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Abstract

Understanding speech in the presence of distracting talkers is a difficult computational prob-

lem known as the cocktail party problem. Motivated by auditory processing in the human

brain, this thesis developed a neural network to isolate the speech of a single talker given

binaural input containing a target talker and multiple distractors. In this research the net-

work is called a Binaural Speaker Isolation FFTNet or BSINet for short. To compare the

performance of BSINet to human participant performance on recognizing the target talker’s

speech with a varying number of distractors, a ”cocktail party” dataset was designed and

made available online. This dataset also enables the comparison of network performance

to human participant performance. Using the Word-Error-Rate metric for evaluation, this

research finds that BSINet performs comparably to the human participants. Thus BSINet

provides significant advancement for solving the challenging cocktail party problem.
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Chapter 1

The Auditory System and Speech in
Multi-Talker Environments
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1.1. PREFACE

1.1 Preface

Humans have the remarkable ability to understand speech in noisy environments with

many distracting talkers. This ability has been called the cocktail party effect, a term first

coined in a paper published by E. C. Cherry in 1953 [8], or more recently the ”multi-talker

problem”. Understanding speech in these multi-talker environments is challenging and the

mechanisms by which the brain performs this task are still not fully understood. One clue,

which emerges from a large body of previous research is that spatial hearing in general and

spatial release from masking in particular are important contributors to the brain’s ability to

perform this task. [22][64][20][28][32][1].

Spatial hearing is the ability to discern and use the spatial configuration of sounds in

the auditory scene around a listener. Sound localization, which is the ability to know the

direction and distance of a sound source, is perhaps the most salient aspect of spatial hear-

ing, and has certainly received the most attention in the literature. However, spatial hearing

also provides an important dimension (together with frequency) over which the brain can

resolve the complex auditory scene and solve the multi-talker problem. To achieve spatial

hearing, humans and other mammals rely mainly (although not exclusively) on the binaural

comparison of the auditory signals present at each ear. There are two binaural cues the brain

uses to localize sounds in space: the time delay between the two ears, commonly referred

to as interaural time delay (ITD), and the level difference between the two ears which is

referred to as the interaural level difference (ILD). It is well known that these cues enable

the brain to localize the direction of arrival of sounds. These cues also provide the putative

spatial dimensions along which a target sound can be spatially separated from distracting

or masking sounds that arrive from different spatial locations. Although much research has

demonstrated the importance of ITD and ILD in computing direction of arrival in birds e.g.

[6] and mammals e.g. [14] (reviewed e.g. in [15]), the computational mechanisms that

presumably use ITD and/or ILD to perform spatial unmixing have been less investigated

and remain unclear. Some previous studies have suggested that both ILD and ITD cues

2



1.1. PREFACE

are independently sufficient to mediate the benefits of spatial hearing in complex auditory

scenes [11][28][13] (see discussion). The goal of this thesis was (1) to consider whether

an artificial neural network could be trained to make use of these binaural cues to improve

speech recognition in complex auditory scenes, and (2) to consider which, if any, binaural

cues the network makes use of.

This thesis is organized in the following way. Chapter one first broadly outlines the

biological systems in the brain that are involved in spatial hearing - these are the systems

that compute and represent the spatial relationships between temporally overlapping sound

sources. Next, chapter two reviews the traditional approaches taken in the past for com-

putational auditory scene analysis, and then describes state-of-the-art neural network ap-

proaches. Chapter two also describes an experiment that tests the prediction that providing

binaural cues to a denoising neural network can improve speech recognition of a target

talker. Next, chapter three compares the results of the neural network to the results of

human participants performing the same listening task. Finally, chapter four contains a dis-

cussion of the research outlined in the thesis and also explores potential future directions

for the research.

3



1.2. SPATIAL HEARING IN THE MAMMALIAN BRAIN

1.2 Spatial Hearing in the Mammalian Brain

The research in this thesis is based on insights from biological auditory systems. The

following section outlines the pathways of the early auditory system that are related to

spatial hearing as well as the fundamental spatial cues the auditory system uses.

1.2.1 The Early Auditory System

The auditory system in the mammalian brain starts with the basilar membrane in the

cochlea. Sound waves entering the ear transfer mechanical sound energy to the basilar

membrane. This energy is transduced by hair cells on the basilar membrane which propa-

gate signals centrally through the auditory nerve. Bushy cells in the ventral cochlear nucleus

combine inputs from multiple hair cells and route the combined signals to several nuclei of

the central auditory system. [30]

Along the ascending auditory pathway, the superior olivary complex (SOC) performs

critical spatial computations, with specialization in different sub-regions for ITD and ILD

cues: cells in the Lateral Superior Olive (LSO) are sensitive to level differences between

the two ears, whereas cells in the Medial Superior Olive (MSO) are sensitive to time delays

in signals between the two ears [15]. Figure 1.1 illustrates how the ITD and ILD cues are

created due to the distance between the two ears and the attenuation of the signal due to the

head.

Comparison of level differences between the ears happens on timescales of tens or hun-

dreds of milliseconds, which are long enough to allow the LSO to directly combine inputs

from both ears. By contrast, ITD cues require temporal resolution on the scale of microsec-

onds. This means that the systems involved in processing ITD cues are complex, requiring

specialized neural circuitry. In 1948, Lloyd Jeffress outlined a model [25] (see also [31])

that can accomplish this, in which banks of neurons from both ears are organized into de-

lay lines that propagate the auditory signal from each ear towards each other. A bank of

”coincidence detector” neurons are connected to the delay lines. Sounds propagating from

4



1.2. SPATIAL HEARING IN THE MAMMALIAN BRAIN

Figure 1.1: ITD and ILD cues. This figure shows a top-down view of a human listener
hearing a sound source in the right hemifield. The top half of the figure illustrates the time
delay that occurs due to the fact that the signal takes longer to reach the listener’s left ear.
The bottom half illustrates the level or intensity difference caused by the attenuation of the
signal as it propagates through the head.

sources off of the azimuthal midline must travel different distances to the two ears and thus

arrive with slight time lags relative to each other. Sensitivity of the coincidence detectors

to this temporal lag imparts a degree of spatial tuning and the bank of coincidence detector

neurons thus can be thought of as a place-code map of azimuthal auditory space, with an

egocentric coordinate system [17], and with neurons spatially tuned to specific delays that

correspond to specific azimuthal angles. This coincidence detector system has been shown

to exist in the avian auditory system [65][6]. It is interesting to note, however that the com-

mon ancestor of mammals and birds did not have a tympanic ear, and as such the functional

anatomy and resultant computational architecture of the auditory pathways evolved inde-

pendently from each other. As a consequence, the systems responsible for processing ITD

cues operate somewhat differently in the mammalian brain and are less understood than

their avian counterparts. Thus the mechanism by which the ascending auditory pathway

uses ITD to represent sound arrival angle is more complex than a simple system of delay

lines described by the Jeffress model [15]. From a computational perspective, this also
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1.2. SPATIAL HEARING IN THE MAMMALIAN BRAIN

means that computationally analogous approaches inspired by the Jeffress model, such as

beamforming (see chapter 2), may not be performing the same operations as the mammalian

brain.

1.2.2 The Characteristics of Spatial Auditory Cues

The brain also uses different cues for processing sounds at different frequencies and

locations. An early insight into ILD and ITD cues and how they affect perception was first

published by Lord Rayleigh in 1907 [43]. He discovered that the brain relies on the ITD cue

for sounds at low frequencies, and as frequency increases the brain switches to using the

ILD cue. This has been named the duplex theory of sound localization. The differentiation

is presumed to arise because the head better attenuates sounds at higher frequencies due to

an acoustic shadow, while lower frequencies are attenuated less. In concert with this, the

shorter wavelengths of higher-frequency sounds also lead to spatial aliasing and thus more

than one potential angle for a sound source. For example, if we picture a high-frequency

sine wave with a wavelength that is much shorter than the distance between the ears, then

there are multiple physiologically plausible time delays for which this sine wave would

be coherent with itself at the two ears and thus at a coincidence detector in the auditory

pathway. This coincidence therefore corresponds to different potential angles of which

only one is correct. The combination of these two effects provide the mechanistic basis for

duplex theory.

Duplex theory explains an essential component of binaural sound localization: that the

mechanisms of spatial hearing interact with the frequency components of the sound source.

Thus, it follows that the considerations regarding duplex theory are also important for the

exploration of spatial unmixing in the cocktail party problem. This theory has led to the

approach taken in papers such as [28], in which audio is filtered based on the frequency

ranges described by duplex theory, with the ITD cue low-pass filtered at 1500 Hz and the

ILD cue band-pass filtered at 3000-6000 Hz. While this is a valid and common approach,
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1.2. SPATIAL HEARING IN THE MAMMALIAN BRAIN

the brain can use ILD cues for low frequency sounds that are near-field and can also make

use of ITD cues based on the envelope of complex sounds at higher frequencies, as outlined

in [15]. For this reason, the research in this thesis takes the approach of rendering ITD

and ILD cues separately, and presenting the stimulus using headphones to mitigate the

considerations of ITD at high frequencies and ILD at low frequencies. This approach also

has the added benefit of ensuring speech signal degradation occurs only from distracting

talkers and not from the effect of filtering out of potentially important frequencies by the

head.

7



1.3. SUMMARY

1.3 Summary

In summary, this introduction started out by exploring the pathways of the early audi-

tory system that are involved in spatial hearing. We then considered the spatial auditory

cues that are vital to the auditory system’s ability to localize sounds and spatially unmix

complex auditory scenes with multiple talkers. An area of the ascending auditory pathway

known as the superior olivary complex (SOC) was outlined as a site where critical spatial

computations are performed. These computations involve the use of two important binau-

ral cues: the interaural time delay (ITD) and interaural level difference (ILD) cues. An

important theory that shows how the brain uses ITD and ILD cues at different frequencies

is duplex theory. Duplex theory shows how the brain relies on the ITD cue for localizing

sounds at low frequencies, and as frequency increases the brain switches to using the ILD

cue.

The next chapter will investigate traditional and current computational approaches to

unmixing speech in multi-talker environments and then demonstrate the computational ap-

proach taken in this thesis: a type of neural network inspired by binaural hearing in birds

and mammals called a Binaural Speaker Isolation FFTNet or BSINet for short.
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Chapter 2

Binaural Speaker Isolation Neural
Networks

2.1 Introduction

Although humans are adept at solving the cocktail party problem, it is still a difficult

problem to model computationally and implement in artificial hearing systems that use mi-

crophones. This chapter will first take a look at traditional computational approaches and

then state-of-the-art approaches based on neural networks. A common technique used in

solving this problem is to make use of arrays of many microphones in order to increase

performance. Increases in the number of microphones generally correspond to increased

ability to resolve target talkers in these complex environments. We know from the previ-

ous chapter, however, that humans have the remarkable ability to solve this problem using

only two ears. Based on this insight, the purpose of this thesis is to test the theory that

binaural input can provide the computational basis for unmixing speech in multi-talker en-

vironments. To that end, the second part of this chapter will introduce the computational

approach taken in this thesis, a neural network called a Binaural Speaker Isolation FFTNet

or BSINet for short. This chapter also contains an experiment that tests the extent to which

the BSINet has learned to use the ITD and ILD cues.

2.1.1 Traditional Computational Approaches

There have been various approaches taken to isolate a target talker from distractors, and

they generally can be categorized into single-channel or multi-channel approaches. Single-

9



2.1. INTRODUCTION

channel approaches have been based on a field of psychoacoustic research called auditory

scene analysis [4]. Computational solutions based on this research such as [10][23] are

called computational auditory scene analysis and typically use filterbanks to convert the

audio signal into a time by frequency (T-F) representation. Once the audio is in this repre-

sentation, different T-F units are grouped together based on psychoacoustic features of the

target talker such as the pitch of the talker’s voice and/or temporal correlations [52][58][47].

Single-channel computational auditory scene analysis approaches are interesting due to

similarities with the initial frequency decomposition performed by the basilar membrane

of the mammalian auditory system, however monaural signals do not provide the spatial

cues that can be highly effective in unmasking a target talker from distractors. By con-

trast, multi-channel systems that can spatially isolate the target talker have been developed.

These fall broadly into two computational approaches: Beamforming, based on relative

phase lags of signals at spatially separated microphones in an array, and blind source sep-

aration such as Independent-Components Analysis, based on relative level differences of

component signals in the mixtures at each microphone. Beamforming and blind source

separation are interesting because they might be broadly analogous to biological computa-

tional mechanisms that make use of ITD and ILD, respectively, and thus may provide the

basis of computational models that investigate how ITD and ILD cues are used to compute

spatial unmixing in the biological auditory system.

Beamforming amplifies signals arriving from specific angle of arrival while rejecting

signals arriving from other directions. This works due to the fact that signals take differ-

ent amounts of time to arrive at sensors with different spatial locations. For this reason,

beamforming can be thought of as similar to the ITD cue that the brain uses for sound lo-

calization and, presumably, spatial release from masking. A common type of beamforming

that is widely used is delay-and-sum beamforming. Given a spatial direction from which

to isolate a source signal, delay-and-sum beamformers calculate the corresponding time

delay for each sensor and shift the incoming signal by the delay amount. These shifted

10



2.1. INTRODUCTION

signals are then summed together so that the target signal is boosted. Because distracting

signals from other locations are forced out of phase, they are attenuated in the superposed

signal. Filter-and-sum or ”narrow band” beamforming is a similar type of beamforming

that applies a filter bank to each sensor’s signal before the delay-and-sum step. This helps

compensate for the fact that the beam width changes based on the frequency and spacing

of microphones in traditional delay-and-sum beamforming. In general, beamforming of

low-frequency signals yields spatially wide ”beams” that only slightly attenuate off-beam

distractors. By contrast, beamforming of high-frequency signals yields a sharply focused

beam, however if the spacing of the microphones is greater than 1/2 the wavelength of the

target frequency then spatial aliasing will result in ”phantom” arrival angles. Neverthe-

less, a beamforming-like computation based on ITD might be specifically useful for speech

because speech signals are broadband. Hambrook et al. [17] described a computational

basis for spatial selective auditory attention based on a beamforming mechanism, which

used head rotations and a Bayesian updating approach to mitigate spatial aliasing at high

frequencies.

The second type of multi-channel systems for the cocktail party problem are blind

source separation systems (BSS). These systems exploit the fact that speech signals from

different talkers are statistically independent in the mixed input at the two ears. Generally,

these systems work by finding an unmixing matrix that optimally transforms the superposed

signals at the two ears into independent components. Thus, a common technique for blind

source separation is Independent Component Analysis (ICA) [24]. ICA works by starting

with the assumption that each target talker signal is non-gaussian and statistically indepen-

dent from other talkers and distracting sound sources. The ICA algorithm then estimates

a mixing matrix that defines how the target signal could be produced by linearly mixing

”latent variable” input sources. Each input source can then be estimated using the inverse

of the mixing matrix. ICA can perform well in ideal scenarios but has disadvantages in

real-world settings. For example, ICA typically fails if strong reverberation is present. Fur-

11



2.1. INTRODUCTION

thermore, given n component signals in the mixture, ICA requires at least n+ 1 sensors

to unmix the sources plus noise. Consequently, ICA-based systems require many micro-

phones to unmix all the talkers in a real-world scenario. Blind source separation approaches

have an advantage in that the system does not need to have much prior information about

the target talker, but this also means that these systems typically cannot take advantage of

other information that might be useful, such as the spatial location of a target talker.

2.1.2 State of the Art Computational Approaches

Recently there have been vast improvements to a wide range of computational tasks

through the rise of deep learning, a technique in which deep neural networks are trained

to directly solve classification or regression problems. These networks have outperformed

traditional techniques on a variety of tasks and are inspired generally by neuronal mecha-

nisms of learning in the brain, which makes them a good choice for solving problems that

the brain can easily solve. Deep learning has been applied to the cocktail party problem

using a few different approaches which are outlined below.

A common approach is to convert an auditory scene comprised of several speakers into

T-F units such as by a short-time fourier transform (STFT) and then to train a neural network

to directly predict the STFT of the individual talkers as in [54][55] or by training a network

to output a mask that is then applied to the T-F units of the target talker as in [59][12].

Both the direct Time-Frequency unit prediction and mask prediction approaches typically

train the networks as a regression task, using the Mean Squared Error or similar as the loss

function.

Another interesting approach is to train neural networks to project the Time-Frequency

units to a high-dimensional space so that clustering can be applied to each Time-Frequency

unit, with each cluster then corresponding to a talker in the scene. This approach has been

used in the Deep Clustering[21] and Deep Attractor Network [34] architectures. These

approaches improve on the previously described mask-based techniques in that they can

12



2.1. INTRODUCTION

isolate a variable number of speakers.

One important factor to note is that most of these deep-learning approaches are only

applied to a single-channel input and this means they cannot make use of important spatial

cues such as ITD and ILD. An exception to this is [7] in which the authors first perform

beamforming on multi-channel audio and then apply the Deep Attractor Network model to

each beam.

Until recently, most deep learning approaches for tasks in the auditory domain used

compact Time-Frequency representations of audio such as the STFT or Mel-frequency cep-

stral coefficients (MFCCs) as input features. This is due to the fact that these representations

are much smaller than the original raw waveforms and map more easily onto audio domain

tasks such as speech recognition. Recent papers such as WaveNet[37] have shown that it

is possible to use dilated convolutional neural networks to directly synthesize speech. The

WaveNet architecture was also used for speech denoising in [44]. Since WaveNet, archi-

tectures such as WaveRNN[27] and FFTNet[26] have shown massive improvements in the

computational time required to run such models. Papers such as Wav2Letter[9] have shown

that it is possible to train speech recognition networks directly on raw waveforms. One in-

teresting aspect of the WaveNet and FFTNet architectures is that the dilated convolutional

process of WaveNet resembles a wavelet analysis of the raw audio and the FFTNet architec-

ture’s process resembles the Fast Fourier Transform. Both of these spectral decompositions

are broadly analogous to the tonotopic decomposition of sound by the basilar membrane of

the ear.

In the following research we test the theory that binaural input provides a computational

basis for unmixing the auditory scene by feeding binaural audio into a neural network that

must learn to isolate a target talker using binaural cues. To do this we trained a model based

on FFTNet to isolate a target talker from distractors in a multi-talker scenario. Our FFT-

Net speaker-isolation model takes two-channel audio as input and learns to output a single

channel of audio containing only the target talker’s speech. We call this network a Binaural
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Speaker Isolation FFTNet or BSINet for short. The initial layers of the network process the

left and right channels separately, similar to what happens in the early mammalian auditory

system. A middle layer in our network then merges the initial layers from the two channels

so that the network can learn to use spatial cues such as the ITD and ILD. We evaluated

the network on a multi-talker dataset with 0 to 6 distracting talkers to show that it is more

robust to increasing distraction than a monaural (i.e. non-spatial) network. Importantly,

we investigated whether the network had learned to use either or both of the ITD or ILD

cues by providing it with those cues in isolation and measuring the resulting decrement in

robustness to distraction.

2.2 Methodology

Our goal was to develop a speaker isolation system as a front end for speech recogni-

tion that would use spatial cues in a manner inspired by biological hearing systems. To

develop and test our system, our approach involved the creation of various auditory scenes

of increasing complexity, so as to evaluate how speech recognition performance changed

as a function of set size of distracting talkers. Our speaker isolation system is a binaural

network based on the FFTNet architecture[26] that we call Binaural Speaker Isolation FFT-

Net or BSINet for short. In the next section we first describe our audio preprocessing, then

the network architecture details, and finally our training process, which is also outlined in

figure 2.1.

2.2.1 Dataset Preprocessing

In the following section we outline the dataset creation process. The dataset is available

online1.
1https://github.com/lukeinator42/cocktail party audio dataset
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Figure 2.1: BSINet training process. The training process starts with rendering the target
talker at 0°, and distracting talkers rendered randomly to the left at -90°, -60°, or -30°and
to the right at 30°, 60°, or 90°. The speaker isolation network was then trained to isolate
a monaural channel containing the target talker’s speech. For evaluation, the target and
distracting talkers were spatially rendered, then inference was performed using the speaker
isolation network, and the resulting isolated audio was used as input for a speech recogni-
tion system.
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Cocktail Party Dataset Generation

To create auditory scenes with multiple talkers rendered at different azimuthal angles

away from the midline, we rendered speech from the CSTR VCTK Corpus [63] with a bin-

aural head-related impulse response (HRIR) dataset that has HRIRs recorded at different

spatial angles. We used the SADIE 2 HRIR Database [2]. To render a talker to a partic-

ular angle, we convolved the monaural speech of that talker with the left and right HRIR

corresponding to the specific desired azimuthal angle. Each talker in the scene was con-

volved with the HRIR corresponding to its assigned spatial angle and the different left and

right channels were summed together to create the final multi-talker auditory scene. We

always rendered the target talker at 0°and distracting talkers randomly at -90°, -60°, -30°,

30°, 60°, 90°. The training dataset contained 2 distracting talkers, but we tested from 0 to 6

distracting talkers during evaluation.

Evaluation Dataset to Isolate Contribution of ITD and ILD

The human auditory system uses two main cues for spatial hearing, the Interaural Time

Delay (ITD) and Interaural Level Difference (ITD). To evaluate how these cues might be

learned by our network, we created distinct evaluation datasets in which sentences were

rendered using either the previously described HRIR method, or only an ITD rendering

method, or only an ILD rendering method. The ITD rendering method consisted of copying

the monaural speech signal into left and right channels, and delaying the left or right channel

using the appropriate delay for the corresponding angle. The delay ∆t was calculated using

the following equation

∆t =
r ∗ (sin(Θ)+Θ)

c
(2.1)

where r is the head radius, Θ is the arrival angle of the sound in radians, and c is the

speed of sound.

For the ILD rendering method we estimated the ILD (in dB) from the HRIR dataset
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using the method described in [61]. This consisted of calculating the ILD for each HRIR

using the following formula

ILD = 20∗ log10
|Hl( f )|
|Hr( f )|

(2.2)

where f are the 30 Equivalent Rectangular Band spaced frequencies from 20 Hz to

20000 Hz, and Hl( f ) and Hr( f ) represent the amplitude of the HRIR at a given frequency

for the left and right ears respectively.

2.2.2 System Architecture

Our system is a 1D dilated convolutional neural network that was trained on raw au-

dio, and was based on FFTNet [26]. The original FFTNet architecture described by [26] is

depicted in Figure 2.2, and consists of multiple layers that clip their input into two halves,

apply a transformation to each half, and then sum and transform the two halves. Specifi-

cally, when given a 1D input defined as x0:N , an FFTNet layer splits the input into a left half

xl = x0:N/2 and a right half xr = xN/2:N and applies separate convolutions to them:

z =Wl ∗ xl +Wr ∗ xr (2.3)

where Wl and Wr are the weights for the 1x1 convolutions for the left and right side

respectively. Once the left and right sides are combined, a ReLU transformation is applied

followed by another 1D convolution, and a final ReLU as shown in the following equation

z′ = ReLU(conv1x1(ReLU(z))) where conv1x1 is the 1D convolution operation.

By stacking multiple FFTNet layers, the full network takes multiple audio samples as

input and outputs a single sample. The network from the original FFTNet paper predicted a

current audio sample when given previous samples, and could be used as a vocoder, when

given previously generated samples and an auxiliary condition such as the Mel-frequency

cepstral coefficients (MFCCs).
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Figure 2.2: Original FFTNet architecture due to [26]. The operations inside each layer
are as follows: a given input is first divided into two halves; each half is then passed through
a different 1x1 convolution layer and then summed together. This summed output is passed
through a ReLU function, another 1x1 convolution, and a final ReLU.

Figure 2.3: Binaural Speaker Isolation Network (BSINet). The network consists of two
separate layers for the left and right channels, the output of the left and right layers are then
combined together and fed into a third set of layers. The network outputs monaural samples
of audio for the target talker.
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One major difference between our architecture and the original FFTNet architecture is

that our network takes binaural input from two ears. This novel architecture is inspired by

the early auditory pathway found in mammals, and is shown in Figure 2.3. The model con-

sists of initial binaural layers that process the left and right channels independently. These

independent left and right layers are analogous to the Bushy Cells in the mammalian audi-

tory system, which span inputs from the basilar membrane via the auditory nerve [15]. The

output of these left and right networks are then combined into a third monaural network that

emulates the binaural integration function of the Superior Olivary Complex. This merging

of the left and right binaural layers is implemented by combining their outputs during the

summation step in the first monaural FFTNet layer. Given the output of the left layers are

defined as xa and the output of the right layers are xb, then the transformation of the first

monaural layer before the ReLU step is defined by the equation:

z =Wal ∗ xal +War ∗ xar +Wbl ∗ xbl +Wbr ∗ xbr (2.4)

where xal and xar are the left and right halves of xa, xbl and xbr are the left and right

halves of xb, and Wal , War, Wbl , Wbr are the corresponding conv1x1 weights. The last two

layers of the network after the monaural FFTNet layers are a fully connected layer and a

softmax layer containing 256 units.

The final softmax layer is used because the network takes audio samples that are con-

verted from floating point numbers to 8-bit integers using the following µ-law encoding

function f , where µ = 255, x is the floating point audio sample in the range−1 <= x <= 1,

and sgn(x) is the sign function.

f (x) = sgn(x)
ln(1+µ|x|)

ln(1+µ)
(2.5)

This converts the network to a classification network with 256 classes as output, corre-

sponding to the 256 possible values for an 8-bit integer.
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Another difference between our architecture and the original FFTNet architecture is that

the original FFTNet was a vocoder system and as such could only produce one sample at a

time. The produced samples would then be fed back iteratively into the network to generate

the next consecutive sample. In our architecture we already have the entire input sequence

fully defined and this enables us to generate multiple output samples in one shot, similar to

the adaptation of WaveNet for speech denoising shown in [44].

2.2.3 Training Process

Speaker Isolation Task

The network takes raw audio samples containing multiple talkers and isolates the target

talker’s speech, outputting a single channel of audio corresponding to the target talker. i.e.

when trained on input samples x1..n the network learns to output samples y1..n, where x is

two-channel audio containing multiple talkers and y is the audio of the target talker. The

input, output, and target audio samples are encoded using the previously described µ-law

encoding. This converts the speaker isolation task into a classification problem. The output

for each sample is a one-hot encoded vector of size 256 and the network is trained using

the Negative Log Likelihood Loss function.

We trained BSINet on complex auditory scenes consisting of sentences from the CSTR

VCTK Corpus[63], a dataset of speech from 109 native speakers of English. The sentences

were spatially rendered using the previously described preprocessing steps.

Evaluation System

For evaluation of BSINet, we use the isolated audio from the network as input for a

speech recognition system. In our experiments we used Mozilla’s open-source DeepSpeech

implementation[36][19]. We used version 0.6.1 of the included pre-trained acoustic and

language models. Performance was then evaluated using the Word Error Rate (WER) be-

tween the output of the speech recognition and the ground-truth transcript of the target

talker.
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We also evaluated the isolated audio from the networks using an evaluation metric called

the Source-to-Distortion Ratio (SDR) as defined in [57]. The Source-to-Distortion Ratio is

a commonly used metric for evaluation of speaker separation systems, and is defined by the

following equation

SDR = 10∗ log10
||starget ||2

||einter f + enoise + earti f ||2
(2.6)

where starget is a version of the target talker’s speech and einter f ,enoise, and earti f are

estimated error terms corresponding to interfering sources, noise, and artifacts respectively.

In order to use SDR to evaluate the performance of the network, the SDR is calculated

for the original spatially rendered audio as well as the isolated audio. Then the BSINet’s

performance can be quantified by calculating the ∆ SDR improvement between the original

and isolated audio.

2.3 Results

The following section first outlines the experimental setup of the proposed BSINet as

well as a monaural baseline network. Then, results are shown for each network using the

Word Error Rate (WER) metric for evaluation.

2.3.1 Network Experimental Setup

The BSINet we trained had two initial binaural layers followed by nine monaural layers,

giving the network a temporal receptive field of 2048 audio samples. Each layer had 128

units. The network was trained on sequences of 5000 samples x 2 channels corresponding

to the left and right ear. Given this input, the network was trained to isolate a single channel

of audio containing the target talker’s speech. We used a batch size of 5 sequences and the

Adam[29] optimizer with a learning rate of 0.001, similar to the original FFTNet paper. As

a baseline we also trained a standard FFTNet with 11 layers on single-channel audio. We

trained each network for 120 epochs to ensure convergence.
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Figure 2.4: Word Error Rate (WER) performance for different networks. The coloured
bands show the 95% confidence interval of the results. A two-way ANOVA showed a main
effect of approach with F = 83.55 and a main effect of number of distractors with F =
117.18.

2.3.2 WER Evaluation

The first test we performed on the different networks was an evaluation using the Word

Error Rate (WER) metric. The test audio was run though both the BSINet as well as the

baseline network. The output audio from each network was then converted to text using

the Mozilla DeepSpeech system [36]. This text was finally compared to the ground-truth

transcripts using the previously described WER metric. The results are shown in figure 2.4.

2.3.3 SDR Evaluation

The next evaluation we performed was to test the SDR improvement on both of the

different networks. To do this we used the python mir eval toolbox [41]. The results are

shown in table 2.1. The Binaural Network shows excellent SDR improvement across all

levels of increasing distractor set size, whereas the monaural network only shows improve-

ment when there are no distractors present. This indicates that the monaural network did

not learn to isolate the target talker although it was still able to remove the effects of the

HRTF when no distracting talkers were present.
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Table 2.1: SDR Improvement for Monaural and Binaural Network

∆ SDR (dB)
Network # of Distractors

0 1 2 3 4 5 6
Binaural Network +15.94 +13.21 +10.91 +7.67 +5.93 +4.92 +4.79
Monaural Network +13.07 -0.16 -1.32 -1.28 -1.44 -2.17 -2.01

Figure 2.5: WER performance for BSINet with different spatial cues. The coloured
bands show the 95% confidence interval of the results. A two-way ANOVA showed a main
effect of feature type with F = 42.89 and a main effect of number of distractors with F =
148.32.

2.3.4 WER Evaluation on Different Cues

The next step in our evaluation was testing the WER performance of the network when

using different cues for rendering the talkers. Figure 2.5 shows the WER results for the

network. The network performed best when it had access to the full HRTF features relative

to ILD features or ITD features only.

2.4 Summary

This chapter has demonstrated a neural network architecture called BSINet; a network

inspired by the early auditory pathway in the mammalian brain. As outlined in figure 2.4 the
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network based on binaural cues dramatically outperformed a monaural network, and was

robust to an increasing set size of distractors, unlike the monaural network. An experiment

that evaluated the extent to which BSINet relies on the different binaural cues, such as ITD

and ILD, was also presented. The implications and applications of the success of BSINet

are elaborated in Chapter 4 below.

The robustness to distraction of the BSINet suggests human-like ability to focus atten-

tion on a single talker. To further explore this, the next chapter of this thesis tests human

participants on the same dataset used in to evaluate BSINet. We tested the prediction that

BSINet, by incorporating binaural spatial cues, has learned the human-like ability to focus

attentional selection on a target talker voice.

There is a subtle point to note in the interpretation of the second experiment’s results:

rendering a talker at an angle using only an ILD or ITD cue means that there is conflicting

spatial evidence from the other cue that the talker is at 0°. For example, if a talker is

rendered using only ILD, this means that the time difference between the two channels is

zero, which corresponds to a spatial location of 0°. Vice versa, a talker rendered using only

ITD has a balanced level difference between the two channels, which also implies a spatial

location of 0°. This is an important subtlety, as a mismatch between ITD and ILD most

likely never occurs in real-world free-field listening. For this reason it is unclear from the

present results whether the lack of independence of ITD and ILD cues is critical, or indeed

whether it pertains in the case of human listeners. This point is further explored in Chapter

3.
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Chapter 3

Comparison of Network and Human
Performance Across Cues

3.1 Introduction

Chapter 1 of this thesis has outlined the major cues the mammalian brain uses to isolate

speech in multi-talker environments, and chapter 2 proposed a neural network architecture

called BSINet based on these cues and evaluated the extent to which BSINet relies on each

cue.

The fact that BSINet is based on these cues raises a few questions; namely, how sim-

ilar is the performance of the network to human performance and does the network rely

on binaural cues in the same way humans do? This chapter contains an experiment that

tests human participants on the same multi-talker dataset from chapter 2. The results of

this experiment allow a direct comparison between the human participant performance and

BSINet, as well as evaluating the extent to which the human participants rely on each spatial

cue.

This chapter starts by delving into the similarities and differences between neural net-

works and the mammalian brain and what can and cannot be inferred through comparisons

between the two. Then, an experiment using the same test data from chapter 2 on human

participants is presented. Finally, the network’s performance is compared to that of human

participants who performed the same speech recognition task under the same manipulation

of distractor set size.
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3.1.1 Comparing Neural Networks and the Mammalian Brain

Neural networks have shown impressive performance when applied to problems in

many different domains, such as image recognition [42], language modelling [5], speech

recognition [19], and many others. The earliest developments in artificial neural networks,

called perceptrons, were directly inspired from observations of learning in the visual sys-

tem [48][35]. This is of note, especially since other developments in neuroscience have

led to corresponding improvements to artificial neural networks. For example, the mech-

anism of visual attention in the human brain has led to improvements in neural networks

that perform image captioning as shown in [62]. The attention mechanism has also vastly

improved networks that solve various problems in the natural language processing domain

such as translation, summarization, question-answering, as shown in [56][40].

Although insights from the brain have enabled improvements in neural network per-

formance, an important aspect to note is that this does not imply that neural networks are

learning to perform tasks in the same way the human brain does. An example that illustrates

this is a problem known as the credit assignment problem. As outlined in [45], the credit

assignment problem describes the difficulty in assigning weight to different connections in

systems that are composed of hierarchical networks containing multiple layers. In order

for such a system to learn, a weight must be assigned to each connection in the network

based on how much it contributed to the correct output. The approach used to solve this

problem in artificial neural networks is known as backpropagation [49]. While there are

theories that attempt to explain how a process similar to backpropagation might happen in

the brain [50], having a separate backward pass of updating weights based on error is still

biologically implausible as outlined in [46][16]. This is an example of how a neural net-

work and the human brain might arrive at the same computational results by taking different

computational approaches.

Even though the process of backpropagation itself is biologically implausible, in some

cases the networks trained through backpropagation have been shown to replicate processes
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that happen in the brain. A few examples of this can be found in research such as [3], in

which a recurrent neural network learned representations that were similar to the grid cells

found in the hippocampus, and [39] in which internal neurons from a deep neural network

trained on an image classification task showed similar translation-invariant selectivity to

boundaries as neurons found in visual processing area V4 in primates. An area of research

that takes such comparisons even further is Brain-Score [51] which quantifies the amount

of similarity between artificial neural networks and the brain on visual object recognition

tasks. The Brain-Score paper defined a benchmark based on both neural recordings from

primates and behavioural object recognition tasks. This enables researchers to run their

image classification networks on the same benchmark to test the biological plausibility of

their models.

Another fascinating example is found in a neural network architecture called PredNet

[33]. PredNet is an architecture based on predictive coding, which is a model of how the

brain processes information internally. The authors in [60] trained a PredNet model to pre-

dict future frames of video, and when the network was presented with a visual illusion it

produced the same illusory predictions that the human visual system makes. This makes

PredNet an interesting analogue in the visual domain to the research in this thesis as Pred-

Net is inspired by the architecture in the brain, similar to the BSINet architecture from

chapter two. We take the same approach that [60] took when they compared their network

architecture to the visual system in the brain by using specially crafted illusory inputs. The

research in the following chapter will compare BSINet to behavioural data from human par-

ticipants in order to test how similarly BSINet performs to human participants when given

various binaural cues. This provides a simple methodology for us to benchmark how simi-

lar our network is to humans on various cues. We also provide the dataset in Appendix A.

This will enable other researchers to also test their networks against the human participant

data.
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3.2 Methodology

Our goal was to evaluate the performance of our network against human participant

performance in a complex ”cocktail party” auditory scene. To do this we recruited human

participants to perform the same speaker isolation and speech recognition task. Eight un-

dergraduate students were recruited from the University of Lethbridge and received course

credit for their participation. All participants were neurologically normal and reported nor-

mal hearing in a pre-experiment questionnaire. The participants were able to adjust the

playback volume to comfortable levels at the beginning of the experiment. The experi-

ments and procedures adhered to the Declaration of Helsinki and were approved by the

University of Lethbridge Institutional Review Board.

3.2.1 Human Participant Experimental Setup

The experiment was conducted in an acoustically damped room. The participants were

seated in a standard rolling office chair at a desk with a computer for stimulus presenta-

tion. Participants were wearing Sennheiser over-ear headphones and listened to audio from

the previously described evaluation dataset. Stimulus presentation and response recording

were both performed using the PsychoPy package[38] for Python. The participants were in-

structed to type a sentence corresponding to the speech they heard from the talker perceived

to be in the center at 0°. After being given these instructions, they were played an initial

example file in order to set the volume to a comfortable level. The example file contained

multiple distracting talkers and the participants were not instructed to type a response for

this example file.

As in our evaluation of our network in chapter 2, each trial consisted of a presentation

of target speech plus distraction ranging from zero to six distracting talkers. We had three

conditions for the rendered audio: the ITD condition provided only binaural time lag cues,

the ILD condition provided level-difference cues, and the Head Related Transfer Function

(HRTF) condition provided the entire complement of binaural cues available in the Sadie 2
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Figure 3.1: Performance comparison between human participants and BSINet. The
coloured bands show the 95% confidence interval of the results. A two-way ANOVA
showed a main effect of approach with F = 61.44 and a main effect of number of distractors
with F = 141.60.

HRTF models. We used 5 sentences for each distractor # x rendering condition for a total of

105 sentences per participant. The target sentence in each trial was unique across all trials,

and all sentences during each trial came from different VCTK talkers.

3.3 Results

The following section contains the results from the human participants. The results are

shown using the Word Error Rate (WER) metric, with the data from the neural network

experiment in chapter 2 plotted alongside for comparison.

3.3.1 WER Evaluation on HRIR Features

The first test we performed was the evaluation of each network and the human partici-

pants on their Word-Error-Rate (WER) performance on the HRIR rendered subset of audio,

shown in Figure 3.1. The BSINet performed similarly to human participants when one or

more distractors were present. By contrast, the monaural network exhibited a much steeper

rise in WER as distractor set size increased.
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Figure 3.2: Human participant performance with different spatial cues. The coloured
bands show the 95% confidence interval of the results across all participants. A two-way
ANOVA showed a main effect of feature type with F = 30.85 and a main effect of number
of distractors with F = 63.85.

3.3.2 WER Evaluation on Different Cues

The next step in our evaluation was testing the WER performance of the participants

and the network when using different cues for rendering the talkers. Figures 3.2 and 2.5

show the WER results for the participants and network respectively. The coloured bands

show the 95% confidence interval of the results across all participants. The participants

performed best on the ILD rendered subset when one or more distractors were present.

This was in contrast with the BSINet, which performed best when the full HRTF cues were

available, and similarly with either ITD or ILD cues.

3.4 Summary

This chapter started by exploring existing comparisons between neural networks and

the human brain. These comparisons are valuable because the first neural networks were

initially inspired by learning in the visual system (e.g. see [48] and [35]), and insights from

neuroscience have led to improvements in neural network performance on a variety of tasks.
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Next, an experiment that compared the performance of BSINet to human participants was

presented. The results of this experiment are interesting as the human participant’s perfor-

mance is comparable with BSINet’s performance on the HRTF rendered audio. Historically,

human perceptually performance has been regarded as a ”gold standard” to which machine

vision and hearing systems were compared. In this sense, BSINet performs exceptionally

well, rivaling the performance of human listeners. More recently, artificially intelligent

systems have begun to exhibit ”superhuman” abilities, albeit within highly constrained do-

mains (e.g. Google’s AlphaGo and IBM’s DeepBlue). Thus it is an interesting unanswered

questions as to whether human performance should be regarded as the optimal benchmark

for artificial perception systems such as BSINet.

The experiment in this chapter also shows some differences between the network and

participants, specifically in Figure 3.2, which looks at human participant performance on

the different cues of ITD and ILD. This figure shows that humans showed better perfor-

mance on the ILD cue subset of the data than the HRTF and ILD subsets, which were

similar to each other. This would imply that some aspect of the HRTF and ITD rendering

process potentially detracts from the human participant’s ability to isolate the target talker.

Another explanation would be that humans do in fact rely more heavily on the ILD cue than

other cues. Chapter 4, Section 4.1.1 further explores these potential explanations.
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Chapter 4

Discussion and Future Directions

4.1 Discussion

The mechanisms by which the human brain unmixes the complex auditory scene and

selectively listens to a single voice have been of interest to psychologists and cognitive

neuroscientists for almost a century. Similarly, the applied problem of computationally

unmixing and understanding target speech in noisy environments represents a challenging

obstacle in the development of auditory artificial intelligence for human-robot interaction

and control of autonomous systems.

In this research we have demonstrated BSINet, a network that improves speech recogni-

tion performance in complex auditory scenes. The network learned to use binaural cues to

resolve a target talker on the azimuthal midline from a mixture of distracting talkers at vari-

ous arrival angles. We compared the performance of this binaural network to a comparable

monaural network with respect to its robustness in the face of an increasing set size of dis-

tracting talkers. This manipulation of set size was inspired by related foundational work in

the psychology of visual selective attention e.g. [53], which characterized how it becomes

increasingly difficult to find and resolve certain unique targets (known as ”non-popout” tar-

gets) amid visual clutter. Although systematically measuring perceptual performance as a

function of set size is quite common in the visual search attention literature, it is rarely used

to gauge performance on auditory tasks with realistically complex auditory scenes (see e.g.

[18]).

It is well known that human listeners use space as a dimension to separate sound sources
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in complex scenes - a phenomenon known as spatial release from masking [22][64][20][28][32][1].

Although the ITD and ILD binaural cues are known to provide the basis for sound source

localization, it is unclear how either or both of these cues might contribute to the spatial

unmixing of speech performed by the brain in the case of multiple distractors, or indeed

how these cues might be utilized to improve artificial systems that must recognize speech

in noisy environments. By varying the set of distractors, we showed in figure 3.1 that a

traditional monaural network is not robust to increasing distractor set size. Word error rate

increased dramatically with inclusion of only a few distracting talkers. By contrast, our

binaural network exhibited a degree of robustness to increasing distractor set size. In fact,

our network performed remarkably similar to human listeners performing the same task.

Figure 3.1 shows that a binaural network outperforms a monaural network as distraction

increases, but does not indicate which binaural cues the network has learned to use to re-

solve the auditory scene. To investigate this, we rendered distractors either exclusively with

ITD or ILD cues, or with the entire head-related transfer function, which provides both ITD

and ILD cues along with other impulse-response modulations associated with propagation

of sounds in free field around the head. In interpreting the result, it is important to recognize

a subtlety of this approach: It is possible to impose ITD or ILD cues independently so as to

render a sound to an arrival angle off of the midline. This is done, respectively, by system-

atically varying the interaural time lag (ITD) or modulating the interaural sound intensity

difference (ILD) for the left and right channels for each sound in the scene. However, do-

ing so necessarily leaves the other cue unaffected. Thus in this sense, a distractor may be

rendered to an azimuthal arrival angle other than zero degrees in ”ITD space”, but it is left

at zero degrees in ”ILD space”. Vice versa, a distractor may be rendered off the midline

by ILD, but left on the midline with respect to ITD. The question that can be asked is thus

rather nuanced: has the network (or indeed a human listener) learned to represent ILD and

ITD as independent dimensions that can be used sufficiently to unmix sound sources?

In figure 2.5 we show that BSINet exhibits the most robustness to distraction when given
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the entire complement of binaural cues available in the HRTF. When the distractors were

rendered spatially distinct from targets by only ITD or ILD, the network was less robust to

distraction, with performance more like that of the monaural network shown in figure 3.1.

This is perhaps unsurprising since the binaural network was trained on a dataset rendered

with precisely the same HRTF. However, it suggests that the computations performed by

BSINet do not generate independent representations of ITD and ILD ”spaces”. Interest-

ingly, human listeners showed a different pattern of results. Humans exhibited robustness

to distraction when distractors were rendered spatially with ILD alone, but exhibited some-

what less robustness when only the ITD cue or the HRTF was provided. This suggests

that the human auditory system makes use of auditory space in rather different ways that

were not exploited by our network. Likewise, the network appears to exploit aspects of the

HRTF that are not provided by rendering the distractors solely with ITD or ILD. Under-

standing this discrepancy promises to reveal novel approaches for speech denoising with

more human-like characteristics.

4.1.1 Comparison with Biological Systems

The similarity in performance between BSINet and human participants is interesting as

it shows that the network makes use of binaural cues to isolate a single talker effectively

from a complex scene. The differences between the network and human participants be-

come more apparent when looking at the performance on specific cues such as ITD and

ILD. Figure 3.2 shows that the human participants showed better performance using the

ILD cue alone than either the ITD or HRTF cues. In fact, performance with distractors

rendered with the complete HRTF and exclusively ITD was qualitatively similar, and sig-

nificantly worse than performance when distractors were rendered exclusively with ILD.

One explanation for this may be purely methodological: small differences in time delays

between the ears can correspond to large differences in the apparent sound arrival angle,

especially around 90 deg from the midline. The individual participants in our study would
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have had slightly different distances between the ears than the Sadie II dataset provides,

giving rise to slightly aberrant binaural delays for each individual participant. In fact in

the case that a participant’s head was actually narrower than the Sadie II head, a sound

rendered at 90 deg from the midline would feature binaural ITD slightly beyond what would

be physiologically possible. This means unfamiliar ITD cues by themselves, and also the

ITD component of the HRTF cues, might actually detract from the human participant’s

ability to isolate the target talker in the ITD-only and HRTF conditions. The network on the

other hand was trained using the same HRTF and ITD used during testing, which possibly

enabled it to make better use of the ITD cue more effectively.

An alternative explanation for the pattern of results in Figure 3.2 is that human listeners

do actually represent ITD and ILD ”spaces” independently and most effectively use the

ILD cue to solve the cocktail party problem. A few previous studies have considered the

independence of ITD and ILD in spatial hearing for the purpose of spatial release from

masking by competing sounds. Culling 2004 [11] modified a prerecorded head-related

transfer function (HRTF) to contain only ITD or only ILD cues. They used this cue to render

distracting sounds to peripheral locations while target speech was located at zero degrees

(i.e. on the azimuthal midline, as in our study). They concluded that in general, both cues

were independently sufficient to mediate release from masking when all the distractors were

located in the same hemifield. However, when distractors were present in both hemifields,

relatively little release from masking was obtained for the ILD-only condition, while ITD

did allow release from masking. Kidd et al. [28] approached the question differently by

leveraging the fact that ITD and ILD are believed to operate over different regions of the

frequency domain. As described by the duplex theory, the auditory system is thought to

make best use of ITD for low frequency sounds (i.e. below about 2000Hz) and ILD for

high-frequency sounds (i.e. above about 1000 Hz). By bandpass filtering the distracting

stimuli, they found that spatial release from masking was still evident over all frequency

ranges, although somewhat more effective for low-frequency filtered distractors, suggesting
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like Culling (2004) that the ITD cue is more useful in spatial release from masking. More

recently, Glyde et al. [13] also used HRTF modified to contain only ITD or only ILD

cues. They found that both ILD-only and ITD-only conditions enabled substantial release

from masking, however the ILD-only condition allowed better performance than the ITD-

only condition - suggesting in contrast to Culling (2004) and Kidd (2010) that the brain

more effectively makes use of ILD. Our results agree more closely with those of Glyde et

al. (2013) in that the ILD-only condition allowed for the most robustness from increasing

set size of distractors among human listeners. However, our network seems not to make

preferential use of one or the other cue.

4.1.2 Comparison with Previous Computational Approaches

Most existing systems aimed at solving the cocktail party problem are either multi-

channel systems based on traditional techniques such as beamforming and Independent

Component Analysis or are single-channel systems that make use of recent advances in

deep learning. In this research we have demonstrated a Binaural Speaker Isolation Network

that improves speech recognition performance in complex auditory scenes. This system is

important because of its excellent performance when several distracting talkers are present

(without substantially sacrificing performance on ”clean” speech). This system comes with

other benefits as well as some drawbacks when compared to traditional approaches. The

main benefit of our system compared to other multi-channel systems is that it only requires

the use of two microphones. Both beamforming and ICA work better as the number of

microphones increase, and ICA specifically requires n+1 microphones in order to separate

n sources. Another benefit to our system is that it can learn to exploit the full complement

of features available in the HRTF. For example, if the BSINet is deployed on a robot with

physical components that block or shape sound propagation in free field, then the robot’s

HRTF is probably a non-trivial one with many useful features the system can use. One

drawback to the BSINet architecture however is that in order to change the microphone
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configuration, the network must be retrained from scratch on the new configuration. In

contrast, both beamforming and ICA-based systems can be configured for any microphone

setup during runtime.

4.2 Future Work and Applications

This thesis has demonstrated the basic neural network architecture for BSINet. There

are a variety of improvements that could be made to the neural network architecture, future

experiments that can further explore the similarities and differences between BSINet and

the human brain, as well as various applications of the network. This section starts by

outlining future improvements to the network and then delves into potential experiments

and applications of the network to real-world problems.

4.2.1 Architecture Improvements

There are improvements to BSINet that we hope to make in the future. A first potential

improvement to the network architecture could be a thorough exploration of possible net-

work parameters, such as testing various numbers of units in each layer, as well as testing

networks with varying numbers of binaural layers before the merging step. In this research,

however, our experiments were performed on a machine with an Nvidia 1070 TI graphics

card, and training the BSINet took several days. This means a rigorous parameter search

of different network configurations would probably involve running many experiments in

parallel on different GPUs.

BSINet was trained to isolate a target voice on the auditory midline from distractors

located at various azimuthal angles. Listening to a talker directly in front is a common

situation for human listeners, but we can also direct our auditory attention toward sources

away from the midline. Thus, another useful improvement would be to train a BSINet that

is globally conditioned with a target spatial angle so that the network’s attention can be

steered, which would enable the network to isolate the speech of a talker at any angle. This
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would be useful for applications such as humanoid robotics, in which the robot could attend

to a target talker in its environment while orienting its head in a different direction. How-

ever, this would require somewhat sophisticated steering of the beam of attentional focus to

solve the kinematic transforms needed to account for the pose of the robot. Finally, a fur-

ther performance improvement to be gained in overall WER performance is to customize

the speech recognition system model. Specifically, the DeepSpeech model used in this re-

search was trained on clean audio and training or even just fine-tuning it on isolated speech

from the output of the BSINet could potentially lead to overall performance gains.

4.2.2 Future Experiments

There are several experiments that might lead to a better understanding of how the

BSINet achieves its robustness to distraction, mostly through a more in-depth comparison

of the auditory processing in the BSINet and the human brain. One type of experiment

could be an exploration of the neural activations in the hidden layers of the network. A

specific example of this would be an experiment that attempts to reverse-engineer the early

feature representations the network has learned. This would be valuable since the network

is given raw audio instead of commonly used features such as MFCCs or spectrograms.

Such an experiment could shed light on whether or not the initial layers of the network

perform a similar frequency decomposition to the one that happens in the basilar membrane

in mammals.

Another future experiment could test whether or not there are neurons in the trained

BSINet that are tuned to specific ITDs and ILDs during training, similar to neurons in the

SOC in the mammalian auditory system. Such neurons would be an interesting discovery,

and could potentially provide insight into the specific computations BSINet is using to

isolate the target talker’s speech. This would allow a more direct comparison with the neural

architecture of the brain. An extension of this could be the development of a metric similar

to the brain-score metric defined in [51]. Although collecting neural recordings from the
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SOC in primates is challenging, a similar comparison using electroencephalography and

the neural predictivity metric also outlined in [51] could lead to a more robust comparison

between humans and neural networks on speaker isolation tasks.

4.2.3 Applications

The research in this thesis can be leveraged to solve a multitude of real-world appli-

cations. BSINet currently isolates the speech of talkers at 0°; if BSINet was processing

speech from a physical device this would correspond to isolating the talker directly in front

of the device. As outlined previously in the future experiments section, a future version of

the network would also be able to direct its attention towards a given target angle. These

features mean that the network could be used to improve physical devices such as hearing

aids or auditory augmented reality, giving the end-user the ability to spatially isolate the

speech of a person they are having a conversation with, potentially even in complex audi-

tory environments such as restaurants and parties. Another similar application of BSINet

would be to improve the performance of voice assistants such as Google Home, Alexa, and

others. This application would also require other technologies such as speaker direction-

of-arrival calculation, since the device would need to steer the BSINet in an automated

fashion. Another similar use case would be enabling humanoid robots to selectively direct

their auditory attention towards target talkers. Such robots are an interesting use case as

one possibility would be to use facial recognition and image processing to determine the

target angle of a desired target talker in order to perform the speaker isolation.

4.3 Conclusion

Humans have the remarkable ability to understand speech in noisy environments with

many distracting talkers, a problem that has been a difficult one to solve computation-

ally. This thesis demonstrated a neural network architecture called BSINet, that isolated

the speech of a single talker from input containing a target talker and multiple distractors.
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BSINet was inspired by the early auditory pathways found in the mammalian brain. The

network was evaluated using both the WER metric and the ∆ SDR improvement across a

dataset containing a varying number of distractors. BSINet’s performance was found to be

excellent, even when multiple distracting talkers were present in the auditory scene. This

research also evaluated network performance using a dataset containing different spatial

rendering cues such as the Interaural Time Delay (ITD) and Interaural Level Difference

(ILD) and Head Related Transfer Function (HRTF) rendering. This was used to compare

human participant performance to BSINet’s performance, and was also released online.

This will enable future researchers to compare the results of their networks to the human

participant data.

The comparison between the network and human participants highlighted the similarity

in performance between the two on HRTF rendered audio. It also outlined some underlying

differences, such as how the human brain could independently make use of ILD cues to

isolate the speech of a target talker, whereas the BSINet has not learned to do so. In fact,

human participants performed better on the ILD only condition. This raised an important

question of whether this difference is actually due to humans being able to more effectively

use the ILD cue to solve the cocktail party problem, or whether the small variations in in-

teraural distance led to decreased performance on all audio directly or indirectly using ITD

cues as part of the rendering. Future experiments could be designed in order to explore this

question more in-depth. Overall, the research in this thesis provides significant advance-

ment for solving the challenging cocktail party problem and has the potential to improve

technologies such as hearing aids, humanoid robotics, voice assistants among others.
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Appendix A

Appendix: Cocktail Party Speech
Dataset

The cocktail party speech dataset can be found on Github at the following link:
https://github.com/lukeinator42/cocktail party audio dataset

A.1 Dataset Overview
This dataset contains binaurally-rendered audio for testing speech isolation and recog-

nition systems on ”cocktail party” scenarios.
The rendering process is outlined in Chapter 2, Section 2.2.1. Each audio file contains a

target talker and 0-6 distracting talkers. The test set.csv file describes each file, the number
of distractors the file contains, the rendering method, and the target transcript.

The human participant responses folder contains the participant responses on the test
audio. Punctuation has been removed with the exception of the apostrophes/single quote
characters, which have been replaced with underscores.

A.2 Data Sources and Licensing
The speech audio in this dataset is taken from the VCTK corpus and rendering using the

HRTF cue makes use of the SADIE II Database. The SADIE II Database is made available
under the Apache 2 License.

This dataset contains information from VCTK corpus which is made available un-
der the ODC Attribution License. This corpus is also licensed under Open Data Com-
mons Attribution License (ODC-By) v1.0. http://opendatacommons.org/licenses/by/1.0/
http://opendatacommons.org/licenses/by/summary/.
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