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Abstract

For the last couple of decades, there has been a significant growth in sequencing data, lead-

ing to an extraordinary increase in the number of gene variants. This places a challenge on

the bioinformatics research community to develop and improve computational tools for func-

tional annotation of new variants. Genes coding for epigenetic regulators have important

roles in cancer pathogenesis and mutations in these genes show great potential as clinical

biomarkers, especially in hematologic malignancies. Therefore, we developed a model that

specifically focuses on these genes, with an assumption that it would outperform general

models in predicting the functional effects of amino acid substitutions. EpiMut is a stand-

alone software that implements a sequence based alignment-free method. We applied a

two-step approach for generating sequence based features, relying on the biophysical and

biochemical indices of amino acids and the Fourier Transform as a sequence transformation

method. For each gene in the dataset, the machine learning algorithm–Naïve Bayes was

used for building a model for prediction of the neutral or disease-related status of variants.

EpiMut outperformed state-of-the-art tools used for comparison, PolyPhen-2, SIFT and

SNAP2. Additionally, EpiMut showed the highest performance on the subset of variants

positioned outside conserved functional domains of analysed proteins, which represents an

important group of cancer-related variants. These results imply that EpiMut can be applied

as a first choice tool in research of the impact of gene variants in epigenetic regulators,

especially in the light of the biomarker role in hematologic malignancies. EpiMut is freely

available at https://www.vin.bg.ac.rs/180/tools/epimut.php.

Introduction

Epigenetic modifiers are unique players in cancer pathogenesis. Mutations in these genes can

alter the epigenetic landscape of many genes along with their expression, which affects key dis-

ease related pathways, including metabolic and apoptotic [1]. Cancers that are most connected
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with mutations in epigenetic factors are hematologic malignancies, which seem to represent

“epigenetic diseases”–diseases driven by mutations in regulators of DNA modifications and

post-translational modifications of histones [2]. Hematologic malignancies include lymphoid

malignancies, such as plasma cell neoplasms, various lymphomas and lymphoid leukemias,

and myeloid malignancies, such as acute myeloid leukemia (AML), myeloproliferative neo-

plasms and myelodysplastic syndrome. These diseases affect approximately 32 individuals per

100 thousand [3], with an average 5-year survival rate of 57% for lymphoid and 37% for mye-

loid neoplasms [4, 5]. Hematologic cancers are associated with age [3, 6, 7], which, considering

the remarkable increase in global life expectancy in humans over the past decades [8], puts

them in focus as an important and growing health issue.

Epigenetic factors include chromatin remodelling proteins, their cofactors, histones, his-

tone chaperones and proteins that affect gene expression as a reaction to the DNA or RNA

modifications. Epigenetic factors are comprehensively catalogued in the EpiFactors database

[9]. Somatic mutations in these genes contribute to the onset and progression of hematologic

malignancies and in many cases they represent markers associated with prognosis and

response to therapies [10]. Mutations in DNMT3A, IDH1/2 and ASXL1 are promising candi-

dates for the risk stratification parameters in AML patients [11], whereas mutations in four

epigenetic factors, EZH2, ARID1A, EP300 and CREBBP, were annotated as risk stratification

markers in follicular lymphoma [12]. Additionally, mutations in DNMT3A and TET2 can

contribute to prediction of the response to therapy in myeloid malignancies [13, 14]. Muta-

tions in DNMT3A, ASXL1, RUNX1, TP53, EZH2, CREBBP and EP300 are associated with the

survival of patients with various hematologic malignancies [13, 15–17].

Cancer related somatic mutations are archived in the COSMIC (Catalogue of Somatic

Mutations in Cancer) database [18]. Numerous epigenetic factors are catalogued in the COS-

MIC Gene Census, a list of genes with mutations that are causally implicated in cancer. How-

ever, there are several variations in these particular genes that do not represent somatic disease

related mutations, yet they are neutral and frequently present in healthy individuals. Neverthe-

less, the human genome has on average approximately 10,000–11,000 non-synonymous varia-

tions in the coding regions [19]. Thus far, gene variations that are most frequently linked to

human diseases are single nucleotide variations that lead to amino acid substitutions (AAS),

and therefore the major focus in the field is placed on the computational tools that can auto-

matically assess the potential impact of AAS on protein functions and their association with

human diseases [20–22]. Most computational tools for functional annotation of AAS rely on

the evolutionary concepts that deem amino acid positions conserved across multiple species as

functionally important. Therefore, the majority of these tools use multiple sequence align-

ments (MSA) as a starting point for determining AAS at the conserved positions which can

lead to annotations of these AAS as deleterious. SIFT [23] is a tool that bases its predictions

solely on MSA, while many others, including PolyPhen-2 [24], PROVEAN [25], MutationTa-

ster2 [26], PON-P2 [27], SNAP2 [28], etc., combine evolutionary information with sequence

and structure data. PolyPhen-2, which is the most widely used tool, adopts the Naïve Bayes

classifier with eight sequence-based and three structure-based features.

MSA-based methods do not scale well with the large amount of data gathered with the new

sequencing methodologies [29, 30] and, additionally, there is increasing evidence that conser-

vation-based inference does not correlate highly with protein sequence positions related to

functional tuning [31], which puts a focus on alternative approaches, like alignment-free meth-

ods. These methods are primarily used for DNA and protein sequence comparison, conse-

quently leading to development of many tools for genome-wide phylogeny, detection of

regulatory elements in DNA, detection of horizontal gene transfer and protein sequence classi-

fication [32]. Computational efficacy of alignment-free methods can be illustrated with a
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Protein Map, a method for protein sequence comparison based on the vector representation of

protein sequences using amino acid physicochemical characteristics, which is 13 times faster

than comparable MSA-based methods [33]. Alignment-free methodology is not commonly

used for this purpose and, according to the best of our knowledge, the only tool based on this

approach is SNAP2noali [28]. In our study, we developed an alignment-free method for esti-

mating the effects of AAS–EpiMut.

Methods

Dataset

The dataset encompassed the epigenetic modifier genes that fulfil the following criteria: 1) are

included in the COSMIC list of Cancer Gene Census for Haematopoietic and Lymphoid Tis-

sue 2) are included in the EpiFactors database and 3) have more than 50 AAS in dbSNP [34]

and COSMIC—Haematopoietic and Lymphoid Tissue, in total (Fig 1). Thus, sequences of 19

epigenetic regulators were obtained from the UniProt database [35], in the FASTA format.

Conserved functional domains in these genes were retrieved from the Pfam database (version

31.0) [36].

Cancer associated mutation data were collected from the COSMIC database (v81). In the

dataset, only SNPs from the reference transcripts of genes were included and, also, we included

only SNPs satisfying criteria: “Chrom. Sample Cnt.” > = 100 AND “Variant allele frequency”

> = 0.001 in the dbSNP (b151). We excluded ambiguous variants. The data collected from the

databases didn’t contain any personal information.

EpiMut features and scores

We used a two-step approach for generating sequence based features (Fig 2). First, we con-

ducted amino acid encoding of protein sequences. Encoding was done using indexes stored in

the AAIndex, a comprehensive archive of various biochemical and biophysical amino acid

indices [37]. We employed each of the 553 indices (out of 566) that had values for all amino

acids. In the second step, we performed a Fourier Transform on each numerical representation

of protein sequences. The Fourier Transform decomposes a numerical sequence into periodi-

cal functions, with series of frequencies and their amplitudes, represented by the informational

Fig 1. Selection of genes, using the COSMIC Cancer Gene Census—Haematopoietic and Lymphoid Tissue and

EpiFactors database. There were at least 50 AAS in dbSNP and COSMIC for each of these 19 selected genes (in the

red circle) that further constituted our dataset.

https://doi.org/10.1371/journal.pone.0244948.g001
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spectrum [38]. Frequencies in the informational spectrum correspond to the distribution of

structural motifs and we used this property to predict the effects of sequence variation on pro-

tein function.

Therefore, each wild type protein sequence was firstly transformed into 553 numerical

sequences that were subsequently converted into 553 informational spectra by the Fourier

Transform. An informational spectrum frequency with the highest amplitude value was

selected for generation of EpiMut scores. The EpiMut score is defined as the difference

between the amplitude value on the selected frequency in the sequence with the variant and

the amplitude value on that particular frequency of the wild type. Therefore, each variant was

represented with the vector encompassing 553 scores, as follows:

Vi ¼ ½Sið1Þ; . . . ; SiðMÞ�

SiðjÞ ¼ Avari
j ðf �j Þ � Awt

j ðf
�

j Þ; i ¼ 1; 2; . . . ;N; j ¼ 1; 2; . . . ;M

where fj� is the frequency of the peak with the highest value of the amplitude in the informa-

tional spectrum of the wild type obtained using the j-th AA index as an encoder; Aj
vari(fj

�

) and

Aj
wt(fj

�

) are the amplitudes on the frequency fj
�

of the i-th variant and wild type informational

spectra accordingly generated using the j-th AA index; Si(j) is the j-th EpiMut score (defined

by the j-th AA index encoder) between the i-th variant and wild type; Vi is the 553 dimensional

vector that represents the i-th variant; N is the number of variants in one protein from our

dataset and it varies depending on the protein; and M is the number of used indices for amino

acid encoding and it equals 553.

EpiMut models and predictions

EpiMut relies on the Naïve Bayes classifier, built for each protein in the dataset, to generate

predictions (Fig 2). We used the H2O platform for machine learning [39]. The Naïve Bayes

algorithm implementation in H2O [40] was used for training and building the classification

models. The dimensionality of training and test data was reduced through the use of the back-

ward elimination process, the GreedyStepwise method, which performed the attribute selec-

tion, whereas for the evaluation of the attributes, the WrapperSubsetEval algorithm, from the

Weka 3.8.1 environment [41], was applied. EpiMut was trained and validated using 10-fold

cross-validation.

Fig 2. EpiMut procedure that was applied to each of the 19 proteins in the dataset.

https://doi.org/10.1371/journal.pone.0244948.g002
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Performance evaluation

We estimated the performance of the tested tools using various measures, which are based on:

true positives (TP)–correctly predicted disease related variants, false positives (FP)–neutral

substitutions incorrectly predicted to be disease-related, true negatives (TN)–correctly pre-

dicted neutrals and false negatives (FN)–disease-related variants incorrectly predicted to be

neutral. We calculated the sensitivity, specificity and accuracy as follows:

Sensitivity ¼ TP=ðTP þ FNÞ

Specificity ¼ TN=ðTN þ FPÞ

Accuracy ¼ ðTP þ TNÞ=ðTP þ TN þ FPþ FNÞ

Performance was additionally measured with the Matthews Correlation Coefficient (MCC):

MCC ¼
ðTP � TN � FP � FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ

p

Finally, we generated the Receiver Operating Characteristic (ROC) curves and calculated

areas under the ROC curves (AUC). A ROC curve shows the relative trade-off between the

true positive rate and false positive rate when different thresholds are set to distinguish

between the two classes and it is widely used as a measure of performance of binary classifiers.

For each statistic, the standard deviation (SD) was calculated as the difference between the

value of the statistic for each gene (gi) and the overall performance (gall). The standard error

(SE) was calculated by dividing SD by the number of analysed genes (n), which equals 19 in all

cases.

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
ðgi � gallÞ

2

n

s

SE ¼
SD
ffiffiffi
n
p

Comparison with other prediction tools

For the comparison of EpiMut with other tools for functional annotation of AAS, we used

SIFT, PolyPhen-2 and SNAP2. SIFT uses sequence homology to predict the effect of an AAS

on the protein function, considering the position at which the substitution occurred and the

type of amino acid change. It calculates the probability score that indicates if the amino acid

change is tolerated. In this study, we had to transform SIFT scores so they could be compared

with other tools and we calculated the SIFTscore = 1 –SIFTscore�, where the SIFTscore� is the

score originally retrieved from the SIFT tool. This transformation resulted in higher SIFT

scores for disease-associated variants, and vice versa for neutral variants, which is in accor-

dance with scores of the other three tools and could be applied to the calculation of comparable

ROC curves. We used the single protein tool SIFT Sequence, with default values of median

conservation of sequences (3.0). The PSI-BLAST search was applied to the UniRef90 database

and sequences with a similarity level of 90% or more to the query sequence were removed

from the alignment. Binary classification was done by annotating AAS with the

SIFTscore > 0.95 as disease-related and AAS with a SIFTscore < 0.95 as neutral. Variants with

a SIFTscore = 0.95 were classified as in output provided by the SIFT tool. The PolyPhen-2
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bases its predictions of the damaging effects of missense mutations on eight sequence-based

features (PSIC score of the wild-type amino acid, difference between the PSIC scores of the

wild type and the mutant amino acids, the sequence identity to the closest homologue, congru-

ency of the mutant allele to the multiple alignment, CpG context, alignment depth, change in

the amino acid volume, whether the site of the mutation resides within an annotated Pfam

domain) and three structure-based features (the accessible surface area, the change in the

hydrophobic propensity, crystallographic B-factor. The functional effect of an AAS is predicted

based on the calculated Naïve Bayes probabilistic score. A variant is automatically classified as

“probably damaging”, “possibly damaging” or “benign”. For this study we adopted a binary clas-

sification, with a cut-off for a probabilistic score of 0.5, leading to annotating AAS with the

higher scores as disease-related and those with lower scores as neutral. We used default values

for query options and the HumVar-trained version of PolyPhen-2. SNAP2 is a neural networks

based classifier. Its feature selection and training was done using various features, like biophysi-

cal amino acid properties, amino acid properties as provided by the AAindex database, explicit

sequence, PSIC profiles, secondary structure and solvent accessibility, residue flexibility, SWIS-

S-PROT annotations, residue annotations from Pfam and PROSITE, predicted binding resi-

dues, predicted disordered regions, proximity to the N- and C-terminus, statistical contact

potentials, co-evolving positions and low-complexity regions. SNAP2 predicts the effect of a sin-

gle AAS on protein function and it gives a binary prediction “effect”/“neutral” and a score rang-

ing from -100 (strong neutral prediction) to +100 (strong effect prediction), which reflects the

likelihood of this specific variation altering the native protein function.

Results

Gene specific models versus multiple genes model

We collected variants from COSMIC and dbSNP for 19 epigenetic factors mutated in hemato-

logic malignancies. Our dataset contained 1303 disease-related and 1578 neutral variants

(Table 1). The entire variants dataset is provided in the S1 Table in S1 File.

Two types of prediction models were built: (i) gene specific models (GSM) that comprise

the feature selection and training process separately for each gene in the dataset, and (ii) the

multiple genes model (MGM), one general model built for all variants in the dataset. In both

approaches, the features were generated based on amino acid indices listed in the AAindex

and using the Fourier Transform, as described in the Methods section, while Naive Bayes was

used as the machine learning algorithm.

The comparison of prediction capacities of these two approaches showed that the GSM

method outperformed the MGM (Fig 3) and thus, the GSM was selected for further use in cre-

ating the EpiMut tool. Selected features in the GSM procedure for each of the 19 proteins are

shown in the S2 Table in S1 File.

Performance of EpiMut and comparison with state-of-the-art tools

Gene-specific and alignment-free methodology was used for the development of EpiMut, a

tool for functional annotation of AAS in 19 analysed epigenetic factors. It provides probabili-

ties for the predictions and the cut-off value of 0.5 was applied for binary classification, denot-

ing AAS with the value�0.5 as “MUT” in the case of a disease-related prediction and AAS

with the probability value <0.5 as “SNP” in the case of neutral predictions. We compared the

performance of EpiMut with three state-of-the-art tools for functional annotation of AAS,

PolyPhen-2, SIFT and SNAP2. Performance was measured using Sensitivity, Specificity, Accu-

racy and MCC. EpiMut showed a better performance compared to PolyPhen-2, SIFT and

PLOS ONE Functional annotation of amino acid substitutions in epigenetic factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0244948 January 4, 2021 6 / 17

https://doi.org/10.1371/journal.pone.0244948


SNAP2 for each of these measures and, additionally, outperformed these tools in regards to

AUC (Fig 4).

Detailed comparison of methods performance was focused on the correctly classified muta-

tions. In this step, we contrasted EpiMut to other methods and identified mutations that

within each comparison were exclusively recognized by only one method and denoted those

exclusive TPs. Noticeably, each of the methods reveals some of the mutations that were unob-

served by the other one, but EpiMut is significantly dominant over its competitors (Fig 5).

This analysis demonstrates that EpiMut improves our capacity to acquire new knowledge and

accelerates experimental investigations in this complex field.

Table 1. The variants dataset consisted of 2881 variants in 19 epigenetic factors.

Gene Disease-related variants Neutral variants Total number of variants

ARID1A 23 68 91

ASXL1 21 70 91

ATM 95 163 258

ATRX 48 56 104

BCOR 23 29 52

CREBBP 73 70 143

DNMT3A 111 14 125

EP300 68 88 156

EZH2 69 9 78

JAK2 40 41 81

KMT2A 34 90 124

KMT2C 96 251 347

KMT2D 84 208 292

NSD1 48 85 133

SETD2 29 104 133

SF3B1 49 5 54

SPEN 23 141 164

TET2 202 67 269

TP53 167 19 186

1303 1578 2881

https://doi.org/10.1371/journal.pone.0244948.t001

Fig 3. Comparison between the variant effect predictor based on Gene Specific Models (GSM) and the Multiple

Genes Model (MGM).

https://doi.org/10.1371/journal.pone.0244948.g003
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Further on, we inspected closely a set of variants miss-predicted by three out of four tools,

which were labelled “difficult to predict mutations” (DTP). In the original dataset 12.4% (162

variants) were DTP disease-related variants. PolyPhen-2 correctly predicted 21, SIFT 24,

SNAP2 21 and EpiMut 96 of these cases (Fig 6). To further investigate these 162 mutations, we

searched available literature for additional information and the experimental evidence about

their effects in obstructing the proteins’ normal functions and their involvement in human dis-

eases. For the majority of these mutations, besides the information that they are associated

with the disease, there was no detailed data about their effects on the protein function. This led

us to focus further investigation on the three variations for which there was some detailed

information regarding their effects in the available literature.

Further, we focused on two genes and the following variants: A1505T in TET2 and S46F

and D48N in TP53 that were predicted as disease-related by EpiMut only. According to the lit-

erature, the TET2 mutation A1505T severely reduces the TET2 ability to bind protein WT1

[42]. WT1, a transcription factor involved in normal embryonic development of urogenital

and hematopoietic systems, plays an important role in pathogenesis of hematologic malignan-

cies, especially acute leukemias [43]. WT1 acts either as a tumour suppressor or oncogene

depending on the cellular context and PPIs [44, 45]. Wang et al. showed that WT1 physically

Fig 4. Performance of EpiMut, PolyPhen-2, SIFT and SNAP2 on a dataset consisting of variants in epigenetic

factors mutated in hematologic malignancies.

https://doi.org/10.1371/journal.pone.0244948.g004

Fig 5. EpiMut is contrasted to SIFT, PolyPhen-2 and SNAP2 in the search for unshared correctly classified

mutations. Stacked bars represent the numbers of exclusive TPs in each of the three comparisons.

https://doi.org/10.1371/journal.pone.0244948.g005
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interacts with wild type TET2 and recruits it to its target genes, which affects expression of

these genes and leads to inhibition of leukemia cell proliferation [42]. The A1505T mutation

in TET2 disrupts this interaction, consequently leading to an effect on WT1 target genes

expression and increased leukemia cell proliferation [42]. TET2 is frequently mutated in the

majority of hematologic cancers, with a frequency of 17–37% in myeloid and 15–33% in T-cell

lymphoid malignancies [46], and the disruption of its PPIs by mutations can be an important

mechanism of its pathological role in these cases.

The second DTP we focused on is within TP53, a well-described tumour suppressor with

roles in cell cycle regulation and apoptosis, which is mutated in many cancer types. In hemato-

logic malignancies, the frequency of TP53 mutations ranges from 3–8% in AML to 10–20% in

chronic lymphocytic leukemia [47]. More importantly, mutations in TP53 in hematologic can-

cers are associated with a more aggressive disease, worse overall survival and resistance to ther-

apies [47]. Enari et al. showed that the S46F mutation in TP53 increases its binding to clathrin,

a protein involved in vesicle transport [48]. This interaction is involved in apoptosis, although

the mechanism remains elusive [48, 49]. Nevertheless, it was previously shown that

impairment of clathrin’s normal functions, through gene fusions, leads toward various lym-

phoid malignancies [49].

Finally, aspartic acid at position 48 resides in the TAD2 domain of protein TP53 and is

involved in the interaction with the Taz2 domain of histone acetyltransferase EP300 [50],

another protein in our dataset. EP300 is an important player in pathogenesis of various lym-

phoid malignancies and its mutations are valuable biomedical markers in these diseases [12,

16]. TP53-EP300 interaction results in stabilization of TP53, its decreased degradation and

increased gene transcription. Mutation D48N in TP53 reduces this interaction [50] and can

consequently affect all of the mentioned functions and underlie pathogenic phenotypes [51].

According to the aforementioned findings, EpiMut efficiently identifies variants that disrupt

protein interactions and support biological processes that underlie the disease mechanisms.

Fig 6. Distribution per gene of 162 “difficult to predict mutations” (DTP) predicted by EpiMut, PolyPhen-2, SIFT

and SNAP2.

https://doi.org/10.1371/journal.pone.0244948.g006
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Performance on the subset of variants positioned outside conserved

functional domains

Although evolutionary based methodologies are almost ubiquitously used in tools for func-

tional annotation of AAS, our previous research showed that SIFT and PolyPhen-2 have low

sensitivity (51% and 39%, respectively) in predicting the functional effects of variants in pro-

tein regions of epigenetic modifiers that are outside of the conserved functional domains

(CFD) [52]. It is important to address this issue since 50% of AAS associated with cancers were

shown to be positioned in these non-CFDs (nCFD) [53]. Therefore, we tested the performance

of EpiMut, PolyPhen-2, SIFT, and SNAP2 on the subset of 2108 nCFD variants (Table 2).

The decrease in performance on the nCFD dataset was observed for all prediction tools (Fig

7), whereas EpiMut shows the smallest decrease in accuracy, MCC and it retains a similar

value of AUC, which is a consequence of the high increase in specificity (Fig 7). The perfor-

mance of all tools on the nCFD dataset is shown in S1 Fig in S1 File, with EpiMut showing the

best performance for all measures except sensitivity.

EpiMut standalone tool

EpiMut software is implemented in the JAVA language, using the H2O library for generating

machine learning classifiers, and is available as a standalone application, which can be exe-

cuted on any operating system containing the Java Virtual Machine.

EpiMut supports a batch mode query for separate genes. The input file has to contain a list

of AAS in the form of:

original_amino_acid position_in_protein substitute_amino_acid (example: G187V)

and the gene name of the selected gene for the query in the input file name. The generated out-

put file contains the name of the query gene in the file name and the list of AAS with predicted

Table 2. nCFD dataset consisting of 2108 variants in non-conserved regions of epigenetic factors.

Gene Disease-related variants Neutral variants Total number of variants

ARID1A 18 62 80

ASXL1 20 64 84

ATM 53 125 178

ATRX 39 52 91

BCOR 12 24 36

CREBBP 22 59 81

DNMT3A 51 10 61

EP300 36 77 113

EZH2 31 8 39

JAK2 14 22 36

KMT2A 29 83 112

KMT2C 86 232 318

KMT2D 64 199 263

NSD1 41 84 125

SETD2 22 104 126

SF3B1 48 5 53

SPEN 20 129 149

TET2 105 45 150

TP53 6 7 13

717 1391 2108

https://doi.org/10.1371/journal.pone.0244948.t002
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class–SNP for neutral and MUT for disease-related variants, as well as probability associated

with the prediction.

EpiMut is a free software released under the Apache License, Version 2.0. The EpiMut

application with documentation is available at https://www.vin.bg.ac.rs/180/tools/epimut.php.

Discussion

Machine learning (ML) methods are widely used for solving various biological classification

problems, including inferring about the disease-related/neutral effects of AAS. The most com-

monly used approaches are support vector machines, neural networks, Bayesian classifiers,

random forests and decision trees [54]. Two out of three tools that we used for performance

comparison are ML-based–PolyPhen-2 employed Naïve Bayes and SNAP2 employed the neu-

ral networks approach. EpiMut encompasses a selection of different features and the Naive

Bayes method as part of the GSM approach and thus it differs from the other tools. Compari-

son of the GSM strategy and commonly used approach of one ubiquitous model for all genes–

the MGM model, showed that GSM-based EpiMut significantly outperforms MGM. This find-

ing is in accordance with previous research showing that applying gene-specific thresholds to

the results of standard tools, like PolyPhen-2, SIFT, Mutation Taster, Mutation Assessor [55],

CADD [56], may improve their prediction performance [57, 58]. On the other hand, gene- or

disease-specific models that are trained on relatively restricted but specific datasets satisfacto-

rily associate gene variants with hyperthrophic cardiomyopathy [59], haemophilia [60] and

various cardiac diseases [61]. The GSM approach that we developed employs variants collec-

tion of similar sizes as various previously developed methods for prediction of variant func-

tional significance in: RET [62, 63], GLA [64] and DPYD [65]. It is important to notice that

many previous studies also showed that the Bayesian approach is the method of choice for the

prediction of effects of AAS when only small datasets are available [61, 62, 66]. Superiority of

the GSM over the MGM points to a gene specific approach as the strategy for improving tools

for functional annotation of gene variants and directions for the future development of this

research field.

Performances of the PolyPhen-2 and SIFT on the variant dataset used in this study are simi-

lar to the results obtained in the study by Thusberg et al. [20], in which the authors evaluated

Fig 7. Differences in performance of EpiMut, PolyPhen-2, SIFT and SNAP2 between the entire variants dataset

and nCFD data subset. Each column in this histogram represents the difference among the values of a particular

performance measure obtained, for each tool, on the entire variants dataset and the values obtained for the nCFD data

subset.

https://doi.org/10.1371/journal.pone.0244948.g007
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various tools on the dataset containing approximately 40 thousand human AAS. The SNAP2

performance on our variant dataset was similar to the reported performance by the authors of

the tool [28]. EpiMut showed a significant advantage in performance compared to these state-

of-the-art tools for functional annotation of AAS. Accuracy of EpiMut was higher by 7.4% on

average compared to other tools, while the AUC was higher by 8.0% on average. Nevertheless,

one should bear in mind that different approaches underlying PolyPhen-2, SIFT, SNAP2 and

EpiMut and especially various datasets that were used for the training of ML-based tools, make

these comparisons difficult [54] given that the presence of a protein in a training dataset

improves its performance for predicting the effects of different variants in the same protein

[67]. In case of PolyPhen-2, 16 out of 19 proteins from our dataset were in its training set.

Additionally, 36 variants in our dataset were already present in the PolyPhen-2 training set

and it performed significantly better in predicting their effects compared to its average

performance.

An important advantage of EpiMut which underlies its better performance on the nCFD

dataset is that it doesn’t rely on the evolutionary information. Compared to other tools EpiMut

has 8.5% higher accuracy and 14.4% higher AUC, on average. Lower accuracy of PolyPhen-2,

SIFT and SNAP2 on the nCFD compared to the CFD set (14%, 13% and 20%, respectively) is

in line with our previous results showing that MSA-based tools are not efficient for the predic-

tion of functional effects of AAS outside CFDs [52]. The importance of this result is reflected

in the fact that 55% of hematologic malignancy-related variants in analysed epigenetic factors,

as well as 73% of all variants in the dataset are in nCFD and they are, therefore, predicted with

lower efficacy by MSA-based tools.

Finally, approximately 12% of disease-related variants in our dataset were correctly pre-

dicted solely by one tool. Of these DTP variants, 60% were correctly predicted solely by Epi-

Mut, which emphasizes the importance of the EpiMut workbench, combining the alignment-

free and gene-specific approach. Almost none of the 162 DTP variants were previously func-

tionally annotated in detail. Nevertheless, there was previous experimental verification of func-

tional effects of three variants, in TET2 and TP53, showing their role in the PPI of these

proteins [42, 48, 50]. Our recent research has shown that features generated on the basis of

physicochemical characteristics of amino acids are important for understanding and predict-

ing PPI [68]. This implies that characteristics of certain amino acids and their surrounding

subsequences, captured through the use of the Fourier Transform for processing numerically

encoded sequences, play crucial roles in protein interactions. EpiMut captures the effects of

variants in these positions with high power. PPI interaction sites in the case of transient inter-

actions are not under high evolutionary pressure and they vary to a great extent, which enables

higher flexibility of these interactions [69]. This can have consequences in lower performance

of MSA-based methods in predicting the functional effects of mutations. Other cases of muta-

tions in epigenetic factors that alter PPI, playing an important role in pathogenesis of hemato-

logic malignancies, are mutations in the SET domain of EZH2. This domain is crucial for

EZH2 binding abilities [70] and mutations positioned in it contribute to the onset of lympho-

mas [71]. The result showing that EpiMut can correctly predict the majority of cases that were

wrongly annotated by other tools, indicates the complementarity of EpiMut and the studied

MSA-based tools, which can be used in the future for building new assembly methods.

It is worth noting that the methodology applied in this research, based on the gene-specific

and alignment-free approach, can be used for the analysis of any gene mutated in human dis-

eases. The only consideration that should be taken into account is the number of variants asso-

ciated with a gene, which must satisfy requirements of the machine learning algorithms.

Epigenetic factors in hematologic cancers provide a proof of concept and demonstrate the use-

fulness and effectiveness of the proposed approach. We provide EpiMut to serve the scientific
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community in predicting the functional effects of AAS and in future studies, we plan to further

extend the scope of this methodology to additional genes involved in human cancers.

Conclusions

Epigenetic factors are frequently mutated in hematologic malignancies and new variants are

being discovered at an unprecedented pace. Numerous variants in genes coding for epigenetic

regulators have already been identified as biomarkers for prognosis and therapy response, and

computational models that effectively distinguish neutral from disease variants are in great

demand. In this paper, we described a fast and computationally efficient EpiMut method that

significantly improves variants effect predictions. EpiMut, especially, exceeds state-of-the-art

tools in predicting the effects of difficult variants and functionally important variants posi-

tioned outside the conserved domains of proteins. The standalone EpiMut software that we

contribute to the community has the potential to advance whole genome sequencing analysis

pipelines for hematologic patients and to accelerate biomarker discovery.
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