where X i
L and X i

R denote the left and right moving strings, and αin and αin are the

transverse oscillation modes of the string. To quantize these equations of motion one

substitutes αin and αin with operators, which obey the following commutation relations

[αin, α
j
m] = mδm+n,0η

ij , [αin, α
j
m] = mδm+n,0η

ij , [αin, α
j
m] = 0 . (1.15)

Through these operators a new set of operators can be defined

L
⊥
n =

1

2

∑
p∈Z

αinα
i
n−p , L⊥

n =
1

2

∑
p∈Z

αinα
i
n−p . (1.16)

These operators are known as Virasoro operators and they obey the following algebra

[L⊥
n , L

⊥
m] = (n−m)L⊥

m+n +
C
12

(n3 − n)δn+m,0 , (1.17)

where C is the central charge of the algebra, which commutes with every other operator

in the algebra. Virasoro operators L⊥
n obey the same algebra and commute with the

L⊥
n operators. For the closed string Virasoro operators acting on the physical states

|phys〉 must obey the following condition L⊥
0 |phys〉 = L

⊥
0 |phys〉 = 0. This condition

is known as the level-matching condition. Using the above operators and the level-

10



1.2. QUANTUM GRAVITY

matching condition one can express the mass for the excitation states of the closed

strings

M2 =
2

α′

(
N⊥ +N

⊥ − 2
)
, (1.18)

where N⊥ and N
⊥ are number operators which can be expressed in terms of the

Virasoro operators as follows

N⊥ = L⊥
0 − α′

4
pipi, N

⊥
= L

⊥
0 − α′

4
pipi . (1.19)

By applying this to Eq.(1.18) one sees that the first excited state will give massless

excited states. One can show that they further split into two massless vector fields

which correspond to electrodynamics, and a massless traceless tensor field, which is

the graviton, mediating gravitational interactions.

The most significant results of ST are also its weakest points. For example ST is

the only theory that successfully predicts the number of dimensions of the Universe

however the number of those dimensions is D = 26 for a bosonic string, D = 10 for

supersymmetric ST, and D = 11 for M-theory after taking into account the T-duality

and S-duality. However, there are only three spatial and one temporal dimension

experimentally observed so far. This leads to a discrepancy between the observations

and predictions. One of the solutions to this problem was proposed by using com-

pactification to make the extra dimensions compact and with a Calabi–Yau topology.

The Calabi–Yau manyfolds support massless, chiral spinors, so that realistic masses

and chiral fermions can be described in 4 dimensions. However, they’re not the only

possibility. A problem with this solution is the fact that there are more than 10100

different six dimensional Calabi–Yau manifolds, introducing an ambiguity known as

the vacuum selection problem.

This leads to the next point. String theory relies heavily on Supersymmetry [41]

for the inclusion of fermions in the standard theory. Supersymmetry is the symmetry

11



1.2. QUANTUM GRAVITY

connecting bosons and fermions, realized by introducing supersymmetric partners for

all the particles in the theory. This effectively makes ST very rich in terms of particles

that it predicts. However, all the experiments searching for these super-partners

have turned out empty handed. Thus ST remains a tentative theory, without any

experimental evidence to support it so far.

1.2.2 Loop Quantum Gravity

All theories describing the gravitational interaction agree with GR and its inter-

pretation that spacetime geometry and the force of gravity are closely related. Further

expanding on that line of reasoning, the quantization of gravity and the quantization

of the metric tensor are one and the same. In that case, as canonical quantum gravity

proposes, the spacetime metric should arise as an expectation value of a wave func-

tional from the Hilbert space of a background independent non-perturbative quantum

theory. The dynamics of the theory in this approach are governed by a Hamiltonian

operator, which in turn is given by the Wheeler–DeWitt equation [42]. LQG arises

as a way to address some of the probelms canonical quantum gravity has, such as the

fact that the Wheeler–DeWitt equation is ill defined in the general case.

The Hamiltonian formulation of GR used by LQG was developed in 1959 by

R. Arnowitt, S. Deser and W. Misner [43]. This formulation was obtained through

studying the evolution of canonical variables defined classically through a splitting

of spacetime on hypersurfaces Σ at a given point in time t ∈ R. The resulting

manifold is constructed as a direct product of the time and hypersurfaces M =

Σ × R. The Hamiltonian that one gets from Einstein-Hilbert action Eq.(1.7) in the

this construction, also known as ADM Hamiltonian, has the form

H = − c4

16πG

√
g

[
(3)R + g−1

(
1

2
π2 − πijπij

)]
, (1.20)

where (3)R is the Ricci curvature of the 3D hypersurfaces Σ, and πij is defined as

12



1.2. QUANTUM GRAVITY

follows

πij =
√

(4)g
(
(4)Γ0

pq − gpq
(4)Γ0

rsg
rs
)
gipgjq , (1.21)

where g = det(gµν). Note that all Latin indices signify spatial coordinates which run

through i, j, p, q, k, l ∈ {1, 2, 3}. In 1982, A. Sen successfully wrote the Hamiltonian

Eq.(1.20) in terms spinor fields [44]. Ten years prior in 1971 R. Penrose explored the

rise of space from a quantum combinatorial structure. This investigations resulted in

the development of spin networks [45].

The fundamental canonically conjugate variables of spinor gravity were identified

by A. Ashtekar in 1986 [46, 47]. This allowed for an unusual way of rewriting the

metric on three-dimensional spatial slices in terms of an SU(2) gauge field and its

complementary variable. In these variables the Einstein-Hilbert action written in the

form

S =

∫
d4x EµIEνJ

4F IJ
τσ εµντσ , (1.22)

where 4F IJ
τσ is the field strength tensor. This formulation introduces a set of four

orthogonal vector fields Eµ
I called a tetrad. These fields have the following properties

δIJ = gµνE
µ
I E

µ
J , and Eµ

I E
I
ν = δµν , (1.23)

where δIJ and δµν are the Kronecker delta function, and the indices µ, ν are the space-

time indices and behave like indices in regular curved spacetime, and the capital letter

indices I, J are internal indices which behave like a flat space indices. Then one can

write the metric in terms of those Ashtekar variables

(det g)gµν =
3∑
I=1

Ẽµ
I Ẽ

ν
I , (1.24)

where

Ẽµ
I =

√
det gEµ

I . (1.25)

13



1.2. QUANTUM GRAVITY

The choice of tetrads is not unique, and in fact one can perform a local rotation in

space with respect to the internal indices I, J without changing the metric. This

means that ADM Hamiltonian expressed in the Ashtekar variables contains a SU(2)

gauge symmetry/invariance. These tetrads transform under the SO(1, 3) group, i.e.

a local Lorentz transformation as

(Eµ
I )

′ = ΛJI (x)E
µ
J . (1.26)

The gauge connection associated with the local Lorentz symmetry is defined as follows

W IJ
µ = EI

ν∂µE
νJ + EI

νE
σJΓνσµ , (1.27)

where Γνσµ is the Levi-Civita connection. One can easily check that the Ashtekar

tetrads are invariant under the SU(2) group. The complex connection can be ex-

pressed in terms of the local Lorentz connection Eq.(1.27) as follows

4AIJµ [W ] = W IJ
µ − 1

2
iεIJKLW

KL
µ , (1.28)

with εIJKL the completely antisymmetric tensor. As evident from the expression above,

the SU(2) connection is self-dual. The covariant derivative is

DρEµI = ∂ρEµI − EµJ
4AJρI . (1.29)

The Yang–Mills field strength for the connection presented in Eq.(1.28) is

4F IJ
µν = ∂µ

4AIJν − ∂ν
4AIJµ + 4AIMµ

4AJνM − 4AIMν
4AJµM . (1.30)

The ADM Hamiltonian written in these Ashtekar variables makes possible the back-

ground independent quantization of GR. In particular a quantization was based on

14



1.2. QUANTUM GRAVITY

procedures developed for the study of Quantum Chromodynamics (QCD) in terms of

Wilson loops, developed by K. G. Wilson in 1974 [48]. These Wilson loops formed

a basis for the non-perturbative quantization of gravity. The fundamental element

of this basis is the Wilson loop of the connection 4AIJa , defined as the trace of the

holonomy of the same connection on a closed curve α

T [α] = −Tr [Uα] = Tr

[
P exp

(∮
α

A

)]
. (1.31)

Between 1988–1990, C. Rovelli and L. Smolin obtained an explicit basis of states

of quantum geometry [49, 50]. This basis of states turned out to be spin networks

developed by R. Penrose in 1971 [45], by exploring the rise of space from a quantum

combinatorial structure. Following this, in 1994, they showed that there are quantum

operators in the theory related to area, volume, and length. Furthermore, as discussed

in further sections, LQG shows that these operators have a discrete spectrum [51].

Further, during 2007-2008, J. Engle, R. Pereira and C. Rovelli found a covari-

ant formulation of the theory. This formulation is called spin foam theory. In this

framework one can obtain an expression for the Schwarzschild black hole entropy.

One can conclude that LQG is a robust candidate for theory of QG. However, just

as ST, LQG is a tentative theory without experimental data to support it. Further-

more, the question on how the theory couples to the Standard Model, and if there are

some constraints on the matter content of the theory, still remains unanswered.

As mentioned before, a unified theory of QG must reproduce the existing theories,

namely the Standard Model and GR. This remains one of the open problems of LQG.

1.2.3 Doubly Special Relativity

DSR is the most recent of the theories of QG reviewed here. A clarification worth

mentioning is that DSR is cannot be considered as a full fledged theory of QG as

ST and LQG. DSR is a model focusing on the kinematic aspects of the existence of
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1.2. QUANTUM GRAVITY

an additional Lorentz invariant scale. DSR considers effects on transformation laws

between observers and symmetries of spacetime. Unlike ST and LQG it does not

attempt to formulate a full theory of QG. Rather DSR tries to address some of the

problems which arise in the process of quantization. The reason DSR is discussed

here is to demonstrate the diversity of ideas existing in the QG family.

The main premises of the theory is was proposed by G. Amelino-Camelia, J.

Magueijo, and L. Smolin in 2000-2002. They attempted to modify special relativity

by introducing an observer-independent length [52, 53, 54, 55]. This was achieved

through the inclusion of an additional postulate in SR. Namely

• There is an observer independent scale which has the of dimension of mass κ

(or length λ = κ−1), identified with the Planck mass (or Planck length).

This postulate is the reason for the term “Doubly”, due to the fact there are two

observer independent scales, the speed of light c and Planck mass or Planck length,

which are defined as follows

MPl ≡
√

~c
G

≈ 2.2× 10−8Kg (1.32a)

lPl ≡
√

~G
c3

≈ 1.6× 10−35m . (1.32b)

These scales are generally considered to be the scales at which the QG effects become

relevant. It is assumed that the standard Special Relativity is recovered from DSR,

by taking the limit κ→ ∞.

Symmetries of spacetime in SR form a ten dimensional group, the Poincaré group,

with generators corresponding to rotations JI = (εIJKM
JK)/2, boosts KI = M0I ,
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1.2. QUANTUM GRAVITY

and translations Pµ, which have the following algebra

[P µ, P ν ] = 0 , (1.33a)

[P µ,M νρ] = i~ (P νδµρ − P ρδµν) , (1.33b)

[Mµν ,Mρσ] = i~ (ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ) . (1.33c)

This algebra has two operators which commute with every other operator in the

algebra. These operators are called Casimir invariants. They are PµP µ and W µWµ,

where Pµ is the operator of translations, and

Wµ ≡ 1

2
εµνρσM

νρP σ , (1.34)

is the Pauli–Lubanski pseudovector. The first Casimir, i.e. the square of the four-

momentum, is a manifestation of the Einstein’s dispersion relation

E2 − ~P 2c2 = m2
0c

4 . (1.35)

As a consequence of the introduction of a frame independent mass/length scale, one

can expect that there exists a general deformed algebra, which gives the Poincaré

algebra in the appropriate limits. Algebras which possess these qualities are generally

referred to as κ-Poincaré algebra. κ-Poincaré algebra is an Poincaré algebra deformed

in a Hopf algebra [56]. Hopf algebras arise in algebraic topology, where they originated

and are related to the H-space concept in group scheme theory [57]. One explicit
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expression of SOq(3, 1) algebra is given below

[Ji, Jj] = i εijkJk, [Ji, Kj] = i εijkKk , (1.36a)

[Ki, Kj] = −i εijkJk, (1.36b)

[Ji, Pj] = i εijkPk, [Ji, P0] = 0, (1.36c)

[Ki, Pj] = i δij

(
κ

2

(
1− e−2

P0
κ

)
+

1

2κ
~P 2

)
− i

1

κ
PiPj , (1.36d)

[Ki, P0] = i Pi . (1.36e)

Since it turns out that the action of symmetry generators must be deformed in DSR,

one may refer to the theory as “Deformed Special Relativity”. The modified dispersion

relations derived from the algebra presented in Eq.(1.36a) has the following form

κ2 cosh
P0

κ
−
~P 2

2
eP0/κ = m2

0c
4. (1.37)

One can easily see that this dispersion relation is no longer linear in terms of the

square of the momentum. This leads to the fact that the action of the κ-Poincaré

group is not linear as well. When one considers two particles A and B

Λ(PA + PB) 6= Λ(pa) + Λ(pb) , (1.38)

where Λ are the deformed generators of the Lorentz transformations. The implications

of the above are known as the Composition law problem1. The Composition law

problem arises when one considers many body system all parts of which are moving

at the same velocity. In that case the corrections to the total energy and momentum

of the system depends on the number of small bodies it comprised by. Therefore,

the magnitude of the QG correction rises are discussed and shown in the Appendix

A. Additionally it can be shown that the κ-Poincaré structure is a non-associative
1Also known informally as The Soccer-ball problem.
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algebra, which leads to the following

(PA + PB) + PC 6= PA + (PB + PC) , (1.39)

which contradicts the experiments.

DSR and its Lorentz invariant mass/length scale, predict a dependence of the

speed of light on the energy it carries. This model is known as Rainbow Gravity

and provides an avenue for experimental tests of QG. Up to the accuracy of the

measurements, the experimental results do not agree with the model. However, with

the advancement of experiments and accumulation of data such effects are likely to

be found.

1.3 Minimum length and Quantum Gravity

One common aspect of all the theories mentioned above and many other theories

of QG, as explained in [58], is that they all predict a minimum measurable length.

In ST this length is the string length. In LQG the expectation value of the length

operator. And postulated Lorentz invariant fundamental scale in DSR. In order to

show the diversity of arguments supporting the existence of minimum length, this

section is a brief overview of how a minimum length arises in several different cases

in the context of QG.

A really simple case in which the concept of minimal uncertainty in position arises

when considering an ultra-relativistic particle, pc � mc2, for which one can ignore

the mass. Therefore E/c = p, which in turn leads to uncertainty in momentum

∆p = ∆E/c. Then the uncertainty relation for an ultra-relativistic particle can be

written in terms of its position and energy, as ∆x∆E ≥ c~/2. In this relation,

one sees that the uncertainty in position can be indefinitely small. In that case the

uncertainty in position can be made smaller than its Compton wavelength c~/E, i.e.
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∆x ≤ c~E−1. However this implies that its uncertainty in energy will exceed the rest

energy of the particle, contradicting the definition for a particle itself, as a localized

concentration of energy. This is because, as one knows, the definition of a particle

in QFT is an excited state of a field in particular region of space. Therefore, in the

attempt to infinitely localize a state in a region of space smaller than its Compton

length, the uncertainty in energy will exceed its rest mass, and one can no longer be

certain that there is indeed a particle in that region of space. From this argument

one can conclude that an experiment cannot measure the position of a particle with

accuracy more than its Compton wavelength. One sees that a minimum length scale

arises even when considering extremely simplified lines of reasoning.

1.3.1 Microscope thought experiments

Another argument presented by Hossenfelder in [59] that can further clarify and

support the existence of a minimum length, is constructed when one considers the fol-

lowing thought experiment. In order to measure the position of a target one bombards

it with photons and detects the scattered photons, an experimental construction also

known as Heisenberg microscope. There is an intrinsic uncertainty due to the random

nature of the direction of the scattering, given by ∆x ≥ ~/2∆p. However, there is

another factor that adds to the uncertainty: assume that the particle is attracted to

the photon by a Newtonian gravitational force (per unit mass of the target) equal to

l2Plcε/~r2, where ε is the energy of the photon, and r its distance from the particle.

The argument here is made under the assumption that the energy and matter den-

sity is not high enough to cause large curvatures. This force will cause the particle

to accelerate in the direction of the scattered photon, as result of which it travels a

distance l2Plε/c. Since the direction of photon scattering is unknown, this effectively

introduces a second uncertainty ∆x ≥ l2Pl∆p/~. Combining the two uncertainties,
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one gets

∆x ≥ max
(

~
∆p

,
l2Pl
~
∆p

)
≥ lPl , (1.40)

where lPl =
√

~G/c3 ≈ 10−35m is the Planck length. In other words, while one

needs photons with high energy to get a high spatial resolution, this will result in

a significantly greater gravitational interaction with the target, therefore producing

more uncertainty.

Therefore, a new uncertainty relation, which accommodates the existence of min-

imum length will give rise to the so-called Generalized Uncertainty Principle (GUP)

and a modification of the standard Heisenberg algebra. Since the goal is to eventu-

ally construct a covariant version of GUP, an extension of Eq.(1.40) to a generalized

time-uncertainty is made.

The properties of this can be explained by considering a similar thought experi-

ment with two clocks, which one would like to synchronize using photons. The accu-

racy of the synchronization will be determined by two factors: first, the uncertainty in

the emission of photons, according to the energy-time uncertainty relation, is ~/∆ε;

second, the gravitational interaction between the photon and the clock. According to

the Einstein equations, the photon will generate its own gravitational field. Assuming

that the clock is stationary before the interaction, and the radius of the interaction is

r, the duration of the interaction between the clock and the photon will be √
g00 r/c,

where g00 is the time-time component of the metric generated by the photon. It can

be shown that it will take the form of

g00 = 1− 4l2Plε

~cr
. (1.41)

This results in the following uncertainty in time measurement due to the gravitational

interaction

∆t ≥ 2l2Pl∆ε

~c2
√
1− 4l2Plε/~cr

≥ 2l2Pl
~c2

∆ε . (1.42)
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Therefore, the final uncertainty in the two synchronizing clocks will have the form

∆t ≥ max
(

~
∆ε

,
l2Pl∆ε

~c2

)
≥ lPl

c
. (1.43)

It is worth clarifying that these are low energy approximations and idealizations of

an exact corrections that a full theory of QG is expected to give.

1.3.2 Minimum length and field theory

As mentioned before, attempts to quantize GR using the methodology of QFT

produce non-renormalizable divergences, which has lead one to believe that the usual

quantization prescriptions cannot be applied to GR. However, these methods contain

a valuable insight into the quantum nature of gravity. Mainly the rise of a minimum

uncertainty in position or minimum length.

It is reasonable for one to believe that classical GR should arise as a low energy

limit of a larger theory of QG. If that assumption is true, one can conclude that a

theory of QG’s vacuum state should correspond to a classical solution of the Einstein

equations. For simplicity in this argument one chooses the vacuum state to be the

Minkowski spacetime. Additionally, one of the simplest quantum fluctuations of the

metric is considered i.e. fluctuations in its conformal factor. The quantization pre-

scription used can be found in [60]. The conformal fluctuations over a flat metric ηµν

will have the following form

gµν(x) = [1 + φ(x)2]ηµν , (1.44)

where φ(x) are conformally invariant metric fluctuations. The corresponding gener-

ating functional for the path integral for these fluctuations can be written as

Z =

∫
Dφ exp

(
−i
l2Pl

∫
d4x ηµν∇µφ∇νφ

)
. (1.45)
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Because of the quadratic nature of path integral, the above be evaluated in a closed

form, under the assumption that the conformal fluctuations behave like a scalar field,

giving rise to the corresponding probability amplitude [61]

A(φ) =

(
1

2πD2

)1/4

exp
(
− 1

2D2
φ2

)
, (1.46)

where

D2 =
l2Pl

4π2l2
, (1.47)

and l is the interval over which our measuring apparatus averages the conformal

fluctuations. More detailed version of the calculation can be found in [62, 63, 64, 65].

One can see from the above that for large averaging interval, i.e. l � lPl, the amplitude

of the conformal fluctuations A(φ) vanishes, effectively giving us a flat metric and

classical gravity. In other words, the conformal fluctuations of the metric occur only

at length scales close to the Planck length lPl.

However, to put a proper lower limit on the distance between two events, let us

consider two such events separated by a proper distance l(x, y). Using Eq.(1.44) the

probability of two events to be separated by that distance is given by

〈ds2〉 = 〈0| [1 + φ(x)2]ηµν |0〉 = lim
x→y

〈l2(x, y)〉 = lim
x→y

[1 + 〈φ(x)φ(y)〉]l20(x, y) , (1.48)

where l20(x, y) is the interval given by the flat metric ηµν . Using the usual rule of path

integral, this leads to

〈φ(x)φ(y)〉 = l2Pl
l20(x, y)

. (1.49)

It is evident from the above that if the proper interval between two events is smaller

than the Planck length, the fluctuations are no longer perturbative and the classical

limit cannot be reached. This effectively shows that Planck length lPl is the minimum

measurable length.
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1.3.3 Minimum length from String Theory

In order to understand how a minimal length arises from ST, one must first con-

sider one of its symmetries, namely the momentum-winding symmetry, also known as

T-duality. To understand T-duality one must consider a simple analogy.

Two string theories, one of which describes strings propagating in a spacetime

shaped like a circle of radius R. And another theory which describes strings prop-

agating on a spacetime shaped like a circle of radius proportional to α′/R. There

exists a correspondence between the two theories. They are equivalent in the sense

that all observable quantities in one description are identified with quantities in the

dual description. For example, the momentum of a string on spacetime with radius

R is quantized as

p = n~/R , (1.50)

where n is an integer. Respectively the energy of the string (the Kaluza-Klein modes)

will be

En =
c~|n|
R

. (1.51)

The same string can be wrapped around a circle m times and it will have energy (the

winding modes)

Ẽn =
~c|m|R
α′ . (1.52)

This duality between momentum or Kaluza-Klein modes and winding modes lead to

interesting implications. The Kaluza-Klein modes obey the Heisenberg uncertainty

relation ∆x ∼ ~/∆p, when the winding modes have a more interesting commutation

relation. One can qualitatively read the uncertainty relation for the winding modes

from Eq.(1.52)

∆p ≈ ∆E

c
≈ ~
α′∆x . (1.53)

This leads to an interesting result. In the low energy regime the strings obey the
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Heisenberg uncertainty relation. However, due to T-duality at high energies the

strings obey a different uncertainty relation. This led to the proposition of a Gener-

alized Uncertainty relation that works in both regimes [66, 67, 68], i.e.

∆x ≥ ~
2∆p

+ α′∆p

~
. (1.54)

The first term is the well known Heisenberg term and dominates when the momentum

is small, while the second one corresponds to the fuzziness introduced by ST and

dominates when one tries to localize the string. This form of the uncertainty principle

implies a global minimum in the position uncertainty ls ∼
√
α′. One can see that this

global minimum is the string length.

1.3.4 Minimum length from Loop Quantum Gravity

To understand how minimum length arises from LQG one must first study the

area and volume operators, studied in [69, 70]. In order to obtain the spectrum of

the area operator one needs to start by formulating the area operator in terms of

Ashtekar variables. The regularised classical area operator is defined as

[AS]
ε := kγ

∫
S

d2u
∣∣[P⊥

a ]
ε(u)[P⊥

b ]
ε(u)δab

∣∣ 12 , (1.55)

where the lower case indices denote spacetime a, b, c ∈ {0, 1, 2, 3} and the uppercase

indices I, J,K ∈ {1, 2, 3} denote the indices in the SU(2) manifold. The P⊥
a is the

projection of P J
a onto the normal of Σ, where P J

a is defined as follows

P J
a =

EJ
a

kγ
. (1.56)

The classical area operator shown in Eq.(1.55) is then promoted to quantum operator

acting on an eigenstate of the LQG Hamiltonian. One can show that the final form
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of the quantum area operator is

ÂS |s
~j
α,~m~n〉 = 4πγl2p

∑
v∈V (α)
v∈I(S)

∣∣∣∣∣∣
 ∑
e∈E(α)e∩v 6=∅

κ(e, S)Ŷ
(v,e)
j

2∣∣∣∣∣∣
1
2

|s~jα,~m~n〉 , (1.57)

where Ŷ (v,e) are functions defining the edges of the studied area. Studying this explicit

form of the quantum area operator, one finds that the smallest area eigenvalue, also

known as area gap, is given by

α0 = 2πγl2p
√
3 . (1.58)

This result has interesting implications. For example, it is easily noticeable that the

smallest eigenvalue of the area operator is proportional to the square of the Planck

length. This hints the existence of a minimum length scale in the Universe.

Attempts have been made to repeat the above line of reasoning in constructing

the classical expression for the length of a curve, in order to obtain the spectrum of

the length operator. The length of a curve in LQG is expressed as follows

l(c) =

∫ 1

0

√
gab(c(t))ċa(t)ċb(t)dt =

∫ 1

0

√
eIa(c(t))e

J
b (c(t))ċ

a(t)ċb(t)δIdt, (1.59)

where one expresses the metric in terms of Ashtekar variables

gab =
k

4
εaCDε

ef
b ε

ijkεiMN

PC
j P

D
k P

M
e PN

f

detP
. (1.60)

The smallest eigenvalue of the length operator proposed above cannot be obtained

through the methodology used for the area operator. Instead, a several of different

alternatives have been proposed. For example a different form of the length operator.

Alternative forms of the length operator can be found with the use of the Thiemann

identity [71]. Tikhonov regularization for the inverse V̂v,RS operator [72], in terms
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of other geometrical operators and the volume operator [73]. The eigenvalue of the

length of a curve operator was found to be

lmin =
(
8πγl2Pl

)1/2
, (1.61)

where γ is the Immirzi parameter. This implies the existence of minimum measurable

length. Furthermore, one can see that similarly to string theory the minimum length

found in LQG is proportional to the Planck length.

1.4 Summary

The physical theories of QM and GR were reviewed in section 1.1 and they were

shown to be wanting in regard to the question of quantization of gravity. This apparent

lack of consistency between QM and GR serves as evidence that a new and more

fundamental theory of nature is required. The lack of such theory at the moment has

left a vacuum in our understanding of the Universe. Numerous attempts at filling this

gap in understanding has lead to the development of the various theories of QG.

In an attempt to show the diversity of ideas, methods, assumptions and approaches

contained in the field of QG, section 1.2 reviews the most popular examples of QG

theories and their basic principles, interesting results and weaknesses. It is apparent

that there exists a commonality amongst all the theories of QG. Regardless of the

approach and initial assumptions considered by current theories, all of them have

something in common. They all predict some form of length or energy scale at which

our models of the universe break down and QG effects become relevant. A few of

the examples of minimum length arising from theories of QG are discussed in section

1.3. The diversity of ideas and methods which give the same result provides a robust

evidence for the existence of minimum length, and pose the question of how one goes

about experimentally proving its existence. The answer to this question is contained
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in the next chapter, where a brief introduction to the field of QG Phenomenology is

presented.
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Chapter 2

Quantum Gravity Phenomenology

What we observe is not nature in itself but nature exposed to our method
of questioning.

Physics and Philosophy – Werner Heisenberg

QG has been a subject of study for theoretical physicists for almost 70 years. So

far there has not been single experiment which supports or refutes any theory of QG,

although it is well known that in regions of extremely high curvature, classical GR

is bound to fail. Therefore, there must exist a (quantum) theory whose low energy

limit is GR. On the other hand, there is a possibility that such a theory doe not

exist and classical GR is an effective field. However, the search for such a theory can

be done in two ways: first, by considering the deep fundamental and philosophical

questions, for example renormalization, loss of unitarity, and the nature of spacetime

itself; and the second, by searching already existing experimental data or proposing

new experiments in order to find unobserved low-energy effects predicted by various

QG theories.

The second approach is known as Quantum Gravity Phenomenology (QGP). In

order to understand what the field of QGP is, one needs to first understand its name.

The first two words of its name, as presented in Chapter 1 stand for the different

theories and approaches taking on the task of quantizing gravity. The third part of

the name is phenomenology and according to the Oxford English dictionary is “the

division of any science which is concerned with the description and classification of
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its phenomena, rather than causal or theoretical explanation” [74]. Applying phe-

nomenology to physics, one makes models out of already existing theories and then

applies these models to current or future experiments, in search of new and interest-

ing phenomena. In other words, phenomenology bridges a gap between theory and

experiment.

Guided by extensive reviews [75, 76] the author of this thesis introduces the field

of QGP. The particular field of QGP is concerned with modeling effects of the quan-

tization of gravity and spacetime, and the phenomena that these quantizations imply.

QGP is a relatively new field of study, which has already produced interesting results

and constraints on some parameters and scales in which QG effects are relevant.

2.1 COW experiment

A precursor to the field of QGP was a work by Colella, Overhauser, and Werner

published in 1975 [77, 78]. This work examines the validity of the Schrödinger equation

i~
∂ψ(x, t)

∂t
=

[
− ~2

2m
∇2 +MG φ(~r)

]
ψ(x, t) , (2.1)

when describing the dynamics of matter with a wave function ψ(x, t) in the pres-

ence of the Earth’s gravitational potential φ(~r). Such models are in short called

Schrödinger–Newton models. The COW experiment uses neutrons due to the fact

that they have no charge and thus the effects of the gravitational potential are not

drowned by the electromagnetic field of the Earth. The experiment is designed to see

how their interference pattern is influenced by the presence of the Earths gravitational

field. The weakness of the effects of the gravitational interaction a single particle expe-

riences is mitigated by the large number of particles that form the interference pattern

and the overall effects of the gravitational fields is enough to induce observable effects.

The COW experiment and Newton-Schrodinger equation [79] prove that the Earth’s
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gravitational field coherently changes the phase of the neutron wave function.

The COW experiment is the first experiment explicitly proving that gravity has

observable effects on quantum systems. Further, the COW experiments show that the

effects of the gravitational force can be amplified using statistical systems to produce

observable results. However, the models use a Newtonian description of gravity, which

leaves much room for improvement.

By showing that gravitational effects are observable in quantum experiments,

Colella, Overhauser, and Werner’s results inspired further attempts to improve the

models and experiments. Their results laid the foundation for the development of the

field of QGP.

The COW experiment gives rise to another interesting question about the scale

on which QG effects will be relevant. In chapter 1, the most promising candidates

for a theory of QG were presented. In section 1.3 it was shown that they share a

parameter, namely the minimum measurable length scale. The minimum length scale

is assumed to be of the order of Planck length

lPl ≡
√

~G
c3

≈ 1.6× 10−35m. (2.2)

The energy domain in which effects described by QG theories will be dominant is

energies of the order of the Planck energy

EPl ∼ 1019GeV . (2.3)

Although current experiments are still orders of magnitude away from probing such

high energies, analogous to the COW experiments it is reasonable to expect that

there will be some low energy artefacts of the QG effects which show up in current

experiments. In the following chapter a few of the systems that show the most promise

in providing experimental evidence of QG effects are discussed.
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2.2 The analogy with Brownian motion

One of the hypotheses about quantum spacetime is that space and/or time is

discrete at the Planck scale. In order to directly confirm such hypothesis one needs

an experiment that can probe spacetime at extremely high energy. However, it may be

recalled that the atomic hypothesis was confirmed by the observations of effects from

the random motion of atoms. This was the great work by Einstein on Brownian motion

in 1905 [80]. This motion typically consists of random fluctuations in a particle’s

position inside a fluid. The motion is a result of the collisions between the molecules

of the fluid and the Brownian particle. Importantly, the statistical nature of the

motion of the atoms and the large number of collisions per second 1014 acting as an

amplifier allowed the resulting Brownian motion to be observed at scale 10 orders

of magnitude larger than the atomic length scale. Therefore, something similar can

happen for QG: QG effects may be manifest at 10 or 15 orders of magnitude higher

than the putative QG scale (the Planck scale). This is what makes QGP an attractive

option for exploring and detecting QG effects at lower (accessible) energy scales and

thereby strengthen or refute a theory of QG.

Analogously to the quantum hypothesis and Brownian motion, the effects of dis-

creteness of space and/or time on a fundamental level are expected to show up in

random processes. For example, fluctuations on the propagation of light or kinemat-

ics of elementary particles.

Discreteness of spacetime, however, is not the only effect that can influence stochas-

tic processes and thus have an influence in well studied classical systems. In fact, there

exists a conjecture that gravitons in a squeezed vacuum state will introduce metric

fluctuations. To illustrate the argument one must consider a metrics of the following

form

ds2 = dt2 − dx2 + hµνdx
µdxν , (2.4)

where hµν is a tensor representing the metric fluctuation. The interval between two
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events in that case can be written as

σ(x− x′) = σ0 + σ1(hµν) +O(h2µν) , (2.5)

where σ0 = 1/2(x − x′)2, and σ1 is the first order shift in the distance. The metric-

averaged retarded Green’s function for a massless scalar field becomes [81]

〈Gret(x, x
′)〉 = θ(x− x′)

8π

√
π

2 〈σ2
1〉

exp
[
− σ2

0

2 〈σ2
1〉

]
, (2.6)

where θ(x − x′) is the generalized theta function. One can see that the averaged

retarded propagator for the scalar field is a Gaussian function which is nonzero both

inside and outside of the classical light cone. As one knows the speed of light is the

slope of the light cone. According to Eq.(2.6) the light cone seems to fluctuate around

the classical one. Therefore the speed of photon propagation fluctuates around the

classical speed of light [81]. Since by its very nature noise is a random process present

in all physical experiments, it is reasonable to expect the random effects of quantum

gravity to contribute in the noise of the incredibly sensitive interferomters used to

measure gravitational radiation [82, 83].

An important study of the noise of such detectors was presented by P. Bosso in

2018 [84]. In his work P. Bosso explores effects due to the existence of minimum length

on the shot noise present in LIGO experiment. He concludes that the corrections to

the noise are 109 times smaller than the shot noise itself. That result effectively puts

an upper bound on the scale on which QG effects are expected to show up.

2.3 Symmetries of spacetime and large extra dimensions

As discussed in a previous chapter a common feature that some QG theories share

is the existence of minimum measurable length proportional to the Planck length.

Therefore, QG effects are relevant on very high energy scales. It is important to note
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that length itself is not a Lorentz invariant entity. Furthermore, the classical spacetime

symmetries do not account for the existence of such length. Thus, most theories of QG

propose that at Planck scales the fundamental symmetries of spacetime introduced

by SR, such as homogeneity2, isotropy3, and the fact that spacetime is continuous

and smooth manifold, are either violated, modified or generalized.

According to SR there is one frame independent scale that governs the transfor-

mation laws between observers, i.e. c the speed of light. These transformations form

the Poincaré group and its subgroup, the Lorentz group. Therefore, one can say that

the symmetries of a flat spacetime are governed by the speed of light.

If one introduces additional scale or structure in a flat spacetime, its symmetries

will be accordingly affected. This can be seen by studying Planck-scale discretization

of spacetime proposed by ’t Hooft in 1996 [85]. Continuous symmetry transformations

such as the Lorentz transformations are clearly incompatible with a discrete network

of points. Lorentz symmetry is also often at odds with spacetime non-commutativity

or fuzziness. Spacetime non-commutativity introduces a minimal measurable length

similarly to the HUP. In particular, the non-commutativity and minimum length scale

[86] affect the laws of transformation between inertial observers. The infinitesimal

symmetry transformations are actually described in terms of the language of Hopf

algebras [56, 87], rather than by the Poincaré algebra. In a large number of recent

studies of non-commutative spacetimes it has indeed been found that the Lie-algebra

formed by the Poincaré symmetries is either broken to a smaller Lie algebras or

deformed into Hopf-algebra [88, 89]. This allows for the rotations operators to remain

unchanged as well as momenta operators to remain commutative.

The nature of spacetime and Lorentz symmetry, and in particular its violation will

impact QM and its extensions too. According to QFT, Lorentz symmetry is closely

related with CPT symmetry, which stands for: charge conjugation (C); parity trans-
2The laws of physics are the same at every point in spacetime.
3There is no preferred direction in spacetime.
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formation (P); and time reversal (T). So a QG theory that violates Lorentz symmetry

is expected to break CPT symmetry. Theories utilizing generalizations of the Heisen-

berg uncertainty relation or ones modifying the Einstein dispersion relation usually

modify the Lorentz generators as well. Due to this that will violate CPT symmetry

and in turn Lorentz covariance. In modeling of systems with modified symmetries

of spacetime, one can use effective field theories with added Lorentz violating terms.

For example, one can consider the following modified dispersion relation

E2

c2
− p2 = m2c2 +

N∑
n=1

η(n)
pn

(MPlc)n−2
, (2.7)

where η(n) is dimensionless parameter which is used for fixing the theory. With the

terms within the summation in the RHS are additional ones to the standard relativis-

tic dispersion relation. This modification is similar to that proposed in DSR theories.

Using the Lorentz violating modified dispersion relation Eq.(2.7), one can derive mod-

ifications of the reaction thresholds for particles in Ultra-High-Energy Cosmic Rays.

The reason one uses reaction thresholds is that they rely not on the corrections for

the total energy of the particle but on its mass. Therefore the terms violating the

Lorentz symmetry become relevant when they are of the order of magnitude of the

mass of the heaviest particle.

This effectively sets a threshold for the critical energy

Ecr ∼
(
m2Mn−2

Pl

)1/n
, (2.8)

where m is the mass of the heaviest particle in the decay. Above the critical energy

Ecr Lorentz violationg effects are expected to show up.

Considering an effective field theory at energies close to Ecr, one can calculate

cross-sections for the interactions involving Ultra-High-Energy Cosmic Rays. Com-
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paring it to the unmodified case one can obtain the following bounds on η,

− 10−3 ≤ η ≤ 10−6 (2.9)

where η is considered to be the same for all terms in Eq.(2.7).

Another hypothesis is that the principle of relativity is not obeyed at the Planck

scale EPl, and therefore there is a preferred state of motion and rest. If SR is violated

the speed of light would be no longer an invariant. One can then look for a variation in

c proportional to E/EPl, where E is the energy of a photon. One looks for an energy

dependent speed of light of the form v = c(1 ± κE/EPl), where a is a dimensionless

parameter to be determined. This effect can potentially found in light coming from

astrophysical sources such as gamma ray bursts and supernovae. The reason for this

is the fact that even if QG effects are of the order of the Planck length ∼ 10−19GeV ,

the distance traveled by the photons acts as an amplifier. The stacking of these small

effects will result in a arrival time of a photon being offset by a few seconds. Thus far,

such an effect has not been observed, and so one must conclude that the parameter

κ� 1 [90].

The Fermi space telescope has detected a number of very highly energetic gamma

ray bursts bigger than what was previously expected. Furthermore, several of the

documented bursts show the higher energy photons (>GeV) arrive with a delay of

more than 10 seconds after the onset of the burst has been observed in the low energy

range (keV-MeV). It is still unclear what is the cause of this delay of the high energetic

photons. More statistics and further analysis will eventually allow the dependence of

speed of light on the energy of the photons to be put to the test. [91, 92].

The principle of relativity can be tested by using the prediction that very high

energy cosmic ray protons interact with the cosmic microwave background (CMB).

Such interactions were predicted to take place at an energy of above 1019 eV, and

cause the protons to lose energy. This leads to the so called Greisen-Zatsepin-Kuzmin
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(GZK) cutoff on the ultra high energy cosmic rays spectrum [93]. The above states

that cosmic ray protons coming from further away than 75 megaparsecs should not be

observed. The constraint on that distance is the mean free path for this interaction.

This prediction was confirmed recently by observations at the AUGER cosmic ray

detector [94].

The results presented here and other analyses as well [95] make it seem unlikely

the principle of relativity breaks down at Planck scales, at least at order E/EPl. The

results to date do however supports a more subtle hypothesis such as DSR [86, 54].

Additionally, there is a possibility that the principles of SR break down in a way that

can only be observed by experiments sensitive to effects of the order of (E/EPl)2.

The hypothesis that QG effects break P-symmetry has implications for observa-

tions of the CMB. It leads to predictions for a signal in the CMB spectrum which

would show up in correlations between the temperature fluctuations and certain po-

larization modes, called B-modes [96]. The Planck satellite is expected to probe this

effect.

A completely different category of models studies the possibility that quantum

gravitational effects could be much stronger than usually thought due to a modifica-

tion of the gravitational interaction at shortest distances. Such a modification occurs

in scenarios with large additional spatial dimensions, the existence of which is pre-

dicted by string theory, and has the consequence that quantum gravity could become

observable in Earth-based collider experiments, such as the Large Hadron Collider

(LHC).

If this should turn out to be a correct description of Nature, one would see the

production of gravitons and black holes at the LHC [97]. The gravitons themselves

would not be captured in the detector and would lead to a missing energy signal,

the missing particles having spin 2. Ideally, the distribution of decay products would

allow for the determination of the parameters of the model; the number and size of
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the extra dimensions. Black hole production and decay would be a striking signature,

and allow us to examine the fate of black hole information during the evaporation

process in the laboratory.

2.4 Strong gravitational fields

When talking about strong gravitational field one can not help but think of com-

pact objects such as black holes and neutron stars. It turns out that objects such

as these play a major role in the field of QGP. In particular thought experiments in

which the radius of the apparent horizon of a microscopic black hole is measured show

that the position-momentum uncertainty relation must be modified to allow for the

existence of minimum measurable length [98, 99].

Another avenue for the observation of QG effects is the detection of Gravitational

waves coming from merging black holes detected by the LIGO experiments. Due to

the methodology used, the observation of gravitational waves relies greatly on the

underlying theoretical model. In particular, GR shows that gravitational waves will

obey the usual Einstein dispersion relation. However, as mentioned above, many the-

ories of QG suggest that this dispersion relation is modified. Thus, if one models

Gravitational wave detection with this modified dispersion relations and then com-

pares the signal to noise ratio of the cases with and without QG correction, one find

the scale of such corrections.

The Cosmic Microwave Background (CMB) is another physical phenomenon which

can be used to test QG effects in strong gravitational fields. The energy density in the

early Universe suggests that the gravitational fields at this early stage of the evolution

of the Universe were very strong. Therefore, it is reasonable to believe that QG effects

amplified by the strong gravitational fields in the early Universe have been encoded

in the CMB. In light of some of the results presented in this work, the role of CMB

in the field of QGP will be mentioned again when future research and implications of
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the results are discussed in chapter 5.

2.5 Generalized Uncertainty Principle

In Chapter 1, it was discussed how minimal length and a minimum uncertainty in

position follow from different approaches to quantizing the force of gravity. Arguments

presented were based mainly on the assumption that at high energies used to probe

the small length scales would actually disturb the structure of spacetime with their

gravitational effects.

As mentioned before, a fuzzy spacetime gives rise to a minimum measurable length

similarly to the GUP. The modification of the HUP to accommodate for the existence

of minimum measurable length, instead of considering non-commutative spacetime,

is not a significant leap. In the 1995 paper by Kempf, Mangano, and Mann [100], the

authors apply the previously mentioned principles to QM. The particular form of the

generalized uncertainty relation has been proposed independently by ST [66, 67, 68]

and black hole thought experiments [98, 99]. The corresponding position-momentum

commutator is to be given by

[x, p] = i~(1 + βp2) . (2.10)

This particular commutator gives rise to an uncertainty relation of the type

∆x∆p ≥ ~
2
(1 + β(∆p)2) , (2.11)

more commonly known as Generalized Uncertainty Principle (GUP), where β is posi-

tive and independent of ∆x and ∆p, and β will have dimensions of inverse momentum

squared [100]. There are models utilizing negative β, however, in the following work

the author has c. It is easy to see that this uncertainty relation will give a mini-

mal uncertainty in position ∆x0 = ~
√
β. This minimum uncertainty in position is
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proportional to the Planck length, which as seen previously, can be expressed as a

combination of the fundamental constants in nature, namely G, c and ~. In fact it

is evident from Eq.(2.11) that there is a threshold below which, even if the uncer-

tainty in momentum is increased, the uncertainty in position will increase instead of

approaching infinity as HUP suggests.

One can naturally ask as to what happens to the Hilbert space representation

of QM in this case. In order of ensuring that the a minimum uncertainty in posi-

tion exists. One must generally require physical states to be normalizable, to have

well defined expectation values of position and momentum, and also well defined un-

certainties in these quantities. Furthermore the physical states in that case will be

constrained to the common domain of the symmetric operators x, p, x2, and p2.

By introducing GUP one introduces a minimal uncertainty in position ∆x ≥ ∆x0,

where ∆x0 is a non zero positive number. Therefore one can write the standard

deviation of the position operator

(∆x)2 = 〈ψ| (x− 〈ψ|x |ψ〉)2 |ψ〉 ≥ ∆x0 ∀ψ . (2.12)

Position eigenstates have zero uncertainty ∆x = 0, and therefore are infinitely localiz-

able. Similarly to QM, it naturally follows that the physical states are not eigenstates

of the position operator. Since the physical states all belong to the Hilbert space and

the eigentates of all self-adjoined oparators form an orthotormal basis in the Hilbert

space, it is easy to conclude that position operator is no longer self-adjoint, only sym-

metric. The symmetry of the position operator ensures that all position expectation

values are real.

Additionally, it is no longer possible to approximate eigenvectors by series of phys-

ical states with ∆x decreasing to zero. Therefore, according to all the reasons men-

tioned above, uncertainty relation of the type presented in Eq.(2.10) implies that the

Heisenberg algebra will no longer find a representation in the Hilbert space of position
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wave functions.

However, one can still define a quasi-position representation in which one defines

maximal localization states |ψml
ξ 〉, for which

〈ψmlξ |x |ψmlξ 〉 = ξ . (2.13)

The standard deviation of the position operator over such states is ∆x0. The momen-

tum p and position x operators acting on the quasi-position wave function gives

p · ψ(ξ) = tan(−i~
√
β∂ξ)√

β
ψ(ξ) (2.14)

x · ψ(ξ) =
(
ξ + i~β

tan(−i~
√
β∂ξ)√

β

)
ψ(ξ) . (2.15)

It follows from the above that the position and momentum operators x and p can

be expressed in terms of the multiplication and differentiation operators ξ and −i~∂ξ

which obey the canonical commutation relation. Additionally, in the limit β → 0 from

the quasi-position representation one recovers the usual position representation. How-

ever, the position operator defined in Eq.(2.15) is not diagonalizable nor symmetric

in any part of the domain of x2.

Note that the position spectrum in this case is not discrete. Space is a continuous

flat background, but with a measurable minimum. On the other hand, momentum

is also a continuum but does not have a measurable minimum or maximum. Equiv-

alently, the momentum eigenfunctions are Dirac delta functions in momentum space.

However, in [101] P. Bosso showed that a proper position representation is not possible

in theories with minimum length, due to the absence of position eigenfunctions.

Applying the methodology proposed [100] in to the standard case of linear har-
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monic oscillator, one can get a corrected energy spectrum as follows

En = ~ω
(
n+

1

2

)(
1

4
√
r
+

√
1 +

1

16r

)
+ ~ω

1

4
√
r
n2 , (2.16)

where En is the energy of the n-th level, and r = (2β~mω)−2.

Eq.(2.10) can be generalized to include N space dimensions

[xi, pj] = i~δij(1 + β~p2) , (2.17)

where the indices i, j, k ∈ {1, 2, 3, . . . , N} [100]. Because one would like to have the

Hilbert space representation for the momentum operators to remain the same, i.e.

to allow an infinite localization of momentum. The momentum operators must be

commutative. The position operators on the other hand, do not commute, and one

has the following commutation relation:

[xi, xj] = 2i~β(pixj − pjxi) . (2.18)

The authors of [100] have shown that the above non-commutativity of space is essential

to have a modification of the position and momentum commutator. Using the above

commutator one can derive the modified rotation generators

Lij =
1

1 + β~p2
(pixj − pjxi) . (2.19)

According to [102] it can be proven that for the above, the algebra of the rotation

group will be modified leading to interesting effects.

In conclusion, the existence of minimal length have implications for even the sim-

plest non-trivial case. Numerous studies have been conducted in this paradigm and

reinforced the above.
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2.5.1 Universality of Quantum Gravity effects

Gravity is a fundamental force and is universal; this means that it affects and

is affected by all systems which possess mass or energy. This is despite the extreme

smallness of the gravitational (or Newton’s) constant G which makes quantum gravity

effects normally too weak to be measurable. In their paper [103], Saurya Das and

Elias Vagenas argued that quantum gravity corrections can be estimated for any

system with a well defined Hamiltonian. Effects which result from quantum gravity

corrections of these systems are proportional to the Planck length squared l2Pl =

G~/c3. Thus far, it was discussed how a minimal measurable length and the modified

uncertainty relation arise in various theories and some of its implications. Here, some

of their potential experimental signatures in some well known quantum systems will

be reviewed.

The parameter β introduced in the previous sections can be written as a product

of two factors, an arbitrary dimensionless β0 used to fix the model and dimensional

1/(MPlc)
2 = l2Pl/~2, where MPl is the Planck mass. The dimensionless parameter

is often assumed to be of the order of unity, which means the minimum measurable

uncertainty in position is of the order of Planck length. In other words, the GUP

parameter can be written as

β =
β0

(MPlc)2
. (2.20)

However, instead of imposing such a limitation, one can obtain upper bounds on

β0 from experiments, as shown in [103]. A given value of β0 corresponds to the

existence of minimum length scale lmin =
√
β0lPl. This length scale cannot exceed

that corresponding to electroweak interaction (≈ 10−19 m), as otherwise it would

already have been observed, say in the Large Hadron Collider (LHC). This gives a

bound that β0 ≤ 1034.

As done in [104], one can consider the most general form of the position-momentum
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commutator

[xi, pj] = i~F (~p) , (2.21)

where F (p) is an arbitrary function of momentum. After an expansion of that function

in Taylor series one gets

[xi, pj] = i~
(
δij − β

(
pδij +

pipj
p

)
+ β2

(
p2δij + 3pipj

))
+O(β3, p2~p) , (2.22)

where β = β0/MPlc = β0`Pl/~, MPl = Planck mass, `Pl ≈ 10−35 m = Planck length,

and MPlc
2 = Planck energy ≈ 1019 GeV . It is evident from Eq.(2.22) that the position

and momentum operators are not canonically conjugate. Therefore one introduces a

pair of auxiliary canonically conjugate variables x0 and p0 for which

[x0i, p0j] = i~δij. (2.23)

The physical position and momentum operators then can be expressed as functions

of those auxiliary variables. An example of an explicit expression of the physical in

terms of the auxiliary variables is as follows

xi = x0i , pi = p0i
(
1− βp0 + 2β2p20

)
, (2.24)

where the x, p, x0 and p0 without an index or vector sign signify the expectation value

of the respective operator.

One can see from Eq.(2.22) that every correction to the commutator is of higher

order in momentum is multiplied by the same order of the coefficient β, which is very

small. Therefore in terms of these newly defined physical momentum operators, one

can write any general Hamiltonian. One can than expand the general Hamiltonian in

Taylor series with respect of β. The result is a leading order Hamiltonian proportional

to β0, plus perturbation terms proportional to βn where n ∈ {1, 2, 3, . . .}. In order of
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2.5. GENERALIZED UNCERTAINTY PRINCIPLE

illustrating this one can consider the correction terms up to n = 2

H = H0 +H1 +H2O(β3) , (2.25)

where

H0 =
p20
2m

+ V (t) and H1 +H2 = − β

m
p30 +

5β2

2m
p40 . (2.26)

The corrections to the Hamiltonian are corrections to the kinetic part of the Hamil-

tonian and they do not depend on the potential. Therefore, system with non-zero

kinetic energy will experience QG effects. Furthermore, one can use this methodology

to obtain QG corrections to any system with a well defined Hamiltonian.

One can apply this line of thinking to a quantum system such as the hydrogen

atom, and one finds the correction due to GUP effects for Lamb shift of the energy

levels [105].

The perturbation of the Hamiltonian for the hydrogen atom with GUP has the

following form

H1 +H2 = (4βm)

[
H2

0 + k

(
1

r
H0 +H0

1

r

)
+

(
k

r

)2
]
, (2.27)

where k is the fine-structure constant. The Lamb shift for the nth energy level, which

one can calculate from the leading order of the Hamiltonian is

∆En =
4β2

3m2

(
ln

1

β

)
|ψnlm(0)|2 . (2.28)

The GUP corrections for the Lamb shift can be obtained by taking the expectation

value of the perturbed Hamiltonian [106]. Comparing the leading term and the GUP

corrections one gets
∆E0(GUP )

∆E0

≈ 10β0
mE0

M3
Pl

. (2.29)
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The most recent experiments have not yet observed effects from the perturbation of

the Hamiltonian, therefore the GUP effects must be smaller than their uncertainty.

Using the accuracy of the most recent experiments, one gets the following upper bound

on the dimensionless parameter: β0 ≤ 1036. Similarly from the Landau levels of a

charged particle in magnetic field, one gets β0 ≤ 1050, while the potential barrier in

a scanning tunnel microscope (STM) yields the bound β0 ≤ 1021. More work needs

to be done in this direction, because QG theories tell that β0 should be of the order

of 1. Many other studies yielding corrections to the energy levels of various systems

have been conducted [107, 108, 109, 103, 110, 111].

Noticeably, the bounds on the β0 parameters are extremely large. However one

can see that the relative size of the GUP corrections as presented in Eq.(2.29) are

linearly proportional to the energy E0 and mass m of the studied system. This result

suggests that there are two ways one can improve on these bounds, based on the

parameters of the studied system. The first is to consider highly energetic systems,

such as electromagnetic scattering of accelerated particles, and the second arises from

studying more massive systems.

Additionally, it is expected that future experiments will improve on these bounds

by increasing the accuracy. Furthermore, in the present work by considering a frame

independent minimum length and relativistic generalized uncertainty principle, the

author was able to improve the bound on the β0 parameter by almost 10 orders of

magnitude. This persuades one that further study and development of the idea might

lead to promising new results.

2.6 Summary

Phenomenology is the branch of physics responsible for making models out of

already existing theories and then applying these models to current or future exper-

iments, in search of new and interesting phenomena. In chapter 2 above the field
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of QGP is introduced as a relatively new field which tries to close the gap between

current experiments and the family of theories attempting to quantize the force of

gravity.

In section 2.1 the COW models and experiments are introduced as a precursor to

the field of QGP. The experiment shows that the phase of a neutron wave function is

affected by the Earth’s gravitational field. Many consider the 1975 experiment to be

a precursor to the field of QGP [75].

In section 2.2 the author reviewed the similarly of QG corrections to the way

Brownian motion was detected at a length scale 10 orders of magnitude bigger than

the atomic radius. According to this analogy, low energy effects originating from

QG effects at Planck scale should be present in the noise of current high precision

interferometers.

Potential tests of the fundamental properties of spacetime close to Planck energies

is discussed in section 2.3.

Since this work is a phenomenological study of existence minimum measurable

length through the generalization of the Heisenberg uncertainty relation, much atten-

tion is paid to the GUP as a way of introducing minimum uncertainty in position to

quantum mechanical systems. In section 2.5 a brief discussion of some of the more

interesting consequences of the GUP effects is presented. Furthermore the author

presented evidence that the GUP approach to QGP is very general and can be ap-

plied to a wide array of quantum systems and effects. Lastly, experimental bounds

on the scale of the GUP parameters are put into place showing plenty of room for

improvement and prompting further study.
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Chapter 3

Relativistic Generalized
Uncertainty Principle

“Not only is the Universe stranger than we think, it is stranger than we
can think.”

� Werner Heisenberg, Physics and Philosophy: The Revolution in
Modern Science 1958

As seen from chapter 1, theories of QG, such as ST, LQG, as well as DSR, have

one thing in common: they all predict a minimum measurable length or a scale in

spacetime. This is in direct contradiction with the Heisenberg Uncertainty Principle

[11], since the latter allows for infinitely small uncertainties in position.

Chapter 2 discussed phenomenological approaches to QG. The majority of the

phenomenological studies dealing with the existence of minimum length and its ef-

fects on experiments use an extension of the Heisenberg uncertainty principle to a

new so-called Generalized Uncertainty Principle (GUP). The minimum length, nor-

mally considered to be of the order of Planck length, `Pl = 10−35 m, signifies the scale

at which QG effects would manifest. While this is a valid approach if one models

low energy systems described by QM, when considering applications to higher energy

scales one is faced with the problem that theories incorporating a minimum length

break Lorentz covariance, simply because a measured length is not a Lorentz invari-

ant quantity. The above mentioned Lorentz symmetry breaking implicitly implies

a special choice of a frame of reference, effectively bringing back the notion of an
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3. RELATIVISTIC GENERALIZED UNCERTAINTY PRINCIPLE

aether, to circumvent the results which, Einstein obtained in the Theory of Special

Relativity! Due to this difficulty, GUP models so far have mainly been considered in

non-relativistic context.

There has been a few attempts applying GUP to relativistic theories and quantum

field theory [112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,

126]. However, the minimum measurable length proposed by them is still not a

Lorentz invariant quantity. Furthermore, other difficulties such as the Composition

Law problem are met. The Composition law problem [127, 128, 129, 130], outlined

in Appendix A, arises when one considers a dispersion relation containing terms of

higher than second order in momentum. If one considered a system of a large number

of non-interacting particles, naturally one expects that the energy of the whole system

is equal to the sum of all the particles in it. However, when one considers a modified

dispersion relation of the form

D2(p) = E2 − ~p2 − η
E

MPl
~p2 + · · · = m2 , (3.1)

where η is a dimensionless numerical coefficient, and the speed of light is considered

to be one c = ~ = 11. The non-linear corrections to the Einstein’s dispersion relation

between energy and momentum arise from a choice of a non-trivial connection on

momentum space, P . In the case of plastic collision A+ B → C, the composition of

momenta takes the form

p(C)
µ =

(
p(A) ⊕ p(B)

)
µ
. (3.2)

The above relies on the assumption that there exist a nice set of coordinates on

the momentum space P , which allows for the expansion of the composition of two

momenta, (
p(A) ⊕ p(B)

)
µ
= p(A)µ + p(B)

µ − 1

MPl
Γ̃µ

αβ p(A)α p
(B)
β + · · · . (3.3)

Γ̃ denotes the connection coefficients on momentum space evaluated at the origin
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pµ = 0. The connection coefficients on momentum space Γ̃µ
αβ(0) is dimensionless.

One can write the dispersion relation as the usual quadratic term plus leading order

corrections. This is justified in the case of elementary particles, because even for most

energetic cosmic rays the ratio of their energies to Mpl is of order of 10−8 − 10−9, and

the higher order terms can be safely neglected.

When one considers a composite system of a huge number N of elementary non-

interacting particles with identical masses m and momenta pµ and obeying the same

dispersion relation shown in Eq.(3.1). Then, the total mass of the system is Msystem =

N m and its total momentum is Psystem µ = N pµ. Substituting this to Eq.(3.1) it can

be easily shown that

E2
system = ~P2

system +M2
system +Nη

Esystem

MPl
~P2

system + . . . (3.4)

After comparing Eq.(3.1) with Eq.(3.4) one notices that considering the composite

system makes the QG corrections grow linearly with the number of parts N , which

implies that QG should have been detected in statistical systems.

Presented in this chapter is a study proposing a Lorentz covariant or relativistic

GUP, which provides a frame independent minimum length and reduces to its familiar

non-relativistic versions at low energies. Furthermore, the symmetries of spacetime

expressed through the Poincaré group are modified in a way which preserves the

quadratic nature of Einstein dispersion relation. In this way the composition law

problem is avoided. The result of the study are summarized and published in [131].

3.1 Lorentz invariant minimum length

Evidently, from Eq.(2.17), while xi and pi are the physical position and momen-

tum, they are not canonically conjugate. Therefore, the expression of the connection

between the two operators becomes less straightforward. To remedy this in the fol-
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lowing calculations, two new 4-vectors, xµ0 and pµ0 are introduced, such that these

auxiliary variables are canonically conjugate. That is,

pµ0 = −i~ ∂

∂x0µ
, [xµ0 , p

ν
0] = i~ηµν . (3.5)

One can then make the assumption that the physical positions xµ and momentum pµ

are functions of the auxiliary ones xµ0 and pµ0 ,

xµ = xµ(x0, p0), pµ = pµ(x0, p0) . (3.6)

Operating under the assumption made in Eq.(3.6), one makes the Taylor expansion of

the two physical operators in terms of the auxiliary ones, using the following formula

T (x00, . . . , x
d
0, p

0
0, . . . , p

d
0) =

∞∑
n0=0

· · ·
∞∑

nd=0

∞∑
m0=0

· · ·
∞∑

md=0

(x00 − a0)
n0 · · · (xd0 − a0)

nd(p00 − b0)
n0 · · · (pd0 − bd)

nd

n0! · · ·nd!m0! · · ·md!(
∂n0+···+ndm0+···+mdf(x00, . . . , x

d
0, p

0
0, . . . , p

d
0)

∂x0n0
0 · · · ∂xdnd

0 ∂p0n1
0 · · · ∂pdnd

0

)
(a0, . . . , ad, b0, . . . , bd) , (3.7)

where f(x00, . . . , xd0, p00, . . . , pd0) is a general function of the auxiliary momentum and

position. The auxiliary position xµ0 and momentum pµ0 are non-commutative opera-

tors, which means that when taking the Taylor expansion one needs to be mindful

of their order. The formula for the Taylor expansion presented above in Eq.(3.7), is

then applied to the general form of the position and momentum operators given in

Eq.(3.6). Certain conditions applied to the position and momentum operators are

discussed in the following paragraphs.

Commutator between two momentum operators different from zero, introduces

“fuzzyness” in momentum space or minimum momentum uncertainty. Analogously

the case discussed in chapter 2 section 2.5 minimum uncertainty in momentum implies
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that no physical states are eigenstates of the momentum operator. Then the same

is true for the Hamiltonian or energy operator, as it is a function of the momentum

operator. If the Schrödinger equation is to be true, any physical state must be an

eigenstate of the Hamiltonian operator with the systems energy as an eigenvalue.

Therefore, if one wants to have well defined eigenstates and eigenvalues of the energy

operator one must make the following restriction on the momentum commutator

[pµ, pν ] = 0 , (3.8)

i.e. the physical momentum operators commutate with each other. In other words,

momentum eigenvalues exist and can be measured with arbitrary accuracy. From this

condition, a conclusion can be drawn that the physical momentum operator cannot

be a function of the auxiliary position, since

[f(x0, p0), g(x0, p0)] ≈
i~3

(lPl)2
[p0, p0] +

i~3

(MPlc)2
[x0, x0] + [x0, p0] +O(x20, p

2
0) . (3.9)

The auxiliary position-momentum commutator is never equal to zero. eTherefore one

can conclude that in order of the physical momentum operators to be commutative

they cannot be functions of the auxiliary position only of the auxiliary momentum.

The goal is to construct a Relativistic Generalized Uncertainty Principle (RGUP)

which gives Lorentz invariant or frame independent minimum uncertainty in posi-

tion. Therefore, our position operator must obey the Lorentz/Poincaré symmetries,

or equivalently the physical position and momentum operators must be four vectors

transforming under the Poincaré algebra. Therefore, terms in the Taylor expansion

containing any more or less than one free index must be zero. When all of the condi-

tions described above are met, the physical position and momentum operators reduce
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to infinite polynomials of the auxiliary variables

xµ(x0, p0) = C1 x
µ
0 + C2p

µ
0 + C3 x

µ
0x

ν
0x0ν + C4 x

ν
0x0νp

µ
0

+ C5 x
µ
0x0νp

ν
0 + C6 x

µ
0p

ν
0p0ν + C7 x

ν
0p
µ
0p0ν + C8 p

µ
0p

ν
0p0ν . . . (3.10a)

pµ(p0) = D1 p
µ
0 +D2 p

µ
0p

ν
0p0ν + . . . . (3.10b)

These infinite polynomials are truncated such that the coefficients multiplying every

term to have dimensions of up to inverse momentum squared. This condition leads

to the following

C8 = 0 . (3.11)

Which is in place due to the fact that every term in Eq.(3.10a) must have the di-

mensions of length, which means that C8 is proportional to ~/(cMPl)
4. Since the

calculations presented below are perturbative and are meant to serve as a phenomeno-

logical study, one can safely assume for all intents and purposes a term like this is

undetectable using current and near future experiments. Furthermore, due to the

commutativity of the auxiliary momentum operators the term proportional to C8 in

Eq.(3.10a) does have no input into the final expression of the position-momentum

commutator.

The spatial part of the commutator between the physical position xµ and phys-

ical momentum pν is computed and compared to the quadratic part of the general

GUP commutator Eq.(2.22). This allows one to draw conclusions for the rest of the

coefficients:

xµ = xµ0 − κγpρ0p0ρx
µ
0 + βγpµ0p

ρ
0x0ρ + ξ~γpµ0 , (3.12a)

pµ = pµ0 (1 + εγpρ0p0ρ) . (3.12b)

The dimensionality of the corrections in the Eq.(3.12a) above, was separated into the
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dimensional parameter γ, having the dimension of inverse momentum squared, and

the dimensionless parameters κ, β, εm and ξ in Eq.(3.12) above. The quantity γ is

defined as γ = 1
(MPl c)2

, which helps in clarifying the subsequent analysis. The final

form of the most general quadratic Relativistic Generalized Uncertainty Principle

(RGUP), allowing the existence of Lorentz invariant minimum measurable length, is:

[xµ, pν ] = i~ (1 + (ε− κ)γpρpρ) η
µν + i ~(β + 2ε)γpµpν . (3.13)

Assuming that the proposed modifications arise at the Planck scale, the dimensionless

parameters are normally considered of order unity. The minimal length which follows

from the algebra Eq.(3.13) is of the order of the Planck length 4. Note that Eq.(3.13)

reduces in the non-relativistic (c → ∞) limit to Eq.(2.17). Furthermore when one

takes the non-GUP limit (γ → 0) on top of the non-relativistic one obtains the

standard Heisenberg algebra.

One can recall that the classical position and momentum in SR are four-vectors

in spacetime and Lorentz transformations act on them as follows

X ′µ = ΛµνX
ν , (3.14)

P ′µ = ΛµνP
ν , (3.15)

where Λµν is an orthogonal matrix for which ΛT = Λ−1. The Minkowski metric ηµν

and the scalar product of any two four-vectors are invariant under the Lorentz trans-

formations.

In relativistic QM, position and momentum are promoted to operators and the

Lorentz transformations Λ are represented by a unitary operator U(pν ,Mρσ), i.e.

U∗ = U−1. Where pν is the generator of translation and Mρσ is the generator of
4The parameters used in [100] and [132] are related to the ones used here as follows: β1 = (κ−ε)γ

and β2 = (β + 2ε)γ.
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rotations of the Poincaré group. The position and momentum in this case transform

as follows

x′µ = U(pν ,Mρσ)xµU−1(pν ,Mρσ) , (3.16)

p′µ = U(pν ,Mρσ)pµU−1(pν ,Mρσ) . (3.17)

The operator U(pν ,Mρσ) can be expressed from the generators of the Poincaré algebra

as

U(pν ,Mρσ) = exp [iaνp
ν ] exp

[
i
ωρσM

ρσ

2

]
, (3.18)

where the coordinate system is translated by a vector aµ, and is rotated by ωρσ.

The position-momentum commutator transforms as follows

[x′µ, p′ν ] = U [xµ, pν ]U−1 . (3.19)

Substituting [xµ, pν ] for its expression as given in Eq.(3.13), one gets

[x′µ, p′ν ] = U {i~ (1 + (ε− κ)γpρpρ) η
µν + i ~(β + 2ε)γpµpν}U−1 (3.20a)

= i~
(
1 + (ε− κ)γp′ρp′ρ

)
ηµν + i ~(β + 2ε)γUpµU−1UpνU−1 (3.20b)

= i~
(
1 + (ε− κ)γp′ρp′ρ

)
ηµν + i ~(β + 2ε)γp′µp′ν . (3.20c)

Therefore, the commutator between position and momentum has the same form in

every frame. One can then safely conclude that every frame will observe the same

minimum measurable length.

According to Eqs.(3.12a) and (3.12b), one gets for the commutator between two

position operators

[xµ, xν ] = i~γ
−2κ+ β

1 + (ε− κ)γpρpρ
(xµpν − xνpµ) . (3.21)
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Eq.(3.21) is a direct relativistic expansion of a similar commutator between two posi-

tion operators in the quasi-position representation presented [100]. It is worth noticing

that in both cases one arrives at a non-commutative “fuzzy” spacetime. However, the

bigger issue is the fact that the above algebra does not close leading one to question

if spacetime can be described by a single algebra.

Utilizing the position and momentum expressions presented in Eqs.(3.12a) and

(3.12b) together with Eqs.(3.13) and (3.21), one can find the following relations be-

tween the parameters used in this work and the parameters used in [132]. Another

fact worth mentioning is that the last two terms in Eq.(3.12a) break isotropy of space-

time by introducing the preferred direction of pµ0 . Since this violates the principles of

relativity, in further calculations it will be assumed that β = ξ = 0.

3.2 Lorentz and Poincaré algebra

So far in this chapter relativistic expression of GUP with the corresponding Lorentz

invariant minimum length is formulated. However, a study of the effects of RGUP on

the symmetries of spacetime is required, especially due to the “fuzzy” non-commutative

nature of spacetime. In the process, it will be proved that the RGUP presented in

this work resolves the composition law problem.

In SR, the symmetries of spacetime are represented by the Lorentz algebra, re-

flecting the rotational symmetry or isotropy and the boost symmetry. The Poincaré

algebra combines isotropy and homogeneity. Since Lorentz algebra is a sub-algebra

of the Poincaré algebra, the first step is to formulate the Lorentz operators. The

generators of the Lorentz group are constructed using Eqs.(3.12a) and (3.12b), from

the following expression

Mµν = pµxν − pνxµ = [1 + (ε− κ)γpρ0p0 ρ] M̃
µν , (3.22)
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where M̃µν = pµ0x
ν
0−pν0x

µ
0 are the Lorentz generators constructed out of the canonical

variables x0 and p0. The auxiliary position x0, momentum p0, and the unmodified

Lorentz operator constructed out of them, M̃µν , are the generators of the standard

Poincaré algebra, presented below

[xµ0 , M̃
νρ] = i~ (xν0ηµρ − xρ0η

µν) , (3.23a)

[pµ0 , M̃
νρ] = i~ (pν0ηµρ − pρ0η

µν) , (3.23b)

[M̃µν , M̃ρσ] = i~
(
ηµρM̃νσ − ηµσM̃νρ − ηνρM̃µσ + ηνσM̃µρ

)
. (3.23c)

Which is the usual form of the Poincaré algebra for canonically conjugate position

and momentum.

One is now in a position to compute the Poincaré algebra for the physical op-

erators. The expression of the modified Poincaré algebra for the physical position

and momentum, and by extension the physical Lorentz generators, is given by the

following commutators

[xµ,M νρ] = [1 + (ε− κ)γpρ0p0 ρ][x
µ
0 , M̃

νρ] + i~2(ε− κ)γpµ0M̃
νρ , (3.24a)

[pµ,M νρ] = [1 + (2ε− κ)γpρ0p0 ρ][p
µ
0 , M̃

νρ] , (3.24b)

[Mµν ,Mρσ] = [1 + (ε− κ)γpρ0p0 ρ]
2[M̃µν , M̃ρσ] . (3.24c)

One can then express the operators xµ0 , pµ0 , and M̃µν in terms of the physical ones.

After series expansion and truncation to first order in γ, one arrives at the following
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commutators, expressing the physical Poincaré algebra

[xµ,M νρ] = i~[1 + (ε− κ)γpρp ρ] (x
νηµρ − xρηµν) + i~2(ε− κ)γpµMνρ , (3.25a)

[pµ,M νρ] = i~[1 + (ε− κ)γpρp ρ] (p
νηµρ − pρηµν) , (3.25b)

[Mµν ,Mρσ] = i~ (1 + (ε− κ)γpρp ρ) (η
µρM νσ − ηµσM νρ − ηνρMµσ + ηνσMµρ) .

(3.25c)

It is worth noting that the Lorentz algebra does not close on its own, due to the

addition of the RGUP correction. However, it is possible to close it by including mo-

menta, i.e., by considering the Poincaré algebra. Additionally, as assumed above the

physical momentum pµ still forms an abelian subgroup. From the algebra presented in

Eqs.(3.25), one can see that the Poincaré algebra has four quadratic operators which

commute with every other operator in the algebra, also known as Casimir invariants.

The four quadratic Casimirs are:

pµpµ and W µWµ (3.26)

pµ0p0µ and W µ
0 W0µ , (3.27)

where Wµ and W0µ are the physical and auxiliary Pauli-Lubanski pseudovectors de-

fined as follows

Wµ ≡ 1

2
εµνρσM

νρpσ (3.28)

W0µ ≡ 1

2
εµνρσM̃

νρpσ0 . (3.29)

Exploring spacetime symmetries as described by SR one can notice the Casimir op-

erators of the Poincaré group are related to Einstein’s dispersion relation [133]. Since

the RGUP modified Poincaré group has both the auxiliary momentum squared pµ0p0µ

and the physical momentum squared as its Casimir invariants, the dispersion relation
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for both the physical and auxiliary momentum are quadratic. Therefore, the formula-

tion of RGUP presented in this work completely avoids the Composition law problem,

and both the auxiliary and physical energies and momenta are summed up linearly

as they should.

However, only one pair of Casimirs, namely the ones presented in Eq.(3.26), corre-

spond to actual physical quantities like (mc)2. Since xµ, pµ, and Mµν are the physical

quantities one measures in an experiment, the physical momentum squared pρpρ must

give the physical quantity (mc2)2, so the Casimir operators that actually carry infor-

mation are pρpρ and W µWµ. The remaining ones are are a convenient mathematical

construction used for calculations. Calculations testing the associativity of spacetime,

momentum spacetime, and the Lorentz algebra in addition to explicit calculations for

the representations of the Poincaré algebra can be found in Appendix B.

Proceeding further and inspecting Eqs.(3.25), one notices that there exists a line

in parameter space, namely ε = κ for the following reason. The RGUP theory lying

on that line is non-trivial, in the sense it is a genuine GUP effect (distinct from HUP)

and gives rise to a Lorentz invariant minimum measurable length, yet it leaves the

Poincaré algebra unmodified . For these reasons, further calculations in this chapter

will be restricted to this line and the corresponding choice of parameters. Then the

RGUP algebra and the non-commutativity of spacetime following from Eqs.(3.13) and

(3.21) respectively, assume the following form:

[xµ, pν ] = i~ (ηµν + 2κγpµpν) , (3.30)

[xµ, xν ] = −2i~κγ (xµpν − xνpµ) , (3.31)

where in order to have a minimum uncertainty in position κ > 0 is required. The

commutation relations given by Eqs. (3.30) and (3.31) are distinct from the simplest

case of non-commutative topology, i.e. the “fuzzy” sphere. The way they differ is
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that the coordinates do not form a closed algebra, which makes defining a topology

difficult.

Notice that for any one-dimensional space, Eq.(3.30) above reduces to Eq.(2.10)

[100] and the quadratic part of Eq.(1) of [106] (up to an unimportant numerical

factor). It is interesting to note that algebras Eqs.(3.30) and (3.31) have similarities

to the ones proposed in [134]. In the following sections, a study of the applications

and phenomenological applications of the results above are presented.

3.3 Applications

One can easily check that for the case ε = κ, Eqs.(3.12a) and (3.12b) take the

following form,

xµ = xµ0(1− κγpρ0p0ρ) , (3.32a)

pµ = pµ0 (1 + κγpρ0p0ρ) . (3.32b)

As shown earlier, since now the definition of Mµν in terms of the physical position

and momentum, xµ and pµ, as well as the Poincaré algebra, remains unchanged,

the squared physical momentum pρpρ is a Casimir invariant, commuting with every

other operator in the group. The Klein-Gordon (KG) equation can be derived from

Einsteins dispersion relation. Additionally, according to SR, the dispersion relation

is related to the Casimir invariant of the Poincaré group. The KG equation can be

written in the following form

pρpρ = −(mc)2, (3.33)

or, in terms of the variables pµ0 ,

pρ0p0ρ(1 + 2κγpσ0p0σ) = −(mc)2 , (3.34)
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where m is the mass of the particle. Observe that using Eq.(3.5), the KG equation

now is a fourth order differential equation (as opposed to second order in case of

the standard KG equation) with four linearly independent solutions. However, in

spherical coordinates the presence of mixed-derivative terms (time-space derivatives

and space-derivatives on different coordinates) rules out analytical solutions [135].

Therefore, to reduce the order of the equation one can solve Eq.(3.34) as a quadratic

equation for pρ0p0ρ. Eq.(3.34) can be reduced to a KG-like second order equation for

p0ρp
ρ
0 with a modified left hand side (LHS). This is done by writing Eq.(3.34) in the

following form
pρ0p0ρ
2κγ

− (pρ0p0ρ)
2 − (mc)2

2κγ
= 0 . (3.35)

A term 1
(4κγ)2

is added and subtracted, in order to compleate the square. One then

gets (
pρ0p0ρ −

1

4κγ

)2

=
1

(4κγ)2
− (mc)2

2κγ
. (3.36)

The next step is to take the square root of Eq.(3.36). The result is the following

equation

pρ0p0ρ = − 1

4κγ
±

√
1

(4κγ)2
− (mc)2

2κγ
. (3.37)

Epand the LHS of Eq.(3.37) in Taylor series for the small parameter γ. The leading

order of such expansion must be (mc)2, which comes from an unmodified dispersion

relation. Expanding the right hand side (RHS) of Eq.(3.37) in Taylor series one gets

µ− =− 1

2κγ
+ (mc)2 + 2κγ(mc)4 +O

(
γ2
)
, (3.38)

µ+ =− (mc)2 − 2κγ(mc)4 +O
(
γ2
)
. (3.39)

It is easy to notice that the lowest order in the Taylor series expansion for the plus sign

solution (3.39) gives us the unmodified rest energy (mc)2 as the leading term. On the

other hand, it is clear that the leading term in Eq.(3.38) is of the order γ−2. Therefore,
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in the γ → 0 limit it gives us a solution with infinite mass and energy. Additionally,

one can see that Eq.(3.38) has the wrong sign in front of the mass. Therefore, the

solutions of Eq.(3.36) presented in Eq.(3.38) will be dismissed as nonphysical since

they do not replicate the solution of the unmodified KG equation in the low energy

limit. A GUP-corrected effective second order KG equation is then obtained from

(3.39):

pρ0p0ρ = − 1

4κγ
+

√
1

(4κγ)2
− (mc)2

2κγ
(3.40)

' −(mc)2 − 2κγ(mc)4 −O
(
γ2
)
, (3.41)

where the other solution has been discarded since it does not reduce to (mc)2 in the

γ → 0 limit. In this process, two of the remaining solutions of the fourth order

equation Eq.(3.34) are lost. As was shown in [106], including those solutions intro-

duced very small corrections, and therefore they can be ignored when conducting

phenomenological study. However, such an exclusion of solution is not considered in

the following chapters. Thus in chapter 4, the full form of the KG Eq.(3.34) equation

is considered when calculating the RGUP modified field Lagrangian.

The following three sections contain a study of the applications of the effective

RGUP modified KG Eq.(3.40) above, as well as the effective GUP-modified Dirac

equation for a number of quantum systems, which the author believes to be the best

candidates for manifestion low energy artefacts of QG effects.

3.3.1 Klein-Gordon equation

Writing Eq.(3.41) as an operator equation acting on the wavefunction Ψ and us-

ing Eq.(3.5), one obtains the following GUP-modified differential form of the Klein–
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Gordon equation up to O (γ2)

1

c2
∂2

∂t20
Ψ−∇2

0Ψ+
1

~2
[
(mc)2 + 2κc4γ2m4

]
Ψ = 0 . (3.42)

It is worth noticing that in the limit γ → 0, the above equation reduces to the standard

KG equation. Moreover, the solutions of the modified equation have the same form

as the standard one but with modified parameters [136, 137].

3.3.2 Energy spectrum for relativistic Hydrogen atom

The simplest model of the hydrogen atom has the energy spectrum given by con-

sidering the proton and the electron as two elementary particles interacting electro-

magnetically. In order to covariantly introduce the electromagnetic interaction in

systems described by Eq.(3.42), one must minimally couple the derivatives to the

four-potential Aρ. The procedure used and the discussions of its validity and merits

can be found in [138, 139], where the four-potential Aρ is coupled to the auxiliary

momentum p0µ, as follows
∂

∂x0ρ
→ ∂

∂x0ρ
+
ie

~
Aρ . (3.43)

This choice of minimal coupling given a theory which is locally gauge invariant allows

freedom of gauge choice. Therefore, for this particular application, the Hydrogen

atom nuclear potential in the Coulomb gauge was chosen

Aρ =

{
e

4πε0 r
, 0, 0, 0

}
. (3.44)

Minimally coupling Eq.(3.42) according to the procedure described above, one obtains

the GUP modified Klein-Gordon equation for the Hydrogen atom, namely

−
(
i
∂

∂t0
+ c

α

r

)2

Ψ− c2∇2
0Ψ+

c2

~2
[
(mc)2 + 2κγ(mc)4

]
Ψ = 0, (3.45)
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In the above, α = e2/4πε0~c is the fine structure constant. The solution of Eq.(3.45)

in spherical coordinates is of the form [140]

Ψnlm = Rnl(r)Ylm(θ, φ) e
−E0nlt/~ , (3.46)

where the Rnl(r) are spherical Bessel functions and Ylm(θ, φ) the spherical harmonics.

The energy levels for these solutions are given as

E0nl =
(
mc2 + κγm3c4

) [
1 +

α2

(n+ 1− η)2

]−1/2

, (3.47)

where

η =
1

2
±

√(
l +

1

2

)2

− α2, (3.48)

where positive sign predicts a much higher than observed binding energy. And the

minus sign recovers the standard Hydrogen atom spectrum from Eq.(3.47) in the non-

relativistic limit, with the identification N ≡ n+ 1− η for the hydrogen atom energy

level. Expanding Eq.(3.47) in powers of α2, one finds

E0N =
(
mc2 + κγm3c4

)
− α2 (mc2)

2N2

+
3α4 (mc2)

8N4
+

3α4 (κγm3c4)

8N4
− α2 (κγm3c4)

2N2
. (3.49)

The first two terms in the above expression correspond to the rest energy and GUP

corrections to the rest energy. The third term is the Schrödinger term, with the corre-

sponding relativistic correction (which vanishes in the c→ ∞ limit), GUP correction

(which vanishes in the γ → 0 limit) and the GUP + relativistic correction (which van-

ishes in the γ → 0 or c → ∞ limit) in the fourth, fifth and sixth terms respectively.

However, the corrected energy levels are corrections to E0, i.e. the 0th component

of the auxiliary momentum pµ0 . To obtain the corrections to the physical energy E,
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i.e. the 0th component of physical momentum pµ, one needs to use the appropriate

component of Eq.(3.32b), namely

E = E0 (1 + κγpρ0p0 ρ) = E0

[
1− κγ(mc)2

]
+O(γ4) , (3.50)

to obtain

EN =
(
mc2

)
− α2 (mc2)

2N2
+
α4 (mc2)

8N4
. (3.51)

As evident from the above equation, all GUP corrections, or in other words terms

proportional γ, vanish. It is important to clarify that the Casimir operator remains

modified. This result has implications for field theory as shown in Chapter 4. Fur-

thermore, considering the remaining two solutions of the fourth order equation (3.34)

may give rise to GUP corrections.

3.4 Schrödinger equation with relativistic and GUP correc-

tions

In relativistic QM one can use the KG equation to obtain relativistic corrections

to the kinetic energy in the Schrödinger equation. Such effects can be observed in the

fine structure of non-relativistic systems. Therefore, one can argue that even though

this chapter deals with relativistic QG effects. The fine structure of quasi relativistic

systems, cannot be ignored as a promising search for low energy QG effects.

In the following section one can find derived RGUP corrections to the relativisti-

cally corrected kinetic terms of the Schrödinger equation.

One must first derive the corrected Schrödinger equation from Eq.(3.41)

− E2
0 + c2~p20 + (mc2)2 + 2κγm4c6 = 0. (3.52)
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The above can be rewritten as

E0 =
√
c2~p20 + (mc2)2 + 2κγm4c6 , (3.53)

which can be further expanded to fourth order in ~p0 and second order in γ by using

Taylor series, and truncating the higher order terms

E0 = mc2
(
1 + κγ(mc)2

)
+

~p20
2m

(
1− 1

2
κγ(mc)2

)
− ~p40

8m3c2
(
1− 3κγ(mc)2

)
. (3.54)

Next, using Eq.(3.50), one can get the expression for the physical energy

E = mc2 +
~p20
2m

[
1− 3

2
κγ(mc)2

]
− ~p40

8m3c2
[
1− 4κγ(mc)2

]
, (3.55)

which consists of the rest mass, non-relativistic kinetic energy, relativistic and GUP

corrections.

Next, the operator version of Eq.(3.54), using E0 = i~ ∂
∂t0

and ~p0 = −i~~∇0, and

including a potential V (~x), yields the modified Schrödinger equation with relativistic

and GUP corrections

i~
∂

∂t0
Ψ(t0, ~x0) =

[
mc2

(
1 + κγm2c2

)
+

(−i~)2

2m

(
1− 1

2
κγm2c2

)
∇2

0

−(−i~)4

8m3c2
(
1− 3κγm2c2

)
∇4

0 + V (~x)

]
Ψ(t0, ~x0) . (3.56)

One observes that, although the GUP-induced effective reparametrization of the mass

amounted to no modifications of the Klein-Gordon equation, in this case there are

GUP corrections to the kinetic term, as well as to the relativistic corrections thereof.

It will be shown that these give rise to potentially measurable corrections in laboratory

based systems. Omitting the rest energy term, one applies the above equation to a

couple of problems.
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3.4.1 Corrections for a particle in a box

Using Eq.(3.56), one can write the Schrödinger equation with relativistic and GUP

corrections.

As it is the simplest case, the applications of the results presented above to physical

system begin by considering a 1 + 1-dimensional. The particular example chosen is

the particle in a box, with the standard potential presented below

V (x) =

 V0 for 0 < x < L,

∞ for x ≤ 0 ∪ x ≥ L.
(3.57)

Including the potential in Eq.(3.54), one obtains the Schrödinger equation for one

dimensional particle in a box plus small perturbations.

Consider the wave function for the unperturbed and non-relativistic (γ = 0, c →

∞) case

Ψn(t0, ~x0) =

√
2

L0

sin

(
nπ

L0

x0

)
e−iωn t0 , (3.58)

where L0 is the unmodified length od the box, and wn is the energy of the n-th exited

state. From Eq.(3.32a), one can read-off the physical dimensions of the box to be

L = L0(1 + κγ(mc)2 +O(γ4)) . (3.59)

The corrected spectrum of E0 is

E0n =

∫ L

0

d xΨ∗
[(

mc2 + κγm3c4 − 1

4
~2κγmc2∇2

)
− (−i~)4

8m3c2
∇4 +

3(−i~)4

8m
κγ∇4

]
Ψ , (3.60)

which simplifies to

E0n =
1

2m

(
nπ~
L0

)2 [
1− 1

2
κγ(mc)2

]
+

~4

8m3c2

(
nπ

L0

)4 [
1− 3κγ(mc)2

]
, (3.61)
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where the rest energy and a GUP correction to the rest energy terms are omitted, the

first term is RGUP correction to the Schrödinger equation and the and Schrödinger

term itself, the third term is just relativistic corrections and RGUP corrections to the

relativistic terms.

Using Eq.(3.50), one can translate this to the following expression for the physical

energy

En =
1

2m

(
nπ~
L

)2 [
1 +

3

2
κγ(mc)2

]
− ~4

8m3c2

(nπ
L

)4
. (3.62)

The first term corresponds to the non-relativistic energy with GUP-corrections, while

the last consists of relativistic corrections.

The results of this section can be applied to experiments measuring directly the

energy levels of quantum dots. Quantum dots are another name for the holes and

electrons propagating in a crystal lattice. The physical edges of the crystal are in

this case acting as the potential barriers. The dots are free to move inside the crystal

allowing the behaviour of the dots to be modeled like particles in a box.

Comparing GUP corrections to the unperturbed energy term found above and

equating these to the accuracy of experiments measuring the energy levels of single

quantum dot [141]:
∆En
En

=
2

3
κγm2c2 ∼ κ10−42 . 10−1 . (3.63)

From this, one gets an upper bound on κ

κ . 1041 . (3.64)

3.4.2 Corrections to the linear harmonic oscillator

Consider Eq.(3.54) with the harmonic oscillator potential

V (x) =
1

2
mω2 x2 . (3.65)
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This gives rise to the following E0

E0 =
p20
2m

+
1

2
mω2x20[1 + 2κγ(mc)2]− p20

4m

(
κγm2c2

)
− p40

8c2m3
+

3p40
8m

κγ. (3.66)

The annihilation and creation operators are defined as in [142]

x0 =

√
~

2mω
(a+ a†), p0 = −i

√
~mω
2

(a− a†). (3.67)

Treating the GUP corrections as perturbations, one now has

E
(1)
0n = 〈n|mc2 + κγm3c4 + κγ(mc)2

~ω
2
(a+ a†)2

+
~ω
8

(
κγm2c2

)
(a− a†)2

− ~2ω2

32mc2
(
1− 3κγm2c2

)
(a− a†)4 |n〉 , (3.68)

where |n〉 are the unperturbed states. For the first order correction in perturbation

theory, one obtains

E0n = ~ω
(
n+

1

2

)(
1 +

1

2
κγm2c2

)
− ~2ω2

32mc2
(
1− 3κγm2c2

)
[5n(n+ 1) + 3] . (3.69)

From this, using Eq.(3.50), one finds the following for the physical energy

En = ~ω
(
n+

1

2

)(
1− 1

2
κγm2c2

)
− ~2ω2

32mc2
(
1− 4κγm2c2

)
[5n(n+ 1) + 3] . (3.70)
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Similar to the calculations for Landau levels done in [103], one can use experiments

to put bounds on κ

∆En
En

= −3

4
κγm2c2 ∼ κ 10−44 . (3.71)

Equating this to the accuracy of direct measurements of Landau levels [143, 144], the

following bound on the RGUP parameter was placed

κ 10−44 ≤ 10−3 ⇒ κ ≤ 1041. (3.72)

It is worth noting that this is several orders smaller than what was obtained for a

quadratic GUP in [103]. This is due to the RGUP modifications to the relativistic

correction term to kinetic energy.

3.5 Dirac equation and GUP corrections

Starting from Eq.(3.40), working in the following signature {+,−,−,−} signature,

and considering the following Dirac matrices

τ 0 =

I 0

0 −I

 , τ i =

 0 σi

σi 0

 , (3.73)

one derives the following GUP-modified Dirac equation [145]

i~τµ
∂

∂xµ0
Ψ−

τ 0
√√√√ 1

4κγ
−

√
1

(4κγ)2
− (mc)2

2κγ

Ψ = 0 . (3.74)

Truncating to O(γ), the differential form of the RGUP Dirac equation was obtained

as follows

i~τµ∂µΨ− τ 0(mc+ κγm3c3)Ψ = 0, (3.75)

the full account of the calculations can be found in [131].

70



3.5. DIRAC EQUATION AND GUP CORRECTIONS

3.5.1 Hydrogen atom

Using the modified Dirac equation in Eq.(3.75), one can calculate corrections to

the fine and hyperfine structure of the hydrogen atom. Again, because the differential

form of Eq.(3.42) is the same as the classical case, one can use the solutions derived

in the literature [146], in order to calculate the corrections for the parameters of the

solutions.

Using Eqs.(3.43) and (3.44) for minimal coupling and Coulomb potential, from

Eq.(3.75) one gets

[
iτµ

∂

∂xµ0
− e

~
τµAµ − τ 0

(mc+ κγm3c3)

~

]
Ψ = 0, (3.76)

with the solution in spherical coordinates {t, r, θ, φ} taking the form

Ψ(t, r, θ, φ) = T (t)
1

r

 F (r)Yjm(θ, φ)

i G(r)Y ′
jm(θ, φ)

 , (3.77)

where T (t) is the temporal part of the wave function. In the above, F (r) and G(r)

are spherical Bessel functions, and Yjm and Y ′
jm are the spherical spinors. Following

[146], one finds the energy spectrum

E0N = (mc2 + κγm3c4)

[
1 +

α2

(N − 2j − 1)2

]−1/2

, (3.78)

where again α = e2/4πε0~c is the fine structure constant, and N is the principle

quantum number. Expanding the above equation in a Taylor series in α, one obtains

E0N =(mc2 + κγm3c4)− mc2α2

2N2
− κγm3c4α2

2N2

+
3mc2α4

8N4
+
κγm3c4α4

8N4
, (3.79)
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As before, using Eq.(3.50), one gets for the physical energy spectrum EN

EN = mc2 − mc2α2

2N2
+

3mc2α4

8N4
, (3.80)

Once again, it can be observed that the RGUP modifications vanish for the physical

energy.

3.6 Summary

The chapter above presents a method of incorporating minimal length in rela-

tivistic quantum mechanics, through the use of a relativistic expression for the GUP.

General form of the position and momentum operators are proposed to be functions of

canonically conjugate auxiliary variables. The general functions were then expanded

perturbatively, retaining correction terms up to second order in the minimum length

parameter. The RGUP and the spacetime commutators were formulated. Further-

more, the consequences for the symmetries of spacetime were explored. Importantly,

by considering RGUP and the Lorentz invariant minimum length it is shown that in

the general case one needs to modify the Poincaré algebra. An interesting discovery

was the fact that the physical and auxiliary momenta squared are Casimir invariants

of the same group, leading to the conclusion that the RGUP proposed here does not

have the composition law problem. That is both the the auxiliary and physical energy

and momenta sum up linearly for a composite system.

Another interesting conclusion is that one needs a non-commutative spacetime in

order to incorporate frame independent minimum length.

Furthermore, a particular set of RGUP parameters was found. This set of param-

eters is represented by a line in parameter space κ = ε. A theory residing on the κ = ε

line in parameter space has the usual spacetime symmetries, i.e. the Poincaré algebra

for this theory will remain unchanged. Additionally, it was shown that even though
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the symmetries of spacetime are preserved, a theory on that line retains the non-

commutativity of spacetime and RGUP, and thus has minimum measurable length.

Through the use of the modified Casimir operator a RGUP-modified quantum me-

chanical wave equations are obtained, and applied to several examples of well known

quantum mechanical systems. The analysis allowed for comparison between the pro-

posed models and existing experimental data. Through this comparison, bounds on

the numerical coefficients fixing the model were obtained. Namely, the coefficient κ

was found to be smaller than ≤ 1041. The bounds one arrives at using RGUP are still

a long way from the expected ones. however, they are ten orders of magnitude better

than some of the previous estimations. This result can be attributed to several things,

one of which is the fact that relativistic corrections occur alongside the ones arising

from GUP. The improvement on the bound can also be attributed to the increase in

accuracy of the experiments used to test the model.
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Chapter 4

Quantum Field Theory with
Minimum Length

“Physicists have come to realize that mathematics, when used with suffi-
cient care, is a proven pathway to truth.”

Brian Greene, The Fabric of the Cosmos: Space, Time, and the Texture
of Reality 2004

The observable effects arising from the existence of minimum measurable length are

expected to be relevant at Planck scale, i.e. EPl ∼ 1019 GeV. According to Eq.(2.26),

low energy remnants of the existence of minimum lengths will manifest themselves

as perturbative corrections to the energy of the system. Furthermore, the relative

magnitude of RGUP corrections depends on the ratio between the energy of the

measured system and Planck energy

E0 − E1

E0

∼ Esystem

EPl
∼ Esystem

1019 GeV
. (4.1)

Therefore, one needs very high energy in order to maximize that ratio, thus bringing

the QG effects above the noise and accuracy of the measurements. Current experiment

study the behaviour of highly energetic systems by accelerating particles to speeds

close to the speed of light. The accurate modeling of the resulting scattering requires

one use the theoretical framework of QFT.

This reveals one of the advantages of RGUP and its corresponding Lorentz invari-
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ant minimum measurable length. RGUP provides a base on which one can formulate

modified QFT, and therefore search for low energy effects of minimum length in the

most highly energetic Earth-based experiments.

Lagrangians of an effective QFT accommodating the existence of minimum length,

utilize Eqs. (3.12), (3.13), and (3.25) presented in chapter 3 to find the equations of

motion for a scalar and spinor fields. The Lagrangians are then minimally coupled

to a gauge field allowing the Feynman rules to be read from them. First order and

RGUP corrections to an electron-muon scattering amplitudes are then calculated and

the results are compared with experimental data from ATLAS. The results obtained

are summarized and published in [147, 148].

The calculation begins with a choice of the RGUP model by fixing the κ, β, ξ, and

ε parameters in Eq.(3.13). The particular relationship chosen between the parameters

κ, β, ξ, and ε is κ = β = ξ = 0. This choice is made for to two reasons: the first is that

the terms proportional to β and ξ introduce preferred direction in spacetime; the sec-

ond is that the terms proportional to κ make spacetime non-commutative or “fuzzy”

in addition to making it a non-Lie manifold. A prescription for how to approach

this problem is not currently known. Therefore for the purposes of the calculations

presented in this chapter, the case for the parameters κ = 0 is considered, or in other

words the auxiliary and physical position operators are one and the same . In that

case one has the following representation of the physical position and momentum in

terms of the auxiliary ones

xµ = xµ0 (4.2a)

pµ = pµ0 (1 + γpρ0p0ρ) , (4.2b)

where the dimensionless parameter ε is redefined as ε := γ0, and the minimum length
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scale γ takes the from

γ =
γ0

(MPlc)2
. (4.3)

Additionally, in this chapter, the results will be presented in natural units, i.e. c =

~ = 1. With the parameters redefined as such, the position-momentum commutator

which gives the RGUP has the following form

[xµ, pν ] = i~ (1 + γpρpρ) η
µν + 2i ~γpµpν . (4.4)

The Poincaré group for this case is represented by the following algebra

[xµ,M νρ] = i~[1 + γpρp ρ] (x
νδµρ − xρδµν) + i~2γpµM νρ (4.5a)

[pµ,M νρ] = i~[1 + γpρp ρ] (p
νδµρ − pρδµν) (4.5b)

[Mµν ,Mρσ] = i~ (1 + γpρp ρ) (η
µρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ) . (4.5c)

It can be easily double check that the physical momentum squared is a Casimir

invariant of the modified Poincaré algebra presented above in Eq.(4.5). Furthermore,

the Einstein dispersion relation has the following form

pµpµ = −m2 (4.6)

where pµ is the physical momentum. The differential form of Eq.(4.6) needs to be

an equation of motion for any Lagrangian describing a boson field. The equations

of motion that fermion fields obey can also be easily derived. Starting from the

dispersion relation Eq.(4.6) and expressing it in terms of the auxiliary variables defined

in Eq.(4.2a), one gets

pρ0p0ρ(1 + γpσ0p0σ)
2 = −m2 , (4.7)
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or in its differential form

[
∂µ∂

µ (1 + γ∂ν∂
ν)2 +m

]
φ = 0 . (4.8)

As derived in the appendix D.1, one can then prove that the Dirac equation has the

form

(τµpµ −m)ψ = [τµp0µ(1 + γp0ρp
ρ
0)−m]ψ = 0 , (4.9)

where τµ are the Dirac matrices and ψ is a Dirac spinor. Dirac matrices are the

generators of the Clifford algebra Cl(3,1)(R) which transforms spinor representation of

the Lorentz group, i.e. the Dirac or spinor fields. As part of the Lorentz group they

obey the Einstein dispersion relation reflected by the Casimir operator Eq.(4.6) of the

Poincaré algebra. Therefore, one can safely conclude that if the Casimir is preserved

then the properties of the Clifford algebra Cl(3,1)(R) will remain unchanged. This

allows one to use the usual representation of its generators

τ 0 =

I 0

0 −I

 , τ i =

 0 σi

σi 0

 , (4.10)

where σi are the Pauli matrices and i ∈ {1, 2, 3}. More detailed explanations of the

calculations are presented in appendix D.1. From the unmodified Electrodynamics

one knows that the differential form of Eq.(4.9), i.e.

[
iτµ∂µ(1 + γ∂ρ∂

ρ)2 −m
]
ψ = 0 , (4.11)

and its Dirac conjugate are the equations of motion for the RGUP-QED Lagrangian.
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4.1 RGUP modified Lagrangians

In the previous section, the equations of motion corresponding to the scalar and

spinor fields respectively have been established. Note that the equations of motions

are differential equations of higher than second order. Therefore, the Lagrangians

giving these equations of motion need to have higher than second derivative. The

methodology of working with higher derivative Lagrangians

L =L(φ, φ̇, φ̈, . . . ,
(n)

φ ) (4.12a)

L =L(φ, ∂µ1φ, ∂µ1∂µ2φ, . . . , ∂µ1 . . . ∂µnφ) (4.12b)

is given by the Ostrogradsky method [149, 150, 151]. According to the Ostrogradsky

method, the Euler-Lagrange equations for theories with higher derivatives will have

the form:
dL

dq
− d

dt

dL

dq̇
+
d2

dt2
dL

dq̈
+ . . .+ (−1)n

dn

dtn
dL

d(dnq/dtn)
= 0 , (4.13)

which in the case of fields is

∂L
∂φ

− ∂µ
∂L

∂(∂µφ)
+ ∂µ1∂µ2

∂L
∂(∂µ1∂µ2φ)

+ . . .+ (−1)m∂µ1 . . . ∂µm
∂L

∂(∂µ1 . . . ∂µmφ)
= 0 .

(4.14)

The Ostrogradsky method allows us to reconstruct the Lagrangian describing the

dynamics of scalar and spinor fields from their equations of motion.

4.1.1 Scalar field Lagrangian

In order to perform a quantization procedure for the different cases, one needs to

obtain their Lagrangians. In the following subsection, from its equations of motion

the author derives the Lagrangians for a free massive scalar field. When one obtains

the equations of motion for the scalar field one should find Eq.(4.8).

One begins by assuming the most general form of higher derivative Lagrangian,
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which has one order higher than the equations of motion

L =
1

2
∂µφ∂

µφ+ γ (C1 ∂µ∂
µφ ∂ν∂

νφ+ C2 ∂µφ ∂
µ∂ν∂

νφ+ C3 ∂ν∂
ν∂µφ ∂µφ)

+ γ2 (C4 ∂µ∂
µ∂νφ ∂

ν∂ρ∂
ρφ+ C5 ∂µ∂

µ∂ν∂
νφ ∂ρ∂

ρφ+ C6 ∂µ∂
µ∂ν∂

ν∂ρφ ∂
ρφ

+C7 ∂µ∂
µφ ∂ν∂

ν∂ρ∂
ρφ+ C8 ∂µφ ∂

µ∂ν∂
ν∂ρ∂

ρφ) + C9m
2φ2 , (4.15)

Using the Euler-Lagrange equation prescribed by the Ostrogradsky method Eq.(4.13),

one obtains the following Lagrangian

Lφ,R =
1

2
∂µφ∂

µφ− 1

2
m2φ2 + γ ∂ν∂

ν∂µφ ∂µφ+
γ2

2
∂µφ ∂

µ∂ν∂
ν∂ρ∂

ρφ , (4.16)

where ∂µ = ∂/∂xµ. One can see in Appendix C.1 how the coefficients are fixed.

Additionally, it is shown that for the particular case the coefficients are unique. As

for the Lagrangian for a complex scalar field φ, we generalize Eq.(4.16) by including

additional terms obtaining

Lφ,C =
1

2
(∂µφ)

† ∂µφ− 1

2
m2φ†φ+ γ

[
(∂ν∂

ν∂µφ)† ∂µφ+ ∂ν∂
ν∂µφ (∂µφ)

†
]

+
γ2

2

[
(∂µφ)

† ∂µ∂ν∂
ν∂ρ∂

ρφ+ ∂µφ (∂
µ∂ν∂

ν∂ρ∂
ρφ)†

]
, (4.17)

such that hermiticity is restored, i.e. L†
φ,C = Lφ,C. Furthermore, it is worth noticing

that Eq.(4.17) is consistent with Eq.(55) in [126] up to a numerical factor.

4.1.2 Spinor field Lagrangian

The first step in the derivation of the spinor field Lagrangian is to assume a general

form of the Lagrangian, where the order of derivatives is determined by the order of

the equation of motion Eq.(4.11). Moreover, an assumption is made that different
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terms will have an arbitrary numerical coefficients multiplying every term

Lψ = ψ [iC1τ
µ∂µ(1 + C2γ∂ρ∂

ρ)− C3m]ψ . (4.18)

Next step is to prove that it has Eq.(4.11) as an equation of motion. Applying the

Ostrogradsky method, one gets the following equations of motion for the field and its

complex conjugate

C1iτ
µ∂µψ + C1C2γ∂ρ∂

ρψ − C3mψ = 0, (4.19)

C1iτ
µ∂µψ + C1C2γ∂ρ∂

ρψ − C3mψ = 0 . (4.20)

The equations of motion obtained through the Ostrogradsky method from Eq.(4.18)

need to be identical to Eq.(4.11), which is obtained from the dispersion relation.

Therefore, the Lagrangian corresponding to the QFT spinor with minimum length

will be of the form

Lψ = ψ [iτµ∂µ(1− γ ∂ρ∂
ρ)−m]ψ . (4.21)

The details of the calculation are shown in Appendix C.2.

4.1.3 U(1) gauge field theory

The gauge field Lagrangian is derived in a slightly different way. The Ostrograd-

sky method is not utilized in this case. The derivation is performed by assuming

that the dynamics of the gauge field, described by the electrodynamics Lagrangian,

are invariant under the standard spacetime and U(1) gauge symmetries. As for the

equations of motion, one can assume that they have the same RGUP corrections as

the KG equation of the form Eq.(4.8)

∂µF
µν = ∂µ∂

µAν + 2γ∂µ∂
µ∂ρ∂

ρAν = 0 . (4.22)
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Defining the standard gauge invariant field strength tensor as

F µν
0 = ∂µAν − ∂νAµ, (4.23)

one can express the RGUP modified field strength tensor in terms of the standard

one up to first order in γ, as follows:

F µν = F µν
0 + 2γ ∂ρ∂

ρF µν
0 . (4.24)

Then Eq.(4.22) can be rewritten as

∂µF
µν = ∂µF

µν
0 + 2γ∂ρ∂

ρ∂µF
µν
0 + γ2∂σ∂

σ∂ρ∂
ρ∂µF

µν
0 . (4.25)

A test of gauge invariance of F µν is needed and carried through by considering the

following gauge transformation of the four-potential

Aµ → A′µ = Aµ + ∂µΛ . (4.26)

Then the gauge transformed Eq.(4.24) can be written as follows

F ′µν =∂µA′ν − ∂νA′µ + 2γ [∂ρ∂
ρ∂µA′ν − ∂ρ∂

ρ∂ν∂νA
′µ]

=∂µAν + ∂µ∂νΛ− ∂νAµ − ∂ν∂µΛ

+ 2γ [∂ρ∂
ρ∂µAν + ∂ρ∂

ρ∂µ∂νΛ− ∂ρ∂
ρ∂νAµ − ∂ρ∂

ρ∂ν∂µΛ]

=∂µAν − ∂νAµ + 2γ [∂ρ∂
ρ∂µAν − ∂ρ∂

ρ∂νAµ] = F µν , (4.27)

where the fact that derivatives commute with each other is used. Thus, up to first

order in the RGUP parameter γ, the gauge field Lagrangian reads

LA = −1

4
F µνFµν = −1

4
F µν
0 Fµν0 −

γ

2
Fµν0∂ρ∂

ρF µν
0 . (4.28)
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Notice that both the field tensor in Eq.(4.24) and the gauge field Lagrangian Eq.(4.28)

are invariant under U(1) gauge transformations.

4.2 Feynman rules

The scalar, spinor and gauge fields Lagrangians derived in the previous section

can be used to formulate a RGUP deformed scalar and spinor electrodynamics. In

the following section the lepton fields are minimally coupled to the gauge field. The

Feynman rules, consisting of the propagators and vertices for both cases are calcu-

lated and presented. The methodology used can be found in any QFT textbook. In

particular the ones used here are [152, 153, 154].

4.2.1 Scalar field coupled to U(1) gauge theory

Following standard procedure, the Feynman propagator for the scalar field with a

minimum length is calculated. Specifically, from the modified KG equation in Eq.(4.8)

one has: [
∂µ∂

µ (1 + γ∂ν∂
ν) + (mc)2

]
G(x− x′) = −iδ(x− x′) . (4.29)

Expressing the Green’s function G(x− x′) in terms of its Fourier transform

G(x− x′) =

∫
d4p0
(2π)4

G̃(p0)e
−ip0·(x−x′), (4.30)

and substituting it in Eq.(4.29), one gets

∫
d4p0
(2π)4

G̃(p0)
[
−p20(1− γp20) + (mc)2

]
e−ip0·(x−x

′) = −i
∫

d4p0
(2π)4

e−ip0·(x−x
′) . (4.31)

Therefore, the Fourier transform of the Feynman propagator has the form

G̃(p0) =
−i

−p20(1 + γp20) + (mc)2
, (4.32)
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while the propagator itself is

G(x− x′) =

∫
d4p0
(2π)4

−i
−p20(1 + γp20) + (mc)2

e−ip0·(x−x
′) . (4.33)

The gauge field propagator can be treated in a similar manner. In this case, the

Feynman propagator has the following form

G(x− x′) =

∫
d4q0
(2π)4

−i
−q20 + 2γq40

e−iq0·(x−x
′) , (4.34)

where q0 is the auxiliary four-momentum of the gauge field. This construction assumes

that one can define Dirac delta functions in position space, and the minimal length

arises when one tries to localize the fields.

The complete set of Feynman rules for the system requires the calculation of the

vertices for the charged and gauge fields. Starting from the Lagrangian in Eq.(4.17),

one introduces the minimal coupling. The derivatives ∂µ = ∂
∂xµ0

are coupled to the

gauge field, forming covariant derivatives of the from

∂µ → Dµ = ∂µ − ieAµ , (4.35)

where Aµ is the four-potential or the gauge field. One can notice that since the gauge

symmetries of the electromagnetic field are not modified, the covariant derivative

keeps its usual form.

Replacing partials in Eq.(4.17) by covariant derivatives, the full action of the

minimally coupled complex scalar field and the gauge field is obtained. The action
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reads as follows

∫
L d4x =

∫
[LA + Lφ,C] d4x =

∫ {
1

2
(Dµφ)

†Dµφ− 1

2
m2φ†φ− 1

4
F µνFµν

+ γ
[
(DνD

νDµφ)†Dµφ+DνD
νDµφ (Dµφ)

†
]}

+
γ2

2

[
(Dµφ)

†DµDνD
νDρD

ρφ

+Dµφ (D
µDνD

νDρD
ρφ)†

]}
d4x . (4.36)

By expanding the covariant derivatives, the Lagrangian can be rewritten as

L =
1

2
(∂µφ)

† ∂µφ− ieAµ
[
φ†∂µφ− φ (∂µφ)

†
]
− 1

2
m2φ†φ+ e2AµA

µφ†φ− 1

4
F µνFµν

γ

{
(∂ν∂

ν∂µφ)† ∂µφ+ ∂ν∂
ν∂µφ (∂µφ)

† − 1

4
F µνFµν∂µ∂νF

µν

− ie
{
(∂ν∂

νAµ)
[
φ†∂µφ− φ (∂µφ)

†
]
+ 2∂νA

µ
[
(∂νφ)† ∂µφ− ∂νφ

(
∂µφ

†)]
+Aµ

[
(∂ν∂

νφ)† ∂µφ− ∂ν∂
νφ
(
∂µφ

†)]}+ e2
{
Aν(∂νAµ)

[
(∂µφ)† φ+ (∂µφ)φ†

]
+ 2AνAµ

[
(∂µφ)† ∂νφ+ (∂µφ) (∂νφ)

†
]

+ AνAν

[
(∂µφ)† ∂µφ+ (∂µφ) (∂µφ)

†
]
− 2AµAν

[
φ†∂ν∂µφ+ φ (∂ν∂µφ)

†
]

+2Aµ(∂ν∂
νAµ)φ

†φ+ Aµ(∂νAµ)
[
φ†∂νφ+ φ (∂νφ)

†
]
+ AµAµ

[
φ†∂ν∂

νφ+ φ (∂ν∂
νφ)†

]}
+ ie3

{
AµAνA

ν
[
φ (∂µφ)† − φ†∂µφ

]
+ 2AµAµA

ν
[
φ†∂νφ− φ (∂νφ)

†
]}

+2e4AµAµA
νAνφ

†φ
}
+O(γ2) . (4.37)

The above expression contains all terms relevant to Feynman diagrams predicted by

the usual scalar Quantum Electrodynamics (QED) Lagrangian with the addition of

RGUP corrections. It is easy to see that up to 6-point vertices are allowed. This can

be seen by examining Eq.(4.37) and observing that the maximum number of lines

meeting at a vertex will have two scalars and four gauge bosons.

One can check that there are 74 Feynman diagrams, with coupling constants pro-

portional up to e4 and γ3. It is also worth mentioning that due to the presence of
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higher than second order derivatives the momentum conservation rules for each RGUP

modified Feynman vertex will also be modified. Additionally, one can check that for

the limit γ → 0 or infinitely small minimum length we recover the usual Lagrangian

for a complex scalar fields. The coupling constants of the Feynman vertices which cor-

Table 4.1: Classification of the Feynman vertices arising from Eq.(4.37) in terms of
the powers of the coupling constants: α the fine structure constant; γ the minimum
length coefficient.

Powers of γ

Powers of α

α1/2 α1/2γ α1/2γ2 α1/2γ3

α αγ αγ2 αγ3

N/A α3/2γ α3/2γ2 α3/2γ3

N/A α2γ α2γ2 α2γ3

N/A α5/2γ α5/2γ2 α5/2γ3

N/A α3γ α3γ2 α3γ3

respond to terms in Eq.(4.37) are presented in Table.4.1. However, when calculating

the scattering amplitudes the focus will be on the 3-point vertices, containing up to

first order in the coupling constant e and the RGUP coefficient γ. This approximation

is justified by the fact that the 3-point vertices will have the largest contribution to

the scattering amplitudes. The truncation up to first order in γ is done to isolate the

RGUP corrections to only the 3-point vertices.

4.2.2 Dirac field coupled to U(1) gauge theory

The modified Feynman propagator is the Green’s function of the modified Dirac

differential operator. Therefore, from the modified Dirac equation in Eq.(4.9), one

has

[iτµ∂µ(1− γ∂ρ∂
ρ)−m]G(x− x′) = −iδ(x− x′) . (4.38)

Expressing the Green’s function G(x− x′) in terms of its Fourier transform

G(x− x′) =

∫
d4p0
(2π)4

G̃(p0)e
−ip0·(x−x′), (4.39)
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and substituting it in Eq.(4.38), one gets

∫
d4p0
(2π)4

G̃(p0) [iτ
µ∂µ(1− γ∂ρ∂

ρ)−m] e−ip0·(x−x
′) = −i

∫
d4p0
(2π)4

e−ip0·(x−x
′) . (4.40)

Therefore, the Fourier transform of the Feynman propagator has the form

G̃(p0) [τ
µp0µ(1 + γp0ρp

ρ
0)−m] = −iI4 , (4.41)

where I4 is a four dimensional unit matrix. Multiplying both sides by

[τµp0µ(1− γp0ρp
ρ
0) +m] , (4.42)

one obtains the propagator

G(x− x′) =

∫
d4p0
(2π)4

−i [τµp0µ(1 + γp0ρp
ρ
0) +m]

pµ0p0µ(1 + γp0ρp
ρ
0)

2 −m2
e−ip0·(x−x

′) . (4.43)

Further, when the full RGUP-QED action is considered, it reads as follows

S =

∫
L d4x =

∫
[LA + Lψ] d4x

=

∫
ψ

[
iτµDµψ − γψiτµDµDνD

νψ − 1

4
F µνFµν

]
d4x , (4.44)

in which the minimal coupling to the U(1) gauge field has been introduced in the

usual form

∂µ → Dµ = ∂µ + ieAµ . (4.45)

It can be easily verified that the above, along with a local phase transformations of

ψ and ψ, leaves the action in Eq.(4.44) invariant. The vertices can be read from the
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minimally coupled modified Dirac field Lagrangian Eq.(4.21)

Lψ = iψτµ∂µψ + iγψτµ∂ρ∂ρ∂µψ −mψψ

− e
[
ψτµAµψ − 2γψτµ (∂µA

ρ) ∂ρψ − 2γψτµAρ∂µ∂ρψ − γψτµAµ∂
ρ∂ρψ

]
− ie2γ

[
2ψτµAµA

ρ∂ρψ + 2ψτµ (∂µA
ρ)Aρψ − ψτµAρAρ∂µψ

]
− e3γψτµA

µAρAρψ . (4.46)

One can see that there are up to five particle vertices. They include always two

fermions and from one to three gauge bosons. Furthermore, one can see that the

coupling constants for each vertex is a product of powers of the electronic charge e

and the RGUP coefficient γ. In fact, the power of the electronic charge determines

how many bosons couple to the vertex and the power of γ is 0 for the usual terms

and 1 for the RGUP corrections terms.

4.3 RGUP Corrections to QED scattering amplitudes

The Lagrangians and the Feynman rules derived in the previous section deal with

complex scalar fields and spinor fields. The Feynman rules for the complex scalar

fields describe the interaction of charged systems that have no spin. The behaviour of

electromagnetically interacting particle with half-spin is described by the Dirac field

Lagrangian. In this section the author calculates the RGUP corrected amplitudes of

electromagnetic scattering of a scalar electron and a scalar muon. In addition, one

can find the RGUP scattering amplitudes for real electron-muon interaction. The

scattering amplitudes for an electrom muon scattering and the corrections to them

presented in the text below follow the methodology presented in [155].
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Aµ

e−e−

µ−µ−

Figure 4.1: The Feynman diagram of the leading order electron, muon scattering, in
t channel.

4.3.1 High energy scattering of charged scalar particles

The leading order of the scattering amplitude, on which the following calculation

focuses, are provided by the three-particle Feynman vertices derived from Eq.(4.37).

The transition amplitude for this case is given by integrating all three particle

interaction terms

Tfi = −i
∫
Aµjµ d

4x , (4.47)

where jµ is the current corresponding to the electrons and muons. In what follows,

the form of the transition amplitude shown in Eq.(4.47) is the same for both vertices,

where the potential is provided by the same gauge boson. One can then easily see

that from Eq.(4.37), the terms containing one gauge field and two scalar fields will

contribute to the following two terms in the transition amplitude

T
(1)
fi =− i

∫
eAµ

[
φ†
f∂µφi − φf∂µφ

†
i

]
d4x , (4.48a)

T
(2)
fi =− i

∫
eγAµ

[
4∂ν∂

νφ†∂µφ+ 4∂νφ†∂ν∂µφ+ φ†∂ν∂
ν∂µφ− 4∂ν∂

νφ∂µφ
†

−4∂νφ∂ν∂µφ
† − φ∂ν∂

ν∂µφ
†] d4x . (4.48b)

The full transition amplitude for the three particle scattering is then given by the sum

of these two terms

Tfi = T
(1)
fi + T

(2)
fi . (4.49)

The term T
(1)
fi , obtainable from the unmodified scalar QED Lagrangian, corresponds
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to the limit γ → 0 of the expression above. Comparing Eqs. (4.47) and (4.48), one

can decompose the current jµ into the unmodified term and the RGUP correction

j
(1)
fi µ =− ie

[
φ†
f∂µφi − φf∂µφ

†
i

]
, (4.50a)

j
(2)
fi µ =− ieγ

[
4∂ν∂

νφ†∂µφ+ 4∂νφ†∂ν∂µφ+ φ†∂ν∂
ν∂µφ− 4∂ν∂

νφ∂µφ
†

−4∂νφ∂ν∂µφ
† − φ∂ν∂

ν∂µφ
†] . (4.50b)

The following standard form for the scalar field is assumed

φ(xµ) = Ne−ipµx
µ

, (4.51)

where N is the normalization constant and pµ is the physical momentum of the field.

Using Eqs. (4.50), one obtains

j
(1)
fi µ =− eNfNi(pf + pi)µe

i(pf−pi)·x , (4.52a)

j
(2)
fi µ =− eγNfNi [−(pf · pf )(4pi +−pf )µ + 4(pf · pi)(pi + pf )µ

−(pi · pi)(pi + 4pf )µ] e
i(pf−pi)·x . (4.52b)

The Feynman diagram for the scattering is obtained by connecting two 3-point vertices

through the gauge boson Aµ, as shown in Fig. 4.1. Thus the scattering amplitude is

expressed as

TABCD = −i
∫ (

j
(1)
AC µ + j

(2)
AC µ

) igµν

−q + 2γq4

(
j
(1)
BD ν + j

(2)
BD ν

)
. (4.53)

Using Eqs. (4.52) and doing the integration, an expression for the scattering amplitude

is found

TABCD = −NANBNCND(2π)
4δ(4)(pD + pC − pA − pB)M , (4.54)

where δ(4)(pD + pC − pA− pB) ensures conservation of momentum, M is the invariant
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amplitude

− iM = −i e2

−q2(1− 2γq2)
{(pA + pC) · (pB + pD) [1− 4γ (pA · pC + pB · pD)]

+ γ(pA + pC) · (4pB − pD)m
2
µ− − γ (pA + pC) · (4pD − pB)m

2
µ−

+ γ(pB + pD) · (4pA − pC)m
2
e− − γ(pB + pD) · (4pC − pA)m

2
e−

}
, (4.55)

and the −i
−q2+2γq4

is the propagator of the gauge field Aµ.The terms containing higher

than linear order in the RGUP coefficient γ are omitted. Computing the scatter-

ing amplitude requires fixing the normalization for the free scalar field described by

Eq.(4.51). The temporal part of the current jµ is the probability density while the

spatial part is the probability current density

jµ = (ρ,~j) . (4.56)

As per convention, the field is normalized such that the integral of the density over

a fixed volume is equal to the sum of the energies of all the scalar particles in the

system. Thus for the free scalar field one obtains

∫
V

ρ dV =2E ,

∫
V

~j · d~V =2p . (4.57)

From the modified KG equation we find the different components of the flux

ρ =− i

[(
φ†∂φ

∂t
− φ

∂φ†

∂t

)
+ 2γ

∂

∂t

(
φ†∂

2φ

∂t2
− φ

∂2φ†

∂t2

)
−4γ

(
∂φ†

∂t

∂2φ

∂t2
− ∂φ

∂t

∂2φ†

∂t2

)
+ 4γ

(
φ†∇2∂φ

∂t
− φ∇2∂

2φ†

∂t2

)]
, (4.58)

~j = −i
[(
φ†∇φ− φ∇φ†)+ 4γ

(
∂φ†

∂t
∇∂φ

∂t
− ∂φ

∂t
∇∂†φ

∂t

)
−2γ∇

(
φ†∇2φ− φ∇2φ†)+ 4γ

(
∇φ†∇2φ−∇φ∇2φ

)]
. (4.59)
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Using Eq.(4.51), Eq.(4.59), and substituting in Eq.(4.57) one arrives at the following

normalization constant

N =
1√

V (1− 4γ(E2 + |~p|2))
. (4.60)

Note that RGUP affects the normalization constant for the fields, in addition to the

corrections to the invariant amplitude M. An interesting thing to note is that despite

working in the x = x0 approximation, the fields φ behave as if they inhabit a volume

scaled in a similar way to the position operator in [131].

The scattering transition rate per unit volume is then given by

Wfi =
|TABCD|2

τV
, (4.61)

where τ is the time of interaction and TABCD is the scattering transition amplitude.

Substituting Eq.(4.52) with Eq.(4.60) into the expression above results in

Wfi = (2π)4
δ(4)(pD + pC − pA − pB)|M|2

µAµBµCµD V 4
, (4.62)

where

µA = 1− 4γ(E2
A + |~pA|2) , (4.63)

and µB, µC , µD are similarly defined. Dividing the transition amplitude by the initial

flux, and subsequently multiplying it by the number of final states in the volume, we

get the cross section of the scattering process

dσ =
V 4

|vA|22EA2EB
δ(4)(pD + pC − pA − pB)|M|2

µAµBµCµD V 4

(2π)4

(2π)6
d3pC
2EC

d3pD
2ED

, (4.64)
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where vA = pA/EA. One can rewrite the cross section as

dσ =
|M|2

F µAµBµCµD
dQ , (4.65)

where F is the initial flux

F = |vA|2 2EA 2EB = 4
(
(pA · pB)2 −m2

Am
2
B

)1/2
, (4.66)

and the Lorentz invariant phase space factor is

dQ = δ(4)(pD + pC − pA − pB)
(2π)4

(2π)6
d3pC
2EC

d3pD
2ED

. (4.67)

Scalar electron-muon scattering

The QG effects which this thesis is trying to model occur at energies close to

the Planck energy. At such high energies the kinetic energy of the particles are much

greater than the rest mass |~p| � mc. Therefore, in order of simplifying the calculations

the scattering is assumed to happen at ultra-relativistic energy scale.

In the case of an electron-muon scattering, the conservation of momentum reads

pA + pC = pB + pD = 0 . (4.68)

Notice that in this particular reference frame all the information is in the magnitudes

of the initial and final momenta, pi and pf , respectively, with

|~pA| = |~pB| =|~pi| , |~pC | = |~pD| =|~pf | . (4.69)

In addition, for high energies the following approximation can be considered

E2 ≈ |~p|2 . (4.70)

92



4.3. RGUP CORRECTIONS TO QED SCATTERING AMPLITUDES

Thus, for the correction terms µ in Eq.(4.63) one has

µA = µB =µi, µC = µD =µf . (4.71)

Substituting them in Eq.(4.65) gives for the differential cross section

dσ =
|M|2

Fµ2
iµ

2
f

dQ . (4.72)

Imposing conditions Eqs.(4.68,4.69,4.70) on Eq.(4.67), the Lorentz invariant phase

space factor dQ can be expressed in terms of the solid angle dΩ as follows,

dQ =
1

4π2

|~pf |
4
√
s
dΩ , (4.73)

where s = (EA + EB)
2 is the Mandelstam variable.

Substituting Eq.(4.73) and Eq.(4.66) in Eq.(4.72) one gets an expression for the

differential cross section in the center of mass frame

dσ

dΩ

∣∣∣∣
CM

=
1

64π2 s µ2
iµ

2
f

|~pf |
|~pi|

|M|2 . (4.74)

Imposing conditions Eqs.(4.68,4.69,4.70) on Eq.(4.55) and expanding the scalar prod-

uct, the invariant amplitude for high energy collision in the center of mass frame M

up to first order in γ reads

M = 4πα
3 + cos θ

1− cos θ

[
1 + 8γE2(1− cos θ)

]
, (4.75)

where α is the fine structure constant. Thus, the full expression for the differential

cross section is

dσ

dΩ

∣∣∣∣
CM

=
1

4 s
α2

(
3 + cos θ

1− cos θ

)2 [
1 + 16γE2(1− cos θ)

]
. (4.76)
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Figure 4.2: Corrections to the differential cross section for different values of √
γE

with respect to the scattering angle θ. For the purposes of the plot, we consider the
RGUP minimum length to be equal to the Planck length.

Notice that in the limit γ → 0, we get the standard result, namely

dσ

dΩ

∣∣∣∣0
CM

=
1

4 s
α2

(
3 + cos θ

1− cos θ

)2

. (4.77)

Therefore, the magnitude of the correction is

dσ/dΩ|CM − dσ/dΩ|0CM
dσ/dΩ|0CM

= 16γE2(1− cos θ). (4.78)

Finally, an important observation is that the correction is the largest for back scatter-

ing (θ = π). On Fig.4.2 one can see presented the RGUP correction term of Eq.(4.76)

for several different energies. It is assumed that the RGUP corrections will be rele-

vant at Planck energies, i.e. the RGUP minimum measurable length is equal to the

Planck length. The √
γE = 10−16 curve represents the magnitude or the corrections

for energies used in current particle physics experiments. The curves √
γE = 10−14
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and √
γE = 10−12 correspond respectively to hundred and ten thousand times higher

energies. One can easily see that even a simplified model such as this will give cor-

rections to the cross section of the electromagnetic scattering. Moreover, increasing

the energy ten times will lead to a hundred times greater magnitude of the RGUP

corrections. Another feature worth mentioning is the fact that with the lowering of

the energy the correction term is very quickly suppressed, and the modified theory

recovers all previous results.

4.3.2 High energy electron-muon scattering

The calculated RGUP corrections to the scalar electron-muon scattering, are an ef-

fective toy model and a proof of concept. However, experiments such as the Stern–Ger-

lach experiment [156] show that electrons have spin 1/2. Furthermore, particles with

spin 1/2 such as the electron and muon obey the Pauli exclusion principle. An ac-

curate model of the electromagnetic electron-muon scattering needs to take that into

account. In this subsection the reader can find the RGUP corrected amplitude of

a spinor electron-muon scattering. The inclusion of spin requires the electron and

muon wavefunctions to be solutions of the modified Dirac equation Eq.(4.11), which

introduces interesting challenges. The calculations of the QG corrections to the QED

scattering amplitude and cross section will again follow the procedure outlined in

[155].

First, the transition amplitude can be read off from the three particle interaction

terms in the Lagrangian for the Dirac field Eq.(4.46). Again, one has

Tfi = −i
∫
Aµjµ d

4x , (4.79)

where this time jµ is the current corresponding to the Dirac electrons and muons. For

ease of calculations, one splits the transition amplitude for the three particle Feynman
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vertex into the usual term T
(1)
fi and two correction terms T (2)

fi and T
(3)
fi as follows

T
(1)
fi = i

∫
eψfτ

µAµψi d
4x , (4.80a)

T
(2)
fi = i

∫
2eγ∂ρψfτ

ρAµ∂µψi d
4x , (4.80b)

T
(3)
fi = −i

∫
eγψτµAµ∂

ρ∂ρψ d
4x . (4.80c)

From Eq.(4.80) presented above, the current and its corrections terms can be isolated.

They take the following form

j
(1)
fi µ = −eψfτµψi , (4.81a)

j
(2)
fi µ = −2eγ∂µψfτ

µ∂ρψi , (4.81b)

j
(3)
fi µ = eγψfτ

µ∂ρ∂ρψi . (4.81c)

In terms of the physical momentum pµ, the Dirac equation will have the form of

Eq.(4.11). One can recall that the modified Poincaré group has the squared physical

momentum as a Casimir invariant. This means that the solutions of Eq.(4.11) need

to obey the usual dispersion relation and will be of the form shown in the appendix

D.1

ψ(x) = u(s) (p) e−ip·x , (4.82)

where u(s) (p) are four component complex spinors

u(s) (p) =N

 χ(s)

σ·p
E+m

χ(s)

 , E >0 , (4.83a)

u(s+2) (p) =N

 −σ·p
E+m

χ(s+2)

χ(s+2)

 , E <0 , (4.83b)
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where p is the physical four-momentum, E is the zeroth component of that vector,

s ∈ {1, 2}, and χ(s) are

χ(1) =

1

0

 , χ(2) =

0

1

 . (4.84)

Substituting the form of the field into Eq.(4.81), one gets

j
(1)
fi µ = −eufτµui ei

(
pf−pi

)
·x , (4.85a)

j
(2)
fi µ = −2eγufpf ρτ

ρpi µui e
i
(
pf−pi

)
·x , (4.85b)

j
(3)
fi µ = eγufτ

µpiρp
ρ
iui e

i
(
pf−pi

)
·x . (4.85c)

Using the currents, one can calculate the invariant amplitude for an electron-muon

scattering presented in Fig. 4.1.

One can express the square of the invariant amplitude as

|M|2 = e4

−q2(1− 2γq2)
Lµνe L

muon
µν , (4.86)

where the two fermions are scattered via the exchange of a gauge boson Aµ . The

tensors Lµνe and Lmuonµν can be expressed from Eqs.(4.85) as follows

Lµνe =
1

2

∑
spins

[
j
(1)
fi µ + j

(2)
fi µ + j

(3)
fi µ

] [
j
(1)
fi ν + j

(2)
fi ν + j

(3)
fi ν

]∗
, (4.87)

which, using Eq.(4.85), can be expressed as

Lµνe =
1

2

∑
spins

[−ufτµui − 2γufkf ρτ
ρkµi ui + γufτ

µkiρk
ρ
i ui]

× [−ufτ νui − 2γufkf ρτ
ρkνi ui + γufτ

νkiρk
ρ
i ui]

∗ . (4.88)
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The expression for Lmuonµν is obtained analogously. Further expanding Eqs.(4.87) and

(4.88) and truncating to first order in γ, one obtains

Lµνe =
1

2

∑
spins

[(1− 2γkρk
ρ)u(k′)τµu(k)u(k)τ νu(k′)

+ 2γu(k′)τµu(k)u(k)kρτ
ρk′νu(k′)

+2γu(k′)k′ρτ
ρkµu(k)u(k)τ νu(k′)

]
, (4.89a)

Lmuon
µν =

1

2

∑
spins

[(1− 2γpρp
ρ)u(p′)τµu(p)u(p)τνu(p

′)

+ 2γu(p′)τµu(p)u(p)pρτ
ρp′νu(p

′)

+2γu(p′)pρτ
ρp′µu(p)u(p)τνu(p

′)
]
. (4.89b)

Summing over the spins and taking the trace over the Dirac matrices, one obtains

Lµνe = 2 (1− 2γk · k)
[
k′µkν + k′νkµ −

(
k′ · k −m2

e

)
gµν
]

+ 8γ
[
(k · k) k′µk′ν +m2

ek
′µkν

]
, (4.90a)

Lmuon
µν = 2 (1− 2γp · p)

[
p′µpν + p′νpµ −

(
p′ · p−m2

muon
)
gµν
]

+ 8γ
[
(p · p) p′µp′ν +m2

muonp
′
µpν
]
. (4.90b)

Substituting the above Eqs.(4.90) in Eq.(4.86), one obtains the (squared) invariant
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amplitude including corrections up to linear order in γ

|M|2 = e4

(k − k′)4{
4
[
k′µkν + k′νkµ −

(
k′ · k −m2

e

)
gµν
] [
p′µpν + p′νpµ −

(
p′ · p−m2

muon
)
gµν
]

−8γm2
e

[
k′µkν + k′νkµ −

(
k′ · k −m2

e

)
gµν
] [
p′µpν + p′νpµ −

(
p′ · p−m2

muon
)
gµν
]

−8γm2
muon

[
k′µkν + k′νkµ −

(
k′ · k −m2

e

)
gµν
] [
p′µpν + p′νpµ −

(
p′ · p−m2

muon
)
gµν
]

+16γm2
e (k

′µk′ν + k′µkν)
[
p′µpν + p′νpµ −

(
p′ · p−m2

muon
)
gµν
]

+16γm2
muon

(
p′µp

′
ν + p′µpν

) [
k′µkν + k′νkµ −

(
k′ · k −m2

e

)
gµν
]}
. (4.91)

The above expression is considered in the center of mass frame. Furthermore, the

ultra-relativistic approximation is applied to the leading order. In other words the

magnitude of the 3-momentum is considered to be much greater than the rest mass,

that is ~p 2 � m2 or E2 ≈ ~p 2. Thus, terms proportional to the mass in the leading order

can be ignored. However, the terms proportional to the mass in the corrections must

be kept. In the ultra-relativistic approximation the square of the invariant amplitude

reads

|M|2 = 8 e4

(k − k′)4
{(k′ · p′) (k · p) + (k′ · p) (k · p′)

− 2γ
(
m2
e +m2

muon
)
[(k′ · p′) (k · p) + (k′ · p) (k · p′)]

+ 2γm2
e [(k

′ · p′) (2k′ · p+ k · p) + (k′ · k) (k · p′ − k′ · p)]

+2γm2
muon [(k

′ · p′) (2p′ · k + k · p) + (k′ · k) (k · p′ − k′ · p)]
}
. (4.92)
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Furthermore, in terms of the Mandelstam variables in the s channel

s = (k + k′)
2
= (p+ p′)

2 ≈ 2k · k′ ≈ 2p · p′ , (4.93a)

t = (k − p)2 = (p′ − k′)
2 ≈ −2k · p ≈ −2k′ · p′ , (4.93b)

u = (k − p′)
2
= (p− k′) ≈ −2k · p′ ≈ −2p · k′ , (4.93c)

the differential cross section reads

dσ

dΩ

∣∣∣∣
CM

=
1

64π2 s
|M|2 = 2e4

64π2 s

[
t2 + u2

s2
+

1

2
γ(m2

e +m2
muon)

tu− u2

s2

]
, (4.94)

which in terms of the energy and the scattering angle becomes

dσ

dΩ

∣∣∣∣
CM

=
α2

4 s

[
1

2

(
1 + cos2 θ

)
+

1

4
γ(m2

e +m2
muon)

(
cos θ + cos2 θ

)]
. (4.95)

Thus, one obtains the full cross-section by integrating over the full solid angle

∮
dσ

dΩ

∣∣∣∣
CM

dΩ

=

∫ 2π

0

∫ π

0

α2

4 s

[
1

2

(
1 + cos2 θ

)
+

1

4
γ(m2

e +m2
muon)

(
cos θ + cos2 θ

)]
sin θdθdφ , (4.96)

which gives

σ
(
e+e− → µ+µ−) = 4πα2

3 s

[
1 +

γ

8
(m2

e +m2
muon)

]
. (4.97)

Finally, one can see that the total cross section is modified and the magnitude of

the correction depends only on the rest masses and fundamental constants. In fact,

if one assumes that QG effects are relevant at Planckian energies, or equivalently if

one assumes γ0 = 1, the corrections for proton-proton scattering are about γm2
p/4 ∼

10−38. The dependence of the corrections on the rest mass of the particles involved

suggests that minimum length effects on scattering amplitudes may be measurable for

100



4.4. SUMMARY

electromagnetic scattering of heavier systems, such as scattering of heavy ions. The

form of the RGUP corrections to the total cross section presented in Eq.(4.97) will

hold true when considering scattering of heavy ions with total spin of the nucleus equal

to 1/2. For example for the Xe-Xe scattering observed in the ATLAS experiment, the

order of magnitude of the corrections is γ m2
Xe/4 ∼ 10−34 [157].

4.4 Summary

In short, chapter 4 presents the methodology for the construction of an effective

QFT with minimum measurable length. The author calculates the resulting scattering

amplitudes and compares them to the results of current experiments. The introduction

to the chapter motivates the need for RGUP modified QFT and fixes the particular

RGUP model used in the calculations in the chapter. Worthy of note is the fact that

the RGUP chosen does not have non-commutativity of spacetime. The decision to not

consider this effect of minimum length is due to the lack of consistent methodology to

address the fact that the spacetime presented in Eq.(3.21) is non-commutative and it

cannot be described y an algebra. This additional assumptions erode the generality

of the model presented. However, the results obtained in this thesis would not have

been possible without it.

The square of the physical momentum pµp
µ is still a Casimir invariant of the

Poincaré group of the chosen representation. From the Einstein dispersion relation

the author to reads of a modified differential form of the KG and Dirac equations.

One then utilizes the Ostrogradsky method to recover the scalar and spinor field

Lagrangians from their equations of motion, i.e. the modified KG and Dirac equations.

The calculations and results are outlined in sections 4.1. Furthermore, as in the usual

case, there is a unique up to a total derivative correspondence between a Lagrangian

and its equation of motion is unique. The resulting Lagrangians contain higher than

second derivative, this might cause problems due to the Ostrogradsky instability.
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This problem is explored in appendix E where the author shows that for systems with

energies smaller than Planck energy E < EPl all the Lagrangians are well defined and

do not contain malicious ghosts. The Ostrogradsky instability is pushed back and

shows up when the energy of the system approaches the Planck energy.

The modified gauge field Lagrangian is constructed by a slightly different method.

To accomplish this, a condition is imposed on the gauge fields. The modified elec-

tromagnetic or gauge field must have the same symmetries as the unmodified case.

In other words the Lagrangian must be U(1) gauge invariant. The gauge field is a

boson field and has spin equal to one. Therefore the gauge field is required to obey

a KG-like equation of motion. The first condition ensures the phase symmetry of the

photon; and the second ensures that the gauge field transforms under the Poincaré

group and therefore obeys the spacetime symmetries of SR. Then, a modified version

of the Fµν field strength tensor and by extension the Lagrangian for the gauge field

is obtained and is presented in Eq.(4.28).

In Section 4.2, the scalar and spinor field Lagrangians are coupled to the gauge

field through the standard use of minimal coupling. The propagators and vertices for

both of the cases are then calculated from the coupled Lagrangian. A result worth

of note is the fact that there are up to six particle interactions allowed for the scalar

field, and up to five for the Dirac field. Additionally in all the vertices only two of the

participation particles are the matter fields. Therefore, an annihilation of an electron

and antielectron has a small probability of giving off more than two photons.

In the following section 4.3.2, the transition amplitudes and their RGUP correc-

tions are calculated for the three-point vertices. This allowed for the calculations of

the RGUP corrected scattering amplitudes for electron-muon scattering for both cases

yielding a number of interesting results. First, it is shown that the RGUP corrections

rise in magnitude with the energy of the system squared, which gives hope that with

the improvement of current experiments one may be able to observe the effects. Fur-
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thermore, the magnitude of the corrections is shown to be dependent on the angle

and is the highest for the backscatter. Finally, the results are compared to the Xe-Xe

scattering observed in ATLAS and the bounds on the minimum length scale are put

to be γ0 ≤ 1034, which is seven orders of magnitude better than the bounds shown in

chapter 3.

103



Chapter 5

Conclusion

“I would rather have questions that can’t be answered than answers that
can’t be questioned.”

� Richard Feynman

As evident from Chapter 1 of this thesis, QM and GR are comprehensive theories,

which have proven themselves in countless experiments and discoveries. However,

it is also clear that neither QM or GR is a complete and all encompassing theory.

Evidence for this claim is the fact that both fail to explain phenomena belonging to

the sphere of the other.

For example GR in most cases fails to account for the quantum properties of

matter, while the Standard Model of elementary particles excludes the gravitational

force altogether. These facts allow one to easily conclude that a new theory is needed.

Such a theory must encompass all four interactions and matter on both classical

and quantum level. It is widely believed that the main obstacle in the path of the

formulation of the unified theory is the quantization of the gravitational field. This

task has resulted in a collection of theories known as Quantum Gravity theories.

The most promising members of that family are LQG and ST are all reviewed in

Chapter 1. Needless to say the theories presented by the author are not the only ones,

noticeable examples not mentioned are noncommutative gravity [158] and conformal

gravity [159]. Unfortunately, none of these theories have provided any experimentally

supported predictions. Although they are extremely well constructed mathematically
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and have robust collections of ideas, this lack of experimental data to support their

results takes them into the realm of conjectures and hypotheses rather than full fledged

theories. The problems associated with QG make the field all that more interesting

to work on.

For all its problems QG has one robust prediction. That is the fact that all theories

attempting to quantize gravity predict the existence of a minimum measurable length

or minimum uncertainty in position. How the three theories mentioned above arrive

at the conclusion that such length exists is also described in the introduction of this

thesis. A feature worthy of attention is the fact that regardless of initial assumptions

and postulates, one always arrives at some form of minimum measurable length. The

diversity of the initial assumptions and postulates giving minimum uncertainty in

position stands as an evidence for its robustness of this result.

Thus the field of QG Phenomenology enters the scene here. The field of QGP

works to reconcile the QG theories such as ST and LQG with currently existing

experiments. The main goal of QGP is to find evidence of low energy remnants of

QG effects in already existing experiments and data. Such experimental evidence will

provide much needed experimental insight into the quantum nature of gravity, and by

extension the properties of spacetime itself. A more general overview of approaches

to QGP are outlined in chapter 2. Chapter two also provides a motivation for the

choice of topic for this thesis. The phenomenological approach to QG presente in

this thesis is the extension of the Heisenberg Uncertainty Principle to the so called

Generalized Uncertainty Principle. Such a generalization is made to accommodate

the existence of minimum measurable length, suggested by QG theories. However,

most of the work done in this area considers non-relativistic systems and theories.

This raises the following problems. First, the minimum length obtained in such a

way is not Lorentz invariant or in other words is frame-dependant. Which means

that the minimum length one may be able to measure would depends on the frame
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of reference of the observer. This raises the question: in which frame of reference is

this a true minimum length? This violates the Equivalence principle and effectively

re-introduces the concept of aether! Additionally, non-relativistic GUP gives rise to a

modified dispersion relation, containing higher than second order of the momentum

operator. As discussed in appendix A, modified dispersion relation of this type leads to

non-linear composition of momentum and energy when considering a classically bound

system. This non-linearity is known as the Composition Law Problem. One needs

to address these problems before attempting to apply GUP to relativistic systems.

As for the question as to why one needs to apply GUP at high energies, the answer

is quite simply that the minimum length proposed by the theories of QG is usually

proportional to the Planck length lPl. This translates in terms of energy to EPl =

MPlc
2 ∼ 1019GeV. In order to have a best chance of detecting low energy remnants

of QG effects one must maximize the following ratio

η =
E

EPl
, (5.1)

where E is the energy scale of the experiment. Therefore, more energetic experiments

provide greater chance of detection of residual QG phenomena, simply due to the fact

that the corrections themselves have greater magnitude.

5.1 Relativistic Generalized Uncertainty Principle

The relativistic extension of GUP, developed by the author of this thesis, is pre-

sented in Chapter 3. The chapter is inspired by the work of Quesne et. al. [132] and

is based on the calculations presented and published in [131].

As evident from the usual non-relativistic form of GUP Eq.(2.21), the accommo-

dation of minimum uncertainty in position requires the position xµ and momentum

pµ operators to no longer be canonically conjugate. However, a pair of canonically
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conjugate auxiliary variables can be found from assuming that the physical position

xµ and momentum pµ can be expressed as functions of the auxiliary variables. Since

the main focus of this work is phenomenological study of QG, one can use the Tay-

lor expansion to perturbatively expand both functions and truncate to second order

in the minimum length parameter γ. Then the the following requirements are im-

posed on spacetime and momentum space: homogeneity and isotropy on spacetime;

and commutativity on momentum space. This allows the position and momentum

operators to be written as

xµ = xµ0 − κγpρ0p0ρx
µ
0 + βγpµ0p

ρ
0x0ρ + ξ~γpµ0 , (5.2a)

pµ = pµ0 (1 + εγpρ0p0ρ) , (5.2b)

which makes the RGUP commutator take the form presented in Eq.(3.13):

[xµ, pν ] = i~ (1 + (ε− κ)γpρpρ) η
µν + i ~(β + 2ε)γpµpν . (5.3)

The minimum measurable length provided by the RGUP is frame independent or

Lorentz invariant. One can observe an interesting result, namely that at high energies

spacetime is non-commutative. In particular the physical position operators give

commutator Eq.(3.21)

[xµ, xν ] = i~γ
−2κ+ β

1 + (ε− κ)γpρpρ
(xµpν − xνpµ) . (5.4)

More important is the fact that the commutator presented in Eq.(3.21) does not meet

the requirements for algebraic closure. A closed algebra is the one for which the

commutator between two generators is either zero for abelian groups, or belongs to

the algebra itself. An example of such algebras are the algebras corresponding to Lie

groups or in other words describing infinitely smooth and continuous manifolds. This
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suggests that spacetime is no longer a Riemannian manifold.

This fundamental change of the properties of spacetime called for an examination

of its symmetries. The approach chosen is the study of the Poincaré group and

in particular its corresponding algebra. The generators of the Poincaré group are

the translation operators represented by the physical momentum pµ and the RGUP

modified Lorentz generators

Mµν = pµxν − pνxµ = [1 + (ε− κ)γpρpρ] M̃
µν , (5.5)

where M̃µν are the unmodified ones. Their commutators form the algebra itself, the

modified algebra found is presented in Eq.(3.25):

[xµ,M νρ] = i~[1 + (ε− κ)γpρp ρ] (x
νδµρ − xρδµν) + i~2(ε− κ)γpµMνρ , (5.6a)

[pµ,M νρ] = i~[1 + (ε− κ)γpρp ρ] (p
νδµρ − pρδµν) , (5.6b)

[Mµν ,Mρσ] = i~ (1 + (ε− κ)γpρp ρ) (η
µρM νσ − ηµσM νρ − ηνρMµσ + ηνσMµρ) .

(5.6c)

Writing the algebra in this way reveals a relationship between the parameters used

to fix the model, namely ε = κ, for which the Poincaré algebra remains unmodified.

This relation is represented by a line in parameter space. The RGUP commutator

Eq.(3.30) and the spacetime algebra Eq.(3.31) on this line take the following form

[xµ, pν ] = i~ (ηµν + 2κγpµpν) , (5.7)

[xµ, xν ] = −2i~κγ (xµpν − xνpµ) . (5.8)

As opposed to a noncommutative Landau atom [160], the position-position commuta-

tor for the RGUP presented her is not a constant and it depends on the momentum.

The conclusion can be drawn then that the existence of a Lorentz invariant mini-
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mum measurable length does not require a modification of the spacetime symmetries.

The only requirement is that spacetime is a non-commutative manifold.

Another important observation is made when one calculates the four Casimir op-

erators in the modified Poincaré algebra which commutate with every other operator

in the set. These operators are the physical and auxiliary momenta squared pµpµ and

p0µp
0µ. In addition to the squares of the physical and auxiliary Pauli–Lubanski pseu-

dovector. The physical momentum squared corresponds to the Einstein dispersion

relation

pµp
µ = −(mc)2 . (5.9)

Due to the quadratic nature of the Einstein dispersion relations of the RGUP modified

Poincaré algebra, the composition law problem is avoided, and therefore energies and

momenta sum up linearly as they should.

Phenomenological studies, however, suggest the calculation of RGUP corrections

to the energy levels suitable physical systems. The Einstein dispersion relation is

used to derive a RGUP-modified quantum mechanical wave equation, after which,

RGUP corrections to the energies levels of several different well known relativistic

QM systems are obtained. Comparison is drawn between the relative magnitude of

the corrections, and the accuracy of current physical experiments. I applied them to

several existing experiments and estimated the upper bounds on the GUP parameter.

A bound on the RGUP parameter is then found, namely

κ ≤ 1041. (5.10)

While this result might not look physical, it is ten orders of magnitude lower than

previous bounds on the minimum length scale obtained using similar experiments.

Furthermore, the RGUP proposed in chapter 3 is a crucial step in the development

of QFT with minimum measurable length. RGUP corrections to scattering ampli-
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tudes usually calculated by QFT will allow the use of high energy experiments in

phenomenological studies of minimum length, potentially narrowing the parameter

space even further.

5.2 Quantum Field Theory with minimum measurable length

There are previous attempts made to formulate QFT with minimum length. How-

ever, very few of them employ any form of relativistic GUP or Lorentz invariant min-

imum length [112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126].

Furthermore, all of them posses a modified dispersion relation and therefore have the

composition law problem.

A paper that uses RGUP similar in form to the one derived in [131] is [126].

Although similar, the calculations presented in chapter 4 make fewer assumptions

and take the results further by calculating transition amplitudes and RGUP corrected

differential and total cross-sections for charged scalar and vector fields. At the time

of writing this thesis, [131] is one of very few results in this area.

In chapter 4, an effective QFT is derived from a small set of assumptions, namely

that the physical position xµ and momentum pµ have the following form in terms of

the auxiliary ones

xµ = xµ0 , (5.11a)

pµ = pµ0 (1 + γpρ0p0ρ) . (5.11b)

The Poincaré group for the particular choice of RGUP is calculated. It was shown that

the momentum squared pµpµ is still a Casimir invariant, thus avoiding the composition

law problem. Utilizing the line of reasoning showed in chapter 3 RGUP modified form

of the Klein-Gordon and Dirac equations are derived.

In the usual formulation of QFT, the standard Klein-Gordon and Dirac equations
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are equations of motion of the scalar and vector fields respectively. They are obtained

from the Lagrangian or the Lagrangian density using the Euler-Lagrange equations

∂L

∂qi
(t, q(t), q̇(t))− d

dt

∂L

∂q̇i
(t, q(t), q̇(t)) = 0 , (5.12a)

∂L
∂ϕ

∂µ

(
∂L

∂(∂µϕ)

)
= 0 . (5.12b)

However, as evident from Eqs.(3.42) and (4.11), the equations of motion of a poten-

tial field theory with minimum length contain higher than second derivatives. There-

fore the action and subsequently the Lagrangian and its density need to have higher

derivative terms. The methodology for working with higher derivative field theories

is given by the Ostrogradky method [149, 150, 151]. The Euler-Lagrange equations

are generalized to work with higher derivative Lagrangians and have the form

dL

dq
− d

dt

dL

dq̇
+
d2

dt2
dL

dq̈
+ . . .+ (−1)n

dn

dtn
dL

d(dnq/dtn)
= 0 , (5.13a)

∂L
∂φ

− ∂µ
∂L

∂(∂µφ)
+ ∂µ1∂µ2

∂L
∂(∂µ1∂µ2φ)

+ . . .+ (−1)m∂µ1 . . . ∂µm
∂L

∂(∂µ1 . . . ∂µmφ)
= 0 .

(5.13b)

Through the use of the Ostrogradsky method, the RGUP modified Lagrangians are

derived. The Lagrangians describing the dynamics of both the scalar and spinor fields

are found to be

Lφ,C =
1

2
(∂µφ)

† ∂µφ− 1

2
m2φ†φ+ γ

[
(∂ν∂

ν∂µφ)† ∂µφ+ ∂ν∂
ν∂µφ (∂µφ)

†
]

+
γ2

2

[
(∂µφ)

† ∂µ∂ν∂
ν∂ρ∂

ρφ+ ∂µφ (∂
µ∂ν∂

ν∂ρ∂
ρφ)†

]
, (5.14)

Lψ = ψ [iτµ∂µ(1− γ ∂ρ∂
ρ)−m]ψ . (5.15)

The gauge field Lagrangian is obtained by slightly different means. A requirement is

placed on the gauge field, namely the gauge U(1) symmetry must be preserved. With
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this requirement in place, one can show that the representation of the RGUP modified

Poincaré algebra, similarly to the unmodified one, is locally isomorphic to SU(2) ⊗

SU(2). According to this isomophism, there exists an irreducible representation of

spin
(
1
2
, 1
2

)
under which the gauge field is classified. Therefore, the equation of motion

for the gauge field must be modified similarly to Eq.(3.42), and has the form presented

in Eq.(4.22) in Lorentz gauge is

∂µF
µν = ∂µ∂

µAν + 2γ∂µ∂
µ∂ρ∂

ρAν = 0 . (5.16)

Thus, a minimum length modified field strength tensor is obtained in Eq.(4.24) and

has the equation of motion seen in Eq.(4.25) as

∂µF
µν = ∂µF

µν
0 + 2γ∂ρ∂

ρ∂µF
µν
0 + γ2∂σ∂

σ∂ρ∂
ρ∂µF

µν
0 . (5.17)

The gauge field Lagrangian then has the usual form as in Yang-Mills theories, with a

RGUP modified field tensor. One important result is the fact that if one stays away

from the Planck regime, i.e. E < EPl, the effective Lagrangians found in this work do

not experience the Ostrogradsky instability, and therefore do not contain malicious

ghosts. This is discussed in Appendix E.

The Feynman rules for both the scalar and spinor fields are derived. Since the

physical momentum is the operator of translations for our theory, the Feynman prop-

agators need to be Green’s functions of the modified differential forms of the Klein-

Gordon Eq.(3.42) and Dirac Eq.(4.11) equations. The resulting propagators for the

complex scalar, spinor, and gauge fields are presented in Eqs.(4.33), (4.43), and (4.34).

The rules and the coupling constants for the vertices are calculated by coupling the

matter fields to the gauge ones through standard minimal coupling and expanding and

reading off the vertices from the different terms in the coupled Lagrangian density.

An interesting although expected result is the fact that higher vertices are allowed.
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As one can see for the complex scalar field, there are up to six-point vertices, which

contain two matter fields and up to four gauge bosons in the interaction. The coupling

constants are presented in Table 4.1. Similarly for the Dirac field, up to five-point

vertices are allowed, containing two spinors fields and up to three gauge bosons in a

single interaction vertex. Additionally, due to the modifications to the propagator of

the gauge field there is a small self interaction between the photons.

Then, following the standard procedure outlined in [155], the transition ampli-

tudes, differential and total cross-sections are calculated for ultra-relativistic scalar

electron-muon scattering and more importantly electron-muon scattering. The results

are presented in Eqs.(4.76) and (4.97), where one can see the minimum length effects

on the cross-sections of these processes. Interestingly, one can see from Eq.(4.97) in

the ultra-relativistic limit, that the only relevant correction depends on the rest mass

and the fundamental constants of nature. The fact that the RGUP corrections to

the total cross-section are proportional to the rest mass suggests that the minimum

length effects on scattering amplitudes might be measurable using heavy ions scat-

tering experiments such as ATLAS [157]. Through the use of Xe-Xe scattering upper

bounds on the RGUP parameter are set, i.e. γ0 < 1034. The bounds obtained from

the cross-sections are seven orders of magnitude lower than the one found exploring

relativistic QM. It showns that further study is needed.

In conclusion a gauge invariant QG modified abelian effective QFT describing both

fermionic and bosonic fields is obtained. This effective field theory accommodates the

existence of Lorentz-invariant minimum measurable length. Moreover, its predictions

may be measurable in current or future high-energy experiments. This allows the

derived RGUP modified cross-sections to be tested against real data.
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5.3 Future Research

The results presented in the thesis so far provide a robust basis for a multitude of

interesting research topics. The most promising and interesting of these are described

below.

5.3.1 Applications to Classical Electrodynamics

The Hamiltonian of RGUP modified Electrodynamics is derived using the Ostro-

gradsky formalism in appendix E. In addition, the modified field tensor presented

in Eq.(4.25) can be used for the derivation of the modified expression of Maxwell’s

field equations. It is reasonable to expect that the RGUP modified Maxwell’s field

equations will be higher derivative differential equations of the form

∇ (1 + f(γ,2)) · E = 0 (5.18)

∇ (1 + f(γ,2))× E = − ∂

∂t
(1 + f(γ,2))B, (5.19)

∇ (1 + f(γ,2)) ·B = 0 (5.20)

∇ (1 + f(γ,2))×B = µ0ε0
∂

∂t
(1 + f(γ,2))E, (5.21)

thus having additional solutions proportional to γ = γ0/MPl. As one knows, Maxwell’s

equations are the foundation used for the theoretical description of every electromag-

netically interacting system, as well as the properties of light. Therefore, this will allow

us to calculate RGUP corrections and effects for classical systems, such as diffraction,

interference, non-linear optics, femtosecond optics, light vertices, and many others.

5.3.2 Photon self-interaction and Cosmology

Additionally, from the propagator shown in Eq.(4.34), one can conclude that there

is a small self-interaction terms between the RGUP modified photons. An interesting

study is the application of this result to effects dealing with propagation of light, for

example the Faraday rotation. Research and results in this direction will allow for a
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search of Quantum Gravity effects using experiments measuring the polarization map

of Cosmic Microwave Background radiation, in which one can find structures which

are not well described by modern physical theories.

One preliminary result in that direction can be made using an analogy with mag-

nets. Magnets have domains in them due to the fact that the atoms in the crystalline

lattice interact magnetically. Similarly, even a small self-interaction between the CMB

photons amplified by the distance they have traveled can produce similar structures.

Analogously, if measurements of the polarization of light received by Supernovae re-

veals that there is an anisotropy in its distribution, then a conclusion for the magni-

tude of the self-interaction of photons, can be drawn. In this particular case, there

are two separate mechanisms amplifying QG effects: distance traveled; and the high

energy of the photons. The first step in this avenue of research would be to use the

RGUP to estimate modified Faraday rotation to calculate the effective radius of the

self-interaction between photons, followed by a simulation of CMB photons starting

with a uniform polarization distribution, propagating through the Universe. The final

step would be to observe the resulting structures and compare their sizes with existing

experimental data collected from experiments such as BICEP2/Keck Array, BICEP1,

QUIET, and CAPMAP.

5.3.3 Higgs mechanism and boson mass

As mentioned before, gauge invariant Quantum Gravity modified abelian effective

Quantum Field Theory is formulated in this thesis. However, this is the simplest

case of gauge theory, i.e. U(1) gauge field. To have a complete modified expression

of the SM one has to go through similar line of calculations generalized to non-

abelian gauge theories such as SU(2) and SU(3), representing the Weak and Strong

interaction respectively. An effective Lagrangian for a massive abelian scalar field is

presented here providing a possible insight in the RGUP modified dynamics of the
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Higgs boson. However, the generalization of the formalism to SU(2) and SU(3) gauge

symmetries will allow the calculation of QG corrections to the Higgs mechanism and

particularly the masses of all the particle in the SM. This research will be conducted

through modifying the already existing quantization procedures to accommodate the

existence of minimum measurable length.

Additionally, it would be interesting to compare and contrast the relation GR-QG

with that between Fermi’s theory of the weak interaction and the weak interactions

in the SM. The Fermi coupling constant is dimensionful, signalling (historically) that

something should happen around 100 GeV in energy. Now it is known that this is

roughly the mass of the W and Z bosons, exchanged in the SM description of the

weak force. The dimensionful Fermi coupling constant is an approximation of the

dimensionless SM weak coupling constant times a W or Z propagator.

5.3.4 Applications to gravitational waves

Historically, symmetries and properties of spacetime have been explored from

Galilean Relativity to Special Relativity to General Relativity. We have extended

GUP from the Galilean Relativity to Special Relativity, i.e. from space to space-

time, moreover keeping all its symmetries intact. Therefore, the next natural step is

to take the formulation of RGUP on a curved background. This will allow for QG

effects to be tested for high curvature regimes, possibly leading to corrections for ef-

fects such as Hawking radiation. Furthermore, the Lagrangians are obtained from the

Equations of motion using the methodology of classical field theory, one can apply the

same line of reasoning to phenomena described by gravitational waves in GR. Tt is

reasonable to expect a modification of the dispersion relation of gravity waves. Since

the methodology used by LIGO and similar experiments for the detection of Gravity

Waves is heavily reliant on the physical models used for the modeling of black hole

merger, one can use the Signal to Noise ratio of the usual model compared to the
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QG modified model to put bounds on the parameters determining the scale of the

minimum length. The great accuracy of experiments such as LIGO promise to greatly

improve our current limits on the scales of QG effects [161, 162, 84].

5.3.5 Topological defects

The Lagrangians obtained here can be used in cosmology. A research in this

direction is to be conducted through the search for topological defects in the ground

state of our theory. This will be conducted through the use of the Bogomol’nyi-

Prasad-Sommerfeld (BPS) bound to recover the energy functional of the theory. This

will be followed by the search for its global minimum, after which one will be able

to draw conclusions for the topology of that ground state. Particularly interesting

are the time independent defects in the ground state, such as domain walls, solitons,

and vertices. These defects are interesting due to the fact that they are stable in

time. Therefore, their existence can have low energy remnants observable in the large

structures in the Universe [163, 164, 116].

5.4 Closing remarks

There are two fundamental theoretical frameworks describing nearly every physi-

cal phenomenon in the universe: Quantum Mechanics and General Relativity. These

theories began by modifying the status quo and end up fundamentally changing the

way the Universe is perceived. An example of this is the end of Classical Mechanics

and the rise of Quantum Physics, marked by the discovery of the Heisenberg’s Uncer-

tainty Principle. The fall of Newtonian gravity and the rise of General Relativity is

sparked by introducing a finite maximum velocity i.e. the speed of light c. The state

of knowledge of the physical world is on the verge of a similar situation now.

Theories of QG strongly suggest that the properties of spacetime and matter as

observed by current experiments do not provide the full picture. Among the problems
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and disagreements between the different theories of QG, one result shines through

and is uniformly agreed upon. This is the existence of minimum measurable length.

One now sees the parallels between the leap of understanding of the Universe, which

occurred at the fall of Galilean relativity and today.

An important element missing in the picture is experimental evidence, which sup-

ports any of the theories tackling the very difficult task of QG. As physics experiments

get bigger and bigger, the field should turn its attention to Quantum Gravity Phe-

nomenology. QGP has the difficult task to find and test already existing data and

effects originating in much higher energy scale, or in other words smaller length scales.

One idea that may close the gap between the scale at which QG effects are dom-

inant and the current experiments is to consider QG effects on relativistic systems.

In this work, frame independent minimum length is presented and its implications

are shown for relativistic systems. The results presented here open the possibility of

using higher energy experiments such as ATLAS to search for QG corrections. The

high energy of these experiments drastically improves the probability of detection.

Additionally and possibly more interesting is the fact that the results presented here

strongly suggest that the infinitely smooth and continuous spacetime is not the full

picture, and that the properties of spacetime need to be reconsidered if a theory of

quantum gravity is to be found.
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Appendix A

Composition law problem

The arguments presented here are taken from [127, 128, 129, 130].

A.1 A naive argument
Let one consider a modified dispersion relation of the form

D2(p) = E2 − ~p2 − η
E

MPl
~p2 + · · · = m2 . (A.1)

The non-linear corrections to the Einstein’s dispersion relation between energy and
momentum arises from a choice of a non-trivial connection on momentum space, P .
In the case of plastic collision A+B → C, this takes the form

p(C)
µ =

(
p(A) ⊕ p(B)

)
µ
, (A.2)

the above relies on the assumption that there exists a nice set of coordinates on the
momentum space P , which allows for the expansion(

p(A) ⊕ p(B)
)
µ
= p(A)µ + p(B)

µ − 1

MPl
Γ̃µ

αβ p(A)α p
(B)
β + · · · . (A.3)

where Γ̃ denotes the connection coefficients on momentum space evaluated at the
origin pµ = 0. The connection coefficients on momentum space Γµαβ(0) has dimensions
of inverse mass, so the Γ̃ are dimensionless. One can write the dispersion relation
as the standard one plus leading order corrections. This is justified in the case of
elementary particles, because even for the most energetic cosmic rays the ratio of
their energies to Mpl is of order of 10−8 − 10−9, and the higher order terms can be
safely neglected.

When one considers a composite system, made of a huge number N of elementary
particles. Let each elementary particle obey the same dispersion relation shown in
Eq.(A.1) and assume, for simplicity, that all the particles have identical masses m and
momenta pµ. The total mass of the system is therefore Msystem = N m and its total
momentum is Psystem µ = N pµ. Substituting this to Eq.(A.1) it can be easily shown
that

E2
system = ~P2

system +M2
system +Nη

Esystem

MPl
~P2

system + . . . (A.4)
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A.2. A MORE RIGOROUS ARGUMENT

Comparing Eq.(A.1) with Eq.(A.4) one notices that considering the composite system
makes the QG corrections grow linearly with the number of parts N .

The same argument can be applied to non-linear conservation law of the form(
p(A) ⊕ p(B)

)
µ
= p(A)µ + p(B)

µ − 1

MPl
Γ̃µ

αβ p(A)α p
(B)
β + · · · . (A.5)

One can then consider two systems A and B containing N and M particles with
identical momenta pAµ and pBµ . The total momenta of the systems can then be defined
as

P(A)
µ = NpAµ (A.6a)

P(B)
µ =MpBµ . (A.6b)

A collision between those two systems can be described by a number of collisions
between two particles of the systems A and B. Every collision occurs between two
parts of the systems, and is governed by the dispersion relation as shown in Eq.(A.1).
It can be shown that(

P(A) ⊕P(B)
)
µ
= P(A)

µ +P(B)
µ − N

MPl
Γ̃µ

αβ P(A)
α P

(B)
β + · · · . (A.7)

Therefore the QG corrections again grow with the number of parts of the system.

A.2 A more rigorous argument
A.2.1 The choice of coordinates on momentum space

The coordinates on momentum space must be such that the origin corresponds
to the state with zero momentum and that both the modified dispersion relation and
momentum composition rules become the standard special-relativistic ones in the limit
of vanishing momentum space curvature or MPl → ∞. One such set of coordinates is
Riemann normal coordinates. The metric geodesics from the origin are straight lines
and one finds

m2 = D2(p) ≡ ηµνpµpν , (A.8)

and therefore the dispersion relation in normal coordinates is not modified. In this
case therefore all the information about the momentum space curvature is contained in
the deformed momentum composition rule Eq.(A.3). In any other coordinate system,
the dispersion relation, still defined as m2 = D2(p), would take the general form
Eq.(A.1).

Another set of important coordinates is the connection normal coordinates, for
which the geodesics associated with the connection are straight lines, even if the
connection is not metrical. In these coordinates p̂ the addition of parallel momenta is
linear i.e.

(ap̂)⊕̂(bp̂) = (a+ b)p̂ , (A.9)

where a, b are any scalars. The connection for the coordinates up to first order in MPl
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A.2. A MORE RIGOROUS ARGUMENT

is given by p̂µ = Fµ(p) where

Fµ(p) = pµ +
1

2MPl
Γ̃αβµ pαpβ + · · · . (A.10)

The addition in the new coordinates is given by p̂⊕̂q̂ ≡ F (F−1(p̂)⊕ F−1(q)) while its
expansion is

p̂⊕̂q̂ = p̂µ + q̂µ −
1

MPl
Γ̃µ

{αβ} p̂α q̂β + · · · . (A.11)

where the bracket denotes antisymmetrization. Since only the torsion component
at pµ = 0 enters at first order one obtains the desired result. If the connection is
metrical, that is if ∇µgαβ = 0 then the Riemann and connection normal coordinates
agree. If the connection is non metrical the metric geodesics and connection geodesics
no longer agree. This result has phenomenological consequences worth investigating.

A.2.2 A model of macroscopic bodies in collision
Considering an idealized set up, similar to the previous section, “A” and “B” each

composed of N atoms. One assumes that in the course of their interaction the bodies
exchange photons. Denoting the photon’s momentum by kµ and the initial and final
momentum of the atom by pµ and p̃µ, respectively one can easily finds that for the
photon emission process

pµ = (p̃⊕ k)µ , (A.12)

while for photon absorption
(k ⊕ p)µ = p̃µ . (A.13)

When one takes a closer look at the process of a single photon exchange between the
body A and B. Assuming that the body A emits the photon, and body B absorbs it
one finds the relations

pAµ = (p̃A ⊕ k)µ , (k ⊕ pB)µ = p̃Bµ . (A.14)

Solving these two equations for k, the following relation is recovered

[(	p̃A ⊕ pA)⊕ pB]µ = p̃Bµ , (A.15)

where 	p is defined by (	p)⊕ p = 0. To the leading order, 	p is given by

(	p)µ = −pµ −
1

MPl
Γ̃µ

αβ pα pβ + . . . . (A.16)

Eq.(A.15) describes the momentum dispersion relation of a single interaction (emission
and absorption) process. The composition law problem arises due to the fact that the
same form of the dispersion relation would hold for macroscopic, massive bodies with
initial and final total momenta PA,B

µ and P̃A,B
µ , i.e.

[(	P̃A ⊕ PA)⊕ PB]µ = P̃B
µ . (A.17)
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A.2.3 The definition of the total momentum of a body
A similar problem arises if one tries to find the total momentum of a composite

system
PA ≡ pA1 ⊕ (pA2 ⊕ (· · · ⊕ pAN ) · · · ) . (A.18)

In addition, let one assume for simplicity that all the momenta of microscopic con-
stituents are identical. This is a simplistic model of a macroscopic body, which lets one
capture the main features of the composition law problem. Then one can choose the
coordinates such that, PA

µ equals just NpAµ . One can then easily sum up expressions
Eq.(A.18) over a to obtain

[PA +PB]µ − [P̃A + P̃B]µ =
N Γ̃

[αβ]
µ

MPl

(
PA
αP

B
β − P̃A

α P̃
B
β

)
(A.19)

It is easy to see that the non-linearities of the model grow with the number of parts
considered.

A.3 Summary
This appendix shows that deviations from the quadratic form of the dispersion

relation leads to the non-linear addition of both momentum and energy. This is
called the composition law problem, also known as the soccer ball problem. As shown
in the thesis, the composition law problem can be avoided by the use of RGUP.
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Appendix B

Irreducible representations of the
RGUP modified Poincaré group

B.1 Poincare group representations
As one knows the elementary particles are classified by the irreducible represen-

tations of the Poincaré group [154]. Additionally it is well known that there is a
spin 2 tensor field representation which is the best candidate for a graviton particle
[165]. Prompting one to explore the irreducible representations of the RGUP modified
Poincaré group.

One begins by defining the group for the auxiliary or low energy position x0µ and
momentum p0µ

pµ0 = −i~ ∂

∂x0µ
, [xµ0 , p

ν
0] = i~ηµν . (B.1)

The auxiliary Lorentz generators are defined as

M̃µν = pµ0x
ν
0 − pν0x

µ
0 . (B.2)

The Poincaré group is then defined by the following algebra

[xµ0 , M̃
νρ] = i~ (xν0δµρ − xρ0δ

µν) (B.3a)
[pµ0 , M̃

νρ] = i~ (pν0δµρ − pρ0δ
µν) (B.3b)

[M̃µν , M̃ρσ] = i~
(
ηµρM̃νσ − ηµσM̃ νρ − ηνρM̃µσ + ηνσM̃µρ

)
. (B.3c)

p0µp
µ
0 is a Casimir operator and the dispersion relation takes the usual quadratic form.

One can define the auxiliary rotations J̃i and boosts K̃i as

J̃i =
1

2
εimnM̃

mn and K̃i = M̃0i , (B.4)

where εimn is the Levi-Civita completely anti-symmetric tensor. The algebra for them
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is given by

[J̃i, J̃j] = −iεijkJ̃k , (B.5a)
[K̃i, K̃j] = iεijkJ̃

k , (B.5b)
[J̃i, K̃j] = iεijkK̃

k . (B.5c)

An observation can be made that the algebra for the auxiliary boosts and rotations
is entangled. Therefore, one can define a new set of operators

Ãi =
1

2

(
J̃i + iK̃i

)
and B̃i =

1

2

(
J̃i − iK̃i

)
, (B.6)

The algebra expressed in them is given by the following commutation relations

[Ãi, Ãj] = −iεijkÃk , (B.7a)
[B̃i, B̃j] = −iεijkB̃k , (B.7b)
[Ãi, B̃j] = 0 . (B.7c)

As one knows, this algebra is equivalent to SU(2) ⊗ SU(2) algebra. The irreducible
representation of which are

• (0, 0) scalar field

• (1/2, 0) and (0, 1/2) fermion/spinor field

• (1/2, 1/2) vector boson field (photon)

• (1, 1) spin 2 tensor field.

The last one is a candidate for the graviton particle.
A more interesting case is the the RGUP modified Poincaré algebra. The physical

position xµ and momentum pµ are functions of the auxiliary ones represented as

xµ = xµ0 , (B.8a)
pµ = pµ0 (1 + γpρ0p0ρ) , (B.8b)

while the Lorentz generators are defined as

Mµν = pµxν − pνxµ = [1 + γpρ0p0 ρ] M̃
µν , (B.9)

where it is worth mentioning that all the results are truncated to first order in the

135



B.1. POINCARE GROUP REPRESENTATIONS

RGUP parameter γ. The modified Poincaré algebra is then calculated to be

[xµ,M νρ] = i~[1 + γpρp ρ] (x
νδµρ − xρδµν) + i~2γpµMνρ , (B.10a)

[pµ,M νρ] = i~[1 + γpρp ρ] (p
νδµρ − pρδµν) , (B.10b)

[Mµν ,Mρσ] = i~ (1 + γpρp ρ) (η
µρM νσ − ηµσM νρ − ηνρMµσ + ηνσMµρ) . (B.10c)

One can show that the physical rotations Ji and boosts Ki are as follows

Ji =
1

2
εimnM

mn =
1

2
(1 + γpρp ρ) εimnM̃

mn , (B.11a)

Ki =M0i = (1 + γpρp ρ) M̃0i . (B.11b)

The algebra for the physical rotations Ji and boosts Ki is given by the commutators

[Ji, Jj] = −iεijk (1 + γpρp ρ) J
k , (B.12a)

[Ki, Kj] = iεijk (1 + γpρp ρ) J
k , (B.12b)

[Ji, Kj] = iεijk (1 + γpρp ρ)K
k . (B.12c)

Once again a new set of this time physical operators Ai and Bi is defined

Ai =
1

2
(Ji + iKi) =

1

2
(1 + γpρp ρ)

(
J̃i + iK̃i

)
, (B.13a)

Bi =
1

2
(Ji − iKi) =

1

2
(1 + γpρp ρ)

(
J̃i − iK̃i

)
. (B.13b)

The algebra formed by those operators has the following form

[Ai, Aj] = −iεijk (1 + γpρp ρ)A
k , (B.14a)

[Bi, Bj] = −iεijk (1 + γpρp ρ)B
k , (B.14b)

[Ai, Bj] = 0 . (B.14c)

An important result is the fact that once again this algebra is equivalent to SU(2)⊗
SU(2) algebra. The irreducible representation of which are

• (0, 0) scalar field

• (1/2, 0) and (0, 1/2) fermion/spinor field

• (1/2, 1/2) vector boson field (photon)

• (1, 1) spin 2 tensor field.

One has to take two things in consideration. First the modified Poincaré algebra has
both the auxiliary momentum squared p0µp

µ
0 and the physical momentum squared
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pµp
µ as Casimir invariants. And second the modified Poincaré algebra has the same

irreducible representations as the unmodified case. Therefore it describes the same
particles.

B.2 Summary
Here, one can see that the scalar, spinor and gauge fields are classified by the

irreducible representation of the modified Poincaré group. This gives strong evidence
that the RGUP modified KG and Dirac equations are the equations of motion of the
scalar and spinor fields. Furthermore, it provides justification of the use of KG-like
modification for the equation of motion for the gauge field.
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Appendix C

Minimum length modified
Lagrangians

C.1 Obtaining the Scalar Field Lagrangian
Following the Ostrogradsky method for higher derivative Lagrangians presented in
[149, 150, 151], Eq.(4.8) is obtained by applying the Euler-Lagrange equations to the
most general form of the Lagrangian

L =
1

2
∂µφ∂

µφ+ γ (C1 ∂µ∂
µφ ∂ν∂

νφ+ C2 ∂µφ ∂
µ∂ν∂

νφ+ C3 ∂ν∂
ν∂µφ ∂µφ)

+ γ2 (C4 ∂µ∂
µ∂νφ ∂

ν∂ρ∂
ρφ+ C5 ∂µ∂

µ∂ν∂
νφ ∂ρ∂

ρφ+ C6 ∂µ∂
µ∂ν∂

ν∂ρφ ∂
ρφ

+C7 ∂µ∂
µφ ∂ν∂

ν∂ρ∂
ρφ+ C8 ∂µφ ∂

µ∂ν∂
ν∂ρ∂

ρφ) + C9m
2φ2 , (C.1)

which has up to fourth order derivatives in order to match the number of derivatives
in the Equations of motion. The application of the Ostrogradsky method to Eq.(C.1),
should give rise to the equations of motion in Eq.(4.8). According to the Ostrogradsky
method, the Euler-Lagrange equations for theories with higher derivatives has the
form:

dL

dq
− d

dt

dL

dq̇
+
d2

dt2
dL

dq̈
+ . . .+ (−1)n

dn

dtn
dL

d(dnq/dtn)
= 0 , (C.2)

which in the case of fields is

∂L
∂φ

− ∂µ
∂L

∂(∂µφ)
+ ∂µ1∂µ2

∂L
∂(∂µ1∂µ2φ)

+ . . .+ (−1)m∂µ1 . . . ∂µm
∂L

∂(∂µ1 . . . ∂µmφ)
= 0 .

(C.3)
One can now calculate the Euler-Lagrange equations for the Lagrangian Eq.(C.1)

2C9m
2c2φ− ∂µ∂

µφ+ 2γC2∂µ∂
µ∂ν∂

νφ+ 2γC3∂µ∂
µ∂ν∂

νφ− γ2C6∂µ∂
µ∂ν∂

ν∂ρ∂
ρφ

− γ2C8∂µ∂
µ∂ν∂

ν∂ρ∂
ρφ+ 4γC1∂µ∂

µ∂ν∂
νφ+ γ2C5∂µ∂

µ∂ν∂
ν∂ρ∂

ρφ+ γ2C7∂µ∂
µ∂ν∂

ν∂ρ∂
ρφ

+ 2γC2∂µ∂
µ∂ν∂

νφ+ 2γC3∂µ∂
µ∂ν∂

ν − γ2C4∂µ∂
µ∂ν∂

ν∂ρ∂
ρφ+ γ2C5∂µ∂

µ∂ν∂
ν∂ρ∂

ρφ

+ γ2C7∂µ∂
µ∂ν∂

ν∂ρ∂
ρφ− γ2C7∂µ∂

µ∂ν∂
ν∂ρ∂

ρφ− γ2C8∂µ∂
µ∂ν∂

ν∂ρ∂
ρφ = 0 . (C.4)
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The expression above simplifies to

2C9m
2φ+ ∂µ∂

µφ− 4γ(C2 + C3 + C1)∂µ∂
µ∂ν∂

νφ

+ γ2(C6 + 2C8 − 2C5 − C7 + C4)∂µ∂
µ∂ν∂

ν∂ρ∂
ρ = 0 . (C.5)

One then compares Eq.(C.5) to the Eq.(4.8). The following relationship for the nu-
merical constants

C9 =
1

2
(C.6)

C1 + C2 + C3 =
1

2
(C.7)

C6 + 2C4 − C7 + 2C8 − 2C5 = 1 (C.8)

The resulting Lagrangian is then simplified by removing surface terms, as shown below

C1 ∂µ∂
µφ ∂ν∂

νφ = C1∂µ (∂
µφ ∂ν∂

νφ)︸ ︷︷ ︸
surface

−C1∂
µφ ∂µ∂ν∂

νφ (C.9)

C4 ∂µ∂
µ∂νφ ∂

ν∂ρ∂
ρφ = C4∂ν (∂µ∂

µφ∂ν∂ρ∂
ρφ)− C4∂µ∂

µφ∂ν∂
ν∂ρ∂

ρφ

= C4∂ν (∂µ∂
µφ∂ν∂ρ∂

ρφ)︸ ︷︷ ︸
surface

− C4∂µ (∂
µφ∂ν∂

ν∂ρ∂
ρφ)︸ ︷︷ ︸

surface

+C4∂
µφ ∂µ∂ν∂

ν∂ρ∂
ρφ . (C.10)

The process was repeated for all the terms. Additionally, one uses the fact that for
scalar fields [φ, φ] = 0, in other words the field is commutative. Therefore ,

∂µφ ∂µ∂ν∂
νφ = ∂µ∂ν∂

νφ ∂µφ . (C.11)

Applying the above equation to the Lagrangian allows for the combination of the
constants C1, C2, and C3 terms into one C. In addition the C4 , . . . C8 can also be
combined into one D. The resulting Lagrangian is

L =
1

2
∂µφ∂

µφ+ C9m
2φ2 + γC ∂ν∂

ν∂µφ ∂µφ+ γ2D∂µφ ∂
µ∂ν∂

ν∂ρ∂
ρφ . (C.12)

One can observe that the result is a higher derivative Lagrangian, therefore the Os-
trogradsky method to calculate the Equation of Motion should be used

∂L
∂φ

− ∂µ
∂L

∂(∂µφ)
− ∂µ∂ν∂

ν ∂L
∂(∂µ∂ν∂νφ)

− ∂µ∂ν∂
ν∂ρ∂

ρ ∂L
∂(∂µ∂ν∂ν∂ρ∂ρ)

= 0 . (C.13)
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Repeating the process once again in order to fix the new coefficients {C,D,C9}. One
derives the Equations of motion once again

C9m
2φ− ∂µ∂

µφ− Cγ∂µ∂
µ∂ν∂

νφ− Cγ∂µ∂
µ∂ν∂

νφ

−Dγ2γ∂µ∂µ∂ν∂ν∂ρ∂ρφ−Dγ2γ∂µ∂
µ∂ν∂

ν∂ρ∂
ρφ = 0 (C.14)

C9m
2φ− ∂µ∂

µφ− 2Cγ∂µ∂
µ∂ν∂

νφ− 2Dγ2γ∂µ∂
µ∂ν∂

ν∂ρ∂
ρφ = 0 . (C.15)

Comparing the above to Eq.(4.8) the parameters are fixed to be

C9 = −1

2
, (C.16)

C = −1 , (C.17)

D =
1

2
. (C.18)

One can easily check that the coefficients are uniquely defined.

C.2 Obtaining the Dirac Field Lagrangian
To obtain the Lagrangian shown in Eq.(4.21), the differential form of the Dirac

equation is needed. One substitutes the physical momentum in terms of the auxiliary
one

pµ = p0µ(1 + γp0ρp
ρ
0) , (C.19)

in Dirac equation Eq.(4.11). One gets the following expression

[τµp0µ(1 + γp0ρp
ρ
0)−m]ψ = 0 . (C.20)

Because p0 and x0 are canonically conjugated to each other, one can write the differ-
ential form of the Dirac equation as

[iτµ∂µ(1 + γ∂ρ∂
ρ)−m]ψ = 0 . (C.21)

Above, one can recognise Euler-Lagrange equation for this theory. Therefore, the
Lagrangian can be recovered by applying the Ostrogradsky method [151, 150, 149] to
obtain the Euler-Lagrange equations for theories with higher derivatives

dL

dq
− d

dt

dL

dq̇
+
d2

dt2
dL

dq̈
+ . . .+ (−1)n

dn

dtn
dL

d(dnq/dtn)
= 0 , (C.22)

which in the case of fields is

∂L
∂φ

− ∂µ
∂L

∂(∂µφ)
+ ∂µ1∂µ2

∂L
∂(∂µ1∂µ2φ)

+ . . .+ (−1)m∂µ1 . . . ∂µm
∂L

∂(∂µ1 . . . ∂µmφ)
= 0 .

(C.23)
The first step is to assume a general form of the Lagrangian, where the order of deriva-
tives is determined by the order of the equation of motion Eq.(C.21). Moreover, an
assumption is made that different terms will have an arbitrary numerical coefficients
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multiplying every term

Lψ = ψ [iC1τ
µ∂µ(1 + C2γ∂ρ∂

ρ)− C3m]ψ . (C.24)

Next step is to prove that it has Eq.(C.21) as an equation of motion. Applying the
Ostrogratsky method, one gets the following equations of motion for the field and its
complex conjugated

C1iτ
µ∂µψ + C1C2γ∂ρ∂

ρψ − C3mψ = 0, (C.25)
C1iτ

µ∂µψ + C1C2γ∂ρ∂
ρψ − C3mψ = 0 . (C.26)

The equations of motion obtained through the Ostrogradsky method from Eq.(4.21)
need to be identical to Eq.(C.21), which was obtained through different means. There-
fore, the Lagrangian corresponding to the QFT spinor with minimum length will be
of the form presented in Eq.(4.21). This can be used to fix the value of the arbitrary
coefficients. The result is an unique set of coefficients

C1 = C2 = C3 = 1 . (C.27)

Therefore, the Lagrangian corresponding to the QFT spinor with minimum length
will be of the form presented in Eq.(4.21).

C.3 Summary
The Lagrangians for the charged scalar and Dirac fields are obtained from the RGUP
modified Equations of Motion Eq.(4.8) and (4.11). This was achieved through the use
of the Ostrogradsky method for finding the Equations of Motion of higher than second
order Lagrangians. Additionally, it is shown that that the numerical coefficients
which fix the effective Lagrangian are uniquely defined by the Equation of Motion
considered.
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Appendix D

Dirac Equations

In the following appendix, the solutions of the RGUP modified Dirac Equations are
considered in order to find the form of the spinor field obeying the modified dispersion
relation. A solution of the equations of motion is needed for the calculations of the
scattering amplitude.

D.1 Dirac equation solutions
In terms of the physical and the auxiliary momentum from the dispersion relation

the Klein-Gordon (KG) equation reads as follows

pρpρ = pρ0p0ρ(1 + 2γpσ0p0σ) = −(mc)2 . (D.1)

Since the KG equation written in terms of the physical momentum is unchanged, one
can reasonably assume that the Dirac equation will have the same form

Eψ = (~α · ~p+ βm)ψ , (D.2)

where E is the zeroth component and ~p is the spatial part of the physical momentum
pµ. When one assumes that the Kline-Gordon equation is obtained upon squaring
Eq.(D.2). It can be shown that one has the following properties for ~α and β.

In fact, one obtains

E2ψ = (~α · ~p+ βm) (~α · ~p+ βm)ψ . (D.3)

Expanding the above one gets

E2ψ =

 ~α2
i︸︷︷︸
1

~p2i + (~αi~αj + ~αj~αi)︸ ︷︷ ︸
0

~pi~pj + (~αiβ + β~αi)︸ ︷︷ ︸
0

~pim+ β2︸︷︷︸
1

m2

ψ . (D.4)

In order this equation to be equivalent to the KG equation one needs to put the
following conditions for ~α and β

{αi, αj} = {αi, β} = {β, β} = 0 (D.5)
α2
i = β2 = 1 . (D.6)
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One can recall that these are the properties of Dirac matrices. In fact one can recover
a representation of the Dirac matrices form ~α and β as follows

τµ ≡ (β, β~α) , (D.7)

which in terms of the Pauli matrices has the form presented in Eq.(4.10).
Now, by multiplying both sides of Eq.(D.2) by β and rearranging one can write

(τµpµ −m)ψ = 0 . (D.8)

One can show that
Hu = (~α · ~p− βm)u = Eu (D.9)

In terms of linear operators, the Dirac equation can be written in the following form

Hu =

(
m ~σ · ~p
~σ · ~p −m

)(
uA
uB

)
= E

(
uA
uB

)
. (D.10)

The above equation reduces to

~σ · ~p uB = (E −m)uA , (D.11)
~σ · ~p uA = (E +m)uB . (D.12)

One can easily prove that Eqs.(4.83)

u(s) (p) = N

(
χ(s)

σ·p
E+m

χ(s)

)
, E > 0 (D.13a)

u(s+2) (p) = N

( −σ·p
E+m

χ(s+2)

χ(s+2)

)
, E < 0 . (D.13b)

are the respective solutions for a free Dirac field. Therefore, they can be used when
calculating the transition amplitude. Note that ~p and E are the physical momentum
and energy, each of which can be expressed as a function of the auxiliary variables ~p0
and E0.

D.2 Summary
In the appendix presented above it was shown that two of the solutions of the

RGUP modified Dirac equation coincide with the usual solutions with a modified
dispersion relation. It is worthy of note that the solutions presented above are not
the only solutions of the third order differential equation Eq.(4.9). However, for the
purposes of the perturbative calculations of the scattering amplitudes, a single solution
for the Dirac field is needed and the one found here is sufficient.
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Appendix E

Ostrogradsky method and Vacuum
Instability

The Ostrogradsky method is a mathematical constructions allowing one to work with
higher derivative Lagrangians [149, 150, 151]. One of the major issues with it, is the
instability of the Hamiltonian, arising when one considers higher than second order
derivative. The instability for the particular case presented in this thesis is discussed
in the following appendix.

E.1 Review of Ostrogradsky method and its instability
One begins assuming the most general expression for the Lagrangian and the

Lagrangian density

L =L(φ, φ̇, φ̈, . . . ,
(n)

φ ) , (E.1a)
L =L(φ, ∂µ1φ, ∂µ1∂µ2φ, . . . , ∂µ1 . . . ∂µnφ) (E.1b)

Equations of motion for high derivatives theories are obtained using the generalization
of the Euler-Lagrange equations

dL

dq
− d

dt

dL

dq̇
+
d2

dt2
dL

dq̈
+ . . .+ (−1)n

dn

dtn
dL

d(dnq/dtn)
= 0 , (E.2a)

∂L
∂φ

− ∂µ
∂L

∂(∂µφ)
+ ∂µ1∂µ2

∂L
∂(∂µ1∂µ2φ)

+ . . .+ (−1)m∂µ1 . . . ∂µm
∂L

∂(∂µ1 . . . ∂µmφ)
= 0 .

(E.2b)
The generalized coordinates for the Lagrangian in Eq.(E.1a) are defined as follows

q1 ≡ φ ,

qi ≡
(i−1)

φ (i = 2, ..., n) . (E.3)
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The generalized momenta corresponding to the coordinates are defined as derivatives
to the Lagrangian with respect of the generalized coordinates

pn ≡ ∂L

∂
(n)

φ

,

pi ≡
∂L

∂
(i)

φ

− d

dt
pi+1 (i = 1, ..., n− 1) . (E.4)

One notices that there is difference in the way generalized momentum is defined for the
higher order derivative terms. Mainly the therms subtraction the total time derivative
of the generalized momentum of the term one order higher.

One now has all the parts needed to perform the Legendre transformation, which
is defined as follows

H[qi; pi] =
m∑
i=1

piφ̇i − L[qi; pi] . (E.5)

One can apply similar arguments and calculations to field theory. Beginning from the
Lagrangian density Eq.(E.1b), defining the generalized coordinates as follows

φ and φµ1,...,µi ≡ ∂µ1 . . . ∂µiφ (i = 1, ..., n− 1) , (E.6)

the corresponding generalized momenta are therefore defined as

πµ1···µn ≡ ∂L
∂φµ1···µn

,

πµ1···µi ≡ ∂L
∂φµ1···µi

− ∂µi+1
πµ1···µiµi+1 (i = 1, ..., n− 1) . (E.7)

The Hamiltonian corresponding to a theory defined by Eq.(E.1b) is obtained through
the generalized Legendre transformation.

H[φ, φµ, ..., φµ1···µm−1 ; π
µ, ...,πµ1···µm ] = πµφµ + · · ·+ πµ1···µm−1φµ1···µm−1

+ πµ1···µmφµ1···µm − L[φ, φµ, ..., φµ1···µm ] . (E.8)

Due to the nature of Ostrogradsky method, the Hamiltonian and its density have
terms linear in momentum for all but the highest order derivative. Which means
that the Hamiltonian and its density can not be positively defined. This is called the
Ostrogradsky instability and the theory contains a decaying vacuum and an infinite
number of ghost fields named Ostrogradsky ghosts.

E.2 Ostrogradsky instability in our theory
E.2.1 Real Scalar field

One begins from the equation of motion for the real scalar field, obtained from
the modified dispersion relation which corresponds to the Casimir operator of the
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modified Poincaré group defined in [131]

pρ0p0ρ(1 + 2αγ2pσ0p0σ) = −(mc)2 . (E.9)

The Lagrangian for a real scalar field is derived by assuming the most general form
of the Lagrangian, and applying the Ostrogradsky method to obtain its equations of
motion and comparing to Eq.(E.9). The form of the Lagrangian is

Lφ,R =
1

2
∂µφ∂

µφ− 1

2
m2φ2 + γ ∂ν∂

ν∂µφ ∂µφ . (E.10)

One can define the generalized coordinates as

q1 ≡ φ q2 ≡ ∂µ∂
µφ . (E.11)

The generalized momenta are then derived as

πµρρ =
∂L

∂(∂µ∂ρ∂ρφ)
= 2γ∂µφ , (E.12a)

πµ =
∂L

∂(∂µφ)
− ∂σ∂

σπµρρ = ∂µφ . (E.12b)

The Hamiltonian density is then obtained using Eq.(E.8)

H = πµ∂µφ+ πµρρ ∂σ∂
σ∂µφ− 1

2
πµπµ − πµρρ ∂

σ∂σπµ +
1

2
mφ2 (E.13a)

=
1

2
πµπµ +

1

2
m2φ2 . (E.13b)

One can easily see that the above is positive definite. However one can see, also
that the correction terms cancel, the Quantum Gravity corrections are hidden in the
dispersion relation of φ. The field φ is solution of Eq.(E.9) which has four different
solutions all containing Quantum Gravity corrections. The calculation above is done
in the framework of De Donder Weyl Covariant Hamiltonian Formulation of Field
Theory [166].

Considering the same definition of generalized coordinates presented in Eq.(E.11),
one can derive the field momenta outside of the De Donder Weyl formulation as

πρρ =
∂L

∂(∂ρ∂ρφ̇)
= 2γφ̇ , (E.14a)

π =
∂L
∂(φ̇)

− ∂σ∂
σπρρ = φ̇ . (E.14b)
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Performing the Legendre transformation the Hamiltonian density is obtained as

H = πφ̇+ πρρ∂σ∂
σφ̇− 1

2
ππ − πρρ∂

σ∂σπ +
1

2
mφ2 +

1

2
(∇φ) · (∇φ) + γ (∇φ) · (∂σ∂σ∇φ)

(E.15)

=
1

2
ππ +

1

2
mφ2 +

1

2
(∇φ) · (∇φ) + γ (∇φ) · (∂σ∂σ∇φ) . (E.16)

One can not be sure if he Hamiltonian density is positive definite. This is due to
the fact that one is not sure of the sign of the term proportional to γ = γ0

(MPl c)2
. If

one assumes that γ0 is of the order one, the coefficient is γ ∼ 10−38. Therefore, for
energies smaller than the Planck energy E < EPl, the leading order terms in Eq.(E.15)
are several orders of magnitude bigger than the quantum gravity corrections, which
means that the Hamiltonian density on the whole is positive definite and does not have
Ostrogradsky instability. Conclusion about the positive definition of the Hamiltonian
for energies bigger than the Planck energy E > EPl cannot be drawn. Making the
QFT presented here an effective theory.

E.2.2 Complex scalar field
The procedure of obtaining the Lagrangian density for the complex scalar field is

similar to the one presented in the previous section. The resulting Lagrangian is

Lφ,C = (∂µφ)
† ∂µφ−m2φ†φ+ 2γ

[
(∂ν∂

ν∂µφ)† ∂µφ+ ∂ν∂
ν∂µφ (∂µφ)

†
]
. (E.17)

The generalized coordinates are also similarly defined

q1 ≡ φ q2 ≡ ∂µ∂
µφ , (E.18a)

q†1 ≡ φ† q†2 ≡ ∂µ∂
µφ† . (E.18b)

According to the Ostrogradsky method their corresponding generalized momenta are

πµρρ =
∂L

∂(∂µ∂ρ∂ρφ)
= 2γ∂µφ† , (E.19a)

πµ =
∂L

∂(∂µφ)
− ∂σ∂

σπµρρ = ∂µφ† , (E.19b)

πµρ†ρ =
∂L

∂(∂µ∂ρ∂ρφ)
= 2γ∂µφ , (E.19c)

πµ† =
∂L

∂(∂µφ)
− ∂σ∂

σπµρ†ρ = ∂µφ . (E.19d)
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Performing the Legendre transformations prescribed by Ostrogradsky, one obtains the
Hamiltonian density

H = πµπ†
µ + πµ†πµ + πµρρ ∂σ∂

σπ†
µ + πµρ†ρ ∂σ∂

σπµ

− πµπ†
µ − πµρρ ∂σ∂

σπ†
µ − πµρ†ρ ∂σ∂

σπµ +m2φφ†

= πµπ†
µ +m2φφ† (E.20)

Again one can see that in the framework of De-Donder Weyl Covariant Hamiltonian
Formulation of Field Theory the Hamiltonian density is always positively defined.
Similarly to the case of the real scalar field, the Quantum Gravity corrections are hid-
den in the dispersion relation of the field φ and its complex conjugate φ†. Analogously
to the previous section, one has the same generalized coordinates Eq.(E.18). Without
considering the De-Donder Weyl framework, the generalized momenta are as follows

πρρ =
∂L

∂(∂ρ∂ρφ̇)
= 2γφ̇† , (E.21a)

π =
∂L
∂(φ)

− ∂σ∂
σπρρ = φ̇† , (E.21b)

πρ†ρ =
∂L

∂(∂ρ∂ρφ̇)
= 2γφ̇ , (E.21c)

π† =
∂L
∂(φ̇)

− ∂σ∂
σπρ†ρ = φ̇ . (E.21d)

Performing the Legendre transformation in this case yield the following

H = 2π†π + πρρ∂σ∂
σπ† + πρ†ρ ∂σ∂

σπ − ππ† − πρρ∂σ∂
σπ† − πρ†ρ ∂σ∂

σπ +m2φφ†

+m2φφ† + (∇φ) ·
(
∇φ†)+ 2γ (∇φ) ·

(
∂σ∂

σ∇φ†)+ 2γ
(
∇φ†) · (∂σ∂σ∇φ)

= ππ† +m2φφ† + (∇φ) ·
(
∇φ†)+ 2γ (∇φ) ·

(
∂σ∂

σ∇φ†)+ 2γ
(
∇φ†) · (∂σ∂σ∇φ) .

(E.22)

Once again the issue of the sign of the Hamiltonian density depends on the terms
proportional to γ = γ0

(MPl c)2
. Therefore, for energies smaller than the Planck energy

E < EPl, the leading order terms in Eq.(E.22) are several orders of magnitude bigger
than the quantum gravity corrections, which means that the Hamiltonian density on
the whole is positive definite and does not have Ostrogradsky instability.

E.2.3 Dirac field
To obtain the Lagrangian shown below in Eq.(E.24) one needs its equations of

motion, i.e. the Dirac equation. The Dirac equation can be obtained from Eq.(E.9)
by using the standard method. The modified Dirac equation has the following form

[iτµ∂µ(1 + γ∂σ∂
σ)−m]ψ = 0 . (E.23)
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Therefore, the Lagrangian for a spinor field can be derived by assuming a most general
form of the Lagrangian, and applying the Ostrogradsky method to obtain its Equa-
tions of Motion and comparing it to the above Eq.(E.23). The form of the Lagrangian
is

Lψ = ψ [iτµ∂µ(1− γ ∂σ∂
σ)−m]ψ . (E.24)

One then defines the generalized coordinates as

q1 ≡ ψ , q2 ≡ ∂µ∂
µψ . (E.25)

Their corresponding generalized momenta are

πρρ =
∂L

∂(∂ρ∂ρψ̇)
= −iγψτ 0 , (E.26a)

π =
∂L
∂(ψ̇)

− ∂σ∂
σπρρ = iψτ 0 . (E.26b)

One can then use the generalized Legendre transformations to recover the Hamiltonian
density

H = πψ̇ − γπ∂σ∂
σψ̇ − πψ̇ + γπ∂σ∂

σψ̇ + ψ [iτa∇a(1− γ ∂σ∂
σ)−m]ψ

= ψ [iτa∇a(1− γ ∂σ∂
σ)−m]ψ . (E.27)

Similar to the scalar field cases, the question of the sign of the Hamiltonian density
depends on the sign of the terms proportional to γ = γ0

(MPl c)2
. One can not draw

solid conclusions for the sign of this terms. However, just like previous cases, if the
energy of the system is smaller than the Planck energy E < EPl the correction term
is smaller than the leading order making the Hamiltonian density positive definite.
Therefore, there is no Ostrogradsky instability.

E.2.4 Gauge field
Using the Ostrogradsky method [149, 150, 151], one can recover the Lagrangian

for the modified electrodynamics

LA = −1

4
F µνFµν = −1

4
F µν
0 Fµν0 −

γ

2
Fµν0∂ρ∂

ρF µν
0 , (E.28)

writing the Lagrangian in terms of the gauge field

LA = −1

2
[∂µAν∂µAν − ∂νAµ∂µAν ]− γ [∂µAν∂σ∂

σ∂µAν − ∂νAµ∂σ∂
σ∂µAν ] . (E.29)

The Ostrogradsky method is employed to find the equations of motion in order to
make sure that its equations of motion match with the Eq.(4.22). Observation is
made that the Lagrangian contains only first and third derivatives. Therefore only
these terms are used in obtaining the equation of motion. Due to freedom of gauge
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choice, Lorentz gauge ∂µAµ = 0 is chosen and used to obtain the equations of motion.

−∂µ
∂L

∂(∂µAν)
− ∂σ∂

σ∂µ
∂L

∂(∂σ∂σ∂µAν)
= 0 ,

i.e., −
[
−1

2
2∂µ∂

µAν − γ∂σ∂
σ∂µA

ν)

]
− [γ∂σ∂

σ (∂µAν)] = 0 ,

i.e., ∂µ∂
µAν + 2γ∂σ∂

σ∂µ∂
µAν = 0 . (E.30)

As one can read from the above equation Eq.(E.30) matches Eq.(4.22). Therefore,
Eq.(E.29) is the Lagrangian of Electromagnetic gauge field that allows for minimum
length.

The Ostrogradsky ghosts arise when one has higher derivative theories and the
Hamiltonian is unbounded from below. This is due to the fact that only the highest
derivative term is quadratic in momentum while all the others are linear. To check if
this is the case for the considered theory, one needs to do the Legendre transformation
as prescribed by the Ostrogradsky formalism. The ∂µAν and ∂σ∂

σ∂µAν are chosen
to be treated as our generalized coordinates, with their corresponding generalized
momentum as follows

πνρρ =
∂L

∂(∂ρ∂ρ∂0Aν)
= −2γ[∂0Aν − ∂νA0] , (E.31a)

πν =
∂L

∂(∂0Aν)
− ∂σ∂

σπνρρ = −[∂0Aν − ∂νA0] . (E.31b)

Then one finds the expression for the Lagrangian density in terms of the generalized
position and momentum

LA =− 1

2
[∂µAν∂µAν − ∂νAµ∂µAν ]− γ [∂µAν∂σ∂

σ∂µAν − ∂νAµ∂σ∂
σ∂µAν ] (E.32)

=− 1

2
πνρρ ∂σ∂

σπν −
1

2
πνπν (E.33)

− 1

2
[∇aAν∇aAν − ∂νAa∇aAν + 2γ(∇aAν∂σ∂

σ∇aAν − ∂νAa∂σ∂
σ∇aAν)]

(E.34)

This case utilizes the Weyl gauge, also known as the Hamiltonian or temporal gauge
discussed and used in [154, 167]

A0 = 0 ∇ · ~A = 0 . (E.35)

This is also known as an incomplete gauge as it is not manifestly Lorentz covariant
and it requires longitudinal photons with a constraint on the states. The subsequent
results are Lorentz covariant. However, this choice of gauge eliminates the negative-
norm ghost. This is commonly used in conformal field theories as it sacrifices explicit
Lorentz invariance in favour of scale invariance.

Using the Legendre transformation as prescribed by the Ostrogradsky method,
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the Hamiltonian density for the modified Electrodynamics is obtained as follows

H =πνρρ ∂σ∂
σ∂0Aν + πν∂0Aν − L

=γπa∂σ∂
σπa +

1

2
πaπa +

1

2
(1 + 2γ)πν∂

νA0

+
1

2
[∇aAν∇aAν − ∂νAa∇aAν + 2γ(∇aAν∂σ∂

σ∇aAν − ∂νAa∂σ∂
σ∇aAν)]

(E.36)

The underlined term is the only term linear in momentum, however it is equal to
zero due to our gauge fix. One needs to see if γπa∂σ∂σπa is positively defined. Using
Eq.(E.30)

∂0
[
∂0Aν + 2γ∂σ∂

σ∂0Aν
]
= 0 . (E.37)

This means that the term inside the square brackets is either zero or a constant.
Additionally, one can draw the conclusion that ∂µ∂µAν and the 2γ∂σ∂

σ∂µ∂
µAν have

opposite signs. Therefore, on its own the γπa∂σ∂σπa changes sign.
As per the spatial part, in the Weyl gauge the term reads

1

4
F abFab +

γ

2
F ab2Fab (E.38)

=
1

4

(
−εijkBk

) (
−εijlBl

)
+
γ

2

(
−εijkBk

)
2
(
−εijlBl

)
(E.39)

=
1

2
BkB

k + γBk2B
k . (E.40)

One can see that the first term in the equation above is positively defined due to
it being quadratic. Applying the same line of reasoning that we did for momentum
term, one can not draw solid conclusions on the sign of the correction term.

One can notice that the sign changing terms in Eq.(E.36) are both proportional to
γ = γ0

(MPl c)2
. If one assumes that γ0 is of the order of one, the coefficient is γ ∼ 10−38.

Therefore for energies smaller than the Planck energy E < EPl, the leading order
terms in Eq.(E.36) are several orders of magnitude bigger than the quantum gravity
corrections. One can then conclude that the Hamiltonian density is positively defined
for energies smaller than Planck energy E < EPl. In conclusion the proposed gauge
theory is an effective field theory constructed for phenomenological studies of low
energy effects of minimum measurable length on Quantum field theories. Therefore,
all applications must be considered in the E < EPl domain.

E.3 Summary
In this appendix the author has shown that the QFT with minimum length for-

mulated in this thesis has no Ostrogradsky instability, when considered in the domain
E < EPl = MPlc. This is a sign that the formulation is an effective theory. The
fact that the theory is an effective field theory is further solidified by the fact that
effects like the non-commutativity of space-time at high energy are not considered.
Fact worth mentioning is that, a domain in which the theory has a positive definite
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Hamiltonian density at all, is due to the asymmetry of the derivatives in the correction
terms. Additionally all applications considered are well in that domain.

Another feature of this formulation of Quantum Field Theory with minimum
length worth mentioning is that, when one takes the limit γ → 0 all the results
predicted by the usual formulation of Quantum Field Theory are recovered. In addi-
tion, one can notice that there are repeating patterns in the calculations for fields of
different spins. This can be taken as a sign of the robustness of the method used.
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